illiilli cisco

EVPN Unifying control plane

Sudarshan Murali, Product Manager, SP Routing

Jiri Chaloupka, Technical Marketing Engineer, SP Routing

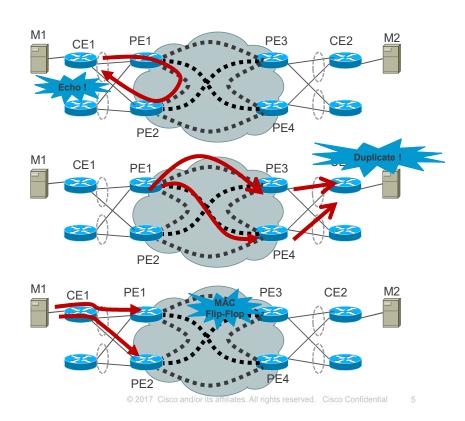
Agenda

- Why EVPN
- EVPN Introduction & Value Proposition
- EVPN Technical Overview
- EVPN Components
- EVPN Life of a Packet
- EVPN Demo
- Summary

Cisco Open Network Architecture Cisco Innovations - Simplify, Automate, Virtualize

alialia CISCO

Why is EVPN needed?


- Legacy L2 technologies (VPLS, PBB) still rely on flooding and learning to build Layer 2 forwarding database
- Network Operators have emerging needs in their network:
 - Data center interconnect operation (DCI)
 - Cloud and Services virtualization
 - Reduce protocol stack and Simplify Network
 - Integrated of Layer 2 and Layer 3 Services over the same VPN

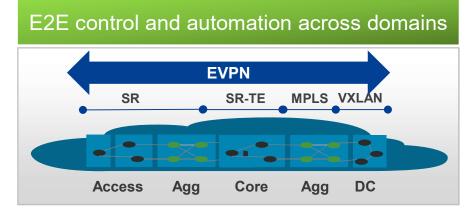
Solving VPLS challenges for per-flow Redundancy

- Existing VPLS solutions do not offer an All-Active per-flow redundancy
- Looping of Traffic Flooded from PE
- Duplicate Frames from Floods from the Core
- MAC Flip-Flopping over Pseudowire
 - E.g. Port-Channel Load-Balancing does not produce a consistent hash-value for a frame with the same source MAC (e.g. non MAC based Hash-Schemes)

Data Center Interconnect requirements

not fully addressed by current L2VPN technologies

- Per-Flow Redundancy and Load Balancing
- Simplified Provisioning and Operation
- Optimal Forwarding
- Fast Convergence
- MAC Address Scalability


EVPN with a choice of data plane encapsulation (MPLS, VxLAN, PBB) is the designed to address these requirements.

EVPN

Next generation network services

Single service for any application ELINE ELAN ETREE L3 VPN DC Fabric DCI VPWS VPLS P2MP VPLS RFC 2547 VXLAN VPLS VPN EVPN

Optimized CapEx:

- Open Standards & Multi-vendor
- Active-Active multi-homing
- Enhanced load balancing

Reduced OpEx:

- Integrated L2 & L3 service, any application: faster time to market, certification
- E2E control and automation

Increased Customer Value

- Inter-domain SLA, faster convergence
- Better stability: no flood
- Granular policy control

EVPN: Unifying control plane

Control Plane

EVPN MP-BGP

Data Plane

MPLS RFC-7432

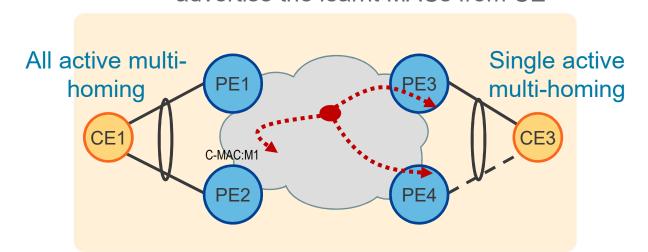
- EVPN over MPLS (E-LAN service)
- All-active Multi-homing
- SR/SR-TE as underlay
- EVPN-VPWS (E-Line service)

cisco

NVO evpn-overlay

- EVPN over NVO Tunnels (VxLAN, NVGRE)
- Data Center Fabric Encapsulation
- Integrated L2/L3 services DCI
- · Overlays over IP networks

PBB RFC-7623


- PBB Encapsulation for CMAC scalability
- MPLS as underlay
- All-active Multi-homing
- BMACs advertisement

VPWS evpn-vpws

- P2P services
- MPLS as underlay
- All-active Multi-homing
- Flexible xconnect services

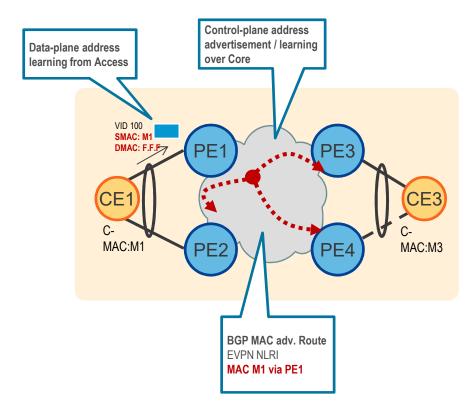
Ethernet VPN (EVPN) - Overview

MAC Routing: Control plane (BGP) advertise the learnt MACs from CE

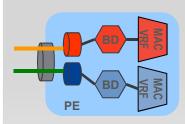
Network Efficiency

Common L2/L3 VPN
Operational Mode

Consolidated VPN service with x-EVPN


Data Plane: IP or MPLS

Ethernet VPN

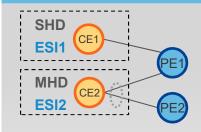

Highlights

- Next generation solution for Ethernet multipoint (E-LAN) services
- PEs run Multi-Protocol BGP to advertise
 & learn Customer MAC addresses (C-MACs) over Core
 - Same operational principles of L3VPN
- Learning on PE Access Circuits via dataplane transparent learning
- No pseudowire full-mesh required
 - Unicast: use MP2P tunnels
 - Multicast: use ingress replication over MP2P tunnels or use LSM
- Standardized at IETF RFC 7432

EVPN - Concept

EVPN Instance (EVI)

- EVI spans all PEs participating in an EVPN
- MAC-VRF: A VRF table for MACs on a PE
- Encompass one or more bridge-domains, depending on service interface type


Port-based

VLAN-based (shown above)

VLAN-bundling

VLAN aware bundling (NEW)

Ethernet Segment

- Represents a 'site'
 connected to one or more
 PEs
- Uniquely identified by a 10-byte global Ethernet Segment Identifier (ESI)
- Could be a single device or an entire network

Single-Homed Device (SHD)
Multi-Homed Device (MHD)
Single-Homed Network (SHN)
Multi-Homed Network (MHN)

BGP Routes

Route Types

[1] Ethernet Auto-Discovery (AD) Route

[2] MAC Advertisement Route

[3] Inclusive Multicast Route

[4] Ethernet Segment Route

(5) IP Prefix Advertisement Route

- EVPN and PBB-EVPN define a single new BGP NLRI used to carry all EVPN routes
- NLRI has a new SAFI (70)
- Routes serve control plane purposes, including:

MAC / IP address reachability

MAC mass withdrawal

Split-Horizon label adv.

Aliasing

Multicast endpoint discovery

Redundancy group discovery

Designated forwarder election nd/or its affiliates. All rights reserved. Cisco Confidential

BGP RouteAttributes

Extended Communities

ESI MPLS Label

ES-Import

MAC Mobility

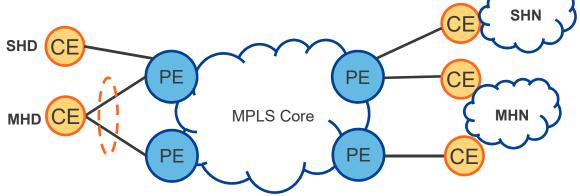
Default Gateway

Router's MAC

- New BGP extended communities defined
- Expand information carried in BGP routes, including:

MAC address moves

C-MAC flush notification


Redundancy mode

MAC / IP bindings of a GW Split-horizon label encoding

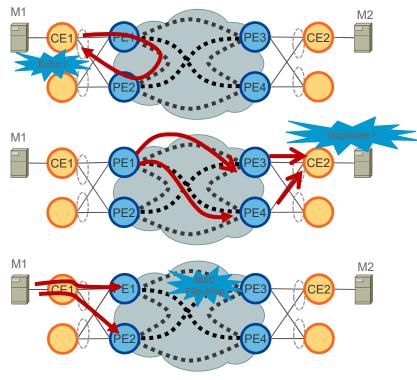
Ethernet Segment

Definition

- Ethernet Segment is a 'site' connected to one or more PEs.
- Ethernet Segment could be a single **device** (i.e. CE) or an entire **network**.
 - Single-Homed Device (SHD)
 - Multi-Homed Device (MHD)
 - Single-Homed Network (SHN)
 - Multi-Homed Network (MHN)
- Uniquely identified by global Ethernet Segment Identifier (ESI).

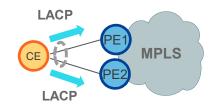
EVPN BGP route type

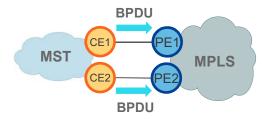
Route type	Usage	EVPN	PBB-EVPN	EVPN VPWS
0x1 Ethernet Auto- Discovery (A-D) Route	 MAC Mass-Withdraw Aliasing (load balancing) Split-Horizon "Tagged with ESI Label Extended Community" 	✓	NOT used	✓
0x2 MAC Advertisement Route	 Advertises MAC addresses /IP for VM reachability Provides MAC/IP address bindings for ARP broadcast suppression "Tagged with MAC Mobility Extended Community" 	√	✓	NOT used
0x3 Inclusive Multicast Route	 Indicates interest of BUM traffic for attached L2 segments Multicast tunnels used to BUM frame "Tagged with PMSI tunnel attribute" (P tunnel type & ID) – RFC6514 	✓	✓	NOT used
0x4 Ethernet Segment Route	 Auto discovery of Multi-homed Ethernet Segments, i.e. redundancy group discovery Designated Forwarder (DF) Election "Tagged with ES-Import Extended Community" 	✓	✓	✓
0x5 IP Prefix Route	 Advertises IP prefix for a subnet for L3 NLRI only inter-subnet routing via EVPN address family 	✓	✓	NOT used


cisco

Next-Generation Solutions for L2VPN

Solving VPLS challenges for per-flow Redundancy


- Existing VPLS solutions do not offer an All-Active per-flow redundancy
- Looping of Traffic Flooded from PE
- Duplicate Frames from Floods from the Core
- MAC Flip-Flopping over Pseudowire
 - E.g. Port-Channel Load-Balancing does not produce a consistent hash-value for a frame with the same source MAC (e.g. non MAC based Hash-Schemes)


Ethernet Segment

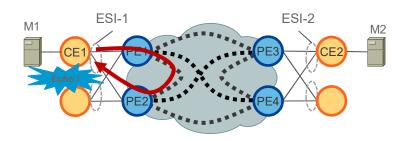
ESI Auto-Sensing

MHD with Multi-chassis LAG

- ESI is auto-discovered via LACP.
- ESI is encoded using the CE's LACP parameters:

MHN with MST

- ESI is auto-discovered via MST BPDU snooping.
- ESI is encoded using the IST's root parameters:



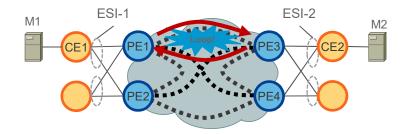
Split Horizon

For Ethernet Segments – E-VPN

Challenge:

How to prevent flooded traffic from echoing back to a multi-homed Ethernet Segment?

- PE advertises in BGP a split-horizon label (ESI MPLS Label) associated with each multi-homed Ethernet Segment.
- Split-horizon label is only used for multi-destination frames (Unknown Unicast, Multicast & Broadcast).
- When an ingress PE floods multi-destination traffic, it encodes Split-Horizon label identifying source Ethernet Segment in packet
- Egress PEs use this label to perform selective split-horizon filtering over attachment circuit



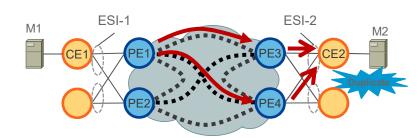
Split Horizon

For Core Tunnels

Challenge:

How to prevent flooded traffic from looping back over the core?

- · Traffic received from an MPLS tunnel over core is never forwarded back to MPLS core
- Similar to VPLS split-horizon filtering rule

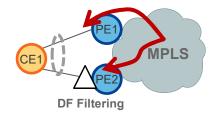


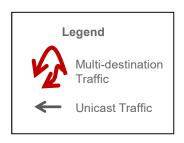
Designated Forwarder (DF)

DF Flection

Challenge:

How to prevent duplicate copies of flooded traffic from being delivered to a multi-homed Ethernet Segment?


- PEs connected to a multi-homed Ethernet Segment discover each other via BGP
- PEs then elect among themselves a Designated Forwarder responsible for forwarding flooded multi-destination frames to multi-homed Segment
- DF Election granularity can be:
 - Per Ethernet Segment (Single PE is the DF)
 - Per EVI (E-VPN) on Ethernet Segment (Multiple DFs for load-balancing)



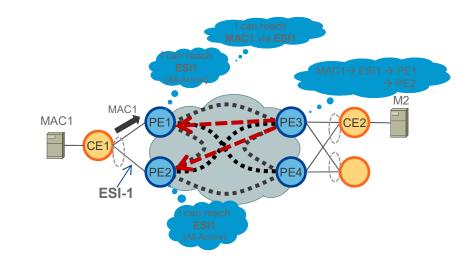
Designated Forwarder (DF)

DF Filtering

MHD All-Active with Per-Flow Load Balancing

Filtering Direction: Core to Segment

Filtered Traffic: Flooded multi-destination

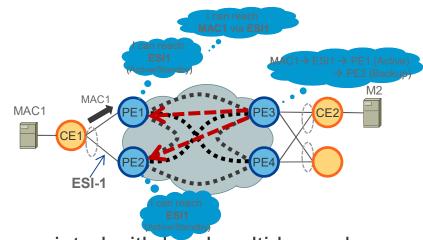


Aliasing

E-VPN

Challenge:

How to load-balance traffic towards a multihomed device across multiple PEs when MAC addresses are learnt by only a single PE?

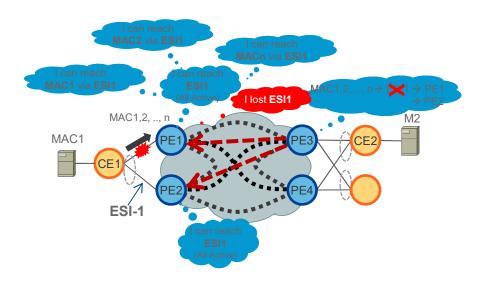

- PEs advertise in BGP the ESIs of local multi-homed Ethernet Segments
 - All-Active Redundancy Mode indicated
- When PE learns MAC address on its AC, it advertises MAC in BGP along with ESI of Ethernet Segment from which MAC was learnt
- Remote PEs can load-balance traffic to a given MAC address across all PEs advertising same ESI

Backup Path

Challenge:

How to identify PEs that have a backup path to a multi-homed Ethernet Segment?

PEs advertise in BGP connectivity to ESIs associated with local multi-homed Ethernet Segments


Active/Standby Redundancy Mode is indicated When PE learns a MAC address on its AC, it advertises MAC in BGP along with ESI of Ethernet Segment from which MAC was learnt Remote PEs will install:

active path to PE that advertised both MAC Address & ESI backup path to PE that advertised ESI only

MAC Mass-Withdraw

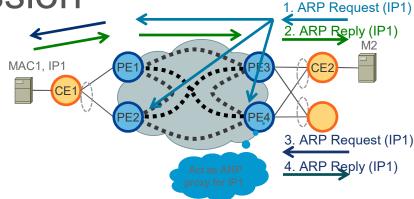
Challenge:

How to inform remote PEs of a failure affecting many MAC addresses quickly while the control-plane re-converges?

PEs advertise two sets of information:

MAC addresses along with ESI from address was learnt Connectivity to ESI(s)

If a PE detects a failure impacting an Ethernet Segment, it withdraws route for associated FSI

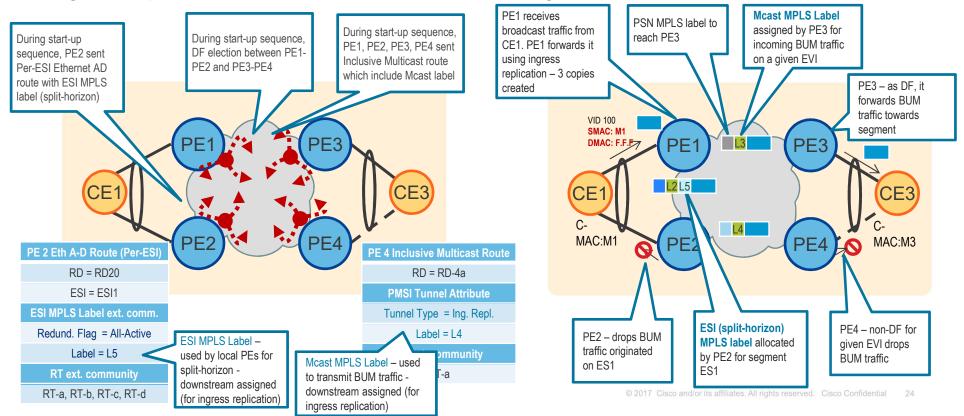

Remote PEs remove failed PE from path-list for all MAC addresses associated with an ESI.

This effectively is a MAC 'mass-withdraw' function

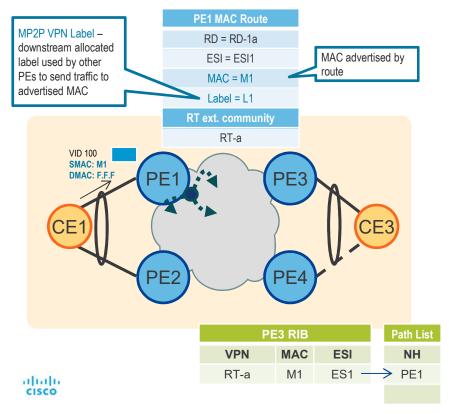
ARP Broadcast Suppression

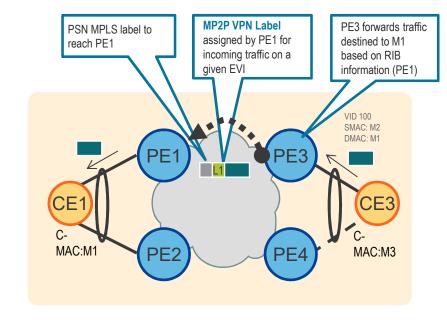
Challenge:

How to reduce ARP broadcasts over the MPLS/IP network, especially in large scale virtualized server deployments?

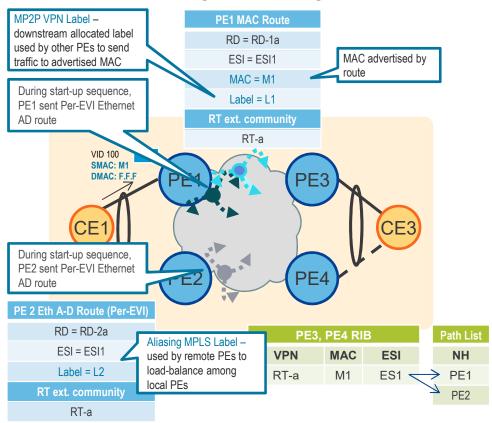

Construct ARP caches on E-VPN PEs and synchronize them either via BGP or data-plane snooping

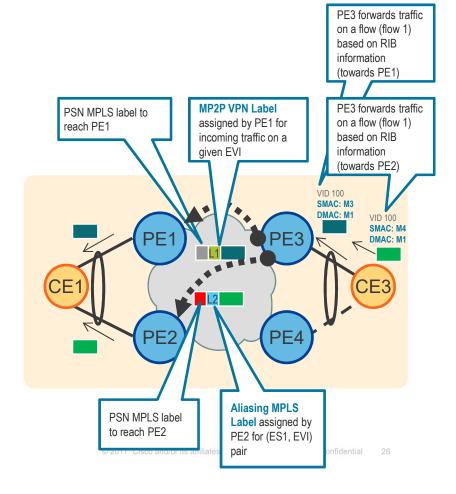
PEs act as ARP proxies for locally attached hosts, thereby preventing repeated ARP broadcast over the MPLS/IP network

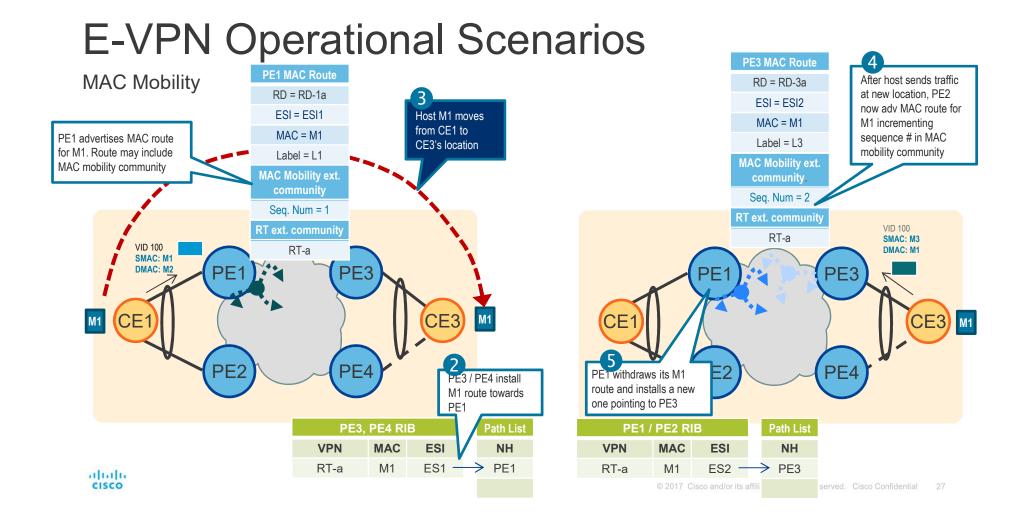

Life of a Packet


Ingress Replication - Multi-destination Traffic Forwarding

Life of a Packet

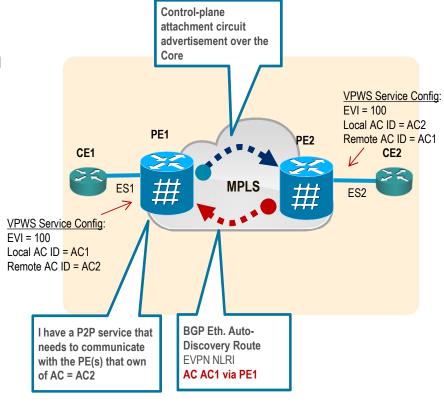

Unicast Traffic Forwarding

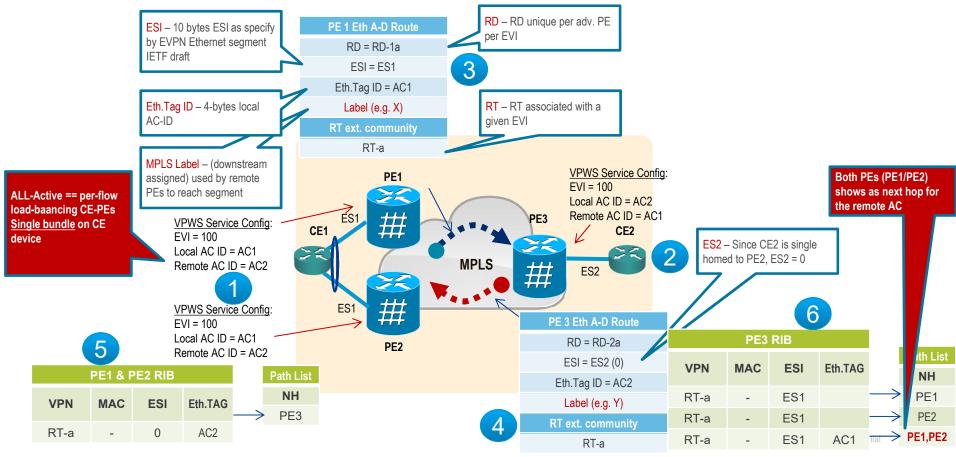




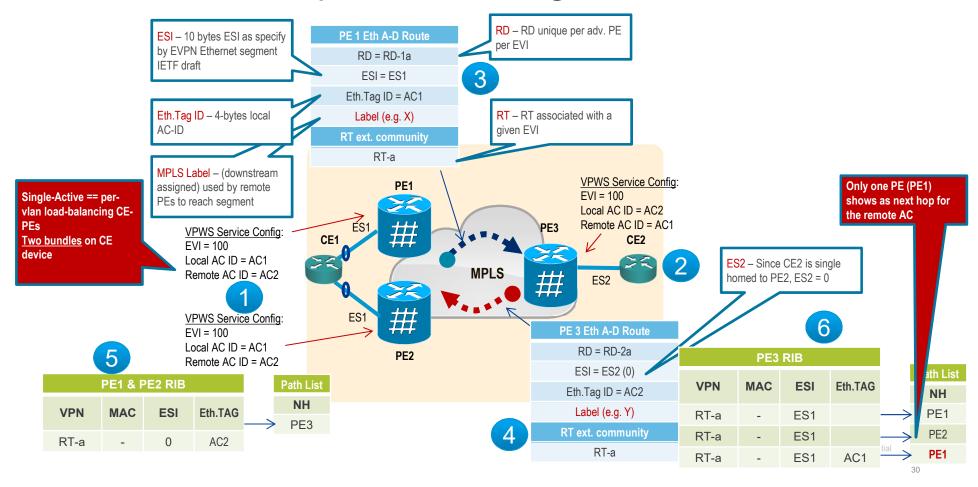
Life of a Packet

Unicast Forwarding and Aliasing

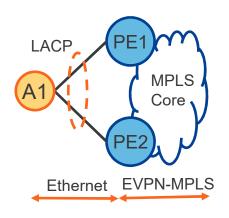


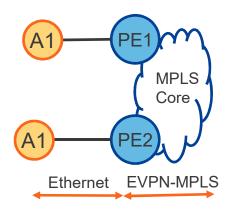

EVPN VPWS

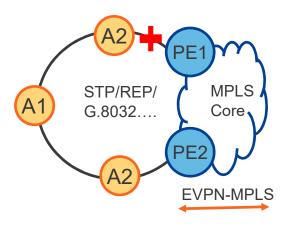
- Benefits of EVPN applied to point-to-point services
 - No signaling of PWs. Instead signals MP2P LSPs instead (ala L3VPN)
 - All-active CE multi-homing (per-flow LB)
 - Single-active CE multi-homing (per-service LB)
- Relies on a sub-set of EVPN routes to advertise Ethernet Segment and AC reachability
 - PE discovery & signaling via a single protocol BGP
 - Per-EVI Ethernet Auto-Discovery route
 - Handles double-sided provisioning with remote PE autodiscovery
- Under standardization: draft-ietf-bess-evpn-vpws



EVPN VPWS Operation – All-active

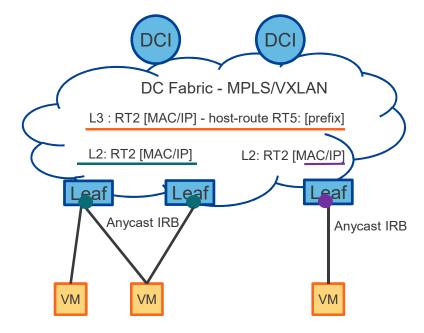



EVPN VPWS Operation – Single-active

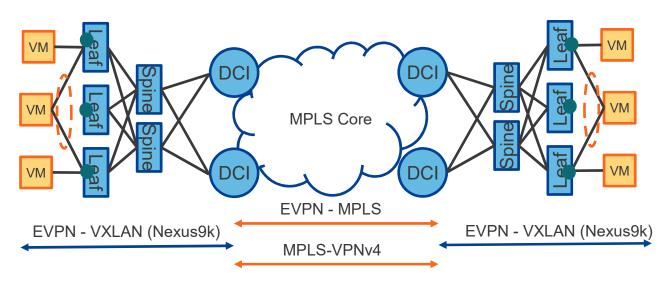


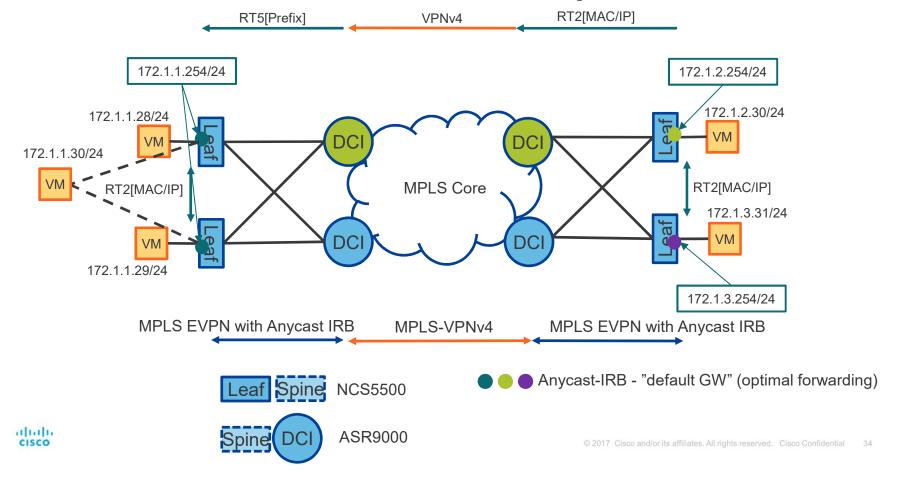
EVPN Ethernet access

Single/Dual Homed Solution, Legacy L2 access

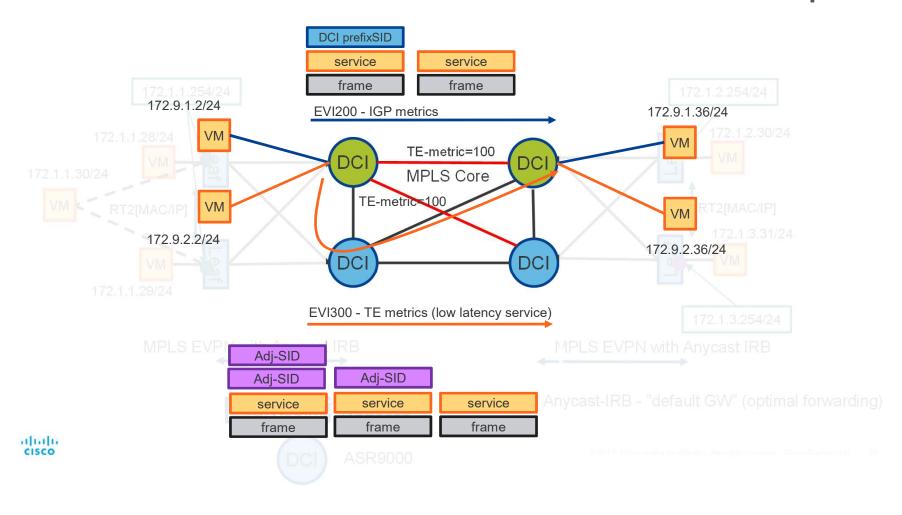


Symmetric Anycast IRB


- Routing and Bridging in the same instance
- All-Active Multi-homed Access WITHOUT:
 - mLAG (mLACP)
 - VSS/vPCE...

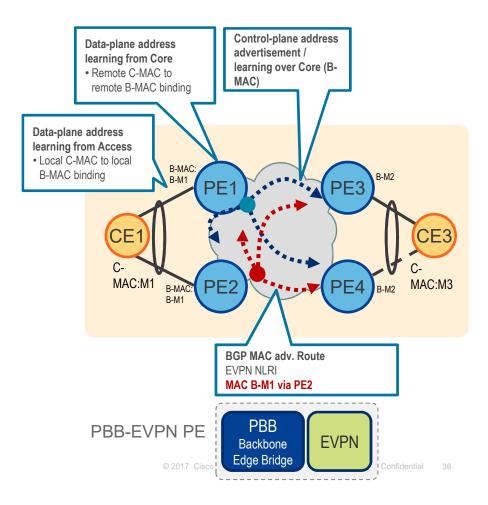

EVPN DCI Layer 2/3 gateway

Anycast-IRB - "default GW" (optimal forwarding)



SR & EVPN DC Fabric with Anycast IRB - Demo

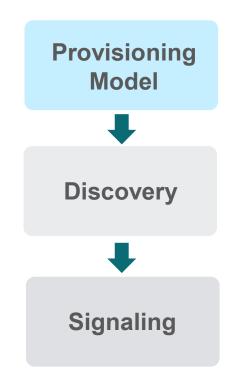
SR & EVPN-VPWS On-Demand Next-Hop



PBB Ethernet VPN

Highlights

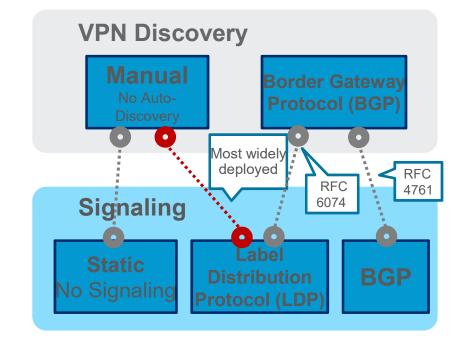
- Next generation solution for Ethernet multipoint (E-LAN) services by combining Provider Backbone Bridging (PBB - IEEE 802.1ah) and Ethernet VPN
- Data-plane learning of local C-MACs and remote C-MAC to B-MAC binding
- PEs run Multi-Protocol BGP to advertise local Backbone MAC addresses (B-MACs) & learn remote B-MACs
 - Takes advantage of PBB encapsulation to simplify BGP control plane operation – faster convergence
 - Lowers BGP resource usage (CPU, memory) on deployed infrastructure (PEs and RRs)



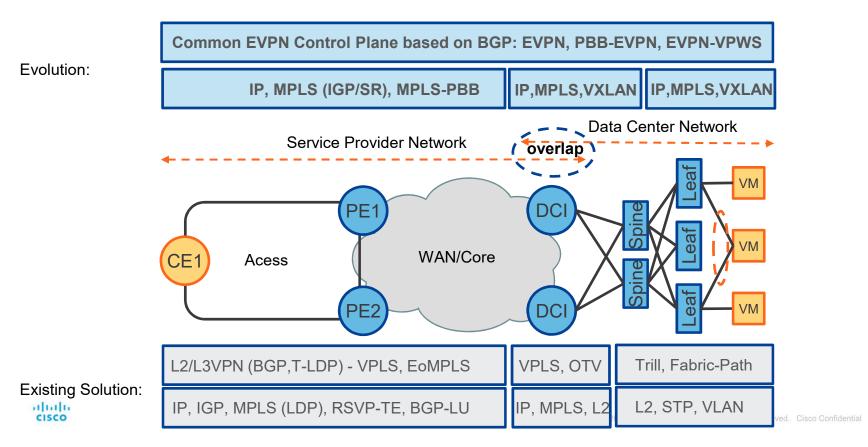
VPWS / VPLS

An abstraction

- Provisioning Model
 - What information needs to be configured and in what entities
 - Semantic structure of the endpoint identifiers (e.g. VC ID, VPN ID)
- Discovery
 - · Provisioning information is distributed by a "discovery process"
 - Distribution of endpoint identifiers
- Signaling
 - · When discovery process is complete, a signaling protocol is automatically invoked to set up pseudowires (PWs)


allada CISCO

VPLS


Discovery and Signaling Alternatives

- VPLS Signaling
 - LDP-based (RFC 4762)
 - BGP-based (RFC 4761)
- VPLS with LDP-signaling and No autodiscovery
 - Most widely deployed solution
 - Operational complexity for larger deployments
- BGP-based Auto-Discovery (BGP-AD) (RFC 6074)
 - Enables discovery of PE devices in a VPLS instance

EVPN - End-to-End Control-Plane

Acknowledgment: Jose Liste

More Information

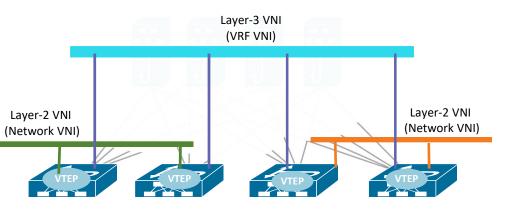
- RFC 7209: Requirements for Ethernet VPN (EVPN)
- RFC 7432: BGP MPLS-based Ethernet VPN
- RFC 7623: PBB-EVPN
- draft-ietf-bess-evpn-overlay: NVO solutions for EVPN
- draft-ietf-bess-evpn-vpws: VPWS support in EVPN
- draft-ietf-bess-evpn-inter-subnet-forwarding: IRB in EVPN
- draft-ietf-bess-evpn-ip-prefix-advertisement: IP prefixes in EVPN

illiilii CISCO

Symmetric EVPN IRB (1)

Routing on both ingress and egress VTEPs

Layer-3 VNI


Tenant VPN indicator

One per tenant VRF

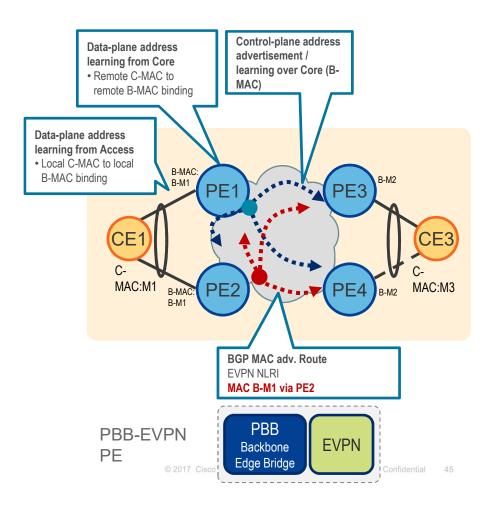
VTEP Router MAC

Ingress VTEP routes packets onto the (Network VNI) Layer-3 VNI

Egress VTEP routes packets to the destination Layer-2 VNI

To PBB or not to PBB?

- What is the value of combining PBB and EVPN functions?
- Lower control-plane overhead than EVPN alone
 - PBB-EVPN uses only a sub-set of EVPN routes
 - Simpler and Faster failure convergence for all-active multihoming scenarios
 - Faster MAC move convergence handled in data-plane
- Lower control-plane scale requirements than EVPN alone
 - BGP MAC advertisements for smaller Backbone MAC (B-MAC) address space
 - Requires less resources (CPU, memory) on deployed infrastructure (PEs / RRs)



PBB Ethernet VPN

Highlights

- Next generation solution for Ethernet multipoint (E-LAN) services by combining Provider Backbone Bridging (PBB - IEEE 802.1ah) and Ethernet VPN
- Data-plane learning of local C-MACs and remote C-MAC to B-MAC binding
- PEs run Multi-Protocol BGP to advertise local Backbone MAC addresses (B-MACs) & learn remote B-MACs
 - Takes advantage of PBB encapsulation to simplify BGP control plane operation – faster convergence
 - Lowers BGP resource usage (CPU, memory) on deployed infrastructure (PEs and RRs)

• CFFC7623

EVPN Advantages:

Integrated Services

- Integrated Layer 2 and Layer 3 VPN services
- L3VPN-like principals and operational experience for scalability and control
- All-active Multi-homing & PE load-balancing (ECMP)

Network Efficiency

- Fast convergence (link, node, MAC moves)
- Control-Place (BGP) learning. PWs are no longer used.
- · Optimized Broadcast, Unknown-unicast, Multicast traffic delivery

Service Flexibility

- · Choice of MPLS, VxLAN or PBB data plane encapsulation
- Support existing and new services types (E-LAN, E-Line, E-TREE)
- · Peer PE auto-discovery. Redundancy group auto-sensing

Investment Protection

- Operational consistency with L3 IP VPN
- Fully support IPv4 and IPv6 in the data plane and control plane
- · Open-Standard and Multi-vendor support

