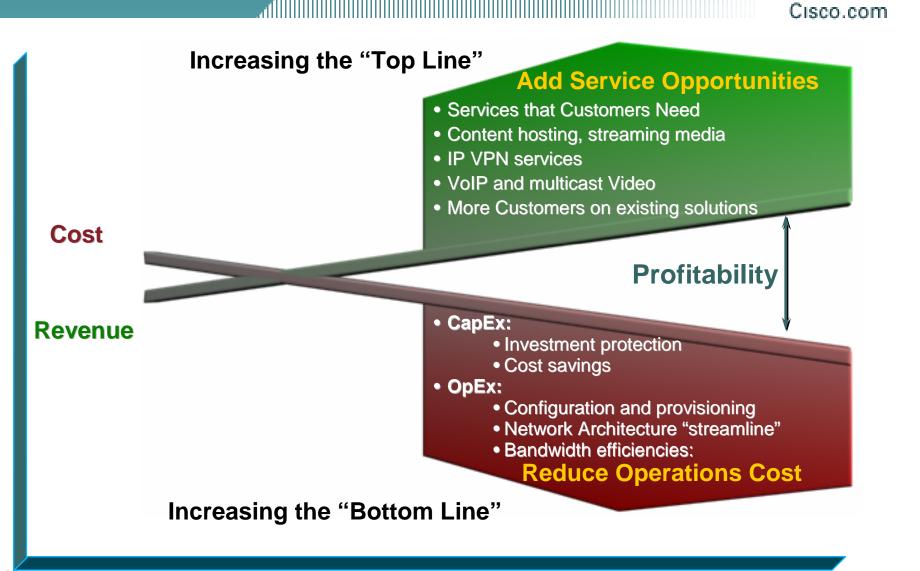
Introduction To L2 Transport & Tunneling Technologies (aka L2VPN)

James Moffat

Consulting Systems Engineer

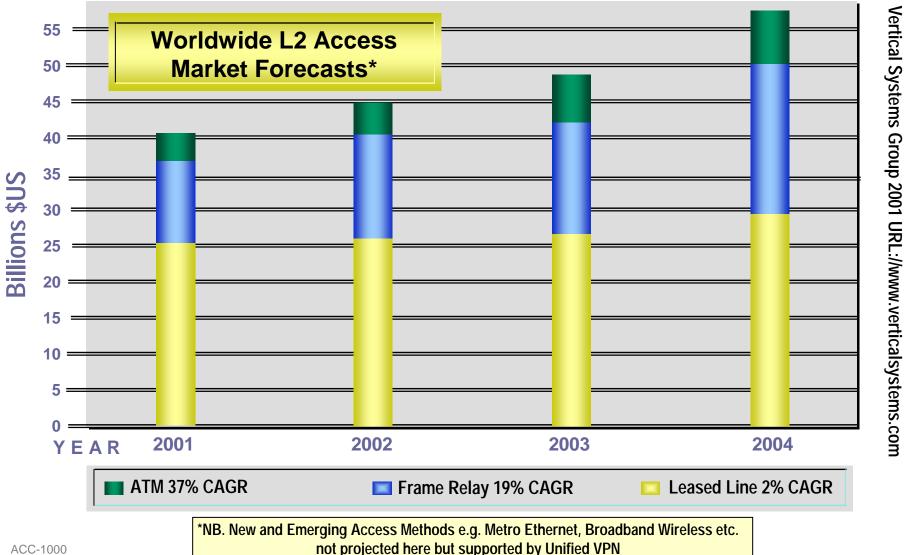
jmoffat@cisco.com

ACC-1000 8260_06_2003_X


- Define what the leading drivers for L2VPN over packet switched infrastructure are?
- Outline the IETF's role in L2VPN evolution.
- Provide a technical review of emerging L2VPN technologies for IP & MPLS cores.
- Demonstrate how application of L2VPNs is meeting the challenges of Service Providers.

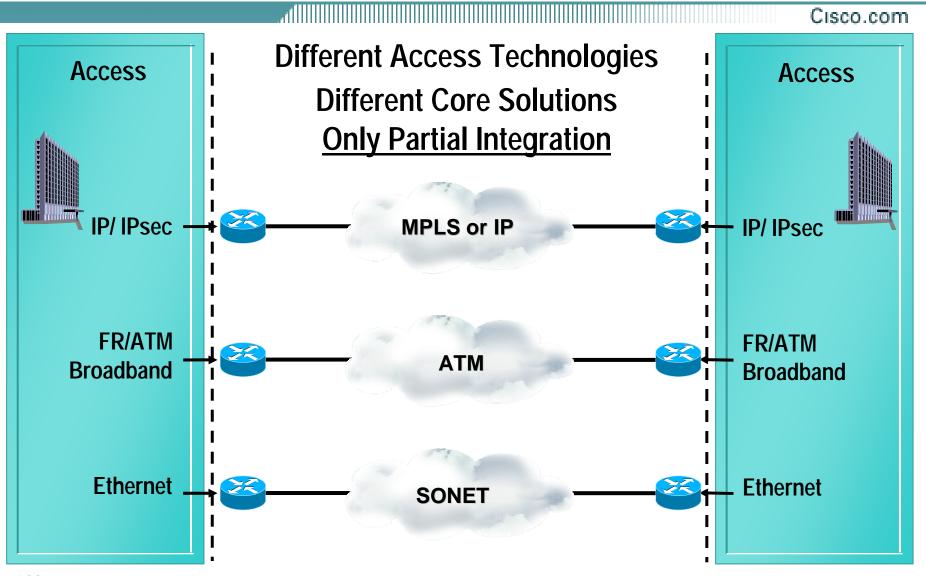
Why L2VPNs ?

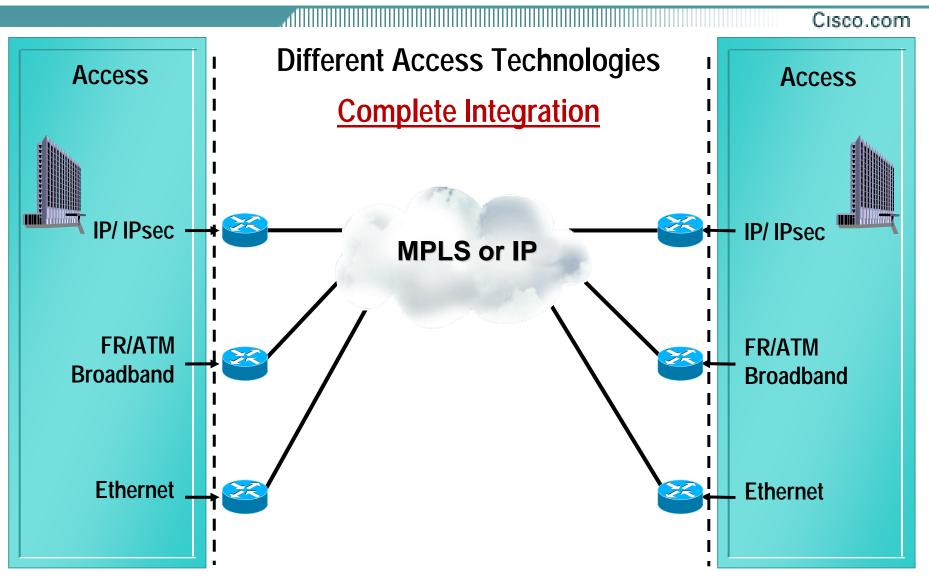
- Pseudowire Overview
- Layer 2 Tunneling Protocol (L2TPv3)
- Any Transport over MPLS (AToM)
- Virtual Private LAN Services
- L2VPN Applications


Realizing profitability on IP Networks...

ACC-1000 8260_06_2003_X

Current Major Access Methods


dilling Cisco.com


8260_06_2003_X

© 2003, Cisco Systems, Inc. All rights reserved.

VPN Deployments Today: Technology & VPN Diversity

Consolidated Core – Supports...

ACC-1000 8260_06_2003_X

Summary of Benefits for L2VPNs

Cisco.com

• New Service Opportunities

Virtual leased line Service

Offer "PVC like" Layer 2 based service

- Reduced Cost Consolidate multiple core technologies into a single packet-based infrastructure
- Simplify Services Layer 2 transport provide options for Service Providers who need to provide L2 connectivity and maintain customer autonomy.
- Protect Existing Investments Greenfield networks to extend customer access to existing Layer 2 networks without deploying an old-world infrastructure.
- Feature Support Through the use of IOS features such as IPsec, QoS and Traffic Engineering, L2 transport can be tailored to meet customer requirements

• Why L2VPNs ?

Pseudowire Overview

- Layer 2 Tunneling Protocol (L2TPv3)
- Any Transport over MPLS (AToM)
- Virtual Private LAN Services
- L2VPN Applications

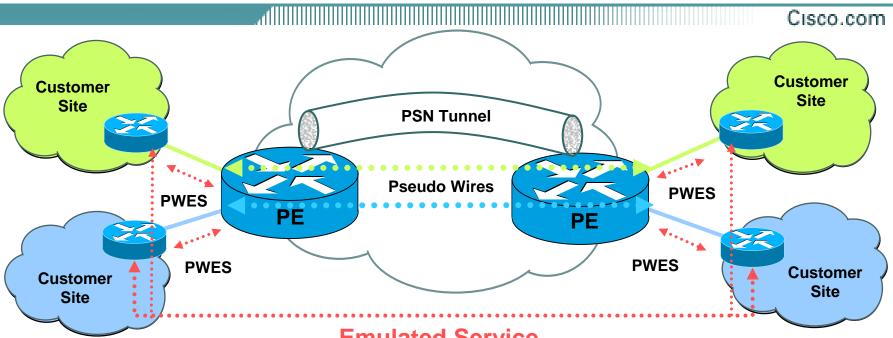
A brief word about L2 / L3 VPNs

Layer 3 VPNs

- Provider devices forward customer packets based on Layer 3 information (e.g., IP)
- •SP involvement in routing
- •MPLS/BGP VPNs (RFC 2547), GRE, virtual router approaches

Layer 2 VPNs

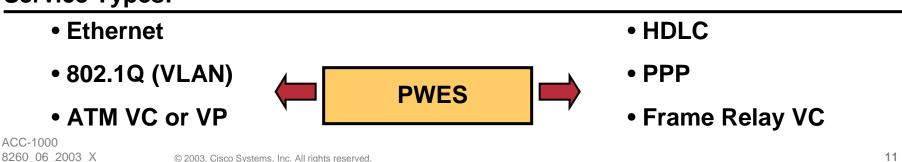
 Provider devices forward customer packets based on Layer 2 information


•Tunnels, circuits, LSPs, MAC address

"pseudo-wire" concept

Cisco.com

Pseudo Wire Reference Model


© 2003, Cisco Systems, Inc. All rights reserved.

Emulated Service

A pseudo-wire (PW) is a connection between two provider edge (PE) devices which connects two pseudo-wire end-services (PWESs) of the same type

Service Types:

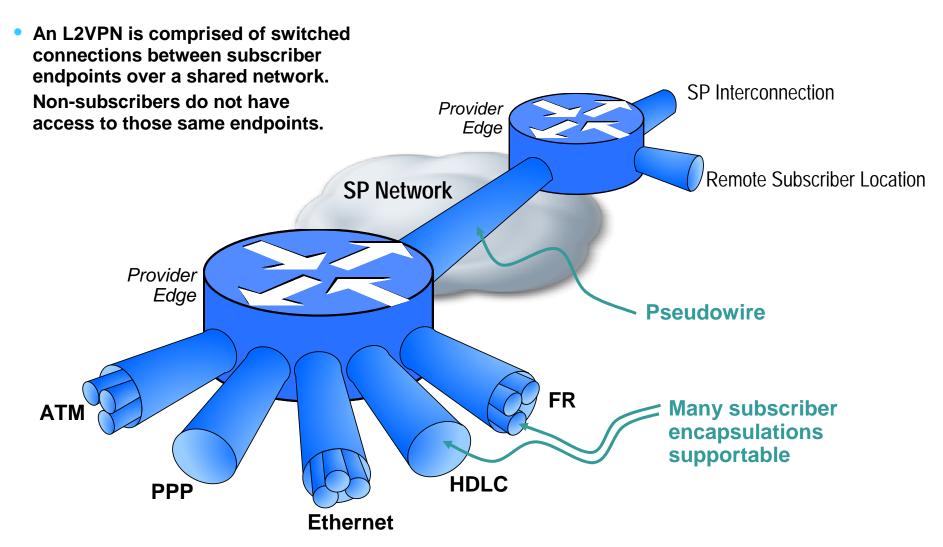
Pseudo Wire – Basic Building Blocks

Cisco.com

Control Connection Scale through: Session Management, Error Notification, L2 Access management interworking, etc.

Required Components

This is the delivery header of the encapsulated packet. This can be a Label (MPLS) or an IP Header. (Typically the IP address of the Loopback interface on Provider Edge (PE) routers.

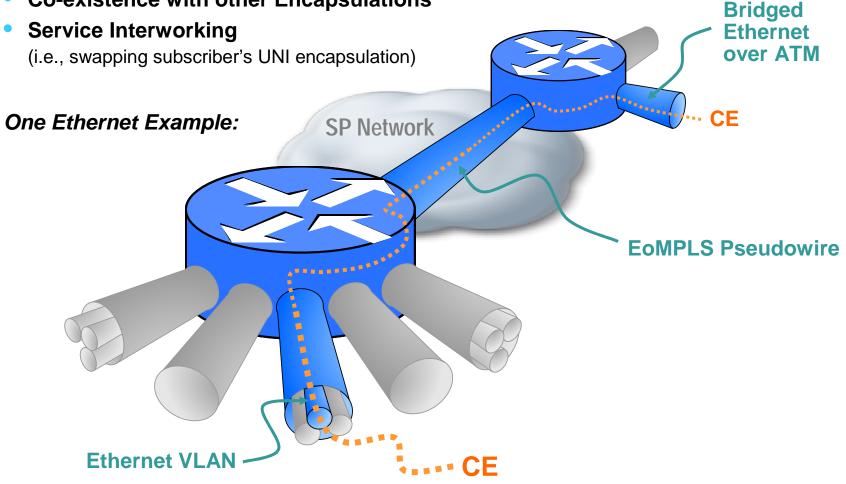

Tunneling Component A Unique identifier used to identify a particular circuit / port on a given PE. (VC Label or VC ID)

L2 PDU

The Layer 2 PDU that is the subject of transport (I.e. traffic received from the Customer Edge router, typically Ethernet, Frame Relay, HDLC frames,...etc.)

Connectivity between PEs assumed; verified through ICMP or LSP ping."

What is an L2VPN? IETF's L2VPN Logical Context


Cisco.com

13

What is an L2VPN? Pseudowire Abstraction Enables...

Cisco.com

- Transport over non-Native Backbones
- Co-existence with other Encapsulations

Pseudo Wire – IETF Working Groups

Cisco.com

Internet AreaTransport AreaL2TPEXTL2VPNPWE3

L2TP(v2 & v3):

- Extensions to RFC2661
- Control Plane Operation
- AVPs
- Updated data plane
- Relevant MIBs

VPLS, VPWS, IPLS:

- Solution Architectures
- PE Discovery
- Signaling (with PWE3)
- L2VPN OAM extensions
- Relevant MIBs

AToM:

- PWE3 Architecture
- PWE3 Requirements
- LDP Control Channel
- L2 Service Encap Specifics
- TDM, CES, etc.
- Relevant MIBs

IETF Standardization Activity

Cisco.com

IETF working group PWE3

'Pseudo Wire Emulation Edge to Edge';

Requirements detailed in

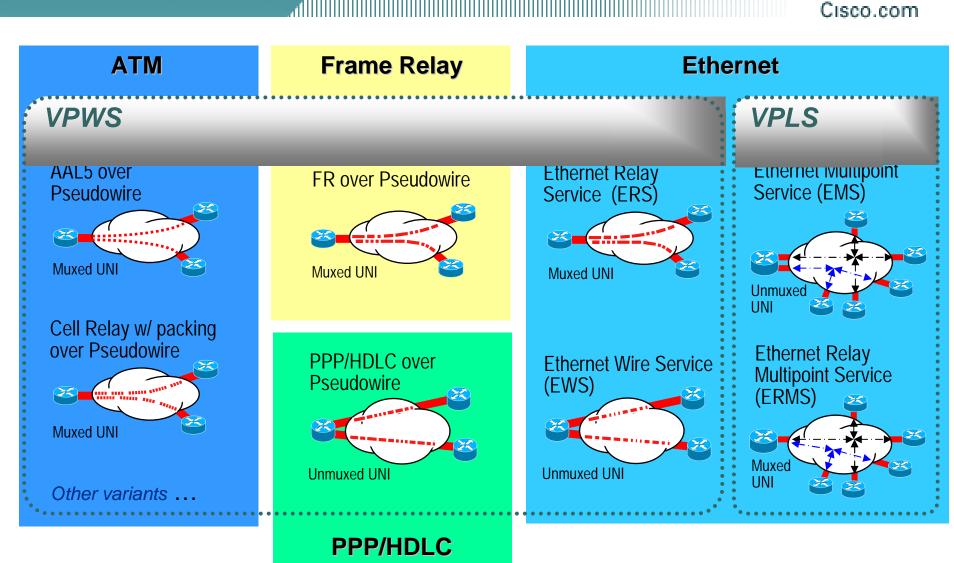
- draft-ietf-pwe3-requirements
- draft-ietf-pwe3-framework
- Develop standards for the encapsulation & service emulation of "pseudo wires"

Across a packet switched backbone

Focused on Point-to-Point circuit emulation
 PSN tunnel -> GRE, MPLS, L2TP

Service -> Ethernet, ATM, PPP, FR, HDLC and so on ..

Pseudo Wire – Cisco IETF Technology Adoption


Cisco.com

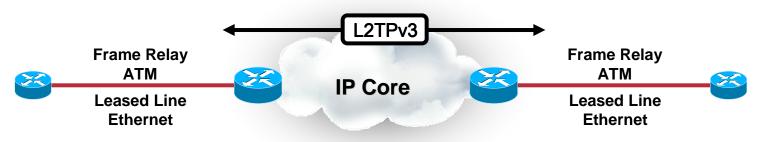
- Layer 2 Transport
 - L2TPv3
 - draft-ietf-l2tpext-l2tp-base
 - MPLS (P2P, formerly draft-martini)
 - draft-ietf-pwe3-control-protocol
 - draft-ietf-pwe3-[atm, frame-relay, ethernet, etc.]

Layer 2 VPN (VPLS)

- draft-ietf-l2vpn-vpls-ldp
- No VPLS draft for native IP
- Auto-Provisioning
 - draft-ietf-l2vpn-signaling (BGP auto-discovery)

Service Offerings L2VPN Transport Services

ACC-1000 8260_06_2003_X


- Why L2VPNs ?
- Pseudowire Overview

Layer 2 Tunneling Protocol (L2TPv3)

- Any Transport over MPLS (AToM)
- Virtual Private LAN Services
- L2VPN Applications

Layer 2 Tunneling Protocol version 3

Cisco.com

- L2TPv3 for customers that prefer a native IP network
- Provides ability to transport layer 2 traffic across IP packet-based core networks
- Based on a well-established lineage of protocols:
- L2TPv2 and pre-standards Cisco innovation – Universal Transport Interface (UTI)

- A standards track open architecture allows extensibility to many transport types
- Efficient header for high performance decapsulation
- Configuration on the edge routers (PEs) only!

Layer-2 Transport over IP

Cisco.com

L2TP Control Connection

Control Connection

Used for Session ID Negotiation, Withdrawal, Error Notification

'Emulated Circuits' have 3 layers of encapsulation

Transport Component

Delivery Header (IPv4 Header)

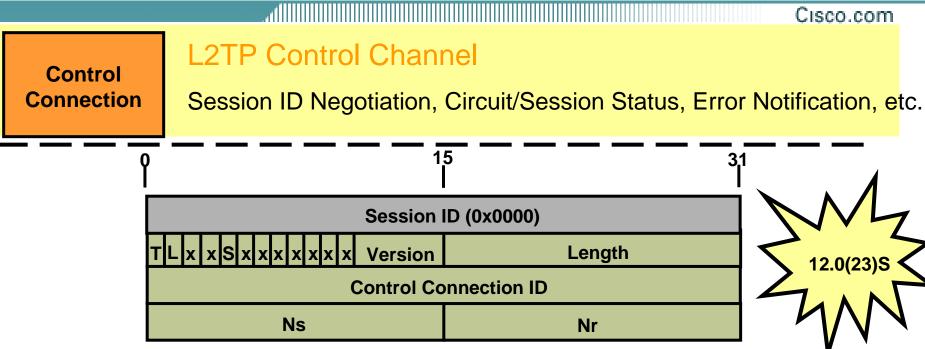
to transport an L2 PDU from ingress to egress PE;

Comprised of IPv4 loopback addresses (DA, SA)

Tunneling Component

Demultiplexer field (L2TPv3 Header)

to identify individual circuits within a tunnel;


(4 byte Session ID + Optional 8 byte Cookie)

ACC-1000 8260_06_2003_X L2 Specific Sublayer + Payload (Layer 2 PDU)

Basic Priority & Sequence Support L2 Payload:ATM, HDLC, PPP, Ethernet, Frame Relay, etc.

Layer-2 Transport over IP

- T Set to 1, indicates this is a control message
- L, S For a control message, this must be set to 1 indicating the presence of Length & Sequence fields
- x Reserved for future extensions.
- Ver Indicates which version of L2TP is in use. This field must be set to 3.
- Length Indicates the total size of the control message in octets, starting with the T bit.

Control Connection ID – A locally significant ID, it is the peer's ID not it's own.

ACC-1000 8260_06_2003_X

L2TP Control Connection Highlights

Cisco.com

Dynamic Sessions

L2TP Control Connection and sessions for each Pseudowire are setup and torn down dynamically, no need to configure each individually.

"In band" Data and Control Plane

If the Control Connection is active, the "IP path" between L2TP Connection endpoints is likely good.

Keepalive

Hello message provides periodic keepalive, dead-peer and path detection for all sessions associated with a given Control Connection.

Tunnel Authentication

Shared-secret tunnel authentication for Control Connection

• LMI Interworking - Circuit Status

Integration with various circuit LMI to provide circuit status updates without tearing down L2TP session.

Negotiating Circuit Identification – VC Information Exchange

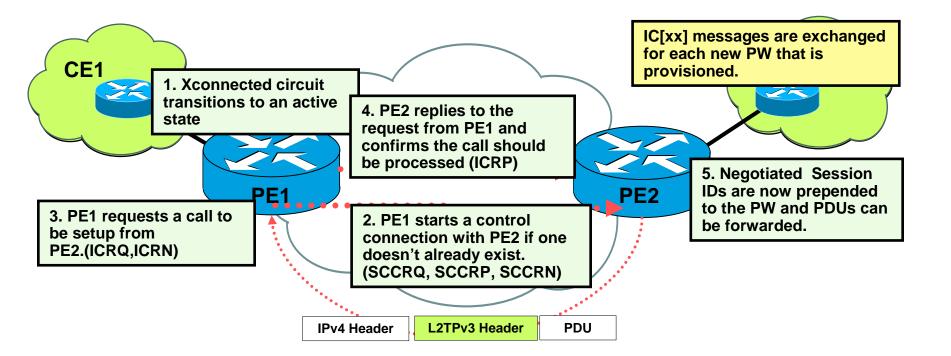
Cisco.com

Optional Control Connection provides scalable session negotiation and reliable VC management

Keepalive (Hellos)

Tunnel authentication

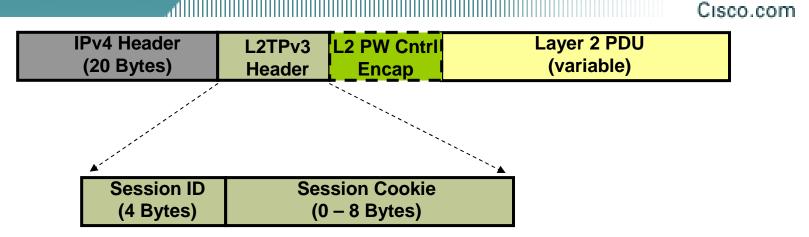
Session IDs are negotiated between L2TP Endpoints


Negotiated in L2TPv3 Control Messages (ICRQ, ICRP, ICCN), and applied to L2TPv3 Data Messages

Attribute Value Pairs (AVPs) are used to describe the session and provide optional parameters

Described in draft-ietf-I2tpext-I2tp-base-10.txt

L2TPv3 – Session Negotiation

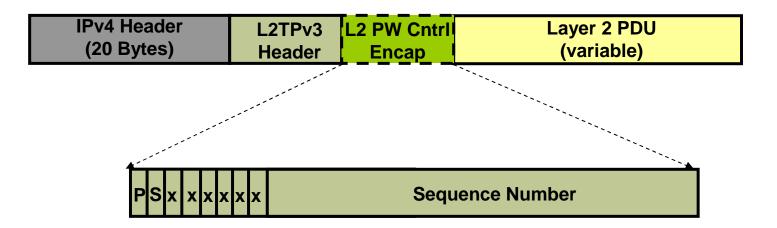

Cisco.com

Bi-directional Session ID exchange initiated by one of the LCCEs

ACC-1000 8260_06_2003_X

L2TPv3 – Data Messages

IPv4 Header - The delivery header for the Tunnel. Always destined for an LCCE.


L2TPv3 header – Consists of two parts; (1) Session ID used to uniquely identify the correct Session on the Remote system, and (2) the **Cookie** used as an added measure of session integrity between peers.

L2 PW Control Encapsulation - Sequence numbers, priority bits, and any additional flags needed to support the L2 emulation for the given PW type. There is a default defined in the L2TPv3 base specification, though this may vary among PW types if necessary.

Payload - Payload to be transported by L2TPv3. Typically the entire link-level frame.

Default L2-Specific Sublayer

Cisco.com

PW emulation enhancements (optional):

(P)riority – Used to give higher priority to PW packets that shouldn't be dropped during congestion. This is not a hop-by-hop QoS bit. Per-hop QoS should utilize IP ToS (DSCP) settings.

(S)equencing - Indicates the presence of sequence numbers and can be used in services such as ATM / Frame-Relay, etc. (2^24 Looping Counter, includes 0)

L2TPv3 – Highlights of IP Data Plane

Cisco.com

ICMP Data Plane Validation

Simple Ping validates data path (no T-LSP validation required)

Path MTU

Leverage the Control Plane to communicate the data plane MTU between LCCEs

Fragment IP packets before entering PW

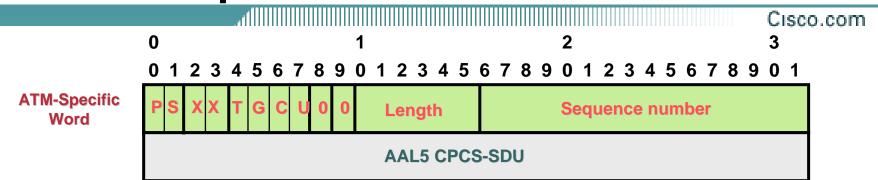
• Time-to-Live

Control the scope of routable space for the L2TPv3 packets

Type-of-Service (DSCP)

Set the Precedence bits of the encapsulating header May 'reflect' the TOS bits from framed and tunneled IP payloads

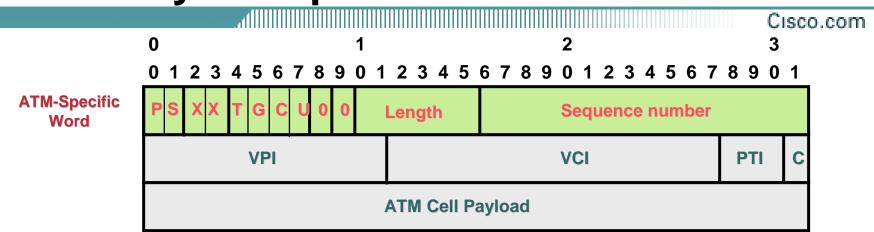
ATM Transport over L2TPv3


 Two main requirements for the transport of ATM across an MPLS backbone
 AAL5 encapsulated frames (RFC1483)

ATM cells (cell relay)

Multiple modes of operation
 AAL5 Transport – VC Mode
 ATM Cell Relay – VC, VP, Port Mode
 Cell Packing – VC / VP / Port Mode

Cisco.com


AAL5 Encapsulation Details

• Support AAL5 SDU Mode:

- Ingress port discards PAD and CPCS-PDU trailer
- Egress port rebuilds PAD and AAL5 trailer
- ATM-Specific Sublayer is Required (Similar to AToM)
- Control word flags encapsulate transport type, EFCI, CLP, C/R bit
- OAM emulation and transparency
 - Emulation terminates at the local PE
 - Transparent passes OAM cells across the pseudowire

Virtual Path – Cell Relay Encapsulation Details

- Each ATM VP maps to a single L2TPv3 Session
- Support for any ATM Adaptation Layer
- F4 / F5 OAM Cells are transported transparently
- ATM-Specific Sublayer and Sequence Number
- Cell Packing Capable

ATM Transport over L2TPv3 OAM Cell Support and ILMI

- Cisco.com
- OAM emulation signaled via AVP (AAL5-SDU only)
- Pass (Transport) through supported for AAL5/CR/CP
- Emulation possible for AAL5-SDU only
- Emulation provides periodic loopback cells, AIS/RDI generation
- ILMI:
- Label withdrawal initiated if PVC goes down
- Remote CE notified via ILMI after label withdrawal

Frame Relay Transport over L2TPv3

Cisco.com

Frame Relay Connection Types

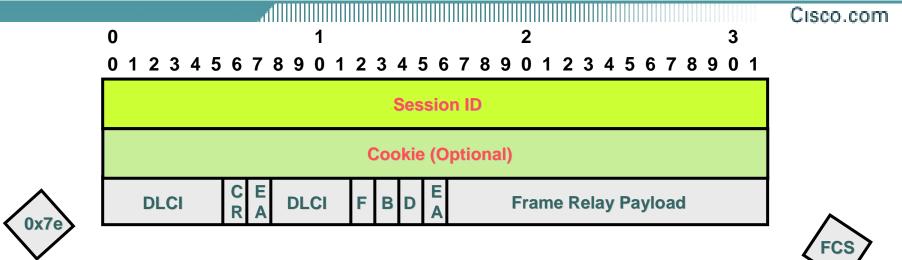
Port Trunking (HDLC encap, like encaps req.)

DLCI-to-DLCI Switching

Encapsulation Support

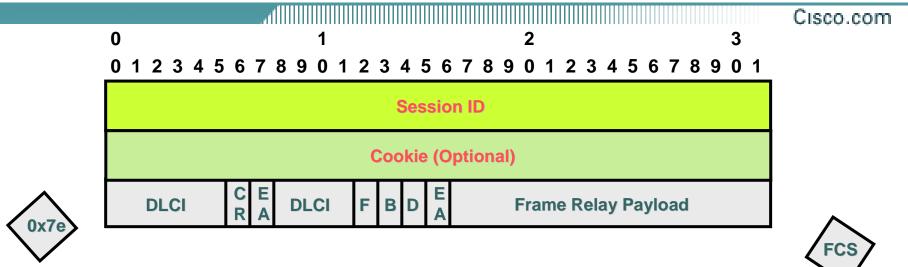
Cisco, IETF (RFC1490)

Does not require like encaps on both sides


LMI Support

Cisco, ANSI, Q933a

- DLCI-to-DLCI, LMI types can differ
- Port-to-Port, LMI must be the same


Note: Check L2VPN Roadmap for specific feature & platform support

Frame Relay Encapsulation Details DLCI to DLCI

- Unique Session ID per DLCI
- Frame Relay PDUs are transported without the start flag and Frame Check Sequence (FCS)
- Default L2-Specific sub-layer is optional
- BECN, FECN, DE & C/R bits are carried within the original frame
- DLCI value is re-written, if necessary, on egress port

Frame Relay Encapsulation Details Port Mode

- Used to trunk between switches carrying multiple PVCs
- All DLCIs on the port use the same Session ID
- VCs are not individually visible

• The L2-Specific sub-layer is optional

© 2003, Cisco Systems, Inc. All rights reserved

8260_06_2003_X

Frame Relay over MPLS Link Management Interface

• For DLCI-to-DLCI mode:

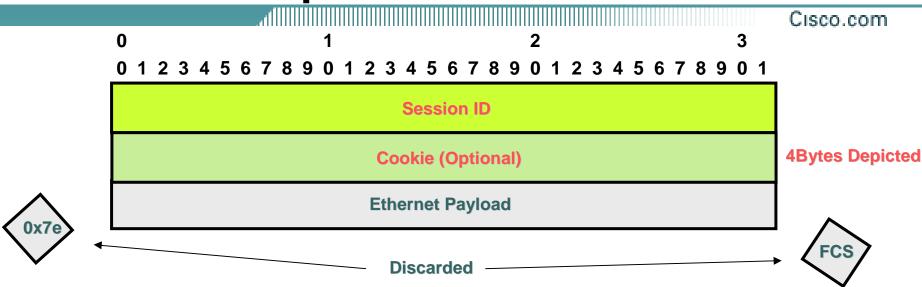
PVC Status is conveyed with Set Link Info (SLI) messages (Active, Inactive, Deleted)

Remote CE notified via LMI after label withdrawal

 LMI frames transported transparently for port mode

Cisco.com

Ethernet Transport over L2TPv3

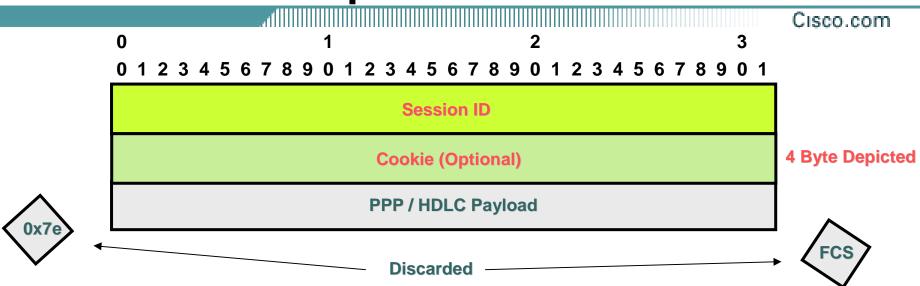

Cisco.com

Two modes of operation Port

- VLAN
- Point-to-Point configuration
- ISL not supported

Note: Check L2VPN Roadmap for specific feature & platform support

Ethernet Encapsulation Details


- Frame are transported without preamble and FCS
- L2-Specific sub-layer is not required
- 802.1Q tag may be rewritten in VLAN mode
- PE port requires promiscuous mode for proper operation

ACC-1000 8260_06_2003_X

PPP/HDLC Transport over L2TPv3

- Simplest PW model (transparent frame passthrough)
- PEs do not participate in PPP negotiation
- ACs must have similar physical characteristics (e.g. sync / async, PPP Multilink)

PPP/HDLC Encapsulation Details

- HDLC frames transported without frame flags and FCS
- PPP frames transported without frame flags, media-specific framing info and FCS
- The L2-Specific sub-layer is optional, may be used to ensure out-of-sequence detection

8260_06_2003_X

L2TPv3 – CLI Example

802.1Q VLAN over IP

```
pseudowire-class vlan-hi-priority
```

```
encapsulation 12tpv3
```

ip local interface Loopback0

```
ip pmtu
```

```
ip tos value 5
```

```
!
```

```
interface loopback 0
```

```
ip address 172.18.255.1 255.255.255.255
```

```
!
```

```
interface FastEthernet5/1.150
```

```
encapsulation dot1Q 150
```

xconnect 172.18.255.3 150150 pw-class vlan-hi-priority

L2TPv3 – Summary

- L2TPv3 is used for the point to point transparent transport of Layer 2 PDUs across and native IP cores.
- L2TPv3 uses control messages (ICRQ, ICRP, etc.) to negotiate Session IDs and session specific AVPs
- L2TPv3 can use an optional L2-Specific sub-layer to preserve ensure out-of-sequence detection and discard
- L2TPv3 provides interworking with native service management protocols to maintain VC status via SLI messages (ex. LMI, ILMI, etc.)

Cisco.com

- Why L2VPNs ?
- Pseudowire Overview
- Layer 2 Tunneling Protocol (L2TPv3)

Any Transport over MPLS (AToM)

- Virtual Private LAN Services
- L2VPN Applications

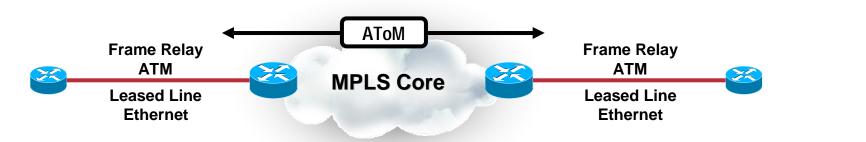
Cisco.com

ATOM Any Transport Over MPLS

Layer 2 Transport for MPLS Networks

HDLC/PPP

Frame Relay


Ethernet

802.1Q

ATM AAL5 & Cell Relay

ACC-1000 8260_06_2003_X

Any Transport over MPLS (AToM)

- Provides ability to transport layer 2 traffic across MPLS packet-based core networks, extending the richness of MPLS capabilities to L2 VPNs
- A scalable architecture that supports the multiplexing of subscriber connections
- A standards track open architecture allows extensibility to many transport types

- Designed for Any-to-Any connectivity
- Service Provider does not participate in customer routing
- Allows Service Providers to combine with Cisco IOS QoS and MPLS Traffic Engineering to provide "Virtual leased line" like services

Layer-2 Transport across MPLS

Two relevant drafts by Luca Martini

Cisco.com

draft-ietf-pwe3-control-protocol

describes label distribution mechanisms for VC labels

• draft-ietf-pwe3-atm-encap, draft-martini-ppp-hdlc-encap-mpls

draft-ietf-pwe3-ethernet-encap, draft-ietf-pwe3-frame-encap, etc.

describes emulated VC encapsulation mechanisms

- Layer 2 Transport Options:
 - Frame Relay
 - > ATM AAL5 & ATM Cell Relay
 - Ethernet, 802.1q (VLAN)

> POS

> TDM, Cisco HDLC & PPP

ACC-1000 8260_06_2003_X

Layer-2 Transport across MPLS

Cisco.com

Directed LDP

Control Connection

Used for VC-Label Negotiation, Withdrawal, Error Notification

'Emulated Circuits' have 3 layers of encapsulation

Transport Component Tunnel Header (Tunnel Label)

to get PDU from ingress to egress PE;

MPLS LSP derived through LDP or RSVP-TE

Tunneling Component Demultiplexer field (VC Label)

to identify individual circuits within a tunnel; could be an MPLS label, L2TPv3 header, GRE Key, etc.

L2 PDU

(Emulated)

ACC-1000 8260_06_2003_X Emulated VC encapsulation (Control Word)

information on enclosed Layer-2 PDU; implemented as a 32-bit control word

AToM Control Connection Highlights

Cisco.com

Dynamic Sessions

- Directed LDP control connection negotiates VC-Labels dynamically
- Pseudowire are setup and torn down dynamically

Reliable Control Plane

- TCP based control connection allows for guaranteed, sequenced delivery of control messages
- LDP Hellos used for dead peer detection (targeted is a 45sec holdtime)

• LMI Interworking - Circuit Status

 Integration with native service circuit management provides a means for circuit status updates without tearing down AToM pseudowire.

Negotiating Circuit Identification – VC Information Exchange

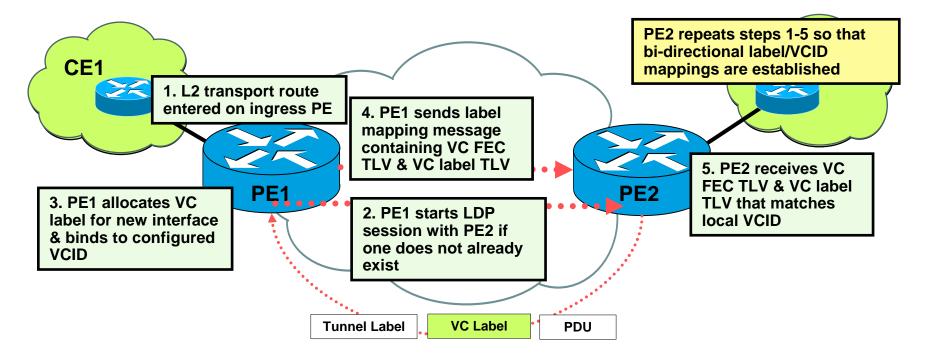
Cisco.com

VC labels are exchanged across a directed LDP session between PE routers

Carried in Generic Label TLV within LDP Label Mapping Message (RFC3036 -LDP)

 New LDP FEC element defined to carry VC information

FEC element type '128 – Virtual Circuit FEC Element';


Carried within LDP Label Mapping Message

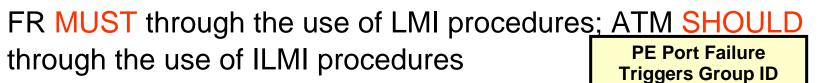
VC information exchanged using Downstream Unsolicited label distribution procedures

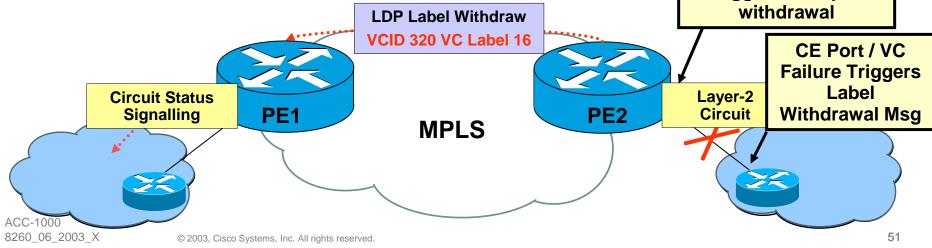
Described in draft-martini-l2circuit-trans-mpls

AToM – Label Mapping Exchange

Cisco.com

Bi-directional Label / VCID mapping exchange


VC Label Withdrawal Procedures


Cisco.com

 If a PE router detects a condition that affects normal service it MUST withdraw the corresponding VC label

Through the use of LDP signalling

A PE router may provide circuit status signalling

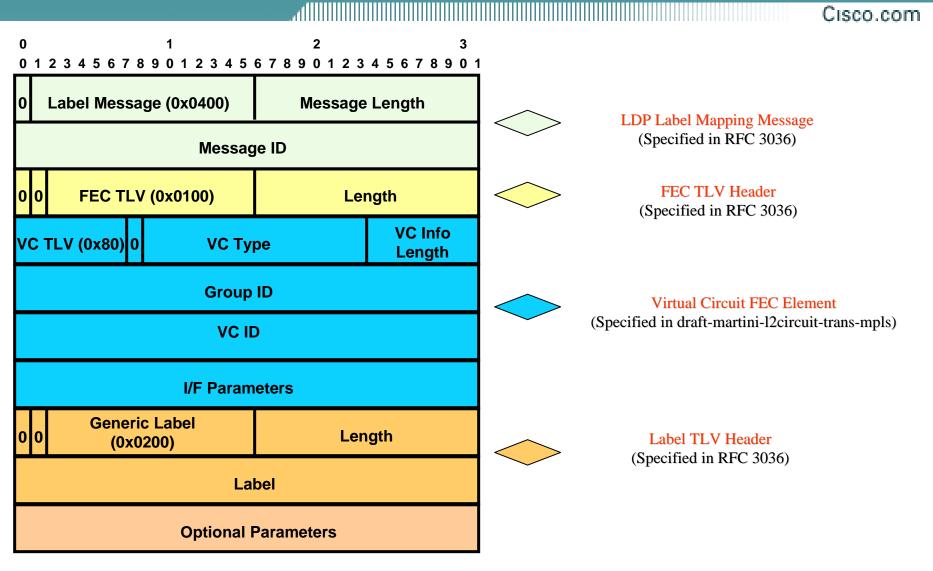
Virtual Circuit FEC Element

Cisco.com 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 VC TLV (0x80) C VC-type VC info length Group ID VC ID

<u>C: Control Word</u> (1 bit) – Control word present if bit set

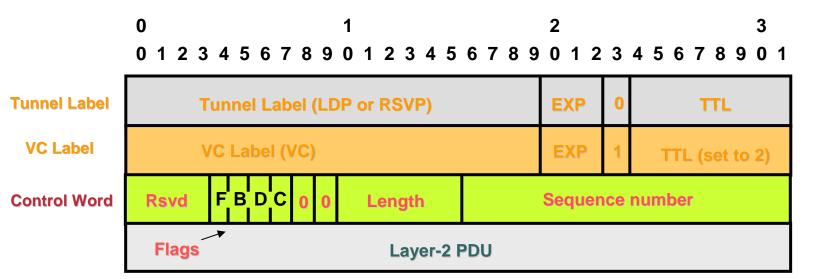
VC-type (15 bits) - Type of VC e.g FR, ATM, VLAN, Ethernet, PPP, HDLC

VC info length (8 bits) – Length of VCID field and interface parameters


Group ID (32 bits) – Represents a groups of VCs. Can be used for mass label withdrawal

Interface Parameters

VC ID (32 bits) – Connection identifier used in conjunction with the VC-type to identify a particular VC


Interface Parameters (Variable) – Edge facing interface parameters, such as MTU

VC Label Mapping – Composition

Layer-2 Transport Control Word

Cisco.com

When transporting layer-2 protocols over an IP or MPLS backbone:

The sequence of the packets may need to be preserved;

Small packets may need to be padded if the minimum MTU of the medium is larger than actual packet size;

Control bits carried in header of Layer-2 frame may ACC-1000 need to be transported 8260_06_2003_X elso Systems, linc. All rights reserved.

Control Word	
Encap.	Required
CR	No
AAL5	Yes
Eth	No
FR	Yes
HDLC	No
PPP	No

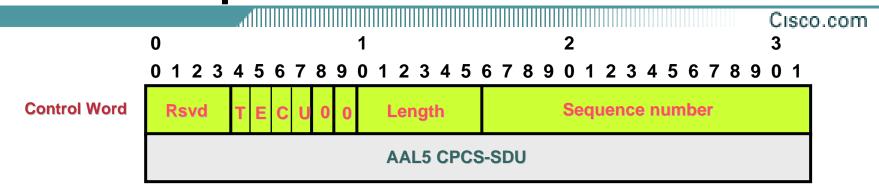
Highlights of AToM Data Plane

• MPLS-QoS

- Offer service differentiation through multi-class policies

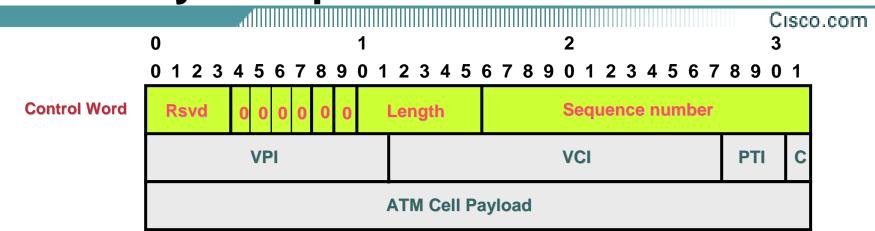
 Set EXP bits in VC & Tunnel Labels based on ingress IP DSCP, 802.1p, FR-DE, ATM-CLP, etc.

• MPLS-TE

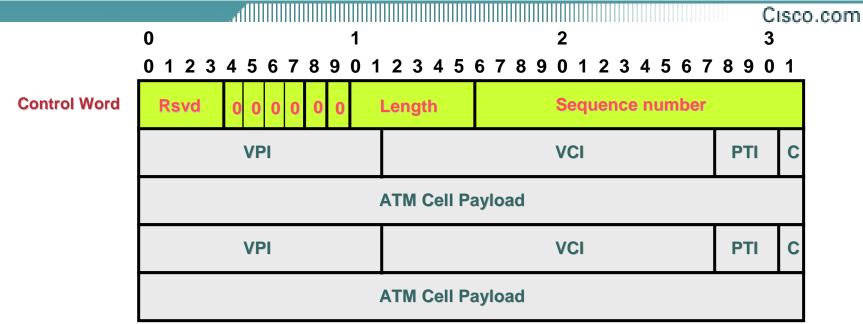

- Use MPLS-TE for bandwidth protection and enable "tight SLA"
- Use tunnel selection to choose which path traffic will traverse

 Fast Reroute (FRR) allows link and node protection for pseudowires providing quick recovery times around network failures

ATM Transport over MPLS


- Two main requirements for the transport of ATM across an MPLS backbone
 AAL5 encapsulated frames (RFC1483)
 ATM cells (cell relay)
- Multiple modes of operation
 AAL5 Transport VC Mode
 Cell Relay VC / VP / Port Mode
 Cell Packing VC / VP Mode

AAL5 Encapsulation Details


- AAL5 SDUs are encapsulated
- Control word is required
- Control word flags encapsulate transport type, EFCI, CLP, C/R bit
- Service allows transport of OAM and RM cells

Cell Relay Encapsulation Details

- Single cell is encapsulated
- Control word is optional
- Control word flags should be set to zero and ignored

Cell Packing Encapsulation Details

- Multiple cells are packed per MPLS packet
- All cells must belong to the same VC / VP
- Packing controlled by max number of cells and timer
- Control word is optional

ACC-1000 8260_06_2003_X

ATM Transport over MPLS OAM Cell Support and ILMI

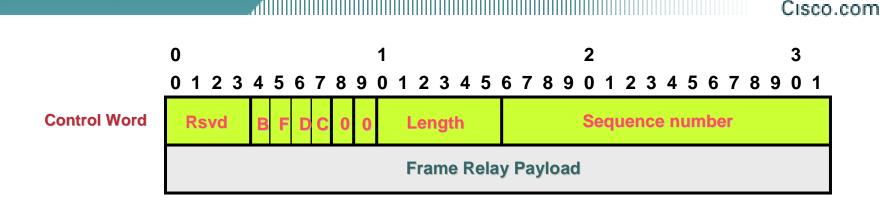
- Transport supported for AAL5/CR/CP
- Always encapsulated in single packet
- Emulation possible for AAL5 transport
- Emulation provides periodic loopback cells, AIS/RDI generation
- Label withdrawal initiated if PVC goes down
- Remote CE notified via LMI after label withdrawal

Frame Relay Transport over MPLS

Cisco.com

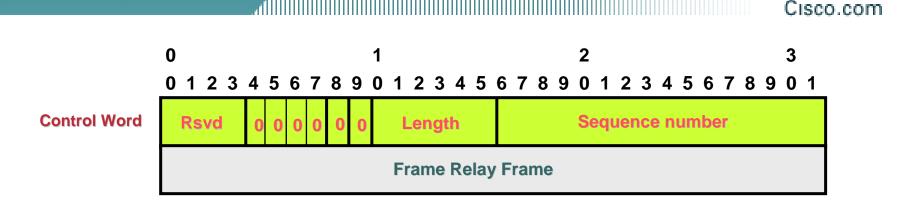
Frame Relay Connection Types:

- Port to Port Switching (HDLC encap)
- DLCI-to-DLCI Switching


Encapsulation Support:

- Cisco, IETF (RFC1490)
- Does not require like encaps on both sides

LMI Support:


- Cisco, ANSI, Q933a
 - DLCI-to-DLCI, LMI types can differ
 - Port-to-Port, LMI must be the same

Frame Relay Encapsulation Details DLCI to DLCI

- Frame Relay PDUs are transported without header and FCS
- The control word is required
- BECN, FECN, DE & C/R bits are carried within the control word

Frame Relay Encapsulation Details Port Mode

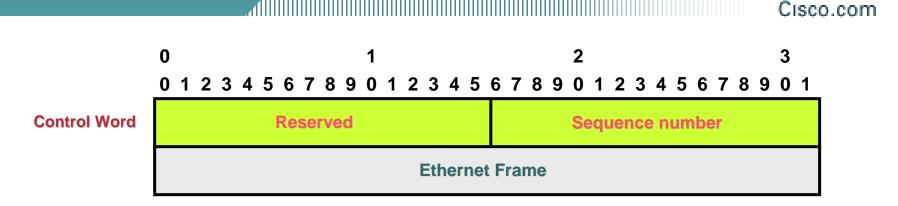
- Frame Relay frames transported without frame flags and FCS
- VCs are not individually visible
- The control word is optional
- Control word flags should be set to zero and ignored

Frame Relay over MPLS Link Management Interface

• For DLCI-to-DLCI mode:

Label withdrawal initiated if PVC goes down

Remote CE notified via LMI after label withdrawal

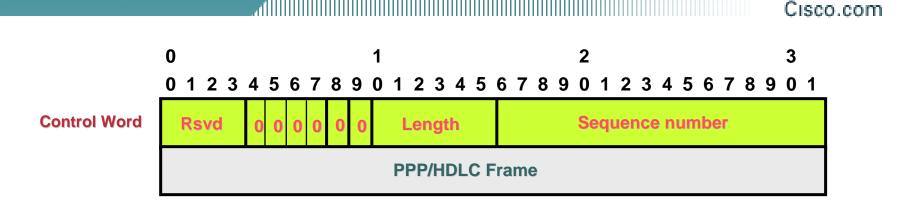

 LMI frames transported transparently for port mode

Ethernet Transport over MPLS

Cisco.com

Two modes of operation Port VLAN ISL not supported

Ethernet Encapsulation Details



- Ethernet frames transported without preamble and FCS
- Control word is optional
- 802.1Q tag may be rewritten in VLAN mode

PPP/HDLC Transport over MPLS

- Simplest PW model (transparent frame passthrough)
- PEs do not participate in PPP negotiation
- ACs must have similar physical characteristics (e.g. sync /async, PPP Multilink)

PPP/HDLC Encapsulation Details

- HDLC frames transported without frame flags and FCS
- PPP frames transported without frame flags, mediaspecific framing info and FCS
- The control word is optional
- Control word flags should be set to zero and ignored

AToM – CLI Example in 12.0(25)S

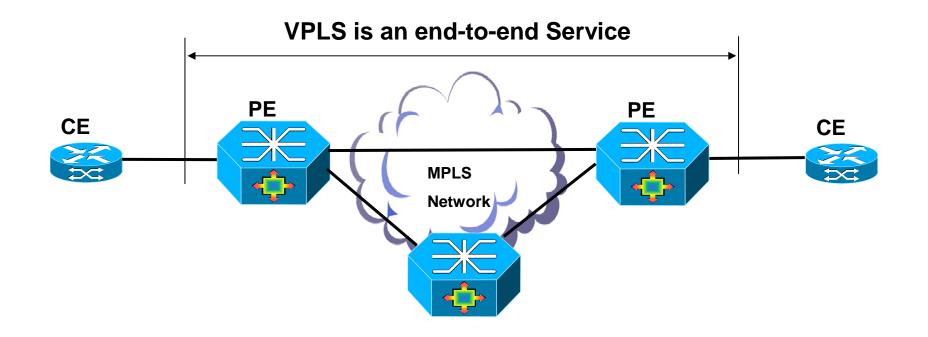
ATM Cell Relay over MPLS: VC Mode

```
mpls label protocol ldp
mpls ldp router-id loopback0 force
I
interface loopback 0
 ip address 172.18.255.1 255.255.255.255
I
interface atm1/0
pvc 100/1 l2transport
encapsulation aal0 <- raw cell mode, no SAR
xconnect 172.18.255.3 100 encapsulation mpls
```

AToM – Summary

- AToM is used for the point-to-point transport of Layer 2 PDUs across an MPLS enabled cores.
- AToM uses Directed LDP sessions to negotiate VC Labels between participating peers
- AToM can use a Control Word to preserve relevant information in transported PDUs (ex: BECN, FECN, DE, C/R bits, etc.)
- AToM can interwork with native service management protocols such as ILMI / LMI to indicate local circuit status to remote peers

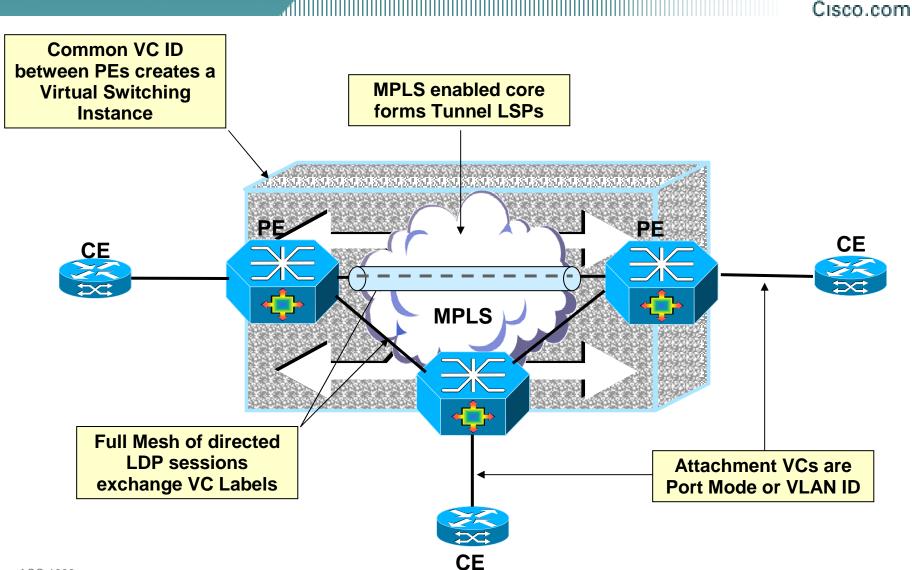
Cisco.com


- Why L2VPNs ?
- Pseudowire Overview
- Layer 2 Tunneling Protocol (L2TPv3)
- Any Transport over MPLS (AToM)

Virtual Private LAN Services

L2VPN Applications

What is VPLS ? Service or Architecture


Cisco.com

Initial IETF drafts:

- treat PWs a logical ports of a switch
- do MAC address learning/forwarding on that logical port
- Run split horizon among the PWs to avoid STP over core

VPLS Overview – Building Blocks

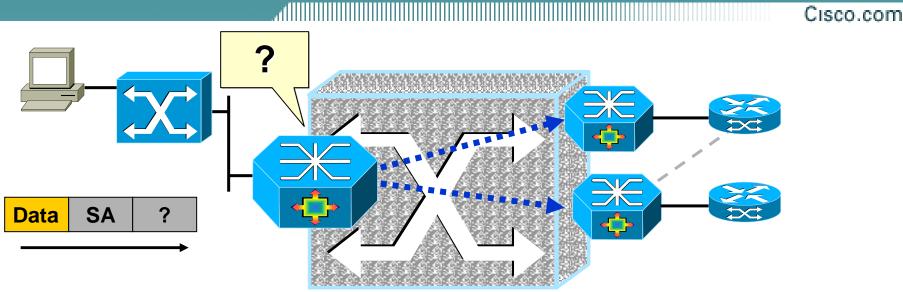
VPLS – L2 Forwarding Instance

Requirements for this solution

MAC table instances per customer and per customer VLAN (L2-VRF idea) for each PE

VSI will participate in learning, forwarding process

Create partial or full-mesh of EoMPLS VCs per VPLS


Usage of network "split horizon" to prevent loops

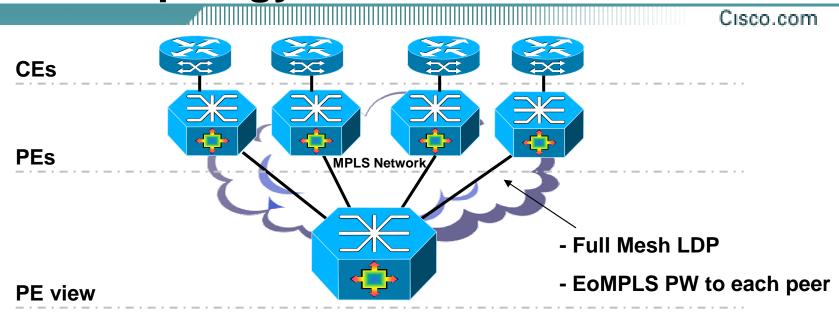
New additional VC-Type to draft-martini-trans

Announce EoMPLS VPLS VC tunnels


New additional MAC TLV to LDP

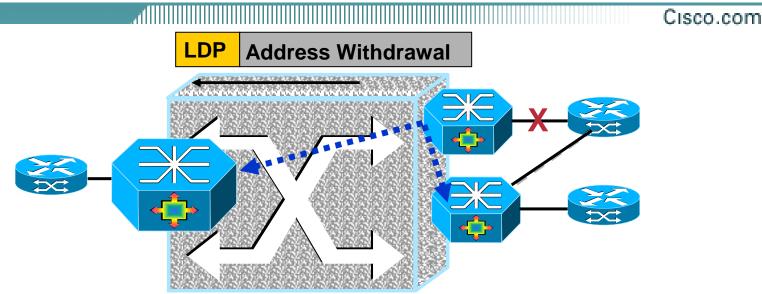
VPLS Overview – Flooding & Forwarding

- Flooding (Broadcast, Multicast, Unknown Unicast)
- Dynamic learning of MAC addresses on PHY and VCs
- Forwarding:
 - Physical Port
 - Virtual Circuit


VPLS Overview – MAC Address Learning

- Broadcast, Multicast, and unknown Unicast are learned via the received label associations
- 2 LSPs associated with an VC (Tx & Rx)
- If inbound or outbound LSP is down the entire circuit is considered down

ACC-1000 8260_06_2003_X


VPLS Overview – L2 VPN Topology

- Each PE has a P2MP view of all other PEs it sees it self as a root bridge, split horizon loop protection
- Full mesh topology obviates STP requirements in the service provider network
- Customer STP is transparent to the SP / Customer BPDUs are forwarded transparently

ACC-1000 8260_06_2003_X

VPLS Overview – MAC Address Withdrawal

- Primary link failure triggers Notification Message
- PE removes any locally learned MAC addresses and send LDP Address Withdrawal (RFC3036) to remote PEs in VPLS
- New MAC TLV is used

Cisco.com

- Why L2VPNs ?
- Pseudowire Overview
- Layer 2 Tunneling Protocol (L2TPv3)
- Any Transport over MPLS (AToM)
- Virtual Private LAN Services

L2VPN Applications

L2VPN Application – Objectives

• Illustrate How L2VPNs are being utilized:

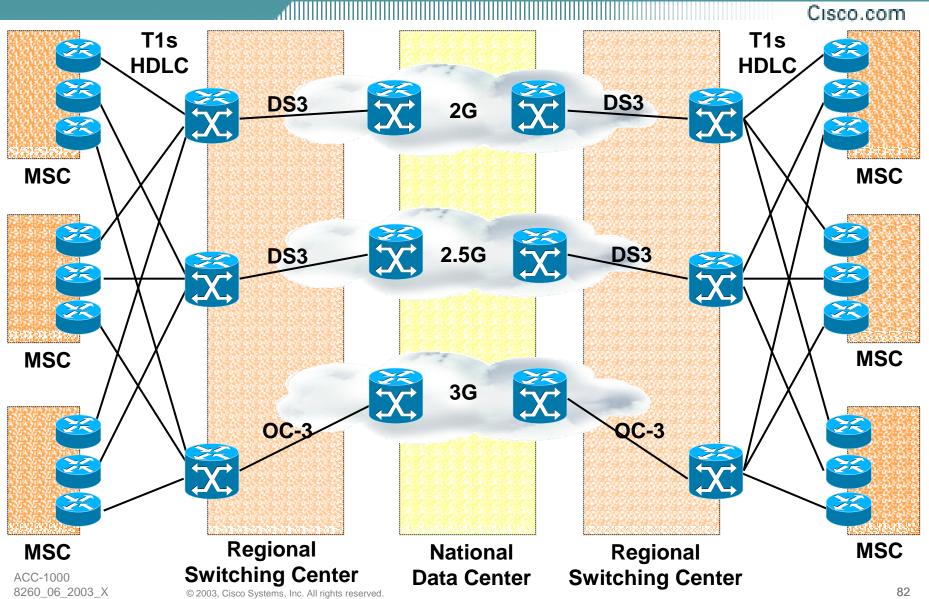
Operational Simplification through Network Consolidation

Creative Cost Reduction for managed Services Leveraging the PSN for New Services

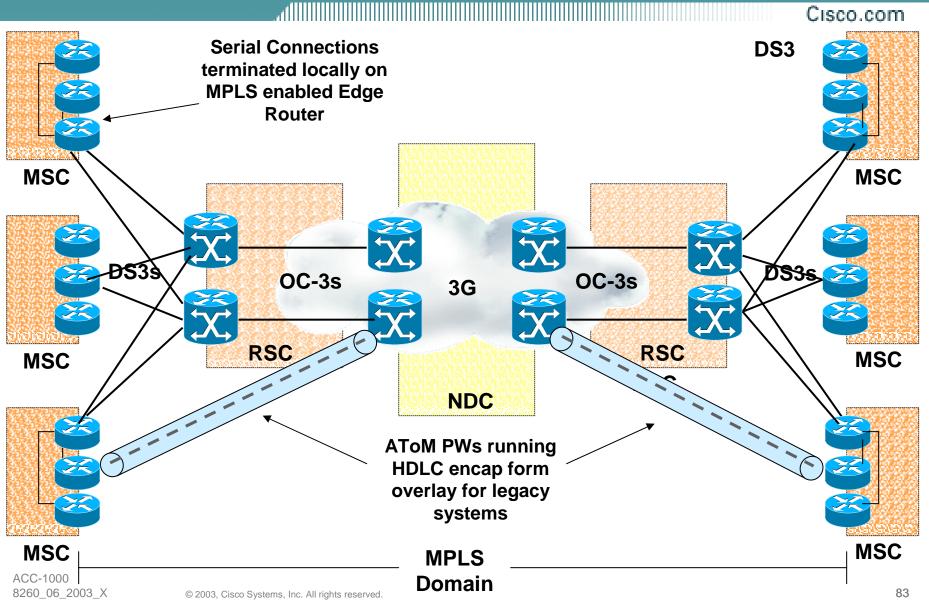
L2VPNs – Network Consolidation

Cisco.com

Provider Profile:


Wireless services, updating internal infrastructure, no new service creation

Problem:


- Next generation technology required build-out of new network infrastructure
- Legacy services left too many overlapping networks to support, maintain and operate.
- New high-speed network is underutilized

Q: How can the Service Provider consolidate legacy systems by utilizing L2VPN technology?

L2VPNs – Pre - Network Consolidation

L2VPNs – Post - Network Consolidation

Consolidation – Migration Steps

- Establish base MPLS infrastructure
 - Enable on P, PE routers
- Incorporate enhanced MPLS services
 - Add MPLS TE Tunnels
 - Add relevant QoS configurations
- Upgrade links & design
 - Redundancy Considerations
 - Capacity
- Migrate the MSCs to main uplinks
 - Configure overlay network with AToM PWs

Consolidation – FRR Resiliency

FRR Link & Node Protection PE1 PE1 P Cisco.com

Note: Only pw-class reference to MPLS-FRR is depicted here.

PE1(Configuration):

pseudowire-class HDLC_CEs

encapsulation mpls

preferred-path interface Tunnel10 disable-..

Serial1/0

encapsulation hdlc

xconnect 1.0.0.1 100 pw-class HDLC_CEs

PE2(Configuration): pseudowire-class HDLC_CEs encapsulation mpls preferred-path interface Tunnel10 disable-... Serial1/0. encapsulation hdlc xconnect 1.0.0.1 100 pw-class HDLC_CEs

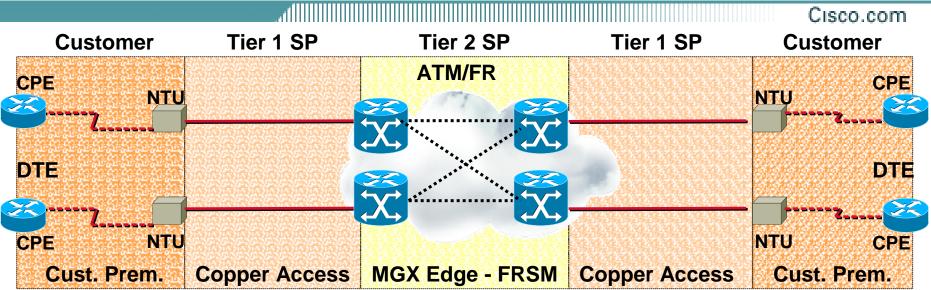
Consolidation – Benefit Summary

- Leveraged new high speed network
- Reduced OPEX for multi-network infrastructure
- Migration path for future L2 & L3 services to external client base
- Enabled hardware migration for next generation wireless gear

L2VPNs – Recurring Cost Reduction

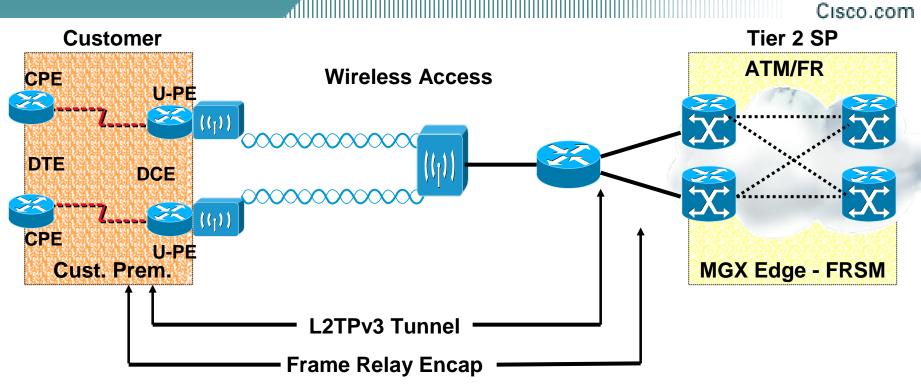
Cisco.com

Provider Profile:


 Tier 2 Service Provider, regulatory limitation prevents owning copper last mile; ILEC leased. Providing Frame Relay, Leased Line services

Problem:

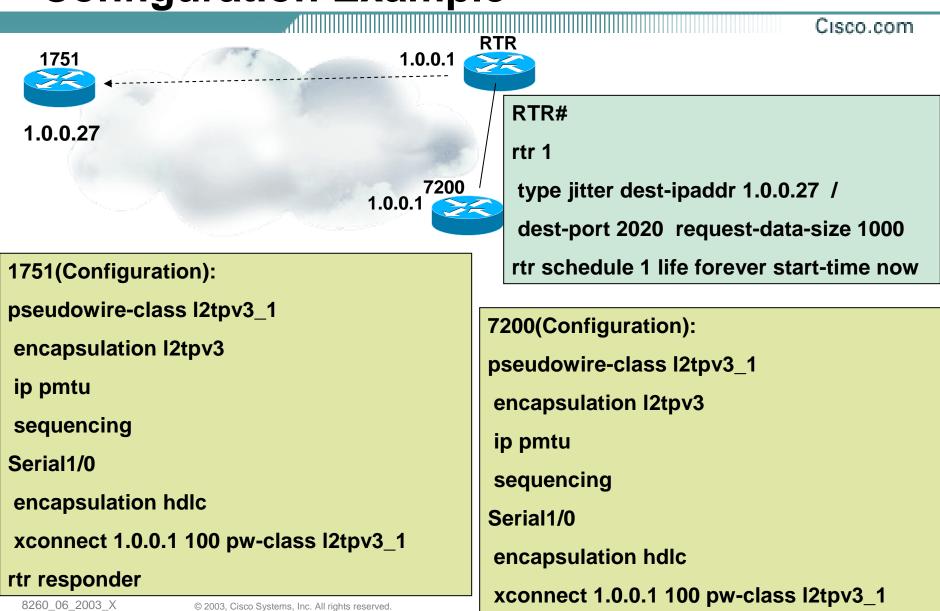
- Recurring costs from ILEC make aggressive competition impossible.
- Wireless bypass alone doesn't allow existing customer's service protection
- Limited ability to expand.


Q: How can the Service Provider save local loop costs without service disruption to existing customers?

L2VPNs – PRE - Recurring Cost Reduction

- Nx64 TDM access provided from the ILEC
- Frame Relay encapsulation from the CPE to the MGX
- Frame Relay VCs mapped through Tier 2 SPs ATM Core

L2VPNs – Recurring Cost Reduction


- L2TPv3 enables transparent Frame Relay service
- Simplifies management and reduces overhead
- Seamless 'no-touch' migration for the customer

ACC-1000 8260_06_2003_X

Cost Reduction – Migration Steps

- IP enabled wireless access network deployed (out of L2TPv3 scope)
- Swap SP1 NTUs for Cisco 1751 CPEs
 - Clock Serial Interface for desired access speed
 - Configure L2TPv3 FR trunking overlay on CPE
 - Configure SAA responder to monitor access network
- Configure 7200 head end for PWs
 - Configure channel-groups relevant to access speeds
 - Configure L2TPv3 for FR trunking
- Configure SAA head end probe to Access network response time monitoring

Cost Reduction – Configuration Example

Cost Reduction – Benefit Summary

- Cisco.com
- Bypass the ILEC and reduce monthly recurring tail circuit lease costs
 - Leads to competitive pricing for Enterprise
- Enables transparent layer 2 service that supports frame relay plus other WAN protocols, ie HDLC,PPP,802.1q etc
 - No change to customer's network required
 - Frame relay flow control features still work ie FECN, BECN
 - Supports both managed and unmanaged service
 - Option to convert customer to ethernet without need for additional router

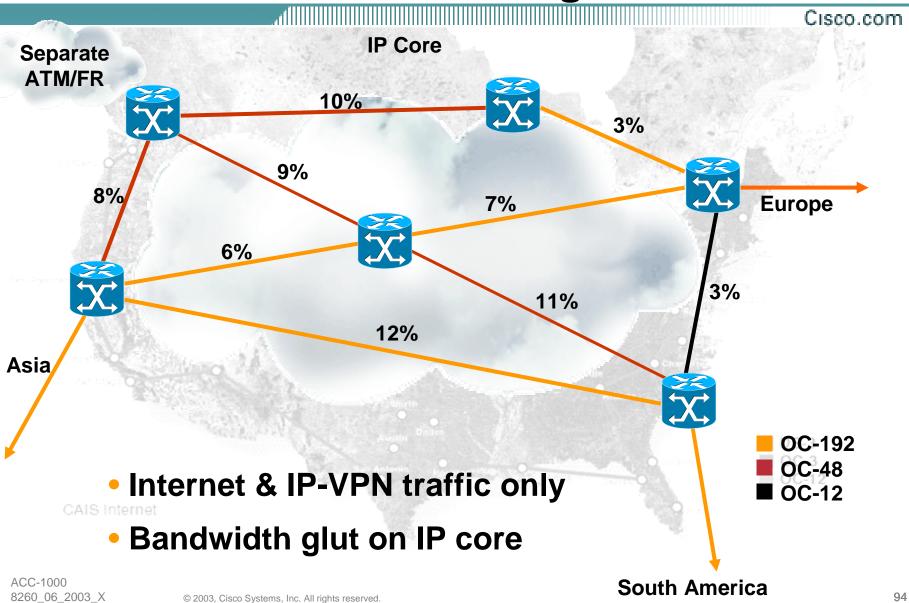
L2VPNs – New Service Offering

Cisco.com

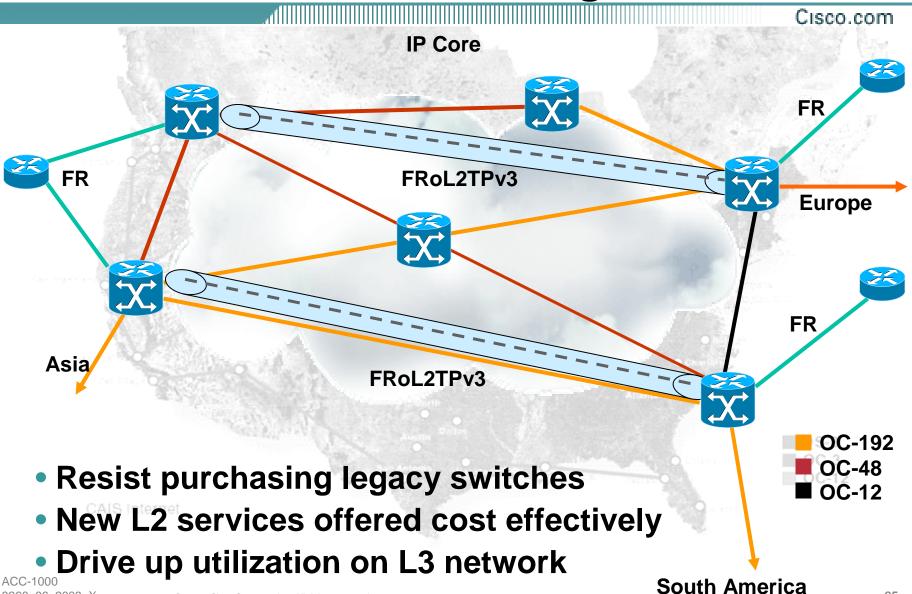
Provider Profile:

Tier 1 Service Provider with traditional voice & data services.

Problem:


8260 06 2003 X

- Existing L3 data network is massively underutilized
- Upgrading legacy L2 ATM/FR network with switches is undesirable.
- Would like to offer more competitive L2 options.
- Possibly migrate FR switches to IP backbone.


Q: How can the Service Provider take advantage of the unused bandwidth on their existing L3 packet infrastructure?

© 2003, Cisco Systems, Inc. All rights reserved.

L2VPNs -**PRE - New Service Offering**

L2VPNs – POST - New Service Offering

© 2003, Cisco Systems, Inc. All rights reserved

8260_06_2003_X

New Service – Preparation

- Global IP Infrastructure was Already Operational
- Update PE software to support L2TPv3 based services (Frame Relay, Ethernet, HDLC/PPP)
- Configure QoS policies to reflect service strategy
 - Configured for FR service models w / egress policing
 - Subrate services for virtual leased line, TLS
- Start configuring L2TPv3 based L2VPN Services

 Configured PW classes with relevant ToS, Sequencing and Path MTU discovery

New Service – QoS Configuration

Cisco.com

class-map match-all dlci200

match fr-dlci 200

policy-map vlan-hi-priority

class class-default

set ip precedence 5

policy-map Serial2-1-in

class dlci200

police cir 256000 bc 128000 be 256000 conform-action set-prec-transmit 5 exceed- / action set-prec-transmit 0 violate-action drop

interface Serial2/0

```
frame-relay intf-type dce
```

```
service-policy input Serial2-1-in
```

Consolidation – Benefit Summary

- Leverage existing packet infrastructure to offer new source of revenue
 - \$8M to Date
 - 50+ Customers Online
- Utilize well-known native IP infrastructure
 - Minimal OPEX expenditure for support
- Enterprise benefits:
 - Reduces monthly WAN recurring costs
 - Maintain well known Layer 2 service
 - Future Layer 3 service opportunity

- Established why L2VPN technologies are emerging as the new VPN options for PSNs
- Introduced IETF backed solutions for addressing L2VPN market requirements
- Introduced some innovative ways Service Providers are taking advantage of L2VPN technologies.

Useful Links

CCO:

AToM:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s26/fsatom26.htm

L2TPv3:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s25/l2tpv325.htm

L2VPN Interworking:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s26/fsinterw.htm

CISCO SYSTEMS