The Artificial Reality of Cyber Defense

Carl Herberger
VP, Security Solutions

July 2018
Cyber Kill Chain® by Lockheed Martin

- Targeted attacks
- Plenty of opportunities to detect and block attacks before they cause actual damage

- So why organizations still getting breached and only find out (long) after the fact; by accident or through ransom?
- Two reasons mainly:
 - Not enough events/visibility
 - Too many events

Image Source: Dark Reading - Deconstructing The Cyber Kill Chain - Giora Engel
Minimizing False Positives & False Negatives

Why minimize

False Negatives?
S3r1ously !?!?

False Positives?
How much incidents can your SOC investigate?
Give the right incidents the amount of time they deserve?

Type I error (false positive)

Too many events

You’re pregnant

Type II error (false negative)

Not enough events

You’re not pregnant

Image Source: Effect Size FAQs by Paul Ellis
Detection Sensitivity in Positive Security Models

False Negative

False Positive

Negative Security Model

Allow all
Deny all
Anomaly Detection – Game On!

- Security threats growing faster than security teams and budgets, huge talent shortage
- Paradox: Proliferation of data from dozens of security products makes it harder to detect and investigate threats
- Need for automation
- Rule based event correlation provides reduction from millions to thousands
- A good SOC can investigate maybe a couple of 100 incidents a day
- How to leverage previous work from the SOC to improve the future detection by automation?
- Need for automation that improves itself over time based on new data and user or researcher feedback
Machine Learning
A Definition for Machine Learning

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.”

‘Traditional’ ML - Behavioral-Based Detection Principles

- Complexity of behavioral model is low/med (eg RFC State Machine)
- Code (analytic classifier) can be used to describe the expected behavior
- Data is used for baselining (@ peace-time)
- Limited data sufficient for low false positive rate
Deep Learning Behavioral Detection Principles

- Complexity of behavioral model is high/very-high
- Can’t use code to describe expected behavior
- Data used to describe the expected behavior (“training”)
- Lot of ‘good’ data required
Detection Algorithms & Machine Learning

Deterministic
Transparent
Data provides baselines

Too complex to code
Generalization
Opaque

Influence of code on behavior of algorithm
Influence of data on behavior of algorithm

Complexity

Ability to mitigate automatically / time to mitigate

K-means Clustering
Logistic Regression
Bayesian Linear Regression
Support Vector Machine
Principal Component Analysis

Deep Learning Neural Network

Degree of Attack (DoA)
Deep Learning Challenges
Challenges of Deep Learning

- Training Data
- Reproducibility
- Transparency
- Learning in Changing Environments
- Learning in Adversarial Contexts
DNNs Need Data! Good Data and Lots of it…

- Larger networks have higher learning capability (memory)
- Performance is only as good as the amount of data put in
- Need extra data to evaluate the network’s performance
- Quality of the network will only be as good as the quality of the data put in
- Synthetic data generation can be misleading, correlation between data points

Examples of Training corpus sizes:

Speech Recognition:
- 10,000h of audio
- ≡ 10 years of sound

Face recognition:
- 200 million images

Source: Andrew Ng
Generalization: Size Matters

Bigger is not always better!

Too small

= Underfitting

Too large

= Overfitting

Image source: Quora
Attacking Deep Learning Systems

• **Raising the Noise Floor**
 - Poisoning the model by flooding it with false positives causing recalibration of the model
 - Studies in Adversarial Machine Learning: learning in the presence of adversaries

• **Adversarial Attacks**
 - Small perturbations in the input data to induce wrong classification
 - Studies to make Deep Learning models resistant to adversarial attacks
Poisoning Attack

March 2016 – Microsoft unveiled Tay
An innocent chatbot (twitterbot)
An experiment in conversational understanding

It took less than 24 hours for Twitter to corrupt an innocent AI chatbot
Adversarial Attack

Source: http://blog.ycombinator.com/how-adversarial-attacks-work/
Adversarial Attack

Camouflage graffiti and art stickers cause a neural network to misclassify stop signs as speed limit 45 signs or yield signs

Source: https://thenewstack.io/camouflaged-graffiti-road-signs-can-fool-machine-learning-models/
Weaponizing Machine Learning

Image: DARPA Cyber Grand Challenge
Machine Learning for Cyber Criminals

• Increasingly Evasive Malware
 • Using a Generative Adversarial Network (GAN) algorithm
 • MalGAN [Feb 2017] generates adversarial malware samples

• Hivenets* and Swarmbots*
 • Smarter botnets using self-learning ‘hivenets’ and ‘swarmbots’
 • BrickerBot: Autonomous PDOS botnet [Radware 2017]

• Advanced Spear Phishing at Scale
 • Using Natural Language Processing (NLP) algorithms for better social engineering
 • Training on genuine emails, scraping social networks/forums, stolen records...

(*) Fortinet Predicts Highly Destructive and Self-learning “Swarm” Cyberattacks in 2018
Breaking CAPTCHA

• 2012: Support Vector Machines (SVM) to break reCAPTCHA
 • 82% accuracy
 • Cruz, Uceda, Reyes

• 2016: Breaking simple-captcha using Deep Learning
 • 92% accuracy
 • How to break a captcha system using Torch

• 2016: I’m not Human - breaking the Google reCAPTCHA
 • 98% accuracy
 • Black Hat ASIA 2016 – Sivakorn, Polakis, Keromutis
SNAP_R – Automated Spear-Phishing on Twitter

• Man vs Machine – 2 hour bake off
• SNAP_R
 • 819 tweets
 • 6.85 simulated spear-phishing tweets/minute
 • 275 victims
• Forbes staff writer Thomas Fox-Brewster
 • 200 tweets
 • 1.67 copy/pasted tweets/minute
 • 49 victims
DeepHack – DEF CON 25

• Open-source hacking AI: https://github.com/BishopFox/deephack
• Bot learns how to break into web applications
• Using a neural network + trial-and-error
• Learns to exploits multiple kinds of vulnerabilities without prior knowledge of the applications
• Opening the door for hacking artificial intelligence systems in the future
• Only the beginning
 • AI-based hacking tools are emerging as a class of technology that pentesters have yet to fully explore.
 • “We guarantee that you’ll be either writing machine learning hacking tools next year, or desperately attempting to defend against them.”

Radware Machine Learning for Cyber Security
Your Protected Network

Radware Attack Mitigation System
Blocking **Unknown Attacks**

ERT SUS (Subscription)
Blocking **Known Attacks**

ERT Active Attackers Feed
Blocking **Known Attackers**

Cloud Malware Protection
Blocking APT & 0day Infections

"Traditional" Machine learning Algorithms

Influence of code on behavior of algorithm

Influence of data on behavior of algorithm

COMPLEXITY

ABILITY TO MITIGATE AUTOMATICALLY / TIME TO MITIGATE

Radware Attack Mitigation System

Big Data, Deep Learning
Cloud Workload Protection
Summary

Looking Ahead
AI/DNN Analytics
Big, Fast Data, ML

Management & Operations

Control Plane

Data Plane
ML Defenses
Cloud, Network, Host

Software Delivery
Premise
Cloud Delivery

Cloud Workload Protection
Cloud/MSSP Portals
Elastic Licensing
Premise
‘Data-Lakes’

vDirect Orchestration
DefenseFlow Automation

SW Network Services
DetectPro

p/vAppliances – Network Services (NS)
DefensePro

Alteon

Radware Cyber Security Ecosystem

3.5Tbps DDoS/WAFaaS
Looking ahead…

• “Traditional” Machine Learning systems have been defending our networks for quite some time already
• But, attackers are maturing and attacks are getting more complex every day
• Detecting and stopping future attacks will require innovation
• This innovation will be based on Deep Learning technology
• Deep Learning Systems have their challenges to perform autonomously
• The theory behind today’s Neural Networks originates from the 60s
• Will we overcome these challenges with incremental advancements?
• Do we need another breakthrough in Machine Learning and Neural Networks?
• To achieve the ultimate goal of a fully autonomous cyber defense
Terms and conditions of use

- **License.** Subject to the terms and conditions herein, RADWARE hereby grants you a limited, nontransferable and nonexclusive license, subject to the restrictions set forth below, to access and use the Presentation, solely for informational and non-commercial purposes, for internal use and/or for the purpose of selling and supporting RADWARE. RADWARE reserves the right to amend the terms of this License from time to time without notice, by posting the revised terms on its Website.

- **Intellectual Property Rights.** You acknowledge and agree that this License is not intended to convey or transfer to you any intellectual property rights or to grant any licenses in or to any technology or intellectual property or content, other than as expressly provided herein. The content contained in this Presentation, including, but not limited to, software, product information, technology information, user guides, white papers, analysis, trade names, graphics, designs, icons, audio or video clips and logos, is RADWARE proprietary information, protected by copyright, trademark, patent and/or other intellectual property rights, under US and international law. Third-party trademarks and information are the property of their respective owners.

- **Disclaimer of Warranty.** Although RADWARE attempts to provide accurate and up-to-date information in this Presentation, RADWARE makes no warranty with respect to the accuracy or completeness of the information. Information, software and documentation provided in this Presentation are provided "as is" and without warranty of any kind either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose and non-infringement.

- **Limitation of Liability.** RADWARE shall not be liable to you or any other party for any indirect, special, incidental or consequential damages, including, but not limited to, any amounts representing loss of profits, loss of business, loss of information or punitive damages.

- **Links to Third-party Websites.** This Presentation may contain links to third-party Websites. Such links are provided for convenience only and RADWARE makes no warranty, nor does it assume any responsibility or liability in connection with the access and use of any other Website.

- **Safe Harbor.** This Presentation may contain forward-looking statements that are subject to risks and uncertainties. Factors that could cause actual results to differ materially from these forward-looking statements include, but are not limited to, general business conditions in the Application Delivery or Network Security industry, and other risks detailed from time to time in RADWARE’s filings with the Securities and Exchange Commission, including RADWARE’s Form 20-F.

- **Governing Law.** This Agreement and any action related thereto shall be governed, controlled, interpreted and defined in accordance with the laws of the State of Israel, without regard to the conflicts of laws provisions thereof.