Cisco Converged Fronthaul Router Portfolio

SP Networking Systems Business Unit
Dwayne McIntosh, Senior Product Management Team
March, 2020
5G is Real
Network upgrades aligning with market rollouts

- 5G mass market rollouts are underway and picking up steam

Source: Operator Strategies for 5G Transport, Light Reading, 2019
5G is Real
Network upgrades aligning with market rollouts

- RAN transport upgrades are critical to mass market rollout success

Source: Operator Strategies for 5G Transport, Light Reading, 2019
5G RAN Transformation
Architectural shifts impacting the evolution of RAN transport

- **Software Centric**
 Virtualization, Programmable, Flexible, Any-to-Any Connectivity

- **Decomposition**
 Radio Equipment Controller Decomposition, CU/DU Functional Splits

- **New Radio**
 High Bandwidth, High Density, Low Latency, Precise Timing and Synchronization

- **Convergence**
 Blended SLAs Services, Traffic Steering, Dynamic Path Optimization

- **Automation**
 Open, Pervasive Automation, Service Assurance, Network Slicing

Radio Technology Innovation
- Higher frequency spectrum
- Larger radio channels
- Increased network density
- Massive MIMO

Radio Technology Innovation
Benefits of Centralized & Cloud RAN Architectures

Functional & economic advantages

Functional Benefits
- Enhanced Coordination
- Enhanced RU Management and Policy
- Baseband Pooling, Flexibility of Software
- Enhanced Network Resiliency

Economic Benefits
- Reduced Cell Site Management
- Reduced Site Deployment Costs (less physical equipment)
- Service innovation & Commoditization
- Improved Resource Utilization (spatial efficiency)
RAN Transport Performance Expectations

- Higher Speed Interfaces
- Lower Latency
- More Precise Timing & Synchronization
- Any-to-Any Connectivity

<table>
<thead>
<tr>
<th>Interface(s)</th>
<th>Typical distance</th>
<th>1-way latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fronthaul</td>
<td><15KM</td>
<td>75us/100 us (LTE) 150us (5G NR uRLLC)</td>
</tr>
<tr>
<td>Midhaul</td>
<td>>10KM</td>
<td>1-5ms</td>
</tr>
<tr>
<td>Backhaul</td>
<td>>10KM</td>
<td>10ms</td>
</tr>
</tbody>
</table>

Network Configurations:
- D-RAN: RRU to BBU to Backhaul
- C-RAN: RRU to BBU to Backhaul to Mobile core
- Cloud RAN (Midhaul): RRU to Midhaul to vCU to Backhaul to Mobile core
- Cloud RAN: RRU to Midhaul to vCU to Backhaul to Mobile core
RAN Fronthaul Standards

Evolving towards Open RAN

<table>
<thead>
<tr>
<th>Proprietary</th>
<th>Proprietary</th>
<th>Non-proprietary</th>
<th>Non-proprietary</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPRI</td>
<td>eCRPI</td>
<td>RoE</td>
<td>Open RAN</td>
</tr>
</tbody>
</table>
- Time Sensitive Networking
 TSN Profiles 802.1CM, Frame Preemption 802.1Qbu | - O-RAN Alliance (Open RAN)
 Open feature development
 Reduced time-to-market
 Incubation of ecosystem innovation |

Driving towards open standards for RAN Interfaces
Traditional Fronthaul Deployment Options are Sub-Optimal for 5G

- Very expensive solution
- Difficult to scale
- Fiber may not be available everywhere

- Limited lambda (λ) scale
- Manual deployments that are time consuming and error prone
- No visibility of the service making it difficult to troubleshoot
- No redundancy

- Expensive due to colored optics
- Active tunable optics have challenge with I-TEMP
- No Statistical Mux
- Topology dependent (Requires ROADM for ring architecture)
Packet-Based Fronthaul

Packet
- Stat Mux Advantages
- Cost Effective
- Topology Independent
- Service Visibility & Transparency
- Scalable E2E Converged IP

Optical
- Optical multiplexing
- Non-scalable, architecturally rigid
- Limited service visibility
- Capex dependent scale
- Point-to-point, topology dependent

Stat-muxing opportunity
Cisco Converged Packet-based Fronthaul
Extending to meet the needs of Fronthaul, Midhaul, & Backhaul

Converged Packet-based Fronthaul

Cell Site

Business CPE

5G NR RRH

4G LTE RRH

Fronthaul Cell Site Router

Fronthaul Aggregation Router

BBU Pool

Backhaul

CRAN Hub

BENEFITS

High-Speed and Ultra-Low Latency Forwarding w/ Stat Mux

Flexible and programmable architecture

Precise timing and synchronization capabilities

End to end IP based network for a simplified architecture

Open and automated management
Radio transport requirements
High speed and Ultra-Low Latency forwarding

High Performance ASIC
2us ASIC latency, <10us platform latency with statistical multiplexing

Optimized Platforms
Low cost, low power, and optimal form factors for remote cell site router, and aggregation roles

Low Latency
802.1Qbu - frame preemption (TSN) support on 10G/25G

Advanced Forwarding
Flexible hierarchical QoS, scalable L3 services

Clocking & Synchronization
Class C, eEEC, PRTC-B, better oscillator

E2E Transport Performance
Simplified E2E network fabric with SR/EVPN, SR PM, L2/L3 VPNs

IP packet-based networks deliver 5G performance and optimal customer experiences
Cisco Fronthaul Router Models
NCS 540 family

<table>
<thead>
<tr>
<th>Fronthaul Router</th>
<th>Use Case</th>
<th>Port Config</th>
<th>RU</th>
<th>Capacity</th>
<th>Software</th>
</tr>
</thead>
</table>
| N540-FH-CSR-SYS | Remote Indoor Router [Packet + CPRI + TSN] | • 8xCPRI (Option 3-8)
• +4x1/10G/CPRI (Option 3-8)
• 8x1/10G
• 4x10/25G
• 2x10/25G (802.1Qbu)
• 2x100G | 1 RU | 300Gbps | IOS XR |
| | | *Universal Port = Port can be used for CPRI or eCPRI or Ethernet (1/10/25GE) | | | |
| N540-FH-AGG-SYS | Aggregate Site Router [Packet + CPRI + TSN] | • 24x10G/25G*
• (802.1Qbu, CPRI 3–8)
• 4x100G | 1 RU | 900Gbps | IOS XR |
| | | *Universal Port = Port can be used for CPRI or eCPRI or Ethernet (1/10/25GE) | | | |
Flexible & Fully Programmable Architecture
To support evolving standards

Field Programmable Gate Array (FPGA) for evolving RAN
- Flexible platform to address both short term and long-term requirement for CPRI, eCPRI and RoE
- Optimized for RoE type 0 and type 1
- Future proofed to allow operators to add new RAN functions and interworking scenarios

IOS XR
IOS-XR Based - Open APIs
- Common operating system software across the physical and virtual platforms
- Delayered IOS XR software stack with APIs exposed for management, service and hardware layers
- Optimized performance for advanced features: SR, EVPN, security
- Improved service visibility with telemetry

Adaptable platform to address emerging requirements
Optimized for CPRI Transport Over Ethernet

Fronthaul RoE Structure Agnostic Modes (Type 0 & Type 1)

- Optimized to enable RoE Structure-Agnostic Tunneled Mode (Type 0)
 - Compatible with all RAN suppliers’ equipment.

- Extensible to support RoE Structure-Agnostic Line Code Aware Mode (Type 1)
 - Can be tailored with RAN vendor specific CPRI information to reduce fronthaul bandwidth by 20%.

- Customizable to enable additional/future use cases
 - Programmable to extend functionality to support unique RAN interworking requirements
Precise Timing and Synchronization
Accurate and reliable timing for 5G networks

How do we deliver Sync for 5G networks?

ANSWER

Advanced throughput optimization techniques such as Inter-Cell Interference Cancelation, MIMO coordinated multi-point data delivery require precise time synchronization.

- CPRI protocol delivers phase and frequency synchronization, eCPRI/RoE does not.
- eCPRI/RoE Interworking use cases require RAN transport to provide phase and frequency synchronization including diverse delivery of accurate timing.

Cisco Fronthaul Routers support **stringent phase and frequency synchronization** requirements with up to **Class C timing** capabilities.
Converged Services
Optimizing transport performance for fronthaul applications

- **Converge services** onto a single transport network.
- **Segment Routing** provides traffic steering and policing capabilities to optimize traffic path based on static and/or dynamic computations including latency.
- **Frame preemption** with 802.1Qbu/TSN assures that Fronthaul and Midhaul traffic can be prioritized over less latency sensitive flows.
Comparing TCO for fronthaul
Packet vs optical fronthaul solutions

Packet-based fronthaul
Optical-based fronthaul

TCO Savings

+65% ROADM
+46% P2P Active DWDM
+40% P2P Passive DWDM
+13% P2P Passive CWDM

Source: ACG – An Economic Comparison of Fronthaul Architectures for 5G Networks
Consistent End-to-End IP Network
Simplifies and improves reliability of the architecture and operations

Extending the architecture into the RAN transport

Automation & Orchestration

Converged SDN Transport

IOS XR

Converged Infrastructure
SR | BGP VPN
End-to-end simplicity
Open & programmable
Open & Automated Management
Outcome-driven automation

Flexible NSO function packs
To automate provisioning of multi-vendor domains

Open APIs and management interfaces
To enable full operational lifecycle of the products

Cisco Crosswork portfolio
To provide full suite of FCAPs applications

Closed-loop and outcome-driven automation, on premises and in the cloud. Simple integration into legacy RAN management domains & other NMS/OSS systems.
Cisco CX Delivers Expert Guidance & Services
For every stage of your 5G journey

Customer Experience Lifecycle

Advise
- Find and prioritize your key initiatives and plan your 5G rollout.
- Knowledge transfer for Segment Routing

Implement
- Strategy & Analysis
 - Assess your infrastructure to determine L2-LDP-SR interoperability or transformation, and how you’re placed to get there including risks, gaps, roles and responsibilities.
 - Proof of Concept options
- Design
 - Determine the Architecture for 5G Mobile Backhaul with Baseline mobile backhaul infrastructure (Flex-Algo, QoS, ODN, AS), Clocking, Edge compute transport
- Assessment
 - Validate solutions

Optimize
- Optimization
 - Maximize your investment, audit your network, resolve issues preemptively and access extensive training resources.
 - Plan and migrate to 540/560, ASR9k with Lightspeed, NCS 5500, Spitfire, with support every step of the way.

Deployment @Scale
- Deployment @Scale
 - Plan, test and deploy software and solutions for MBH Infrastructure
 - NSO based Automation for Deployment & Operational needs
 - Deploy Segment Routing MPLS without impacting existing services
- Validation
 - Certify and validate your software and MBH solutions.

Maintain
- Support
 - Enhance IT operations and maximizes uptime to consistently and securely keep your business running smoothly.

Cisco NSO & Crosswork Network Automation
Industry’s most comprehensive, closed-loop, mass-scale automation solutions that embraces multi-vendor networks
Why Cisco for Fronthaul?

- Packet-based solution with high-speed, Ultra-Low Latency Forwarding to meet and exceed fronthaul requirements
- Converges services while optimizing fronthaul resources
- Flexible and programmable architecture to support RAN innovation
- Simplifies and improves reliability of network operations by extending IP through RAN transport
Additional Resources

• For more information on 5G transport please go to www.cisco.com/go/5g-transport
