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Network Intrusion Detection
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Signature-based
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If an email contains the word ”Corona”
delete email

Signature-based
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If an email contains something I do not want to 
read,

delete email

Signature-based
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Signature-based
How do we know what that something is?
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Email title
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Anomaly-based
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Anomaly-based

Statistics
PCA
K-Nearest Neighbors
Clustering

Machine Learning
Decision Trees
Support Vector Machines
Auto Encoders
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The goal
Can we achieve anomaly-based detection for 

practical commercial use?

If so, how?
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What data can we use?

Slide 13 of 71



Share experience. Build resilience.

Unsupervised Anomaly-based

Statistics
K-Nearest Neighbors
PCA
Clustering

Machine Learning
Decision Trees
Support Vector Machines
Auto Encoders
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What is practical?
High performance and high efficiency
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Practical situation

Slide 16 of 71



Share experience. Build resilience.

Efficiency
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Auto Encoders
Deep learning method
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Correctly reconstructed
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Reconstructed with error
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How can we use this 
for network data?

Slide 23 of 71



Share experience. Build resilience.

UNSW NB15 - All data
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UNSW NB15 - All data
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How does ML find the 
Attacks?
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UNSW NB15 - All data
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Training
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Training
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Low Reconstruction error
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Medium Reconstruction Error
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High reconstruction error
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All reconstruction error
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The problem of 
anomaly based 

detection
Large number of False Positives
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All reconstruction error
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How can we Improve?
Split data on application level services
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Ideal situation
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Actual situation
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Actual situation
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Proposed method

DNS

HTTP

SSH
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All reconstruction error
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UNSW NB15 - DNS
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Does it work on every 
dataset?

Slide 43 of 71



Share experience. Build resilience.

CICIDS 2017 - All Data
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CICDIDS 2017 - Port 53

Normal
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Class Classified as 
Anomaly

Total Percentage 
anomalies

Benign 1 743138 0.0001 %

Portscan 159 159 100 %
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Does it work for every 
service split?
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All reconstruction error
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UNSW NB15 - HTTP
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CICIDS 2017 - HTTP
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Improvements
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How can we create 
more representative

results?
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Real data
Captured in a commercial NIDS
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CICIDS 2017 UNSW NB15 Our dataset

Timespan 5 days 2 days 4 hours

Amount of 
connections

2.830.743 2.540.047 4.604.988

Database sizes
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Real data - HTTP service - Only normal data

Attacks?
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How can we verify the 
performance?
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Real data - DNS with UNSW-NB15 attacks 
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Real data - DNS with UNSW-NB15 attacks 

Percentage detected as Anomaly

Real data 0.1 %

UNSW dataset 
Attack

54 %

UNSW dataset 
Normal

0 %

Slide 58 of 71



Share experience. Build resilience.

Real data - HTTP with UNSW NB15 attacks
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Real data - HTTP with UNSW NB15 attacks

Likely attacks

Percentage detected as Anomaly

Real data 3 %

UNSW dataset Attack 81 %

UNSW dataset Normal 27 %
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Is it for practical use?
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Real data - HTTP with UNSW NB15 attacks

Likely attacks

Amount of 
Anomalies

Percentage detected as Anomaly

Real data 1000 3 %

UNSW dataset Attack 81 %

UNSW dataset Normal 27 %
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Ip addresses with more than 10 detections
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Real data - HTTP service - Only normal data

Attacks!
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Practical implementation
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Is the efficiency high 
enough?
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Testing times
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Using Machine Learning

Anomaly based

Unsupervised
Auto Encoders

For Practical Use
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Time Share experience. Build resilience

09:00 - 10:00

Main stage (Zilversmederij 300 seats) Breakout room 1 (Penningzaal 80 seats) Breakout room 2 (Depot 80 seats) Breakout room 3 (Stempelkamer 60 seats ) Breakout room 4 (Schatkamer 30 seats ) 

10:00 - 10:15

Threat Intell Threat Intel Post Quantum Security Threat Intel AI

Threat Intel update from Talos  - Martin Lee (Talos 
Threat intelligence organization)

No More Leaks Project - Felix Nijpels (Dutch Police) 
The Impact of Quantum on security - a general 

outlook - Sam Samuel (Cisco)

 Threat managemen at the Dutch Railway - Dimitri 
van Zantvliet Rozemeijer (Chief Cyber Dutch 

Railway)

Get ready for the AI attack bot - Richard de Vries 
(Tata Steel)

10:45 - 11:00

Detection and Response SOAR Post Quantum Security Detection and Response Detection and Response / AI

Day in life at the Dutch Tax Office SOC - Karl 
Lovink (Belastingdienst)

Stay Ahead of the Game: Automate your Threat 
Hunting Workflows - Christopher van der Made 

(Cisco)

Quantum hurdles: an optimistic view of post-
quantum security - Sander Dorigo (Fox Crypto)

What Cyber can learn from Biology? - Koen Hokke 
(KPN)

Unsupervised Anomaly-Based Network Intrusion 
Detection Using Auto Encoders for Practical Use - 

Julik Keijer (Northwave)

11:30 - 11:45

Detection and Response Detection and Response DevSecOps/ Detection and Response DevSecOps

Compliancy vs security. Pentesting is dead - Edwin 
van Andel (ZeroCopter )

Incident Response without compromise. How to 
prepare for the worst day of your career with dice! - 

Wouter Hindriks (Avit) 

Threat Modelling: it’s not just for developers - 
Timothy Wadhwa-Brown (Cisco)

Changed responsibilities in modern software 
development environments - Martin Knobloch 

(Microfocus)

How to break a data center? Fred Streefland  
(Secior)

12:15 - 13:00

13:00 - 13:45

13:45 - 14:00

Threat intel / Detection and Response Threat Intel Detection and Response DevSecOps

CERT in Ukraine exeperience sharing by Andrii 
Bezverkhyi (SOCPrime) 

This is why you will fail: Most successful attack 
scenarios and their defenses - Tijme Gommers 

(Northwave)
Risk-based Auth & ZTA - Frank Michaud (Cisco)

Creating clarity and unity in security standards and 
guidelines - OpenCRE.org - Rob van der Veer 

(Software Improvement Group) 
(Placeholder) WICCA Breakout (with Wendy joining) 

14:30 - 14:45

Detection and Response Detection and Response Detection and Response Threat Intel Detection and Response / AI

Advanced Attacker Automation: Botnet capabilities 
and techniques used to evade your defences - 

David Warburton (F5)

Security Maturity: from XDR to SIEM - Gilles van 
Heijst (Orange Cyber Defense) 

Improving Business Security by implementing 
Security.txt - Julius Offers (Digital Trust Center) 

Tackling the challenge of translating threat 
intelligence into actual action - Raymond Bierens 

(Connect2Trust)

Fostering emerging technologies in cybersecurity, 
to reinforce our strategic autonomy.- Christian van 

der Woude (Dcypher)

15:15 - 16:00

11:45 - 12:15

14:00 - 14:30 

14:45 - 15:15

Break - switch to main stream

SECCON-NL 2022 

Opening Keynote Sadie Creese (Professor Cybersecurity @ Oxford University)

Break - switch to main stream

Break - switch to main stream

10:15 - 10:45

11:00 - 11:30

LUNCH

Panel Discussion with Liesbeth Holterman (host CVNL)  Koen Sandbrink (NCSC), Jochem Smit (Northwave), Oscar Koeroo (Min Ezk),  Jan Heijdra (Cisco) 

Break - switch to main stream

Break - switch to main stream

Closing Keynote - Wendy Nather 
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Confusion Matrix
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Future work
● Capture data over a longer time to collect real attacks
● Create better statistical features or connection correlations
● By using human security specialists, create a labeled dataset
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Our data - HTTP with UNSW NB15 attacks
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Unsupervised thresholding
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Unsupervised thresholding
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Classification results CICIDS 2017 dataset
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Our data - HTTP 

Malicious?
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Research questions
● RQ 1: What is the best method in the state-of-the-art in anomaly-based 

NIDS?
● RQ 2: What improvements can be made on Auto Encoders for anomaly-

based NIDS?
● RQ 3: Can we achieve unsupervised anomaly-based NIDS for practical use?
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Unsupervised Anomaly-Based Network Intrusion 
Detection
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Standard connection and statistical features
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Service specific features
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How can we implement 
this method?
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Mean over absolute reconstruction error per 
features
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Security Events

Windows Security 
Events Machine Learning Event at Time x is 

anomalous

What is anomalous?
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Security Events

Windows Security 
Events TGT requests Machine Learning

Event at time x has 
anomalous 

encryption level 
requests

Why is it 
anomalous?
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Security Events

Machine Learning

Event at time X has 
unusual weak 

encryption  level 
requests

Possible 
Kerberoasting
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Windows Security 
Events TGT requests
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Proposed method



Share experience. Build resilience.Slide 92 of 87

Proposed method



Share experience. Build resilience.

Mean over absolute normalised features
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Mean over absolute reconstruction error per 
features
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Signature-based
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Total amount 
of IP pairs

Amount of IP pairs 
above the 
threshold

IP pair Occurrence >10 
times above threshold

Source IP Occurence 
>10 times above 
threshold

Total 4062 137 47 6

Attack 40 40 40 4
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Classification results CICIDS 2017 dataset
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Data distribution per service 
UNSW-NB15 and CICIDS 2017
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Training on 30 minutes of data

Slide 101 of 87

* 1/4
* 1/4



Share experience. Build resilience.

Our goal
Can we achieve anomaly based detection for 

practical commercial implementation?

If so, how?
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Using Auto Encoders 
on specific data
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Concluding
● Improvement in performance for Auto Encoders
● Improvement in efficiency due to split data
● Alerts contain more information, reducing the “black box” nature of deep 

learning
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Auto Encoder model
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Auto Encoder model
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Auto Encoder model
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Correctly reconstructed
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Reconstructed with error
1
1
0
1
0
1

1
0.99
0
1
0
1

1
1
0
1
0
1

Reconstruction
Error = 0.01

1
0.99
0
1
0
1

0
0.01
0
0
0
0



Share experience. Build resilience.

RQ3: How can we achieve 
unsupervised anomaly-based NIDS for 

practical use?
Experiments on real data
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