DOCSIS 2.0 ATDMA-Konfiguration auf MC5x20S- und MC28U-Linecards

Inhalt

Einführung 64-QAM bei 6,4 MHz **DOCSIS-Kanaltypen** Vorteile Einschränkungen CM-Registrierung in einer gemischten Umgebung Wichtigste Punkte Präambel und Sternbilder Upstream-Leistungsstufen Konfigurationen **Modulationsprofile** Beispiel für ein Kabelmodulationsprofil 121 - Gemischter Modus 5x20S im gemischten Modus mit 2-Tick-Minislots bei 3,2 MHz Channel Width 28 HE im gemischten Modus mit 2-Tick-Minislots bei 3.2-MHz-Kanalbreite Beispiel eines Kabelmodulationsprofils 221 - ATDMA-Modus 5x20S im ATDMA-Modus mit 1-Tick-Minislots bei 6,4-MHz-Kanalbreite 28 HE im ATDMA-Modus mit 1-Tick-Minislots bei 6,4-MHz-Kanalbreite Überprüfen von ATDMA-Konfigurationen und Datenverkehr ATDMA-Datenverkehrsüberprüfung Verifizierung für Spectrum Analyzer Zusammenfassung Zugehörige Informationen

Einführung

Advanced Time Division Multiple Access (ATDMA) ist eine DOCSIS 2.0-Erweiterung (Data-over-Cable Service Interface Specifications) für die Upstream-Kapazität (US). Er bietet einen größeren US-Kanal von bis zu 6,4 MHz bei 5,12 Msym/sec und bietet höhere Modulationsschemata wie Quadrature Amplitude Modulation 8 (8-QAM), 32-QAM und 64-QAM. ATDMA bietet außerdem eine höhere Stabilität der physischen Schicht in Form von 16 T-Byte Weiterleitungsfehlerkorrektur (FEC), amerikanischem Burst-Verschachteln und einem 24-Tap-Equalizer.

Die erweiterte physische Schicht (PHY) auf neueren Linecards ermöglicht darüber hinaus die Analog-Digital-Konvertierung, die digitale Signalverarbeitung und die Eingangsabsage, die älteren DOCSIS 1.0-Modems helfen kann. Weitere Informationen zu den neuen erweiterten PHY-Funktionen finden Sie unter Erweiterte PHY-Layer-Technologien für Hochgeschwindigkeits-Daten-Over-Cable.

64-QAM bei 6,4 MHz

<u>Abbildung 1</u> zeigt einen 6,4-MHz-Kanal mit 64-QAM in einem Spektrumanalysator. Die Kanalbreite ist erkennbar, das Modulationsschema jedoch nicht. Die Darstellung wird auch durch die Analyzereinstellungen und das Datenverkehrsmuster beeinflusst. Verwenden Sie ein zufälliges Muster eines Datenverkehrsgenerators, um eine glattere Ablaufverfolgung zu erzeugen.

Abbildung 1: 64-QAM bei 6,4 MHz

DOCSIS-Kanaltypen

DOCSIS 2.0 hat Channel-Typen eingeführt, um verschiedene Betriebsmodi des Upstream-Kanals zu unterscheiden. Diese Typen sind:

- Typ 1 Nur DOCSIS 1.0 und 1.1.
- Typ 2 DOCSIS 1.x und ATDMA (Mischmodus).DOCSIS 1.x-Kabelmodems (CMs) verwenden Intervalle Usage Codes (IUCs) 5 und 6, während DOCSIS 2.0 CMs in neu definierten IUCs 9, 10 und 11 übertragen, die höhere Modulationsbestellungen verwenden können, die unter 1.x nicht verfügbar sind. IUC 11 wurde für UGS-Flows (Unsolicited Grant Service) hinzugefügt. Erklärungen zum Modulationsprofil finden Sie unter Upstream-Modulationsprofile.

 Typ 3 - nur DOCSIS 2.0.Dieser Kanaltyp verwendet den MAC-Meldungstyp 29 im Upstream Channel Descriptor (UCD), der im Downstream-Kanal (DS) gesendet wird, um sicherzustellen, dass nur 2,0 CMs versuchen, sich zu registrieren. Dadurch wird verhindert, dass 1.x CMs jemals versuchen, diesen US-Kanal zu verwenden. Außerdem wurde ein weiterer IUC für unaufgefordert bereitgestellte Grant Service (UGS)-Flows hinzugefügt. Dies wird als IUC 11 für erweiterte UGS (a-ugs) bezeichnet.DOCSIS-Kanäle Typ 3 verfügen über zwei Untermodi:Typ 3A für ATDMAType 3S for Synchronous Code Division Multiple Access (SCDMA) - Dieser Submodus ist erst Ende 2004 im Cisco Cable Modem Termination System (CMTS) verfügbar.

Vorteile

DOCSIS 2.0 bietet eine höhere Spektrumeffizienz, bessere Nutzung vorhandener Kanäle, einen höheren Durchsatz in US-Richtung (bis zu 30,72 Mbit/s), eine höhere Geschwindigkeit pro Modem mit mehr Paketen pro Sekunde (PPS) und breitere Kanäle (die bessere statistische Multiplexing-Funktionen bieten). Ein 6,4-MHz-breiter Kanal ist statistisch besser als zwei 3,2-MHz-Kanäle und benötigt nur einen US-Port anstelle von zwei.

In Verbindung mit DOCSIS 2.0-Unterstützung unterstützt die neueste Generation der CMTS-Linecards weitere Funktionen, wie z. B. eine verbesserte Eingangskorrektur, die höhere Bestellungen der Modulation und leichte Frequenzen ermöglicht. Dieser letzte Punkt wird nicht empfohlen, aber es kann gezeigt werden, dass es funktioniert. Die Annullierung des Eingangs erweist sich als robust gegen im schlimmsten Fall auftretende Beeinträchtigungen von Anlagen wie z. B. Common Path Distortion (CPD), Citiband (CB), Short Wave Radio und Schinken Radio. Dadurch werden nicht genutzte Bereiche des Upstream-Spektrums geöffnet, und es wird eine Versicherung für Rettungsdienste bereitgestellt.

ATDMA erhöht zudem die Flexibilität, wenn es in Kombination mit virtuellen Schnittstellen und Load Balancing verwendet wird. Eine 1x1-MAC-Domäne kann für Geschäftskunden sinnvoller sein, während eine 1x7-MAC-Domäne besser für Privatkunden geeignet sein kann.

Einschränkungen

Dies sind einige der aktuellen Einschränkungen für ATDMA:

- Sie funktioniert nicht mit Load Balancing, da die US-Lastenausgleichgewichte bei Verwendung von Typ-2-US-Kanälen (Mischmodus) unbekannt sind. Die Gewichtung bezieht sich auf die Gesamtgeschwindigkeit der "Leitung". In gemischten Umgebungen (DOCSIS 1.x und 2.0) können die 1.x CMs ein Gewicht von 10,24 Mbit/s haben, und die 2.0 CMs können ein Gewicht von 15 Mbit/s aufweisen.
- Sie ist auf der MC5x20S-Karte in der IOS® Softwareversion 12.2(15)BC2a und höher verfügbar.
- Sie funktioniert nicht vollständig mit Advanced Spectrum Management, da es nur zwei konfigurierbare Schwellenwerte gibt. Bei Verwendung höherer Modulationsreihen mit ATDMA können jedoch drei Ausnahmen gerechtfertigt sein.
- Die höchste Kanalbreite für den gemischten Modus beträgt 3,2 MHz, daher sind 2,0 CMs durch 1,x CMs begrenzt.
- Bis die MC5x20T-Karte gegen Ende 2004 erhältlich ist, werden SCDMA- oder "vollständige"

DOCSIS 2.0-CableLabs-Qualifizierung nicht mehr unterstützt.

CM-Registrierung in einer gemischten Umgebung

Die Bereitstellung eines Kabelmodems (CM) mit seiner Konfigurationsdatei im 1.0- oder 1.1-Modus ist unabhängig vom verwendeten PHY-Modus (Time Division Multiplexing Access [TDMA], ATDMA oder SCDMA). Wenn Sie Typ, Länge und Wert (TLV) 39 auf 0 einstellen, wird verhindert, dass ein 2,0 CM im 2.0-Modus gestartet wird. Wenn TLV 39 ausfällt (der Standardwert ist 1) oder auf 1 festgelegt ist, versucht ein 2,0 CM, im 2.0-Modus online zu gehen.

TLV 40 wird verwendet, um Testmodi in 2,0 CMs zu aktivieren. Dies ist in Abschnitt C.1.1.20 von SP-RFIv2.0-I02-020617 festgelegt und wird weiter spezifiziert als gehört in der DOCSIS-Konfigurationsdatei in Abschnitt D.3.1. Dieses Feld muss in die MIC-Berechnung (CMTS Message Intergrity Check) einbezogen werden. Siehe <u>DOCSIS 2.0 RFI Anhang C.1.1.19</u>, Seite 336.

<u>Abbildung 2</u> zeigt die Datei, die bearbeitet werden muss, um TLV 39 konfigurieren zu können. Die Datei finden Sie unter: C:\Program Files\Cisco Systems\Cisco Broadband Configurator\docsisconfig\resources Klicken Sie mit der rechten Maustaste auf DOCSIS_Config-Eigenschaften, und öffnen Sie sie mit einem Texteditor.

Abbildung 2: zu bearbeitende Konfigurator-Anwendung

0	0	U	
Elle Edit View Favorites	Iools Help		1
⇔Back • ⇒ • 🖬 🔘	iearch 🔁 Folders 🎯 🎦 🙄 🗙 🗤 🛛		
Address 🔂 D:\Program Files\(Osco Systems\Cisco Broadband Configurator\docsi	sconfiglyesources	è Go
	Name 4	Size Type	
	≝ out.gi	1 KB GIF Image	e 🔠
	DOCSIS_Config.properties	8 KB PROPERTI	ES Fi
resources	🔄 guiedtor.gil	1 KB GIF Image	e 🔝
	License	1 KB File	

Suchen Sie nach RemoveUnknownTypeTLV=no, und stellen Sie sicher, dass es no lautet. Die Datei enthält außerdem folgende Zeilen:

This field is editable.

This specifies whether the non-DOCSIS, non-PacketCable TLVs (type in range 128 to 250) &
DOCSIS 2.0 specific TLVs 39 & 40 should be removed when save generated config file.
Dadurch kann der Benutzer DOCSIS TLV 39 in der Konfigurator-Anwendung festlegen. Abbildung
3 zeigt den Textmodus einer DOCSIS 1.1 CM-Datei bei Verwendung der Configurator-Anwendung.

Abbildung 3: Textmodus des Configurators

Insert 39 = 0, um die Registrierung eines 2,0 CM im 1.x-Modus zu erzwingen, oder Insert 39 = 1 for 2.0 mode. Nach dem Speichern und erneuten Öffnen wird Ihre Änderung wie folgt angezeigt:

39 (Enable 2.0 Mode) = No

Umgekehrt wird in der Zeile Yes (Ja) angezeigt, wenn Sie 1 festlegen.

Wichtigste Punkte

Stellen Sie sicher, dass die Kanalbreite an den gewünschten Ort passt. Beispielsweise ist eine 8-MHz-Mittelfrequenz nicht zulässig, da ein 6,4-MHz-Kanal über den Bandrand von 5 MHz hinausgehen würde. Wenn Sie Spektrumgruppen verwenden, stellen Sie sicher, dass das Band groß genug für den beabsichtigten Kanal ist. Beachten Sie auch, dass sich die Tick-Größen automatisch mit Änderungen der Kanalbreite ändern. Bei einem 6,4-MHz-Kanal wird standardmäßig ein Minislot mit 1 Häkchen verwendet. 3,2 MHz, 2 Zecken; 1,6 MHz, 4 Zecken; 0,8 MHz, 8 Zecken usw.

Linecards verwenden möglicherweise verschiedene US-Chips und erfordern für jedes einzelne unterschiedliche Modulationsprofile. Die MC5x20S-Linecard verwendet ein TI4522 für die physische Demodulation in den USA und das MC28U verwendet den Broadcom 3138 für die Demulation in den USA. Beide Linecards nutzen die neue DOCSIS MAC-PHY Interface (DMPI), die in DOCSIS 2.0 spezifiziert ist. CMTS-Anbieter wie Cisco können mit DMPI flexibel auf eine Vielzahl von DOCSIS-Chipherstellern zurückgreifen und ein kostengünstiges Produkt für CMTS-Benutzer bereitstellen.

Präambel und Sternbilder

Ein weiterer wichtiger Punkt ist, dass die ATDMA-Präambel stets Quadrature Phase-Shift Keying (QPSK) 0 oder 1 sind, wobei 0 für eine Präambel mit niedriger Leistung und 1 für eine Präambel mit hoher Leistung steht. Original 1.x CMs verwenden eine Präambel, die mit den Daten identisch ist, unabhängig davon, ob es sich um QPSK oder 16-QAM handelt. Da es sich bei der Präambel um ein konsistentes Muster zwischen zwei Symbollandungen handelte, handelte es sich im Wesentlichen um ein zweiphasiges Shift Keying (BPSK). <u>Abbildung 4</u> zeigt die neuen ATDMA-Präambelkonstellationen.

<u>Abbildung 5</u> zeigt die Konstellationen 16-QAM und 64-QAM, während <u>Abbildung 6</u> einige weniger häufig verwendete Konstellationen wie 8-QAM und 32-QAM anzeigt.

Abbildung 5: Konstellationen 16-QAM und 64-QAM

Abbildung 6: Weniger häufig vorkommende Modulationsschemata (8-QAM und 32-QAM)

Upstream-Leistungsstufen

DOCSIS bietet Leistungsstufen, die auf der Breite der US-Kanäle basieren. <u>In Tabelle 1</u> sind die Leistungsbereiche für die zugehörigen Kanalbreiten aufgeführt.

Kanalbreite (MHz)	Bereich bei CMTS (dBmV)									
0,2	-16 bis 14									
0,4	-13 bis 17									
0,8	-10 bis 20									
1,6	-7 bis 23									
3,2	-4 bis 26									
6,4	-1 bis 29									

Tabelle 1: Kanalbreite und Strombereich

Hinweis: Durch die Verdoppelung der Kanalbreite wird das Carrier-to-Noise-Verhältnis (CNR) um 3 dB verringert. Wenn Cisco die gleiche spektrale Leistungsdichte (PSD) beibehielte, hätten CMs dieselbe CNR, aber die Chance, dass CMs die Spitzenposition einnehmen. Weitere Informationen zur Upstream-Optimierung finden Sie unter <u>Erhöhen der Verfügbarkeit und des Durchsatzes von</u> <u>Rückgabepfaden</u>.

Die verwendete Modulation bestimmt auch die maximale Ausgangsleistung des CM. DOCSIS gibt 58 dBmV für QPSK, 55 dBmV für 16-QAM, 54 dBmV für 64-QAM und 53 dBmV für SCDMA an. Die meisten CMs werden jedoch mehr tun.

Konfigurationen

Alle Befehle und Befehlsausgaben werden auf einem uBR10k mit Cisco IOS Software Release 12.2(15)BC2a angezeigt. Während der Konfiguration der Kabelschnittstelle kann dem US-Port ein **Dokumentmodus** zugewiesen werden, wie in diesem Beispiel gezeigt:

ubr10k(config-if)# cable upstream 0 docsis-mode ?

atdmaDOCSIS 2.0 ATDMA-only channeltdmaDOCSIS 1.x-only channeltdma-atdmaDOCSIS 1.x and DOCSIS 2.0 mixed channel

Wenn der ATDMA-Modus ausgewählt ist, sollten 1.x CMs nicht einmal einen Bereich in diesen USA haben, und diese Informationen werden angezeigt:

ubr10k(config-if)# cable upstream 0 docsis-mode atdma

%Docsis mode set to ATDMA-only (1.x CMs will go offline) %Modulation profile set to 221

Diese Kanalbreiten sind verfügbar:

ubr10k(config-if)# cable upstream 0 channel-width ?

1600000	Channel width	1600 kHz, symbol rate 1280 ksym/s
200000	Channel width	200 kHz, symbol rate 160 ksym/s
3200000	Channel width	3200 kHz, symbol rate 2560 ksym/s $$
400000	Channel width	400 kHz, symbol rate 320 ksym/s
6400000	Channel width	$6400\ \rm kHz$, symbol rate $5120\ \rm ksym/s$
800000	Channel width	800 kHz, symbol rate 640 ksym/s $$

Wenn eine 6,4-MHz-Kanalbreite ausgewählt ist, wird der Minislot automatisch in ein Häkchen geändert, und diese Informationen werden angezeigt:

ubr10k(config-if)# cable upstream 0 channel-width 6400000

%With this channel width, the minislot size is now changed to 1 tick Überprüfen Sie die Schnittstelleneinstellungen mit dem Befehl show controller:

ubr10k# show controller cable6/0/0 upstream 0

Cable6/0/0 Upstream 0 is up Frequency 16 MHz, Channel Width 6.400 MHz, 64-QAM Symbol Rate 5.120 Msps This upstream is mapped to phy port 0

Spectrum Group is overridden SNR - Unknown - no modems online. Nominal Input Power Level 0 dBmV, Tx Timing Offset 0 Ranging Backoff auto (Start 0, End 3) Ranging Insertion Interval auto (60 ms) Tx Backoff Start 3, Tx Backoff End 5 Modulation Profile Group 221 Concatenation is enabled Fragmentation is enabled part_id=0x0952, rev_id=0x00, rev2_id=0x00 nb_agc_thr=0x0000, nb_agc_nom=0x0000 Range Load Reg Size=0x58 Request Load Reg Size=0x0E Minislot Size in number of Ticks is = 1 Minislot Size in Symbols = 32 Bandwidth Requests = 0x0Piggyback Requests = 0x0Invalid BW Requests= 0x0 Minislots Requested= 0x0 Minislots Granted = 0x0Minislot Size in Bytes = 24 Map Advance (Dynamic) : 2180 usecs UCD Count = 313435 ATDMA mode enabled

Die laufende Schnittstelle wird wie folgt angezeigt:

```
interface Cable6/0/0
no ip address
cable bundle 1
cable downstream annex B
cable downstream modulation 64qam
cable downstream interleave-depth 32
cable downstream frequency 45300000
cable downstream channel-id 0
no cable downstream rf-shutdown
cable upstream max-ports 5
cable upstream 0 connector 0
cable upstream 0 frequency 16000000
cable upstream 0 docsis-mode atdma
cable upstream 0 power-level 0
cable upstream 0 channel-width 6400000
cable upstream 0 minislot-size 1
cable upstream 0 modulation-profile 221
cable upstream 0 s160-atp-workaround
no cable upstream 0 shutdown
```

ubr10k# show running interface cable6/0/0

!--- Output suppressed. cable upstream 4 connector 16 cable upstream 4 frequency 15008000 cable
upstream 4 power-level 0 cable upstream 4 channel-width 1600000 cable upstream 4 minislot-size 4
cable upstream 4 modulation-profile 21 cable upstream 4 s160-atp-workaround no cable upstream 4
shutdown

Modulationsprofile

Die Einführung des **Docsis-Modus** ermöglicht die Konfiguration eines US-Kanals in einen gewünschten Modus. Jeder Modus hat einen eigenen "gültigen" Profilbereich:

• TDMA - Kabelmodulationsprofil xx (wobei xx 01 bis 99 entspricht) Für den TDMA-Modus sind Modulationsprofilnummern von weniger als 100 erforderlich.

• ATDMA-TDMA - Kabelmodulationsprofil 1xx (wobei xx 01 bis 99 entspricht, also 101 bis 199)

• ATDMA - Kabelmodulationsprofil 2xx (wobei xx 01 bis 99 entspricht, also 201 bis 299)

Neue ATDMA-Bursts, die als IUCs (Intervallbenutzungscodes) bezeichnet werden, werden für gemischte und ATDMA-only-DOCSIS-Modi eingeführt.

- IUC 9 Advanced PHY Short Grant (a-short)
- IUC 10 Advanced PHY Long Grant (ein langer Zeitraum)
- IUC 11 erweiterte PHY UGS (a-ugs; ATDMA-only-Modus)

Achtung: Die Befehle show run und show cable modulation sind möglicherweise nicht korrekt, wenn die Modulationsprofile angezeigt werden. Verwenden Sie show cable modulation cablex/y Upstream z in Cisco IOS Software Release 12.2(15)BC2a, um das tatsächliche Profil anzuzeigen.

Hinweis: Jede Linecard verfügt über ein "gültiges" Nummerierungsschema: 1 bis 10 für Legacy-Karten, x2x für MC5x20 und x4x für MC28U-Linecard. <u>In Tabelle 2</u> sind die verschiedenen Szenarien aufgeführt:

Profilnummern	Linecards	DOCSIS-Modus
1 bis 10	MC28C und MC16x	TDMA
21 bis 30	MC5x20S	TDMA
121-130	MC5x20S	TDMA-ATDMA
221-230	MC5x20S	ATDMA
41 bis 50	MC28U	TDMA
141-150	MC28U	TDMA-ATDMA
241-250	MC28U	ATDMA
361-370	MX5x20T	SCDMA

Tabelle 2: Modulationsprofilnummer für jeden DOCSIS-Modus

Beispiel für ein Kabelmodulationsprofil 121 - Gemischter Modus

<u>Tabelle 3</u> ist ein Beispiel für ein Modulationsprofil der MC5x20S-Linecard für ATDMA-TDMA im gemischten Modus. Der **Fettdruck** weist auf von Cisco erstellte Profile hin.

⊇ c	Eintrag	Beschreibung
10	a-long	Advanced PHY Long Grant Burst
9	kurz	Advanced PHY Short Grant Burst
11	a-ugs	Advanced PHY Unsolicited Grant Burst
1	erste	Burst bei anfänglichem Bereich
6	lang	Burst wegen langfristiger Zuschüsse
	Mix-Hoch	Standard-QPSK/ATDMA-QAM-64- Mix-Profil erstellen
	gemischt niedrig	Standard-QPSK/ATDMA-QAM-16- Mix-Profil erstellen
	Mix-Mid	Standard-QPSK/ATDMA-QAM-32-

Tabelle 3: Modulationsprofileinstellungen für den gemischten Modus

		Mix-Profil erstellen							
	Mix-Qam	Standard-QAM-16/ATDMA-QAM-64- Mix-Profil erstellen							
	qam-16	Standard-QAM-16-Profil erstellen							
	QPSK	Standard-QPSK-Profil erstellen							
2	Anforderungsd aten	Anfrage/Daten-Burst							
1	Anfrage	Request Burst							
	robustes Mix- High	Erstellen eines robusten QPSK/ATDMA QAM-64-Mix- Modulationsprofils							
	robuste Mix- Mitte	Erstellen eines robusten Modulationsprofils für QPSK/ATDMA QAM-32-Mix							
	robustes Mix- Qam	Erstellen eines robusten Modulationsprofils für QAM- 16/ATDMA QAM-64-Mix							
5	kurz	Burst durch kurzfristige Zuschüsse							
4	Station	Station Rangfolge							

In diesen Beispielen wird der richtige Befehl zur Anzeige von Profilen angezeigt, die bestimmten US-amerikanischen Ländern zugewiesen sind:

5x20S im gemischten Modus mit 2-Tick-Minislots bei 3,2 MHz Channel Width

Mod	IUC	Type	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW	(offst	Type	
121	request	qpsk	32	no	0x0	0x10	0x152	0	22	no	yes	0	qpsk0	na
121	initial	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	0	qpsk0	na
121	station	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	0	qpsk0	na
121	short	qpsk	64	no	0x3	0x4E	0x152	12	22	yes	yes	0	qpsk0	na
121	long	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	na
121	a-short	qpsk	64	no	0x3	0x4E	0x152	12	22	yes	yes	0	qpsk0	no
121	a-long	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	no
121	a-ugs	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	no

28 HE im gemischten Modus mit 2-Tick-Minislots bei 3,2-MHz-Kanalbreite

upr	ubi/2:0-2# Show Cable modulation-profile Cabled/0 upstleam 0													
Mod	IUC	Type	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
141	request	qpsk	64	no	0x0	0x10	0x152	0	8	no	yes	396	qpsk	no
141	initial	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk	no
141	station	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk	no
141	short	qpsk	100	no	0x3	0x4E	0x152	35	25	yes	yes	396	qpsk	no
141	long	qpsk	80	no	0x9	0xE8	0x152	0	135	yes	yes	396	qpsk	no
141	a-short	64qam	100	no	0x9	0x4E	0x152	14	14	yes	yes	396	qpsk1	no
141	a-long	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no
141	a-ugs	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no

ubr7246-2# show cable modulation-profile cable6/0 upstream 0

ubr10k# show cable modulation-profile cable6/0/0 upstream 0

Beispiel eines Kabelmodulationsprofils 221 - ATDMA-Modus

<u>Tabelle 4</u> ist ein Beispiel für ein Modulationsprofil der MC5x20-Linecard für den ATDMA-Modus. Der **Fettdruck** weist auf von Cisco erstellte Profile hin.

Eintrag	Beschreibung
a-long	Advanced PHY Long Grant Burst
kurz	Advanced PHY Short Grant Burst
a-ugs	Advanced PHY Unsolicited Grant Burst
erste	Burst bei anfänglichem Bereich
Mix-Hoch	Standard-ATDMA-QPSK/QAM-64- Mix-Profil erstellen
gemischt niedrig	Standard-ATDMA-QPSK/QAM-16- Mix-Profil erstellen
Mix-Mid	Standard-ATDMA-QPSK/QAM-32- Mix-Profil erstellen
Mix-Qam	Erstellen Sie ein standardmäßiges ATDMA QAM-16/QAM-64-Mix-Profil.
qam-16	Standard-ATDMA-QAM-16-Profil erstellen
qam-32	Standard-ATDMA-QAM-32-Profil erstellen
qam-64	Standard-ATDMA-QAM-64-Profil erstellen
QAM-8	Standard-ATDMA-QAM-8-Profil erstellen
QPSK	Standard-ATDMA-QPSK-Profil erstellen
Anforderungsdaten	Anfrage/Daten-Burst
Anfrage	Request Burst
robustes Mix-High	Erstellen eines robusten ATDMA QPSK/QAM-64-Mix- Modulationsprofils
robust-gemischt- niedrig	Erstellen eines robusten ATDMA QPSK/QAM-16-Mix- Modulationsprofils
robuste Mix-Mitte	Erstellen eines robusten ATDMA QPSK/QAM-32-Mix- Modulationsprofils
Station	Station Rangfolge

Tabelle 4: Modulprofil-Einstellungen für den ATDMA-Modus

5x20S im ATDMA-Modus mit 1-Tick-Minislots bei 6,4-MHz-Kanalbreite

Mod	IUC	Туре	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Туре	
221	request	qpsk	32	no	0x0	0x10	0x152	0	22	no	yes	0	qpsk0	no
221	initial	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	64	qpsk0	no
221	station	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	64	qpsk0	no
221	a-short	64qam	64	no	0x6	0x4E	0x152	6	22	yes	yes	64	qpsk1	no
221	a-long	64qam	64	no	0x8	0xE8	0x152	0	22	yes	yes	64	qpsk1	no
221	a-ugs	64qam	64	no	0x8	0xE8	0x152	0	22	yes	yes	64	qpsk1	no
28	HE im A		A-N	/lodu	ıs mi	t 1-T	ick-N	1ini	slots	bei	6. 4- N	/Hz-ł	Kanal	breite

ubr7246-2# show cable modulation-profile cable6/0 upstream 0

Mod	IUC	Type	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
241	request	qpsk	64	no	0x0	0x10	0x152	0	8	no	yes	396	qpsk0	no
241	initial	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk0	no
241	station	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk0	no
241	a-short	64qam	100	no	0x9	0x4E	0x152	6	10	yes	yes	396	qpsk1	no
241	a-long	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no
241	a-ugs	16qam	108	no	0x9	0xE8	0x152	18	16	yes	yes	396	qpsk1	no

Weitere Informationen zu Upstream-Modulationsprofilen finden Sie unter <u>Understanding Upstream</u> <u>Modulation Profiles</u>.

Überprüfen von ATDMA-Konfigurationen und Datenverkehr

Führen Sie folgende Befehle aus, um zu überprüfen, ob Modems ATDMA verwenden, wenn dies beabsichtigt ist, um die CM-Funktionen und -Konfigurationen anzuzeigen:

ubr7246-2# show cable modem mac

MAC Address	MAC	Prim	Ver	QoS	Frag	Cnct	PHS	Priv	DS	US
	State	Sid		Prov					Saids	Sids
0090.8343.9c07	online	11	DOC1.1	DOC1.1	yes	yes	yes	BPI	22	5
00e0.6fle.3246	online	1	DOC2.0	DOC1.1	yes	yes	yes	BPI+	255	16
Mit diesem Befehl	werde	n die	CM-Fun	ktionen	ange	zeigt,	, nicl	ht not	wendi	gerweise das, was er tut.

ubr7246-2# show cable modem phy

MAC Address	I/F	Sid	USPwr	USSNR	Timing	uReflec	DSPwr	DSSNR	Mode
			(dBmV)	(dB)	Offset	(dBc)	(dBmV)	(dB)	
0006.5305.ad7d	C3/0/U0	1	41.03	31.13	2806	16	-1.00	34.05	tdma
0000.39f7.8e6b	C6/0/U0	5	50.01	36.12	1469	22	0.02	34.08	atdma
000b.06a0.7120	C6/1/U1	1	32.00	36.12	2010	41	6.02	41.05	tdma

Dieser Befehl zeigt den Modus und andere Einstellungen der physischen Ebene an, die der CM verwendet. Einige dieser Einträge werden nur angezeigt, wenn eine Remoteabfrage konfiguriert wurde.

ATDMA-Datenverkehrsüberprüfung

Bei der Überprüfung des ATDMA-Datenverkehrs ist es am einfachsten, ein Kabelmodem auf einem US-amerikanischen Gerät zu überwachen. Der **ping-**Befehl wird nicht verkettet, daher ist es ein einfacher Test, zu überprüfen, ob kurze Zuweisungen für kleine Pakete, z. B. 64-Byte-

Ethernet-Frames, verwendet werden. Geben Sie den Befehl **ping** mit 46 Byte vom CMTS zum CM aus.

Überprüfen Sie zunächst die richtigen Einstellungen, z. B. Modulationsprofil, laufende Konfiguration und CM-Typ.

1. Geben Sie den folgenden Befehl ein: ubr7246-2# show cable modulation-profile cable6/0 upstream 0 242 a-short 64gam 100 no 0x9 0x4E 0x152 7 14 yes yes 396 qpsk1 no 242 a-long 64gam 160 no 0xB 0xE8 0x152 245 255 yes yes 396 gpsk1 no 2. Geben Sie den folgenden Befehl ein: ubr7246-2# show cable modem cable6/0 000b.06a0.7116 10.200.100.158 C6/0/U0 online 11 1.00 2065 0 N 3. Pingen Sie die beabsichtigte IP-Adresse, und überprüfen Sie, ob die Anzahl der a kurzen Slots entsprechend erhöht wird. Sie können aufgrund von SNMP-Verkehr (Simple Network Management Protocol) oder Stationswartung mehr als erwartet erhöhen. Geben Sie den folgenden Befehl ein: ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots ATDMA Short Grant Slots 2100, ATDMA Long Grant Slots 20871 Geben Sie den folgenden Befehl ein: ubr7246-2# **ping** Protocol [ip]: Target IP address: 10.200.100.158 Repeat count [5]: 1000 Datagram size [100]: 46 Timeout in seconds [2]: 1 Extended commands [n]: Sweep range of sizes [n]: Type escape sequence to abort. Sending 1000, 46-byte ICMP Echos to 10.200.100.158, timeout is 1 seconds: Success rate is 100 percent (1000/1000), round-trip min/avg/max = 1/3/28 ms Geben Sie den folgenden Befehl ein:

ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots

ATDMA Short Grant Slots 3100, ATDMA Long Grant Slots 20871

Eine einfache Möglichkeit, zu überprüfen, ob lange Zuweisungen für große Pakete verwendet werden, z. B. 1518-Byte-Ethernet-Frames, besteht darin, den **ping-**Befehl mit 1500 Byte vom CMTS zum CM auszugeben.

1. Geben Sie den folgenden Befehl ein: ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots

ATDMA Short Grant Slots 3281, ATDMA Long Grant Slots 20871

 Ping mit 1500-Byte-Ethernet-Frames, um zu überprüfen, ob ATDMA Long-Datenverkehr korrekt verwendet wird. ubr7246-2# ping

Protocol [ip]: Target IP address: 10.200.100.158 Repeat count [5]: 1000 Datagram size [100]: 1500

```
Timeout in seconds [2]: 1
 Extended commands [n]:
 Sweep range of sizes [n]:
 Type escape sequence to abort.
 Sending 1000, 1500-byte ICMP Echos to 10.200.100.158, timeout is 1 seconds:
 Success rate is 100 percent (1000/1000), round-trip min/avg/max = 4/5/36 ms
3. Geben Sie den folgenden Befehl ein:
 ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots
```

ATDMA Short Grant Slots 3515, ATDMA Long Grant Slots 21871

Verifizierung für Spectrum Analyzer

Eine andere Möglichkeit, die physischen Laver-Attribute zu überprüfen, besteht darin, das US-Paket in der Zeitdomäne eines Spektrumanalysators anzuzeigen. Abbildung 7 zeigt ein 1518-Byte-Paket mit 64-QAM bei 6,4 MHz.

Abbildung 7: 1518-Byte-Paket mit 64-QAM bei 6,4 MHz

Das Paket benötigt nur etwa 400 µs, da es ein hohes Modulationsschema und eine hohe Symbolrate verwendet.

Abbildung 8 zeigt dasselbe Paket mit 16-QAM bei 3,2 MHz.

Abbildung 8: 1518-Byte-Paket mit 16-QAM bei 3,2 MHz

Das Paket benötigt ca. 1200 µs, da es ein niedrigeres Modulationsschema und eine niedrigere Symbolrate verwendet. Der Durchsatz von 64-QAM bei 6,4 MHz beträgt ca. 30 Mbit/s. Vergleichen Sie dies mit dem Durchsatz von 16-QAM bei 3,2 MHz (ca. 10 Mbit/s). Der Unterschied liegt bei einem Faktor von drei, der mit einer dreimal längeren Paketzeit zusammenfällt.

Abbildung 9 zeigt ein 1518-Byte-Paket mit QPSK bei 3,2 MHz.

Abbildung 9: 1518-Byte-Paket mit QPSK bei 3,2 MHz

Das Paket benötigt ca. 2500 µs, da es das niedrigste Modulationsschema und eine Symbolrate von 2,56 ms/s verwendet. QPSK bei 3,2 MHz beträgt ca. 5 Mbit/s und ist doppelt so langsam wie <u>Abbildung 8</u>, sodass die Serialisierung eines Pakets zwei Mal länger dauert.

Zusammenfassung

Cisco bietet DOCSIS 2.0, Advanced PHY mit folgenden Funktionen:

- Cisco Application-Specific Integrated Circuit (ASIC) MAC (DMPI-Schnittstelle ist eine 2.0-Anforderung)
- Texas Instruments (TI) ATDMA US, Broadcom DS (5 x 20), Broadcom US und DS (28 HE)

- Integrierter Ukonverter
- Integriertes Spektrum-Management
- Verteilte Verarbeitung
- Flexible US- und DS-Zuweisung (virtuelle Schnittstellen)
- Dense Connector (5 x 20)

Wenn Sie ATDMA für schnellere Geschwindigkeiten pro Modem verwenden, müssen viele andere Parameter geändert werden, z. B. Minislot-Ticks, Modulationsprofil, maximale Burst-Einstellungen, **Kabel-Standard-Phy-Burst** und andere Einstellungen. Weitere Informationen finden Sie unter <u>Understanding Data Throughput in a DOCSIS World</u>.

Es gibt weitere Faktoren, die sich direkt auf die Leistung Ihres Kabelnetzwerks auswirken können, z. B. das Quality of Service (QoS)-Profil, Rauschen in der Kabelanlage, Ratenbegrenzung, Knotenkombination, Überlastung usw. Die meisten dieser Aspekte werden ausführlich unter <u>Fehlerbehebung bei langsamer Leistung in Kabelmodemnetzwerken</u> und <u>Analyse des</u> <u>Datendurchsatzes in einer DOCSIS-Welt</u> behandelt.

Hinweis: Stellen Sie sicher, dass 1,0 CMs, die nicht fragmentiert werden können, maximal 2000 Byte Burst aufweisen.

Ein Status, der im Befehl **show cab modem** angezeigt werden kann, ist Ablehnen(na), was auf einen Ablehnungsknack hinweist. Reject(na) tritt in folgenden Situationen auf:

- Wenn das Modem nach Erhalt einer Registrierungsantwort vom CMTS eine "Registration NACK" an den CMTS zurücksendet.
- Wenn der CM DOCSIS 1.1 (oder höher) nicht in der Lage ist, innerhalb der korrekten Frist ein "Registrierungs-ACK" zurückzusenden.

Zugehörige Informationen

- Support für Kabeltechnologie
- <u>Technischer Support Cisco Systems</u>