Fehlerbehebung bei Problemen mit der Prime Collaboration Assurance/Provisioning (PCA/PCP)-Festplattenspeicherkapazität

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Problem Lösung Root Access zum PCA/PCP anfordern

Einführung

In diesem Dokument wird beschrieben, wie einem virtuellen System (VM) mehr Speicherplatz zugewiesen wird, wenn die /opt-Partition (Partition für PCP/PCA) bereits bei 96 % oder höher ist.

Voraussetzungen

Anforderungen

Cisco empfiehlt, über Kenntnisse in folgenden Bereichen zu verfügen:

• PCA/PCP

Sie benötigen Root-Zugriff auf das PCA/PCP. Wenn Sie keinen Root-Zugriff haben, werden die Schritte zum Anfordern des Root-Zugriffs unten in diesem Dokument beschrieben.

Verwendete Komponenten

Dieses Dokument ist nicht auf bestimmte Software- und Hardwareversionen beschränkt.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Problem

Die folgenden Symptome treten beim PCP/PCA auf, wenn die Festplatte (/opt) mindestens 96 % beträgt

- Sehr geringe Leistung
- Benutzer kann in der grafischen Benutzeroberfläche (GUI) keine Änderungen vornehmen.
- Backups schlagen laufend fehl
- Wenn der Befehl df -h ausgeführt wird, wird das /opt mit 96 % oder mehr angezeigt.

Schritte zum Überprüfen der Ausgabe von df -h

Schritt 1: Einrichtung einer SSH-Sitzung (Secure Shell) für das PCP/PCA mithilfe einer Anwendung wie putty und Authentifizierung mit dem Root-Konto (auf dem PCA Port 26 und auf dem PCP Port 22 verwenden).

Schritt 2: Eingabe: **df -h** und sehen Sie unten rechts nach /opt, wenn die Nutzung 96 % oder höher beträgt. Sie befassen sich mit diesem Problem.

[root@Assul15 ~]# d	f -h				
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/mapper/smosvg-	rootvol				
	4.8G	904M	3.6G	20%	/
/dev/mapper/smosvg-	altrootv	01			
	93M	5.6M	83M	7%	/altroot
/dev/mapper/smosvg-	home				
	465M	11M	431M	3%	/home
/dev/mapper/smosvg-	recvol				
	93M	5.6M	83M	78	/recovery
/dev/mapper/smosvg-	localdis	kvol			
	15G	4.5G	9.0G	34%	/localdisk
/dev/mapper/smosvg-	storedda	tavol			
	9.5G	151M	8.9G	2%	/storeddata
/dev/mapper/smosvg-	tmpvol				
	9.7G	1.2G	8.1G	13%	/tmp
/dev/mapper/smosvg-	usrvol				
	7.6G	967M	6.3G	14%	/usr
/dev/mapper/smosvg-	varvol				
	4.8G	805M	3.7G	18%	/var
/dev/sda2	972M	18M	905M	28	/storedconfig
/dev/mapper/smosvg-	optvol				
	167G	26G	133G	17%	/opt
/dev/sda1	91M	16M	70M	19%	/boot
tmpfs	6.8G	0	6.8G	0%	/dev/shm

Lösung

Sie müssen zusätzliche Festplatte auf dem VM hinzufügen, um dieses Problem zu beheben.

Schritt 1: Schalten Sie das virtuelle System aus

Schritt 2: Hinzufügen eines zusätzlichen Festplattenlaufwerks (HDD) auf dem virtuellen System:

- Melden Sie sich bei vSphere an, und klicken Sie mit der rechten Maustaste auf Ihre VM.
- Wählen Sie Power > Power Off (Ausschalten) aus.
- Klicken Sie mit der rechten Maustaste, und wählen Sie **Edit Settings (Einstellungen bearbeiten) aus**, wählen Sie auf der Hardware-Registerkarte die Festplatte 1 aus (beachten Sie, wenn Sie die Festplatte als Thin oder Thick Provisioning bereitgestellt haben), und klicken Sie oben auf **Add**.
- Fügen Sie Ihre neue Festplatte hinzu, und verwenden Sie die gleiche Bereitstellung wie die erste Festplatte.
- (In der Regel sind für PCP 50 GB ausreichend und für PCA 100 GB funktionieren).
- Nach dem Hinzufügen wird das virtuelle System wieder eingeschaltet und anschließend als Root in das PCP/PCA eingeloggt.

Schritt 3: Weisen Sie den neuen Festplattenspeicherplatz /opt: zu.

• Melden Sie sich mit Putty oder Securecrt als Root bei Ihrem PCP/PCA an.

• Führen Sie den Befehl aus: **fdisk -I** (hier werden die verfügbaren Partitionen aufgelistet) Sie sehen eine der Partitionen ohne gültige Partitionstabelle.

Disk /dev/sdb doesn't contain a valid partition table Schritt 3: Führen Sie den Befehl aus: fdisk /dev/sdb

· Unten sehen Sie

Command (m for help)

type: n

(this will add a new partition to /dev/sdb)

You will select P for Primary Partition

The Partition number will be 1

The first cylinder will be 1 and last cylinder will be the last cylinder listed, typically the last in the partition, it will list the default and you will put in that number.

Schritt 4: Nachdem Sie die Partition wie oben erstellt haben, müssen Sie die Partition auf eine LVM-Partition (Logical Volume Manager) von Linux ändern.

command (m for help) type: t Next you will see: Hex Code (type L to list codes): type 8e

Note: You now have changed the partition to a Linux LVM Partition Schritt 5: Auf Festplatte schreiben und mit dem folgenden Befehl beenden

Command (m for Help): press w Schritt 6: Führen Sie den Befehl **pvcreate /dev/sdb1 aus**, um das physische Volume /dev/sdb1 zu erstellen.

Typ: **pvdisplay** sollte das neue physische Volume mit der zugewiesenen Festplattengröße angezeigt werden.

"/dev/sdbl" is a	new physical volume of "10.00 GB"
NEW Physical	volume
PV Name	/dev/sdb1
VG Name	
PV Size	10.00 GB
Allocatable	NO
PE Size (KByte)	0.
Total PE	0
Free PE	0
Allocated PE	0
PV UUID	4jp0J6-jWJJ-pSWF-e9k7-AeIQ-p7jN-YNRTvQ

Schritt 7: Erweitern Sie die Lautstärkergruppe mit: vgextend smosvg /dev/sdb1

Nach erfolgreicher Verlängerung wird "smosvg successfully extended" angezeigt.

Schritt 8: Erweiterung der LVM mit: Ivtend /dev/mapper/smosvg-optvol /dev/sdb1

Schritt 10: Fügen Sie das Volume der /opt-Partition hinzu, indem Sie : **resize2fs** /dev/mapper/smosvg-optvol

Mit dem Befehl df -h können Sie den erhöhten Speicherplatz überprüfen:

Root Access zum PCA/PCP anfordern

Note: It is important to ensure that the spaces where applicable are in place **PCA 11.x und höher: Sie können das nachfolgende Verfahren befolgen, um Root-Zugriff zu erhalten.**

Schritt 1: Melden Sie sich über die CLI als Admin User (Admin-Benutzer) an dem PCA an, der nach der Installation erstellt wurde.

Schritt 2: Eingabebefehl: root_enable

Schritt 3: Geben Sie Ihr Root-Passwort ein.

Schritt 4: Melden Sie sich als Administrator in root an und geben Sie Ihr root-Passwort ein, um Zugriff auf root zu erhalten.

PCP 12.x und höher: Sie benötigen TAC, um den CLI-Zugriff bereitzustellen, da dieser eingeschränkt ist. Der Vorgang ist wie folgt:

Schritt 1: Melden Sie sich bei der PCP-GUI an.

Schritt 2: Navigieren Sie zu Administration > Logging and Showtech > klicken Sie auf Troubleshooting account (Fehlerbehebungskonto) > erstellen Sie die Benutzer-ID, und wählen Sie eine geeignete Zeit aus, zu der Sie Root-Zugriff benötigen, um dies zu erreichen.

Schritt 3: Geben Sie dem TAC die Challenge und sie geben Ihnen das Passwort (dieses Passwort

ist sehr lang, keine Sorge, es wird funktionieren).

Example:

${\tt AQAAAAEAAAC8srFZB2prb2dsaW4NSm9zZXBoIEtvZ2xpbgAAAbgBAAIBAQIABAAA}$	FFFFEBE0
AawDAJEEAEBDTj1DaXNjb1N5c3RlbXM7T1U9UHJpbWVDb2xsYWJvcmF0aW9uUHJv	FFFFEB81
dmlzaW9uaW5n0089Q2lzY29TeXN0ZW1zBQAIAAAAAFmxsrwGAEBDTj1DaXNjb1N5	FFFFEB8A
c3RlbXM7T1U9UHJpbWVDb2xsYWJvcmF0aW9uUHJvdmlzaW9uaW5n0089Q2lzY29T	FFFFEAD0
$\verb+eXN0ZW1zBwABAAgAAQEJAAEACgABAQsBAJUhvhhxkM6YNYVFRPT3jcqAsrl/1ppr$	FFFFEB2B
<pre>yr1AYzJa9Ft01A418VBlp8IVqbqHrrCAIYUmVXWnzXTuxtWcY2wPSsIzW2GSdFZM</pre>	FFFFE9F3
LplEKeEX+q7ZADshWeSMYJQkY7I9oJTfD5P4QE2eHZ2opiiCScgf3Fii6ORuvhiM	FFFFEAD9
kbb06JUguABWZU2HV00hXHfjMZNqpUvhCWCCIHNKfddwB6crb0yV4xoXnNe5/2+X	FFFFEACE
7Nzf2xWFaIwJ0s4kGp5S29u8wNMAIb1t9jn7+iPg8Rezizeu+HeUgs2T8a/LTmou	FFFFEA8F
Vu9Ux3PBOM4xIkFpKa7provli1PmIeRJodmObfS1Y9jgqb3AYGgJxMAMAAFB6w==	FFFFEAA7
DONE.	

Schritt 4: Melden Sie sich von Ihrem aktuellen Benutzer ab und melden Sie sich mit der von Ihnen erstellten Benutzer-ID und dem vom TAC bereitgestellten Kennwort an.

Schritt 5: Navigieren Sie zu Troubleshooting Account > Launch > Klicken Sie auf Console Account, und erstellen Sie Ihre CLI-Benutzer-ID und Ihr Kennwort.

Schritt 6: Melden Sie sich jetzt als Benutzer bei PCP an, den Sie erstellt haben, und führen Sie die oben beschriebenen Schritte aus.