Verständnis der CUSP-Terminologie und Routing-Logik

Inhalt

Einführung Voraussetzungen Anforderungen **Terminologie** Definitionen **Netzwerktopologie** Anrufbeispiel Grundlegende Anrufweiterleitung Konfigurationen Wichtige Konfigurationselemente Vollständige Konfiguration Fehlerbehebung **Trace-Level-Konfiguration** Trace-Erfassung Nachverfolgungsauftrag Beispiel für Trigger-Bedingungsüberwachung **Beispiel für Routing Trace** Beispiel für SIP-Wire-Log-Trace Architekturreferenz

Einführung

In diesem Dokument wird erläutert, wie die Anrufweiterleitungslogik des Cisco Unified SIP Proxy (CUSP) ausgeführt wird.

Unterstützt von Joshua Meadows, Cisco TAC Engineer.

Voraussetzungen

Anforderungen

Cisco empfiehlt, über die folgenden Themen zu verfügen:

- Allgemeine Kenntnisse des Session Initiation Protocol (SIP)
- Konzeptionelle Kenntnisse von CUSP in Sprachnetzwerkbereitstellungen

Terminologie

Definitionen

Begriff	Definition Ein SIP-Netzwerk ist eine logische Sammlung lokaler Schnittstellen, die für allgemeine R werden können. Von < <u>http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cusp/rel9_1/gui_configuration/en_</u> Das Netzwerk definiert logisch Bereiche des Netzwerks. Das Netzwerk kann mithilfe von Gerät definiert werden, oder es können spezifische Ports verwendet werden, um eine Se diese logische Segmentierung zu erreichen, können separate Listen-Ports konfiguriert wer (Beispiel: Listen Ports 14.50.245.9:5060, 14.50.245.9:5062, 14.50.245.9:5065 können dr
Netzwerk	Sobald die Netzwerke logisch definiert sind, können sie für die Konfiguration von Triggen Netzwerk basieren.
	Hinweis: Wenn Sie einen Überwachungsport einrichten, stellen Sie sicher, dass Ger CUSP senden, den richtigen Port verwenden. Wenn Sie den Listen-Port 14.50.245. einrichten, müssen Sie sicherstellen, dass CUCM Datenverkehr an Port 5065 sende 5060.
Trigger	Trigger können so eingestellt werden, dass eingehende Nachrichten identifiziert werden. Trigger können eingehendes Netzwerk, lokalen Port, Remote-Netzwerk usw. identifiziere Servergruppen definieren die Elemente, mit denen das Cisco Unified SIP Proxy-System f Von
Serveraruppe	< <u>http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cusp/rel9_1/gui_configuration/en_ml></u>
Gervergruppe	In der Routentabelle können sowohl Servergruppe als auch Routengruppe als Ziele verw Servergruppe würde im Allgemeinen für redundante Geräte desselben Typs verwendet. Beispiel für eine Servergruppe. Mit einer Routengruppe können Sie die Reihenfolge festlegen, in der Gateways und Trur
	können eine Liste von Gateways und Ports für die Auswahl ausgehender Trunks priorisie Von
Poutonarunno	<pre><nttp: c="" cusp="" docs="" en="" en_<br="" gui_configuration="" rel9_1="" td="" us="" voice_ip_comm="" www.cisco.com="">[></nttp:></pre>
Koutengruppe	In der Routentabelle können sowohl Servergruppe als auch Routengruppe als Ziele verw Routengruppe definiert im Allgemeinen gewichtete Gruppenziele, um dasselbe Gerät zu Ein direkter SIP-Trunk zu einem CUCM und ein SIP-Trunk zu einem PSTN-Gateway zun gutes Beispiel für eine Routengruppe. Der direkte SIP-Trunk zum CUCM wäre die bevor Route wäre ein Backup.
	Sie konfigurieren Routing-Tabellen, um SIP-Anfragen an die entsprechenden Ziele zu lei aus einer Reihe von Schlüsseln , die anhand der Suchrichtlinie zugeordnet werden. Von
	< <u>http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cusp/rel9_1/gui_configuration/en_</u>
Routentabelle	Die Routentabellen in CUSP ähneln den Routing-Tabellen auf Layer 3. CUSP-Routentab Netzwerken in Layer-3-Routing-Tabellen ähneln. Routentabellen verknüpfen Schlüssel m In der CUSP-Routentabelle können die Schlüssel den folgenden Routentypen zugeordne weiterzuleiten:
	<u>Ziel</u> : Ein bestimmter Host oder eine lokal konfigurierte Servergruppe kann als Ziel konfigurierte <u>route-group</u> : Eine lokal konfigurierte Routengruppe mit einem oder mehreren Elementen <u>route-policy</u> : Routingrichtlinien können verwendet werden, um ähnlich wie Übersetzungsi Routentabellen zu verschieben. <u>Antwort</u> : Anstatt eine SIP-Nachricht weiterzuleiten, kann der CUSP eine bestimmte Antwort

zu beenden. default-sip: Einfaches Routing nach RFC 3263.

Hinweis: Wenn Sie einen Schlüssel einer Routenrichtlinie zuordnen, sollten Sie logis

Eine Routenrichtlinie verweist auf eine Routentabelle und definiert die Verwendung des S Routentabelle.

<u>Beispiel</u>:

Name der Routentabelle: "VonCUCM105-RT"

Hinia Suchschlüsselpassungen: "Prefix-Longest-Match"

Routenrichtlinie Suchschlüssel: "SIP-Header: An - Telefon

Durch Trennung der Definition des **Schlüssels** vom konfigurierten Wert des **Schlüssels** karverschiedene Weise verwendet werden. Beispielsweise könnte eine Routenrichtlinie der Präfix für ein **TO** definieren: -Header, während eine andere Route-Policy den **Schlüssel** de **FROM** definieren könnte: Header.

Routing-Trigger verknüpfen einen Trigger mit einer Routenrichtlinie.

Routing-Trigger Es gibt logisch an, ob eine SIP-Nachricht mit dem Trigger übereinstimmt, und verwendet Routenrichtlinie.

Zusammenfassend lässt sich sagen, dass eine SIP-Nachricht mit einem **Netzwerk** auf Basis des SIP-Überwachungsports markiert wird. Das **Netzwerk** kann verwendet werden, um einem **Trigger** zu entsprechen. Die **Routenrichtlinie** identifiziert dann die **Routentabelle**, die auf dem **Trigger** verwendet werden soll, und definiert, wo nach dem **Schlüssel** gesucht werden soll. Die **Routentabelle** verwendet dann den **Schlüssel**, um herauszufinden, wohin die SIP-Nachricht (Routentyp) weitergeleitet werden soll. Der Routentyp (Host, **Servergruppe**, **Routengruppe** usw.) wird verwendet, um die SIP-Nachricht an das konfigurierte Ziel (**Element**) zu senden.

Netzwerktopologie

Anrufbeispiel

Anruf vom PSTN 1001 bis 2003 auf CUCM115

Grundlegende Anrufweiterleitung

Eingehendes Netzwerk: "PSTN"

Trigger: "Von-PSTN-Trigger"

Trigger bei Übereinstimmung der eingehenden Nachricht mit dem Netzwerk "PSTN"

Routing-Trigger: "VonPSTN-RPopolicy" "Von-PSTN-Trigger"

Links "From-PSTN-Trigger" zu "FromPSTN-RPopolicy"

Routingrichtlinie: "VonPSTN-RPopolicy"

Gibt die Routing-Tabelle "PSTN-RT" an.

Gibt Suchschlüsselpassungen "Prefix-Longest-Match" an.

Gibt den Suchschlüssel an: "SIP-Header: An - Telefon

Routentabelle: "PSTN-RT"

Enthält den Schlüssel "2" für die Weiterleitungsgruppe "CUCM115_RG"

Routengruppe (oder Servergruppe): "CUCM115_RG"

Enthält Element 14.50.245.20:5065

Diese Konfigurationen bilden zusammen die logische Anweisung:

Führen Sie bei einem Anruf vom PSTN, bei dem das Präfix für die Telefonnummer 2 lautet, die Route zu 14.50.245.20:5065.

Konfigurationen

PSTN: Anrufe von 2XXX und 5XXX werden über CUBE und vCUBE an CUSP gesendet.

CUCM 10.5 - 1XXX und 2XXX werden über SIP-Trunk an CUSP gesendet

CUCM 11.5 - 1XXX und 5XXX werden über SIP-Trunk an CUSP gesendet

Hinweis: Bei Verwendung der GUI müssen einige Konfigurationen übernommen werden, bevor sie in anderen Konfigurationsabschnitten verfügbar sind. Diese sind mit **###Commit Configuration** gekennzeichnet.

Wichtige Konfigurationselemente

CLI-Konfiguration

GUI-Konfiguration Netzwerk erstellen Konfigurieren >> Netzwerke >> Hinzufügen

SIP-Netzwerk PSTN-Standard

Network
O Name: PSTN
Type: standard •
Allow Outbound Connections
Enable Disable
SIP Header Hiding
Hide VA:
UDP Settings
Maximum Packet Size: 1500
TCP Settings
TCP Connection Setup Timeout (ms): 1000
TLS Certificate Verification Setting;
 Verify Client Certificate:
 Verify Server Certificate;
Add Cancel

Definieren des Überwachungsports zum Identifizieren des

Konfigurieren >> Netzwerke >> [Netzwerkname] > Listen Points >> Hinzufügen Network 'PSTN' Listen Point Listen Point sip listen PSTN udp 14.50.245.9 5060 0 IP Address: 14.50.245.9 -Port 5060 Transport Type: udp + Add Cancel Trigger für PSTN des eingehenden Netzwerks Konfigurieren >> Trigger >> Hinzufügen Trigger-Name konfigurieren Trigger (New) Name: pm-PSTN-Trigger **Trigger Rules** C Logic Triggerbedingung Vom PSTN-Trigger Remove A Move to... V Abfolge 1 Add Cancel im Netzwerk ^\QPSTN\E\$ Konfigurieren Sie die Triggerbedingung, und klicke Endfolge auf Hinzufügen Endauslösungsbedingung

Netzwerks "PSTN"

Trigg	ger Condition
Inb	ound Network is exactly PSTN
	5d
Trigg	dd er Conditions
Trigg	dd er Conditions Condition

Geben Sie ein Ziel für "CUCM115_RG" an.

Konfigurieren >> Routengruppen >> Hinzufügen (###Konfiguration bestätigen)

Konfigurieren eines Routengruppennamens

Route Group (New)
o CUCN115_RC
Options Enable time of day routing:

Geben Sie das Element-Ziel ein.

Klicken Sie unter "Elementspalte" auf "Hier klicken dann auf Hinzufügen

	ix Hop				
arget Destination					
Host / Server Group:	14.50.24	45.20			
Port	5060				
Transport Type:	udp				
ptions		1004445			
	0	CUCM115	•		
Network:					
Q-Value:	1				
Network: Q-Value: Weight:	1	0			
Network: O-Value: Weight: Time Policy:	1 5	0 Jone 👻			

Definieren einer Routentabelle und Zuordnen eines Schlüssels

Konfigurieren >> Weiterleitungstabellen >> Hinzuf (###Konfiguration bestätigen) Konfigurieren eines Routentabellennamens

Routengruppe CUCM115_RG element target-destination 14.50.245.20:5065:udp CUCM115 q-value 0,0 Failover-Codes 502-503 Gewicht 50 Endelement Endstrecke

einem Ziel

Weiterleitungstabelle PSTN-RT Schlüssel 2 Gruppe CUCM115_RG Schlüssel 5 Gruppe CUCM105_RG End-Routing-Tabelle

	00103				
Route Tal	e				
Name	PSTN-RT				
vdd C	ancel				
hlüsse	el und Zi	el einaet	ben		
oute T	able 'PS'	TN-RT F	Route	(New)	
Candidate	Value				
andidate	Value				
Candidate	Value	-			
Candidate	Value Type route-	group 👻			
Candidate Key 2 Route Route	Value Type route- Group CUC	group 👻 M115_RG			
Candidate Key 2 Route Route	Value Type route- Group CUC	group - M115_RG			
Candidate	Value Type route- Group CUC	group 👻 M115_RG	-		
Candidate	Value Type route- Group CUC	group - M115_RG	•		

Routentabelle konfigurieren, fügen Sie KEINE Por Transportarten hinzu. Wenn Sie einen Port- und/c Transporttyp hinzufügen, weisen Sie CUSP an, na dem Eintrag "Cubestack:5060:UDP" für den DNSzu suchen, anstatt nach den lokal relevanten Serveraruppenkonfigurationen zu suchen.

Candidate Value
G Key*
Route Type destination •
Target Destination Next Hop Both Target Destination
Host / Server Group: Cubestack
Port
Transport Type: none 👻
Network: PSTN

Legen Sie den Schlüssel für die "FromPSTN-RPolicy" fest. Konfigurieren >> Routingrichtlinien >> Hinzufügen (###Konfiguration bestätigen)

Konfigurieren eines Routenrichtliniennamens Route Policy (New)

o Nar	me: or	mPSTN-RPolicy	
Route	Policy	y Steps	
		State	Ke)
		No data to display	
Add	Re	emove Revert A Move to V	

Klicken Sie auf Hinzufügen, um einen Richtliniense hinzuzufügen.

Richtliniensuche vonPSTN-RPopolicy Anschluss 100 PSTN-RT-Header an uri-Component-Telefon

Regelpräfix Endfolge

Endrichtlinie

Route Table		
Name:	PSTN-RT -	
Lookup Key Matches:	Prefix-Longest-Match +	
Case Sensitive:		
Route Table Lookup Key		
Lookup Key:	SIP Header 👻 To	٠
Lookup Key Modifiers		
Regular Expression Match:		
Regular Expression Replace:		
Remove leading '+' symbol:		
Domous consister characters:		

Im Richtlinienschritt wird die Verwendung des Schlüssels definiert. In diesem Fall sucht die Rich nach der längsten **Telefonnummernübereinstimmu** auf der **Registerkarte "To:" (An:)**. im **SIP-Header Verknüpfen Sie den "From-PSTN-Trigger" mit "FromPSTN-**

> Konfigurieren >> Routing-Trigger >> Hinzufügen Wählen Sie eine Routing-Richtlinie für die Verknüp mit einem Trigger aus.

Routing Trigger (New)

~	Routing Policy:	FromPSTN-RPolicy	
۰.	Trigger:	From-PSTN-Trigger	

RPorichtlinienzustand Aus-PSTN-Trigger

Trigger-Routingsequenz 2 Richtlinie Aus PSTN-

Vollständige Konfiguration

RPopolicy".

Hinweis: show configuration active ausführse zeigt die gesamte Konfiguration einschließlich der Routentabellen.

```
josmeado-CUSP(cusp)# show configuration active verbose
Building CUSP configuration...
!
server-group sip global-load-balance weight
server-group sip retry-after 250
server-group sip element-retries udp 2
server-group sip element-retries tls 1
server-group sip element-retries tcp 1
sip dns-srv
enable
no naptr
end dns
!
no sip header-compaction
no sip logging
```

```
sip max-forwards 70
sip network CUCM105 standard
no non-invite-provisional
allow-connections
no tls verify
retransmit-count invite-client-transaction 3
retransmit-count invite-server-transaction 5
retransmit-count non-invite-client-transaction 3
retransmit-timer T1 500
retransmit-timer T2 4000
retransmit-timer T4 5000
retransmit-timer TU1 5000
retransmit-timer TU2 32000
retransmit-timer clientTn 64000
retransmit-timer serverTn 64000
tcp connection-setup-timeout 1000
tls handshake-timeout 3000
udp max-datagram-size 1500
end network
1
sip network CUCM115 standard
no non-invite-provisional
allow-connections
no tls verify
retransmit-count invite-client-transaction 3
retransmit-count invite-server-transaction 5
retransmit-count non-invite-client-transaction 3
retransmit-timer T1 500
retransmit-timer T2 4000
retransmit-timer T4 5000
retransmit-timer TU1 5000
retransmit-timer TU2 32000
retransmit-timer clientTn 64000
retransmit-timer serverTn 64000
 tcp connection-setup-timeout 1000
tls handshake-timeout 3000
udp max-datagram-size 1500
end network
!
sip network PSTN standard
no non-invite-provisional
allow-connections
no tls verify
retransmit-count invite-client-transaction 3
retransmit-count invite-server-transaction 5
retransmit-count non-invite-client-transaction 3
retransmit-timer T1 500
retransmit-timer T2 4000
retransmit-timer T4 5000
retransmit-timer TU1 5000
retransmit-timer TU2 32000
retransmit-timer clientTn 64000
retransmit-timer serverTn 64000
tcp connection-setup-timeout 1000
tls handshake-timeout 3000
udp max-datagram-size 1500
end network
I.
sip overload reject retry-after 0
1
no sip peg-counting
1
sip privacy service
```

1

```
sip queue message
drop-policy head
low-threshold 80
size 2000
thread-count 20
end queue
1
sip queue radius
drop-policy head
low-threshold 80
size 2000
thread-count 20
end queue
!
sip queue request
drop-policy head
low-threshold 80
size 2000
thread-count 20
end queue
1
sip queue response
drop-policy head
low-threshold 80
size 2000
thread-count 20
end queue
1
sip queue st-callback
drop-policy head
low-threshold 80
size 2000
thread-count 10
end queue
!
sip queue timer
drop-policy none
low-threshold 80
size 2500
thread-count 8
end queue
1
sip queue xcl
drop-policy head
low-threshold 80
size 2000
thread-count 2
end queue
1
route recursion
!
sip tcp connection-timeout 30
sip tcp max-connections 256
!
no sip tls
!
sip tls connection-setup-timeout 1
!
trigger condition From-CUCM105-Trigger
sequence 1
 in-network ^\QCUCM105\E$
 end sequence
 end trigger condition
!
```

```
trigger condition From-CUCM115-Trigger
sequence 1
 in-network ^\QCUCM115\E$
 end sequence
end trigger condition
1
trigger condition From-PSTN-Trigger
sequence 1
 in-network ^\QPSTN\E$
 end sequence
end trigger condition
1
trigger condition mid-dialog
sequence 1
 mid-dialog
 end sequence
end trigger condition
1
accounting
no enable
no client-side
no server-side
end accounting
1
server-group sip group Cubestack PSTN
element ip-address 14.50.245.6 5060 udp q-value 0.0 weight 1
element ip-address 14.50.245.7 5060 udp g-value 0.0 weight 1
failover-resp-codes 503
lbtype weight
ping
end server-group
1
route group CUCM105_RG
element target-destination 14.50.245.25:5062:udp CUCM105 q-value 0.0
 failover-codes 510
 weight 50
 end element
 end route
1
route group CUCM115_RG
element target-destination 14.50.245.20:5065:udp CUCM115 q-value 0.0
 failover-codes 502 - 503
 weight 50
  end element
end route
1
route table FromCUCM105-RT
key * target-destination Cubestack PSTN
key 2 group CUCM115_RG
end route table
!
route table FromCUCM115-RT
key 1 target-destination Cubestack PSTN
key 5 group CUCM105_RG
end route table
!
route table PSTN-RT
key 2 group CUCM115_RG
key 5 group CUCM105_RG
end route table
!
policy lookup FromCUCM105-RPolicy
sequence 100 FromCUCM105-RT header to uri-component phone
  rule prefix
```

```
end sequence
end policy
1
policy lookup FromCUCM115-RPolicy
sequence 100 FromCUCM115-RT header to uri-component phone
 rule prefix
 end sequence
end policy
1
policy lookup FromPSTN-RPolicy
sequence 100 PSTN-RT header to uri-component phone
 rule prefix
 end sequence
end policy
!
trigger routing sequence 1 by-pass condition mid-dialog
trigger routing sequence 2 policy FromPSTN-RPolicy condition From-PSTN-Trigger
trigger routing sequence 3 policy FromCUCM115-RPolicy condition From-CUCM115-Trigger
trigger routing sequence 4 policy FromCUCM105-RPolicy condition From-CUCM105-Trigger
1
server-group sip global-ping
1
no server-group sip ping-503
1
sip cac session-timeout 720
sip cac PSTN 14.50.245.6 5060 udp limit -1
sip cac PSTN 14.50.245.7 5060 udp limit -1
1
no sip cac
1
sip listen CUCM105 udp 14.50.245.9 5062
sip listen CUCM115 udp 14.50.245.9 5065
sip listen PSTN udp 14.50.245.9 5060
1
call-rate-limit 100
1
end
```

Fehlerbehebung

Trace-Level-Konfiguration

Navigieren Sie in der CUSP-GUI zu Fehlerbehebung >> Cisco Unified SIP Proxy >> Traces

Trigger-Bedingungen - Ebene: Debuggen: Es wird angezeigt, welche Trigger für die Anrufweiterleitung übereinstimmen.

Routing - Ebene:Debuggen: Es wird angezeigt, was während der Anrufweiterleitung getan wurde. Welche Schlüssel wurden zugeordnet, welches Ziel ausgewählt usw.

SIP-Wire-Log - Ebene: Debuggen: Dadurch werden die empfangenen und gesendeten SIP-Nachrichten angezeigt.

Trace-Erfassung

Über GUI

Navigieren Sie in der CUSP-GUI zu Fehlerbehebung >> Cisco Unified SIP Proxy >> Traces

Protokolldatei herunterladen

Sie können auch Protokolle löschen.

Über FTP-Client

Standardmäßig gibt es kein Konto mit FTP-Berechtigungen. Um ein Konto mit FTP-Berechtigungen zu aktivieren, fügen Sie den Benutzer einer PFS-Gruppe hinzu.

```
josmeado-CUSP# user platformadmin group ?
Administrators System administrators group
pfs-privusers PFS privileged users group
pfs-readonly PFS read only group
josmeado-CUSP# user platformadmin group pfs
```

Stellen Sie über FTP-Client eine Verbindung mit dem CUSP her. **Dateipfad:** cusp >> log >> trace >> trace.log

Nachverfolgungsauftrag

- 1. SIP-Wire-Log Eingehende SIP-Einladung
- 2. SIP-Wire-Log Return 100 Test
- 3. Trigger-Bedingung Identifizieren von Netzwerk- und Routenrichtlinien
- 4. Routing Einzelheiten finden Sie im Abschnitt Routing Trace weiter unten.
- 5. SIP-Wire-Log Einladung an Ziel senden
- SIP-Wire-Log Setzen Sie die normalen SIP-Transaktionen fort, bis eine Nachricht von 200 OK f
 ür jede Anrufkomponente vorliegt.

Beispiel für Trigger-Bedingungsüberwachung

```
13:24:36:987 08:17:2017 vCUSP,9.1.5,josmeado-CUSP,14.50.245.9,trace.log
[REQUESTI.7] DEBUG 2017.08.17 13:25:03:006 conditions.RegexCondition - inNetwork='PSTN'
[REQUESTI.7] DEBUG 2017.08.17 13:25:03:006 conditions.RegexCondition - IN_NETWORK: PSTN
[REQUESTI.7] DEBUG 2017.08.17 13:25:03:006 conditions.AbstractRegexCondition -
pattern(^\QPSTN\E$), toMatch(PSTN) returning true
[REQUESTI.7] DEBUG 2017.08.17 13:25:03:006 triggers.ModuleTrigger - ModuleTrigger.eval()
action<FromPSTN-RPolicy> actionParameter<>
[REQUESTI.7] DEBUG 2017.08.17 13:25:03:006 triggers.ModuleTrigger - ModuleTrigger.eval() got the
policy, executing it ...
```

Im obigen Beispiel wird das Netzwerk mit PSTN abgeglichen, das in der Routenrichtlinie "FromPSTN-RPopolicy" verwendet wird.

Beispiel für Routing Trace

13:29:13:453 08:17:2017 vCUSP,9.1.5,josmeado-CUSP,14.50.245.9,trace.log
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.XCLNRSShiftRoutes - Entering
ShiftAlgorithms.execute()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.XCLNRSShiftRoutes - Leaving
ShiftAlgorithms.execute()

```
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 modules.XCLLookup - Entering execute()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.XCLPrefix - Entering getKeyValue()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.FieldSelector - getToUri: To header obtained -
To:
```

```
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.FieldSelector - getUriPart: URI -
sip:2003@14.50.245.9 part 1
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.FieldSelector - Requested field 52
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.FieldSelector - Returning key 2003
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 nrs.XCLPrefix - Leaving getKeyValue()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 modules.XCLLookup - table=PSTN-RT, key=2003
[REQUESTI.7] INFO 2017.08.17 13:29:33:987 modules.XCLLookup - table is PSTN-RT
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 routingtables.RoutingTable - Entering lookup()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 routingtables.RoutingTable - Looking up 2003 in table
PSTN-RT with rule prefix and modifiers=none
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 routingtables.RoutingTable - Entering
applyModifiers()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:987 routingtables.RoutingTable - Leaving
applyModifiers(), returning 2003
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 routingtables.RoutingTable - Leaving lookup()
[REQUESTI.7] INFO 2017.08.17 13:29:33:988 nrs.XCLPrefix - NRS Routing decision is:
RouteTable:PSTN-RT, RouteKey:2, RouteGroup:CUCM115_RG
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBFactory - Entering
createLoadBalancer()
[REQUESTI.7] INFO 2017.08.17 13:29:33:988 loadbalancer.LBFactory - lbtype is 3(call-id)
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBFactory - Leaving createLoadBalancer()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.XCLPrefix - Stored NRSAlgResult=isFound=true,
isFailure=false, Response=-1, Routes=[Ruri: 14.50.245.20:5065:udp, Route: null, Network:
CUCM115, q-value=0.0radvance=[502, 503]], PolicyAdvance=null [REQUESTI.7] DEBUG 2017.08.17
13:29:33:988 nrs.NRSAlgResult - set policyAdvance as specified in route=RouteTable:PSTN-RT,
RouteKey:2, RouteGroup:CUCM115_RG
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.NRSAlgResult - no policyAdvance specified in
route
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.NRSAlgResult - set policyAdvance as specified in
algorithm={lookuprule=1, lookupfield=52, lookuplenght=-1, lookuptable=PSTN-RT, sequence=100,
algorithm=1}
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.NRSAlgResult - no policyAdvance specified in
algorithm
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 modules.XCLLookup - Leaving execute()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.XCLNRSShiftRoutes - Entering
ShiftRoutes.execute()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBBase - Entering getServer()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBBase - Entering initializeDomains()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.NRSRoutes - routes before applying time policies:
[Ruri: 14.50.245.20:5065:udp, Route: null, Network: CUCM115, q-value=0.0radvance=[502, 503]]
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.NRSRoutes -routes after applying time policies:
[Ruri: 14.50.245.20:5065:udp, Route: null, Network: CUCM115, q-value=0.0radvance=[502, 503]]
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBBase - Leaving initializeDomains()
[REQUESTI.7] INFO 2017.08.17 13:29:33:988 loadbalancer.LBHashBased - list of elements in order
on which load balancing is done : Ruri: 14.50.245.20:5065:udp, Route: null, Network: CUCM115, q-
value=0.0radvance=[502, 503],
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBBase - Server group route-sg selected
Ruri: 14.50.245.20:5065:udp, Route: null, Network: CUCM115, q-value=0.0radvance=[502, 503]
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 loadbalancer.LBBase - Leaving getServer()
[REQUESTI.7] DEBUG 2017.08.17 13:29:33:988 nrs.XCLNRSShiftRoutes - Leaving ShiftRoutes.execute()
1. Der CUSP erhält den Schlüsselwert in der TO: Kopfzeile
```

```
•
```

2. Der Schlüssel wird vom CUSP als 2003 identifiziert.

3. CUSP sucht nach dem Schlüssel in der Routing-Tabelle.

 Der CUSP stimmt mit einem Eintrag in der Routing-Tabelle überein und identifiziert die Ziel-Routengruppe:CUCM115_RG.

5. CUSP wendet Lastenausgleich innerhalb der RouteGroup an.

6. Das CUSP identifiziert das spezifische Element in der RouteGroup, an die es die SIP-Nachricht sendet.

- 7. CUSP wendet ggf. Zeitrichtlinien an.
- 8. CUSP schließt das Element ab, an das eine SIP-Nachricht gesendet wird.

Beispiel für SIP-Wire-Log-Trace

```
13:48:26:669 08:17:2017 vCUSP,9.1.5, josmeado-CUSP,14.50.245.9, trace.log
[DsTransportListener-2] DEBUG 2017.08.17 13:48:52:221 DsSipLlApi.Wire - Received UDP packet on
14.50.245.9:5060 ,source 14.50.245.6:50683
INVITE sip:2003@14.50.245.9:5060 SIP/2.0
Via: SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763
Remote-Party-ID: <sip:1001@14.50.245.6>;party=calling;screen=no;privacy=off
From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F
To: <sip:2003@14.50.245.9>
Date: Thu, 17 Aug 2017 13:48:52 GMT
Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6
Supported: 100rel, timer, resource-priority, replaces, sdp-anat
Min-SE: 1800
Cisco-Guid: 0350227076-2191790567-2162465606-1670485135
User-Agent: Cisco-SIPGateway/IOS-15.5.3.S4b
Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY, INFO,
REGISTER
CSeq: 101 INVITE
Timestamp: 1502992132
Contact: <sip:1001@14.50.245.6:5060>
Expires: 180
Allow-Events: telephone-event
Max-Forwards: 69
Content-Type: application/sdp
Content-Disposition: session; handling=required
Content-Length: 266
v=0
o=CiscoSystemsSIP-GW-UserAgent 7317 4642 IN IP4 14.50.245.6
s=SIP Call
c=IN IP4 14.50.245.6
t = 0 \quad 0
m=audio 8266 RTP/AVP 18 127
c=IN IP4 14.50.245.6
a=rtpmap:18 G729/8000
a=fmtp:18 annexb=no
a=rtpmap:127 telephone-event/8000
a=fmtp:127 0-16
a=ptime:20
--- end of packet ---
[REQUESTI.7] DEBUG 2017.08.17 13:48:52:223 DsSipLlApi.Wire - Sending UDP packet on
14.50.245.9:32789, destination 14.50.245.6:5060
```

SIP/2.0 100 Trying Via: SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 To: <sip:2003@14.50.245.9> From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Timestamp: 1502992132 Content-Length: 0 [REQUESTI.7] DEBUG 2017.08.17 13:48:52:225 DsSipLlApi.Wire - Sending UDP packet on 14.50.245.9:32790, destination 14.50.245.20:5065 INVITE sip:2003@14.50.245.20:5065;transport=udp SIP/2.0 Via: SIP/2.0/UDP 14.50.245.9:5065; branch=z9hG4bKM3X51yKL9BEW5v0Kudc5Dw~~128 Via: SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 Max-Forwards: 68 To: <sip:2003@14.50.245.9> From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F Contact: <sip:1001@14.50.245.6:5060> Expires: 180 Remote-Party-ID: <sip:1001@14.50.245.6>;party=calling;screen=no;privacy=off Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Content-Length: 266 Date: Thu, 17 Aug 2017 13:48:52 GMT Supported: 100rel, timer, resource-priority, replaces, sdp-anat Min-SE: 1800 Cisco-Guid: 0350227076-2191790567-2162465606-1670485135 User-Agent: Cisco-SIPGateway/IOS-15.5.3.S4b Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY, INFO, REGISTER Timestamp: 1502992132 Allow-Events: telephone-event Content-Type: application/sdp Content-Disposition: session; handling=required v=0 o=CiscoSystemsSIP-GW-UserAgent 7317 4642 IN IP4 14.50.245.6 s=SIP Call c=IN IP4 14.50.245.6 $t = 0 \quad 0$ m=audio 8266 RTP/AVP 18 127 c=IN IP4 14.50.245.6 a=rtpmap:18 G729/8000 a=fmtp:18 annexb=no a=rtpmap:127 telephone-event/8000 a=fmtp:127 0-16 a=ptime:20 [DsTransportListener-3] DEBUG 2017.08.17 13:48:52:229 DsSipLlApi.Wire - Received UDP packet on 14.50.245.9:5065 ,source 14.50.245.20:5065 SIP/2.0 100 Trying Via: SIP/2.0/UDP 14.50.245.9:5065;branch=z9hG4bKM3X51yKL9BEW5v0Kudc5Dw~~128,SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F To: <sip:2003@14.50.245.9> Date: Thu, 17 Aug 2017 17:48:52 GMT Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Allow-Events: presence Content-Length: 0

[DsTransportListener-3] DEBUG 2017.08.17 13:48:52:284 DsSipLlApi.Wire - Received UDP packet on 14.50.245.9:5065 ,source 14.50.245.20:5065 SIP/2.0 180 Ringing Via: SIP/2.0/UDP 14.50.245.9:5065; branch=z9hG4bKM3X51yKL9BEW5v0Kudc5Dw~~128, SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F To: <sip:2003@14.50.245.9>;tag=93896~37db7c49-96d4-4c4c-a223-626b2c74c16a-16919968 Date: Thu, 17 Aug 2017 17:48:52 GMT Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Allow: INVITE, OPTIONS, INFO, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY Allow-Events: presence Server: Cisco-CUCM11.5 Call-Info: <urn:x-cisco-remotecc:callinfo>;x-cisco-video-traffic-class=DESKTOP Supported: X-cisco-srtp-fallback Supported: Geolocation Session-ID: 1e6e772300105000a00084b517ae1a83; remote=c07cdfa83b8f7c373757cf842ab93896 P-Asserted-Identity: "Alerting JM1 - 2003" <sip:2003@14.50.245.20> Remote-Party-ID: "Alerting JM1 - 2003" <sip:2003@14.50.245.20>;party=called;screen=yes;privacy=off Contact: <sip:2003@14.50.245.20:5065>;+u.sip!devicename.ccm.cisco.com="SEP84B517AE1A83" Content-Length: 0 --- end of packet ---[CT_CALLBACK.15] DEBUG 2017.08.17 13:48:52:285 DsSipLlApi.Wire - Sending UDP packet on 14.50.245.9:32789, destination 14.50.245.6:5060 SIP/2.0 180 Ringing Via: SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 To: <sip:2003@14.50.245.9>;tag=93896~37db7c49-96d4-4c4c-a223-626b2c74c16a-16919968 From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F Contact: <sip:2003@14.50.245.20:5065>;+u.sip!devicename.ccm.cisco.com="SEP84B517AE1A83" Remote-Party-ID: "Alerting JM1 - 2003" <sip:2003@14.50.245.20>;party=called;screen=yes;privacy=off Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Content-Length: 0 Date: Thu, 17 Aug 2017 17:48:52 GMT Allow: INVITE, OPTIONS, INFO, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY Allow-Events: presence Server: Cisco-CUCM11.5 Call-Info: <urn:x-cisco-remotecc:callinfo>;x-cisco-video-traffic-class=DESKTOP Supported: X-cisco-srtp-fallback Supported: Geolocation Session-ID: 1e6e772300105000a00084b517ae1a83;remote=c07cdfa83b8f7c373757cf842ab93896 P-Asserted-Identity: "Alerting JM1 - 2003" <sip:2003@14.50.245.20> [DsTransportListener-3] DEBUG 2017.08.17 13:48:54:292 DsSipLlApi.Wire - Received UDP packet on 14.50.245.9:5065 ,source 14.50.245.20:5065 SIP/2.0 200 OK Via: SIP/2.0/UDP 14.50.245.9:5065; branch=z9hG4bKM3X51yKL9BEW5v0Kudc5Dw~~128, SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F To: <sip:2003@14.50.245.9>;tag=93896~37db7c49-96d4-4c4c-a223-626b2c74c16a-16919968 Date: Thu, 17 Aug 2017 17:48:52 GMT Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Allow: INVITE, OPTIONS, INFO, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY Allow-Events: presence, kpml Supported: replaces Server: Cisco-CUCM11.5

Call-Info: <urn:x-cisco-remotecc:callinfo>;x-cisco-video-traffic-class=DESKTOP Supported: X-cisco-srtp-fallback Supported: Geolocation Session-Expires: 1800;refresher=uas Require: timer Session-ID: 1e6e772300105000a00084b517ae1a83;remote=c07cdfa83b8f7c373757cf842ab93896 P-Asserted-Identity: "CLID JM1 - 2003" <sip:2003@14.50.245.20> Remote-Party-ID: "CLID JM1 - 2003" <sip:2003@14.50.245.20>;party=called;screen=yes;privacy=off Contact: <sip:2003@14.50.245.20:5065>;+u.sip!devicename.ccm.cisco.com="SEP84B517AE1A83" Content-Type: application/sdp Content-Length: 258 v=0o=CiscoSystemsCCM-SIP 93896 1 IN IP4 14.50.245.20 s=SIP Call c=IN IP4 14.50.245.254 b=TIAS:8000 b=AS:8 $t = 0 \quad 0$ m=audio 16502 RTP/AVP 18 101 a=ptime:20 a=rtpmap:18 G729/8000 a=fmtp:18 annexb=no a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-15 --- end of packet ---[CT_CALLBACK.15] DEBUG 2017.08.17 13:48:54:293 DsSipLlApi.Wire - Sending UDP packet on 14.50.245.9:32789, destination 14.50.245.6:5060 STP/2.0 200 OK Via: SIP/2.0/UDP 14.50.245.6:5060;branch=z9hG4bK2A5763 To: <sip:2003@14.50.245.9>;tag=93896~37db7c49-96d4-4c4c-a223-626b2c74c16a-16919968 From: <sip:1001@14.50.245.6>;tag=4E329FEC-A9F Contact: <sip:2003@14.50.245.20:5065>;+u.sip!devicename.ccm.cisco.com="SEP84B517AE1A83" Require: timer Remote-Party-ID: "CLID JM1 - 2003" <sip:2003@14.50.245.20>;party=called;screen=yes;privacy=off Call-ID: 2A7BE22B-82AB11E7-83AEAE0B-F940DC75@14.50.245.6 CSeq: 101 INVITE Content-Length: 258 Date: Thu, 17 Aug 2017 17:48:52 GMT Allow: INVITE, OPTIONS, INFO, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY Allow-Events: presence, kpml Supported: replaces Supported: X-cisco-srtp-fallback Supported: Geolocation Server: Cisco-CUCM11.5 Call-Info: <urn:x-cisco-remotecc:callinfo>;x-cisco-video-traffic-class=DESKTOP Session-Expires: 1800;refresher=uas Session-ID: 1e6e772300105000a00084b517ae1a83; remote=c07cdfa83b8f7c373757cf842ab93896 P-Asserted-Identity: "CLID JM1 - 2003" <sip:2003@14.50.245.20> Content-Type: application/sdp v=0o=CiscoSystemsCCM-SIP 93896 1 IN IP4 14.50.245.20 s=SIP Call c=IN IP4 14.50.245.254 b=TIAS:8000 b=AS:8 t=0 0 m=audio 16502 RTP/AVP 18 101 a=ptime:20 a=rtpmap:18 G729/8000 a=fmtp:18 annexb=no

SIP-Wire-Log zeigt für beide Anrufabschnitte die normale SIP-Meldung bis zum 200-Wert OK an.

Architekturreferenz

