Verwenden von seriellen Ports für die Verbindung mit ATM mit DXI-Kapselung

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Physische Einrichtung ATM-DXI-Modi ATM-DXI-Header DXI-Header LLC/SNAP, MUX oder NLPID Header Konfigurationsschritte Fehlerbehebung bei der seriellen ATM-DXI-Schnittstelle Debug-Befehle Zugehörige Informationen

Einführung

Auf seriellen Schnittstellen wird normalerweise das Layer-2-Protokoll, die Kapselung, mit einem Konfigurationsbefehl geändert. Auf einer seriellen Standardschnittstelle ist die Standardkapselung High-Level Data Link Control (HDLC). Wir können diese Kapselung mit den Befehlen **Encapsulation ppp** oder **Encapsulation Frame-Relay** ändern. Weitere Beispiele für Layer-2-Kapselungen auf einer seriellen Schnittstelle sind HDLC, SDLC (Synchronous Data Link Control) und X.25.

Wenn wir hingegen eine Verbindung zu einem ATM-Schaltkreis von einem Telefonunternehmen herstellen wollen, können wir die Kapselung auf unserer seriellen Schnittstelle nicht einfach in so etwas wie **Kapselungsatm** ändern. (Hinweis: Die einzige Ausnahme ist das Multiflex-Trunk-Modul des MC3810, das einen softwarebasierten SAR verwendet.) Dies liegt daran, dass eine "native" ATM-Schnittstelle, wie der PA-A3-Port-Adapter für die Cisco 7x00-Router-Serie, aus spezieller Hardware und einem SAR-Chip (Segmentation and Reassembly) besteht, um IP- oder andere Daten-Frames in feste 53-Byte-Zellen aufzurufen. Stattdessen können wir die serielle Schnittstelle mit dem Befehl **encapsulation atm-dxi** konfigurieren. Die Data Exchange Interface (DXI) kapselt Ihre Daten in HDLC-ähnlichen Frames und leitet diese Frames an eine ATM-Datendiensteinheit (DSU) weiter.

In dieser Beispielausgabe des Befehls **show interface serial** wurde die Kapselung auf ATM-DXI festgelegt:

SerialO is up, line protocol is up Hardware is MCI Serial Internet address is 131.108.177.159, subnet mask is 255.255.255.0 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255 Encapsulation ATM-DXI, loopback not set, keepalive not set Last input 0:00:02, output 0:00:01, output hang never Last clearing of "show interface" counters never Output queue 0/40, 0 drops; input queue 0/75, 0 drops 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 1000 bits/sec, 0 packets/sec 15246 packets input, 14468957 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 15313 packets output, 14445489 bytes, 0 underruns 0 output errors, 0 collisions, 4 interface resets, 0 restarts 1 carrier transitions RTS up, CTS down, DTR up, DSR down Dieses Dokument beschreibt die ATM-DXI-Kapselung, die Konfiguration und die Fehlerbehebung.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Dieses Dokument ist nicht auf bestimmte Software- und Hardwareversionen beschränkt.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Physische Einrichtung

ATM-DXI erstellt eine Schnittstelle bzw. eine Verbindung zwischen einem Datenendgerät (Data Terminal Equipment, DTE) und einem Data Circuit Terminating Equipment (DCE). Im Fall von ATM-DXI ist die serielle Schnittstelle des Routers die DTE und eine ATM-Datendiensteinheit (ADSU) der DCE. Ein ADSU ist eine spezielle DSU, die ausgehende Pakete in ATM-Zellen umwandeln und eingehende ATM-Zellen in Pakete reassemblieren kann. Serielle und High-Speed Serial Interfaces (HSSIs) können mit ATM-DXI-Kapselung konfiguriert werden.

Bei der ATM-DXI-Kapselung sind sowohl der Router als auch der ADSU für die Verarbeitung des Pakets und das Hinzufügen von Overhead-Byte zum Paket zuständig. Bei der Übertragung an das ATM-Netzwerk wird dieser Prozess verwendet:

- Die serielle Schnittstelle des Routers stellt einem Frame variabler Länge einen DXI-Frame-Header und (optional) einen Logical Link Control (LLC)/Subnetwork Access Protocol (SNAP)oder Network Layer Protocol Identification (NLPID)-Header voran und erstellt einen DXI-Frame.
- 2. Die serielle Schnittstelle überträgt den DXI-Frame an den ADSU.

- 3. Der ADSU entfernt den DXI-Header und behält alle LLC/SNAP- oder NLPID-Header bei.
- 4. Der ADSU führt die Verarbeitung auf ATM-Ebene durch Anfügen eines ATM Adaption Layer 5 (AAL5)-Anhängers durch und segmentiert das Paket anschließend in ATM-Zellen.
- 5. Der ADSU analysiert die DXI-Frame-Adresse (DFA) und ordnet das im DFA enthaltene VPI/VCI den Feldern "Virtual Path Identifier" (Virtual Channel Identifier) oder "Virtual Channel Identifier (VPI/VCI)" in einem standardmäßigen ATM 5-Byte-Zell-Header zu.
- 6. Die Zellen werden auf das ATM-Netzwerk übertragen.

Wichtig bei dieser Konfiguration ist, dass ein ADSU erforderlich ist, um aus Frames in ATM-Zellen zu konvertieren. Hersteller von Standard-DSUs/CSUs bieten auch spezielle ADSUs an. Wenden Sie sich für empfohlene ADSUs an Ihren Telekommunikationsanbieter. <u>Kentrox</u> ist ein Hersteller von ADSUs.

ATM-DXI-Modi

ATM-DXI unterstützt drei Modi, die sich auf folgende vier Arten unterscheiden können:

- Anzahl der unterstützten virtuellen Schaltungen
- Länge der Protokoll-Dateneinheit (PDU) oder des Daten-Frames.
- Unterstützte Kapselungen der ATM-Adapterschicht (AAL).
- 16-Bit- oder 32-Bit-Frame Check Sequence (FCS).

Cisco verwendet Modus 1a für das DXI-Header-Format.

ATM-DXI-Header

Je nach Konfiguration kapselt ATM-DXI Ihre Pakete in zwei Header auf Layer 2 des OSI-Referenzmodells. Diese beiden Header sind der DXI-Header und optional ein LLC/SNAP- oder NLPID-Header. In den folgenden Abschnitten werden diese Header beschrieben.

Die serielle Schnittstelle des Routers erstellt einen DXI-Frame. Der vollständige DXI-Frame

ATM-DXI Header	LLC/SNAP or NLPID Header	Layer 3 Protocol Data Unit

DXI-Header

Die serielle Schnittstelle des Routers erstellt den DXI-Frame-Header, der zwei Byte beträgt. Dieser Header verwendet folgendes Format:

DFA		RSVD	0	
DFA	CN	RSVD	CLP	1

Das DXI-Frame-Adresse-Feld (DFA) leitet die ATM-VPI- und VCI-Adressierungsinformationen an den ADSU weiter. Das DFA-Feld ist in der Regel zehn Bit. Während der Übertragung an das ATM-Netzwerk entfernt der ADSU den DXI-Header und ordnet die VPI/VCI-Werte im DXI-Header den VPI/VCI-Werten in einem standardmäßigen ATM-Zellenheader mit fünf Byte zu.

LLC/SNAP, MUX oder NLPID Header

Jeder ATM-DXI-PVC enthält ein oder mehrere Layer-3-Protokolle. <u>RFC 1483</u> und <u>RFC 1490</u> definieren Standardmethoden zum Kapseln und Übertragen von Multiprotokoll-Datenverkehr über ein ATM-Netzwerk. Auf der seriellen Schnittstelle müssen Sie dem Router mitteilen, welche Methode mit dem folgenden Befehl verwendet werden soll:

router(config-if)# dxi pvc vpi vci [snap | nlpid |mux]

RFC 1483 definiert zwei Transportmethoden. Eine Methode ermöglicht das Multiplexing mehrerer Protokolle über eine einzelne PVC. Die andere Methode verwendet verschiedene virtuelle Schaltungen, um verschiedene Protokolle zu übertragen.

- mux Die MUX-Option (Multiplexing) definiert die PVC so, dass sie nur ein Protokoll enthält. Jedes Protokoll muss über eine andere PVC übertragen werden.
 DXI Header= 0x28A1
 IP Datagram= 0x45000064.....
- nap Die SNAP-Option ist die LLC/SNAP-Multiprotokoll-Kapselung, die mit RFC1483 kompatibel ist. SNAP ist die aktuelle Standardoption. In der folgenden Ausgabe hat der SNAP-Header den Wert 0xAAAA03, der angibt, dass ein SNAP-Header folgt. Der Ethertype-Wert von 0x0800 gibt an, dass der DXI-Frame ein IP-Paket überträgt.
 DXI Header = 0x28A1

SNAP Header= 0xAAAA03
OUI= 0x000000
Ethertype = 0x0800
IP Datagram= 0x45000064.....

 nlpid: Die NLPID-Option ist eine Multiprotokoll-Kapselung, die mit RFC 1490 kompatibel ist. Diese Option wird zur Abwärtskompatibilität mit der Standardeinstellung in früheren Versionen der Cisco IOS® Software bereitgestellt.

DXI Header= 0x28A1 Control= 0x03 NLPID for IP= 0xCC IP Datagram= 0x45000064.....

Konfigurationsschritte

Die Konfiguration des ATM-Zugriffs über eine serielle Schnittstelle umfasst vier Aufgaben:

- 1. Wählen Sie die serielle Schnittstelle aus, und stellen Sie sicher, dass sie nicht heruntergefahren wird. Geben Sie bei Bedarf den Befehl **no shutdown ein**.
- 2. ATM-DXI-Kapselung aktivieren: router(config-if)# encapsulation atm-dxi
- 3. Erstellen Sie den ATM-DXI Permanent Virtual Circuit (PVC), indem Sie die VPI und das VCI angeben. Dieselben PVC-Werte müssen auf dem angeschlossenen Gerät konfiguriert werden, in der Regel auf einem Switch im ATM-Netzwerk des Anbieters. router(config-if)# dxi pvc vpi vci [snap | nlpid | mux]
- 4. Ordnen Sie die Layer-3-Protokolladressen dem VPI und dem VCI der ATM-DXI-PVC zu. Die Protokolladressen gehören zum Host am anderen Ende der Verbindung. router(config-if)# dxi map protocol protocol-address vpi vci [broadcast]

Wiederholen Sie diese Aufgabe für jedes Protokoll, das auf der PVC ausgeführt werden soll.

Fehlerbehebung bei der seriellen ATM-DXI-Schnittstelle

Nachdem Sie die serielle Schnittstelle für ATM konfiguriert haben, können Sie den Status der Schnittstelle, der ATM-DXI-PVC oder der ATM-DXI-Karte anzeigen. Verwenden Sie die folgenden Befehle im EXEC-Modus, um Informationen zu Schnittstelle, PVC oder Zuordnung anzuzeigen:

- show interfaces atm [Steckplatz/Port]
- dxi map anzeigen
- dxi pvc anzeigen

```
Router# show dxi map
```

```
Serial0 (administratively down): ipx 123.0000.1234.1234
DFA 69(0x45,0x1050), static, vpi = 4, vci = 5,
encapsulation: SNAP
Serial0 (administratively down): appletalk 2000.5
DFA 52(0x34,0xC40), static, vpi = 3, vci = 4,
encapsulation: NLPID
Serial0 (administratively down): ip 172.21.177.1
DFA 35(0x23,0x830), static,
```

broadcast, vpi = 2, vci = 3, encapsulation: VC based MUX, Linktype IP

Feld	Beschreibung	
DFA	DXI-Frame-Adresse, ähnlich einer Data-Link Connection Identifier (DLCI) für Frame Relay. Die DFA wird im Dezimal-, Hexadezimal- und DXI- Header-Format angezeigt. Der Router berechnet diesen Adresswert aus den VPI- und VCI-Werten.	
Kap selu ng	Der vom Befehl dxi pvc ausgewählte Kapselungstyp. Angezeigte Werte können SNAP, NLPID oder VC-basiertes Multiplexing-Gerät (MUX) sein.	
Linkt yp	Der Wert wird nur mit der MUX-Kapselung und daher nur mit einem für die PVC definierten Netzwerkprotokoll verwendet. Karten, die auf einer PVC mit MUX-Kapselung konfiguriert sind, müssen denselben Verbindungstyp aufweisen.	

PVC Statistics for interface Serial0 (ATM DXI)

Router# show dxi pvc

```
DFA = 17, VPI = 1, VCI = 1, PVC STATUS = STATIC, INTERFACE = Serial0
                            output pkts 0
 input pkts 0
                                                       in bytes 0
    out bytes 0
                               dropped pkts 0
DFA = 34, VPI = 2, VCI = 2, PVC STATUS = STATIC, INTERFACE = SerialO
 input pkts 0
                            output pkts 0
                                                       in bytes 0
                               dropped pkts 0
    out bytes 0
DFA = 35, VPI = 2, VCI = 3, PVC STATUS = STATIC, INTERFACE = SerialO
                            output pkts 0
                                                      in bytes O
  input pkts 0
    out bytes 0
                               dropped pkts 0
```

Feld	Beschreibung	
DFA	DXI-Frame-Adresse, ähnlich einem DLCI für Frame Relay. Die DFA wird im Dezimal-, Hexadezimal- und DXI-Header-Format angezeigt. Der Router berechnet diesen Adresswert aus den VPI- und VCI-Werten.	
PVC- STATU S = STATIS CH	Es werden nur statische Karten unterstützt. Karten werden nicht dynamisch erstellt.	
Eingab epkte	Anzahl der empfangenen Pakete	
Ausgab epakete	Anzahl der übertragenen Pakete	

in Byte	Anzahl der Byte in allen empfangenen Paketen	
Out- Byte	Anzahl der Byte in allen übertragenen Paketen	
verloren e Pakete	Zeigt einen 0-Wert (null) an. Ein Wert von 0 (null) weist auf ein Konfigurationsproblem hin, insbesondere darauf, dass kein PVC vorhanden ist.	

Debug-Befehle

Die ATM-DXI-Kapselung unterstützt außerdem zwei **Debug-**Befehle. Bevor Sie **Debugbefehle** ausgeben, beachten Sie bitte die <u>Hinweise Wichtige Informationen über Debug-Befehle</u>.

- debuggen dxi-Ereignisse
- debuggen dxi paket

Hinweis: Die Ausgabe des **debug dxi-Paket-**Befehls gibt pro Paket eine Nachricht aus. Das Aktivieren von Debuggen sollte immer sehr sorgfältig durchgeführt werden, insbesondere in einer Produktionsumgebung.

Zugehörige Informationen

- ATM-Technologieunterstützung
- <u>Cisco ATM-Port-Adapter</u>
- <u>Technischer Support Cisco Systems</u>