Deploying Metro Ethernet: Architecture and Services

Joe Deveaux
jdeveaux@cisco.com
Sept 23, 2003
What Is Metro Ethernet and Why Is It Relevant to Enterprise Customers

Introduction

Advanced Topics

Services

IP Multicast

L2 Service Inter-Working

Security

Quality of Service

Evolution of Ethernet with Support for LMI and OAM Signaling; What Standards Bodies Are Involved

Considerations for IP Multicast Traffic on a Metro Ethernet Network; How to Choose the Right Service for Multicast

How to Secure an Enterprise Network Connected to a Metro Ethernet Provider

Why Is QoS Relevant in Metro Ethernet; What SLAs to Expect from an SP

What Services to Expect from a Metro Ethernet SP, P2P, MP2MP, MPLS VPN, CPE Considerations

Ethernet to ATM/FR Inter-Working: Bridged versus Routed, CPE Considerations
Agenda

What Is Metro Ethernet and Why Is It Relevant to Enterprise Customers

Introduction

Advanced Topics

IP Multicast

Services

L2 Service Inter-Working

Security

Quality of Service
What is Metro Ethernet?

- Delivers an Ethernet UNI to Enterprises/SMB for MAN/WAN connectivity
- SP has multiple transport options

- SONET/SDH
- RPR
- DWDM/CWDM
- Ethernet
- MPLS/IP

Regional Headquarters

SP Metro Ethernet Network

Remote Office 1
10 Mbps Ethernet

Remote Office 2
10 Mbps Ethernet

Remote Office 3

Ethernet-Connected Branch

100 Mbps Ethernet
What Does Ethernet as a LAN/MAN/WAN Transport Offer?

- Ethernet becomes the ubiquitous interface: single technology for LAN, MAN and WAN
- Efficient packet-based infrastructure: IP friendly
- Cost effective interface with flexible bandwidth offerings: 10/100/1000/10000 Mbps
- Geographical independence: Ethernet over Optical, IP or MPLS
Metro Ethernet:
Revolution or Evolution?

• Questions:

 How does Metro Ethernet change the way enterprises design and deploy networks?

 What enterprise requirements are addressed by Metro Ethernet?

• Answers:

 Nothing should change; the same principles of structure and hierarchy still hold true

 Enterprise applications drive BW requirements

 Service type will dictate design considerations
Enterprise Applications Drive Metro Ethernet

• LAN interconnect
• Service aggregation
• Interconnect data centers
• Backup and disaster recovery
• Connect to hosting services
• Value-added services

How SPs Deliver This Is Largely Irrelevant… Metro Ethernet Is Simply a Tool in the Tool Box

Transparent Services
High Availability
High Bandwidth
Low Latency
Cost Effective
Manageable and Secure
Agenda

What Services to Expect from a Metro Ethernet SP, P2P, MP2MP, MPLS VPN, CPE Considerations

Introduction
Advanced Topics
IP Multicast
L2 Service Inter-Working
Security
Quality of Service

Cisco.com
Metro Ethernet and L2 VPN

- FR and ATM are very common L2 VPNs
- CE has ‘n’ circuits, each connecting to other CE, in partial mesh
- Provider devices forward customer packets based on Layer 2 information (FR DLCI, ATM VC)
- Metro Ethernet is another L2 VPN where SP transports Ethernet Frames (MAC addresses could be used for forwarding decisions)
- Let’s compare now L3 VPN and L2 VPN
L2VPN versus L3VPN

- To build or not to build? will the enterprise…

Buy an SP managed IP-VPN service or
To build or not to build? will the enterprise…

Buy an SP managed IP-VPN service or

Buy SP’s transport services in order to build their own IP network
Layer 3 and Layer 2 VPN Characteristics

Layer 3 VPNs

- SP devices forward customer packets based on Layer 3 information (e.g. IP addresses)
- SP is involved in customer IP routing
- Support for any access or backbone technology
- IP specific
- Example: RFC 2547bis VPNs (L3 MPLS-VPN)

Layer 2 VPNs

- SP devices forward customer frames based on Layer 2 information (e.g. DLCI, VPI/VCI, MAC)
- Enterprise stays in control of L3 policies (Routing, QoS)
- Access technology is determined by the VPN type
- Multiprotocol support
- Example: FR—ATM—Ethernet
Layer 3 and Layer 2 VPN Summary

- The **choice** of L2VPN over L3VPN will depend on how much **control** the enterprise wants to retain
- Ethernet is the next natural **evolution** of customer UNI connection for both L2VPN or L3VPN
- L2 VPN services are **complementary** to L3 VPN services
 An Ethernet-based L2VPN service can be used to access L3VPNs
Metro Ethernet Services Evolution

Meeting Niche Needs

High-Speed Connectivity at Any Cost

TLS Service W/ ATM Lane or ATM RFC1483

Technology Spark

Emergence of Ethernet Service Providers

Optical Emergence

Ethernet Dominance

IP Prevalence

Carrier Class in the Making

Mainstream Metro

Smart Pipes

Velocity

© 2003, Cisco Systems, Inc. All rights reserved.
Metro Ethernet Services Evolution

- Meeting Niche Needs
 - High-Speed Connectivity at Any Cost
 - TLS Service W/ ATM Lane or ATM RFC1483

- Technology Spark
 - Emergence of Ethernet Service Providers
 - Optical Emergence
 - Ethernet Dominance
 - IP Prevalence

- Carrier Class in the Making
 - Fusion of Technology and Systems
 - Incumbent Carrier Adoption

- Mainstream Metro
 - Dependability
 - Optimization
 - Richness
 - Scale

- Smart Pipes
 - Velocity
Metro Ethernet Services Evolution

Meeting Niche Needs
- High-Speed Connectivity at Any Cost
- TLS Service W/ ATM Lane or ATM RFC1483

Technology Spark
- Emergence of Ethernet Service Providers
- Optical Emergence
- Ethernet Dominance
- IP Prevalence

Carrier Class in the Making
- Fusion of Technology and Systems
- Incumbent Carrier Adoption

Mainstream Metro
- Large Scale System Deployments
- Service Inter-Working
- Revenue Expansion

Smart Pipes
- Ethernet Utility Service

Utility Service
- Transparency/Interworking
- Dependability
- Optimization
- Richness
- Scale

Velocity

Fusion of Technology and Systems
Emergence of Ethernet Service Providers
Optical Emergence
Ethernet Dominance
IP Prevalence
Fusion of Technology and Systems
Incumbent Carrier Adoption
Large Scale System Deployments
Service Inter-Working
Revenue Expansion
Ethernet Utility Service
Transparency/Interworking
Dependability
Optimization
Richness
Scale
Velocity
Ethernet Services
Definition Framework

- **Ethernet Virtual Connection**
 - P2P
 - MP

- **Architecture**
 - VPWS
 - VPLS
 - EoS/xWDM

- **Customer Equipment**
 - Router
 - Bridge

- **Service Characteristics**
 - Service Multiplexing
 - VLAN Transparency
 - Bundling
 - L2 PDU Transparency

VPWS – Virtual Private Wire Service
VPLS – Virtual Private LAN Service
EoS – Ethernet over SONET/SDH
Ethernet Private Line (EPL)

Point-to-Point Port-Based Service (over SONET/SDH/xWDM)

- Ethernet Virtual Connection
 - P2P
 - MP

- Architecture
 - VPWS
 - VPLS
 - EoS/xWDM

- Customer Equipment
 - Router
 - Bridge

- Service Characteristics
 - Service Multiplexing
 - VLAN Transparency
 - Bundling
 - L2 PDU Transparency
Ethernet Private Line (EPL)

- Defines a **point-to-point, port-based** service
- **No service multiplexing**—“all-to-one” bundling
- **Transparent** to customer BPDUs
- Routers and switches can safely connect
Ethernet Relay Service (ERS)

Point-to-Point VLAN-Based Service

- Ethernet Virtual Connection
- P2P
- MP

- Architecture
- VPWS
- VPLS
- EoS/xWDM

- Customer Equipment
- Router
- Bridge

- Service Characteristics
- Service Multiplexing
- VLAN Transparency
- Bundling
- L2 PDU Transparency
Ethernet Relay Service (ERS)

- Defines a **VLAN-based point-to-point service** (analogous to Frame Relay using VLAN tags as VC IDs)
- **Service multiplexed UNI** (e.g. 802.1Q trunk)
- **Opaque** to customer PDUs (e.g. BPDUs)
- Encourage a router as CPE edge device
Ethernet Wire Service (EWS)

Point-to-Point Port-Based Service

- **Ethernet Virtual Connection**:
 - P2P
 - MP

- **Architecture**:
 - VPWS
 - VPLS
 - EoS/xWDM

- **Customer Equipment**:
 - Router
 - Bridge

- **Service Characteristics**:
 - Service Multiplexing
 - VLAN Transparency
 - Bundling
 - L2 PDU Transparency
Ethernet Wire Service (EWS)

- Defines a **point-to-point, port-based** service
- **No service multiplexing**—"all-to-one" bundling
- **Transparent** to customer BPDUs
- Routers and switches can safely connect
Ethernet Multipoint Service (EMS)

Multipoint Port-Based Service

- Ethernet Virtual Connection
 - P2P
 - MP

- Architecture
 - VPWS
 - VPLS
 - EoS/xWDM

- Customer Equipment
 - Router
 - Bridge

- Service Characteristics
 - Service Multiplexing
 - VLAN Transparency
 - Bundling
 - L2 PDU Transparency
Ethernet Multipoint Service (EMS)

- **Multipoint** service where all devices are direct peers
- **No service multiplexing**—all VLANs are presented to all sites (“all-to-one” bundling)
- **Transparent** to customer BPDUs
- AKA Transparent LAN Service (TLS) or E-LAN
- Routers and switches can safely connect
Ethernet Relay Multipoint Service (ERMS)

Multipoint VLAN-Based Service

Ethernet Virtual Connection: P2P, MP

Architecture: VPWS, VPLS, EoS/xWDM

Customer Equipment: Router, Bridge

Service Characteristics: Service Multiplexing, VLAN Transparency, Bundling, L2 PDU Transparency
Both P2P and MP2MP Services can coexist on the same UNI

Service multiplexed UNI (e.g. 802.1Q trunk)

Opaque to customer PDUs (e.g. BPDUs)

Routers can safely connect to an ERMS UNI
Summary of Ethernet-Based Services

- **Ethernet-Based Services**
 - **Layer 1**
 - Ethernet Private Line
 - **Layer 2**
 - Ethernet Relay Service
 - Ethernet Wire Service
 - **Layer 3**
 - Ethernet Multipoint Service
 - Ethernet Relay Multipoint Service
 - MPLS VPN

- **Point-to-Point**
- **Multipoint**
 - Transparent LAN Service
 - Similar to Leased Line
 - Analogous to Frame Relay
 - Analogous to Private Line

© 2003, Cisco Systems, Inc. All rights reserved.
Summary of Service Attributes for Ethernet-Based Services

<table>
<thead>
<tr>
<th>EVC Type</th>
<th>Ethernet Relay Service**</th>
<th>Ethernet Relay Multipoint Service**</th>
<th>Ethernet Wire Service**</th>
<th>Ethernet Private Line**</th>
<th>Ethernet Multipoint Service**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Multiplexed UNI</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CE-VLAN Transparency</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bundling</td>
<td>None</td>
<td>None</td>
<td>All to One</td>
<td>All to One</td>
<td>All to One</td>
</tr>
<tr>
<td>Bandwidth Profile</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Over-subscription</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 2 PDU Transparency</td>
<td>Discard CDP, VTP, STP*</td>
<td>Discard CDP, VTP, STP*</td>
<td>Tunnel CDP, VTP, STP*</td>
<td>Tunnel CDP, VTP, STP*</td>
<td>Tunnel CDP, VTP, STP*</td>
</tr>
<tr>
<td>CPE Type</td>
<td>Router***</td>
<td>Router***</td>
<td>Router or Switch</td>
<td>Router or Switch</td>
<td>Router or Switch</td>
</tr>
</tbody>
</table>

*Pause, LACP, and Port Authentication are Processed or Discarded at UNI
**Cisco Terminology
***Switches May Attach in Certain Configurations
Layer 2 Ethernet Services Comparison

- **P2P and MP2MP** compared as the Enterprise Network grows

- **Point-to-Point (ERS and EWS)**
 - Models ATM/Frame Relay
 - Complex configuration
 - Predictable traffic patterns
 - Simple QoS and security policy definition
 - Simple IGP peering
 - Simple IP multicast behaviour
 - Simple troubleshooting

- **Multipoint (EMS and ERMS)**
 - New WAN broadcast model
 - Simple configuration
 - Unpredictable traffic patterns
 - Complex QoS and security policy definition
 - Complex IGP peering
 - Complex IP multicast behaviour
 - Complex troubleshooting
CPE Considerations

• Questions:
 Can I connect switches to an ERS service?
 Can I connect routers to an EWS service?
 Do I need to worry about the STP protocol I am running on my switches?
 What are the valid CPE combinations?

• Lets look at some scenarios…
CPE Considerations—ERS and L2 Switches

- **ERS is a VLAN service opaque to L2 PDUs**
- **L2 CPE must use VLAN IDs determined by SP**
- **STP loops cannot be detected in the presence of “Backdoors”**
- A “Backdoor” could be a service from another SP
- In a loop-free scenario:
 - **STP domain partitioned, one root on each side**
 - VTP advertisements will not flow end-to-end
CPE Considerations—ERS Valid Combinations

- ERS is mainly intended for L3 CPEs or any other scenarios where L2 PDU transparency is not required.
- SP should protect the UNI against un-expected L2 PDUs.
- L2 CPE to L3 CPE is another valid combination.
CPE Considerations—EWS Valid Combinations

- EWS is a port based service with L2 PDU transparency
- External loops can be detected by the end devices
- Both L2 and L3 CPEs can be connected to an EWS UNI
IEEE BPDUs (0x0180 c200 0000) are always transmitted untagged, compared to PVST+ BPDUs (always tagged)

If contracting a VLAN-based service with L2 transparency, make sure that the native VLAN is carried everywhere

Affects P2P or MP2MP services
Why and when is Service Inter-Working (SIW) needed in Metro Ethernet?

Let’s examine Layer 2 SIW in the context of Metro Ethernet...
• Provides end-to-end L2 transport services between two CEs with disparate interfaces
• Extends service footprint

BUT It Is Not Trivial !!!
Each Layer 2 Protocol has different frame format

- Ethernet has Layer 2 source and destination addresses
- Frame Relay and ATM have a destination address only
- Frame Relay and ATM have routed and bridged encapsulations
- HDLC and PPP have no addresses
Layer 2 Service Inter-Working Complexities

• Each Layer 2 protocol has different address resolution processes

 Ethernet uses IP ARP
 The target Layer 3 address is known but not the Layer 2 address

 HDLC and PPP interfaces do not ARP
 It’s point-to-point so they simply transmit
 PPP uses NCP, but not as an ARP mechanism

 ATM and Frame Relay Multipoint interfaces use Inverse ARP
 The target Layer 2 address is known but not the Layer 3 address
 ATM and Frame Relay p2p interfaces do not inverse ARP
 It’s point-to-point so they simply transmit

• SIW mechanisms must provide appropriate ARP/InARP responses (spoof) – ARP Mediation
Pseudowire Reference Model

• **Attachment Circuit (AC)** is a Virtual Circuit (VC) between a CE and its PE—e.g. ATM VC, FR VC, Ethernet VLAN

• **Native Service (NS)** is the service that gets carried over the AC—e.g. Ethernet, IP, PPP, Multiprotocol

• Some **examples of NS over AC**: Ethernet or IP as NS over an ATM VC, Ethernet or IP over a Frame Relay AC

• **Service InterWorking** comes into play when ACs are different (e.g. ATM and Ethernet)
Approach to SIW: Local-AC-Termination

- Attachment Circuits are terminated locally and PW transports only the NS
- If AC and NS are the same on one end, then no InterWorking Function (IWF) is required at that node
SIW Example for Metro Ethernet

- **Two SIW types:** Bridged and Routed
- **Example 1**—Bridged SIW (NS = Ethernet):
 - AC1 = Ethernet
 - IWF1 = NULL
 - IWF2 = RFC-2684-B (obsoleted RFC-1483)
- **Example 2**—Routed SIW (NS = IP):
 - AC1 = Ethernet
 - AC2 = ATM
 - IWF1 = RFC-894
 - IWF2 = RFC-2684-R (obsoleted RFC-1483)
Layer 2 Service Inter-Working Features

- Cisco Any Transport Over MPLS (ATOM) and L2TPv3 any-to-any
- Cisco also supports complimentary Layer 2 Service Inter-Working features
 - Integrated Routing and Bridging (IRB)—used at CPE for bridged SIW
 - Route Bridge Encapsulation (RBE)—used at CPE for bridged SIW
 - Bridge Route Encapsulation (BRE)—used at PE for routed SIW (no-IP/MPLS)

- RBE/IRB enables the CPE to encapsulate Ethernet over ATM and FR attachment circuits
 - Ethernet Frame Encapsulated within an ATM RFC2684 Bridged Encapsulation header (RBE or IRB)
 - Ethernet Frame Encapsulated within a FR RFC2427 Bridged Encapsulation header (IRB only)

- **BRE** terminates RFC2684 Routed Encapsulation ATM PVCs
 - Terminates and Maps multiple PVCs to individual VLANs
 - Inserts/removes an Ethernet MAC header
Ethernet Bridged Service Inter-Working

Native Ethernet
Ethernet VLAN
Bridged Ethernet over ATM
Bridged Ethernet over FR
Bridged Ethernet over HDLC/PPP

Any

MPLS or IP Core
Ethernet Pseudowire

Native Ethernet
Ethernet VLAN
Bridged Ethernet over ATM
Bridged Ethernet over FR
Bridged Ethernet over HDLC/PPP

CE 1
CE 2
PE 1
PE 2

© 2003, Cisco Systems, Inc. All rights reserved.
Ethernet to AAL5 Bridged SIW Configuration

CE with RBE

```
interface atm 1/0.1 point-to-point
  encapsulation aal5snap
  ip address 10.0.0.1 255.255.255.0
  pvc 1/100
  atm route-bridge ip
```

CE with IRB

```
bridge irb
interface atm 1/0.1 point-to-point
  pvc 1/100
    encapsulation aal5snap
    bridge-group 5
  !
interface EVI5
  ip address 10.0.0.1 255.255.255.0
  ip mtu 1500
```
IP Routed Service Inter-Working

- Ethernet
- Frame Relay
- PPP/HDLC
- ATM

- Ethernet
- Frame Relay
- PPP/HDLC
- ATM

CE 1

ARP, IPCP Spoofed

PE 1

Non-IP Data Packets Dropped at PE

MPLS or IP Core

IP Pseudowire

PE 2

IP Packets Sent Directly over Pseudowire

CE 2

© 2003, Cisco Systems, Inc. All rights reserved.
Ethernet to ATM AAL5 Routed SIW

ATM header
- LLC (AA-AA)
- LLC (03) OUI(00)
- OUI (00-00)
- PID (0x800)

Tunnel label
- VC label
- Control word

MAC header
- Protocol type (xx-xx)
- Ethernet FCS
Bridge Route Encapsulation (BRE)

- BRE can be used in a Metro Ethernet Routed SIW scenario without MPLS or IP core
- Terminates RFC2684 routed encapsulation ATM PVCs
- Inserts/removes an Ethernet MAC header for point-to-point services
- Does not require customer configuration changes on ATM CE
• **BRE Sample Configuration**

BRE Configuration

```
interface atm 0/0.201 point-to-point
  no ip address
  pvc 0 201
  bre connect 1001

interface atm 0/0.456 point-to-point
  no ip address
  pvc 0 456
  bre connect 2456
```
Routed and Bridged SIW Summary

Bridged:

- Native service: Ethernet
- Pro: ARP resolution done by both end CPEs
- Pro: implicit support for any L3 Network protocols
- Cons: ATM/FR CPE has to run in bridging mode, i.e.:
 - IRB for Frame Relay VC attachment circuits
 - RBE or IRB for ATM VC attachment circuit

Routed:

- Native service: IP
- Pro: no configuration changes at ATM/FR CPE
- Cons: ARP resolution/spoofing done at ATM-attached PE (e.g. via BRE)
- Cons: supports one L3 Network Protocol (IP)
Agenda

- Introduction
- Advanced Topics
- Services
- IP Multicast
- Security
- L2 Service Inter-Working
- Quality of Service

Why Is QoS Relevant in Metro Ethernet; What SLAs to Expect from an SP
Metro Ethernet End-to-End QoS

- Allows **efficient utilization** of links that carry voice, video and data
- **SP differentiator** between service offerings with SLAs
- Customer contracts to an aggregate that contains specific Traffic Classes with **Drop, Delay and Jitter** attributes
- Sample **Traffic Classes** – Voice / Interactive Video, Business, Best Effort
- Customer pays for **traffic engineered** bandwidth not just the access pipe
What Is an SLA?

• An SLA defines certain attributes about a service
 Availability—4x9s or 5x9s?
 Drop—0.01% or 0.1%?
 Delay—50ms or 100ms?
 Jitter—20ms or 30ms?

• The customer application will drive the attributes that are required from the service

• A predefined set of SLA attributes can be used by a provider to maximize bandwidth efficiency using statistical gains associated with aggregate flows—Oversubscription
What SLAs Can I Expect?

- **One SLA per port**: Best Effort, CIR, or Voice on a port basis
- **Multiple SLAs per port**: Best Effort, CIR/PIR or Voice on a **VLAN** basis
- **Multiple SLAs per VLAN**: Best Effort, CIR/PIR or Voice on a **Class** basis (classified based on L2 COS, IP ToS, outer/inner VLAN)
Metro Ethernet End-to-End QoS

• **Point to Point services** are commonly enforced (policed) at each ingress point

 What determines SP’s **lowest speed** service?

 Policing not involved for services at port speed (10/100/1000Mbps)—mostly Best Effort

• **Multipoint services**—Point to Cloud model

 Ingress and Egress enforcement

 Most MP2MP services today are Best Effort

• **SP Bandwidth must be engineered** to support SLA classes
Metro Ethernet End-to-End QoS

- **Classification** based on 802.1p CoS / IP ToS / VLAN or input interface
- **Ingress Policing** at UNI

CE should *shape* whenever possible to maintain application performance
Metro Ethernet End-to-End QoS

- **Marking** of 802.1p CoS bits for differentiated SLAs
- Customer **IP ToS maintained** end-to-end
- **Congestion Avoidance and Egress Queuing** throughout the SP network
Metro Ethernet End-to-End QoS

- A closer look at queuing ...
- MPLS Exp/IP ToS is marked/copied from the 802.1p
- CoS/Exp mapped to egress queues

- Congestion Avoidance within a queue (e.g. WRED)
- WRED thresholds based on 802.1p / EXP
- Congestion Management among queues (e.g. WRR)

Sample queue mapping
Metro Ethernet End-to-End QoS

- Example: VoIP
- Classified at UNI (based on dscp/prec)
- Differentiated CoS markings for bearer and signaling traffic

VoIP traffic sent to Low Latency Queue (LLQ) or Priority Queue (PQ)

Example: VoIP
- Classified at UNI (based on dscp/prec)
- Differentiated CoS markings for bearer and signaling traffic

VoIP traffic sent to Low Latency Queue (LLQ) or Priority Queue (PQ)
• **Example**: Business Critical

• **For CIR/PIR SLA, No Out of Sequence frames**

• **Classified at UNI based on CoS / ToS / VLAN or ingress Interface**

• **PIR traffic dropped first in favor of CIR**
Metro Ethernet End-to-End QoS

- Example: **Best Effort**
- Classified at UNI based on CoS / ToS / VLAN or ingress Interface

Best Effort traffic should be assigned a **minimum BW** during congestion

- **Example: Best Effort**
- Classified at UNI based on CoS / ToS / VLAN or ingress Interface

Best Effort traffic should be assigned a **minimum BW** during congestion
Metro Ethernet End-to-End QoS

- **Example:** SP Management traffic
- **Minimum BW guaranteed for inband management**

- **Voice (PQ):** 10%
- **Best Effort:** 80%
- **CIR and PIR:** 95%

- **Voice Ctrl and Management:** 10%

- **SNMP Alarms**

- **95% WRED Threshold for**
Metro Ethernet End-to-End QoS

SP Network

UNI

WRR

Queues:
- Queue 1: 10% Best Effort
- Queue 2: 80% CIR and PIR
- Queue 3: 10% Voice Ctrl and Management
- Queue 4: 10% Voice

WRED Thresholds:
- Voice: 95% WRED Threshold for 7
- Critical: 90% WRED Threshold for 2
- Best Effort: 40% WRED Threshold for 1

SNMP Alarms

VoIP

Critical

Best Effort

© 2003, Cisco Systems, Inc. All rights reserved.
Metro Ethernet End-to-End QoS

- Ethernet QoS similar to ATM/FR model
 CIR/PIR is well accepted today
- Migration to DSCP-like model that can be applied to Layer 2 and Layer 3 services
 CIR/PIR can be extended to other QoS models allowing for tiered bandwidth rates, i.e. Voice, Business and Best Effort traffic classes
- Consistent QoS model for L2 and L3 VPNs
Agenda

How to Secure an Enterprise Network Connected to a Metro Ethernet Provider

Introduction
Advanced Topics
IP Multicast
Security
Services
L2 Service Inter-Working
Quality of Service
Ethernet Security

- Security is a **prime consideration** within any public switched network
 - One user should not affect any other user
- Ethernet as a technology could be insecure due to its “**plug and play**” nature
- With little knowledge, an Ethernet switched access network can be exploited
Ethernet Security

- Attacks such as dSniff exploit Ethernet weaknesses

 http://naughty.monkey.org/~dugsong/dsniff/

 dsniff, filesnarf, mailsnarf, msgsnarf, urlsnarf, and webspy
 arpspoof, dnsspoof, and macof
 sshmitm and webmitm

- This tool and others exploit Ethernet technologies and its mechanisms to gain access to information

 ARP Spoof/MAC Flooding/SSH-SSL Interception/Selective Sniffing

- Other exploits can be used to launch DOS attacks

 802.1D/w/s Spanning Tree can be hijacked
Ethernet Security: An Example of What Can Go Wrong

Let’s Look at Trust Me Mistakes:

- Edge switches physical security questionable
- Password recovery is enabled
- No central system monitoring for configuration changes
- All customer VLANs are allowed everywhere

Time to Work!!
Ethernet Security: An Example of What Can Go Wrong

1. Use Password Recovery and Reconfigure My Port to a Trunk

2. Launch MACOF Attack 480,000 MAC/min

Switch X

Trust Me Telecom

Spoofed VLAN Trunk

What a Nice Day!!!
Ethernet Security: An Example of What Can Go Wrong

3. Wow, CAM Tables Are Full; I’ll Flood All New Sessions as I Can’t Learn New MAC addresses!

At This Point Trust Me Switches Are Not Learning Anymore!!!
Ethernet Security: An Example of What Can Go Wrong

5. Username: Stevep
 Password: 3bmChtr

Thanks Stevep!!

4. Username: Stevep
 Password: 3bmChtr

User data is **flooded everywhere**, including towards the hacked Switch!!!
Ethernet Security: An Example of What Can Go Wrong

5. Username: Stevep
 Password: 3bmChtr

1. Use Password Recovery and Reconfigure My Port to a Trunk

3. Wow, CAM Tables Are Full; I’ll Flood All New Sessions as I Can’t Learn New MAC addresses!

3. Wow, CAM Tables Are Full; I’ll Flood All New Sessions as I Can’t Learn New MAC addresses!

3. Wow, CAM Tables Are Full; I’ll Flood All New Sessions as I Can’t Learn New MAC addresses!

4. Username: Stevep
 Password: 3bmChtr

- Obtaining physical access to the SP switch was critical to this attack!!!
- Data encryption (IPSec) might have helped the attacked user to protect his data
Ethernet Security: What Can I Do to Secure My Network?

- Now we understand what can go wrong, we can identify what we can do to fix it.
 1. Secure your routers or switches
 2. Secure your control protocols
 3. Secure your communications
 4. Track and log everything
Ethernet Security:
#1. Secure Your Routers or Switches

- Use RADIUS or TACACs
 Authenticate, Authorize and Audit
- Use SSH instead of Telnet
 Encrypts all communications
- Use good passwords
 Use upper and lower case and numbers
- Change SNMP community strings
 Treat them like root passwords
Ethernet Security:
#1. Secure Your Routers or Switches (Cont.)

- Implement IP **access filters** for SNMP access
- Disable Dynamic Trunking protocol (**DTP**) on edge switches

 Allowed only required VLANs

- **Physical access** will also be an issue
- Disable TCP and UDP-small-servers
Ethernet Security: #2. Secure Your Control Protocols

- IEEE 802.1D Spanning Tree BPDUs are not encrypted
- Consider IEEE 802.1s where Spanning Tree BPDUs are encrypted
- To prevent hijack of Spanning Tree consider RootGuard and BPDUGuard
Ethernet Security:
#2. Secure Your Control Protocols (Cont.)

- Use passwords for protocols such as **VTP**
- Disable **CDP**

 CDP advertises information that can be used in a DOS attack (IP address, Cisco IOS version)
- Secure routing protocols using passwords and **MD5 Authentication**
Ethernet Security: #3. Secure Your Communications

• Implement IEEE 802.1x to validate user identity
• Configure Port Security on the UNIs
• Use Firewall and IDS to protect important devices

 Protect DNS/DHCP/WINS servers

• Use IPSec to encrypt sensitive data

 Use IPSec between routers connected to public service
 Use IPSec VPN and one time keys for mobile workers
Ethernet Security:
#4. Track and Log Everything

- Log Routing protocol adjacency changes
 It may be an unauthorized device?
- Track interface changes (up/down)
 It may point to a device that has been password recovered
- Track Configuration changes
 Was the configuration change known and authorized?
 Did the change occur after a power cycle?
- Track Firewall and IDS violations
 It may identify an attack?
- Maintain an audit trail for analysis
Ethernet Security: SP Recommendations
Ethernet Security: SP Recommendations

- STP Attacks
- VLAN Hopping Attacks
- MAC Attacks
Ethernet Security: SP Recommendations

BPDU Filter (for Egress SP BPDU)
MAC ACLs (for Ingress CE BPDU)

Enable Port Security
Enable 802.1X
Disable CDP
Remove VLAN 1 and Reserved VLANs from UNIs
Set DTP to “Non-Negotiate”
Prune All Unused VLANs from Allowed List
UNI VLANs Must Not Be Used as Native VLAN on SP Trunks
Ethernet Security: SP Recommendations

- Disable Password Recovery
- VTP Mode Transparent
- LOOP Guard
- Prune All Unused VLANs from Allowed List
- Remove VLAN 1 and Reserved VLANs from Trunks
- Reserve a VLAN ID for the Native VLAN on the SP Trunks
Ethernet Security: SP Recommendations

VTP Mode Transparent
Enable ROOT Guard

Customer - SP Boundary

Access

Core

$P
IP/MPLS/
802.1Q
Network

802.1Q Trunk

802.1Q Trunk

CE BPDU

SP BPDU

Unauthenticated
VLAN 10
VLAN 20
VLAN 30
VLAN 40

Unauthenticated
VLAN 5
VLAN 20
VLAN 30
VLAN 40

© 2003, Cisco Systems, Inc. All rights reserved.
Ethernet Security: SP Recommendations

BPDU Filter (for Egress SP BPDU)
MAC ACLs (for Ingress CE BPDU)

Disable Password Recovery
VTP Mode Transparent

Enable Port Security
Enable 802.1X
Disable CDP
Remove VLAN 1 and Reserved VLANs from UNIs
Set DTP to “Non-Negotiate”
Prune All Unused VLANs from Allowed List
UNI VLANs Must Not Be Used as Native VLAN on SP Trunks

VTP Mode Transparent
Enable ROOT Guard

LOOP Guard
Prune All Unused VLANs from Allowed List
Remove VLAN 1 and Reserved VLANs from Trunks
Reserve a VLAN ID for the Native VLAN on the SP Trunks
Ethernet Security: Proactive Security Management

Let’s Look at Trust Me Improvements:
- Switch’s physical access restricted
- Password recovery is disabled
- Port security on UNIs
- MAC learning limits per VLAN
- Central system monitoring for configuration changes
- Customer VLANs only allowed where needed

Time to Work!!

Switch X

Trust Me Telecom

Time to Work!!!
Ethernet Security: Proactive Security Management (scenario 1)

1. Use Password Recovery and Try to Reconfigure My Port to a Trunk

2. As a Result of Disabling Password Recovery—the Configuration File Is Lost!!!

3. Switch X’s Has Been Power Cycled and the Configuration Has Changed; Do Not Allow It to Attach to the Network!

What a Bad Day!!

Spoofed VLAN Trunk

Switch X

Trust Me Telecom

Monitoring System

Attack in Unsuccessful!!!
1. Use Password Recovery and Try to Reconfigure My Port to a Trunk

What a Nice Day!!

2. Launch MACOF

Even if the Hacker Gets Access to a Trunk UNI...
Ethernet Security: Proactive Security Management (scenario 2)

3. Huh, 50k MAC Addresses Learnt on This UNI! Port Security allows me to Learn just One—Disable the Port

3. Huh, VLAN MAC limit allows me to Learn only 250 MAC Addresses for That VLAN; I’ll shutdown the associated VLAN interface

What a Terrible Day!!

Switch X

Spoofed VLAN Trunk

Trust Me Telecom

… the Combination of Port Security and MAC Learning Limits Will Prevent This Attack from Succeeding

Attack in Unsuccessful!!!
Ethernet Security—Summary

• Be aware of the security risks
 Whitepapers at http://naughty.monkey.org/~dugsong/dsniff/
 Run dSniff against the service!
• Cisco has robust solutions today
 RootGuard, Port Security, TACACs, etc.
• Cisco is working on several initiatives
 802.1x supplicant
 Anti-ARP spoofing mechanisms
 MAC address limits per VLAN, and more…
• Please refer to http://www.cisco.com/go/safe
Agenda

Introduction

Advanced Topics

Services

L2 Service Inter-Working

Security

Quality of Service

Considerations for IP Multicast Traffic on a Metro Ethenet Network; How to Choose the Right Service for Multicast
Why Is IP Multicast Important?

- IP Multicast used by **one-to-many data push** applications
- Data warehousing, finance applications
- IP Multicast enables the **efficient delivery** of data
- Considerable cost savings can be realized using IP Multicast for
 - Streaming media
 - **Training** and corporate communications
 - Video and audio **conferencing**
The Impact of IP Multicast on Metro Ethernet Services

This is what we expect of the SP for IP Multicast on a Multipoint service ... constrained traffic
The Impact of IP Multicast on Metro Ethernet Services

And This Is What We might Get...

IP Multicast Source
“Sprayer A”

Discard Red and Green

SP Network

IP Multicast Source
“Sprayer B”

Discard Red and Green

IP Multicast Receiver
“Sponge B”

Wasted SP Bandwidth ($$$) and Router Resources Are Consumed Discarding Unnecessary Traffic

IP Multicast Receiver
“Sponge A”

Discard Red

Discard Green

Discard Red

Discard Green

Discard Red

Discard Green

Discard Red and Green

Discard Red and Green

Discard Red and Green

Discard Red and Green
The Impact of IP Multicast on Metro Ethernet Services

- **SP Challenges** with Multicast on Multipoint services
 - Constrain Multicast traffic at Layer 2
 - 802.1Q Tunnelling and its effect on snooping features
 - RGMP / IGMP snooping / PIM snooping
The Impact of IP Multicast on Metro Ethernet Services

This is what we **expect** of the SP for IP Multicast on a **Point to Point** service ...
The Impact of IP Multicast on Metro Ethernet Services

This Is What We get for IP Multicast on an Point to Point service …

- IP multicast **constrained** to those sites that actually request the data

 Enterprise has complete control

 Reduced resource and bandwidth overhead

 Improved control over join and leave process

 Improved convergence characteristics
L3VPN: The Impact of IP Multicast

This Is What We Expect…and Get!!!
Metro Ethernet - IP Multicast considerations

- IP Multicast should be considered when selecting Metro Ethernet services

- If an Enterprise has...
 - A large volume of IP Multicast traffic
 - Mismatched bandwidth i.e. 10/100/1000 connected sites
 - ... A MultiPoint service may be a poor service choice

- **Point to Point** Metro Ethernet services or **Layer 3 Multicast enabled VPN** are better solutions for IP Multicast

- The Service Provider must also consider **IP Multicast replication** as it will consume system resources and bandwidth
Agenda

Evolution of Ethernet with Support for LMI and OAM Signaling; What Standards Bodies Are Involved

Introduction

Advanced Topics

Services

IP Multicast

L2 Service Inter-Working

Security

Quality of Service
Ethernet LMI and End-to-End OAM

- **LMI**—Local Management Interface
- **OAM**—Operation, Administration and Maintenance
- Ethernet services offer very flexible and high-speed service offerings at Layer 2 and Layer 3, but...
- Ethernet lacks certain “carrier class” features such as LMI and OAM functions
- Several industry bodies are investigating functions that are available in Layer 3
Ethernet Local Management Interface (LMI)

• An LMI informs a CPE device about the state of the interconnecting circuit and can signal other information such as bandwidth parameters, network addresses, etc.

• Relevant to point-to-point circuits such as ATM PVCs, Frame Relay DLCIs and now being looked at for Ethernet.

• ERS/EWS models Frame Relay or ATM using VLAN IDs as VC identifiers.

 Ethernet LMI will be an important development for Ethernet service adoption.

• Not a trivial issue to resolve due to architectural considerations.

• Also requires and end-to-end signaling mechanism to carry far end circuit state (OAM).
Ethernet LMI Operation

- OAM end-to-end signaling of connection state
- LMI signals end-to-end state to customer devices

LMI Update: Red VLAN is UP and has 2mbps CIR, 5mbps PIR
LMI Update: Blue VLAN is UP and has 10mbps CIR, 20mbps PIR
LMI Update: Green VLAN is Down

OAM Message: Green VLAN is Down
End-to-End Ethernet OAM

- End-to-End OAM is complex due to different (or non-existent) signaling mechanisms
- Service inter-working further complicates the problem
- Protocol layering also plays a part
End-to-End Ethernet OAM

• Ethernet OAM and LMI will be a significant enabler of Ethernet services and will speed adoption

• Early drafts being produced now, but is a very complex area

• Metro Ethernet Forum (MEF) and IEEE investigating Ethernet OAM and LMI
 - L2PING and Trace for MAC addresses
 - Ethernet LMI and OAM interaction across different protocol boundaries
 - OAM Inter-Working (ATM to Ethernet)

• ITU-T and IETF also investigating OAM but generally with respect to specific transport requirements

• Cisco is active within IEEE, MEF, IETF and ITU-T in driving solutions and standards for Ethernet OAM and LMI functions
Unified VPN Platform Solutions

Customer Ethernet UNI

L1 Services—L2VPN—Service Interworking—L3 VPN

QoS, Security, IP Multicast, Content, Storage, Voice, Video

IP—MPLS, L2TPv3

Ethernet RPR xWDM SONET/SDH

Cisco 12000 Cisco 10700 Catalyst 4000 Catalyst 6500
Cisco 7600 Catalyst 3550/2950 Catalyst 3550/2950 ONS 15600
ONS 155x0 ONS 15327 ONS 15454

Cisco IOS Services

NMS/OSS

© 2003, Cisco Systems, Inc. All rights reserved.