SP Orchestration & Automation: Connected Car Analytics with Machine Learning

Dr. Mehdi Nikkhah, Research Software Engineer – Data Scientist, Innovations Lab - CTAO
Patricia Sampedro Garcia, Software Engineer, CTAO
Chris Metz, Distinguished Engineer, CTAO

April 5, 2017
Additional Team Members

- Herb Wildfeuer, Principle Engineer, Innovations Lab - CTAO
- Tyler Levine, Sr. Software Engineer, CTAO
- Quentin Chen, Software Engineer, CTAO
- Daniel Malachovksy, Sr. Software Engineer, CTAO
- Stanislav Jamrich, Software Engineer, CTAO
- Lubomir Balogh, Software Engineer, CTAO
- Andrej Vanko, Project Manager, CTAO
Problem Statement (1)

- Connected Cars will generate 25GB of Sensor Data per Day per Car for cloud ingestion and processing
- WAIT … WHAT?!?
- Automakers/OEMs, drivers, smart cars, etc. want to avoid “problems”
- Problems \rightarrow Higher Costs \rightarrow Unhappiness
Problem Statement (2)

- All of this Car **BIG DATA** in the cloud might have **SMALL DATA** telling us about current and future problems
- Avoid Problems \rightarrow Lower Costs \rightarrow Happiness
- So what is needed here to find the **small data** pointing to current and future problems

Machine Learning!!
CC Analytics Cloud, Machine Learning and the “Virtuous Circle”
Machine Learning
Machine Learning vs. Classical Approach

Classical Approach

Given

Wanted

Input → Model → Output

Machine Learning Approach

Input → Model → Output
How Machine Learning Works

• Machine Learning builds a model from the data
 • \textbf{Supervised}: Data and Labels
 • \textbf{Unsupervised}: Data with no label

• The model is used then to:
 • Predict the outcome of a system
 • Recognize complicated patterns in the new data points
 • Classify inputs
Supervised vs Unsupervised Learning

Supervised Learning

- Inputs: x_1, x_2
- Outcomes: Target values

Unsupervised Learning

- Inputs: x_1, x_2
- Outputs: Clusters or groupings
Supervised Learning
Example: Neural Network for Prediction
Example: Neural Network for Pattern Recognition

Data Collection Infrastructure → Neural Network → Recognized Pattern e.g., Excessive Braking

Sensor Data → Data Collection Infrastructure → Neural Network → Recognized Pattern e.g., Excessive Braking
Example: Clustering (Unsupervised)
Automation Use Case: Connected Car

Streaming Sensor Data → Intelligence → Actuation Loop

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Confidential
Automation Use Case: Connected Car

Streaming Sensor Data → Intelligence → Actuation Loop
Do we always need ML?

• When not to use ML?
 • If the problem is easily solved with simple algorithms
 • *e.g.*, Thresholding, regression, etc. work better

• When to use ML?
 • If the problem is non-linear, features that affect the outcome are not completely known, complicated patterns, data is ample
Rule-based Analytics

• Driving in dangerous conditions is a complex problem
 • There is no strict definition of “unsafe”
 • e.g., some consider driving 55 mph on a rainy day dangerous, some don’t!
 • However, there is consensus about driving “fast” on a rainy day being dangerous
 • The variability lies in the definition of “fast”
Fuzzy Logic

- Fuzzy Logic variables:
 - Speed of the car (high, average, decent, poor)
 - Current conditions of the road (high, average, decent, poor)
 - Current weather (sunny, cloudy, foggy, rainy, snowy)

- Examples:
 - If speed is **HIGH** and conditions of the road are **POOR** and the weather is **SUNNY** then **UNSAFE**.
 - If speed is **AVERAGE** and conditions of the road are **GOOD** and the weather is **FOGGY** then **SAFE**.
Fuzzy Logic contd.

- Fuzzy Logic goal: to model logic reasoning with imprecise statements
 - e.g., ‘speed is High’, is a vague sentence that is determined by the true value of the variable speed
Machine Learning and Connected Cars Discussion
Complicated Pattern Recognition

- Labeling Criteria:
 - When tailgating, one brakes too frequently
 - The speeds are usually in 50s and higher
 - Faster reactions/maneuvers
- An expert can detect this
- All of this can be captured locally from Speed and Brake sensors
Tailgating Detection cont’d.

- Collecting speed and brake sensory data from a car
- An expert supervises the labeling
- A Neural Network is trained to classify driving patterns
- The model built by the NN is used to detect tailgating in unlabeled and unseen future data
Automation Use Case: Connected Car

Streaming Sensor Data → Intelligence → Actuation Loop
Closing the Loop

• Decision making and actuation
• Dangerous driving or Tailgating:
 - Give feedback to driver
 - Inform the insurance company, and/or law enforcement if repeated and necessary
• High fuel consumption:
 - Schedule check up and/or maintenance
• Weather changes that potentially affect tire pressure
 - Inform the driver in advance (for planning)
Automation Use Case: Connected Car

Streaming Sensor Data

Intelligence

Actuation Loop
Data Collection

- This is challenging for cars
 - Large amount of data generated
 - Usually slow wireless networks
 - Inherently distributed
 - Scalability is an issue
 - Fast processing is important
 - Security and policy compliance needs to be checked frequently
Scalability

• Built on Scalable and Programmable BIG Data and Policy Control platforms

• Key Scaling Components:
 - Ingestion of vehicle (and contextual) Data into BIG Data platform
 - High performance “Sensor Bus” enabling multiple applications (database, ML, etc.)
 - Real time Machine Learning (ML) detects anomalies and automates distribution of policy data down into the network
 - “Big Data” queries to database
 - Operates in private, hybrid or public clouds → Rapid prototyping, rapid deployment

• Can be adapted for any Sensor/policy-driven Vehicle Network
Machine Learning is an Application
Possible Innovation in Connected Cars

- Correlating driving patterns with fuel consumption/cost, and providing feedback to driver for improvement
- Shaping traffic pattern using connected cars + connected city (traffic lights, etc.)
- Detecting potholes/road deficiencies from on-board car sensors (accelerometer, etc.)
- Detecting impaired driver (under influence, sleepy, etc.) from car sensors (steering, speed, brake, etc.)
- Detecting aggressive drivers and informing other drivers/insurance companies/authorities
- Distributed Machine Learning deployed (for anomaly detection) in the car (as opposed to central cloud) for faster pattern recognition, less data transfer, privacy, etc.
Innovation in Large-scale IoT Deployments

- Pattern recognition
 - Anomaly detection (for security, policy change, etc.)
 - Repetitive patterns and seasonality analysis
 - Trend analysis
- Root cause analysis
- Policy enforcement
- Decision making (closing feedback loop)
Other Potential Use Cases and Data Sources

• Containers (monitoring, anomaly detection, decision making)
 - data: CPU, memory, storage usage data

• Routers (pattern recognition, decision making)
 - data: TX/RX data rates, NetFlow data

• Home appliances (monitoring, anomaly detection, root cause analysis, policy enforcement)
 - data: Energy consumption, network access

• Wearable devices (monitoring, decision making)
 - data: Activity data
ML Libraries

- Theano
- TensorFlow
- Scikit Learn
- Caffe
- MLlib
Demonstration

Summary
Summary

- Entering the age of IOT generating BIG DATA
- Connected Cars are the most visible example
- Connected Car Clouds will ingest massive amounts of car data
- Machine Learning easily detects complicated data patterns regardless of scale
- Machine Learning remove humans from the loop
- Machine Learning makes our life easier
Any follow ups/ questions send to:

- Dr. Mehdi Nikkhah, mnikkha2@cisco.com
- Patricia Sampedro Garcia, psampedr@cisco.com
- Chris Metz, chmetz@cisco.com
References

- Python Machine Learning, Sebastian Raschka
- Cisco Blog on Machine Learning, Mehdi Nikkhah
Questions