## 

#### Wireless Mesh Design & Deployment



Tom Koenig Wireless Product Manager tk@cisco.com

#### **Cisco Networkers Solutions Forum 2007**

## The Industry's 1st Intelligent Wireless Mesh Solution



 Engineered with Ease of Deployment & Management as Top-of-Mind

> Identical Indoor/Outdoor Management

Based on LWAPP

 Self-Configuring, Self-Healing Mesh

Zero-Touch Configuration

Cisco's new Adaptive Wireless Path (AWP) Protocol

- Robust Embedded Security
- Provides Seamless L3 Mobility

#### **Wireless Mesh Networking Architecture**





## **Outdoor Wireless Mesh Solution Components**

|                                   | 000000                              |                                     |                                        |
|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|
| Cisco Wireless                    | Cisco Wireless                      | Roof-top                            | Mesh Access                            |
| Control Systems                   | LAN Controller                      | Access Point                        | Point                                  |
| <ul> <li>Wireless Mesh</li></ul>  | <ul> <li>Links the</li></ul>        | <ul> <li>Serves as "Root"</li></ul> | <ul> <li>Provides</li></ul>            |
| Management                        | Wireless Mesh                       | or "Gateway" AP                     | 802.11b/g client                       |
| System <li>Enables network-</li>  | APs to the wired                    | to the wired                        | access <li>Connects to Root</li>       |
| wide policy                       | network <li>Handles RF</li>         | network <li>Typically located</li>  | AP via 802.11a <li>Takes AC or DC</li> |
| configuration and                 | algorithms and                      | on roof-tops or                     | power; PoE                             |
| device                            | optimization <li>Seamless L3</li>   | towers <li>Connects up to 32</li>   | capable <li>Ethernet port for</li>     |
| management <li>Supports SNMP</li> | Mobility <li>Provides Security</li> | "Pole-top" APs                      | connecting                             |
| and Syslog                        | and Mobility Mgt                    | using 802.11a                       | peripheral devices                     |

#### Reliable Hardware

Industry Proven Devices at Every Layer

#### Aironet 1500 Lightweight Mesh AP

- Fixed Configuration, Dual Radio Outdoor AP 802.11b/g - access; 802.11a - backhaul S/W Upgradeable to 4.9GHz in Beringer (Mar 06)
- NEMA-4/IP66 Enclosure Dimensions 13" x 6" x 8" Weight < 12 lbs Horizontal/Vertical swivel mounting brackets
- Industrial Grade Power Supply Local AC Power (95 – 260 VAC, 47 to 63 Hz) Street Light Power Tap DC Power over CAT5 (48 VDC)
- Wind Loads
  - Sustaining: 100 Mph
  - Gusts: 160 Mph
- Temperature ranges -40C to +55C



#### Reliable Hardware Cisco's Intensive MDVT and EDVT Standards

## Aironet 1500 Lightweight Mesh AP, <sup>L</sup> Cont.

 Bi-directional Amplifier for increased Transmit/Receive Power

2.4 GHz - 24dBm

5GHz - 28dBm

- Embedded 4.9 GHz Band
   Firmware Upgrade required
   20 MHz channel, 17 dBm Power
- Two SKUs

AIR-LAP 1510 AG-A-K9 FCC Conf. AIR-LAP 1510 AG-N-K9 Non FCC

Europe SKU DFS/TPC support
 2.4 GHz channels 12,13 & 14





## **Dynamic, Intelligent Path Selection**



 Adaptive Wireless Path (AWP) Protocol

Cisco AWP is part of the IEEE 802.11s committee (SEE Mesh)

- AWP establishes an optimal path to Root
- Each AP carries feasible successor(s) if topology or link health changes

Note: AWP uses a "parent sticky" value to mitigate route flaps

Dynamic Foundation

Self-configuring, Self-healing, Dynamic Path Optimization

#### How is the network formed?

- Upon boot, an AP checks its state, if it is a RAP it enters the "Maintain state"
- Otherwise, it actively solicits neighboring APs (Seek state)
- AP selects the best parent from the available list of parents
- AP Authenticates to the Mesh
- The AP then enters "Maintain" state; responds to solicitations

Solicitation makes convergence faster, leaving more time for data transfer

#### **Adaptive Wireless Path Protocol**





**Extensible Hybrid Distance-Vector Protocol** 

## **Understanding Path Selection**

- Routing uses a concept of "Ease" (inverse of Cost)
- Route with the highest Adjusted Ease is taken
- Unadjusted ease is the minimum of all unadjusted links in the path to the RAP
- Adjusted ease is a hop count adjusted ease
  - Minimize latency
  - Minimize errors
  - Minimize use of the shared channel

#### To prevent flopping of the link, a premium of 20% is given to the selected parent





Adaptive Wireless Path Protocol Creates the "Best" Path

## **Providing Security at Each Step**



Dynamic WLAN VLAN Assignment + 802.11i WPA/WPA2 Security

Identity-based Networking for VLAN Assignment

16 MBSSIDs for various authentication types

- HW-based AES encrypted Backhaul Links
- AP Authentication protects against "imitation APs"
- Encrypted Control Traffic between AP and Controller
- IPSec VPNs for "confidential" mesh client traffic
   Cisco's new Mobile VPN Client provides IPSec roaming between mobile infrastructures

#### **Delivering Mission-Critical WiFi Access**

Secure

Control

## Adding Controller Intelligence to Outdoor Networks



 Automatic Service load-balancing across Wireless LAN Controllers

LWAPP communicates controller load to APs

- Dynamic RF Optimization
   Adaptive Channel Assignment
   Intelligent TX\_Pwr Levels
- Integrated Wireless IDS
- Per User/VLAN Traffic Rate Limiting

#### Secure Control

#### **Delivering Mission-Critical WiFi Access**

## **Cisco's Award Winning Management Solution**



- Identical Management Software and RM Features as Indoor Solution
- SOAP/XML interfaces for NMS integration
- Detailed AP, Radio information including

Noise and Interference by Channel Neighbors lists and RSSI detail Link Metrics, PER, Tx/Rx detail

- Link Tests Tools for RAP-to-PAP troubleshooting
- SNR and Noise Floor Histograms

#### Best-in-Class Management Easy to Deploy, Easy to Manage

#### **Mesh Enhancements in WCS**



- Mesh Topology Map Coverage Areas/Maps, Mesh Link Detail, Mesh AP Detail,
- Mesh Statistics Parent, Child, Neighbor Relationships
- Mesh Network SNR Graphs Link Details, SNR Uplink, SNR Downlink
- Mesh Network Link Graphs Link SNR, Unadjusted Link, Adjusted Link, Parent Link Metric
- Mesh Client Link Test Packets, Error Rates, Signal Strengths, Noise, etc

#### **Outdoor Coverage Area**



## **Easily Adding Capacity and Services**



Increase AP Density

Add Root/Gateway APs

Pole-top APs will join new RAPs with better path metrics

Easily add Controllers

Up to 24 controllers can be part of an N+1 cluster

 802.11e QoS Capable + Traffic Ratelimiting for "hog" mitigation

802.11e QoS in Beringer (Mar '06)

 Architecture is ready for additional radios when extra capacity is required

#### Scalable Architecture

Reliable, Secure, Manageable, Service-Ready Architecture

#### WIRELESS MESH NETWORKING DESIGN AND DEPLOYMENT



#### 802.11a 5GHz Backhaul Distances



#### **2.4 GHz Local Access Distances**



#### **Data Rates**

| 802.11b | 1,2,5.5,11                           |
|---------|--------------------------------------|
| 802.11g | 1,2,5.5,11,6,9,12,18,24,36,48,54     |
| 802.11a | 6,9,12, <mark>18</mark> ,24,36,48,54 |

- 18 Mbps is the default fixed rate set for the backhaul
- We recommend to use 18 Mbps as the data rate for the backhaul
- Data rates for all the APs in a bridge group must match

#### Why is 18Mbps the "Sweet Spot"



### **Understanding RAP Coverage Areas**



RF "Shadow" close to building; Poor SNR 18Mbps Coverage Area; SNR >20 dB Beyond RF Coverage Area; Poor SNR

## Applying RAP Coverage Areas to Designs



#### **Typical Throughput and Latency**



#### **Practical Mesh Coverage Models**

- A Wired POP Bldg might have 4 RAPs
- Each RAP has 20-25 Mesh APs (MAPs)
- Each "Path Tree" on same 11a Channel
- Almost all MAPs within 1-2 hops of RAP



2 Miles

#### **How Designs Affect Mesh Convergence**



Mesh is in "Maintain State" and passing traffic...

...wiring closet switch port is 'disabled'

(True story)

#### How Designs Affect Mesh Convergence, Cont.



...RAP becomes disconnected from Wired Network

#### How Designs Affect Mesh Convergence, Cont.



...Mesh APs and old RAP, now a MAP, link to surrounding RAP Trees

#### Mesh AP Re-convergence Sequence

- 1. Sense Disconnect
- 2. Scan Backhaul for Neighbors
- 3. Establish Optimal Path (Ease) to new RAP
- 4. Authenticate to Parent; establish Mesh Tree
- 5. Re-DHCP (if necessary)
- 6. Connect to Controller
- 7. Begin Passing Traffic

Static IP Address
DHCP (Single VLAN)
DHCP (Multiple VLANs)

#### Demo

#