Share experience. Build resilience Welcome to SECCON NL 2022

Nationaal Cyber Security Centrum Ministerie van Veiligheid en Justitie

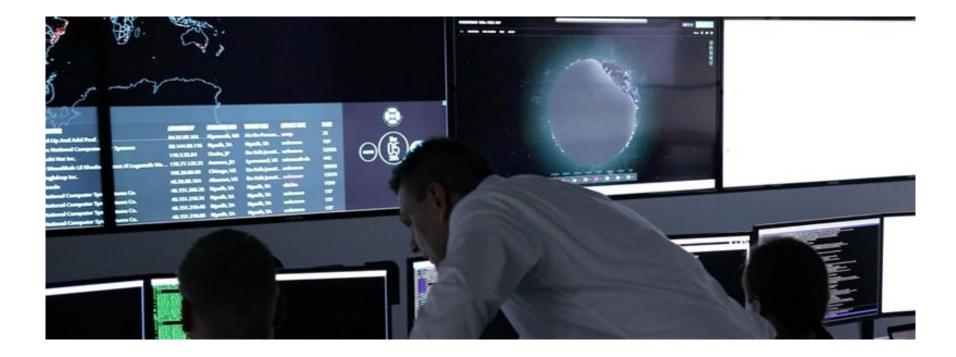
UNIVERS OF TWENTE. Anomaly based Improving Intrusion detection Using Machine Learning Practical Use Auto Encoders

Share experience. Build resilience.

Agenda

The goal

How to use Anomaly Detection


3

Lessons learned

Background

Network Intrusion Detection

Signature-based

Slide 6 of 71 Share experience. Build resilience.

If an email contains the word "Corona" delete email

If an email contains something I do not want to read, delete email

Slide 8 of 71 Share experience. Build resilience.

Signature-based

How do we know what that something is?

Slide 9 of 71 Share experience. Build resilience.

Email title
A
В
C
4

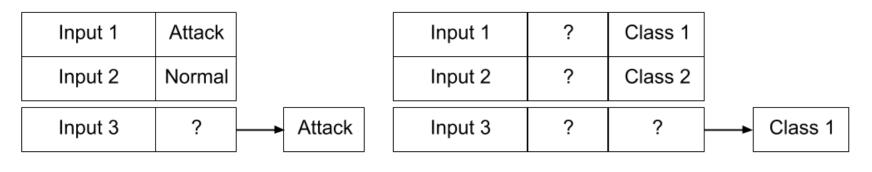
Anomaly-based

Statistics

PCA K-Nearest Neighbors Clustering

Machine Learning

Decision Trees Support Vector Machines Auto Encoders


The goal

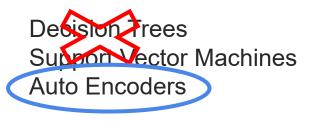
Can we achieve anomaly-based detection for practical commercial use?

If so, how?

What data can we use?

Labeled

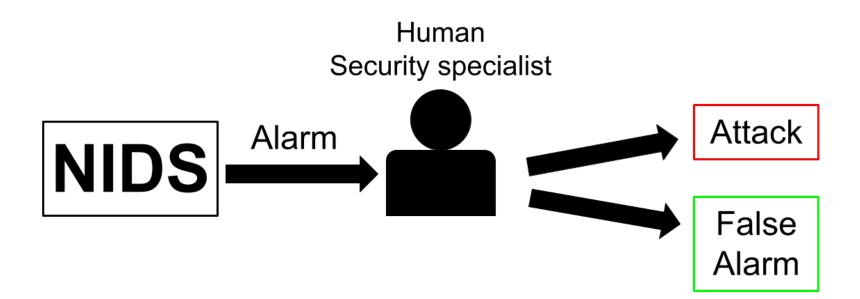
Unlabeled



Unsupervised Anomaly-based

Statistics

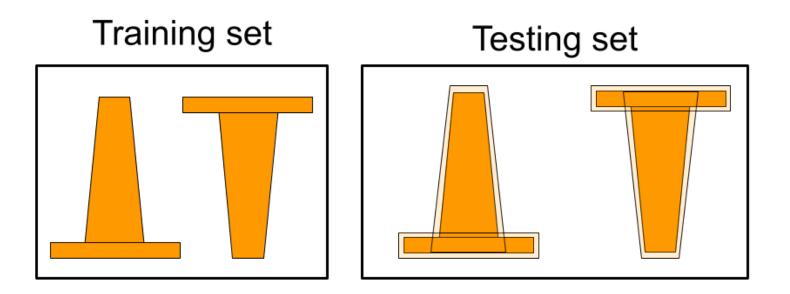
Machine Learning

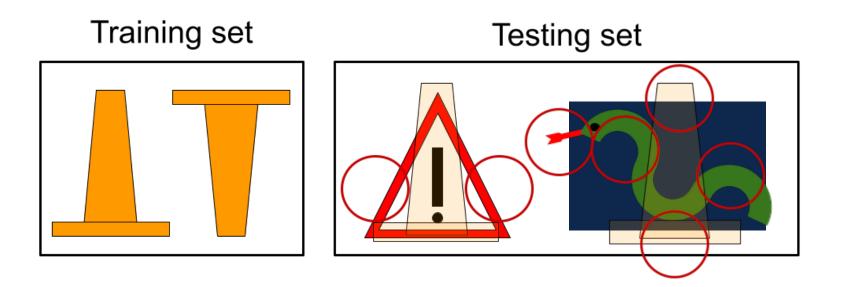


What is practical?

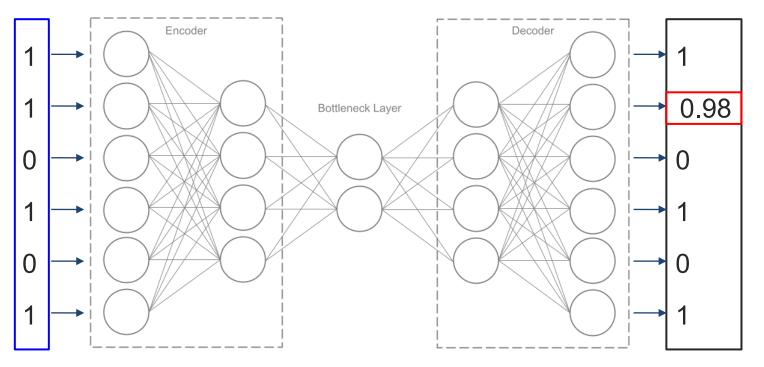
High performance and high efficiency

Practical situation

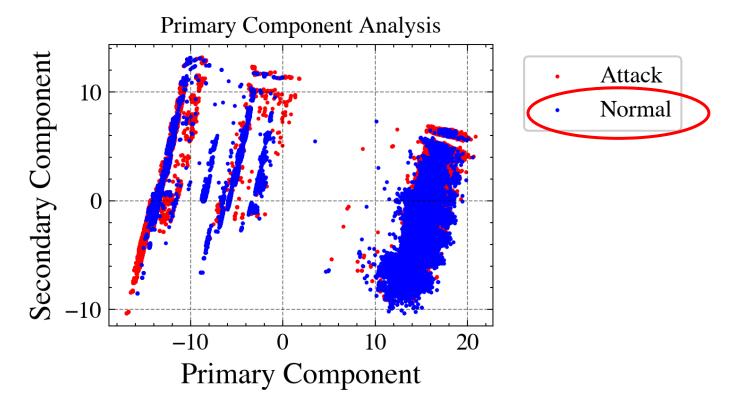

Suspicious Alarm

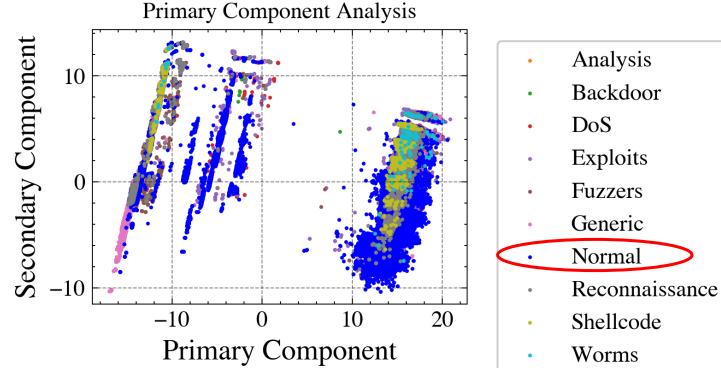

Auto Encoders Deep learning method

Slide 18 of 71 Share experience. Build resilience.

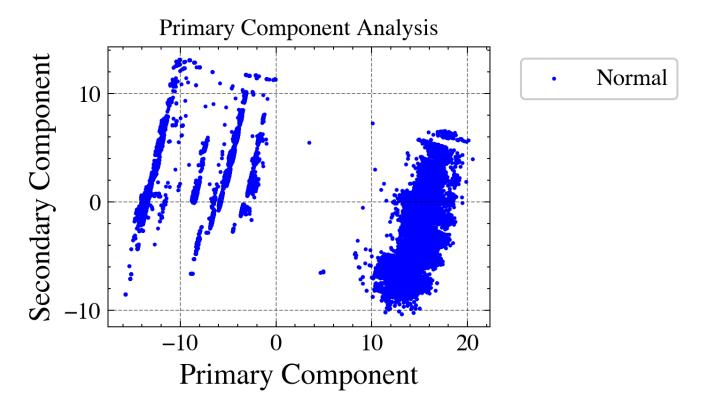


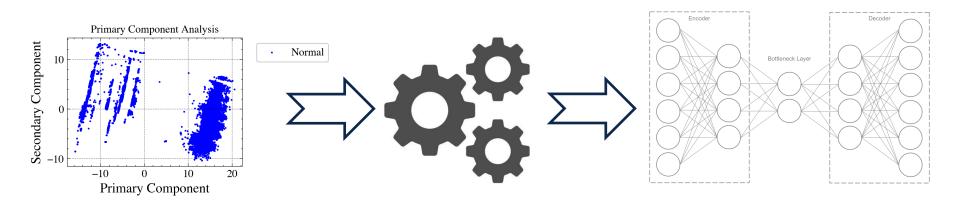
Correctly reconstructed


Reconstructed with error

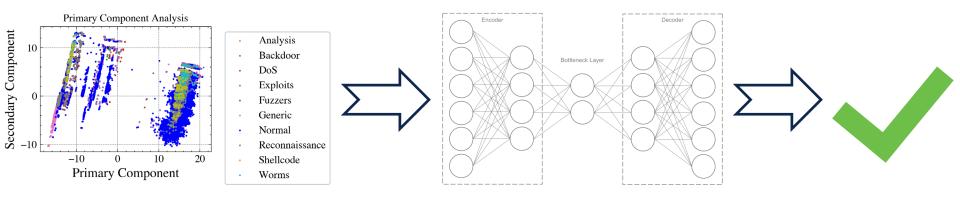


How can we use this for network data?

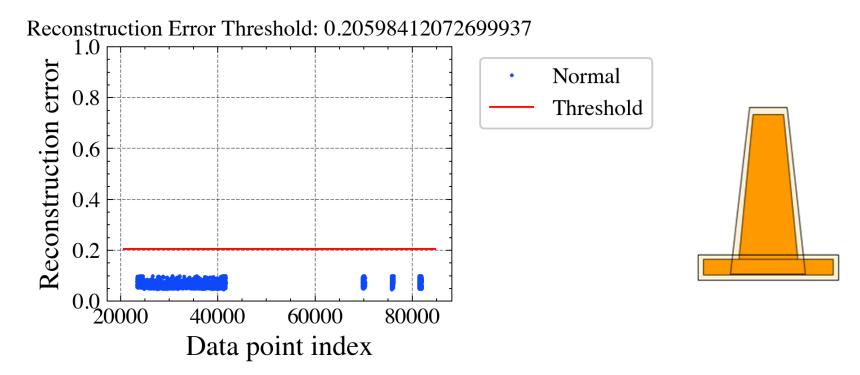

UNSW NB15 - All data


How does ML find the Attacks?

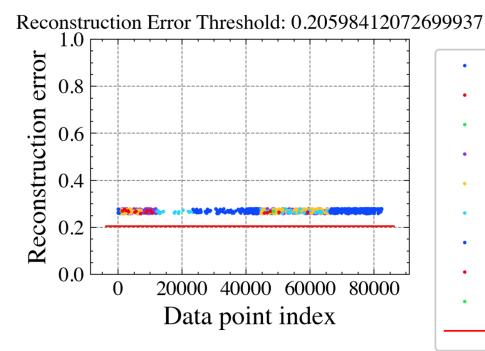
UNSW NB15 - All data



Training

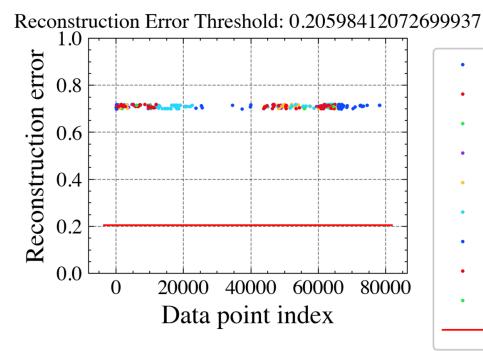


Training



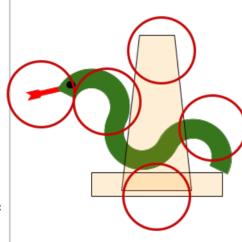
Low Reconstruction error

Medium Reconstruction Error



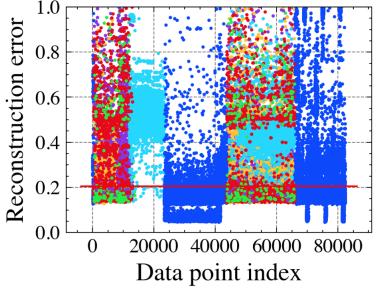
- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Worms

Threshold



High reconstruction error

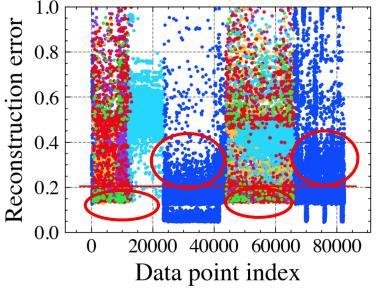
- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Shellcode


Threshold

All reconstruction error

Reconstruction Error Threshold: 0.20598412072699937

- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Shellcode
- Worms
- Threshold

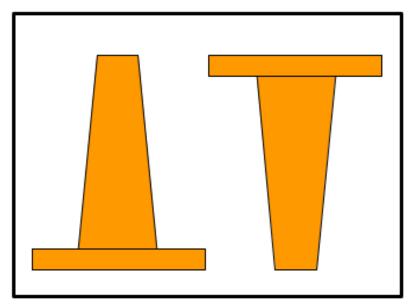

The problem of anomaly based detection

Large number of False Positives

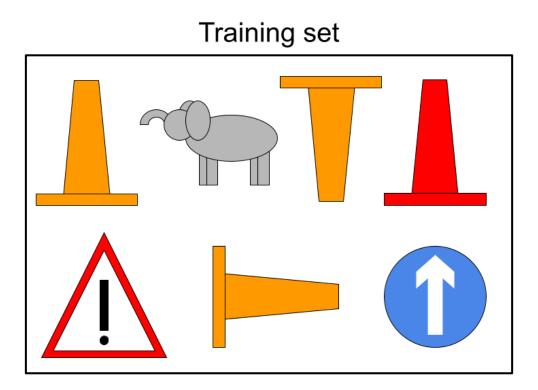
All reconstruction error

Reconstruction Error Threshold: 0.20598412072699937

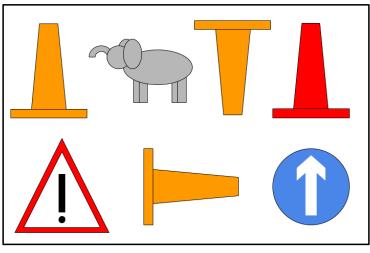
- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Shellcode
- Worms
- Threshold

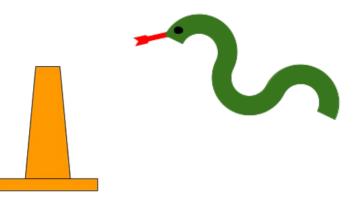


How can we Improve? Split data on application level services


Ideal situation

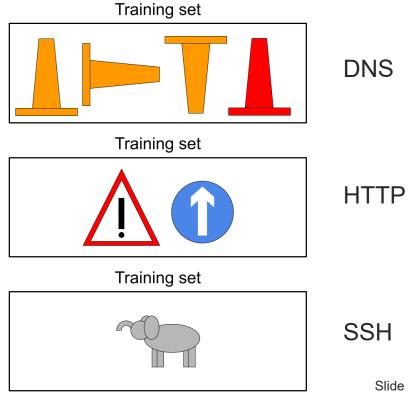
Training set


Actual situation



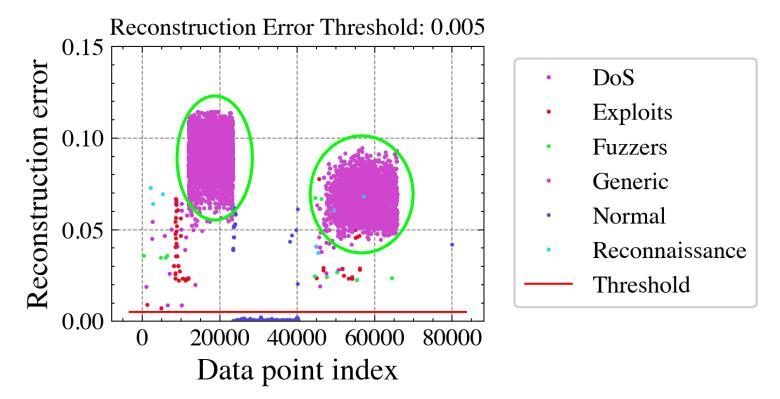
Actual situation

Training set



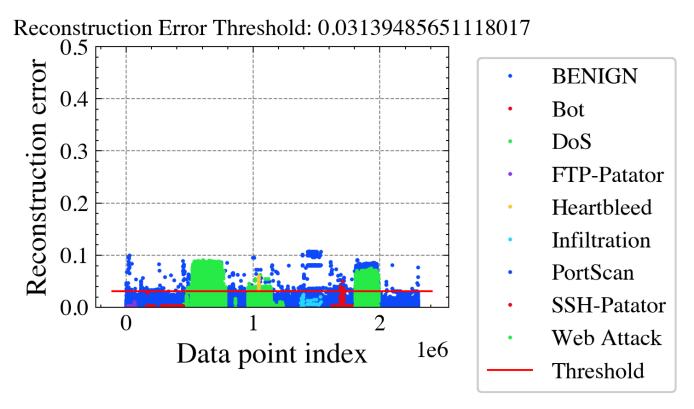
Proposed method

All reconstruction error

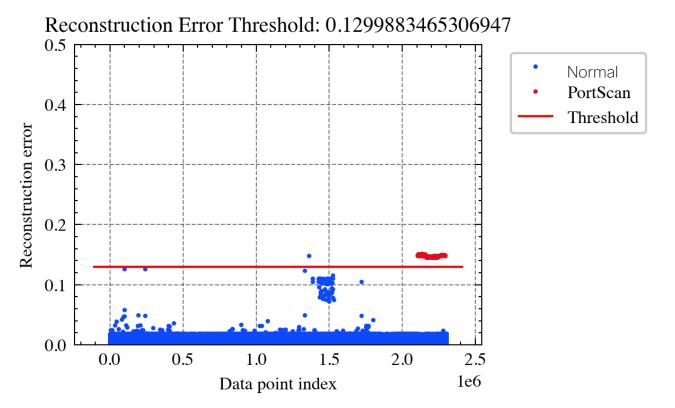

Reconstruction Error Threshold: 0.20598412072699937

- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Shellcode
- Worms
- Threshold

UNSW NB15 - DNS



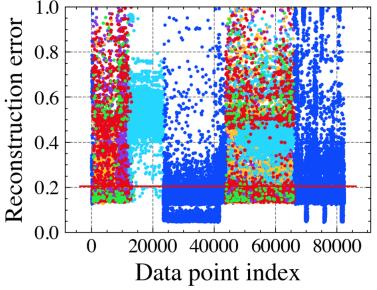
Does it work on every dataset?



CICIDS 2017 - All Data

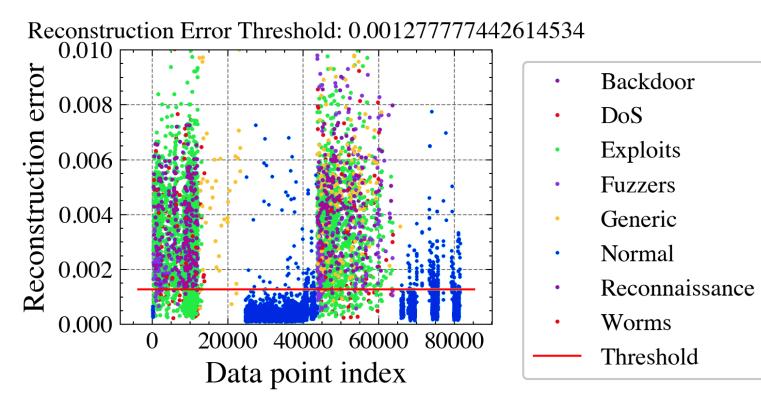
CICDIDS 2017 - Port 53

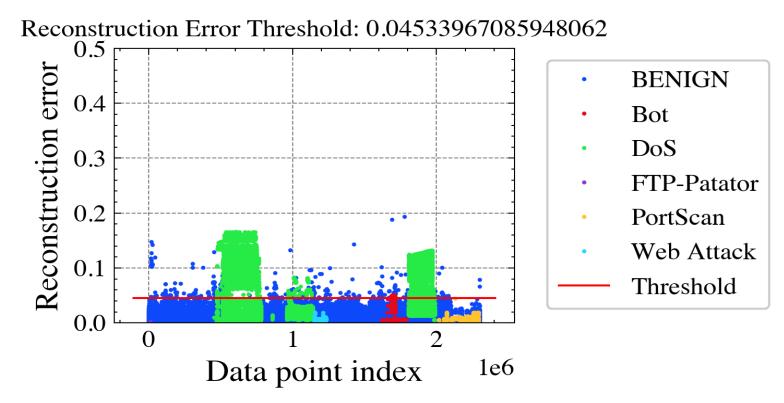
Class	Classified as Anomaly	Total	Percentage anomalies
Benign		743138	0.0001 %
Portscan	159	159	100 %



Does it work for every service split?

All reconstruction error


Reconstruction Error Threshold: 0.20598412072699937


- Analysis
- Backdoor
- DoS
- Exploits
- Fuzzers
- Generic
- Normal
- Reconnaissance
- Shellcode
- Worms
- Threshold

UNSW NB15 - HTTP

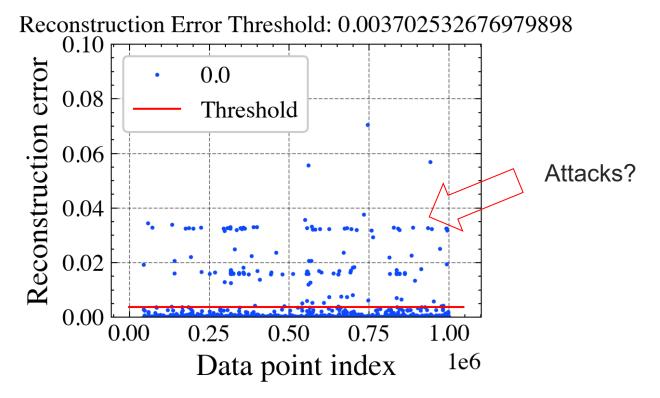
Improvements

	TPR	FPR
UNSW-NB15 All data	0.896	0.237
UNSW-NB15 Proposed Method	0.896	0.160
CICIDS 2017 All data	0.306	0.008
CICIDS 2017 Proposed Method	0.683	0.003

How can we create more representative results?

Real data Captured in a commercial NIDS

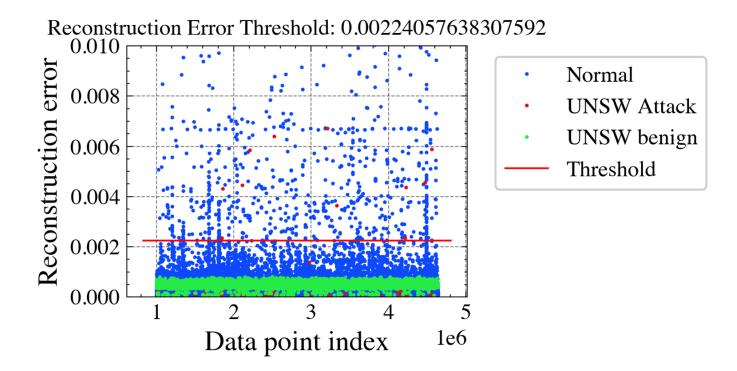
Slide 53 of 71 Share experience. Build resilience.



Database sizes

	CICIDS 2017	UNSW NB15	Our dataset
Timespan	5 days	2 days	4 hours
Amount of connections	2.830.743	2.540.047	4.604.988

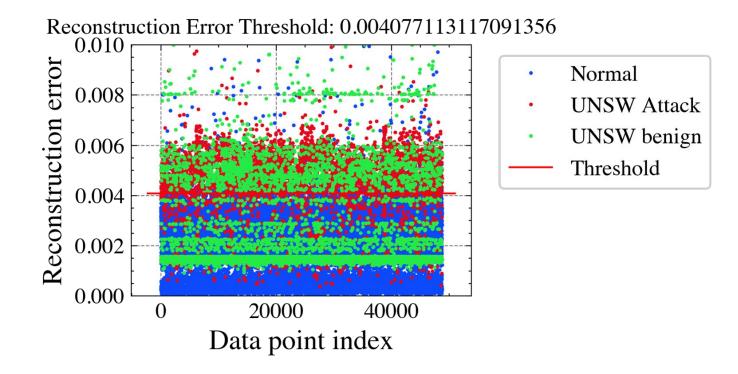
Real data - HTTP service - Only normal data



How can we verify the performance?

Slide 56 of 71 Share experience. Build resilience.

Real data - DNS with UNSW-NB15 attacks



Real data - DNS with UNSW-NB15 attacks

	Percentage detected as Anomaly
Real data	0.1 %
UNSW dataset Attack	54 %
UNSW dataset Normal	0 %

Real data - HTTP with UNSW NB15 attacks

Real data - HTTP with UNSW NB15 attacks

	Percentage detected as Anoma	
Real data	3 %	Likely attacks
UNSW dataset Attack	81 %	
UNSW dataset Normal	27 %	

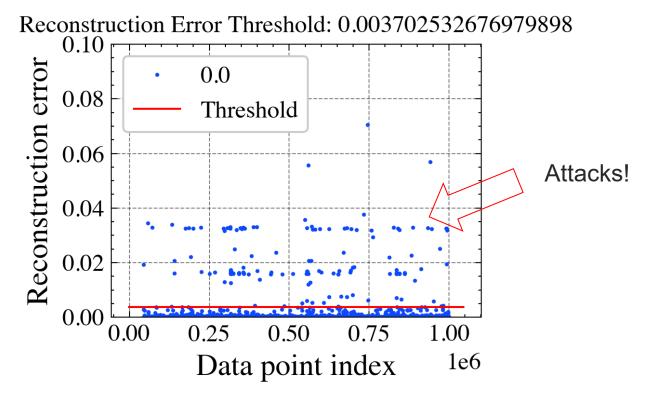
Is it for practical use?

Real data - HTTP with UNSW NB15 attacks

	Amount of Anomalies		Percentage detected as Anomal	
	ANON	lalles		Likely attacks
Real data	1000	, L	3 %	
UNSW dataset Attack			81 %	
UNSW dataset Normal			27 %	

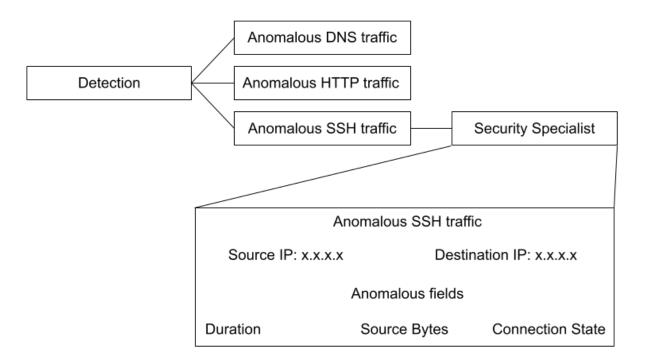
Ip addresses with more than 10 detections

ID	IP Address	Anomaly Count	Anonymized	Cause
1	175.45.176.2	1374	No	UNSW attack
2	175.45.176.3	1100	No	UNSW attack
3	175.45.176.0	839	No	UNSW attack
4	175.45.176.1	816	No	UNSW attack
5	59.166.0.5	723	No	UNSW benign
6	59.166.0.7	665	No	UNSW benign
7	59.166.0.8	648	No	UNSW benign
8	134.32.95.87	225	Yes	Known anomaly
9	134.32.95.115	130	Yes	Known anomaly
10	123.167.67.120	86	Yes	Known anomaly
11	123.167.67.222	30	Yes	No information
12	13.139.58.167	20	Yes	Known Malicious IP
13	247.209.145.27	11	Yes	No information



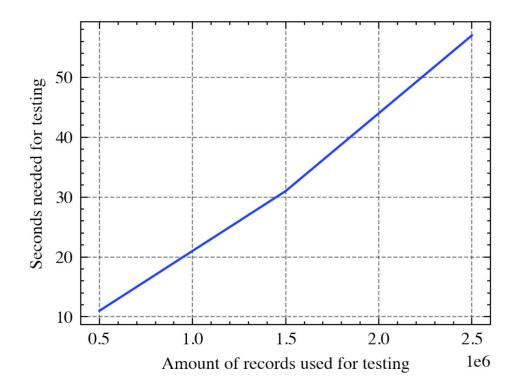
11	(!) 11 security vendors flagged this IP address as mailcious	
/ 85		RU
Community V Score		

DETECTION DETAILS	RELATIONS COMMUNITY (1)		
AlienVault	① Malicious	Certego	() Malicious
Comodo Valkyrie Verdict	① Malicious	CRDF	① Malicious
CyRadar	① Malicious	EmergingThreats	① Malicious
Forcepoint ThreatSeeker	① Malicious	Fortinet	① Malware
IPsum	① Malicious	Kaspersky	① Malware
Quttera	① Malicious	Threatsourcing	(i) Suspicious



Real data - HTTP service - Only normal data

Practical implementation



Is the efficiency high enough?

Slide 67 of 71 Share experience. Build resilience.

Testing times

UNIVERS OF TWENTE. Anomaly based Improving Intrusion detection Using Machine Learning Practical Use Auto Encoders

Share experience. Build resilience.

Ask me anything

Share experience. Build resilience.

Time

SECCON-NL 2022

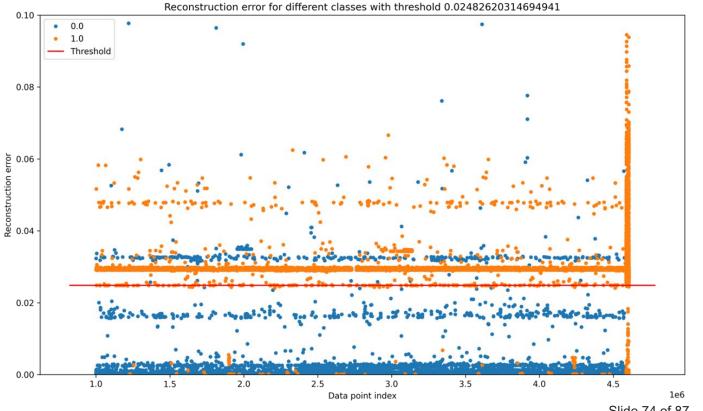
Share experience. Build resilience

09:00 - 10:00

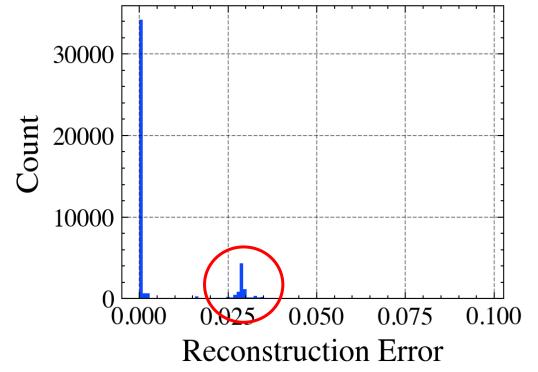
Opening Keynote Sadie Creese (Professor Cybersecurity @ Oxford University)

	Main stage (Zilversmederij 300 seats)	Breakout room 1 (Penningzaal 80 seats)	Breakout room 2 (Depot 80 seats)	Breakout room 3 (Stempelkamer 60 seats)	Breakout room 4 (Schatkamer 30 seats)		
10:00 - 10:15 Break - switch to main stream							
	Threat Intell	Threat Intel	Post Quantum Security	Threat Intel	AI		
10:15 - 10:45	Threat Intel update from Talos - Martin Lee (Talos Threat intelligence organization)	No More Leaks Project - Felix Nijpels (Dutch Police)	The Impact of Quantum on security - a general outlook - Sam Samuel (Cisco)	Threat managemen at the Dutch Railway - Dimitri van Zantvliet Rozemeijer (Chief Cyber Dutch Railway)	Get ready for the AI attack bot - Richard de Vries (Tata Steel)		
10:45 - 11:00			Break - switch to main stream				
	Detection and Response	SOAR	Post Quantum Security	Detection and Response	Detection and Response / AI		
11:00 - 11:30	Day in life at the Dutch Tax Office SOC - Karl Lovink (Belastingdienst)	Stay Ahead of the Game: Automate your Threat Hunting Workflows - Christopher van der Made (Cisco)	Quantum hurdles: an optimistic view of post- quantum security - Sander Dorigo (Fox Crypto)	What Cyber can learn from Biology? - Koen Hokke (KPN)	Unsupervised Anomaly-Based Network Intrusion Detection Using Auto Encoders for Practical Use - Julik Keijer (Northwave)		
11:30 - 11:45	11:30 - 11:45 Break - switch to main stream						
	Detection and Response	Detection and Response	DevSecOps/ Detection and Response	DevSecOps			
11:45 - 12:15	Compliancy vs security. Pentesting is dead - Edwin van Andel (ZeroCopter)	Incident Response without compromise. How to prepare for the worst day of your career with dice! - Wouter Hindriks (Avit)	Threat Modelling: it's not just for developers - Timothy Wadhwa-Brown (Cisco)	Changed responsibilities in modern software development environments - Martin Knobloch (Microfocus)	How to break a data center? Fred Streefland (Secior)		
12:15 - 13:00	- 13:00 LUNCH						
13:00 - 13:45 Panel Discussion with Liesbeth Holterman (host CVNL) Koen Sandbrink (NCSC), Jochem Smit (Northwave), Oscar Koeroo (Min Ezk), Jan Heijdra (Cisco)							
13:45 - 14:00			Break - switch to main stream				
	Threat intel / Detection and Response	Threat Intel	Detection and Response	DevSecOps			
14:00 - 14:30	CERT in Ukraine exeperience sharing by Andrii Bezverkhyi (SOCPrime)	This is why you will fail: Most successful attack scenarios and their defenses - Tijme Gommers	Risk-based Auth & ZTA - Frank Michaud (Cisco)	Creating clarity and unity in security standards and guidelines - OpenCRE.org - Rob van der Veer	(Placeholder) WICCA Breakout (with Wendy joining)		
	Bezverknýr (SOCPhille)	(Northwave)		(Software Improvement Group)			
14:30 - 14:45	Dezverkný (SOCPHINE)	(Northwave)	Break - switch to main stream	(Software Improvement Group)			
14:30 - 14:45	Detection and Response	(Northwave) Detection and Response	Break - switch to main stream Detection and Response	(Software Improvement Group) Threat Intel	Detection and Response / Al		

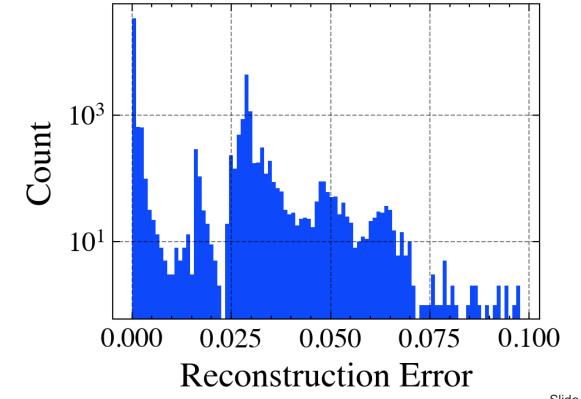
Confusion Matrix


		Actual	
		Attack	Normal
Predicted	Attack	True Positive (TP)	False Positive (FP)
Normal		False Negative (FN)	True Negative (TN)

- Capture data over a longer time to collect real attacks
- Create better statistical features or connection correlations
- By using human security specialists, create a labeled dataset


Our data - HTTP with UNSW NB15 attacks

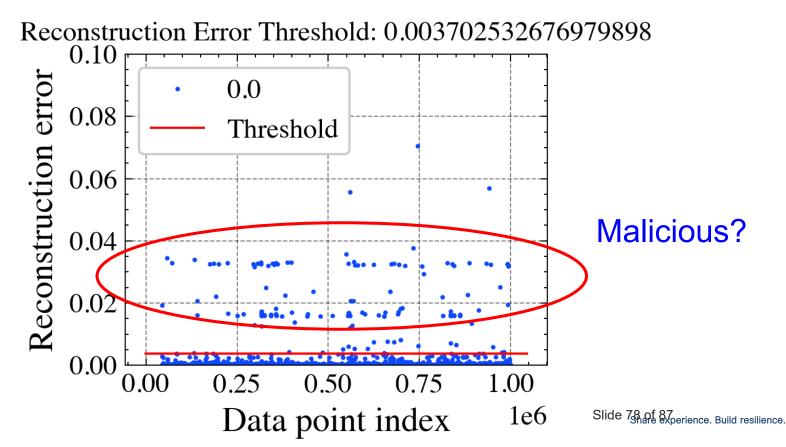
Slide 74 of 87 Share experience. Build resilience.


Unsupervised thresholding

Slide 75 of 87 perience. Build resilience.

Unsupervised thresholding

Slide 76 of 87 Share experience. Build resilience.


Classification results CICIDS 2017 dataset

]			
True Class	Anomaly in	Total in	Anomaly in	Total in	Anomaly in	Total in	Anomaly in	Total in
True Class	All data	All data	HTTP data	HTTP data	SSH data	SSH data	FTP data	FTP data
BENIGN	13242	1743179	386	186133	242	8669	118	4381
Bot	11	1966	9	1261				
DoS	170802	380688	170843	380685				
FTP-Patator	0	7938	0	1			7920	7937
Heartbleed	11	11						
Infiltration	0	36						
PortScan	0	158930	0	533	243	243	140	244
SSH-Patator	0	5897			2921	5897		
Web Attack	0	2180	0	2180				

TABLE V

Our data - HTTP

TABLE IV Service distribution in the real dataset.

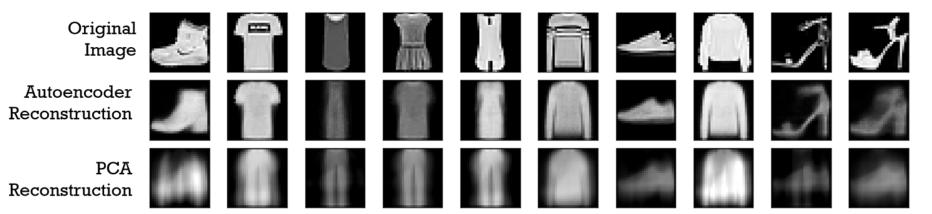
Service	Amount
No Service	2397618
dns	1065914
ssl	713753
krb_tcp	82741
dce_rpc	66574
ntlm,dce_rpc	54712
http	45675
krb,smb,gssapi	18603
dce_rpc,ntlm	18253
gssapi,smb,krb	9351

TABLE V Port distribution of the "No Service" category in the real dataset.

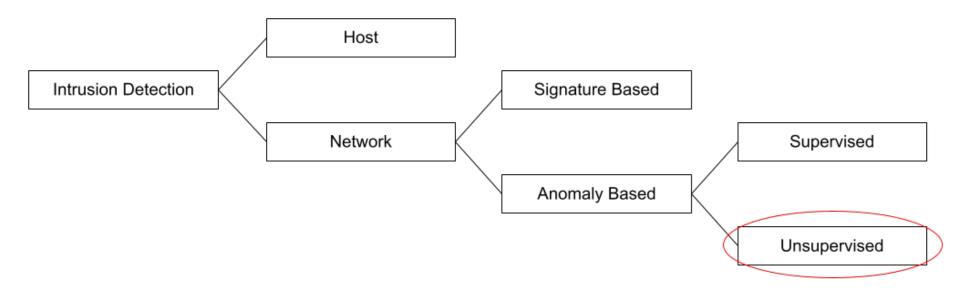
id.resp_p	amount
443.0 - ssl	1757725
389.0 - LDAP	152535
3389.0 - RDP	142428
5985.0 - WINRM	36175
1433.0 - ms-sql-s	26146
41121.0 - tentacle	24723
5246.0 - firewall	19212
80.0 - HTTP	16737
547.0 - DHCP	15086
135.0 - RPC	12435

TABLE I UNSW-NB15 and CICIDS 2017 distribution of normal and attack data per service

Service	Label	ι	JNSW-NB1	.5	CICIDS 2017
		Training set	Testing set	Entire dataset	Entire dataset
No service	Normal	36512	27375	1166520	530121
NO SELVICE	Attack	57656	19778	79877	158731
dhcp	Attack	94	26	172	0
dns	Normal	7493	3068	571037	957812
uns	Attack	39801	18299	210631	159
ftp	Normal	1218	758	46075	5341
np	Attack	2210	794	3015	8181
ftp-data	Normal	2552	949	123893	61
np-uata	Attack	1443	447	1890	158
http	Normal	5348	4013	187426	235695
шр	Attack	13376	4274	18847	383239
ntp	Normal	0	0	0	23879
тр	Attack	0	0	0	1
irc	Normal	0	0	1	66
ne	Attack	25	5	30	158
pop3	Normal	4	0	4	61
pops	Attack	1101	423	1529	160
radius	Normal	2	2	10	67
Tautus	Attack	10	7	30	160
smtp	Normal	1579	635	76656	3657
sintp	Attack	3479	1216	4989	160
snmn	Normal	1	0	1	66
snmp	Attack	79	29	112	159
ssh	Normal	1291	200	47141	10801
5511	Attack	11	4	19	6140
ssl	Normal	0	0	0	505470
331	Attack	56	30	142	240


Slide 80 of 87 experience. Build resilience.

Research questions


- RQ 1: What is the best method in the state-of-the-art in anomaly-based NIDS?
- RQ 2: What improvements can be made on Auto Encoders for anomalybased NIDS?
- RQ 3: Can we achieve unsupervised anomaly-based NIDS for practical use?

Unsupervised Anomaly–Based Network Intrusion Detection

Standard connection and statistical features

ID	Name	Type
7	Duration	Float
8	Source bytes	Integer
9	Destination bytes	Integer
10	State	String
11	Source is local origin	Bool
12	Destination is local origin	Bool
13	Missed bytes	Integer
14	Source packet count	Integer
15	Destination packet count	Integer
16	Source TTL	Integer
17	Destination TTL	Integer

ID	Name	Type
24	Source bytes per second	Float
25	Destination bytes per second	Float
26	Mean Source packet size	Integer
27	Mean Destination packet size	Integer
28	No. of connections that contain the same service	Integer
	(14) and source address (1) in 100 connections	
29	No. of connections that contain the same service	Integer
	(14) and destination address (3) in 100 connections	
30	No. of connections of the same destination address	Integer
	(3) in 100 connections	
31	No. of connections of the same source address (1) in	Integer
	100 connections	
32	No of connections of the same source address (1) and	Integer
	the destination port (4) in 100 connections	
33	No of connections of the same destination address	Integer
	(3) and the source port (2) in 100 connections	
34	No of connections of the same source (1) and the	Integer
	destination (3) address in in 10 Skiden 64cof c675	

Service specific features

ID	Name	Source log	Type
35	Query type	DNS	Integer
36	Return code	DNS	Integer
37	rtt	DNS	Integer
38	TTLs	DNS	Integer
39	dns_query_len	DNS	Integer
40	method	HTTP	String
41	$trans_depth$	HTTP	Integer
42	$http_query_len$	HTTP	Integer
43	$status_code$	HTTP	Integer
44	referrer_bool	HTTP	Binary

How can we implement this method?

Slide 86 of 87 experience. Build resilience.

True class

Mean over absolute reconstruction error per features

Reconstruction_error ct_dst_ltm	ct_dst_sport_ltm ct_dst_s	_itm ct_fiw_http_mth	d ct_src_dport_ltm	ct_src_ltm	ct_srv_dst	ct_srv_src	ct_state_ttl dinpkt	dload	dloss
---------------------------------	---------------------------	----------------------	--------------------	------------	------------	------------	---------------------	-------	-------

Inde_class													
DoS	0.023195	0.012326	0.004868	0.020292	0.013933	0.014114	0.002742	0.072739	0.021187	0.131657	0.009248	0.015556	0.012310
Exploits	0.006095	0.004968	0.003790	0.007841	0.013651	0.030341	0.001613	0.026839	0.026936	0.179090	0.013407	0.017660	0.012766
Fuzzers	0.029745	0.016044	0.009930	0.003975	0.015863	0.018178	0.027035	0.038416	0.016406	0.451187	0.107350	0.003535	0.020209
Generic	0.019101	0.132567	0.269077	0.182693	0.001234	0.138053	0.094871	0.194547	0.173181	0.241012	0.000802	0.033618	0.017531
Normal	0.000032	0.001182	0.000608	0.000129	0.000042	0.000629	0.001385	0.000957	0.000142	0.000262	0.000831	0.003104	0.000242
Reconnaissance	0.046770	0.018343	0.003067	0.040874	0.021585	0.017605	0.009287	0.100376	0.020816	0.108352	0.018820	0.016991	0.013673

Security Events

Windows Security Events

Machine Learning

Event at Time x is anomalous

What is anomalous?

Slide 88 of 87 perience. Build resilience.

Security Events

Windows Security Events TGT requests

Machine Learning

Event at time x has anomalous encryption level requests

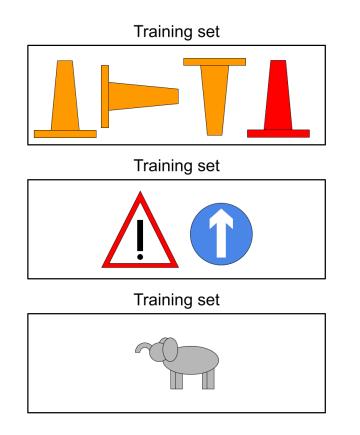
Why is it anomalous?

Slide 89 of 87 perience. Build resilience.

Security Events

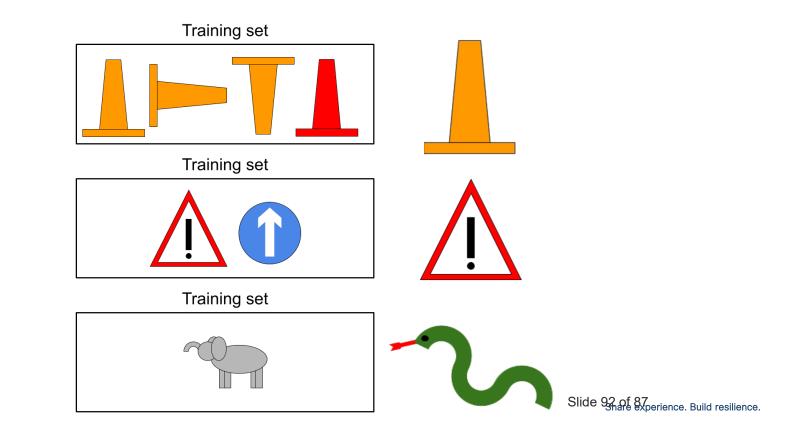
Windows Security Events TGT requests

Machine Learning


Event at time X has unusual weak encryption level requests

> Possible Kerberoasting

> > Slide 90 of 87 perience. Build resilience.


Proposed method

Slide 91 of 87 Share experience. Build resilience.

Proposed method

Mean over absolute normalised features

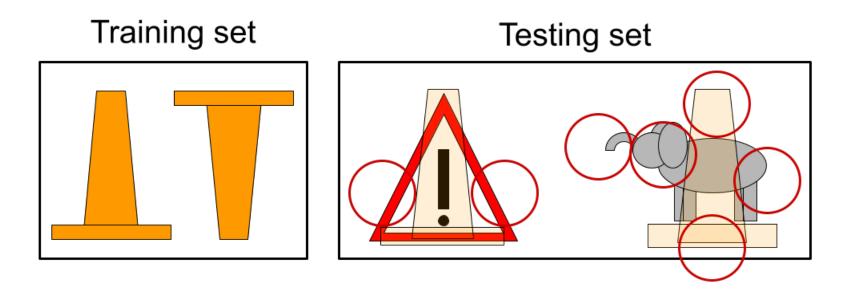
			ackdat	ct_dst_ltr	n ct_o	dst_sp	ort_ltm	ct_d	st_src_	ltm	ct_sr	c_dpo	ort_ltm	ct_s	rc_ltm	ct_sn	v_dst	ct_sr	v_src	ct_sta	te_ttl	dload	d	dmea	an	dtcpb		dttl	
True_	class																												
DoS			0.004618	0.01508	6	0.0	005405		0.005	645		0.0)10776	0.0	019915	0.04	15492	0.02	26210	0.2	79167	0.000	0740	0.044	667	0.0966	i91 (0.3166(01
Explo	oits		0.000561	0.01774	8	0.0	024642		0.024	905		0.0	040314	0.0	045862	0.03	38573	0.09	5825	0.4	01961	0.001	1043	0.079	843	0.0090	70	0.5008	14
Fuzz	ers		0.000000	0.00405	7	0.0	006359		0.005	693		0.0	04057	0.0	013958	0.00	3857	0.00	3795	0.5	68627	0.000	0000	0.000	0000	0.0000	00 (0.0000	00
Gene	ric		0.000001	0.25848	5	0.:	292622		0.333	444		0.2	256867	0.2	258447	0.37	75076	0.36	9398	0.3	33324	0.000	0000	0.000	012	0.0000	21 (0.0000	55
Norm	nal		0.000000	0.03885	5	0.0	001656		0.006	072		0.0	08132	0.0	053903	0.03	33156	0.03	3115	0.0	00109	0.030	0799	0.056	988	0.000	000	0.11354	42
Reco	nnaiss	ance	0.006440	0.00574	7	0.0	000000		0.002	688	_	0.0	00000	0.0	012712	0.01	5027	0.00	00000	0.2	63889	0.000	082	0.012	989	0.2074	75 (0.4150	20
/																										/	_		-
class	ackdat d	t_dst_ltm	ct_dst_sport_ltm c	t_dst_src_itm ct_sr	_dport_ltm	ct_src_itm	ct_srv_dst	ct_srv_src	ct_state_ttl	dioad	dmean	dtcpb	dttl	dur	dwin	is_ftp_login_0	rate	sinpkt	sload	smean sp	kts st	ate_CON st	tate_FIN	state_INT	state_REC	stcpb	stti	swin	syna
class	0.004618	0.015086	0.005405	0.005645	0.010776	0.019915	0.045492	0.026210	0.279167	0.000740	0.044667	0.09659	0.316601	0.003035	0.175000	1.000000	0.064841	0.000304	0.007317	0.031943 0.	000218	0.200000	0.175000	0.625000	0.000000	0.056534	0.751765	0.175000	0.00
oits		0.017748	0.024642	0.024905	0.040314	0.045862	a second second	0.095825			and the second	. STREET ATTAC	C. Longood and	0.019691	Butterensel			10000000	and the second	0.030137 0.		10.0101000001100	COLUMN AND A	0.441176		0.015018		Concentration of the local division of the l	100000
ers	0.000000	0.004057	0.006359	0.005693	0.004057	0.013958	0.003857	0.003795	0.568627	0.000000	0.000000	0.000000	0.000000	0.473338	0.000000	1.000000	0.000009	0.006583	0.000002	0.107552 0.	007808	0.0000000 0			0.352941	0.000000	0.996078	0.000000	0.000
	0.000001	0.258485	0.292622	0.333444	0.256867	0.258447	0.375076	0.369398	0.33322	0.000000	0.000012	0.00002	1 0.000055	5 0.000001	0.000055	1.000000	0.201417	0.000000	0.017438	0.022309	00094	0.000000 0	0.002055	0.999945	0.000000	0.000034	0.996078	0.000055	0.000
nat	0.000000	0.038855	0.001656	0.006072	0.008132	0.053903	0.033156	0.033115	0.000109	0.030799	0.056988	0.000000	0 0.113542	0.000020	0.000000	1.000000	0.005333	0.000000	0.000591	0.031601 0.	000094	0.990548	0.00000	0.009452	0.000000	0.000000	0.122745	0.000000	0.000
onnaissance	0.006440	0.005747	0.000000	0.002688	0.000000	0.012712	0.015027	0.000000	0.263889	CONTROL OF	ODDERES	0.207475	5 0.415020	0.004234	0.416667	1.000000	0.139684	0.000456	0.014840	0.027759 0.	000-01	000000	Slide	e 93	AL SY	perien(0.996078 Ce. Bl	0.416667 Jild res	ilie

Mean over absolute reconstruction error per features

Reconstruction_error ct_dst_itm ct_dst_sport_itm ct_dst_src_itm ct_fiw_http_mthd ct_src_dport_itm ct_src_itm ct_srv_dst ct_srv_src ct_state_tti dinpkt dload dloss

True_clas	SS																						
DoS			0.02319	5 0.01	12326	0.0048	868	0.02029	2	0.013933	0.	014114	0.002742	0.072	/39 0	.021187	0.131	657 (0.009248	0.015	5556 0	.012310	
Exploits			0.00609	5 0.00	04968	0.0037	790	0.00784	1	0.013651	0.	030341	0.001613	0.026	39 0	.026936	0.179	090	0.013407	0.017	7660 0	.012766	
Fuzzers			0.02974	0.01	16044	0.0099	930	0.00397	5	0.015863	0.	018178	0.027035	0.038	16 0	.016406	0.451	187 (0.107350	0.003	3535 0	.020209	
Generic			0.01910	1 0.13	32567	0.2690	077	0.18269	3	0.001234	0.	138053	0.094871	0.194	647 0	.173181	0.241	012 (0.000802	0.033	3618 0	.017531	
Normal			0.00003	2 0.00	01182	0.0006	608	0.00012	9	0.000042	0.	000629	0.001385	0.000	957 0	.000142	0.000	262 (0.000831	0.003	3104 0	.000242	
Reconna	issance		0.04677	0.01	18343	0.0030	067	0.04087	4	0.021585	0.	017605	0.009287	0.100	8 76 0	.020816	0.108	352 (0.018820	0.016	6991 C	.013673	
P e_class	Reconstruction_err	πor ct_dst_ltm c	t_dst_sport_ltm ct	_dist_src_itm	ct_flw_http_mthd	ct_src_dport_ltm (ct_src_itm (ct_arv_dat ct_arv_a	ct_state_tti	dinpkt dload d	ioss dmean	dpkta dtopb	dtti due	dwin	rate s	ibytes sloa	state_CON	state_FIN	state_INT s	tate_REQs	tcpb sttl	swin	tr
	Reconstruction_en		t_dst_sport_ltm ct	_dst_src_itm 0.020292	ct_fhw_http_mthd	cLsrc_dport_lim 0.014114	ct_src_itm 0.002742	cl_avy_dat cl_avy_a	ct_state_ttl	dinpkt dioad d 0.009248 0.015556 0	055 dmean	dpkts dtopb	dtti due	dwin 6182 0.186768	rate s	abytes sloa	state_CON 831 0.099223	state_FIN 0.172118	state_INT s	tate_REQ s	tcpb sttl	swin 91163 0.176684	tr
e_class S bloits	0.0231	195 0.012326 095 0.004968	0.004868	0.007841	0.013651	0.030341	0.001613	0.026839 0.02693	6 0.179090	0.013407 0.017660 0	012766 0.080175	0.010206 0.00899	4 0.038262 0.0	0461 0.043047	0.060825	0.013675 0.00	882 0.014370	0.028699	0.037277	0.001537 0	0.007110 0.0	90120 0.02653	6
e_class S bloits tzers	0.0231 0.0060 0.0297	195 0.012326 095 0.004968 745 0.016044	0.004868 0.003790 0.009930	0.007841 0.003975	0.013651 0.015863	0.030341 0.018178	0.001613	0.026839 0.02693 0.038416 0.01640	6 0.179090 6 0.451167	0.013407 0.017660 0 0.107350 0.003535 0	012766 0.080175 020209 0.065920	0.010206 0.00895	4 0.038262 0.0 5 0.230214 0.1	0461 0.043047 3693 0.010186	0.060825	0.013675 0.00	882 0.014370 150 0.229622	0.028699	0.037277	0.001537 0 0.355999 0	0.007110 0.0 0.007550 0.7	90120 0.02653 44051 0.01220	6
e_class S bloits	0.0231	195 0.012326 095 0.004968 745 0.016044 101 0.132567	0.004868	0.007841	0.013651	0.030341 0.018178 0.139053	0.001613 0.027035 0.094871	0.026839 0.02693	5 0.179090 5 0.451187 1 0.241012	0.013407 0.017660 0 0.107350 0.003535 0 0.000802 0.033618 0	012766 0.080175 020209 0.065920	0.010206 0.00895 0.005260 0.00686 0.049761 0.00244	4 0.038262 0.0 5 0.230214 0.1	0461 0.043047 3693 0.010186 0101 0.020505	0.060825 0 0.010112 0 0.195508 0	0.013675 0.00 0.018967 0.00 0.029062 0.06	882 0.014370 150 0.229622 984 0.027445	0.028699	0.037277 0.142219 0.016823	0.001537 0 0.355999 0 0.000226 0	0.007110 0.0 0.007550 0.7 0.004779 0.7	90120 0.02653	6 6 8

Signature-based

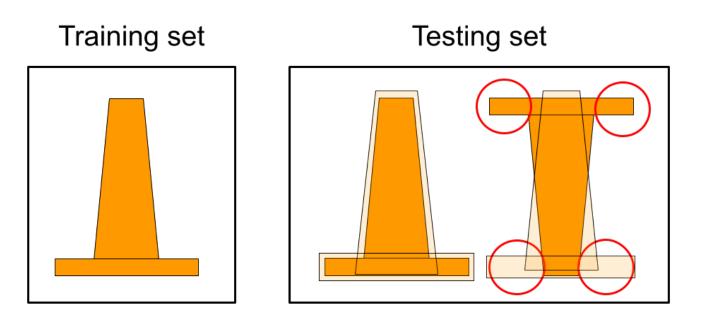


Slide 95 of 87 perience. Build resilience.

	Total amount of IP pairs	Amount of IP pairs above the threshold	IP pair Occurrence >10 times above threshold	Source IP Occurence >10 times above threshold
Total	4062	137	47	6
Attack	40	40	40	4
	5			

Classification results CICIDS 2017 dataset

TABLE V


True Class	Anomaly in	Total in	Anomaly in	Total in	Anomaly in	Total in	Anomaly in	Total in
	All data	All data	HTTP data	HTTP data	SSH data	SSH data	FTP data	FTP data
BENIGN	13242	1743179	386	186133	242	8669	118	4381
Bot	11	1966	9	1261				
DoS	170802	380688	170843	380685				
FTP-Patator	0	7938	0				7920	7937
Heartbleed	11	11						
Infiltration	0	36						
PortScan	0	158930	0	533	243	243	140	244
SSH-Patator	0	5897			2921	5897		
Web Attack	0	2180	0	2180				

Data distribution per service UNSW-NB15 and CICIDS 2017

Service	Label	ι	CICIDS 2017		
		Training	Testing	Entire	Entire
		set	set	dataset	dataset
No service	Normal	36512	27375	1166520	530121
No service	Attack	57656	19778	79877	158731
dhcp	Attack	94	26	172	0
dns	Normal	7493	3068	571037	957812
uns	Attack	39801	18299	210631	159
ftn	Normal	1218	758	46075	5341
ftp	Attack	2210	794	3015	8181
ftp-data	Normal	2552	949	123893	61
np-uata	Attack	1443	447	1890	158
http	Normal	5348	4013	187426	235695
http	Attack	13376	4274	18847	383239
	37 1	-	0	0	22070

Training on 30 minutes of data

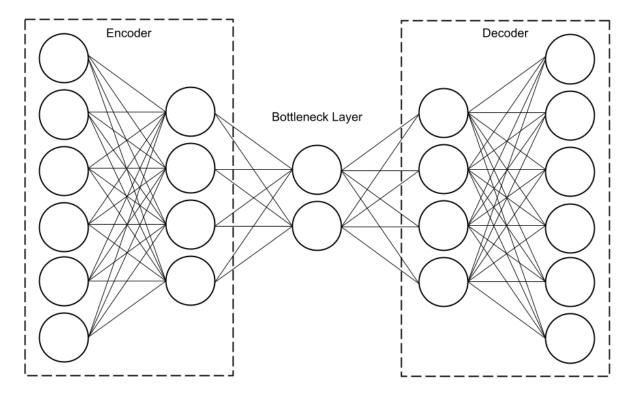
Type of	Action	Amount of	Time]
Data	Action	connections	(with early stopping)	
All Data	Training	776.371	* 1/ <u>4</u> :05:50.982308	
	Testing	3.636.051	0:00:44.226864	* 1/4
DNS	Training	184.424	0:01:29.271912	
	Testing - Total	849.540	0:00:14.300020	
	Testing - 5 minutes	24.317	0:00:00.452973	

Our goal

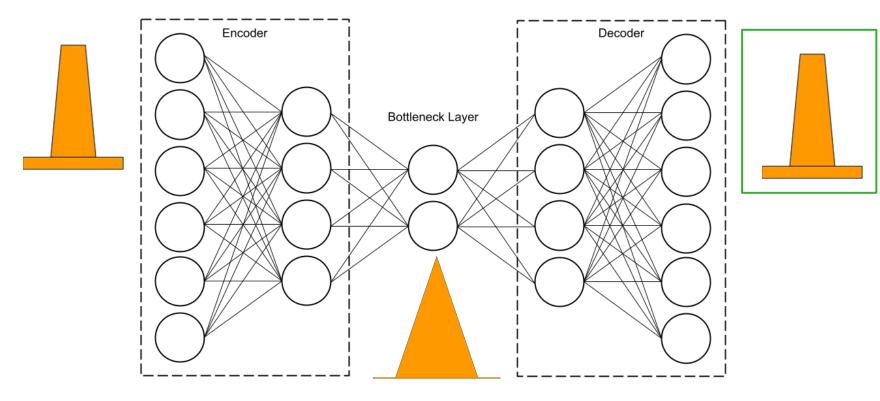
Can we achieve anomaly based detection for practical commercial implementation?

If so, how?

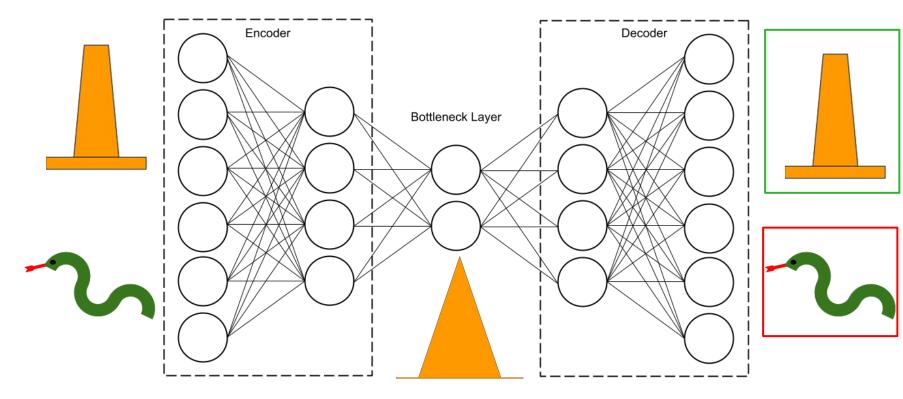
Using Auto Encoders on specific data



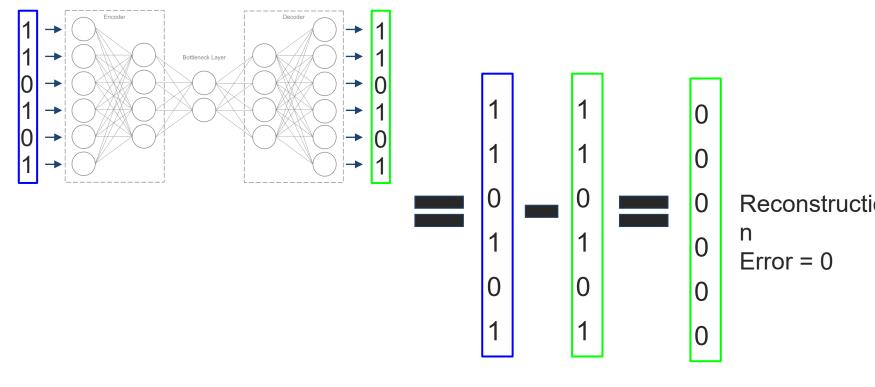
- Improvement in performance for Auto Encoders
- Improvement in efficiency due to split data
- Alerts contain more information, reducing the "black box" nature of deep learning


Auto Encoder model

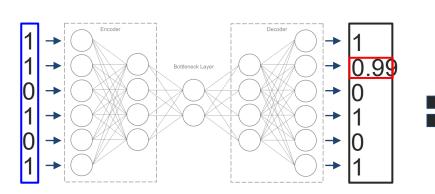
Slide 195 of 87 experience. Build resilience.

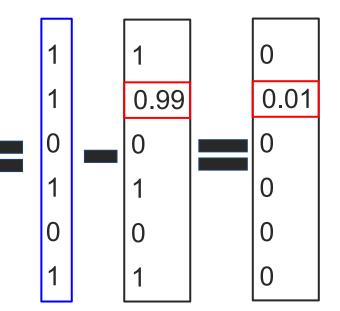

Auto Encoder model

Slide 196 of 87 experience. Build resilience.


Auto Encoder model

Slide 197 of 87 perience. Build resilience.


Correctly reconstructed



Slide 198 of 87 experience. Build resilience.

Reconstructed with error

Reconstruction Error = 0.01

RQ3: How can we achieve unsupervised anomaly-based NIDS for practical use?

Experiments on real data

