IPv6: Launching Our New Internet Protocol

Andrew Yourtchenko
Technical Leader
ay@cisco.com
Future growth challenges with IPv4

> 4,000,000,000

Tags IPv4 Ports

Today

Subtended NATs
Address+Port routing
More specific routes
Routing table growth
Shorter IP Leases
Camping on bogon space
Application Gateways
Reviving 240
Shared-SP IPv4 space

"Usable" Global IPv4 Addresses
Addresses in Global Routing Tables

Routed IPv4 Addresses

Sources: IMS Research, Intel, Ericsson, Cisco
IPv6 – “Full Spectrum” Internet

IPv6

IPv4

CGN

© 2012 Cisco and/or its affiliates. All rights reserved.
Enterprise routers with IPv6 enabled

Cisco Services Study
of over 800 Enterprises

Enterprise Technical Advisory Board Survey

“When are you planning to deploy IPv6 in production”

July 2010

- No plans: 40%
- 24 months: 32%
- 12 months: 4%
- 6 months: 2%
- In Progress: 4%

April 2011

- No plans: 25%
- 24 months: 18%
- 12 months: 25%
- 6 months: 14%
- In Progress: 28%
IPv6 enabled homes

- Large Un-named ISP
 - Feb-11
 - Feb-12
 - Dec-12
CGN Bypass

2011 2013 2015

CGN Only

2011 2013 2015

6rd + CGN
IPv6-only mobile devices with NAT64
Stateful NAT64 - overview

Stateful NAT64 allows the hosts on the IPv6 network connect to the IPv4 Internet, by dedicating an IPv6 prefix which will represent the translated IPv4 Internet. This allows a twofold use:

- IPv6-enable the internal IPv4-only services
- allow internal IPv6-only network to talk(∗) to IPv4 Internet

In this example, it is possible to model both. We need “stateful” translation because the initiators are on IPv6 side – so after translation the addresses “shrink” – thus IPv6 is mapped into much smaller IPv4 global pool.
Stateful NAT64 – example configuration

```
nat64 prefix stateful 2610:d0:1208:cafe::/96
nat64 v4 pool NAT64GLOBAL 153.16.17.82 153.16.17.82
nat64 v6v4 list NAT64LIST pool NAT64GLOBAL overload
nat64 logging translation flow-export v9 udp dest 192.168.0.2 9995
ipv6 access-list NAT64
    permit ipv6 any 2610:d0:1208:cafe::/96
```
Stateful NAT64 – packet flow

```
asrlknat64-xtr# show nat64 trans

tcp  72.163.4.161:80  [2610:d0:1208:cafe::48a3:4a1]:80
     153.16.17.82:1056  [2607:f128:42:73::2]:37897
```

IPv4-only servers

- Source: 153.17.16.82:1056
- Destination: 72.163.4.161:80

IPv6-only client

- Source: [2610:d0:1208:cafe::72.163.4.161]:80
- Destination: [2607:f128:42:73::2]:37897

IPv6 Internet

- Source: [2607:f128:42:73::2]:37897
- Destination: [2610:d0:1208:cafe::72.163.4.161]:80
NAT64: Beware of becoming an open relay

1. IPv4 translated traffic is “router-originated” routing-wise, based on IPv6 traffic

2. IPv4 and IPv6 security policies need to be consistent!
DNS64

DNS64 creates synthetic AAAA record for the host based on A record if no real AAAA record exists in DNS. This allows to automatically direct IPv6-only clients to the correct address within NAT64 prefix.

This functionality is provided by bind since 9.8.0 – and in our example bind runs on a linux vm in a container on asr1k

CNR’s DNS server can also be used to perform the same function.
IPv6 “What Works” in Apps

IPv6 “Brokenness” in Apps

85%

15%
Business case for IPv6

1. Full Spectrum Internet
2. CGN bypass
3. IPv6-only mobile devices
Slovenia and IPv6: #2 worldwide*

*top 50 .si sites from Alexa rating;
Source: http://www.vyncke.org/ipv6status/
What do I do before June 6th 2012?
Short-term: IPv6 frontend

Server Load Balancer
http proxy

IPv6 Internet

ACE-30

IPv4-only Host

IPv6

IPv4

Stateful NAT64

IPv6 Internet

ASR1000

IPv6

IPv4

Software Proxy
Web Tier

IPv6 Internet

Apache
-MSFT

IPv6

IPv4

IPv4-only Host

PortProxy

IPv4

IPv4-only Host
Midterm: dualstack – "Happy Eyeballs"
Longterm possibility: IPv6-only with translation
NAT64: Stateless IP/ICMP translation (aka IVI)

RFC6052
RFC6145

IPv6::/0

IPv4 0.0.0.0/0

IPv6-mapped 2001:db8::/96
NAT64: SIIT packet flow

IPv4

Stateless NAT64

2001:db8::192.0.2.1

DNS

A: 192.0.2.1
AAAA: 2001:db8::192.0.2.1

s: 1.1.1.1:1056
d: 192.0.2.1:80

s: 2001:db8::1.1.1.1:1056
d: 2001:db8::192.0.2.1:80
V6-only SIIT: pros and cons

- No IPv4 on the server
- IPv4 clients served as IPv6
- Original IPv4 remains known (geolocation, etc)
- Stateless: easy redundancy, flow count does not matter
 - Need to inject /128s
Static NAT64

IPv4 0.0.0.0/0
IPv6-mapped IPv4 address 2001:db8::/96
IPv6 ::/0

Public IPv4 192.0.2.1/32
Static NAT64 packet flow

IPv4

Stateless NAT64

2001:db8::192.0.2.1

DNS

A: 192.0.2.1
AAAA: 2001:db8:c001::1

s: 1.1.1.1:1056
d: 192.0.2.1:80

s: 2001:db8::1.1.1.1:1056
d: 2001:db8:c001::1:80
A word of caution

- IPv4 header overhead ≠ IPv6 header overhead
- Beware potential MTU issues
- Fragmentation in IPv4 and IPv6 done differently
- => Test extensively in the lab if it works for your traffic!
Practical experiences
IPv6 World Congress 2012, Paris

- Demo of WLC 7.2 code
- 30 APs, ~1400 clients
- Fully up by 3 people in less than a day
- Dualstack SSID and IPv6-only SSID with NAT64+DNS64
IPv6 on Wireless: First Hop Security

IPv6 > RA Guard

IPv6 RA Guard on WLC: Enabled
IPv6 RA Guard on AP: Enable
RA Dropped per client:
IPv6 on Wireless: First Hop Security

Neighbor Binding Timers

- Down Lifetime (0-86400)
- Reachable Lifetime (0-86400)
- Stale Lifetime (0-86400)
Clients by vendor

- Apple: 437
- Others: 19
- Epigram: 1
- Huawei: 5
- Universal Global: 4
- Rim Testing: 3
- Azurewave: 8
- Palm: 3
- Liteon: 10
- Unknown: 6
- Research In Motion: 7
- Murata: 13
- Gemtek: 12
- Nokia: 21
- Motorola: 14
- Sony: 18
- Rim: 28
- Hon Hai Precision: 51
- Samsung: 40
- HTC: 48
- Intel: 320

© 2012 Cisco and/or its affiliates. All rights reserved.
ND vs. ARP cache entries
Clients by address type

- 114 IPv6-only / (706+701+114) = 7.5%

7.5% IPv6-only
iPad&iPhone and IPv6

- IPv6-only works, but need to wait till DHCPv4 times out
- Temporary addresses:
 New association = new address!
 WLC cache = 8 addr. Tune the timers!
The results of the IPv6-only+NAT64 test

- What worked well:
 - Everyday browsing
 - Facebook 😊

- Users complained about:
 - Apple Facetime
 - Most of the VPNs
IPv6-only server experiment

- NOC management VM host short on IPv4 addresses
- Instead of getting extra IPv4, configured static NAT64 on ASR1k
- It worked and noone noticed
Conclusions

• Join the IPv6 launch
• Help fix the 15%