

Share experience. Build resilience Welcome to SECCON NL 2022

Nationaal Cyber Security Centrum

Impact of Quantum A General Outlook

Sam Samuel Cisco Systems September 2022

- Background
 - General QC stuff
 - Timeframe of interest
- Options

1

2

3

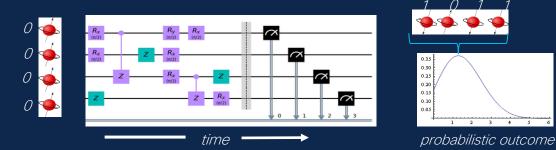
4

5

- PQC
- QKD
- A Quantum Vision
- Summary

What is Quantum Computing?

Superposition (of qubits)

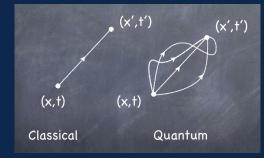

classical 0100110101

 $\begin{array}{c} \text{quantum} \\ p_0 0000000000 \\ + p_1 0000000001 \\ + p_2 0000000010 \\ \bullet \bullet \bullet \\ + p_{2^N} 11111111111 \end{array}$

N bits describe the state

2^N Qubits describe the state

Quantum circuits are probabilistic in nature



Entanglement (strange correlations)

We know the state of the system as a whole, not the individual pieces

A quantum computer explores all possible configurations. Simultaneously!

At the moment Quantum Computing is impacted by noise which makes reliable computing problematic Share experience. Build resilience.

Potential Problem ... or Opportunity

Quantum Computer potency follows a double exponential law on the number of Qubits

Generation (G)	0	1	2	3	4	5	 Ν
Exponential E.g. Moore's Law (2 ^G)	1	2	4	8	16	32	 2 ^{<i>N</i>}
Double Exponential E.g. Nevin's Law (2 ^{2^G)}	2	4	16	256	65546	~4.3*10 ⁹	 2 ^{2^N}

Hartmut Neven: Observed that quantum computers are gaining computational power at a doubly-exponential rate

Shor's algorithm does comply with Neven's law

If Quantum Computing delivers on its promise then there could be a threat to the security of a network

In Practical Terms ... It is a matter of time before Quantum Impacts us

	AES key-length k	RSA Bits	Elliptic Curve (bits length)	Notes	
	48	480	96	DO NOT USE	
	50	512		(trivial)	
	56	640	112		
	62	768		Advised against	
	64	816	128		_
	73	1024			
	80	1248	160	Caution – well funded criminal gangs	
	89	1536			
	103	2048		Nation state ?	Neven's Law
	112	2432	224		
	128	3248 (or 3072)	256	2030's	Quantum acceleration?
Prc	bably OK 160	5312 (or 4096)	320		
	192	7936 (or 7680)	384	Beyond 2030's	
OK	256	15424 (or 15360)	512		are experience. Build resilience.

Not OK - Impacts any key exchange

Background

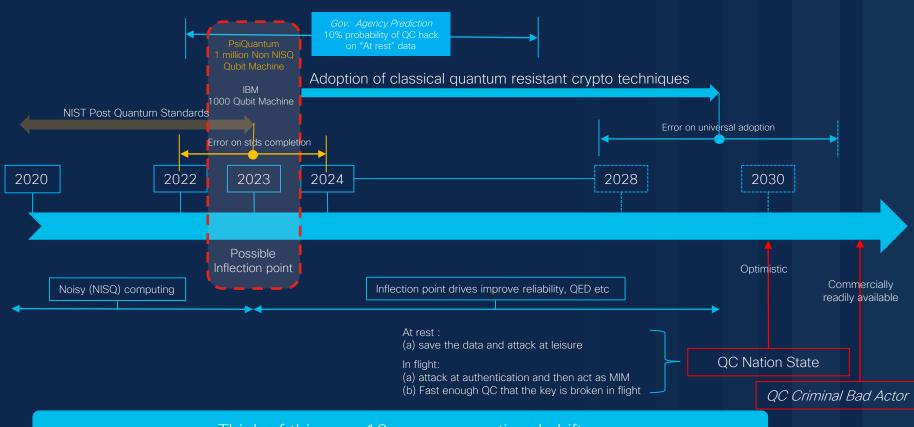
1

2

3

4

5

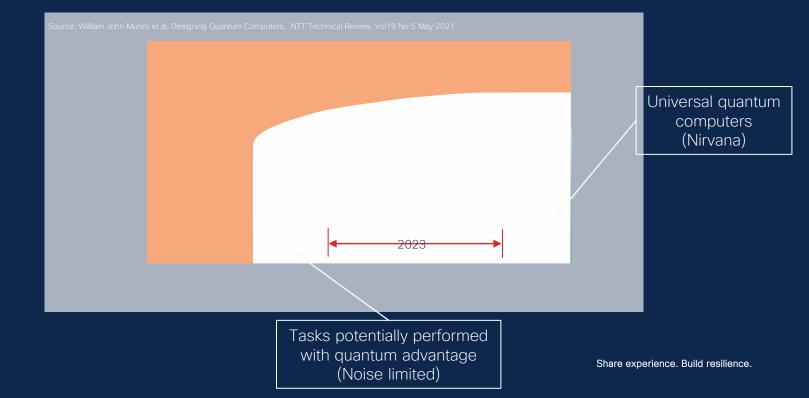

Timeframe of interest

Options

- QKD
- PQC

A Quantum Vision

Post Quantum Security Time Line



Think of this as a 10-year generational shift

Between NISQ and Nirvana

NISQ: Noisy Intermediate Scale Quantum FTQC: Fault Tolerant Quantum Computing

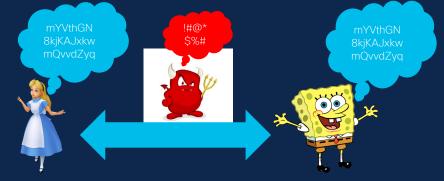
- Background
 - General QC stuff
 - Timeframe of interest
- Options

1

2

3

4


- PQC
- QKD
- A Quantum Vision
- 5 Summary

Initial method for postquantum security – symmetric

The insight: Quantum Computers aren't very good at breaking long symmetric keys. Hence, if we can configure both sides with the same long key, we can be Quantum Safe

Here is how it works:

- 1. We give Alice a long key
- 2. We give Bob the same long key
- 3. Alice and Bob create a secure tunnel that depends on the key
- 4. Someone trying to listen in can't, even if they have a Quantum Computer

The best attack our devil would have would be Grover's algorithm, which doesn't scale with a long key Against a key with 256 bit entropy, Grover's will take at least 2¹²⁸ operations, which is infeasible

We have this enhancement with IPsec (RFC 8784), which we have implemented on Cisco equipment

One issue: how do we get that key to both sides?

Post Quantum Approaches

Postquantum cryptography

NIST Finalists – 5th July 2022

CRYSTALS Dilithium (Sig)	Falcon (Sig)
CRYSTALS Kyber (KEM)	SPHINCS+ (Sig)

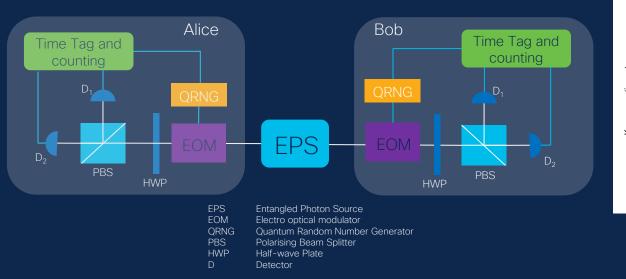
NSA – 7th Sept 2022 Commercial National Security Algorithm Suite 2.0

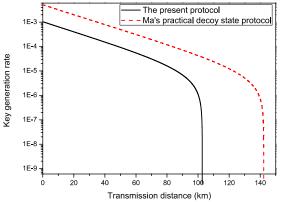
Public Key	Symmetric Key	S/W & F/W Signatures
CRYSTALS Dilithium	AES	XMSS
CRYSTALS Kyber	SHA	LMS

Begin deprecating RSA/Diffie-Helman and Elliptical curve Cryptography (ECDH ECDSA) Transition to be completed by 2035

Postquantum cryptography The Practical Implications

- Need to update protocols to use these new primitives.
- Need to be able to negotiate the new protocols (so we don't have to update everything at once)
- New protocols use more bandwidth (so sometimes fragmentation becomes an issue)
- Pair with conventional cryptography
 - This is to make sure we don't make anything worse
- The IETF is looking to update the TLS, IPsec and Certificate standards




Keys, the final frontier

QKD (Quantum Key Distribution)

The idea: secure communication method utilizing laws of quantum physics for exchanging encryption keys only known between shared parties.

QKD works by transmitting many light particles, or photons, over fiber optic cables between parties. Each photon has a random quantum state, and collectively, the photons sent make up a stream of ones and zeros.

Quantum key distribution with prepare-and-measure Bell test, Yong-gang Tan, 2016, www.nature.com/scientificreports

Share experience. Build resilience.

QKD - still has challenges

Challenges:

- Integration of QKD systems into current infrastructure
- Distance limitations for coherence
- Adoption of QKD as a protocol
- Incorporation of wireless

Various types of QKD are around:

- Prepare-and-measure protocols
- Entanglement-based protocols
- Discrete variable QKD (DV-QKD)
- Continuous variable QKD (CV-QKD)
- Eckert 91 (E91)

Same problem as other security approaches - i.e. time to universal adoption

NSA guidance on QKD

But ... (there is always a but ...)

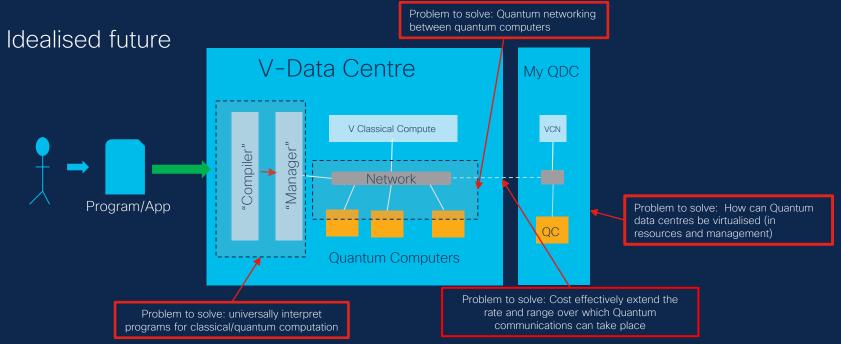
NSA supplied specific guidance

- QKD only forms a part of the cryptographic system
- Not recommended for National Security Systems (NSS)
- Yes, it is scientifically interesting but only addresses some of the security threats
- Requires a significant re-engineering modifications to some systems
- Does not consider QKD a practically secure solution for NSS

- Background
 - General QC stuff
- Timeframe of interest
- Options

1

2


3

4

5

- PQC
- QKD
- A Quantum Vision
- Summary

Where could we go? The quantum data centre

Possible end state and problems to solve

There is brilliant progress being made ...

ltem	Current	Requirement 2025	Gap	Notes
Entanglements/sec	2.8	2 Mebit/sec	10 ⁶	If fidelity of 0.9 or above were requested the entanglement rate could drop below <0.25 e/sec
Distance	2m	(10km <d<20km)< td=""><td>10³</td><td>Experiment is repeaterless</td></d<20km)<>	10 ³	Experiment is repeaterless
Fidelity	0.8	0.99999	104	But can set requested fidelity

... but long-distance quantum communications is still a long way to go

The Milky Way We still have a long way to go!

- Background
 - General QC stuff
 - Timeframe of interest
- Options

1

2

3

4

- QKD
- PQC
- A Quantum Vision
- 5 Summary

An Approach to Future Network Security

- First Aim: Ensure the network remains secure in light of progress in Quantum technologies
- If Quantum Technologies deliver on their computational potency promise more effort will have to be placed on accelerating PQC adoption
 - Have to take a pragmatic approach on adoption. Likely to be SSH replacement or IPv6 adoption timescales
- A leading indicator (likely inflection point) will occur around 2023
 - Appearance of large number of Qubit devices
 - Combined with advances in QEC could accelerate the inflection point
- In parallel with the cryptographic threat that quantum presents
 - Actively exploring quantum tech for communication scenarios (i.e. continue to explore the upside)
 - This technology is still in mainly in academia or in a start-up lab
 - We expect to see quantum entangled distribution rates in the MQubits/sec in the 2025 time frame
 - Commercial maturity likely to occur towards the end of this decade (2030 timeframe)

Summary of the cryptographic approaches

Category	Symmetric	QKD	Postquantum	
Security	Good	Good	Good	
Media Flexibility	Good	Limited	Good	
Range	Good	Limited	Good	
Ease of Use	Difficult to Config	Good	Good	
PFS	No	Good	Good	
Current Hardware	Yes	QKD Required	Yes	
Available Now	Yes	Yes	In a few years	

Ask me anything

Share experience. Build resilience.