Konfigurieren von VXLAN Flood und Lernen mit Multicast Core

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Hintergrundinformationen Paketformat für VXLAN **Remote-VTEP-Erkennung** Konfigurieren Netzwerkdiagramm 9396-A-Konfiguration 9396-B-Konfiguration 9508-A-Konfiguration 9396-C-Konfiguration Überprüfen Status nach dem Start des Datenverkehrsflusses zwischen Peers Fehlerbehebung

Einführung

In diesem Dokument wird beschrieben, wie VXLAN-Flood (Virtual Extensible LAN) konfiguriert und verifiziert wird und wie der Modus über IPv4-Multicast-Transport erlernt wird.

Voraussetzungen

Anforderungen

Cisco empfiehlt, dass Sie über Kenntnisse über grundlegendes IP-Multicast verfügen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf der Nexus-Plattform.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Hintergrundinformationen

VXLAN wurde entwickelt, um die gleichen Ethernet-Layer-2-Netzwerkservices wie VLAN bereitzustellen. VXLAN kapselt die MAC-Adresse über ein UDP-Paket, wodurch ein Layer-2-Paket über ein Layer-3-Netzwerk übertragen wird. Es handelt sich also im Grunde um einen MAC-in-UDP-Header.

VXLAN führt einen 8-Byte-VXLAN-Header ein, der aus einem 24-Bit-VXLAN Network Identifier (VNID) und einigen reservierten Bits besteht. Der VXLAN-Header wird zusammen mit dem ursprünglichen Ethernet-Frame in die UDP-Nutzlast übertragen. Die 24-Bit-VNID dient zur Identifizierung von Layer-2-Segmenten und zur Aufrechterhaltung der Layer-2-Isolierung zwischen den Segmenten. Mit allen 24 Bit in VNID kann VXLAN 16 Millionen LAN-Segmente unterstützen. Es löst also die Frage der Einschränkung von VLANs. Ohne VxLAN können Sie nur 4094 VLAN-Nummern haben, bei zunehmender Nachfrage benötigen moderne Netzwerke mehr VLANs, und VXLAN ist die Lösung, um dieses Problem zu beheben.

Da der Ethernet-Frame zum Kapseln des Pakets verwendet wird, müssen die Ethernet-Eigenschaften wie Broadcase, Unicast und Multicast intakt bleiben. Um diese Art von Datenverkehr zu bewältigen, wird Multicast verwendet. In diesem Dokument wird VXLAN Flood and Learn beschrieben. Da der Name angibt, dass er das Paket überflutet und das Remote-Ende lernt. Dies bedeutet, dass die Datenebene nicht immer aktiv ist, sobald die Datenverkehrsfluss-Datenebene eingerichtet ist und sobald die MAC-Adresse abläuft.

Paketformat für VXLAN

Figure 1. VXLAN Packet Format

Wie in dieser Abbildung gezeigt, wird der ursprüngliche Frame in einen VXLAN-Header mit 8 Byte und eine VNID mit 24 Bit eingekapselt. Diese wird weiter in den UDP-Header eingekapselt, und der äußere Header ist ein IP-Header.

Die Quell-IP-Adresse ist die IP des gekapselten Virtual Terminal End Point (VTEP) und die Ziel-IP-Adresse. Dabei kann es sich entweder um eine Multicast- oder eine Unicast-IP-Adresse handeln. VXLAN verwendet VXLAN Tunnel Endpoint (VTEP)-Geräte, um die Endgeräte von Tenants VXLAN-Segmenten zuzuordnen und VXLAN-Kapselung und -Entkapselung durchzuführen. Jedes VTEP hat zwei Schnittstellen: Eine ist eine Switch-Schnittstelle im lokalen LAN-Segment, um die Kommunikation zwischen lokalen Endpunkten durch Bridging zu unterstützen, und die andere ist eine IP-Schnittstelle zum Transport-IP-Netzwerk.

Remote-VTEP-Erkennung

Wenn der Host beginnt, den Datenverkehr zu senden, wird der Prozess wie hier beschrieben ausgeführt. Derzeit kennt VTEP die MAC-Adresse des Remotehosts nicht.

- 1. Die Endstation sendet ein ARP-Paket (Address Resolution Protocol) für die Remote-Endstation.
- Das Paket erreicht VTEP-A, und da VTEP-A von VTEP-B nichts weiß, kapselt es das Paket in den VXLAN-Header. Dabei wird die Multicast-IP-Adresse als Ziel-IP-Adresse festgelegt. Da alle VTEPs dieselbe Multicast-Adresse verwenden, werden alle derselben Multicast-Gruppe hinzugefügt.
- 3. Dieses Paket erreicht alle VTEPs und wird entkapselt, sodass das Remote-VTEP von den anderen VTEPs erfährt. Da das dekapselte VTEP über die VNID verfügt, wird es in das VLAN weitergeleitet, in dem dieselbe VNID konfiguriert ist.
- 4. Nun sendet Řemote-End das ARP-Antwortpaket und erreicht VTEP-B. VTEP-B weiß jetzt von VTEP-A, es kapselt den ursprünglichen Frame wieder, aber jetzt ist die Ziel-IP-Adresse VTEP-B und die Unicast-IP-Adresse.
- 5. Die ARP-Antwort erreicht VTEP-A, und VTEP-A erhält jetzt Informationen über VTEP-B, das die Nachbarbeziehung zu VTEP-B bildet.

Wie im Diagramm gezeigt, gehört Host H1 zu VLAN 10 und ist in VNID 1000 gekapselt. Wie hier gezeigt, ist SMAC mit H1 und DMAC mit H2 in VNI 1000 gekapselt, und die Quell-IP und Ziel-IP-Adresse kann Multicast oder Unicast sein, wie in diesem Abschnitt beschrieben.

Konfigurieren

Netzwerkdiagramm

- 9396-A und 9396-B werden als VTEP-1-Peers betrachtet.
- 9396-C ist der VTEP-2Das Diagramm enthält zwei Hosts in VLAN 10, d. h. 10.10.10.1 und 10.10.10.2.
- VLAN 10 wird mit VNID 10010 verwendet
- 230.1.1.1 wird als Multicast-Gruppe verwendet

Um VXLAN auf Nexus zu aktivieren, müssen Sie diese Funktion aktivieren.

9396-A-Konfiguration

```
!
feature vn-segment-vlan-based
feature nv overlay
!
vlan 10
                  ----> 10010 is VNID
vn-segment 10010
!
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
!
interface eth1/2
```

```
!
ip pim sparse-mode
!
interface loopback0
ip address 10.1.1.1/32
ip address 10.1.1.10/32 secondary
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
```

Hinweis: 10.1.1.10 wird als sekundäre IP-Adresse verwendet, und der Loopback muss die sekundäre IP-Adresse nur im Fall von vPC haben. Beide vPC-Peers müssen über dieselbe sekundäre IP-Adresse und über eine andere primäre IP-Adresse verfügen.

```
!
feature vpc
!
vpc domain 1
peer-switch
peer-keepalive destination 10.31.113.41 source 10.31.113.40
peer-gateway
!
interface port-channel1
vpc peer-link
!
interface port-channel112
vpc 112
!
```

9396-B-Konfiguration

```
!
vlan 10
                  ----> 10010 is VNID
vn-segment 10010
1
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
1
interface eth1/2
ip pim sparse-mode
1
interface loopback0
ip address 10.1.1.2/32
ip address 10.1.1.10/32 secondary
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
feature vpc
1
vpc domain 1
peer-switch
peer-keepalive destination 10.31.113.40 source 10.31.113.41
peer-gateway
!
interface port-channel1
vpc peer-link
!
interface port-channel112
```

```
vpc 112
```

1

9508-A-Konfiguration

feature pim

```
ip pim rp-address 10.1.1.5 group-list 224.0.0.0/4
ip pim ssm range 232.0.0.0/8
interface loopback0
ip pim sparse-mode
interface Ethernet5/2
ip pim sparse-mode
interface Ethernet5/3
ip pim sparse-mode
interface Ethernet5/4
ip pim sparse-mode
```

Hinweis: Beim 9508 muss nur PIM aktiviert sein. Da es sich um das VTEP handelt, ist keine VXLAN-Funktion erforderlich.

9396-C-Konfiguration

```
1
vlan 10
vn-segment 10010
1
interface loopback0
ip address 10.1.1.3/32
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
!
int eth1/2
ip pim sparse-mode
Überprüfen
```

In diesem Abschnitt überprüfen Sie, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Der Host hat jetzt noch nicht begonnen, den Paket-Stream zu senden. Da der 9396-A ein vPC-Holding-Gerät ist, wird das Traffic-Sourcing von der sekundären IP-Adresse generiert und dient als Quell-IP-Adresse für den Multicast-Stream.

```
VPC Capability: VPC-VIP-Only [notified]
Local Router MAC: d8b1.9076.9053
Host Learning Mode: Data-Plane
Source-Interface: loopback0 (primary: 10.1.1.1, secondary: 10.1.1.10)
9396-A# sh ip mroute 230.1.1.1
IP Multicast Routing Table for VRF "default"
```

```
(*, 230.1.1.1/32), uptime: 01:09:34, ip pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.2
Outgoing interface list: (count: 1)
nvel, uptime: 00:11:20, nve
(10.1.1.3/32, 230.1.1.1/32), uptime: 00:12:19, ip mrib pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.2
Outgoing interface list: (count: 1)
nvel, uptime: 00:11:20, nve
(10.1.1.10/32, 230.1.1.1/32), uptime: 00:11:20, nve ip mrib pim
Incoming interface: loopback0, RPF nbr: 10.1.1.10
Outgoing interface list: (count: 1)
```

Ethernet1/2, uptime: 00:11:20, pim In * wird die Schnittstelle für den G-Eintrag in der OIL-Liste (Outgoing Interface List) ausgefüllt. Wie hier gezeigt, ist 10.1.1.10 die Quelle des Multicast-Streams, und die Nve-Schnittstelle ist der

Last Hop-Router für den Multicast-Stream mit eth1/2, der in Richtung des Kerns gerichtet ist, die ausgehende Schnittstelle.

Da kein Datenverkehr vom Host fließt, gibt es keine Peers:

9396-A# sh nve peers Interface Peer-IP State LearnType Uptime Router-Mac

Diese Ausgabe zeigt Ihnen, wie die vPC-Ausgabe aussehen muss:

```
9396-A# sh vpc brief
Legend:
              (*) - local vPC is down, forwarding via vPC peer-link
vPC domain id
                                 : 1
Peer status
                                : peer adjacency formed ok
vPC keep-alive status
                               : peer is alive
Configuration consistency status : success
                                : success
Per-vlan consistency status
Type-2 consistency status
                                : success
vPC role
                                : primary
Number of vPCs configured
                               : 1
```

Peer	Gateway	Y		:	Enabled			
Dual	-active	exclude	ed VLANs	:	-			
Grace	eful Cor	nsistend	cy Check	:	Enabled			
Auto-recovery status				:	Disabled			
Dela	y-resto	re statu	ıs	:	Timer is	off.(timeout	= 30s)	
Dela	y-resto	re SVI s	status	:	Timer is	off.(timeout	= 10s)	
vPC	Peer-lin	nk statı	າຂ					
id	Port	Status	Active vlans	3				
1	Pol	up	1-10					
vPC :	status							
id	Port	Status	Consistency	Reas	on		Active	vlans
112	Po112	 מנו	success	succe	ess		1-10	
		T-					•	

9396-A# sh vpc consistency-parameters global

Legend:

Type 1 : vPC will be suspended in case of mismatch

Name	Туре	Local Value	Peer Value
Vlan to Vn-segment Map	1	1 Relevant Map(s)	1 Relevant Map(s)
STP Mode	1	Rapid-PVST	Rapid-PVST
STP Disabled	1	None	None
STP MST Region Name	1	" "	
STP MST Region Revision	1	0	0
STP MST Region Instance to	1		
VLAN Mapping			
STP Loopguard	1	Disabled	Disabled
STP Bridge Assurance	1	Enabled	Enabled
STP Port Type, Edge	1	Normal, Disabled,	Normal, Disabled,
BPDUFilter, Edge BPDUGuard		Disabled	Disabled
STP MST Simulate PVST	1	Enabled	Enabled
Nve Admin State, Src Admin	1	Up, Up, 10.1.1.10, DP	Up, Up, 10.1.1.10, DP
State, Secondary IP, Host			
Reach Mode			
Nve Vni Configuration	1	10010	10010
Nve encap Configuration	1	vxlan	vxlan
Interface-vlan admin up	2		
Interface-vlan routing	2	1	1
capability			
Allowed VLANs	-	1-10	1-10
Local suspended VLANs	-	-	-

9508-A

Da die 9508-A-Route ein Core-Router ist, ist ihr das VXLAN nicht bekannt. Sie kennt den mroute-Eintrag nur wie hier gezeigt:

9508-A# sh ip mroute 230.1.1.1 IP Multicast Routing Table for VRF "default"

(*, 230.1.1.1/32), uptime: 01:30:06, pim ip Incoming interface: loopback0, RPF nbr: 10.1.1.5, uptime: 01:30:06 Outgoing interface list: (count: 3)

```
Ethernet5/3, uptime: 00:14:11, pim
   Ethernet5/2, uptime: 00:14:31, pim
  Ethernet5/4, uptime: 00:16:22, pim
(10.1.1.3/32, 230.1.1.1/32), uptime: 00:15:44, pim mrib ip
Incoming interface: Ethernet5/4, RPF nbr: 192.168.10.10, uptime: 00:15:44, internal
Outgoing interface list: (count: 2)
   Ethernet5/3, uptime: 00:14:11, pim
   Ethernet5/2, uptime: 00:14:31, pim
(10.1.1.10/32, 230.1.1.1/32), uptime: 00:14:31, pim mrib ip
Incoming interface: Ethernet5/2, RPF nbr: 192.168.10.1, uptime: 00:14:31, internal
Outgoing interface list: (count: 1)
   Ethernet5/4, uptime: 00:14:31, pim
9396-C
9396-C# show ip mroute
IP Multicast Routing Table for VRF "default"
(*, 230.1.1.1/32), uptime: 01:07:34, ip pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.9
Outgoing interface list: (count: 1)
  nvel, uptime: 00:10:38, nve
(10.1.1.3/32, 230.1.1.1/32), uptime: 00:10:38, nve ip mrib pim
Incoming interface: loopback0, RPF nbr: 10.1.1.3
```

Outgoing interface list: (count: 1)
Ethernet1/2, uptime: 00:09:49, pim

Outgoing interface list: (count: 1)
 nvel, uptime: 00:08:05, nve

(10.1.1.10/32, 230.1.1.1/32), uptime: 00:08:05, ip mrib pim nve

Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.9

Sobald Host 1, d. h. 10.10.10.1, beginnt, den Datenverkehr an den 10.10.10.2 NVE-Peer zu senden, wird Folgendes angezeigt:

Status nach dem Start des Datenverkehrsflusses zwischen Peers

93 Le	96-A# sh gend:	mac address-tabl	le dynamic				
	* _	primary entry, (G - Gatewa	y MAC,	(R) - Rou	ted M	AC, O - Overlay MAC
	age (T)	- True, (F) - Fa	last seen alse	,+ - p	rimary ent	ry us	ing vpc peer-link,
	VLAN	MAC Address	Туре	age +	Secure	NTFY -+	Ports
*	10	8c60.4f93.5ffc	dynamic	0	F	F	Po112
+	10	8c60.4f93.647c	dynamic	0	F	F	nve1(10.1.1.3)
93	96-A# sh	nve peers			TTo to Succe	Darta	M

Incertace	FCCI IF	State	псатитурс	operme	Router	Mac
nvel	10.1.1.3	Up	DP	00:00:14	n/a	

9396-A# sh nve peers detail

Details of nve Peers:

Peer-Ip: 10.1.1.3	
NVE Interface	: nvel
Peer State	: Up
Peer Uptime	: 00:04:49
Router-Mac	: n/a
Peer First VNI	: 10010
Time since Create	: 00:04:49
Configured VNIs	: 10010
Provision State	: add-complete
Route-Update	: Yes
Peer Flags	: None
Learnt CP VNIs	:
Peer-ifindex-resp	: Yes

9396-A sh nve vni 10010 detail

VNI: 10010	
NVE-Interface	: nvel
Mcast-Addr	: 230.1.1.1
VNI State	: Up
Mode	: data-plane
VNI Type	: L2 [10]
VNI Flags	:
Provision State	: add-complete
Vlan-BD	: 10
SVI State	: n/a

9396-A# sh nve internal vni 10010 VNI 10010

Ready-State : Ready [L2-vni-flood-learn-ready]

Ähnlich müssen NVE-Peers für 9396-C aktiviert sein:

9396-C# show mac address-table dynamic

Legend:

		* _	primary entry, G	- Gatewa	y MAC, (R) - Rout	ed MA	.C, O - Overlay MAC
		age	- seconds since ?	last seen	,+ - prima	ary entr	ry usi	ng vPC Peer-Link,
		(T)	- True, (F) - Fa	lse				
	VLAN		MAC Address	Туре	age	Secure	NTFY	Ports
		· – – +		+	+	-+	-+	+
*	10		8c60.4f93.5ffc	dynamic	0	F	F	nve1(10.1.1.10)
*	10		8c60.4f93.647c	dynamic	0	F	F	Eth1/13

9396-C# sh nve peers

Interface	Peer-IP	State	LearnType	Uptime	Router-Mac
nvel	10.1.1.10	Up	DP	00:08:28	n/a

9396-C# sh nve peers detail

Details of nve Peers:

Provision State	: add-complete
Configured VNIs	: 10010
Time since Create	: 00:08:32
Peer First VNI	: 10010
Router-Mac	: n/a
Peer Uptime	: 00:08:32
Peer State	: Up
NVE Interface	: nvel
Peer-Ip: 10.1.1.10	

Route-Update : Yes Peer Flags : None Learnt CP VNIS : --Peer-ifindex-resp : Yes

9396-C sh nve vni 10010 detail

VNI: 10010	
NVE-Interface	: nvel
Mcast-Addr	: 230.1.1.1
VNI State	: Up
Mode	: data-plane
VNI Type	: L2 [10]
VNI Flags	:
Provision State	: add-complete
Vlan-BD	: 10
SVI State	: n/a
9396-C# sh nve inter	nal vni 10010

VNI 10010 Ready-State : Ready [L2-vni-flood-learn-ready]

Wie hier gezeigt, basieren keine Peers auf dem Lernen auf Datenebene und es nutzt Flood and Learn-Mechanismen. Wenn die MAC-Adresse abgelaufen ist, wird kein Peer ausgeschaltet.

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.