Cisco Enterprise Mobility

Overview of Technical Solutions

Nathaly Landry
lnathaly@cisco.com
Agenda

- Cisco Enterprise Mobility Direction
- Mobility Solutions Technical Overview
- Jon Coxworth – Intel – Centrino Technology
- Shawn Winter – Bell - AccessZone
Today’s Enterprise Workplace
Highly Distributed/Mobile Workforce

Internet/Service Provider Network

HQ
Branch
Telecommuter

Hospitality
Hotel
Public Access
Airports

Public Wireless Voice/Data

Secondary Data Center

Transportation
Public Safety

Networks in Motion

QoS VPN
Today’s Enterprise Productivity Challenges
While away from the Corporate Desk

On-Campus Productivity
Productivity degrades when away from desk (Meetings, Common Areas etc)

Internet

New York

Corp Office NY
212-555-1212

“I’ll send out mtg minutes when I am back at my desk”

Home Office

I’m working from home today, call me at (212) 444-5678

Can I use the Phone now?

PSTN

Can I use the Phone now?

Philadelphia

Baltimore

Wash DC

I’ll be in DC today
Call me at 610-222-1234

Off-Campus Productivity
Degraded Data and Voice access when away from Corporate office

Use of VPN client “dialer” to access Corp resources
Where Does Increased Productivity Come From?

- Steal 5 minutes at the beginning of meetings
 Often meetings don’t start on time
 Instead of wasting time with idle chit-chat, get work done
 3-4 meetings/day x 5 min./meeting = 15-20 min. productivity savings/day

- Eliminate “I’ll do it when I get back to my desk” syndrome
 Share files, PowerPoint presentations instantly
 Arrange meetings using your online calendar
 Saves 15-20 min./day for knowledge workers who don’t sit at desks all day

- Use Instant Messaging as a corporate app
 Great for quick communications; get answers without disturbing meeting
 Only works if employees are connected to the network

- The “Connected Meeting”
 Send presentations during meeting to all conf. call participants via email
 Conf. calls are more productive when everyone is looking at same info
 Follow presentations on your PC even if no projector in meeting room
Cisco Enterprise Mobility Vision
Increasing Workday Productivity

Campus WLAN
- Secure WLAN Access
- Rogue AP Prevention
- WLAN IP Telephony
- User Policies – Identity
- Guest Access – Identity

Branch Mobility
- Rapid Deployment V3PN
- Pt to Pt Wireless
- Extension Mobility – IP Tel

Teleworker
- IP Telephony (V3PN)
- 802.1x User Authentication
- Spouse and Kids – Identity

Users on the Move
- Hot Spot Access
- PDA device access
- Public Wireless Access

Networks in Motion
- Networks in Motion (Mobile IP – Mobile Router)
- Public Safety
- Transportation
Cisco Enterprise Mobility Solutions

Using Network Solutions to Deliver Increased Business Productivity

On-Campus Mobility

Using WLAN to Increase access to Corporate Resources in the Campus

Extended Enterprise Mobility

IP Telephony and VPN to provide same access to Data/Voice Resources as if at the Corporate office

I need to Call John 212-555-1212

Log into Phone and takes profile of 212-555-1212

Hello this is John

Corp HQ - NY

PSTN

Private WAN or QoS VPN (V3PN)

Bldg A

Bldg B

Corp Office NY

212-555-1212

John

Home office # 212-555-1212

Wash DC

Philadelphia

Hello this is John

Hello this is John

Corp Office NY

212-555-1212
Agenda

- Cisco Enterprise Mobility Direction
- Mobility Solutions Technical Overview
- Jon Coxworth – Intel – Centrino Technology
- Shawn Winter – Bell - AccessZone
Campus WLAN Mobility
Solution Overview

- Large % of customers have insecure Rogue AP deployments today

 Rogue AP prevention and detection with 802.1x

 Properly Secured deployment enables Enterprise class WLAN

- Segmentation of Authorized users and prevention of Un-Authorized users

 User based Access Policies with 802.1x

 Authorized Guest/Vendor VLAN Access

- Lower Productivity when not at desk

 WLAN Access to Business Apps

 Cisco WLAN IP Telephony with QoS and Campus Roaming
Wireless LAN Technologies

<table>
<thead>
<tr>
<th></th>
<th>802.11b</th>
<th>802.11g</th>
<th>802.11a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. Band</td>
<td>2.4 GHz</td>
<td>2.4 GHz</td>
<td>5 GHz</td>
</tr>
<tr>
<td>Data Rate</td>
<td>1-11 Mbps (now)</td>
<td><54 Mbps (mid ‘03)</td>
<td>6-54 Mbps (now)</td>
</tr>
<tr>
<td># non-overlapping channels</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Yes</td>
<td>Anticipated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The Laws of Radio Dynamics:

- Higher data rates = shorter transmission range
- Higher power output = increased range, but lower battery life
- Higher frequency radios = higher data rates, shorter ranges
Understanding the 5 GHz Spectrum

<table>
<thead>
<tr>
<th>5 GHz UNII Band</th>
<th>5.15</th>
<th>5.25</th>
<th>5.35</th>
<th>5.470</th>
<th>5.725</th>
<th>5.825</th>
</tr>
</thead>
<tbody>
<tr>
<td>US (FCC)</td>
<td>4 Channels</td>
<td>4 Channels</td>
<td>11 Channels</td>
<td>4 Channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Channels</td>
<td>UNII-1 40mW (22 dBm EIRP)</td>
<td>UNII-2 200mW (29 dBm EIRP)</td>
<td>UNII-3 800mW (35 dBm EIRP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*can use up to 6dBi gain antenna)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>200mW</td>
<td></td>
<td>1W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Channels</td>
<td>(*assumes no antenna gain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **UNII-1**: Indoor Use, antenna must be fixed to the radio
- **UNII-2**: Indoor/Outdoor Use, fixed or remote antenna
- **UNII-3**: Outdoor Bridging Only (EIRP limit is 52 dBm if PtP)

if you use a higher gain antenna, you must reduce the transmit power accordingly
802.11a UNII-1 & UNII-2 ISM Channels

Lower and Middle U-NII Bands: 8 Carriers in 200 MHz / 20 MHz Spacing

Upper U-NII Bands: 4 Carriers in 100 MHz / 20 MHz Spacing
802.11a

- Data rates supported: 54, 48, 36, 24, 12, and 6 Mbps
 Client will automatically “downshift” to lower data rate when it gets further from AP

- 15 Countries have approved the use of today’s 802.11a products:
 U.S. Australia Poland Denmark France Sweden New Zealand Ireland
 U.K. Germany Japan Singapore Canada Belgium Netherlands

- 802.11h will ultimately permit worldwide usage of WLAN's @ 5 GHz
 Transmit Power Control (TPC)
 Dynamic Frequency Selection (DFS)

- 5 GHz band has more channels than 2.4 GHz band
 UNII-1 + UNII-2 = 8 channels (vs. 3 channels for 2.4 GHz)
 However, depending on distance between APs, you may only be able to use half of the 5 GHz channels due to adjacent channel interference

- 5 GHz band subject to less interference than 2.4 GHz band
 However, 2.4 GHz interference not a major problem in most business environments
802.11b/g Channel Usage
Comparing WLAN Technologies

- (14) 22 MHz wide channels (11 under FCC/ISTC)
- 3 non-overlapping channels (1, 6, 11)
What Is IEEE802.11g

- Provides higher data rates @ 2.4 GHz
- 54 Mbps (same as 802.11a)
- Backward compatible 802.11b
- Same modulation as 802.11a—OFDM
- Should be ratified towards the end of CY03
WLAN Security Hierarchy

Open Access
- No Encryption, Basic Authentication
 - Public “Hotspots”

Basic Security
- 40-bit or 128-bit Static WEP Encryption
 - Home Use

Enhanced Security
- 802.1x, TKIP Encryption, Mutual Authentication, Scalable Key Mgmt., etc.
 - Enterprise

Remote Access
- Virtual Private Network (VPN)
- Business Traveler, Telecommuter
WLAN Security: 802.1X Authentication

• Mutual Authentication

• LEAP
 “Lightweight” EAP
 Nearly all major OS’s supported:
 WinXP/2K/NT/ME/98/95/CE, Linux, Mac, DOS

• EAP-TLS
 EAP-Transport Layer Security
 Mutual Authentication implementation

• PEAP
 “Protected” EAP
 Establishes secure tunnel (similar to VPN)
 Supported by Cisco, Microsoft, & RSA
 Option: One-Time Passwords (“OTP”)
TKIP: Change Encryption Keys for Every Packet

Because packet key is hash of IV and base key, IV no longer gives insight into base key

IV	base key

RC4	stream cipher

plaintext data	encrypted data

no key hashing | key hashing
Wi-Fi Protected Access (WPA)

- WPA is the biggest thing to happen to WLAN security since Cisco LEAP
- 802.11i-standard TKIP + 802.1X authentication
 There is a non-802.1X version of WPA for home use which is unsuitable for enterprises
- All new products after Aug.’03 MUST have WPA
 Existing products are grandfathered
- Cisco has supported the base technologies of WPA longer than any other vendor
- Cisco will be implementing WPA across-the-board this summer ’03
Virtual Private Network

VPN at the Office

VPN on the Road

- Deployable today
- VPNs already in use in many IT organizations
- Scalable to large number of clients
- No key management issues
- Centrally managed
- Consistent user interface with remote access
- Re-initialize VPN connection when roaming

Internet

Airport, Hotel or Home

POTS Dialup
VPN Security for WLANs

Remote Access

Dialing into Corporate Network from Home, Hotel, Airport, etc.

VPN is the Best Solution!

On-Campus Access

Accessing Corporate Network while inside the Enterprise

VPN may not be the Best Answer

VPN/WLAN On Campus – Pros

- **Familiar**
 - Is in use at most enterprises
 - Makes user interface consistent for both WLAN & remote access

- **Trusted for authentication & privacy**
 - Supports central security management
 - Ensures 3DES encryption from client to concentrator

- **Compatible with wide range of client devices from multiple vendors**

VPN/WLAN On Campus – Cons

- **Cost**: Requires VPN concentrators behind APs
- **Performance**: Client software encryption lowers throughput
- **Roaming**: Roaming between VPN concentrators forces application restarts
- **QoS**: All traffic is IPSec traffic; no QoS, multicast, or multiprotocol support
- **Client Devices**: Not supported on phones, scanners, or other specialized devices
- **Convenience**: Additional steps required beyond Windows logon
Campus WLAN Mobility
Secure WLAN Access

- Several secure deployment options - LEAP, IPSec VPN with Auto Initiation, and eWEP
- 802.1x with PEAP provides industry standard future direction for WLAN Security
- VLAN support in AP’s provide co-existence/migration from current installed based security models to PEAP/802.1x
- Provides security equal to that of wired Ethernet (higher if customer is not using 802.1x on wired Ethernet)

Yesterday
WLAN Security Options

Today
Industry Standard WLAN Security Direction
Campus WLAN Mobility

Multiple AP VLAN Support – Co-existence and Migration

Yesterday
One VLAN - One Security Model at a time per AP

LEAP

OR

Static WEP/eWEP

802.11b WLAN (Single VLAN)

Note – VPN can use LEAP or WEP/eWEP

Today
Extension of the Wired Ethernet Network

802.11b WLAN

Multiple VLANs

AP VLAN’s facilitate Multiple WLAN Security Model co-existence and migration to PEAP w/802.1x

Static WEP/eWEP

PEAP w/802.1x

LEAP

WEP VLAN

LEAP VLAN

PEAP VLAN
Client Differentiation with VLANs

Allows a single WLAN network to handle different devices with different types of security (up to 16 separate VLANs).

- SSID “laptop” = VLAN 1
- SSID “pda” = VLAN 2
- SSID “phone” = VLAN 3

AP Channel: 6

802.1Q wired network w/ VLANs

SSID: phone
Security: LEAP + WEP

SSID: pda
Security: LEAP + TKIP

SSID: laptop
Security: PEAP + AES
Multiple WLAN VLANs

- Based upon user’s credentials via 802.1x (User Identity)
- Unauthorized users or those without 802.1x running on their laptop can be denied or placed into a Guest VLAN

Authentication based Resource Access
1. Eng/Sales can only access EngSales resources
2. Guest Access for trusted 3rd Party Contractors
3. Unauthorized users denied network access

Unauthenticated user are blocked access to the network
Campus WLAN Mobility

Rogue AP Detection and Mitigation

- **Detecting Rogue APs** - Use of wireless analyzer to look for WLAN signals
 - Boingo, Netstumbler etc.
- **Preventing Rogue APs** – 802.1x switched infrastructure
- **Un-Authorized AP’s are therefore locked out**

Enables IT to control WLAN activities and promotes sanctioned WLAN deployments – Inherently Reducing rogue WLAN activities
Rogue AP Prevention Summary/Strategy

- Fact - You probably already have a WLAN deployment in your corporate network (whether you know it or not)
- An IT deployed and supported WLAN is the best way to prevent insiders from installing their own APs
- 802.1x on switched infrastructure prevents Rogue Devices
 - Effective against unauthorized access
 - Allows identity based policy on switch port
- Use a combination of scripts and wireless analyzers to regularly audit for rogue APs
Campus WLAN Mobility

Cisco WLAN QoS

- WLAN QoS that provides preferential treatment of higher priority traffic
- Cisco IP Telephony Endpoints such as the Cisco Softphone
- Latency sensitive applications that have the ability to classify higher priority traffic
- Only downstream QoS. With future 802.11e, QoS upstream and downstream
WLAN QoS Challenges

- WLAN QoS is based on a model of preferred access to the RF medium.
- QoS is statistical, not guaranteed.
What is eDCF?

- Enhanced Distributed Coordination Function
- eDCF allows high priority traffic first access to the media by having a smaller random backoff timer
Cisco Delivers End-to-End, Secure QoS Enabled WLAN Network Solutions

Cisco Wireless Access Points
802.1x enabled to provide Secure QoS WLAN access; VLAN support enables wider range of supported WLAN devices and access types

Cisco Catalyst Switches
Secure QoS enabled access; 802.1x, dynamic VLANs with AP’s

WLAN VLAN
33
802.11b WLAN
Vendor

Rogue AP Detection and Mitigation

Secure Guest Access

Campus-wide Roaming

Secure User Access

Differentiated Services With WLAN QoS

Network Management
Wireless LAN Solution Engine (WLSE) and Ciscoworks

WLAN QoS AP Capability
Integrated QoS for latency sensitive applications

Cisco Delivers End-to-End, Secure QoS Enabled WLAN Network Solutions

Cisco.com

Cisco Softphone
Branch Mobility

Solution Overview

Featured Elements

- **Preparing for Business Resilience - Rapid Branch Deployment or Redeployment**

 Rapidly deployable WAN Alternatives such as VPN and Pt to Pt Wireless

 WLAN enabled user PC's to minimize relocation time

 IP Telephony - Allows for geographically diverse users, PSTN Gateways and Call Processing

- **Enterprises continually striving to lower operating costs**

 Lower cost WAN Alternatives such as VPN and Pt to pt Wireless

- **Employee productivity decreases when away from Corp office**

 IP Telephony - Extension Mobility to provide transparent Corp Office IP Phone Extension

 Used during normal user Mobility or during unplanned displacement
Combining IP Telephony and VPN
Voice and Video Enabled VPN – V³PN

V³PN Solutions

- Lowers WAN Cost and Increases Teleworker Productivity
- Cisco Powered Network (CPN) Service Provider Partners carry Voice/Video with Toll quality SLA’s
- Same network connectivity in home as in Corp office (Voice, Video and data)

I need to Call John 212-555-1212

Hello this is John

Home office # 212-555-1212

PSTN

QoS enabled VPN (V³PN)

Corp HQ NY

Corp Office NY 212-555-1212

Hello this is John

Log into Phone and takes profile of 212-555-1212

Hello this is John

Wash DC Philadelphia
V³PN Service Provider Partners

SPs today are offering QoS SLA’s (Sprint, Cable and Wireless etc)

Best effort today – SP’s currently developing QoS enabled offerings

Cisco Powered Network SP Partners

http://www.cisco.com/pcgi-bin/cpn/cpn_pub_bassrch.pl
V3PN Business Justification

Lexent, Inc. (NYC) – NYC HQ w/20 remote offices

Alternative 1:
Managed Frame Relay

- 20 sites – >$45,000 per month
- 3 year commit, >$1.5M total

Alternative 2:
Voice and Video enabled VPN

- 20 sites – <$20,000 per month
- 1 year commit, <$250K total
Branch Office Mobility

Pt to Pt Wireless

- Allows for rapid office setup for permanent and temporary settings
- Saves on circuit cost for short haul distances
- QoS enabled IP Telephony and Video support option available

NY

PSTN

Jim

Corp Office NY
212-555-1212

Manhattan

Less than 10 Miles

Bronx

Queens

Brooklyn

Temporary Trailer
User Mobility

CallManager Extension Mobility

- **Supported with Centralized Call Processing**
 Allows users to log into remote IP Phone and have “home” profile follow them

- **Supported with WLAN IP Phone**
 Need to ensure proper branch bandwidth to not exceed Call Admission Control bandwidth settings

I need to Call Jim 212-555-1212

Log into IP desk Phone
Phone takes profile of 212-555-1212

Jim goes to DC for the day
Enterprise Teleworker Mobility

Enterprise

Branch, Telecommuter

Public Access

Disaster Recovery/Business Continuance

Public Wireless Voice/Data

Hotel

Airports

Transportation

Public Safety

Networks in Motion

SP

V3PN

 Corp Office
408-526-4000

PSTN

WAN

408-526-4000

Campus WLAN

Branch Mobility

Teleworker

Users on the Move

Networks on The Move

Public Wireless

Hotspot

3G

802.11

Police Station

Mobile Subnet 10.1.1.0
IP Telephony for Teleworker
For Legacy PBX Environments

How it Works

1. Analog line configured is same # as Corp Office Legacy PBX Phone
2. Analog Line configured to go thru GW and ring Teleworker’s Home IP Phone
3. Corp Office number called – Rings in both Places
4. Possibly no VM light depending on Legacy PBX Vendor
Networks in Motion – Solution Overview

Solution Overview – Transportation and Public Safety

Example
Transportation

Bus Depot

Queens

Private
WAN

Manhattan

CDPD/1xRT
etc

Mobile
Subnet
10.1.1.0

Mobile
Subnet
10.1.1.0

802.11

Mobile
Subnet
10.1.1.0

Featured Elements

• Reducing OpEx to increase Productivity + Profitability - Today many non-standard applications each with their own communication system

• Applications Example - Fare Collection, Video Surveillance + Storage, Telemetry, Maintenance Apps, GPS etc.

Standard network infrastructure for multiple industry applications with IP based Ethernet access

Vehicle maintains network connectivity while in motion using the the MAR 3200 Mobile Router and a combination of Private and Public Wireless access media

• Continuous strive to create new revenue streams

Internet Access for passengers provides added revenue stream potential

Solution Timeline

Phase 1
Proof of Concept/Trials

Phase 2
Stationary Wireless Access (CY 2H 03)

Phase 3
Wireless Roaming Access

Today
• Host A receives packets from Host B through normal routing
• Gateway A replies to Host B with an ICMP unreachable
• Gateway C blocks host A by rejecting ARP
• Home Agent [HA] forwards packets to Host A (Mobile Node [MN]) via Care of Address [CoA]
• CoA is updated via Registration Request [RRQ] from MN
Example End to End Law Enforcement Mobility Solution
Users on the Move

Campus WLAN Branch Mobility Teleworker

Disaster Recovery/ Business Continuance

Enterprise

Branch Telecommuter

Public Access

Hospitality

Airports

Transportation

Public Safety

Public Wireless Voice/Data

Networks in Motion

Hotspot

3G

Corp Office

408-526-4000

PSTN

WAN

Mobile Subnet 10.1.1.0

Enterprise

Branch Telecommuter

Public Access

Hotel

Airports

Transportation

Public Safety

Public Wireless Voice/Data

Networks in Motion

Hotspot

3G

Corp Office

408-526-4000

PSTN

WAN

Mobile Subnet 10.1.1.0
Users on the Move
Solution Overview

Public Wireless Carrier (1xRTT, GPRS etc)

PC/PDAs With Public Wireless access NIC and VPN Client

WLAN Hotspots (Airports, Cafes)

PC/PDAs with 802.11 and VPN

Service Provider

Corp Office

Solution Timeline

Phase 1: WLAN Hotspot Public Carrier Access - PCs
Phase 2: Content Transformation For PDAs
Phase 3: Secure PDA Access With Smartcards

Today

Featured Elements

- Many users require access to corporate Business applications when on the road and in public locations

 Wireless LAN with Hotspot Access

 1xRTT/GPRS/CDPD Public Wireless Carrier Access

- Pervasiveness of handheld devices such as PDA with requirements to access Business Applications

 Secure Wireless VPN Client access

 Certificate or Smartcard VPN Integration

 PDA Access to corporate resources with Content Transformation
• Jon Coxworth – Intel – Centrino Technology
• Shawn Winter – Bell - AccessZone