Cisco ASR9000 Router Systems Architecture

Lim Fung, CTG Technical Marketing
limfung@cisco.com
Service Edge Foundation: ASR 9000 System

- Optimized for Aggregation of **Dense 10GE & 100GE**
- Designed for Longevity & TCO: **Scalable up to 400 Gbps of Bandwidth per Slot**
- Based on IOS-XR & Cisco PRIME for **Nonstop Availability & Manageability**
- Enables **Network Convergence** of Business & Residential Services for both Fixed & Mobile Networks
- Advanced **Videoscape & Mobility DNA**
- Industry Leading **Operational Savings & Management** with Cisco nV Technology
Cisco ASR 9000 Functional Evolution

Comprehensive Edge Functionality

- High Scale Ethernet Subscriber Awareness
- Application Virtualization (nV)
- Mobile Backhaul on ATM & CEoPS
- IP RAN Backhaul for Ethernet & TDM
- Layer 2 Carrier Ethernet
- Rich L3 VPN Services & Legacy Interfaces
- Advanced IPv6 Services
- Advanced Videoscape Features
- Broadcast & On-Demand Video Delivery
- Data Center PE & Interconnect

Available
2H 2011
2012
2012+
Cisco ASR 9000 Portfolio Evolution

Uncompromising Density Across a Scalable Portfolio

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Slots</td>
<td>22 Slot</td>
</tr>
<tr>
<td></td>
<td>10 Slot</td>
</tr>
<tr>
<td></td>
<td>6 slots</td>
</tr>
<tr>
<td></td>
<td>Pizza Box</td>
</tr>
<tr>
<td></td>
<td>9000v Satellite</td>
</tr>
<tr>
<td>Max. Linecards per Chassis</td>
<td>20 LC</td>
</tr>
<tr>
<td></td>
<td>8 LC</td>
</tr>
<tr>
<td></td>
<td>4 LC</td>
</tr>
<tr>
<td></td>
<td>2 IO Slots</td>
</tr>
<tr>
<td>Max. Linecard Bandwidth</td>
<td>360 Gbps</td>
</tr>
<tr>
<td></td>
<td>360 Gbps</td>
</tr>
<tr>
<td></td>
<td>360 Gbps</td>
</tr>
<tr>
<td></td>
<td>Modular + 4x10GE</td>
</tr>
<tr>
<td></td>
<td>44xGE + 4x10GE</td>
</tr>
<tr>
<td>Max. Slot Bandwidth</td>
<td>1.2 Tbps</td>
</tr>
<tr>
<td></td>
<td>440 Gbps</td>
</tr>
<tr>
<td></td>
<td>440 Gbps</td>
</tr>
<tr>
<td>Chassis Bandwidth</td>
<td>48 Tbps</td>
</tr>
<tr>
<td></td>
<td>7.0 Tbps</td>
</tr>
<tr>
<td></td>
<td>3.5 Tbps</td>
</tr>
<tr>
<td></td>
<td>120 Gbs</td>
</tr>
<tr>
<td></td>
<td>80 Gbs</td>
</tr>
</tbody>
</table>

ASR 9000v Portfolio

- **ASR 9922**: 22 Slot, 20 LC, 360 Gbps, 48 Tbps
- **ASR 9010**: 10 Slot, 8 LC, 360 Gbps, 7.0 Tbps
- **ASR 9006**: 6 slots, 4 LC, 360 Gbps, 3.5 Tbps
- **ASR 9001**: Pizza Box, 2 IO Slots, Modular + 4x10GE, 120 Gbs
- **ASR 9000v**: 9000v Satellite, Fixed Ports, 44xGE + 4x10GE, 80 Gbs
Hardware Architecture
Chassis, RSP, Switch Fabric and Linecards
ASR 9000 System Architecture
“At-a-Glance”

Fully Distributed Architecture for High Performance and High Multi-dimensional Control Plane Scale

- Data forwarding is fully distributed on the line cards
- Control plane split among RSP and LC CPU (same type of CPU as RSP)
- L2 protocols, BFD, CFM, Netflow runs on the LC CPU for high scale

IOS-XR: True Modular OS for HA and Operational Simplicity

- Micro-kernel based, true modular OS
- High availability and System stability
- SW patch granularity for operational simplicity

Active-Active Intelligent Switch Fabric

Guarantee “0” packet loss during RSP failover

Advanced internal system QoS, Intelligent multicast replication
ASR 9010 and ASR 9006 Chassis
Identical HW components across two chassis*

- Integrated cable management with cover
- Front-to-back airflow
- System fan trays
- Side-to-back airflow
- RSP (0-1)
- Line Card (0-3, 4-7)
- System fan trays
- Air draw
- Six Modular Power Supplies

* Fan tray is different
Power and Cooling
Existing Power Supply and Fan are ready for 400G/slot

- Fans unique to chassis
- Variable speed for ambient temperature variation
- Redundant fan-tray
- Low noise, NEBS and OSHA compliant

<table>
<thead>
<tr>
<th>DC Supplies</th>
<th>AC Supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1/1.5 kW</td>
<td>3 kW</td>
</tr>
<tr>
<td>2.1 kW</td>
<td>3 kW</td>
</tr>
</tbody>
</table>

- 6 & 10 slot use same power supplies
- Single power zone
- All power supplies run in active mode
- Power draw shared evenly
- 50 Amp DC Input or 16 Amp AC for Easy CO Install
RSP Engine

- Performs control plane and management functions
- Dual Core CPU processor with 4GB or 8GB DRAM (4GB→8GB is not field upgradable)
- 2MB NVRAM, 4GB internal bootdisk, 2 external compact flash slots
- Dual Out-of-band 10/100/1000 management interface
- Console & auxiliary serial ports
- Hard Drive: 70G HDD
Ethernet Line Card Family

Shipping

- Common HW ASIC and HW architecture
- Identical SW features
- Line card Memory options for QoS scale
Line Card Architecture – Hardware Components

NP: Network Processor
- Main forwarding ASIC
- L2 & L3 forwarding, features (QoS, ACL, etc), control plane policing, mcast replication, etc

10Gbps bi-directional with features applied

CPU (same as RSP)
- Program HW forwarding tables
- Distributed Control planes
- SW switched packets
- Inline Netflow

FIA: Fabric Interface ASIC
- Provide non-blocking data connection to switch fabric
- Internal system queues/VoQ
- Intelligent mcast replication

B: Bridge FPGA
- Provide non-blocking data connection between NP and FIA
- Internal System queues
- Intelligent mcast replication

Example: A9K-8T

Note, Bridge FPGA provide non-blocking connection between NP and the FIA. Functionally it does the HW conversion due to different interface format on NP and FIA. It’s part of the switch fabric connection. To make it logically simple, it will be removed from the remaining slides.

10G PHY for one 10G port, or 10x1G port
Line Card Memory Options

Different Queue Scale for Different Deployments

- 3 memory options for each line card: **Extended** (or high queue), **Base** (medium queue), **Low** (low queue) *

- Different memory option has different QoS queue/policer scale, L2 sub-interface scale and ACL scale

- All other system wide scale is the same across different type of the line cards, including FIB, MAC address, Bridge-domain, L3 sub-interface, VRF, etc

- All line cards have the same HW → Identical features

- Mixed different type of line cards are supported on the same chassis with same system wide scale and identical features

* A9K-16T/8 only have “B” option. It doesn't have “E” or “L” option as of the 4.1.0 release
L/B/E Line Cards – What’s the Difference?

Each NPU has Four Main Associated memories: TCAM, Search/Lookup memory, Frame/Buffer memory and statistics memory

- **TCAM** is used for VLAN tag, QoS and ACL classification
- **Lookup Memory** is used for storing FIB tables, Mac address table and Adjacencies
- **Stats memory** is used for all interface statistics, forwarding statistics etc
- **Frame memory** is buffer memory for Queues

E/B/L line card have different TCAM, Stats and Frame Memory size, which give different scale number of the QoS queues and L2 sub-interfaces per line card

Lookup Memory is the same across line cards → why?
- To support mix of the line cards without impacting the system wide scale including routing, multicast, MAC address, L3 interface, MPLS label space scale
SIP/SPA – Non-Ethernet Support

SPA support list:

Powerful and Flexible QFP Processor
- Flexible ucode Architecture for Feature Richness
- L2 + L3 Services: FR, PPP, HDLC, MLPPP, LFI, L3VPN, MPLS, Netflow, 6PE/VPE

Strong QoS
- 128+K Queues,
- 128+K Policers
- H-QoS
- Color Policing

Scalability
- Distributed control and data plane; 20G; 4 Bays
- L3 i/f, route, session, protocol – scaled up for MSE needs

High Availability
- IC-Stateful Switch Over capability,
- MR-APS
- IOS-XR base for high scale and reliability

SPA Support:
- ChOC-12: T1 / T3, MLPPP, LFI, IC-SSO, MR-APS
- ChOC-3/STM1 + ChOC-12: DS0 / STM1 + ChOC-48: DS3 / E3 / STM4
- POS: OC3/STM1, OC-12/STM4, OC-48/STM16, OC-192/STM64

SPA Roadmap (2011):
Ch T1/E1, Ch T3/E3, CEoPs, ATM
Switch Fabric Overview

- Active-active load balancing: Unicast: per-packet load balancing, Multicast: per (S,G) load balancing
- Arbiter for fabric access control. Arbiter is in active/standby mode, which is controlled by low level hardware signalling
- Frame format over fabric: super-frame, it can aggregate multiple small packet into a big sup-frame to improve the fabric throughput

4x23Gbps = 92Gbps with dual RSP
2x23Gbps = 46Gbps with single RSP

8x23Gbps = 184Gbps with dual RSP
4x23Gbps = 92Gbps with single RSP
System Internal Bandwidth
NO bottleneck inside the system

Use A9K-8T line card as example

A9K-8T/4
~60Gbps raw bandwidth
A9K-16T/8-B
~120Gbps raw bandwidth

Each FIA has one fabric channel which is 23 Gbps bi-directional, to each of the switch fabric ASIC

30Gbps and 25M pps (combined ingress and egress)
15Gbps bi-directional
30Gbps bi-directional
30Gbps bi-directional
60Gbps bi-directional
4xNPs Line Card Family

A9K-4T-E/B/L

PHY 3 → NP0 → FIA
PHY 2 → NP1
PHY 1 → NP2
PHY 0 → NP3

A9K-2T20G-E/B/L

PHY → NP0 → FIA
PHY → NP1
PHY → NP2
PHY → NP3

A9K-8T/4-E/B/L

PHY 3 → NP0 → FIA
PHY 7 → NP1
PHY 2 → NP2
PHY 6 → NP3

A9K-40G-E/B/L

PHY → NP0 → FIA
PHY → NP1
PHY → NP2
PHY → NP3

Oversubscribed line card Up to 60Gbps (~57Gbps) bandwidth
8xNPs Line Card Family

Oversubscribed line card
Up to 120Gbps (~117Gbps) bandwidth
Packet Forwarding Architecture

Distributed Forwarding, Multicast Forwarding, EVC Architecture
IOS-XR Two-Stage Packet Forwarding
Fully Distributed Forwarding on Line Cards

Packet is forwarded to the egress NP based on the information in the NP/fabric header

- Each line card has independent AIB only for local interfaces
- Each line card has independent Interface DB for local interfaces
- Both Ingress and Egress FIB – allows forwarding features to be independently applied on LCs

Ingress NP look up ➔ Get egress NP information (added into the NP/fabric header), apply ingress features

Egress NP look up ➔ Get egress logical port, VLAN, MAC, ADJ information, etc for packet rewrite, apply egress features
Multicast Packet Forwarding
Intelligent Multicast Replication

1. **Fabric Replication** ➔ replicate single copy to each LC which has IGMP join, based on FGID table in switch fabric

2. **FIA Replication** ➔ replicate single copy to each NP which has IGMP join, based on MGID table in FIA

3. **NP Replication** ➔ replicate single copy per each receiver based on multicast FIB table

IGMP joins

FGID – Fabric Group ID
MGID – Multicast Group ID
MFIB – Multicast Forwarding Information Base
Intelligent Multicast Replication
Switch Fabric and Egress LC Replication

1. Fabric Replication → replicate single copy to LCs which receive IGMP join, based on FGID table in switch fabric.

2. FIA Replication → replicate single copy to NPs which receive IGMP join, based on MGID table in FIA.

3. Bridge Replication → similar as FIA replication, single copy to NP.

4. NP Replication → replicate copy per receiver based on multicast FIB table.

FGID – Fabric Group ID
MGID – Multicast Group ID
MFIB – Multicast Forwarding Information Base

1Kx10 bitmap representing all combination of the egress linecards

FPOE Table:

1	0000000000
2	0000000001
3	0000000011
...	
N	1111001111

Hit: FGID=3

MGID Table in FIA:

1	00
2	01
3	10
...	
N	10

1Kx10 bitmap representing all combination of the egress linecards

Hit: MGID=1

Replicate to the first Bridge only.

Each entry represent one mroute, 2 bits indicating the downstream ASICs.
ASR 9000 EVC Infrastructure

VLAN tag local significant
Flexible VLAN tag classification
Flexible VLAN tag rewrite
Flexible Ethertype (.1Q, QinQ, .1ad)

L2 or L3 sub-interfaces (802.1q/qinq/.1ad)

Flexible service mapping and multiplexing. Support all standard based services concurrently on the same port:
- Regular L3, L2 interface/sub-interface
- Integrated L2 and L3 – IRB/BVI
- Mixed L2 and L3 sub-interfaces on the same port
Flexible VLAN Tag Classification

RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/0/0/4.100 l2transport
RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation ?
 default Packets unmatched by other service instances
 dot1ad IEEE 802.1ad VLAN-tagged packets
 dot1q IEEE 802.1Q VLAN-tagged packets
 untagged Packets with no explicit VLAN tag

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1q 100-200,205 ?
 comma comma
 exact Do not allow further inner tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1q 100 second-dot1q 10-20,35 ?
 comma comma
 exact Do not allow further inner tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1ad 20 dot1q 10-20 ?
 comma comma
 exact Do not allow further inner tags
Flexible VLAN Tag Rewrite

RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/0/0/4.100 l2transport

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag ?
pop Remove one or more tags
push Push one or more tags
translate Replace tags with other tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag pop ?
 1 Remove outer tag only
 2 Remove two outermost tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag push ?
dot1ad Push a Dot1ad tag
dot1q Push a Dot1Q tag

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag push dot1q 100 ?
 second-dot1q Push another Dot1Q tag
 symmetric All rewrites must be symmetric

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag translate ?
 1-to-1 Replace the outermost tag with another tag
 1-to-2 Replace the outermost tag with two tags
 2-to-1 Replace the outermost two tags with one tag
 2-to-2 Replace the outermost two tags with two other tags

Pop tag 1 or 2
Push tag 1 or 2
Tag translation
 1-1
 1-2
 2-1
 2-2
L2VPN P2P

EFP configuration example

Interface gig 0/0/0/1.101 l2transport
encapsulation dot1q 101 second 10
rewrite ingress pop 2 Symmetric

Interface gig 0/0/0/2.101 l2transport
encapsulation dot1q 101
rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 l2transport
encapsulation dot1q 102-105
rewrite ingress push dot1q 100 Symmetric

L2VPN P2P service configuration example

l2vpn
xconnect group cisco
 p2p service1 ← local connect
 interface gig 0/0/0/1.101
 interface gig 0/0/0/2.101
 p2p service2 ← VPWS
 interface gig 0/0/0/3.101
 neighbor 1.1.1.1 pw-id 22
 p2p service3 ← PW stitching
 neighbor 2.2.2.2 pw-id 100
 neighbor 3.3.3.3 pw-id 101
L2VPN Multi-Point

EFP configuration example

```
Interface gig 0/0/0/1.101 l2transport
  encapsulation dot1q 101
  rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/2.101 l2transport
  encapsulation dot1q 101
  rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 l2transport
  encapsulation dot1q 102
  rewrite ingress push dot1q 100 Symmetric
```

L2VPN MP service configuration example

```
l2vpn
  bridge group cisco
    bridge-domain domain1 ← local bridging
      Interface gig 0/0/0/1.101
        split-horizon group ← no bridging among same SHG
          Interface gig 0/0/0/1.101
            split-horizon group

    bridge-domain domain2 ← VPLS
      Interface gig 0/0/0/1.101
      Interface gig 0/0/0/2.101
      vfi cisco
      neighbor 192.0.0.1 pw-id 100
      neighbor 192.0.0.2 pw-id 100

    bridge-domain domain3 ← H-VPLS
      Interface gig 0/0/0/1.101
      neighbor 192.0.0.3 pw-id 100 ← spoke PW
      vfi cisco ← for core PWs
      neighbor 192.0.0.1 pw-id 100 ← core PW
      neighbor 192.0.0.2 pw-id 100
```
Mixed L2 and L3 on the Same Port

L2 trunk port, use SVI for L3

```plaintext
interface gig 1/2
  switchport
  switchport mode trunk
  switchport trunk allow vlan 50-1000

Interface vlan 50
  ip address 1.1.1.1 255.255.255.0
```

Native L2 and L3 sub-interface on the same port

```plaintext
interface gig 0/0/0/1.50
  encapsulation dot1q 50
  ip address 1.1.1.1 255.255.255.0

Interface gig 0/0/0/0/1.51 l2transport
  encapsulation dot1q 51
  rewrite ingress tag pop 1 Symmetric

l2vpn define L2 service
  bridge group test
  <snip>
```
ASR 9000 L3 “At-a-Glance”
Extend IOS-XR L3/MPLS to the ASR9000

- IOS-XR routing and MPLS → Widely deployed, proven stability and feature rich
- Distributed inline Netflow → 1M entries/LC, 100Kpps/LC, flexible sampling and IPv4/IPv6/MPLS feature support
- Built-in HA → NSF/GR & NSR & SSO
- IPv6 ready → Dual stack, 6PE/6VPE, high scale, line-rate IPv6 forwarding performance
- Distributed control plan → High Multi-dimensional control plane scale, for example 5000 BGPs + 10,000 BFDs + etc
- Hierarchical FIB structure and Fast FIB programming → Prefix independent fast network convergence
- Mature IOS-XR L3 Routing & MPLS SW Infrastructure

Cisco Confidential
L3 Control Plane Overview

LDP RSVP-TE

LSD

Static BGP OSPF
ISIS EIGRP

RIB

ARP

AIB

SW FIB

AIB: Adjacency Information Base
RIB: Routing Information Base
FIB: Forwarding Information Base
LSD: Label Switch Database

LC CPU

FIB Adjacency

RP

LC NPU

LC NPU
L3 Forwarding – Hierarchical Data Structure
FIB and ADJ Tables Overview

VRF table

Search Tree

Leaf Table (FIB table)

LDI/ADJ table

Recursive LDI

Recursive Prefix Leaf Table

NR Prefix Leaf Table

NR LDI 0
NR LDI 1
...
NR LDI N

Protected TE adj

Backup TE adj

Out/F

PI: Prefix independent convergence
LAG: Link aggregation group
LDI: Load information

BGP PIC
TE-FRR PIC
Link bundle PIC

Out/F

Out/F

Out/F
Cisco ASR 9000 L2 Behavior
It does FULL L2, but not a classic switch

ASR 9000 support full L2 service (multi-point, point-to-point, E-Tree native L2 or L2 over MPLS). It’s fully MEF certified.

However, the behavior and configuration is quite different than traditional L2 switch

- **By default, it’s Router**, it doesn’t do any bridging function unless you configure it specifically

- There is **no “switch-port”** concept. All L2 features are done with “EVC” SW infrastructure

- There is **no global VLAN** concept. All VLAN is local port significant. By default VLAN 10 on port A doesn’t talk to VLAN 10 on port B. It require “bridge-domain” configuration to bridge port/VLAN together

- **By default, STP is not enabled** on any L2 port unless you “explicitly” configure it under STP process

NO global VLAN (no 4K limit)
Per-VLAN features, more flexible, more secure, more scale
ASR 9000 L2 “At-a-Glance”
Built on New Cisco EVC SW Foundation

Flexible Cisco “EVC” Carrier Ethernet SW infrastructure → VLAN tag matching, manipulation, service mapping

Distributed control plan → High Multi-dimensional L2 service scale, VLAN, PW, Bridge-domain, VPLS, MAC address scale, etc

Standard compliant, MEF certified, 802.1q/qinq/.1ad/.1ah EoMPLS, H-VPLS/VPLS supported, L2 feature rich
E-OAM: CFM, Y.1731, Link OAM

Distributed HW based MAC learning, aging/flushing, 4-5Mpps

Rich L2 fast convergence features

Cisco “EVC” Carrier Ethernet Foundation
ASR 9000 MAC Learning Overview

- Distributed HW based MAC Learning
 - MAC learning /aging/flushing is fully distributed to the NP, independently
 - Each NP can learn around 4-5 Millions MAC addresses per second in hardware

- Data-plane MAC table synchronization
 - MAC address are synchronized across all NPs in the entire system, regardless of the bridge-domain or bridge port configuration.
 - MAC address synchronization is achieved by special MAC notification messages which is implemented in the data-plane microcode.

MAC learning/aging/flushing is done by hardware and fully distributed on each NP independently.
ASR 9000 Scalable System Architecture

- Control plane split among RSP and LC CPU (same type of CPU as RSP)
- L2 protocols, BFD, CFM, Netflow runs on the LC CPU for high scale

"8+1" CPU for Ultra-High multi-dimensional control plane scale

Scale examples

<table>
<thead>
<tr>
<th>Multi-dimensional scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIB</td>
</tr>
<tr>
<td>MAC address</td>
</tr>
<tr>
<td>L2 interfaces</td>
</tr>
<tr>
<td>Pseudowires</td>
</tr>
<tr>
<td>Bridge-domain/VFI</td>
</tr>
<tr>
<td>EFPs per BD</td>
</tr>
<tr>
<td>L3 interfaces, VRF</td>
</tr>
<tr>
<td>CFM MEP/MIP</td>
</tr>
<tr>
<td>Netflow</td>
</tr>
<tr>
<td>BFD</td>
</tr>
</tbody>
</table>
HA and Fast Convergence

Service layer resiliency, service termination point (node or link) fail., service is down and need to re-route
- L2: PW redundancy, L3: BGP PIC, Multicast: MoFRR
- Access dual home: REP-AG/MST-AG, Rapid-PVST/PVST-AG, MC-LAG, G.8032, Flexible Link (not supported), HSRP/VRRP
- State sync between primary and backup service node: ANCP, IGMP snooping, DHCP/ARP/IGMP (in future), etc

L2 and L3 transport layer resiliency, transit link or transit node fail, L2 or L3 transport protocol re-converge. Service layer is not aware
- L2: MST, G.8032, REP(not supported), PVST(not supported)
- L3: IGP/BGP, TE/FRR(link, node, path protection), IP/FRR (ISIS per-link and per-prefix, OSPF per-link, OSPF per-prefix IP/FRR
- Multicast: PIM, P2MP-TE/FRR

Link layer resiliency: transport and service layer is not aware, for link protection only
Link Bundle (active-active, 1:1 backup, m:n backup)

Resiliency infrastructure: distributed BFD, distributed EFD, HW based LoS detection, IPoDWDM FEC/EFC & proactive protection, Hierarchical Forwarding table structure and in-place modification, Fast programming FIB table

System HA: IOS-XR Modular OS, Micro-kernel, RSP failover, SMU, ISSU(4.2.1), Process restart. All protocols are SSO, all protocol support NSF/GR, OSPF/ISIS/LDP/BGP support NSR. PIM support NSF and is NSR compliant
Feature Architecture

Quality of Service, MoFRR, Vidmon, New Features
Switch Fabric Bandwidth Access Overview
Intelligent Fabric and Internal System QoS

- 3 strict priority scheduling/queueing
- Back pressure and virtual output queue
- Multicast and Unicast separation (separated queues and fabric plane)

1: Fabric Request

2: Arbitration

3: Fabric Grant

4: Load-balanced transmission across fabric links

5: Credit return

Ingress LC

Egress LC

FIA

Crossbar Fabric ASIC

Arbiter

Crossbar Fabric ASIC

Arbiter

Crossbar Fabric ASIC

Crossbar Fabric ASIC
End-to-End System QoS Queuing

End-to-End priority (P1,P2, Best-effort) propagation →
Guarantee bandwidth, low latency for high priority traffic
at any congestion point
3 strict priority level across all internal HW components

Ingress side of LC

1. Ingress (sub-)interface QoS Queues
 Configure with Ingress MQC
 4-layer hierarchy
 Two strict high priority + Normal priority

2. Virtual Output Queues
 Implicit Configuration
 Two strict high priority + Normal priority

Egress side of LC

3. Egress FIA Queues
 Configure with Egress MQC
 4-layer hierarchy
 Two strict high priority + Normal priority

4. Egress (sub-)interface QoS Queues

Switch Fabric

FIA
Backpressure and VoQ Mechanism

Egress NP congestion \rightarrow backpressure to ingress FIA \rightarrow
Packet is enqueued in the dedicated VoQ \rightarrow
No impact of the packet going to different egress NP \rightarrow
No head-of-line-block issue

VoQ Scale: Each FIA has P1/P2/BE queue set for every NP and RSPs in the entire system

Backpressure: egress NP \rightarrow egress FIA \rightarrow fabric Arbiter \rightarrow ingress FIA \rightarrow VoQ

Packet going to different egress NP put into different VoQ set \rightarrow
Congestion on one NP won’t block the packet going to different NP
Port QoS Overview

User configure port level QoS via MQC CLIs
QoS function is done by special Queuing HW chip within the NP complex
Different memory options have different scale

- High scale
 - Up to 3 Million queues per system (with E linecard)
 - Up to 2 Million policers per system (with E linecard)
- Highly flexible: 4 layer hierarchy queuing/scheduling support
 - Four layer scheduling hierarchy → Port, Subscriber Group, Subscriber, Class
 - Egress & Ingress, shaping and policing
- Three strict priority scheduling with priority propagation
- Flexible & granular classification, and marking
 - Full Layer 2, Full Layer 3/4 IPv4, IPv6
QOS Configuration Basics

- **IOS XR MQC CLI**

- **Attachment Points**
 - **Main/physical Interface**: MQC applied to a physical port will take effect for traffic that flows across all sub-interfaces on that physical port
 - **L3 sub-interface**
 - **L2 sub-interface (EFP)**
 - You can have either port-based or sub-interface based policy on a given physical port, but not both at same time
QoS Classification Criteria

- Very flexible L2/L3 field classification on L2 interfaces
 - Inner/outer cos
 - Inner/Outer vlan
 - DEI
 - Outer EXP
 - DSCP/TOS
 - TTL, TCP flags, source/destination L4 ports
 - Protocol
 - Source/Destination IPv4
 - Source/Destination MAC address
 - Discard-class
 - Qos-group
 - match all/match any

- Max. 8 match statements per class

Note: a given match statement can have multiple entries (i.e. COS 1,2,3)
Marking Details

- “settable” packet fields:
 - DSCP/Precedence
 - EXP imposition
 - EXP topmost
 - COS inner/outer
 - qos-group
 - discard-class

- ASR9K supports maximum of 2 fields per class-map. The same 2 fields can be placed in any combination below
 - 2 sets per police-conform/exceed/violate
 - 2 sets without policing

Sample configuration for the marking

class CLASS-UNTAGGED-PD
 set cos 2
 set dscp 21

 police rate 10240000 bps burst 320000 bytes peak-rate 20480000 bps peak-burst
 conform-action set cos 2
 conform-action set prec 2
 exceed-action set cos 1
 exceed-action set dscp 8
 violate-action set cos 0
 violate-action dscp 0
Policing Details

- RFC 2698 supported (2r3c) and 1r2c
 - Color blind mode
- Ingress & egress policing supported
- General Rule: Policing required on priority queues.
 - Priority level 2 classes can also accept shaping instead of policing.
- Granularity of 64Kbps supported.
- 2-level nested policy maps supported
 - Note: policers at parent and child work independently
- 64k policers per NPU (shared for ingress/egress) on extended linecards
- Policier actions supported:
 - Transmit
 - Drop
 - Set (implicitly behaves like set and transmit)
 - Each color can have two set actions:

Policy-map parent
 Class class-default
 Police rate 10 Mbps peak-rate 20 mbps
 Conform-action set dscp af12
 Conform-action set cos 2
 Exceed-action set dscp af13
 Exceed-action set cos 3
4 Layer Hierarchy QoS Queuing Overview

L1 level is implicitly assumed

Hierarchy levels used are determined by how many nested levels a policy-map is configured for and applied to a given sub-interface

Max 8 classes per subscriber level
Shared Policy Instances (SPI)

- Enable distinct forwarding entities on the same port to use the exact same policy instance in order to share a common SLA enforcement
- Support 3 and 4 layer hierarchies
- Lightweight implementation with extension to existing MQC
- Require a new key-word to the service-policy command:

 \texttt{service-policy output/input <name> shared-policy-instance <name>}

- Require that both EFPs/SubI/Fs have to reside on the same port
3-Layer H-QoS – CLI Examples (1)

Example 1 – policy-map on subinterface

policy-map parent *(configures L3 layer)*
- class-default
 - shape average x
 ...
 - service-policy child

policy-map child *(configures L4 layer)*
- class-1
 - priority level x
 - class-2
 - bandwidth remaining percent x
 ...

```
int GigE 0/1/2/3.10 12transport
encapsulation dot1q 10
service-policy output parent
```

```
int GigE 0/1/2/3.20
Ipv4 address ...
encapsulation dot1q 20
service-policy output parent
```

Note: Example applies to L3 and L2 VLAN subinterfaces
Note: Example applies to L2 VLAN subinterfaces only, since match VLAN is not supported for L3 interfaces.
“Video Aware” Edge Router
High Bandwidth Scale + High Quality

- Transparent Caching
- VOD, Internet Caching & Streaming
- Inline Video Monitoring
- High Density for VoD Bandwidth Requirements
- Best-in-Class Multicast Replication and scale
- Best-in-Class High quality: System QoS, HA, Fast convergence (MoFRR)

Flexible Multiple applications—scalable and adaptable architecture

Ensured Experience Integration of Error repair at edge

Personalized Experience Virtual personal channels
Personalized ads

Ensured Experience Integration of Error repair at edge

Video Probe TV Cache

Content Choices VoD, Online, User generated content

Feature	ASR 9000 CDS-TV Capabilities
Applications | Ultra-Dense VoD, TV, Internet Streaming, Error Repair, NPS*, CGN*, SBC*
Bandwidth | 30-40 Gbps streaming capacity ~3 Gbps cache fill rate
Compatibility | Works with all CDS appliances
Concurrent Streams | Up to 10,000 SD equivalent
Content Cache | 3.2 TBytes at FCS - Modular Design
Environmental | NEBS / ETSI compliant
Multicast Network HA
Truly Resilient Multicast by ASR 9000 MoFRR

Multicast Only Fast Re-Route

- **ASR 9000 MoFRR Overview**
 - Tail end (Receiver) PE send PIM join on both of its redundant uplinks to receive identical streams over disjointed network paths: primary and backup
 - HW monitor the video flows on the primary path
 - Automatic Switch over to back up path based on configurable criteria (hard coded 30msec in phase 1)

- **Key Differentiators**
 - Only need to be enabled on the last hop Router for operational simplicity
 - Fast Convergence: <50msec (1000 channels tested) convergence time for source-to-receiver path (link and node) protection
 - Native IP multicast solution without the complexity of MPLS P2MP TE/FRR (but can be integrated with TE)
 - Pro-active protection by using Vidmon metric as trigger
 - Towards lossless Video transport solution
MoFRR – A Simple CLI Example

Configuration on receiver PE

- `ipv4 access-list mofrr-acl-group1`
- `20 permit ipv4 any 231.1.0.0 0.0.255.255`
- `30 permit ipv4 any 232.1.0.0 0.0.255.255`

- `router pim`
- `address-family ipv4`
- `mofrr mofrr-acl-group1`

End-to-End path

50 msec protection

RP/0/RSP0/CPU0:receiver#show mrib route 232.1.1.1 1.3.13.100 detail

- `(1.3.13.100,232.1.1.1) Ver: 0x383a RPF nbr: 10.0.102.2 Flags: MoFE MoFS, FMA: 0x50130f98 Up: 04:55:57`
- `MOFRR State: Inactive Sequence No 1`
 - **Incoming Interface List**
 - `TenGigE0/0/0/0.1 Flags: A2, Up: 00:03:11 ← MoFRR backup interface`
 - `TenGigE0/0/0/1.1 Flags: A, Up: 04:00:09 ← MoFRR primary interface`
 - **Outgoing Interface List**
 - `TenGigE0/0/0/7.13 Flags: F NS LI, Up: 04:55:57`

#show mfib hardware route mofrr location <loc>

MoFRR ONLY need to be enabled on last-hop Router, but can detect any failure points along the forwarding path.
What’s “Inline” Video Monitoring?
Monitor the Video flow quality on the transport port. It’s just another feature like QoS/ACL which you apply to the normal interface

```
ipv4 access-list my_acl:
   10 permit udp any eq 4000 any eq 4000
!
class-map type traffic match-any my_class
  match access-group ipv4 my_acl
end-class-map
!
policy-map type performance-traffic my_policy
  class type traffic my_class
    monitor parameters
      interval duration 10
      history 10
      timeout 2
    !
    monitor metric ip-cbr
      rate layer3 packet 100 pps
    !
    react 1 packet-rate
      threshold type immediate
      threshold value gt 200.0
      action syslog
      alarm severity warning
      alarm type discrete
    !
end-policy-map
!
interface GigabitEthernet0/0/0/8
  ipv4 address 10.1.1.1 255.255.255.0
  service-policy type performance-traffic input my_policy
```

As simple as this!
Now it’s working
Video Trap and Clone
For Deep Analysis

- In-line monitoring Trap or Customer calls in and opens trouble ticket
- Service personnel trap the Video flow and clone it
- Video Flow transported to Video Operations Site for detailed codec level Analysis / Troubleshooting

CAPEX: No need for DPI probe deployment all over network

OPEX: Leverage the shared, “expert” analysis equipment in the NOC
SW/HW Architecture Overview
Where to Implement the Features

Ingress Features on FIA: System QoS - VoQ

Features on LC CPU: BFD, OAM, STP, Netflow, ARP, ICMP, etc

Features on RP CPU: Routing, MPLS, Multicast control plane, HSRP, VRRP, link bundle, etc

Egress Features on FIA: System QoS queuing, Multicast replication

Egress NP look up ⇒ Get egress NP information for packet forwarding
Apply egress port features: ACL, QoS, Multicast replication, etc

Ingress NP look up ⇒ Get egress logical port, VLAN, MAC, ADJ information, etc for packet rewrite
Apply ingress port features: ACL, QoS, SPAN, Vidmon, etc

Switch Fabric: Multicast replication, QoS scheduling and Fabric access Arbitration

Ingress LC

Egress LC

1

2
Cisco ASR 9000 Summary

- Most Scalable, Lowest-Power Carrier Ethernet System in the Industry
- Best in Class L2 + L3, Carrier Ethernet, & MSE Services
- Optimized for Video Services over Converged Wireline + Wireless NGNs
- Nonstop Availability with IOS-XR Modular OS
Complete Your Session Evaluation

- Please give us your feedback!!
 Complete the evaluation form you were given when you entered the room
- This is session 5.2

Don’t forget to complete the overall event evaluation form included in your registration kit

YOUR FEEDBACK IS VERY IMPORTANT FOR US!!! THANKS