Integrated Security for Wireless LAN

Solutions and Architectures Team - Flavien Richard

Presentation will start at 10.30am
About this WebEx session

1. VoIP usage
2. Recording will be used
3. Local panelists to help
4. Chat possibility
5. Q&A at the end
6. Survey after leaving the session
Secure Wireless 2.0 Overview

1. Secure Wireless 2.0 published on Cisco.com:
 Wireless and Network Security Integration

2. Focus is on integrating and extending general Enterprise network security to an Enterprise WLAN
 - Defense-in-depth designed and integrated into the end-to-end architecture
 - 802.11 fundamental and enhanced security features
 - General network security elements, plus any WLAN-specific features

3. The goal being: consistent security policy enforcement across both the wired and wireless network
 - Critical to effective network security
 - Not a WLAN overlay
Secure Wireless Solution Architecture

Endpoint Protection
- Host intrusion prevention
- Endpoint malware mitigation

Traffic and Access Control
- Dynamic, role-based network access and managed connectivity
- WLAN threat mitigation with IPS/IDS
- (Device posture assessment)

WLAN Security Fundamentals
- Strong user authentication
- Strong transport encryption
- RF Monitoring
- (Secure Guest Access)
Cisco Unified Wireless
CAPWAP Protocol Security

1. CAPWAP (IETF standardized protocol) is used between APs and WLAN Controller
2. CAPWAP carries control and data traffic between the two
 - Control plane is AES-CCM encrypted, Authentication by X.509 Cert.
 - Data plane is not encrypted today
3. It facilitates centralized management and automated configuration
4. Open, standards-based protocol
WLAN Controller Join Process
Mutual Authentication

1. AP’s CAPWAP Join request uses the AP’s signed X.509 certificate
2. WLAN Controller validates the certificate before sending an CAPWAP Join Response
3. If AP is validated, the WLAN Controller sends the CAPWAP Join Response which contains the controller’s signed X.509 certificate

As of 11/2008, the certificate can be Cisco-installed at manufacturing or your own company certificate
Access Point Authorization Configuration

1. Enforcing AP Policies will require authorization of APs prior to association to Cisco WLAN Controllers based upon their identities (MAC addresses)

2. Without AP policies, any lightweight Cisco AP will be able to associate to a Cisco WLAN Controller

In Web GUI, go to Security > AAA > AP Policies

- Authorize APs against AAA
 - [] Enabled
1. Authenticates any wireless access point plugged into a wired port
2. AP presents 802.1X authentication to join the wired network
3. Any AP without credentials is denied access to the wired or wireless network
4. Proactively eliminates rogue APs on the wired network
5. Facilitates secure AP provisioning
End-to-end Wireless Security

1. A Secured Infrastructure for wireless is not enough!

2. You need an enterprise-grade Supplicant*

3. You need an enterprise feature-rich (AAA) Authentication Server

* The client software used for WLAN authentication is called a supplicant, based on 802.1X terminology.
End-to-End Security Framework
Secure Services Client delivers wired/wireless 802.1X

- Single solution for all connectivity methods
- Architectural extension of RADIUS solution
- Easy connection for end-users
- Embedded intelligence in NAC-capable Cisco infrastructure
- Leverage existing network and security management software

802.1X integration with Cisco SSC Supplicant
Cisco Secure Services Client

Drivers for CSSC

<table>
<thead>
<tr>
<th>What End Users want</th>
<th>Balancing the Needs of End Users and IT Administrators</th>
<th>What IT Administrators need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive - Easy to configure and use</td>
<td>Respect and enforce enterprise security policies</td>
<td></td>
</tr>
<tr>
<td>Immediate access to network without intervention</td>
<td>No user tampering</td>
<td></td>
</tr>
<tr>
<td>Connectivity at office, home and public hotspots</td>
<td>Easy to Manage and Easy to Deploy</td>
<td></td>
</tr>
<tr>
<td>Status at a glance</td>
<td>One connection at a time - No bridging – No packet storms</td>
<td></td>
</tr>
<tr>
<td>Manage from the tray icon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look for the 802.11 Security Standards

1. Key 802.11 Security Standards
 - **WPA** (Wi-Fi Protected Access)
 - Wi-Fi Alliance standard for WLAN authentication and encryption prior to 802.11i
 - Developed to address the known WEP issues while supporting legacy hardware
 - Uses 802.1X/EAP + TKIP encryption

 WPA2 or **802.11i**
 - 802.11i is the IEEE standard for WLAN security
 - WPA2 is the Wi-Fi Alliance standard for WLAN authentication and encryption which includes the 802.11i security recommendations
 - Uses 802.1X/EAP + AES encryption

2. IEEE 802.11i defines WLAN security standard
3. WPA certifies standards compliance for system interoperability
Wi-Fi Protected Access

1. Should I use WPA or WPA2?

 - **Gold**, for NIC/OS supporting it and critical information transfer
 - **Silver**, only if you have legacy clients (TKIP vulnerability exploited today)
 - **Lead**, if you absolutely have no other choice (i.e., Application Specific Devices)
CSA (Secure Agent) Wireless Policy Controls

Enabling Per-Application QoS prioritization.

Disabling Wireless NIC when wired connection is active.

Restricting certain connections – certain SSIDs, encryption, ad-hoc.

Requiring VPN connection when out of the office.
802.11 Management Frame Vulnerability

1. 802.11 management frames are NOT authenticated

 Anyone can spoof an AP’s MAC address or SSID and send an 802.11 management frame on behalf of that AP

 Anyone can spoof a client’s MAC address and send an 802.11 management frame on behalf of that client

2. Threats:

 802.11 Denial of Service (DoS) attacks by spoofing AP or client 802.11 de-authentication or disassociation frames to disconnect users

 Rogue AP or MITM (man in the middle) avoids detection by spoofing valid AP MAC or SSID
Management Frame Protection

Problem:
- Wireless management frames:
 - Are not authenticated, encrypted, or signed.
 - Are a common vector for exploits.

Solution:
- Insert a signature (Message Integrity code/MIC) into the Management frames.
- Clients and APs use MIC to validate authenticity of management frame.
- APs can instantly identify rogue/exploited management frames.
1. Infrastructure MFP support
 Introduced since Unified Wireless 4.0

2. Client MFP support
 Introduced with CCX version 5 clients
 Being ported as a standard called 802.11w
Security Policies
Overview

1. While doing Authentication, policies can be pushed for users:
 - Dynamic VLAN association
 - ACL Profiles
 - QoS Profiles
Security Policies
Per User Dynamic VLAN Assignment

1. Users, using the same SSID, can be associated to different wired VLAN interfaces (Dynamic VLAN association)

2. Association will depend of the RADIUS configuration for the user or user group.

Cisco Firewall Integration Scenario:
User Group Access Policy Enforcement

1. Restricts user group access to permitted network resources only
2. 802.1X allows a common WLAN but different user group VLAN assignment based upon AAA policy
 - Single SSID with RADIUS-assigned VLAN upon successful 802.1x/EAP authentication
3. VLAN mapped to different firewall VLANs and subject to different firewall policy
 - VLAN mapped to a specific virtual context (user group) in the firewall
 - Firewall policy enforced per user group
Security Policies
Per User Dynamic QoS Profile Assignment

1. RADIUS will push QoS Class for the user
2. The QoS will be applied on the radio interface

Security Policies
Per User Dynamic QoS Profile Assignment

1. RADIUS will push QoS Class for the user
2. The QoS will be applied on the radio interface

Security Policies
Per User Dynamic ACL profile Assignment

1. ACL must be configured in WLAN Controller
2. RADIUS will push ACL name depending on user or user group policies

Security Policies

Per User Dynamic ACL profile Assignment

1. ACL must be configured in WLAN Controller

2. RADIUS will push ACL name depending on user or user group policies

Wired IPS Event and Client “Shunning”

1. Upon trigger of IPS system (Cisco IPS 4200 appliance, ASA or Cat6k modules), for instance from a known type of exploit (Nimda, Sasser, TCP stack exploit, etc.), **activate a “shun” event**

2. A shun event can be invoked either inline or offline
 - Wireless “shun” may be invoked at controller via offline mechanism

3. Invokes client exclusion (blacklisting) at Cisco controller
Wireless: Rogue Devices

1. What is a Rogue?
 Any device that’s sharing your spectrum, but not managed by you
 Majority of rogues are setup by insiders (low cost, convenience, ignorance)

2. When is a Rogue dangerous?
 When setup to use the same ESSID as your network (honeypot)
 When it’s detected to be on the wired network too
 Ad-hoc rogues are arguably a big threat, too!
 Setup by an outsider, most times, with malicious intent

3. What needs to be done?
 Classify
 Detect
 Reporting, if needed
 Track (over-the-air, and on-the-wire) and Mitigate (Shutdown, Contain, etc)
Map Rogue AP in WCS
Rogue Switch-Port Tracing and Disabling

Features

1. Uses WCS to identify location of a rogue AP on the wired network and disables the port
 - Uses CDP trace and OUI rules
2. Integrated into the existing rogue detection and containment workflow and reporting in WCS
3. Tracing “on-demand” by operator
4. Operate across all Catalyst switches: 6500, 4500, 3750, 3560, and 2900

Benefits

1. Reduces time and resources spent searching for rogue access points
2. Can be used to disable rogue APs in remote locations
3. Protects the wired and wireless network from attacks
Automated Wireless Security Vulnerability Assessment

- Provides network-wide security health summary
- Proactively monitors entire wireless network
 - WLCs, APs and management interfaces
- Identifies vulnerabilities in:
 - Encryption
 - User/network authentication
 - Threat mitigation
 - Management
- Reduces configuration errors by recommending optimal security settings
- Increases awareness of potential security issues

Security Summary

Security Index: 17.76

Top Security Issues

- NFP Client Protection set to Optional for WLAN. (42)
- Interface set to management for WLAN. (30)
- No enabled IDS Sensor configured for a Controller. (28)
- No WLAN Key Management methods set(Only selectable when Authentication Method is WPA+WPA2). (26)
- Protection Type set to None for a Controller. (24)
wIPS Alarms on Security Dashboard

wIPS Alarms Under ‘Security’ Category

wIPS Denial of Service Alarms

wIPS Penetration Alarms
Adaptive Wireless Intrusion Prevention System (wIPS)
Wireless Intrusion Prevention

Purpose and Components

Threat Management Workflow

Detect → Classify → Notify → Log → Mitigate → Report Archive

What Is the Threat? → How Severe Is It? → Alert Staff, Raise System Alarm, or Just Log? → What Action Must Be Taken? → End-to-End Record of Event and Actions
How is this different than controller IDS?

1. wIPS Access Points can detect over 45 different signatures and tools
 Controller IDS does 17 today

2. wIPS provides forensics (packet capture) abilities

3. wIPS requires an additional hardware (MSE) and dedicated always-on monitoring APs

4. wIPS on MSE provides centralized database for attack correlation and alarm archival

5. wIPS provides an attack encyclopedia
Adaptive wIPS – One Alarm per Attack

Controller IDS

WCS

DoS Alert!

Controller IDS has no correlation

Adaptive wIPS

WCS

DoS Alert!

MSE

© 2009 Cisco Systems, Inc. All rights reserved. Cisco Public
wIIPS Example Alarm

1. Click ‘Help’ for more info on the attack
wIPS Integrated Attack Encyclopedia

1. Available for each alarm
2. Accessible from the wIPS Profile page or by clicking ‘Help’ on each attack alarm
Summary

1. Cisco Unified Wireless, using CAPWAP, brings more infrastructure security.

2. Wireless LAN Security is not an option for enterprise. IEEE 802.11i (EAP/WPA2) should be the target.

3. WLAN Security must be End-to-End. Client supplicant and RADIUS server must be selected with care.

4. Firewall deployment should be common for wired and wireless LANs and not dedicated to a type of access.

5. Advanced security is delivered by Adaptive wIDS, MFP and IPS features.