

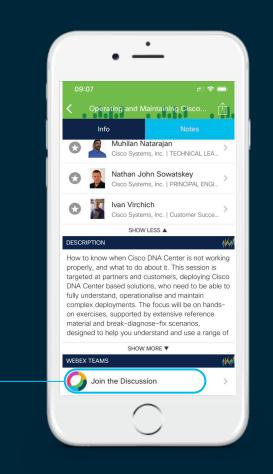
You make possible

Segment Routing: Technology deep-dive and advanced use cases

Clarence Filsfils

BRKRST-3122

Barcelona | January 27-31, 2020


Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion" -
- 3 Install Webex Teams or go directly to the team space
- 4) Enter messages/questions in the team space

SR-MPLS

SR MPLS Industry Update

From thought to deployment leadership **APJC** Americas **EMEA** 5 43 Deployed **Deployment Planned** Bell EL. **SoftBank** Microsoft Aussie Broadband Alibaba.com vodafone orang kt *eo1*0 SHENTEL' *Telefonica* Google TELUS China airtel EQUINIX unicom中国联 etisalat cisco

SR is IETF Proposed Standard

- RFC 8402 "SR Architecture" Proposed Standard
 - Defines SR-MPLS with MPLS dataplane and Label SID's
 - Defines SRv6 with SRH and SRv6 SID's

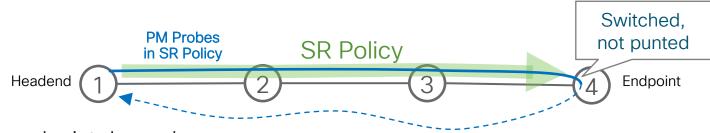
SR-MPLS

- RFC Proposed Standard for most (21) documents
 - MPLS data plane
 - SR/LDP interworking
 - ISIS, OSPF, BGP, and PCEP extensions
 - OAM
 - PM
- 8 Informational RFCs
 - Use-cases

Innovations Highlights

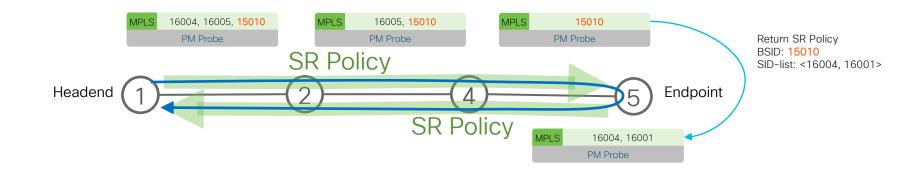
Innovations we shared at Cisco Live 2019:

- ISIS Flex Algo
- OSPF Flex Algo
- SR-PCE / SRTE: Anycast-SID aware path computation
- MPLS-PM: per-link delay measurement
- MPLS-PM: end-to-end SR Policy delay measurement
- SR Data Plane Monitoring (SR-DPM)



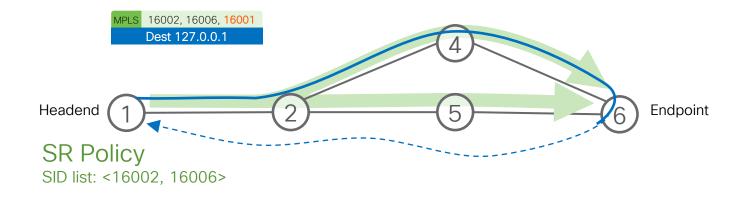
SR Policy Liveness Monitoring

cisco live!



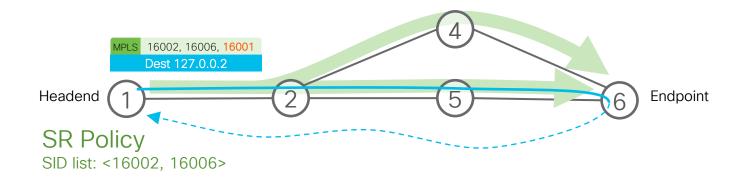
SR Policy Liveness monitoring

- No endpoint dependency
 - Probes sent through endpoint and back to headend
 - Simpler deployment, higher scale
- Hardware offload provides 3.3ms tx interval
 - Liveness failure after loss of 3 consecutive probes
 - Failure detection in 10ms + RTT
- Can tear down active candidate path upon liveness failure


Variant – Bidirectional SR Policy

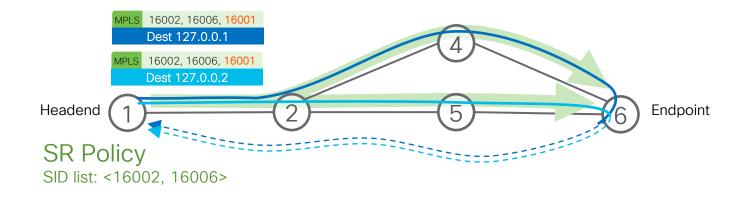
- BSID of a return SR Policy can be encoded in the probe label stack
- Prevent false negatives

cisco / il


Variant – ECMP sweeping

- Use probes with different destination addresses to hash on different paths
- Probabilistic coverage of SR Policy ECMP paths

cisco i


Variant – ECMP sweeping

- Use probes with different destination addresses to hash on different paths
- Probabilistic coverage of SR Policy ECMP paths

cisco / il

Variant – ECMP sweeping

- Use probes with different destination addresses to hash on different paths
- Probabilistic coverage of SR Policy ECMP paths

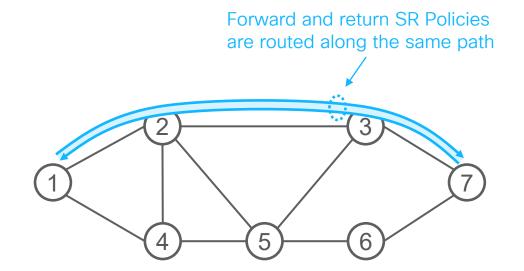
cisco / il

Circuit-Style SR Policy

One SR deployment – Different service types

SR allows a single network to accommodate flows of different service types

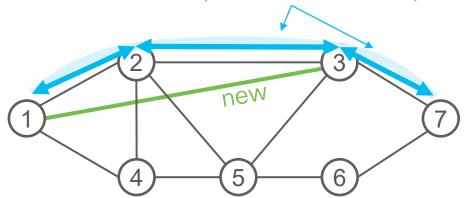
- IP-centric services with ECMP and TI-LFA
- TDM-centric services with circuits and path protection


Components of the solutions

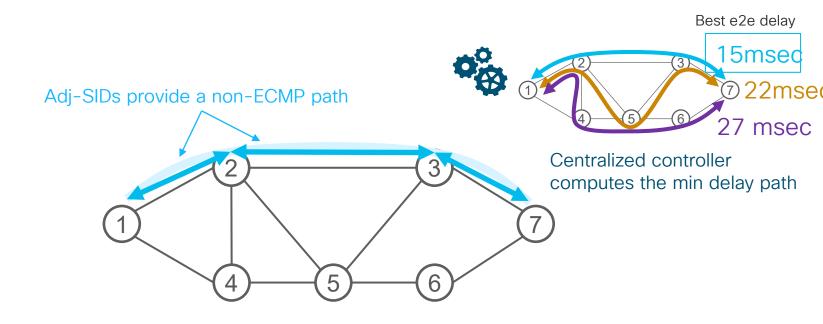
- Centralized Controller
 - computes the path
 - Encodes the path in list of Adj-SIDs
 - Bandwdith book-keeping for SLA guarantee
- QoS configuration on every link to isolate guaranteed traffic

Properties of SR Circuit-Style for TDM Services

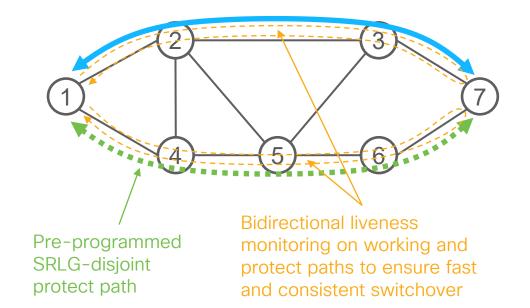
- ✓ Co-routed bidirectional
- ✓ Persistence
- ✓ Guaranteed Latency
- End-to-end path protection
- ✓ Guaranteed Bandwidth


Co-routed bidirectional path

cisco ile


Control-plane independent persistence

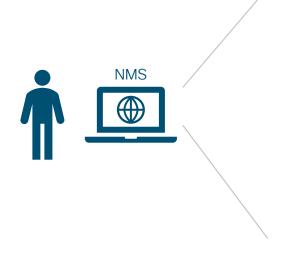
Adj-SIDs provide persistent path independent from network events, control-plane status and IP transport

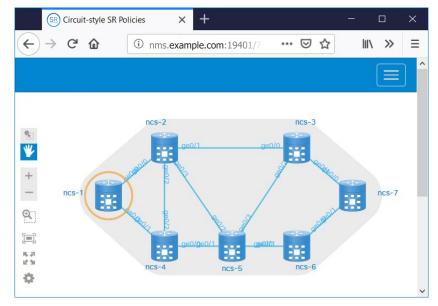

cisco /

Non-ECMP path with guaranteed latency

cisco /

Integrity monitoring with path protection switching

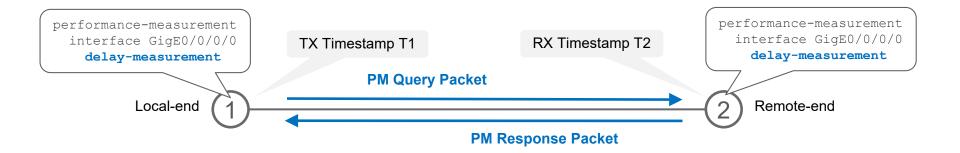

Guaranteed bandwidth


Centralized controller Bandwidth reserved on computes the paths and both working and maintains bandwidth protect paths reservation bookkeeping · · · · · · · · · . 5 MQC configuration isolates circuit traffic from best-effort

cisco /

Completely integrated with NMS

- The network management system takes care of the overall management of the TDM service circuits
 - End-to-end service provisioning
 - Network management assurance



Per-Link Delay Measurement Reminder

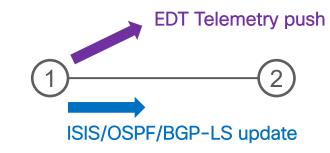
cisco ive!

Link Delay – Probe Measurement

• One Way Delay = (T2 - T1)

Default: every 3 sec

- Timestamps added in hardware
- PM Query format: RFC 5357 (IP/UDP/TWAMP) or RFC 6374 (MPLS/GAL)


cisco / ille

SR-TE handles Minimum delay (propagation delay)

- Minimum delay provides the propagation delay
 - fiber length / speed of light
- A property of the topology
 - with awareness of DWDM circuit change
- SR-TE (SR Policy or Flex-Algo) can optimize on min delay

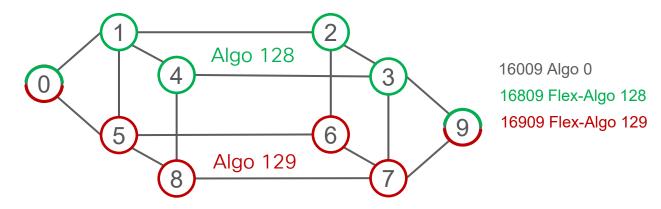
Routing stability – Telemetry accuracy

Every 30sec (10 queries)

Every 120sec IF significant min change THEN trigger an ISIS/OSPF flood

cisco/

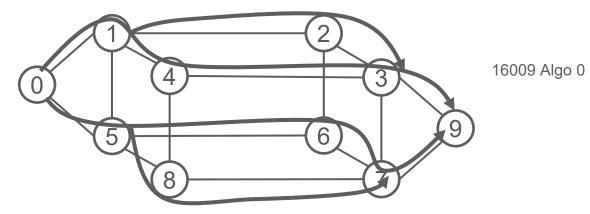
SR IGP Flex-Algo Reminder



SR IGP Flexible Algorithms

• Complements the SR-TE solution with customizable IGP Algorithms

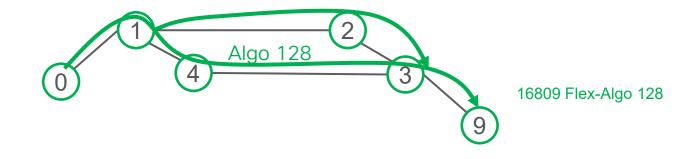
- We call "Flex-Algo"
 - The algorithm is defined by the operator, on a per-deployment basis
- Flex-Algo K is defined as
 - The minimization of a specified metric: IGP, TE or delay
 - The exclusion of certain link properties: link-affinity, SRLG, ...



• All the nodes support Algo 0: minimize IGP metric

- Green nodes also support 128: minimize IGP metric
- Red nodes also support 129: minimize IGP metric
- Operator customizes its IGP to deliver multiple transport services on same infra
- Automated by the IGP and leveraging TI-LFA and uLoop

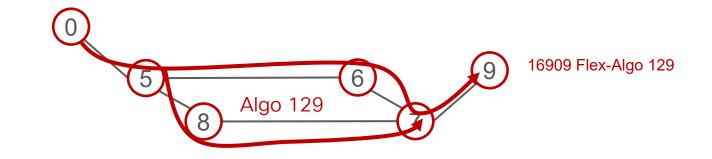
cisco / ille



• All the nodes support Algo 0: minimize IGP metric

- Operator customizes its IGP to deliver multiple transport services on same infra
- Automated by the IGP and leveraging TI-LFA and uLoop

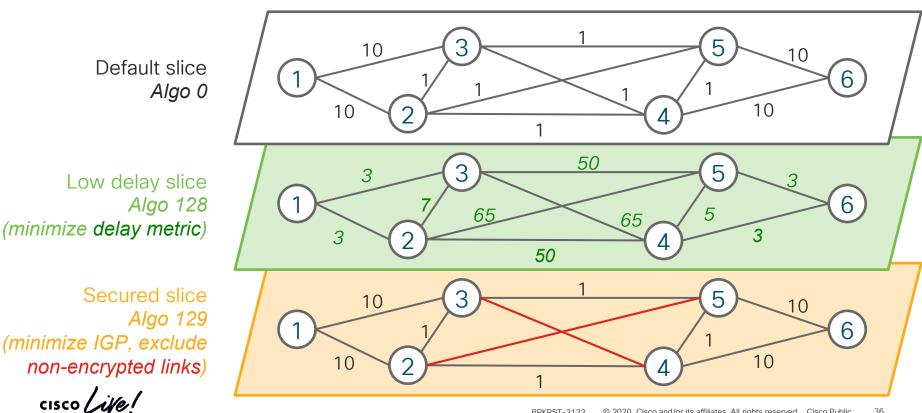
cisco ive!



• Green nodes also support 128: minimize IGP metric

- Operator customizes its IGP to deliver multiple transport services on same infra
- Automated by the IGP and leveraging TI-LFA and uLoop

cisco / ille

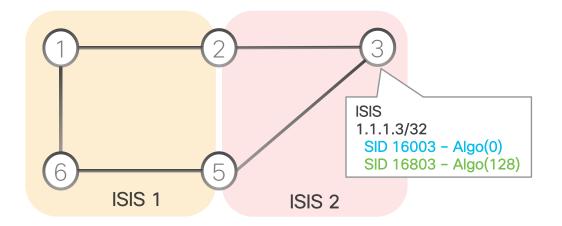

• Red nodes also support 129: minimize IGP metric

• Operator customizes its IGP to deliver multiple transport services on same infra

• Automated by the IGP and leveraging TI-LFA and uLoop

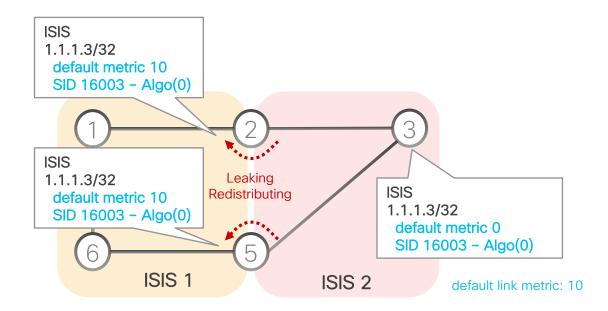
cisco / ile

Network slicing with SR IGP Flexible Algorithms



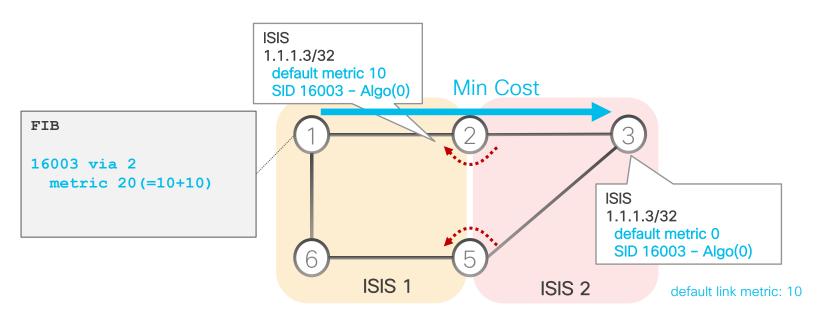
Optimal End-to-End Inter-Domain Paths with Flex-Algo

cisco live!


Flex-Algo multi-domain network

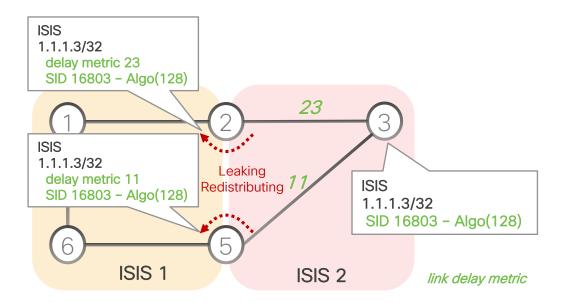
- All nodes in both domains participate in Algo(0) and Algo(128)
- Algo(128) is defined as min-delay

cisco i


Redistribute with default metric and Algo(0) SID

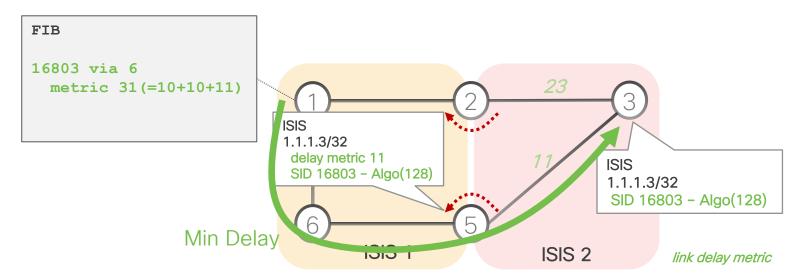
• Node 2 and 5 redistribute 1.1.1.3/32 with default metric and Algo(0) SID 16003

cisco / ille


Optimal end-to-end Min-Cost path

• IGP on Node 1 installs the Algo(0) SID 16003 via the optimal end-to-end min-cost path

cisco / ille

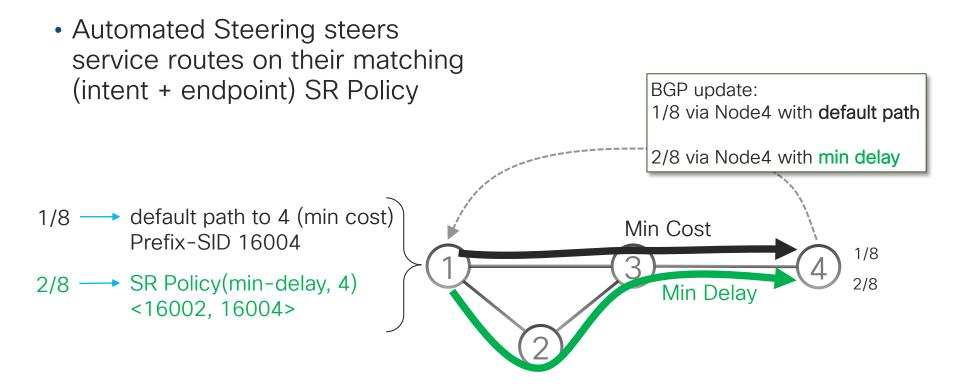

Redistribute with delay metric and Algo(128) SID

• Node 2 and 5 redistribute 1.1.1.3/32 with delay metric and Algo(128) SID 16803

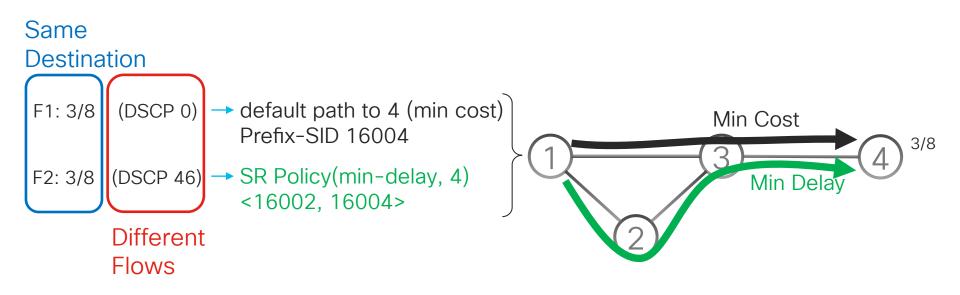
cisco / ile

Optimal end-to-end Min-Delay path

• IGP on Node 1 installs the Algo(128) SID 16803 via the optimal end-to-end min-delay path


cisco / ile

Per-Destination ODN/AS



Per-Destination Automated Steering

Need for Per-Flow ODN/AS

cisco / il

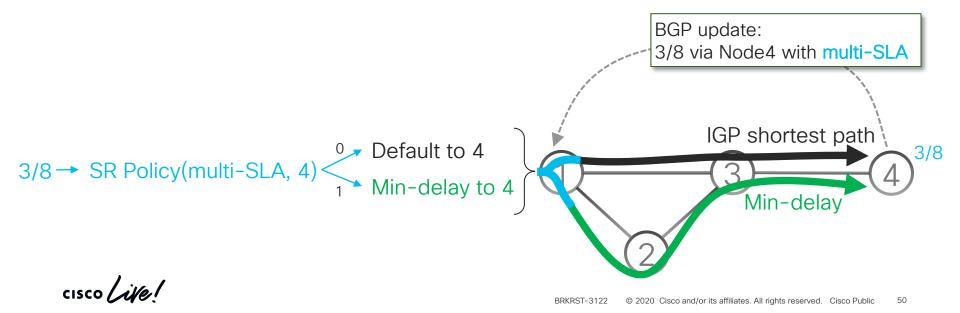
Per-Flow ODN/AS

cisco live!

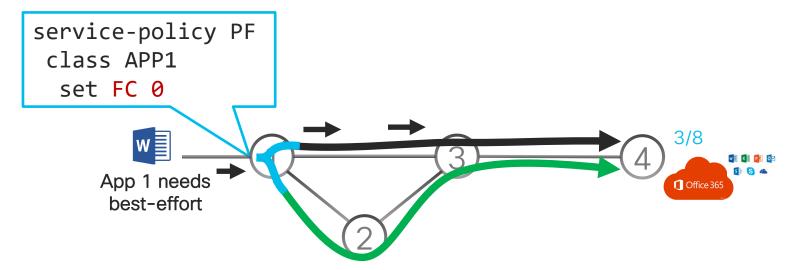
Per-Flow SR Policy

- A Per-Flow SR Policy provides up to 8 "ways" to the endpoint
- The Forward-Class setting of the packet selects the "way"
- This "way" can be a
 - Traffic-Engineered SR path: the low-delay path to the endpoint
 - Classic RIB path: the default shortest path to the endpoint

Forward-Class

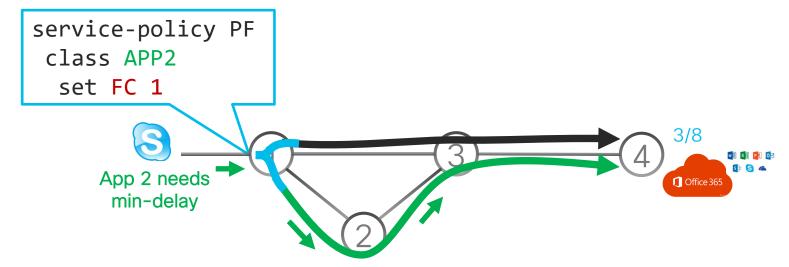

- FC: a local value attached to a packet within a router
 - Range from 0 to 7
- Set on the ingress interface on the basis of 5-tuple ACL or DSCP

```
class-map type traffic match-any MinDelay
  match dscp 46
end-class-map
!
class-map type traffic match-any PremiumHosts
  match access-group ipv4 PrioHosts
end-class-map
!
```


```
policy-map type pbr MyPerFlowPolicy
class type traffic MinDelay
  set forward-class 1
!
  class type traffic PremiumHosts
  set forward-class 2
!
  class type traffic class-default
  set forward-class 0
!
end-policy-map
```

Per-Flow Automated Steering (AS)

• AS automatically steers a service route on the PFP to E



- PE Node1 classifies App 1 flow packets in FC 0
- Automated Steering steers 3/8 in SR Policy P(multi-SLA, Node4)
- Flow is switched on P(multi-SLA, Node4)'s FC 0 path: IGP shortest path to Node4

App needs min-delay

- PE Node1 classifies App 2 flow packets in FC 1
- Automated Steering steers 3/8 in SR Policy P(multi-SLA, Node4)
- Flow is switched on P(multi-SLA, Node4)'s FC 1 path: min-delay path to Node4

If we would have more time ...

- ISIS Conditional Prefix Advertisement
- Flex-Algo OAM
- SR-PCE: Flex-Algo-aware Path Computation
- SR-PCE: SR-TE to BGP-LU Interworking
- SR ODN with EVPN
- BGP Peer-set EPE SID / Manual EPE
- Tree-SID

cisco / illa

Conclusion

cisco Live!

Industry at large backs up SR

cisco



etisalat

EQUINIX

SRv6

Simplicity Always Prevails

Furthermore with more scale and functionality

cisco / ile

SRv6 Eco-System

cisco Live!

At record speed

- 8 large-scale commercial deployments
 - Softbank, Iliad, China Telecom, LINE corporation, China Unicom, CERNET2, China Bank and Uganda MTN
- 18 HW linerate implementations
 - Cisco Systems, Huawei
 - Broadcom, Barefoot, Intel, Marvell, Mellanox
 - Multiple Interop Reports
- 9 open-source platforms/ Applications
 - Linux, FD.io VPP, P4, Wireshark, tcpdump, iptables, nftables, snort

Cisco Supports SoftBank on First Segment Routing IPv6 Deployment in Prep for 5G

Link to PR - https://newsroom.cisco.com/press-releasecontent?type=webcontent&articleId=1969030

Re: [spring] SPRING SRv6 Deployment Status draft

Sébastien Parisot <sparisot@free-mobile.fr> | Tue, 10 December 2019 09:34 UTC | Show header

Hi Satoru, Zafar,

I would like to provide an update to SRv6 deployment in Iliad's nationwide network in Italy.

As of the end of 2019, the SRv6 network consists of:

- 1000 Cisco NCS 5500 routers
- 1800 Iliad's Nodeboxes
- The network services 4.5 million mobile subscribers (as of Q3 2019)
- The network is carrying 300 Gbps of commercial traffic at peak hours
- It is expected to grow to more than 4000 Nodeboxes in 2020.

The following SRv6 features have been deployed:

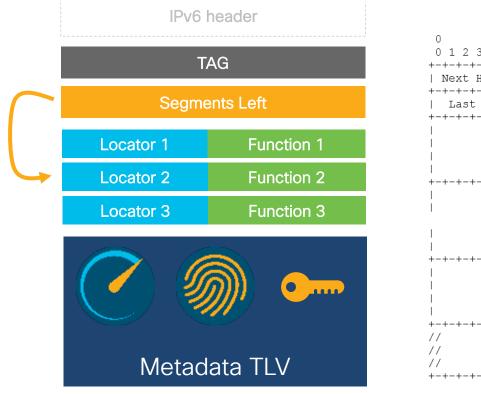
- A Segment Routing Header based data plane
- End (PSP), End.X (PSP), End.DT4, T.Encaps.Red, T.Insert.Red functions
- BGP VPN SRv6 extensions
- ISIS SRv6 extensions
- SRH-based Topology Independent (TI-LFA) Fast Reroute mechanisms
- Support for ping and traceroute

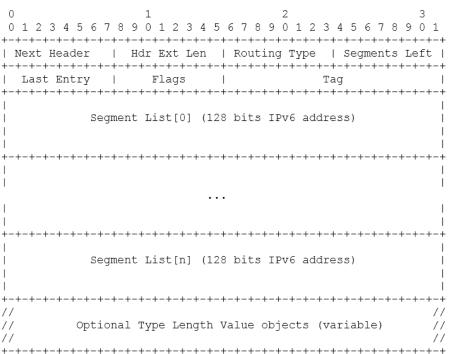
Can you please update the SRv6 deployment draft accordingly?

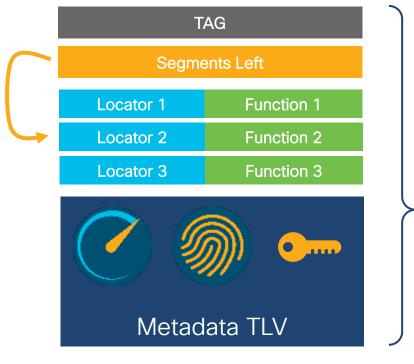
Thanks, Sébastien

iliad disco

- Nationwide deployment in Italy
- 1000 Cisco NCS 5500
- 1800 Iliad Nodeboxes



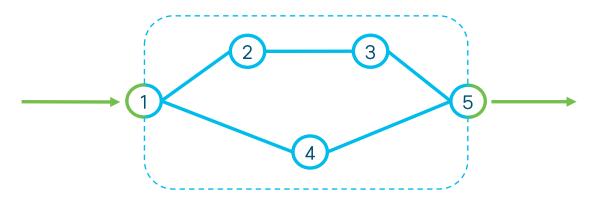

SRv6 - Reminder


SRv6 Header

cisco ive!

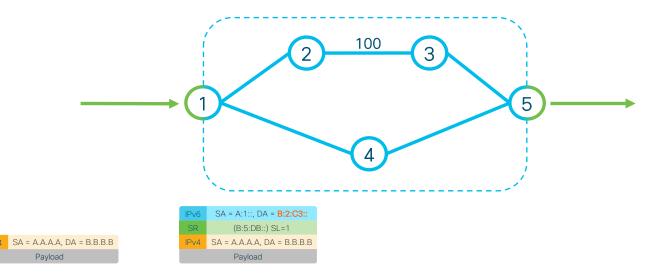
SRv6 for anything

Optimized for HW processing e.g. Underlay & Tenant use-cases

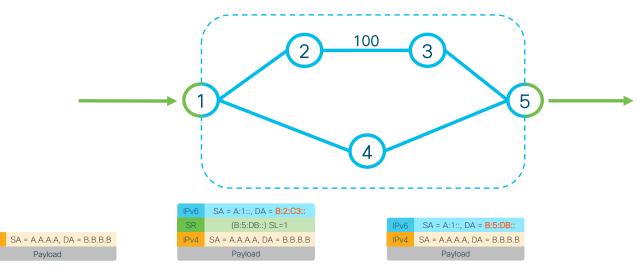

Optimized for SW processing e.g. NFV, Container, Micro-Service

cisco / ile

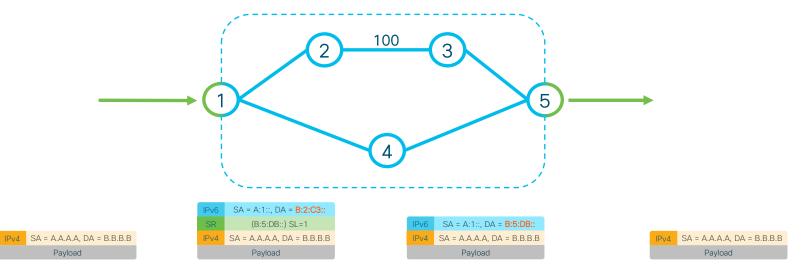
SRv6 Domain



cisco live!

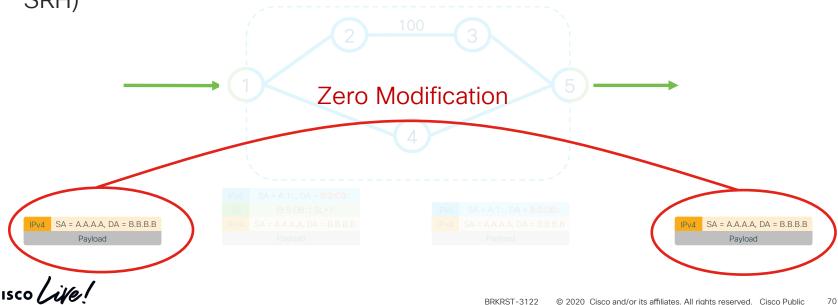

Encapsulation at the Domain ingress

- IPv4, IPv6 or L2 frame is encapsulated within the SR Domain
- Outer IPv6 header includes an SRH with the list of segments


SRH of the outer IPv6 encapsulation

- Domain acts as a giant computer
- The network program in the outer SRH is executed

Decapsulation at Domain Egress


• Egress PE removes the outer IPv6 header as the packet leaves the SR domain

cisco /

End-to-End Integrity

- End-to-end integrity principle is strictly guaranteed
 - Inner packet is unmodified
 - Same as SR-MPLS (MPLS stack is replaced by IPv6 outer header and SRH)

cisco live!

72 BRKRST-3122 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

Assumed leadership

- Important investment to lead the IETF for the eco-system
- Lots of work
- Please help
 - Co-authoring concrete and useful work
 - Dismissing pure political plays

CISCO /

SR Architecture

- RFC 8402 Proposed Standard
 - Defines SR-MPLS with MPLS dataplane and Label SID's
 - Defines SRv6 with SRH and SRv6 SID's

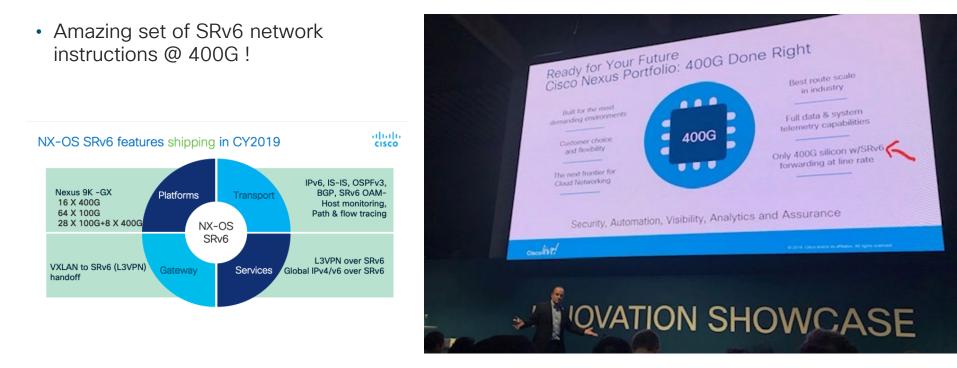
CISCO

SRv6

- RFC Proposed Standard
 - SRv6 DataPlane: SRH and SRv6 SID
- Last-Call
 - Network Programming (END, END.X, END.DX/DT, T.Encaps)
 - Control Plane (ISIS, BGP-LS)
 - Policy
 - OAM
- One IETF away to Last-Call
 - BGP

CISCO

SRv6 - Roadmap


Shipping: NCS5500, NCS560, NCS540, ASR9k

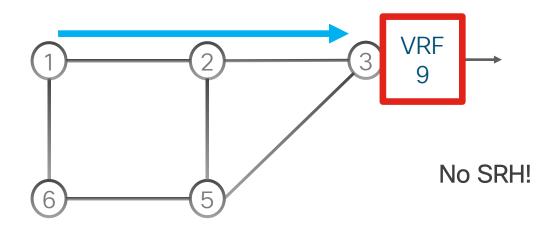
• ISIS

- TILFA and uLoop
- Flex-Algo (Low-Delay Slice) with TILFA
- BGP
 - PIC Core/Edge
 - L3VPN (IPv4)
 - Internet (IPv4)
 - eVPN VPWS

- SRv6-SR-MPLS Gateway
- OAM
 - Ping
 - Trace
 - SID Verification

Also in the DC - with linerate SRv6 @ 400G

cisco / ille

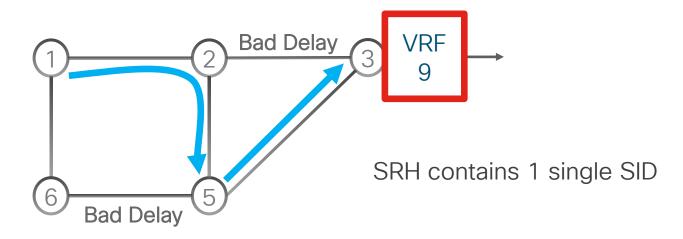

SRv6 Deployed Use-Cases

cisco live!

VPN over Best-Effort 5G Slice

Network Program: B:3:V(9)

B: locator block is associated with ISIS base algo (Low Cost, Best Effort)

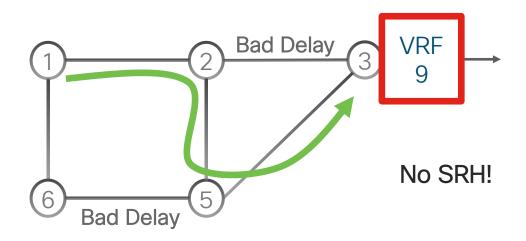


cisco / ile

VPN with Low-Delay 5G Slice - SR-TE Option

Network Program: B:2:C5 then B:3:V(9)

B: locator block is associated with ISIS base algo (Low Cost)

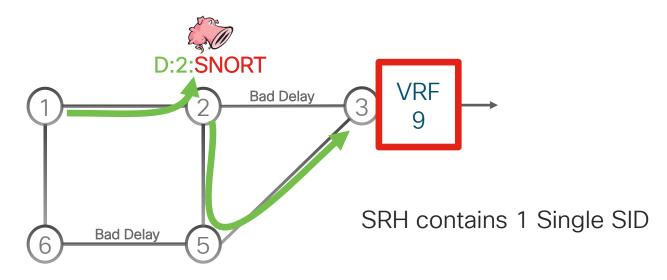


cisco / ille

VPN with Low-Delay 5G Slice - Flex-Algo Option

Network Program: D:3:V(9)

D: locator block is associated with Low Delay Flex-Algo

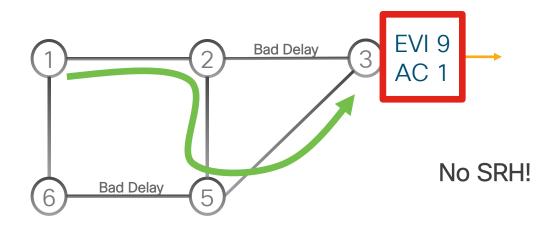


cisco / ille

Snort Firewall, VPN & Low-Delay Slice

Network Program: D:2:SNORT then D:3:V(9)

D: locator block is associated with Low Delay Flex-Algo

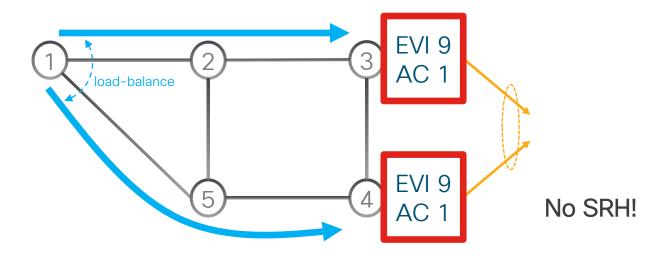


cisco / i

EVPN VPWS Single-Home & Low-Delay 5G Slice

Network Program: D:3:X(1)

D: locator block is associated with Low Delay Flex-Algo



cisco / ille

EVPN VPWS MH All-Active & Best-Effort 5G Slice

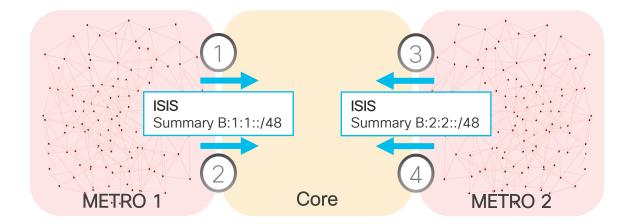
Network Program: B:3:X(1) or B:4:X(1)


B: locator block is associated with ISIS base algo (Low Cost)

cisco / ile

Load-balancing

- 20-bit entropy
- No additional protocol
 - infamous mpls entropy label



cisco / il

Seamless Incremental Deployment

- As soon as the network supports plain IPv6 forwarding
 - A new SRv6-VPN service only requires PE upgrade
 - TE objective can be achieved with a few well selected TE waypoints
 - FRR is deployed incrementally

Prefix Summarization

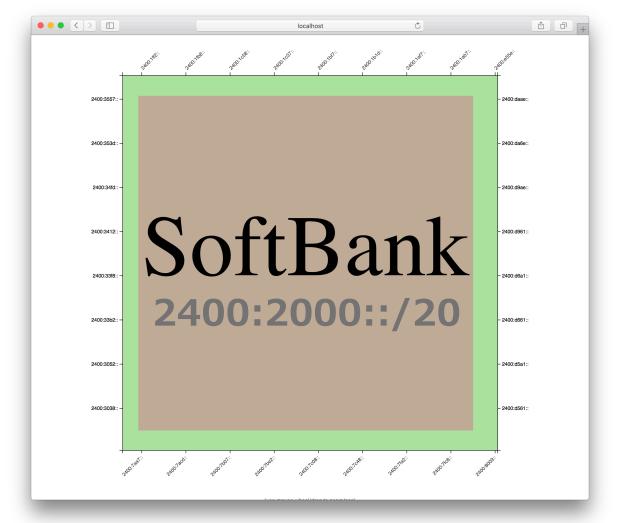
- Back to basic IP routing and summarization
- No BGP inter-AS Option A/B/C

cisco /

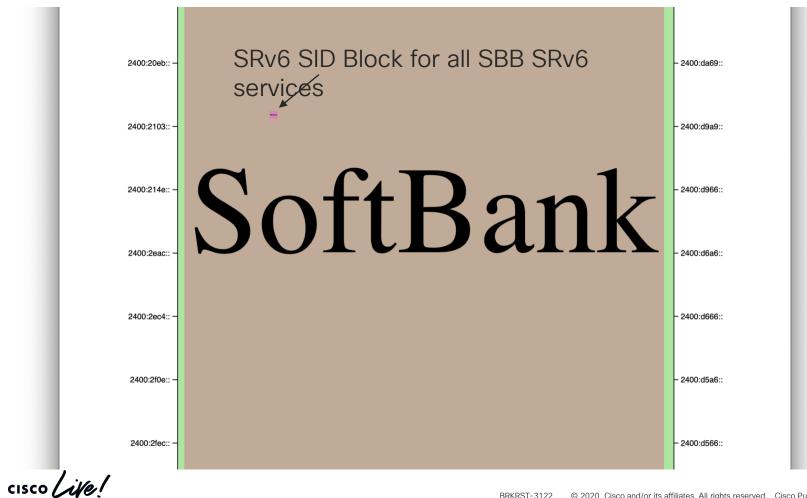
SRv6 has excellent native Scale

- Many use-cases do not even use an SRH ☺
 - Any VPN (L3VPN, PW, eVPN)
 - Egress Peering Engineering
 - Low-Latency or Disjoint Slicing
 - Optimal Load-Balancing
- If SRH is needed, most cases will use 1 or 2 SID's
- Prefix Summarization gain
- Talk to the operators who deployed, they are happy to share experience

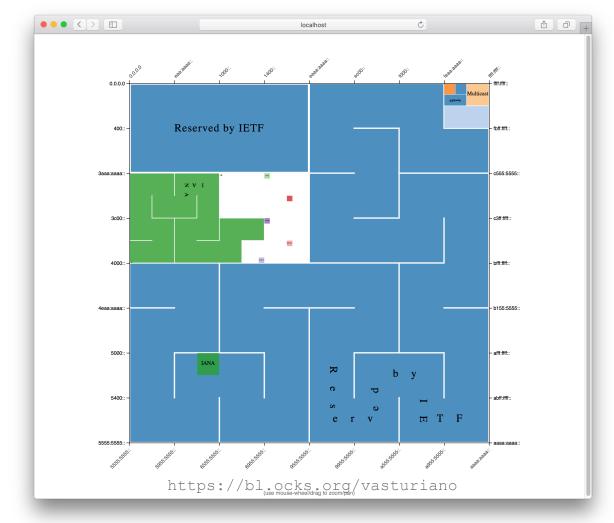
SRv6/MPLS L3 Service Interworking Gateway


Insignificant IPv6 Address Usage

SBB example


Credit to Satoru Matsushima – Softbank who credits Vasco Astriano and Dave Plonka (Akamai)

cisco ive

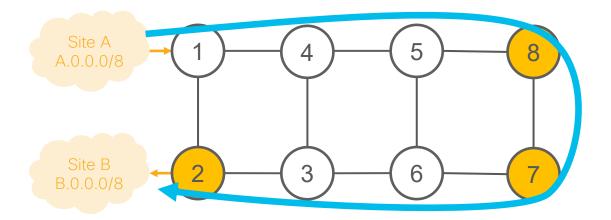


cisco / ille

cisco / ite

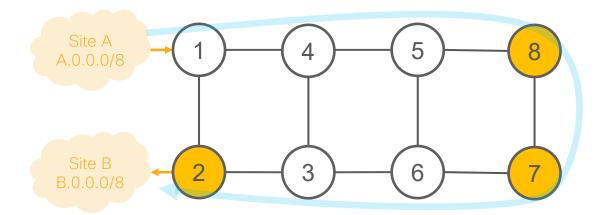
cisco live!

Micro-Program



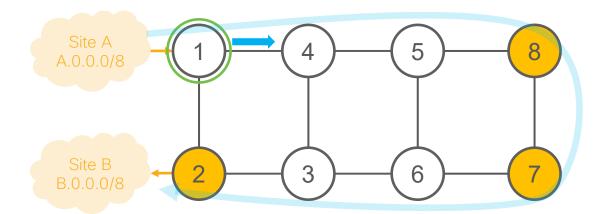
Intuitive SRv6 Network Program

- Program
 - list of instructions contained in DA/SRH
- Instruction
 - SRv6 SID
- Micro-program
 - SRv6 SID (called carrier) that contains a list of micro-instructions
- Micro-Instruction
 - SRv6 uSID, can represent any behavior: TE, VPN, Service

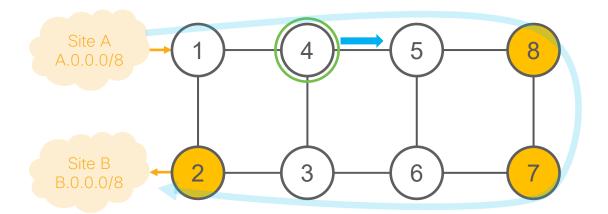

SRv6 uSID illustration

- Traffic engineered path via 8 and 7 with a single 128-bit SRv6 SID
- Node 1 encapsulates IPv4 packet from Site A and sends an IPv6 packet with DA = bbbb:bbbb:0800:0700:0200:0000:0000

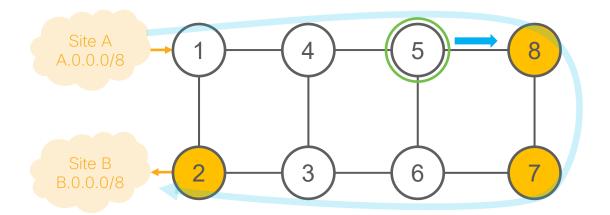
cisco / ile


Routing

- Node 8 advertises the IGP route bbbb:bbbb:0800::/48
- Node 7 advertises the IGP route bbbb:bbbb:0700::/48
- Node 2 advertises the IGP route bbbb:bbbb:0200::/48

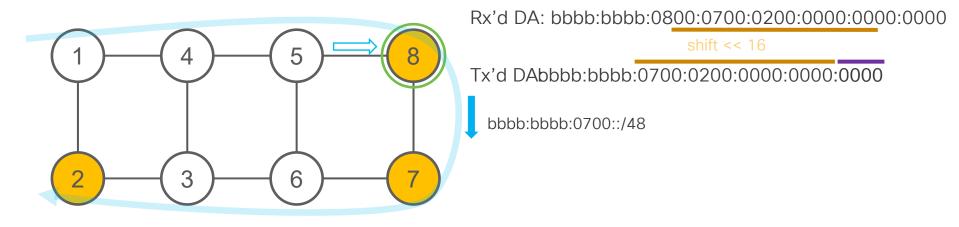

No new IGP extension required!

cisco live


- DA = bbbb:bbbb:0800:0700:0200:0000:0000
- Node 1 forwards to 4 (shortest-path to 8 (bbbb:bbbb:0800::/48))
- Seamless deployment through classic IPv6 nodes

cisco / ile

- DA = bbbb:bbbb:0800:0700:0200:0000:0000
- Node 4 forwards to 5 (shortest-path to 8 (bbbb:bbbb:0800::/48))
- Seamless deployment through classic IPv6 nodes

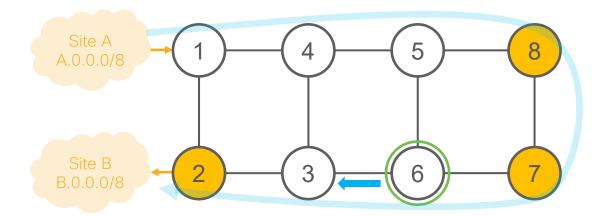

cisco / ile

- DA = bbbb:bbbb:0800:0700:0200:0000:0000
- Node 5 forwards to 8
- Seamless deployment through classic IPv6 nodes

cisco ive!

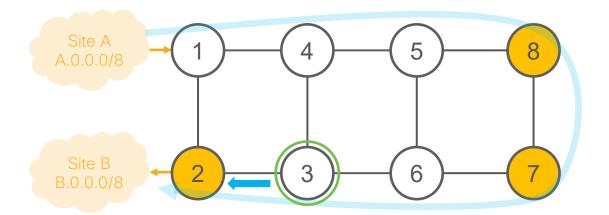
@8: Shift and Forward


FIB Longest-Match bbbb:bbbb:0800::/48 → Pseudo-code:

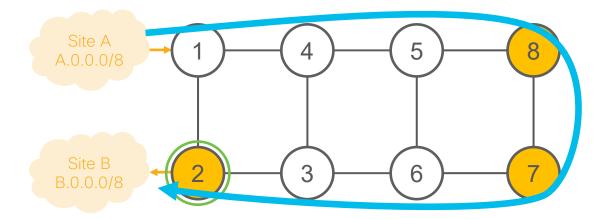

Copy bits [48:127] into position [32:11]

Set bits at position [112:127] to 0

Lookup the updated DA and forward


@7: Shift and Forward

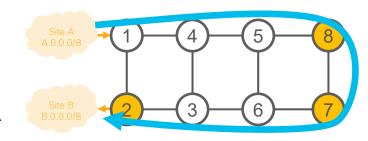
- DA = bbbb:bbbb:0200:0000:0000:0000:0000
- Node 6 forwards to 3 (bbbb:bbbb:0300::/48)
- Seamless deployment through classic IPv6 nodes


cisco / ile

- DA = bbbb:bbbb:0200:0000:0000:0000:0000
- Node 3 forwards to 2 (bbbb:bbbb:0200::/48)
- Seamless deployment through classic IPv6 nodes

cisco / ile

@2: SRv6 End.DX4 behavior



- Match bbbb:bbbb:0200:0000::/64
- SRv6 Network Programming "End with decaps and IPv4 xconnect" behavior
 → Decapsulate and cross-connect inner IPv4 packet to Site B

cisco / il

Recap

 @1: inner packet P encapsulated with outer DA bbbb:bbbb:0800:0700:0200:0000:0000

- @4 & @5: classic IP forwarding, outer DA unchanged
- @8: SRv6 uN behavior: shift and forward, outer DA becomes bbbb:bbbb:0700:0200:0000:0000:0000
- @7: SRv6 uN behavior: shift and forward, outer DA becomes bbbb:bbbb:0200:0000:0000:0000:0000
- @6 & @3: classic IP forwarding, outer DA unchanged
- @2: SRv6 End.DX4: Decapsulate and cross-connect inner packet

Compliant with SRv6, Net Prog and IPv6

100% SRv6 and Net Prog compliant

Just another SID, just another pseudocode
 Any SID in SRH or DA can be a uSID Carrier
 uSIDs can be combined with any other SID

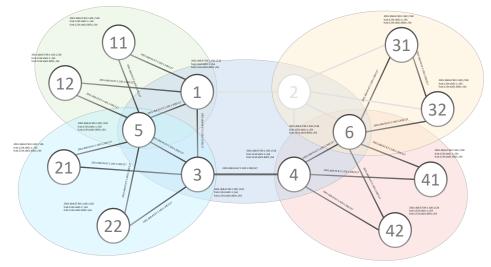
IPv6 compliant

Leverage classic IP longest-match lookup
 Leverage classic IP-in-IP
 Use any IPv6 block available to the operator

uSID Benefits

Data Plane	 Best MTU efficiency (6 uSIDs without SRH) Hyper-Scalable SR-TE (18 uSIDs with 40 bytes overhead) Hardware-friendly (linerate on merchant silicon)
Control Plane	 Scalable number of globally unique uSIDs per domain No new protocol extensions
IP Power	 IP summarization and longest match is POWERFUL FIB efficiency 2 to 3 times gain vs MPLS Optimal IPv6 load-balancing (flow label)
cisco Live!	BRKRST-3122 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 115

SRv6 - Automation



NSO "click" and the following happens

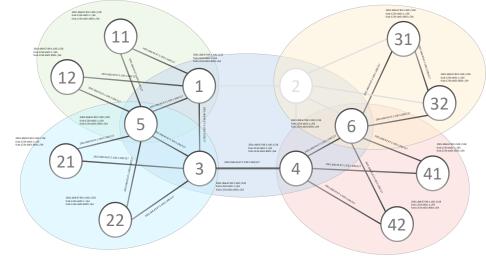
- Address allocation
 - Loopback and interfaces
- SID allocation
 - Algo 0 and Flex-Algos
- Multi-Domain
- ISIS summarization and redistribution between domains
- TI-LFA

• BFD

NSO "click" and the following happens

- Address allocation
 - Loopback and interfaces
- SID allocation
 - Algo 0 and Flex-Algos
- Multi-Domain
- ISIS summarization and redistribution between domains
- TI-I FA
- BFD

	Network Information			
	✓ Prefix Blocks			
	Loopback block		2001:db8:aaaa:aaaa::/64	
	Interface block		2001:db8:aaaa:bbbb::/64	
	SID block		fcbb:bbbb::/40	
	> Algorithms			
X01.0867381302-738 601.0867381302-738 601.08610480106 601.08101680106	➤ Domains	0		
	> DOM0	\ominus		
12	> DOM1	\bigcirc		
	> DOM2	\ominus		
2001.00.67.98.1.1001/128 ftpb/128400111/64 ftpb/128400110001/64	> DOM3	\bigcirc		
101.098.6511.001.200/127 3001.088.6507.1:300.1:000/12	> DOM4	\bigcirc		
	> Connections			


NSO

NSO "click" and the following happens

- Address allocation
 - Loopback and interfaces
- SID allocation
 - Algo 0 and Flex-Algos
- Multi-Domain
- ISIS summarization and redistribution between domains
- TI-LFA

• BFD

Deploy node	\bigotimes
Node Name	ncs-2
Domain(s)	DOM0, DOM2
	OK Cancel

NSO "click" and the following happens

- Address allocation
 - Loopback and interfaces
- SID allocation
 - Algo 0 and Flex-Algos
- Multi-Domain
- ISIS summarization and redistribution between domains

2001:058:67.99.1:100;/128 fcab:1234:3001:1:564 fcab:1234:3001.9001:764

• TI-LFA

• BFD

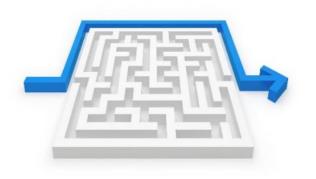
	Deploy node	\bigotimes
50	Node Name	ncs-2
	Domain(s)	DOM0, DOM2
		click! OK Cancel
001-001/28-00-01/28 0011/4-001-001-001 0011/4-001-001-001 2 0014-8-6(01-000)	1001-00-0120-0120-0120-0120-0120-0120-0	
		27 2 2 0 0 - 0 - 0 0 - 0 - 0 - 0 - 0 0 -
2007/bit 46/57.1301.200/ 2007/bit 46/57.1301.200/ 2007/bit 2007/201 2007/bit 2007/bit 2007/2007/2007/2007/2007/2007/2007/2007		4 Martine Mart
(22	<i>y</i>	(42)

Configuration Automation next-step

- ISIS Flex-Algo Slicing
- BGP Services
 - Internet
 - L3VPN
 - eVPN PW
- Linux Servers

cisco /

Troubleshooting Automation


- Brainstorming
- Please ping if interested

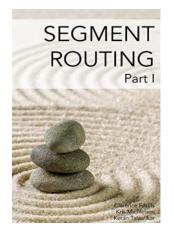
cisco / il

Conclusion

cisco Live!

Simplicity Always Prevails

Furthermore with more scale and functionality



cisco / ile

At record speed

- 8 large-scale commercial deployments
 - Softbank, Iliad, China Telecom, LINE corporation, China Unicom, CERNET2, China Bank and Uganda MTN.
- 18 HW linerate implementations
 - Cisco Systems, Huawei
 - Broadcom, Barefoot, Intel, Marvell, Mellanox
 - Multiple Interop Reports
- 9 open-source platforms/ Applications
 - Linux, FD.io VPP, P4, Wireshark, tcpdump, iptables, nftables, snort

Stay up-to-date

amzn.com/B01I58LSUO

amazon.com/dp/B07N13RDM9

twitter.com/SegmentRouting

facebook.com/SegmentRouting/

Segment Routing

segment-routing.net

linkedin.com/groups/8266623

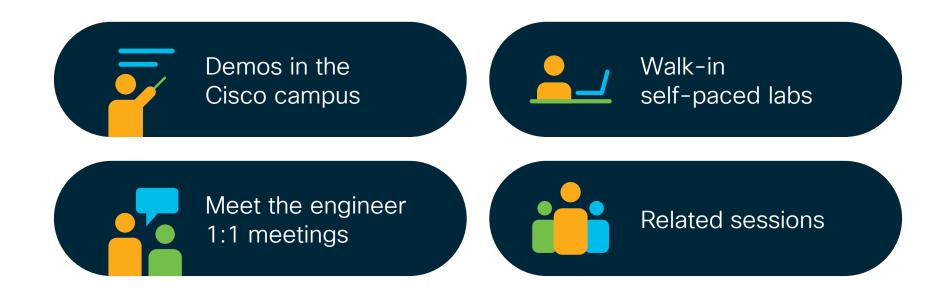
cisco live

You make **possible**

References

Resources / Stay Up-To-Date

Let's see the Demonstration ...


Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Continue your education

cisco / ille

Thank you

cisco live!

You make **possible**

Appendices

Appendix

Industry Update

SR is IETF Proposed Standard

Architecture

- Segment Routing Architecture RFC 8402
- Source Packet Routing in Networking (SPRING) Problem Statement and Requirements RFC 7855
- Segment Routing with MPLS data plane RFC 8660

Use-cases

- SR-MPLS over IP RFC 8663
- Resiliency Use Cases in SPRING Networks RFC 8355
- Use Cases for IPv6 Source Packet Routing in Networking (SPRING) RFC 8354
- BGP Prefix Segment in Large-Scale Data Centers RFC 8670
- Interconnecting Millions Of Endpoints With Segment Routing RFC 8604
- Segment Routing interworking with LDP RFC 8661
- Recommendations for RSVP-TE and Segment Routing LSP co-existance RFC 8426

Protocol Extensions

ISIS

- IS-IS Extensions for Segment Routing RFC 8667
- Signaling MSD (Maximum SID Depth) using IS-IS RFC 8491
- Advertising L2 Bundle Member Link Attributes in IS-IS RFC 8668
- IS-IS Traffic Engineering (TE) Metric Extensions RFC 7810

BGP

- Segment Routing Prefix SID extensions for BGP RFC 8669
- BGP-LS Advertisement of IGP Traffic Engineering Performance Metric Extensions RFC 8571

OSPF

- OSPF Extensions for Segment Routing RFC 8665
- OSPFv3 Extensions for Segment Routing RFC 8666
- Signaling MSD (Maximum SID Depth) using OSPF RFC 8476
- OSPF Traffic Engineering (TE) Metric Extensions RFC 7471

PCEP

PCEP Extensions for Segment Routing RFC 8664

OAM

- A Scalable and Topology-Aware MPLS Dataplane Monitoring System RFC 8403
- Label Switched Path (LSP) Ping/Trace for Segment Routing Networks Using MPLS Dataplane RFC 8287

Performance Measurement

- Packet Loss and Delay Measurement for MPLS Networks RFC 6374
- UDP Return Path for Packet Loss and Delay Measurement for MPLS Networks RFC 7876

SR is IETF Proposed Standard

Architecture

- Segment Routing Architecture RFC 8402
- Source Packet Routing in Networking (SPRING) Problem Statement and Requirements RFC 7855
- Segment Routing with MP

Use-cases

SR-MPLS over IP RFC 8663

- Resiliency Use Cases in SPRING Networks RFC 8355
- Use Cases for IPv6 Source Packet Routing in Networking (SPRING) RFC 8354

Cisco Leads Standards Bodies

Protocol Exte

ISIS

- IS-IS Extensions for Seg
- Signaling MSD (Maximur
- Advertising L2 Bundle M
- IS-IS Traffic Engineering

BGP

- Segment Routing Prefix
- BGP-LS Advertisement
 Performance Metric External

Editor of96%IETF RFCsCo-author of100%IETF RFCsEditor of77%IETF WG DraftsCo-author of84%IETF WG Drafts

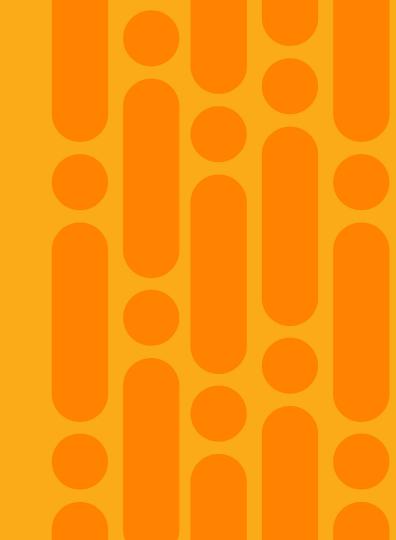
FC 8476 2 7471

Routing RFC 8604

ng LSP co-existance RFC 8426

OAM

- A Scalable and Topology-Aware MPLS Dataplane Monitoring System RFC 8403
- Label Switched Path (LSP) Ping/Trace for Segment Routing Networks Using MPLS Dataplane RFC 8287


Performance Measurement

- Packet Loss and Delay Measurement for MPLS Networks RFC 6374
- UDP Return Path for Packet Loss and Delay Measurement for MPLS Networks RFC 7876

Appendix

SR Policy liveness monitoring

cisco live!

SR Policy liveness – Appendix (1)

- "SR Policy liveness": The end-to-end (from headend to tailend) usability of an SR Policy endpoint and candidate-path on the forwarding plane
- liveness monitoring:
 - Monitor end-to-end liveness of an SR Policy candidate-path by periodically sending PM probes along the SR Policy candidate-path from headend through the tailend and back, without dependency on tailend
 - tailend switches probe packets no punting, no awareness
 - no tailend dependency
 - easier to deploy
 - more scalable

SR Policy liveness – Appendix (2)

- Probe format
 - Same as link-delay measurement (TWAMP)
- PM sessions
 - An internal PM (sub-)session is created for each segment-list of the active candidate-path
- liveness failure detection
 - Liveness failure is detected when last N (default: 3) consecutive probe packets are lost
 - PM sends probe messages in pipeline mode i.e. PM does not wait for the probe response to arrive before sending the next probe query message
 - SR Policy PM liveness session declared down if any of the per-segment-list PM sub-sessions is down
 - Failure action:
 - default: notification only
 - tear down active candidate path
 - Warning if using IP return path:
 - · false positives if return path fails while forward path stays up
 - path protection fails if the common return path of both primary and backup candidate-paths fails

SR Policy liveness – Appendix (3)

- Variants (user-configurable)
 - constrain return path by encoding this return in the probe's label stack
 - Prevent false negatives (return path fails while forward path stays up)
 - User can specify a label to return the packet (e.g. headend Prefix-SID, reverse SR Policy BSID)
 - default: IP return path (best-effort)
 - ECMP sweeping
 - change IP destination address (in 127/8 range) to hash on different ECMP paths of SR Policy
 - probabilistic coverage of ECMP paths
 - When using ECMP sweeping, one must encode return path in the probe's label stack (not possible to use default IP return path if probe's dest address is 127/8)
 - Implementation: when sweeping destination address, for each destination address an additional (internal) PM session is created. There is also always a PM (sub-)session to the endpoint address
 - SR Policy PM liveness session declared down if any of the per-destination address PM sub-sessions is down

Configuration

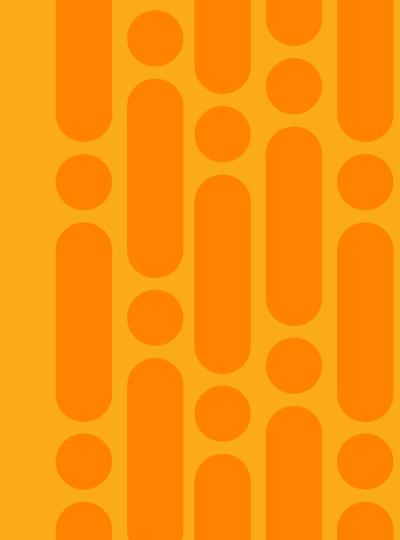
```
segment-routing
traffic-eng
policy FOO
performance-measurement
delay-measurement
liveness-detection
invalidation-action down !! default: none
!
performance-measurement
delay-profile sr-policy
probe
measurement-mode loopback
```

Reverse path – Configuration

```
segment-routing
traffic-eng
policy FOO
performance-measurement
    delay-measurement
    liveness-detection
    reverse-path label <lbl> ! E.g. BSID, Prefix-SID
!
performance-measurement
    delay-profile sr-policy
    probe
    measurement-mode loopback
```

cisco / ile

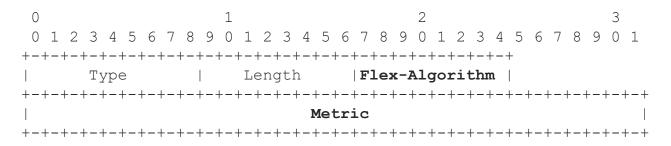
ECMP Sweeping – Configuration


```
segment-routing
traffic-enq
  policy FOO
   color 20 end-point ipv4 1.1.1.5
   performance-measurement
    delay-measurement
     liveness-detection
     reverse-path label <lbl> ! E.g. BSID, Prefix-SID
   candidate-paths
    preference 100
     dynamic
      metric
       type delay
performance-measurement
delay-profile sr-policy
 probe
  measurement-mode loopback
   sweep
    destination ipv4 127.0.0.0 range 10
```

cisco / ili

Appendix

Flex-Algo



Flexible Algorithm

- Flex-Algo
 - FA provides customized IGP algorithms defined by operator for intent-based instantiation of TE
 - great for 5G slicing
 - FA provides simplicity and automation by providing IGP-computed TE paths from anywhere to anywhere, automatically protected by TI-LFA backup paths that are optimized per FA slice (plane)
 - FA provides scalability by enforcing a TE path using a single SID and supporting participation in many FAs using a single loopback prefix
- FA Accumulated metric pitch
 - FA Prefix-SIDs are redistributed with their accumulated metric which allows IGP to compute optimal FA end-to-end paths for inter-area and inter-domain prefixes

ISIS Flex-Algorithm Prefix Metric Sub-TLV

- Flex-Algorithm Prefix Metric (FAPM) sub-TLV is attached to IP reachability TLV (TLVs 135, 235, 236, and 237) of propagated (redistributed/leaked) prefixes
- One FAPM sub-TLV per FA

- FAPM value = metric to reach the prefix for a given FA in a source area or domain
 - Cfr. how the metric is set when prefixes are advertised between areas or domains for default algorithm

M-flag in FAD

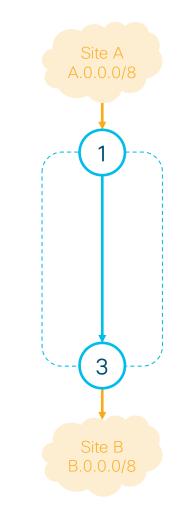
- The M-flag in the Flex-Algo Definition (FAD) indicates that ABRs/ASBRs MUST advertise the FAPM with the propagated prefixes and all FA-participating nodes MUST use the FAPM for FA computation
 - M-flag must be set
- For any FA: If FAD has M-flag set, then any propagated prefix without FAPM is considered unreachable
- Configuration:

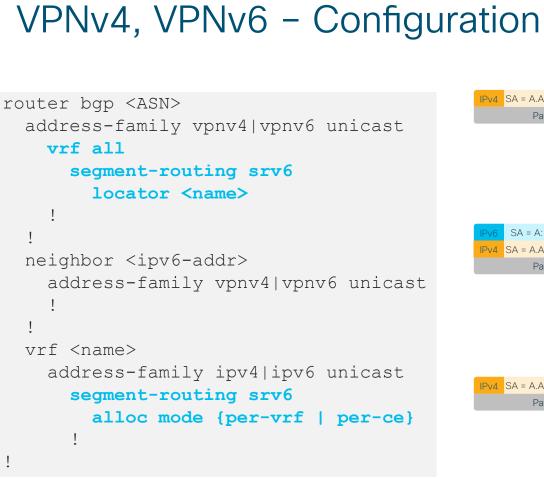
```
router isis X
flex-algo 128
metric-type delay
prefix-metric
```

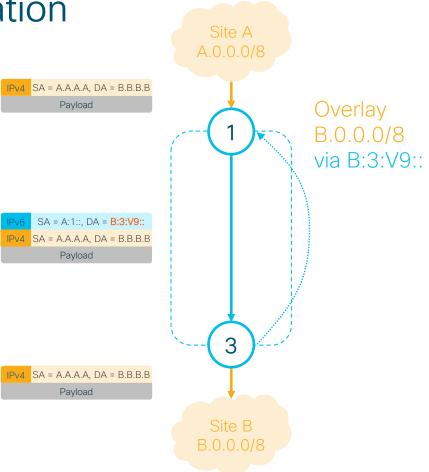
Appendix

Per-flow ODN/AS

Appendix

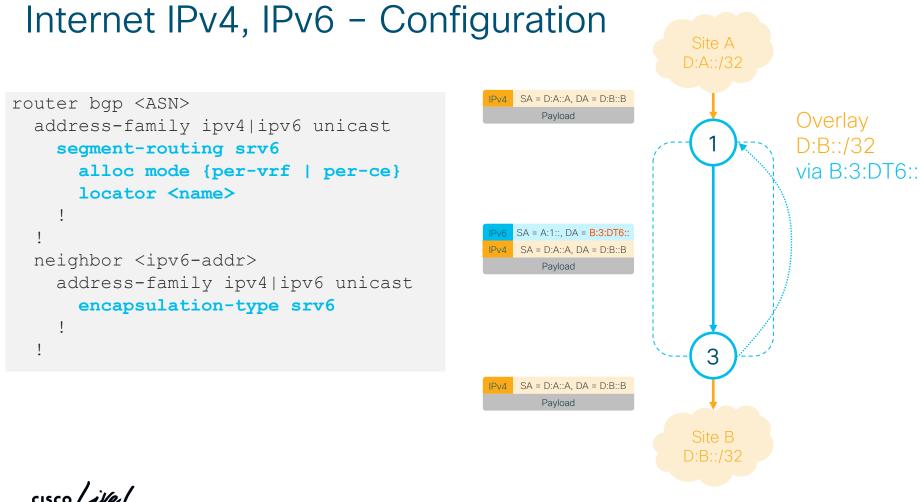

SRv6 Use-cases





SRv6 - Configuration

```
router isis <ID>
flex-algo 128
 metric-type delay
  advertise-definition
 address-family ipv6 unicast
  segment-routing srv6
   locator DOM0 ALG0
   locator DOM0 ALG128
segment-routing
srv6
  encapsulation
   source-address a:3::
  locators
   locator DOM0 ALG0
    prefix b:3::/64
   locator DOM0 ALG128
    prefix b:3:8::/64
    algorithm 128
```

Locators in BGP – global, all vrfs, per-vrf

- Multiple SID Locators can be specified in BGP
 - Locators themselves configured under segment-routing srv6
- Global SID locator is used by default
- For L3VPN services, a SID Locator can be specified for all VRFs or per individual VRF
- For internet services a SID Locator can be specified per address-family
- SID allocation mode (per-vrf, per-ce) can be configured for all VRFs and per individual VRF

```
router bqp <ASN>
  segment-routing srv6
    locator <name>
  address-family ipv4|ipv6 unicast
    segment-routing srv6
      locator <name>
  address-family vpnv4/vpnv6 unicast
    vrf all
      segment-routing srv6
        locator <name>
        alloc mode {per-vrf | per-ce}
  vrf <name>
    address-family ipv4|ipv6 unicast
      segment-routing srv6
        locator <name>
        alloc mode {per-vrf | per-ce}
```


163 BRKRST-3122 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

3

EVI 7, AC 4

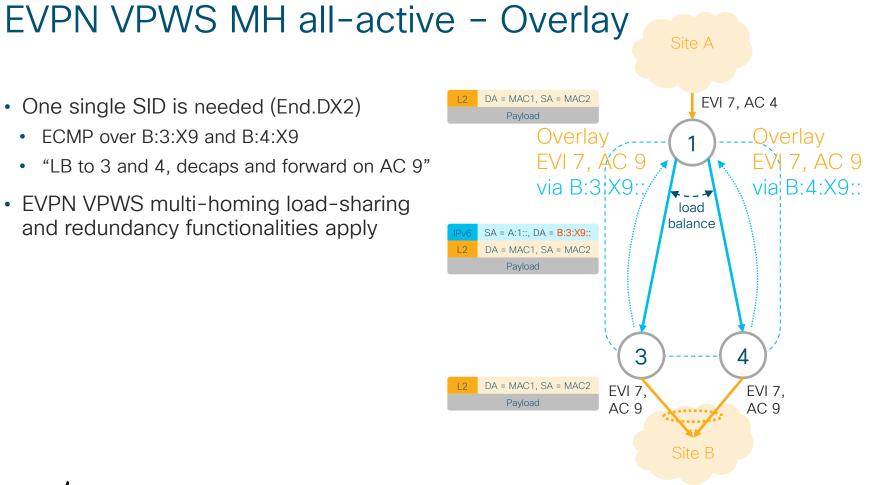
SA = A:1::, DA = **B:3:X4::**

DA = MAC1, SA = MAC2

DA = MAC1. SA = MAC2

Pavload

Payload

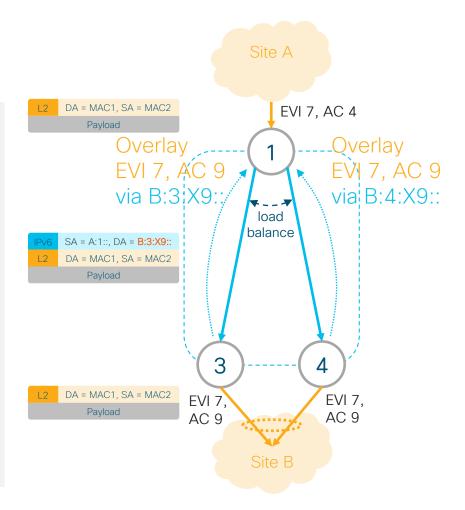

EVI 7, AC 1

Overlay

EVI 7, AC 4

via B:3:X4::

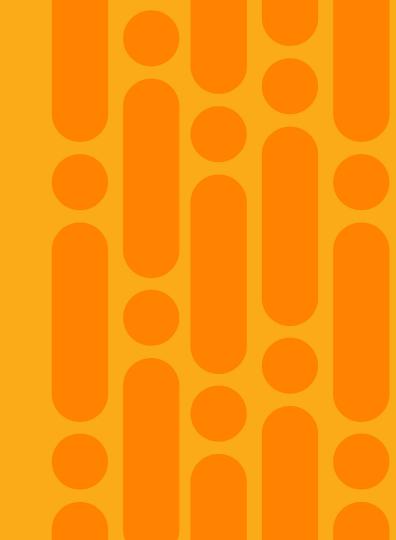
- EVPN VPWS single-home Overlay
 One single SID is needed (End.DX2)
 B:3:X4
 - "go to 3, decaps and forward on AC 4"
- No new protocol (just BGP)
 - No new SAFI
 - Light ext. to BGP Prefix-SID attribute
- Automated
 - No tunnel to configure
- Efficient
 - SRv6 for everything
 - No other protocol, just IPv6 with SRv6
 - In fact, SRH not even needed (one single SID fits DA)



•

•

Overlay configuration


```
On 3 and 4:
12vpn
  xconnect group evpn-vpws
    p2p EVI7-AC9
      interface Bundle-Ether10.2
      neighbor evpn evi 7
                      target 4 source 9
        segment-routing srv6
           [locator <name>]
evpn
 segment-routing srv6
  locator LOC1
 interface Bundle-Ether10
  ethernet-segment
   identifier type 0
             00.01.00.ac.ce.55.00.0a.00
```

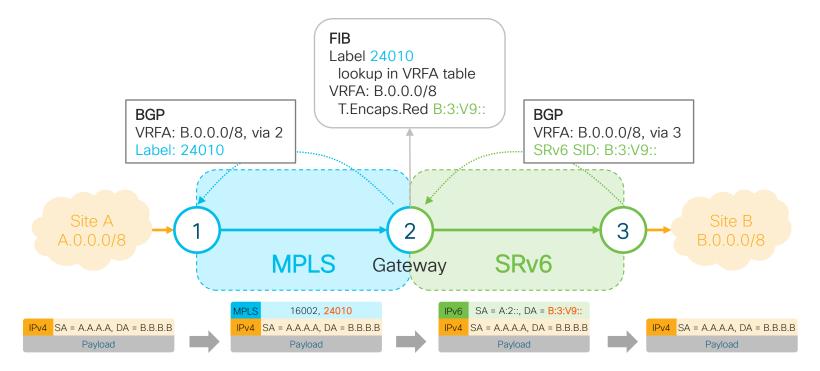

Appendix

SRv6/MPLS L3 Service Interworking Gateway

SRv6/MPLS L3 Service Interworking Gateway

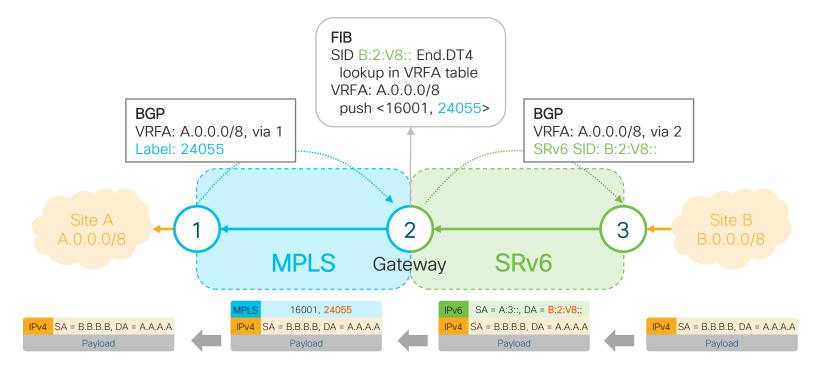
- The L3 service SRv6/MPLS gateway enables customers to extend their L3 services between MPLS and SRv6 domains by providing service continuity on the control plane and data plane
- Gateway acts as intermediary for L3 services on control plane and data plane

L3 service stitching


- Gateway acts as intermediary for interworked L3 services
- GW has VRFs configured that need interworking with 2 sets of RTs
 - MPLS L3VPN RTs
 - SRv6 L3VPN RTs (called "stitching RTs")
- GW imports service routes received from one domain (MPLS | SRv6)
- GW re-advertises exported service routes to the other domain (next-hopself)
- GW stitches the service on the data plane (End.D*/T.Encaps.Red ⇔ service label)

Gateway configuration

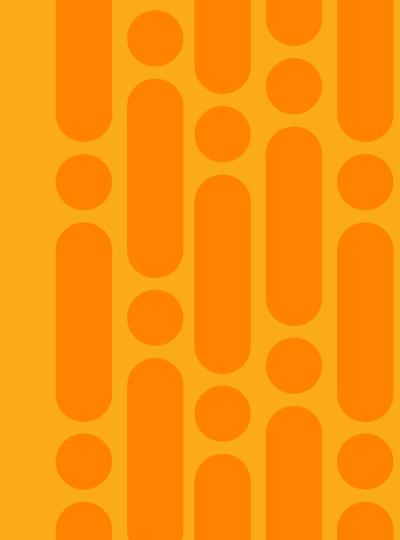
```
vrf ACME
 address-family ipv4 unicast
  import route-target
   1111:1
                       : MPLS
   2222:1 stitching ; SRv6
  export route-target
   1111:1
                       ; MPLS
   2222:1 stitching ; SRv6
      Stitch MPLS domain RTs
       to SRv6 domain RTs
                  Allocate VPN label
                    and SRv6 SID
```


```
3
                               MPLS
                                      Gateway
                                                SRv6
router bgp 100
 segment-routing srv6
 locator LOC1
neighbor 1.1.1.1
  address-family vpnv4 unicast
   import re-originate stitching-rt
  route-reflector-client
   advertise vpnv4 unicast re-originated
neighbor a::3
  address-family vpnv4 unicast
   import stitching-rt re-originate
   route-reflector-client
   encapsulation-type srv6
   advertise vpnv4 unicast re-originated stitching-rt
vrf ACME
  address-family ipv4 unicast
   enable label-mode
   segment-routing srv6
```

MPLS to SRv6

cisco ive!

SRv6 to MPLS



cisco ive!

Appendix

SRv6 Massive-Scale End-to-End Reachability With SLA

Locator Summarization

- Since SRv6 leverages longest-prefix-match IP forwarding, massive-scale reachability can be achieved by simply summarizing SID Locators at ABRs and ASBRs
 - No summarization possible in MPLS

Locator Summarization configuration

```
segment-routing
 srv6
  locators
   locator ALGOO
    prefix b:0:0:1::/64
   locator ALGO128
    prefix b:0:8:1::/64
    algorithm 128
                                                 "explicit" \rightarrow only locators from
                                                    the specified algorithm
router isis SRv6
                                                   contribute to the summary
 address-family ipv6 unicast
  summary-prefix b:0:0::/48 explicit
  summary-prefix b:0:8::/48 algorithm 128 explicit
  segment-routing srv6
   locator ALGOO
   locator ALGO128
```