Design, Deployment and Management of Unified WLAN
Understanding WLAN Controllers
1st/2nd Generation vs. 3rd Generation Approach

• 1st/2nd generation: APs act as 802.1Q translational bridge, putting client traffic on local VLANs
• 3rd generation: Controller bridges client traffic centrally

1st/2nd Generation

- Data VLAN
- Voice VLAN
- Management VLAN

3rd Generation

- Data VLAN
- Voice VLAN
- Management VLAN

LWAPP/CAPWAP Tunnel
Centralized Wireless LAN Architecture

What Is CAPWAP?

- CAPWAP: Control and Provisioning of Wireless Access Points
- Used between APs and WLAN controller and based on LWAPP
- CAPWAP carries control and data traffic between the two
 - Control plane is DTLS encrypted
 - Data plane is DTLS encrypted (optional)
- LWAPP-enabled access points can discover and join a CAPWAP controller, and conversion to a CAPWAP controller is seamless
CAPWAP Modes

- The CAPWAP protocol supports two modes of operation
 - Split MAC (centralized mode)
 - Local MAC (FlexConnect/H-REAP)

- Split MAC
CAPWAP Modes

• The CAPWAP protocol supports two modes of operation
 – Split MAC (centralized mode)
 – Local MAC (FlexConnect/H-REAP)

• Locally bridged
Cisco Unified Wireless Principles

• Components
 • Wireless LAN controllers
 • Aironet access points
 • Management System (NCS)
 • Mobility Service Engine (MSE)

• Principles
 • AP must have CAPWAP connectivity with WLC
 • Configuration downloaded to AP by WLC
 • All Wi-Fi traffic is forwarded to the WLC
Controller Redundancy

Dynamic

- Rely on CAPWAP to load-balance APs across controllers and populate APs with backup controllers
- Results in dynamic “salt-and-pepper” design
- Pros
 - Easy to deploy and configure—less upfront work
 - APs dynamically load-balance (though never perfectly)
- Cons
 - More intercontroller roaming
 - Bigger operational challenges due to unpredictability
 - No “fallback” option in the event of controller failure
- Cisco’s general recommendation is: **Only for Layer 2 roaming**
- Use deterministic redundancy instead of dynamic redundancy
Controller Redundancy
Deterministic

- Administrator statically assigns APs a primary, secondary, and/or tertiary controller
 - Assigned from controller interface (per AP) or WCS (template-based)

- Pros
 - Predictability—easier operational management
 - More flexible and powerful redundancy design options
 - “Fallback” option in the case of failover

- Con
 - More upfront planning and configuration

- This is Cisco’s recommended best practice
Controller Redundancy

Architecture Resiliency

Resiliency

N:1 Redundancy

N:N Redundancy

N:N:1 Redundancy

WLAN Controller

Primary: WLAN-Controller-A
Secondary: WLAN-Controller-B
Tertiary: WLAN-Controller-C

APs Configured With:
Primary: WLAN-Controller-A
Secondary: WLAN-Controller-B
Tertiary: WLAN-Controller-C

NOC or Data Center

WLAN-Controller-B

APs Configured With:
Primary: WLAN-Controller-B
Secondary: WLAN-Controller-A
Tertiary: WLAN-Controller-C

WLAN-Controller-A

APs Configured With:
Primary: WLAN-Controller-A
Secondary: WLAN-Controller-B
Tertiary: WLAN-Controller-C

WLAN-Controller-C

APs Configured With:
Primary: WLAN-Controller-C
Secondary: WLAN-Controller-A
Tertiary: WLAN-Controller-B

WLAN Controller

Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

APs Configured With:
Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-B

APs Configured With:
Primary: WLAN-Controller-2
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-n

APs Configured With:
Primary: WLAN-Controller-n
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN Controller

Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

APs Configured With:
Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-2

APs Configured With:
Primary: WLAN-Controller-2
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-n

APs Configured With:
Primary: WLAN-Controller-n
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN Controller

Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

APs Configured With:
Primary: WLAN-Controller-1
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-2

APs Configured With:
Primary: WLAN-Controller-2
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

WLAN-Controller-n

APs Configured With:
Primary: WLAN-Controller-n
Secondary: WLAN-Controller-BKP
Tertiary: WLAN-Controller-BKP

NOC or Data Center
AP-Grouping in Campus

- VLAN 100
- VLAN 100
- VLAN 100
- VLAN 100 / 21
- CAPWAP
- Single SSID = Employee

Access
Distribution
Core
Distribution
Access

WAN
Data Center
Internet
WLC-1
WLC-2
AP-Grouping in Campus

Access
Distribution
Core
Distribution
Access

VLAN 60 /23
VLAN 70 /23
VLAN 80 /23

Single SSID = Employee
Interface-Grouping in Campus

- Access
- Distribution
- Core
- Distribution
- Access

WLC-1, WLC-2

VLAN 60, VLAN 61, VLAN 62, VLAN 63, VLAN 64, VLAN 65

Single SSID = Employee
Scaling the Architecture with Mobility Groups

- Mobility Group allows controllers to peer with each other to support seamless roaming across controller boundaries
- APs learn the IPs of the other members of the mobility group after the LWAPP Join process
- Support for up to 24 controllers, 24,000 APs per mobility group
- Mobility messages exchanged between controllers (Multicast)
- Data tunneled between controllers in EtherIP (RFC 3378)
Increased Mobility Scalability

- Roaming is supported across three mobility groups (3 * 24 = 72 controllers)
- With Inter Release Controller Mobility (IRCM) roaming is supported between 4.2.207 and 6.0.188 and 7.0
Inter-Controller Roaming:
Layer 2

- Inter-Controller roam happens when a client moves association between APs joined to different controller
- Client must be re-authenticated and new security session established
Inter-Controller Roaming: Layer 2

- Client database entry with new AP and appropriate security context
- No IP address refresh needed
Inter-Controller Roaming: Layer 3

- Client must be re-authenticated and new security session established
- Client database entry copied to new controller – entry exists in both WLC client DBs
- Original controller tagged as the “anchor”, new controller tagged as the “foreign”
- WLCs must be in same mobility group or domain
Inter-Controller Roaming: Layer 3

WLC-1 Client
Database
VLAN X
Client Data (MAC, IP, QoS, Security)
WLC-2 Client
Database
VLAN Z
Client Data (MAC, IP, QoS, Security)

Anchor Controller
WLC-1
Client Roams to a Different AP
Foreign Controller
WLC-2

• No IP address refresh needed
• Symmetric traffic path established
• Account for mobility message exchange in network design
Designing a Mobility Group/Domain Design Considerations

• Less roaming is better – clients and apps are happier
• L3 roaming & fast roaming clients consume client DB slots on multiple controllers – consider “worst case” scenarios in designing roaming domain size
• Leverage natural roaming domain boundaries
• Mobility Message transport selection: multicast vs. unicast
• Make sure the right ports and protocols are allowed
Branch Designs Using Remote Controllers

• Branches can also have local remote controllers
• Small form factors WLC are available to have « small campus »: WLC-2504 or Integrated controller modules in ISR/ISR-G2
• High Availability design with central backup controller is supported. WAN limitations may apply.
Branch Office Deployment FlexConnect

- Hybrid Remote Edge Access Point architecture (H-REAP)
- Single management and control point
- Data Traffic Switching
 - Centralized traffic
 - Local traffic
- Traffic Switching is configured per AP and per WLAN (SSID)
FlexConnect – Advanced Services

• High Availability – WAN Survivability
 – FlexConnect AP provides wireless access and services to clients when the connection to the primary WLC fails

• Local Authentication
 – Allows for the authentication capability to exist directly at the AP in FlexConnect instead of the WLC

• Fast roaming in remote branches

• Dynamic VLAN assignment

• Scalability
 – Number of FlexConnect groups: 500 (7500s) and 100 (5500s)
 – APs per Group: 50 (7500s) and 25 (5500s)
All the client authentication requests travels through Central Controller
If Controller is not reachable, then no clients can authenticate
• All the client authentication requests travels straight from AP to RADIUS Server.
• If Controller is not reachable, clients can still continue to authenticate and access network services.
All the client authentication requests travels straight from AP to Local Branch RADIUS Server.
If WAN link is down, clients can still continue to authenticate and access network services.
Local Authentication – AP as EAP Server

- All the client authenticated directly by the AP.
- If WAN link & Local Backup RADIUS Server is down clients can still continue to authenticate and access network services.
H-REAP Design Considerations

• Some WAN limitations apply
 – RTT must be below 300 ms data (100 ms voice)
 – Minimum 500 bytes WAN MTU (with maximum four fragmented packets)

• Some features are not available in standalone mode or in local switching mode
 – See full list in « H-REAP Feature Matrix »

Home Office Design – OEAP

- Cisco controller installed in the DMZ of the corporate network
- OfficeExtend AP (OEAP) installed at teleworker’s home
- Corporate access to employee over centrally configured SSID
- Family Internet access over a locally configured SSID
Cisco WLAN Controller Portfolio

- **Campus and Full Service Branch**
 - 2500
 - 5500
 - WISM2

- **Lean Branch**
 - WLCM2
 - 7500

Scale

Features / Performance
Cisco Aironet 802.11n Access Points

- Teleworker
- Business-Ready
- Mission Critical
- Best in Class Mission Critical

OfficeExtend
AP 600

AP 1040

AP 3500
AP 1260
AP 1140

AP 3600

With CleanAir technology

802.11n WiFi
IPv6 Will Be a Phased Implementation

But Dual Stack Clients Are Here Now…
Wireless IPv6 Client Support

- Supports IPv4, Dual Stack and Native IPv6 clients on single WLAN simultaneously.
- Supports the following IPv6 address assignment for wireless clients:
 - IPv6 Stateless Autoconfiguration [SLAAC]
 - Stateless, Stateful DHCPv6
 - Static IPv6 configuration
- Supports up to 8 IPv6 addresses per client.
- Clients will be able to pass traffic once IPv4 and/or IPv6 address assignment is completed after successful authentication.
Many IPv6 Addresses Per Client

- Support for many IPv6 addresses per client is necessary because:
 - Clients can have multiple address types per interface
 - Clients can be assigned addresses via multiple methods such as SLAAC and DHCPv6
 - Most clients automatically generate a temporary address in addition to assigned addresses.

Up to 8 IPv6 Addresses are Tracked per Client.
Complete IPv6 Support

• First Hop Security & Optimization
 – DHCPv6 Server Guard
 – Router Advertisement (RA) Guard
 – IPv6 Source Guard
 – Neighbor Solicitation (NS) Suppression
 – Router Advertisement (RA) Throttling

• Layer 2 & 3 Roaming

• IPv6 ACL support

• QoS support

• Guest access support

• Multicast to Unicast conversion at the AP

• FlexConnect
Beyond BYOD
Secure, Customized Experience per User, per Device

Device Onboarding and Guest Access
Unified Policy
Uncompromised User Experience
Simplified IT experience

BYOD
Beyond BYOD
Cisco BYOD+

1. Connect
 - Internet

2. Control
 - Email, Calendar
 - Regulated data (finance, personal info)
 - Govern access to resources based on scenario

3. Manage
 - Visibility into user experience across wired and wireless

4. Optimize
 - Accelerate and protect performance for applications

Securing Any Access

Managing Complexity And Scale

 Delivering High-Quality Experience
Cisco BYOD+
IT Challenges to Mobile Freedom

- Securing Any Access
 - ISE 1.1MR
 - ISE 1.2

- Managing Complexity And Scale
 - Prime Infrastructure & Assurance Manager

- Delivering High-Quality Experience
 - 3600 Access Point
 - 7.2 Controller
3600 Access Point
Industry's only 4x4: 3 spatial stream access point

• Deliver 30% more performance
• Deliver mission critical reliability with CleanAir
• Boost client performance with ClientLink 2.0
• Add-on modules with the Modular architecture
With a mix of all types of video clients using multicast and unicast TCP video (AirVideo), Cisco delivers 3x the performance.
Cisco Identity Services Engine – ISE

Consolidated Contextual Information
- USER ID
- LOCATION
- ACCESS RIGHTS
- DEVICE (IP/MAC)

Real-Time Awareness
Track Active Users and Devices

Integrated Device Profiling & Posture Assessment
- Profiling of wired and wireless devices
- Integrated and built into ISE policy

Consistent Policy for Device Categories

Guest Lifecycle Management
- Provide Guest Access in a seamless, secure manner

Simplified Role-Based Access
- SGT: Public, Private
- Staff: Permit
- Guest: Permit, Deny

Keep Existing Logical Design
Manage Security Group Access

System-wide Visibility
- Troubleshoot and Monitoring
- Consolidated Data

Scales to meet organizations needs
- Scalable Architecture
- Innovative Licensing

LOCATION
- USER ID
- ACCESS RIGHTS
- DEVICE (IP/MAC)

- Profiling of wired and wireless devices
- Integrated and built into ISE policy

- Consistent Policy for Device Categories

- Keep Existing Logical Design
- Manage Security Group Access

- Troubleshoot and Monitoring
- Consolidated Data

- Scalable Architecture
- Innovative Licensing
Cisco's Borderless - Unified Policy Management

District Issued Device
1. 802.1x EAP User Authentication
2. Profiling to identify device
3. Policy decision
4. Policy enforce to “VLAN 10” on same SSID
5. Full access granted
6. Full device visibility

PERSONAL Device
1. 802.1x EAP User Authentication
2. Profiling to identify device
3. Policy decision
4. Policy enforce to “VLAN 10 or 20” on same SSID
5. Full or Restricted access granted
6. Full device visibility
On-Boarding (1.1MR June 12)

Supplicant profile provisioning on supported platforms (iOS, Android, Windows, OS X)

Self / Sponsor registration portals for users and devices

Certificate provisioning as registry authority (RA) adding username and device ID to cert (integrates with existing corp CA/PKI)

Secure access (single SSID, certificate based differentiation of service)

User initiated control their devices (designate “Lost” -> black-listing, re-instate device, etc)
MDM Integration (ISE 1.2 Fall 2012)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Prem MDM Device Registration</td>
<td>non registered clients redirected to MDM registration page</td>
</tr>
<tr>
<td>Restricted Access</td>
<td>non compliant clients will be given restricted access based on MDM posture state</td>
</tr>
<tr>
<td>Augment Endpoint Data</td>
<td>Update data from endpoint which cannot be gathered by profiling</td>
</tr>
<tr>
<td>Ability initiate device action from ISE</td>
<td>eg: device stolen -> need to wipe data on client (Stretch)</td>
</tr>
</tbody>
</table>
A recent survey shows that respondents view client devices as the top contributor to BYOD Wireless network performance problems.

Cisco's Unified Network Management
Top BYOD Wireless Issues

- Client devices (Drivers, connections, authentication, or other issues)
- RF Interference from Wi-Fi and/or non-Wi-Fi sources
- Unexpected demand for increased coverage of capacity
- Faulty wireless network design implementation
- Old or outdated wireless technology
- Insufficient IT administrator expertise
- Other

Bar chart showing the number of customers for each issue.
Cisco Prime Network Control System
Converged Access Management for Wired and Wireless Networks

High-Level View of Key Metrics with Contextual Drill-Down to Detailed Data

- **Flexible platform:** Accommodates new and experienced IT administrators
- **Simple, intuitive user interface:** Eliminates complexity
- **User-defined customization:** Display the most relevant information
Integrated Access Infrastructure Visibility

- Wired and wireless discovery and inventory
 Add/detect infrastructure devices such as switches, WLAN controllers, and access points

- Comprehensive access infrastructure reporting
 View the access infrastructure as a whole

- Stolen asset notification
 Track when devices presumed stolen come back online
Unified User and Endpoint Services

- Correlated and focused wired/wireless client visibility
 - Client health metrics
 - Client posture and profile
 - Client troubleshooting
 - Client reporting
 - Unknown device ID input

- Clear view of the end user landscape
 - Who is connecting
 - Using which device
 - Are they authorized
Cisco NCS Comprehensive Visibility

Visibility – Recognition of IPv6 Global and Link Local Addresses

Insight – Identification of IPv4, Dual-Stack or IPv6-Only Client Types

Security – Identification of Clients Acting as IPv6 Routers
Troubleshoot Wired and Wireless Access Using Cisco Prime for Converged Client Devices

USE CASE: User calls in to help center because they cannot get access to financial data on the network. IT determines if they are authorized to access this area.

1. Search on user name
2. Identify wired and wireless devices associated with the user
3. Display associated and disassociated devices
4. Use automated client troubleshooting workflow to resolve the issue
5. Issue resolved

Cisco Prime Network Control System (NCS)

Troubleshoot user and access issues based on identity Speed resolution with intuitive guided workflows
The Cisco Advantage
A Better Mobility Experience for Users and IT

Cisco Mobility + Security + Collaboration

SAFE ACCESS
- Automated on-boarding with flexible policy to match business needs
- Virtual and physical implementations

INTELLIGENT NETWORK
- Secure, reliable access with up to 30 percent faster tablet performance
- Seamless communication across devices and locations

SIMPLIFIED OPERATIONS
- Single source of policy across organization
- Unified management for wired, wireless and VPN

Rich Experience, BYOD Without Compromises
We value your feedback.
Please be sure to complete the Evaluation Form for this session.

Access today’s presentations at cisco.com/ca/plus

Follow @CiscoCanada and join the #CiscoPlusCA conversation