

Architecture and Design of Metro Ethernet over Optical Transport Networks

Architecture and Design of Optical Transport Networks

- Metro Ethernet Services
- Metro Ethernet options
- Mapping Data over SONET
- Optimizing SONET for Data Transport
- Topologies and Architectures

Metro Ethernet Services Market

Cisco.com

- Ethernet Private Line (EPL) Pt-Pt CAGR:58.6%
- Ethernet Internet Access (EIA) CAGR: 102.4%
- Ethernet Any-to-Any CAGR: 134%

Yankee Group Report August 19,2003

What is Metro Ethernet?

- Delivers an Ethernet UNI to Enterprises/SMB for MAN/WAN connectivity
- SP has multiple transport options

Office 3

Branch

Ethernet-Connected

What Does Ethernet as a LAN/MAN/WAN Transport Offer?

- Ethernet becomes the ubiquitous interface: single technology for LAN, MAN and WAN
- Efficient packet-based infrastructure: IP friendly
- Cost effective interface with flexible bandwidth offerings: 10/100/1000/10000 Mbps
- Geographical independence: Ethernet over Optical, IP or MPLS

Enterprise Applications Drive Metro Ethernet

- LAN interconnect
- Service aggregation
- Interconnect data centers
- Backup and disaster recovery
- Connect to hosting services
- Value-added services

How SPs Deliver This Is Largely Irrelevant... Metro Ethernet Is Simply a Tool in the Tool Box

Summary of Ethernet-Based Services

Ethernet-Based Services								
Layer 1		Layer 2						
F	Point-to-Po	int	Multipoint					
Ethernet Private Line	Ethernet Relay Service	Ethernet Wire Service	Ethernet Multipoint Service	Ethernet Relay Multipoint Service	MPLS VPN			
Transparent LAN Service Similar to Leased Line Analogous to Frame Relay								
Transparent LAN Service Similar to Leased Line Analogous to Frame Relay Analogous to Private Line								

Offering a Gigabit Ethernet Private Line Service

- Dedicated, transparent private line between sites
- Guaranteed SLAs per connection
- Built with dedicated bandwidth/wavelength
- ML-series card integrates switching functionality within the ONS-15454
- Can be built with SONET, CWDM, DWDM

ERS allows interworking with FR/ATM (future)

The Ethernet Wire Service (EWS)

- Analogous to a private line in that all data transverses, unaltered across the EVC
- Port-to-Port mapping, no service multiplexing allowed. Therefore all services must exist on one port (All-to-One Bundling)
- Switches or routers can be deployed as CE edge devices

The Ethernet Multipoint Service (EMS)

- Often referred to as a Transparent LAN Service (TLS)
- Service Provider cloud appears to be a switch, with UNI supporting VLAN transparency and All-to-One Bundling
- While multipoint by definition, it can also be point-to-point (such as:EWS). All rights reserved.

Ethernet-based MPLS VPNs

- Managed service opportunity for the provider (more money for the SP)
- Opportunity for provider to offer "value-added" services (such as content hosting, IP Centrex)
- Ethernet access provides low-cost, "customer friendly" interface
- Any Layer 2 access mechanism at the UNI (interworking comes "for free")^{2003, Cisco Systems, Inc. All rights reserved.}

Metro Ethernet Options

Transport Options – Ethernet over Sonet vs.Ethernet over Dark Fiber/xWDM

- **Transparent LAN-optimized**
- Greenfield and overbuild architectures
- Effective for a small number of customers
- Redundancy has to be carefully planned due to Spanning Tree and MPLS

- Ethernet service over an existing structured transport network
- Single CPE
- Larger implementations
- Build-in resiliency scheme (UPSR, BLSR, SRP) can eliminate **Spanning Tree**

Logical Hub-and-Spoke on a Physical Fibre Ring

- Many providers will look to deploying a physical ring, but using a logical point-to-point service with guaranteed SLAs on top
- Technologies such as SONET/SDH, CWDM, and DWDM provide this capability

Different Methods Solve Different Problems

Comparison of Ring Technologies

SONET/SDH • Installed base in service providers • Evolutionary approach for the service providers vs. revolutionary • Best choice for large scale deployments • Best use of fiber infrastructure • Hierarchical bandwidth • Best fiber utilization for dual homing • Next-gen SONET, with VCAT, LCAS, GFP, will help optimize SONET for data • 50 ms convergence	 Switched Ethernet using Spanning Tree Low cost solution over dark fiber Perceived simplicity of Ethernet switching Fairness, bandwidth, delay/jitter dependant on location on the ring 10-12 node limit LAN switch as edge device (no MPLS, Traffic shaping, BGP, etc) 1-50 seconds convergence (standard 802 1d or 802 1w) 		
 DPT/RPR Shared packet ring scales bandwidth up to 5 Gbps SONET framing provides insertion point for many providers Spatial reuse provides good bandwidth utilization Optimized for Layer 3 (currently) Large number of nodes (128) per ring 50 ms convergence 	CWDM • Guaranteed bandwidth per lambda up to 8 nodes • Logical star over a physical ring • EtherChannel or Layer 3 load balancing for redundancy • 200 millisecond failover • More consistent delay/jitter and better access onto the ring • Still a low-cost Ethernet switch at edge		

Cisco COMET Multiservice over SONET/SDH (MSOS) Strategy

- Deploying advanced services is key to profitability
- Ethernet, Video, VoIP, and SAN Interconnect key service needs
- QoS is necessary for advanced services and providing SLAs
- Cisco IOS provides advanced perpacket, per port QoS
- Packet Multiplexing is crucial for network efficiency and scale
- Cisco technology innovations (MPLS, DPT, CDL, EoS) enable this
- SONET/SDH will need to become more efficient
- GFP, CCAT, VCAT, and LCAS all offer incremental improvements

ONS 15454 ML-Series Ethernet Cards

- ML-Series enables private line services and Layer 2/3 Packet Multiplexing into SONET/SDH
- Packet processing capabilities allow creation of multipoint services
- Common QoS feature set and code base with existing enterprise networks
- Common management with Cisco Transport Manager, as well as SNMP and TL1 support

ONS 15454 Ethernet Capability Customer Driven – Continued Traction

	Shipping Since	Ports Deployed	Services Deployed
E-Series	1999	Tens of Thousands	Layer 1 Private Line and basic switched services
G-Series	2002	Thousands	Line Rate Gigabit Ethernet Private Line
ML-Series	2003	Trials	Integrated Layer 2/3 capabilities to provide advanced switched services and SLAs

Packet Multiplexing – Flexible Architectures

Advanced QoS and Layer 3 Capabilities

Provisioning of ML-Series based Profitable Ethernet Services

Mapping Data over SONET/SDH

(GFP—Generic Framing Procedure)

ITU Recommendation G.7041 (GFP)

Cisco.com

 Generic Framing Procedure expands on functionality of X.86 in that it provides for:

Encapsulation of L2/L3 PDU client signals (GFP-F)

- Encapsulation/mapping of block coded client signals (GFP-T)
- Multiplexing of multiple client signals into a single payload

GFP Network View

Pros and Cons GFP

• Pro:

Supports Ethernet, PPP and SAN interfaces ITU Standard

• Con:

Added flexibility adds complexity (not really that bad though and can be overcome by a good provisioning scheme)

Pros and Cons BCP

Cisco.com

• **Pro**: **IETF** endorsed It is simple Can be deployed today! • Con: Most customers want GFP

Points To Be Heard

- In terms of overhead, GFP has more overhead; however, BCP uses padding and GFP uses idle patterns for synchronization; these can all add considerable overhead, thus making the two roughly equal
- BCP transports Ethernet and some useless LAN protocols, while GFP transports Ethernet, PPP and SAN protocols
- GFP is an ITU standard which carries more weight with IXCs, RBOCs and PTTs

Optimizing SONET/SDH for Data Transport

(STS BW Scaling, Virtual Concatenation)

STS Bandwidth Scaling

Example:

- 100 mbps service required for a CMTS (residential cable access) and a high school LAN
- Assume STS bandwidth scaling onto a shared STS-3c
- Service provider preserves 155 mbps of transport bandwidth (enough to deliver 84 DS-1 services for over \$20K/month or 3 DS-3 services for over \$10K/month)

SONET/SDH Virtual Concatenation (VC)

- Virtual Concatenation is a method of creating a payload made up of 2 or more associated SPEs transported through a network completely independently
- Channels are "administrated" together; common processing of channels is limited to end points
- Channels not constrained to same path (end point delay equalization required)
- Channels not necessarily constrained to same transport channel (e.g., same STS-12)

SONET: Virtual Concatenation Efficiencies

4111

Cisco.com

SONET Paths (SPEs)

Service	Bit Rate	Without VC	With VC
Ethernet	10 Mbit/s	STS-1 (20%)	VT1.5–7v (89%)
Fast Ethernet	100 Mbit/s	STS-3c (67%)	STS-1–2v (Approx. 100%)
Gigabit Ethernet	1000 Mbit/s	STS-48c (42%)	STS-3c–7v (95%)
Low Speed ATM	25 Mbit/s	STS-1 (50%)	VT1.5–16v (98%)
Fibre Channel	200 Mbit/s	STS-12c (33%)	STS-1–4v (100%)
Fibre Channel	1000 Mbit/s	STS-48c (42%)	STS-3c–7v (95%)
ESCON	200 Mbit/s	STS-12c (33%)	STS-1–4v (100%)

Link Capacity Adjustment Scheme

Cisco.com

 A mechanism for dynamically adjusting the size of a virtually concatenated channel

Allows TDM services more flexibility for handling dynamic bandwidth demands

Relies on the NMS/EMS to provision the bandwidth change

Allows channel size adjustment to be hitless

Currently defined for SONET/SDH

Proposed for inclusion into G.709 OTN with ODUk VC

- Bit-oriented protocol encapsulated in control packets
- Applies to high order (STS) and low order (VT)

LCAS Signaling Protocol

Cisco.com

 For high order VCs, it is communicated in a control packet carried in bits 1–4 of the H4 Path Overhead byte

Carried across a 16 frame multiframe

 For low order VCs, it is communicated in a control packet in bit 2 of the Z7* Path Overhead byte

Carried across a 32 frame multiframe

Cisco.com

Topologies and Architectures

Architecture Scenarios

Dedicated Network

• High Capacity

High Volume Metro Network

Packet Multiplexing – Flexible Architectures

ML-Series Layer 2 Features For Service Providers

© 2003, Cisco Systems, Inc. All rights reserved.

ML-Series Layer 3 Features For Service Providers

ML-Series Managed Services For Service Providers

ML-Series Advantages: Provide L2/L3 Services Internet Access/Private Line

Single Customer Ring

ML-Series Layer 2 Features For Municipalities and Large Enterprises

ML-Series L2 Advantages: LAN Interconnection IP Video Distribution VoIP – QoS Guarantees

ML-Series Layer 3 Features For Municipalities and Large Enterprises

ML-Series L3 Advantages: Internet Access/Intranet Web Access IP Routing Protocol Support Works with L2 Features

Summary

- Cisco.com
 Cisco.com
 Cisco.com
 Strategy enables profitability through:
 - Support for Advanced Services
 - Enhanced QoS
 - Integrated Packet Multiplexing
 - Data Optimized SONET/SDH Transport
- ML-Series for the ONS 15454 Multiservice Provisioning Platform (MSPP) delivers private line and switched Ethernet services
- Only Cisco Systems has the expertise in both packets and circuits

CISCO SYSTEMS

Presentation_ID