HyperFlex M5 & HyperFlex Data Platform 3.0 Overview and Update

Phil Lowden
Consulting Systems Engineer – Service Provider Data Center
Cisco Global Service Provider

This version: Feb 27th 2018
Agenda

• Introduction
• UCS and HyperFlex Review
• High Availability
• Data Protection
• Security
• HyperFlex Edge
• Use Cases
• Summary
Cisco’s Hyper-convergence Journey So Far...

Pumping Innovations with Rapid Pace

- All Flash
- SED
- Enterprise Workloads
- Profiler, Sizer
- Edge
- Connect UI
- Native Replication/DR
- Scale
- RBAC
- Localization
- M5 Skylake

Fastest Growing HCI

- 2500+ New Customers

Ready for Biz. Critical

- #1 in Performance and consistency

Customer Success Tools

- 15 CVDs, Ref. Architectures
- 25 White papers, Soln. Guides
 VDI, VSI, SQL, Oracle, SAP, Exchange, Splunk, Veeam, …
HyperFlex 3.0

Any App.
- Microsoft Complete
- Enterprise Kubernetes
- Containers
- Mission Critical Applications
- Application Performance Monitoring

Any Cloud.
- Cisco-Google
- Hybrid Cloud Solution
- Multi-Hypervisor,
- Multi-Cloud
- IaaS and Private Cloud
- Intelligent Workload Placement

Any Scale.
- 64 Node & Capacity Scaling
- Stretched Clusters
- Larger Form Factors
- Cisco Intersight Managed
64 Node Scale with Resiliency
Cloud Scale Data Platform

64 Node & Capacity Scalability

Up to 32 HX nodes

Up to 32 compute nodes

Automated Availability Zones

Availability Grp 1

Availability Grp 2

Availability Grp 3
Based on Cisco UCS
One Architecture for Operational Simplicity

UNIFIED MANAGEMENT MODEL

UCS MANAGEMENT
- UCS Mini
- Fourth Gen. UCS
- Mainstream Computing

INTERSIGHT
- Converged Infrastructure
- Hyper-converged Infrastructure
- Software-Defined Storage

UCS DIRECTOR
- UCS C240
- UCS C3000
- Scale Out

EDGE

CORE DATA CENTER

CLOUD
Form Factors

HyperFlex 220 M4/M5 Small Form Factor (SFF)
- 6 - 8 HDD/SSD
- 1.2/1.8 TB HDD, 960GB SSD, 3.84TB SSD

HyperFlex 240 M4/M5 Small Form Factor (SFF)
- 6 - 23 HDD/SSD
- 1.2/1.8 TB HDD, 960GB SSD, 3.84TB SSD

HyperFlex 240 M5 Large Form Factor (LFF)
- 6 - 12 HDD’s
- 6 & 8 TB 7.2K HDD capacities
The Cisco HX Data Platform

HX LOG STRUCTURED FILE SYSTEM
DESIGNED SPECIFICALLY FOR HYPERCONVERGENCE

DISTRIBUTED
Object-Based File System
Architected for Scale-Out, Distributed Storage

ADVANCED DATA SERVICES
Built Into File System Architecture

FUTURE READY
Designed for Containers and Next-generation Applications
Building on the Right Foundation
Cisco HX Data Platform

Unique Architecture

Built From the Ground Up for Hyperconvergence
Distributed Log-Structured File System Designed for Scale-out, Distributed Storage
Advanced Data Services (Snapshots, Clones, Replication) and Data Optimization (Inline Dedupe, Compression) Without Trade-offs
Better Flash Endurance and Disk Performance
Computing, Storage, Networking, and Hypervisor Integration
No Reliance on Legacy Filesystems or Technology
Controller VM Architecture with Hyper-V

HX Datastore

HyperFlex Data Fabric for Microsoft Hyper-V

SMB file share

Windows Server 2016

SMB Client

App VM

VHDX

I/Ovisor

StorFS

SMB proxy

Controller VM

App VM

VHDX
Data Distribution and Non-Disruptive Operations

- Stripes blocks of virtual disk files across servers using a hashing algorithm
- Replicate one or two additional copies to other servers
- Handle entire server or disk failures

- Restore back to original number of copies
- Rebalance VMs and data post replacement
- Rolling “one-click” software upgrades
Independent Scaling of Compute and Capacity

Non-HyperFlex Hosts Can Connect to Storage with IOVisor

Scale Capacity Within Nodes

Add Nodes
Data Services
Continuous Data Optimization

Log-Structured File System Yields More Efficient Data Optimization

Inline Compression

- 30–50% space savings

Inline Deduplication

- 20–50% space savings

- No Special Hardware
- No Performance Impact
- No Config. lock-in
- No Additional License

Lower Cost
Fast and Flexible Native Snapshots

- Pointer-based snapshots
 - Space-efficient with no performance penalty vs. VMware Redo Log Snaps
- Fast creations and deletions
- Fine-grained or coarse-grained
 - VM-level or VM folder-level
- VAAI-integrated
 - Quiesced and crash-consistent
- Use vCenter Snapshot Manager
- Policy-based schedules and retention
Native VM Clones for Rapid Provisioning

- Pointer-Based Writeable Snapshots (Instantaneous Clones)
- VAAI integrated
- VM-level granularity

- Batch creation GUI
 - Apply unique names
 - Use customization spec to apply IP
 - Powerful tool to rapidly setup a large set of VMs using just VC (without scripting or View composer); Up to 256 clones in parallel per job
 - Golden/Base VM can be a template, powered on or powered off
Built-in, Multi-layer High Availability
Level 1: HXDP Architectural HA
Built-in Data Protection and High Availability

Data Protected by Replication of Data Across the Cluster Nodes

Replication Factor 3 (RF3)

- Default and Recommended is Replication Factor = 3
- Every block is written to 3 different nodes in the cluster
- Higher availability to survive multi-point failures; Higher device protection
- Reduces raw disk capacity to 33%

Note: RF3 is strongly recommended for high availability

<table>
<thead>
<tr>
<th>Replication Factor</th>
<th>3 or 4 Node Cluster</th>
<th>5+ Node Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Simultaneous Failures Supported: 1 node / 2 drives*</td>
<td>Simultaneous Failures Supported: 2 nodes / 2 drives*</td>
</tr>
</tbody>
</table>

drives across different nodes
Data Protection and High Availability
Data Protected by Replication of Data Across the Cluster Nodes

Replication Factor 2 (RF2)

Default and Recommended is Replication Factor = 3

Every block is written to 2 different nodes in the cluster

Lower availability to survive failures; Lower device protection

Reduces raw disk capacity to 50%

Discretion: While RF2 is available, **RF3 is strongly recommended** for high availability

<table>
<thead>
<tr>
<th>Replication Factor</th>
<th>3 or 4 Node Cluster</th>
<th>5+ Node Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Simultaneous Failures Supported: 1 node / 1 drive</td>
<td>Simultaneous Failures Supported: 1 node / 1 drive</td>
</tr>
</tbody>
</table>
Cluster Self-Healing

<table>
<thead>
<tr>
<th>Self-healing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Failure</td>
<td>In 1 min</td>
</tr>
<tr>
<td>Node Failure</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

- Node failure:
 - Index replay optimizations decrease reboot time
 - VMware HA moves VMs to active nodes.
 - Delay timeout can be modified (SE/Support only)
 - Self-healing delay to account for transient conditions such as maintenance mode
 - Node rebalance command available for on-demand rebalancing on failure

- Disk failure:
 - If a disk fails after node failure then the larger timeout value is used
 - Rebalance is more granular and latency spikes with disk removal eliminated

- SSD failure:
 - If caching SSD fails, VMs have no availability hit. Caching SSD replacement will rebalance cluster cache.
 - Slight impact to latency as aggregate read cache diminished until SSD replaced and rebalanced.
 - Housekeeping SSD will impact SCVM but will not cause VMs to failover.
Windows Failover Clustering with HyperFlex

Cluster External IP → HX Cluster → SMB Server, HX Connect, REST API

- User VM
- CVM 1 IP 1
- Hyper-V 1 IP 1
- Hyper-V 2 IP 2
- Hyper-V 3 IP 3
- Hyper-V 4 IP 4

Failover Cluster IP → Windows Failover Cluster → High Availability, Live Migration, SCVMM

1. VM Load Balancing or Dynamic Optimization with SCVMM
2. VM-level HA, Advanced Resiliency
3. Virtual Machine Start Order
4. Host resource protection (from noisy VMs)
5. Application-level HA, Resiliency
6. Cloud witness (Azure-based)
Level 2: Logical Availability Zones
Logical Availability Zones (LAZ)

- Cluster Scale With High Availability
- Increased resiliency without added manageability overhead
- How does it work?
 - HX nodes grouped into logical “availability groups” (N/A for compute nodes)
 - HXDP never places 2 copies of the data in the same availability group
 - Clusters with LAZ can survive > 2 simultaneous node failures without data loss or loss of availability
 - Tolerate more independent failures
LAZ Failure Scenario

Cluster State: **Offline**

LAZ: **Off**
LAZ Failure Scenario

Cluster State: Offline

LAZ: On

Zone 01
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER

Zone 02
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER

Zone 03
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER

Zone 04
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER
VM VM VM CONTROLLER

LAZ Failure Scenario
Level 3: Stretched Cluster
What is a Stretched Cluster?

1. A stretched cluster is a **single cluster** with nodes geographically distributed
2. Storage is mirrored across each sites
3. Sites need to be connected over low latency network
4. Geo-failover (VM) is like failover in a single cluster
5. “Split-Brain”: Condition when nodes on either sites cannot see each other
 - Network failure
 - Site failure
6. “Witness” : An entity hosted on a 3rd site responsible for deciding the which site survive after a split-brain
HyperFlex Stretched Cluster
ZERO RPO! NEAR ZERO RTO!

Configuration Support
- Single Stretched Cluster across 2 sites
- Symmetric Configuration
- Site to host a “Witness Server” (small VM)
- 8 +8 nodes on each site

IO Path
- Active–Active sites – VMs Active on each site
- VM Read IOs served locally
- VM Write IOs Sync-Writes across sites
- 2x copies on each site

Management
- Cross site Cluster creation
- Non disruptive online rolling upgrade
- Site awareness in HX Connect
- Site specific Alarm and Events on a single Dashboard

HA Operations
- Recover from a Site failure
- Recover from a Local failure
- Failover of VM
- vMotion of VM
- Split Brain handling
HyperFlex Stretched Cluster

Network & Infrastructure: Supported Configurations & Prerequisites

<table>
<thead>
<tr>
<th>vCenter</th>
<th>UCSM:</th>
</tr>
</thead>
</table>
| ✓ 10Gbps (dedicated), 5ms RTT latency between the 2 active sites | ✓ Need UCSM credentials for both sites
| ✓ 100 Mbps, 200ms RTT latency between the active sites & witness site | ✓ Two separate FI Domains (not automatically synchronized) |
| ✓ FI based configuration | ✓ Can be on either site or 3rd site
| ✓ Existing FIs are supported | ✓ Can be a VM
| | ✓ Configure independently for HA as required |

VLAN

- IP addresses for nodes on both sites
- Stretched VLANs across both sites

Witness

- Access to 3rd Site to host witness VM
- IP address and connectivity for the witness VM
Data Protection
Data Protection with Hyper-V

1. Add SCVMM | HX Cluster 1
2. Create backup job & select HX1 Host & VM SQL 1
3. Windows Server 2016 Production Checkpoint via WMI
4. VSS writer in “Guest VM” SQL1 gets invoked.
5. For VHDX sql-share-1
 • aVHDX (child file) 1 gets created
 • Primary VHDX becomes read-only
 • All rights go into aVHDX till the backup job is completed
6. For subsequent backups, backup vendor leverages Resilient Change Tracking by Hyper-V
Veeam’s HyperFlex Snapshot integration
Backup from Cisco HyperFlex Snapshot

Veeam leverages HyperFlex Snapshot based Backups to achieve:

- Agentless Application Aware Backup (AD/Exchange/SharePoint/SQL/Oracle/…)
- Minimizes the typical VMware backup API performance impact on production VMs during backup
- Improves RTO and RPO times with technologies like Instant VM Recovery out of Veeam backups
- More than doubles the possible backup speed compared with standard VMware API backups
Disaster Recovery Solutions with Veeam and Cisco

- Veeam Backup & Replication Server
- Veeam Replication between HX and VMware Environments incl. WAN Acceleration
- Veeam Replication to Cloud Connect Provider
- Veeam Backup Copy Job to Cloud Connect Provider
- Cisco Veeam Backup Appliance
- Cisco S3x60s
- Veeam Cloud Connect Provider

Data Center 1 with Cisco HyperFlex

Data Center 2 with Converged or UCS Systems

Remote/Branch-Office
A Replication Solution for Mission Critical workloads

Reliable
- TCP based reliable transmission
- Internal checksums to protect against network corruptions
- Robust fault handling - retries and timeouts
- Crash consistent snapshots using VMTools

Performant
- Replication streams ‘scale-out’ to all nodes to maximize network utilization and lower CPU overheads
- Coalesced large IO reads and transfers

Optimized
- Data on the wire compressed, incremental snapshots
- Intelligent pattern detection
- Different Primary and Target side configurations
- HX 3.0 does not support dedupe on-wire
HX Replication: Recommended Configurations

Options for Cost Effective DR

- Dissimilar cluster sizes on both sites – Primary site can have more number of nodes than the DR site
- Mix of HX220 and HX240 Clusters
- Need to plan for the storage capacity based on the number of VMs to be protected

Optimal DR setup

- Active-Active DR setup – Clusters on both sites host active VMs
- Configure the clusters for Bi-directional replication
HX Replication: Best Practices

Cluster Configuration
- Replicate one cluster to one cluster only
- You can mix clusters with HX240 & HX220 but be aware of capacity limits
- For optimal usage of resources consider Active-Active Cluster

Point-in-Time Copies
- Replica is current as of last update
- Only one PIT
- May affect recovery if corruption has happened farther in the past than the last incremental
- Use VMTools to quiesce VMs during replication snapshots for better crash consistency
HyperFlex Security
Security

- Data-at-rest encryption, with self-encrypting drives
- Enterprise key-management support
- Vulnerability assessments and hardening
- Role-based access control (RBAC)
- Certifications: FIPS, Common Criteria
- Compliance for data privacy: HIPAA, PCI-DSS, NIST, FedRAMP, FISMA, Europe GFPR, UK Data Protection, etc.
HyperFlex Data-at-rest encryption

- Familiar easy HX Installer
- Simplicity of HX Connect – easy to manage
- Power of UCS – policy enforcement

Enterprise Key-Management Support
- Secure Key Lifecycle Management
- Highly Available
- FIPS Certified

Self-Encrypting Drives (SEDs)
Security without performance penalty
Secure Management – RBAC/Audit

- Two Roles
 - Admin Role
 - Monitoring Role (no actions permitted)

- User management thru vCenter
 - User in Administrator group has Admin role
 - User with read only role has Monitoring role
 - VC supports Active Directory and Groups
 - Note: Local admin user supported but can not perform vCenter operations

- RBAC enforced for HX Connect UI, REST APIs and CLIs
 - Note: VC plug-in not recommended for monitoring role

- All actions are audited in audit log file
HyperFlex Edge
Remote Office Branch Office Solution

Designed for customers with no plans to upgrade or refresh their network at the remote office

- Single or dual Intel Xeon processor
- 3 – 8x HDD
- 128GB – 3TB RAM
- 2 – 4x 1Gbps ports

Existing Network

Tuned for 1Gb/sec network

End-to-end HCI Automation
Extending Reach of Edge

Automate Deployment
- CIMC automation for settings and policies
- ESXi configuration
- Pre-configured settings for HX Edge

IMC Supervisor support
- Centralized monitoring and firmware management and server config. for HX Edge
- Supported starting with IMCS v.2.1.0.2

New Configurations
- Dual Switch (1Gb) – protect against network failure
- Evaluating new configs. - All-Flash HX220
HyperFlex Edge Configurations

Single Switch
HX Edge Configuration

- **Existing Network**
- **Tuned for 1Gb/sec network**
- **HCI Automation**

Dual Switch
HX Edge Configuration

- **Optional – if dedicated CMC port desired**
Primary HyperFlex Use Cases

Virtual Desktop Infrastructure
- Low upfront costs
- Consistent performance
- Predictable scaling

Server Virtualization
- Reduce operational complexity
- Adaptive scaling
- Always-on resiliency

Test and Development
- Agile provisioning
- Frequent iterations
- Instant cloning and snapshots

Large Remote Branch Office
- Simple deployment
- Centralized management
- No “fly-and-fix” missions

Databases
- Consistent, low-latency
- High IOPS
- All-flash nodes
HyperFlex Solutions / Workloads Portfolio

Workloads / Applications
- Citrix XenDesktop
- VMWare Horizon
- Oracle Single Instance
- Cisco UC
- VSI on HX
- MS SQL
- SAP (Non - Prod / Prod)
- ACI
- Oracle RAC
- Splunk
- MS Exchange
- N1K
- Oracle RAC
- Splunk
- MS Exchange
- N1K

Integration / Interop
- Veeam
- Commvault
- Cloud Center
- UCSD
- 3rd Party Arrays
- NVIDIA
- HX Tools (for sizing)
Enterprises Run Mission Critical Apps on HyperFlex

<table>
<thead>
<tr>
<th>Citrix</th>
<th>Exchange</th>
<th>Cisco Webex</th>
<th>Oracle Database</th>
<th>Oracle E-Business Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>SharePoint</td>
<td>Cisco Unified Contact Center</td>
<td>MySQL</td>
<td>Siebel</td>
</tr>
<tr>
<td>VMware</td>
<td>McKesson</td>
<td>Epic</td>
<td>Murex</td>
<td>SAP</td>
</tr>
</tbody>
</table>

- ✔️ Sustained Low Latency
- ✔️ Availability & Resiliency
- ✔️ Enterprise Data Services
HyperFlex Sizer
Cluster 1 Summary

Sizing Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Workloads</td>
<td>4</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>3 + 1 (FT)</td>
</tr>
<tr>
<td>Number of RU</td>
<td>4</td>
</tr>
</tbody>
</table>

Utilization - Cluster 1

<table>
<thead>
<tr>
<th>Resource</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>66% 88%</td>
</tr>
<tr>
<td>RAM</td>
<td>58% 77%</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>49% 49%</td>
</tr>
<tr>
<td>Storage IOPS</td>
<td>22% 29%</td>
</tr>
</tbody>
</table>

Recommended Nodes (1/1)

HXAF-220M5SX

2xIntel Xeon Gold 6154 Processor, 18 cores, 3.00 GHz | 384 [12x32] GiB DDR4 RAM | 6x960GB, 2.5" SSD | 1x400GB SAS | 1 RU

https://hyperflexsizer.cloudapps.cisco.com/ui/index.html
Summary

Cisco UCS
Unified Computing System

HyperFlex
Network, Compute & Storage Integrated

HyperFlex
Independent Scaling

Continuous Optimization
Always-on Dedup & Compression
More information
