Secure Wireless: Integrity of Information on the Move

Welcome!
Contents

1 Wireless Overview: Drivers and Security Risks
2 Secure Wireless for Regulatory Compliance
3 Cisco Secure Wireless Solution
4 Wireless Security Planning: Benchmark Analysis
5 Architectures and Design Principles
Business Adoption of Wireless Expands

Third Wave
Enterprise-wide Wireless and Mobility Deliver Benefits for Everyday Workers via Business Process Improvement, Sustained Competitive Advantage, and Revenue Growth

Second Wave
Opportunistic Wireless Deployment Augment Employee Productivity

First Wave
Siloed Vertical Applications Deliver Departmental Benefit
The Business Case for Wireless

Revenue Generation
- Enhanced customer experience
- Improved supply chain management
- Customer self-service
- Partner, customer and employee loyalty

Cost Reduction
- Decrease asset location and replacement
- Decrease moves/adds/changes
- Mitigate cost of non-regulatory compliance
- Lower communications expense

Productivity Increases
- Accelerated decision making
- Rich collaboration for internal and external meetings
- Real-time access to critical information

Productivity Increases
- Enhanced customer experience
- Improved supply chain management
- Customer self-service
- Partner, customer and employee loyalty
Evolution of Wireless Security Challenges

- **Late 90s.** WLAN Technologies Were Proprietary and Provided Minimal Security Features. Security Threat Was Low
- **2000.** 802.11b Standard Ratification Included WEP for Basic Link Encryption Although Lacked Method for Authentication
- **2001.** Cisco Delivers the LEAP Protocol for Mutual Authentication and Improves upon WEP Using CKIP. Many Rely on VPNs
- **2004.** Ratification of IEEE 802.11i for Robust WLAN Security. WPA and WPA2 Expand in Popularity
Why Are Wireless LANs Prone to Attack?

- **“Open air”**
 - No physical barriers to intrusion
 - Silent attacks

- **Standard 802.11 protocol**
 - Well-documented and understood
 - Most common attacks against WLAN networks are targeted at management frames

- **Unlicensed**
 - Easy access to inexpensive technology
Wi-Fi Security Myths

No Wi-Fi = Good Security

Wrong!

A Handheld Walk-Around Survey Is Sufficient (i.e. AirMagnet)

Wrong!

I Use 802.11i, WPA or VPN, so My Network Is Secure

Wrong!

- A single rogue access point creates enormous risk
- Traditional security measures (firewall, wired IDS/IPS, VPNs, NAC, etc.) don’t address
- Perpetrated unknowingly often by your own employees

- Would you turn on your firewall only periodically?
- Not practical for branch or remote offices with no local IT personnel
- Laborious and expensive

- Only protects authorized clients and infrastructure
- No impact on unauthorized infrastructure (i.e. rogue APs) or unauthorized connections (i.e. ad hoc networks)
Radio Frequency Based Threats

Rogue Access Points
Employees Unknowingly Create Opening to Enterprise Network

Ad-hoc Wireless Networks
Client-to-Client Connections Bypass Infrastructure Security Checkpoints

Denial of Service Attacks
Malicious Hackers Disrupt Critical Business Services

Client Mis-Association
Employees Connect to an External WLAN, Creating Portal to Enterprise Wired Network
Overview of Key WLAN Security Vulnerabilities and Threats

- RF Denial of Service (DoS) attacks
- SSID broadcasting
- Authentication attacks
 - Address spoofing
 - Man-in-the-middle

Address Spoofing Attack
- Authorized Client
- Sniff Client MAC and IP Address
- Access Point
- Inject Packets into the WLAN Network Using Client’s MAC/IP Address

Man-in-the-Middle Attack
- Wireless Station
- MiTM Attacker
- Access Point/Controller
- EAP Server
WLAN Security Vulnerabilities and Threats Summary

- Wireless LAN’s have become easy targets for both “traditional” network exploits, as well as criminal elements
- Passive SSID probe sniffing and WEP key attacks are just the first stage in WLAN exploits
- More sophisticated WLAN exploits are likely to employ management frames, as most management packets are not encrypted
- If an attacker can gain access to a WLAN, it is possible to launch a variety of higher-layer exploits over this media
Contents

- 1 Wireless Overview: Drivers and Security Risks
- 2 Secure Wireless for Regulatory Compliance
- 3 Cisco Secure Wireless Solution
- 4 Wireless Security Planning: Benchmark Analysis
- 5 Architectures and Design Principles
The Business Agenda

- Business and security compliance is top-of-mind for executives
- Protecting sensitive business and customer data is the key focus of regulatory compliance requirements

<table>
<thead>
<tr>
<th>Sarbanes-Oxley</th>
<th>Publicly Traded Companies Must:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Maintain an adequate internal control structure and procedures for financial reporting</td>
</tr>
<tr>
<td></td>
<td>• Assess the effectiveness of internal control structures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIPAA</th>
<th>For Patient Information, Firms Must:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Maintain administrative, technical and physical safeguards to ensure integrity and confidentiality</td>
</tr>
<tr>
<td></td>
<td>• Protect against threats or hazards; unauthorized uses or disclosures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCI</th>
<th>All Merchants Using Payment Cards, Must:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Build and maintain a secure network</td>
</tr>
<tr>
<td></td>
<td>• Protect and encrypt cardholder data</td>
</tr>
<tr>
<td></td>
<td>• Regularly monitor and test networks, including wireless</td>
</tr>
</tbody>
</table>
Business Impact of Lack of Compliance

- Direct financial ramifications
 - FTC fines
 - Compensation payout to customers
 - Cost of external security audits
 - Lost customer confidence

- Research shows substantial indirect costs associated with brand damage

- “The fall in share price attributed to a security incident is estimated at 2.7% over one day, increasing to 4.7% over three days”*

Case Study

- Company: Large retailer
- Issue: Data breach due to poor wireless security
- Ramifications:
 - 20 years of third-party security audits mandated by FTC
 - Compromise of 1.4 million credit cards and 96,000 checking accounts
 - Company losses related to security breach ranged from $6.5m to $9.5m
The PCI Data Security Standard

- Published January 2005, ver. 1.1 released Sept 7, 2006
- Impacts all who
 - Process
 - Transmit
 - Store: cardholder data
- Developed by MasterCard and Visa, endorsed by other brands
- Global reach (AIS* regulation outside of US)

*Account Information Security
http://www.cisco.com/go/compliance
Mapping Wireless Security to PCI

<table>
<thead>
<tr>
<th>Wireless Security Tools for PCI Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build and Maintain a Secure Network</td>
</tr>
<tr>
<td>• Change default settings</td>
</tr>
<tr>
<td>Best Practice: No default SSIDs, disable broadcast</td>
</tr>
<tr>
<td>No default login passwords for wireless management</td>
</tr>
<tr>
<td>Protect Cardholder Data</td>
</tr>
<tr>
<td>• Encrypt wireless data in transit</td>
</tr>
<tr>
<td>Best Practice: WPA or WPA2 (uses TKIP and AES)</td>
</tr>
<tr>
<td>VPNs for remote access, host intrusion prevention</td>
</tr>
<tr>
<td>Maintain a Vulnerability Management Program</td>
</tr>
<tr>
<td>• Deploy wireless Network Admission Control for client posture</td>
</tr>
<tr>
<td>• Use CSA for host based intrusion detection</td>
</tr>
<tr>
<td>• Integrate wired and wireless IPS/IDS</td>
</tr>
<tr>
<td>Implement Strong Access Control Measures</td>
</tr>
<tr>
<td>• Authenticate wireless users and devices—802.1X</td>
</tr>
<tr>
<td>• Deploy wireless NAC for client posture assessment</td>
</tr>
<tr>
<td>Best Practice: NAC with 802.1X for Single Sign On</td>
</tr>
<tr>
<td>Regularly Monitor and Test Networks</td>
</tr>
<tr>
<td>• Deploy monitoring to secure and control the wireless domain</td>
</tr>
<tr>
<td>Best Practice: Integrated 24/7 RF monitoring</td>
</tr>
<tr>
<td>Maintain an Information Security Policy</td>
</tr>
<tr>
<td>• Ensure wireless LANs are included in security policy</td>
</tr>
<tr>
<td>• Enforce consistent information security policy using NAC</td>
</tr>
</tbody>
</table>
Recommended Architectures for PCI

- Cisco worked with PCI auditors to develop architectures that address the requirements of PCI compliance
- Lab tested and audited architectures maximize integration with various technology partners
- Reduce the complexity of designing a secure network
- Mapping of Cisco products directly to PCI requirements

http://www.cisco.com/go/compliance
Summary

- Businesses are impacted by non-compliance, as evidenced by fines, lawsuits, and breaches
- The wireless network plays a critical role in addressing PCI compliance
- The Cisco Secure Wireless Solution delivers integrated security, including RF monitoring, for robust protection of credit card data
- Cisco delivers a framework for addressing PCI compliance—companies still must certify their compliance through a third party compliance review
Contents

- 1 Wireless Overview: Drivers and Security Risks
- 2 Secure Wireless for Regulatory Compliance
- 3 Cisco Secure Wireless Solution
- 4 Wireless Security Planning: Benchmark Analysis
- 5 Architectures and Design Principles
Evolution of Security Requirements

Past
- Reactive
- Stand-Alone
- Product Level

Needed Now
- Automated, Proactive,
- Integrated Multiple Layers
- Advanced Design/Deployment Services
- End-to-End Architecture
Service-Oriented Network Architecture (SONA)

Composite Services: Guest Access
Benefits of a Systems Approach

- Complex environment
- Gaps and inconsistency
- Lower visibility
- More difficult to manage
- Higher TCO

- Simplified environment
- Tighter integration = tighter security
- Greater visibility
- Easier to deploy and manage
- Lower TCO
Protecting Assets and Limiting Exposure

Cisco Vision

- The Self Defending Network protects businesses from IT related security threats
- Cisco delivers SDN through a series of architectures
- The Cisco Secure Wireless Solution delivers
 - Integrity
 - Confidentiality
 - Availability
Cisco Secure Wireless Solution

An Architecture that Builds on the Inherent Security of the Cisco Unified Wireless Network to Combine Best of Breed Security Services for Unparalleled Control of Business Resources to Meet Compliance Needs

What's New?
- An end-to-end architecture
- Integration of wireless and security
- Industry-leading security services

Key Features
- Unified wired and wireless IPS/IDS
- Client validation, posture assessment and remediation
- Wireless single sign on and 802.1X integration
- Integrated firewall for secure guest access
- Host intrusion prevention
- Rogue detection via automatic RF monitoring
Secure Wireless Solution Architecture

- Represents Internet
- WWW Destination
- ASA 5500 Multi-Context for Guest Users
- 4400 Series WLAN Controllers
- AIP-SSM (IPS Module)
- CS-MARS
- Wired User NAC Appliance Server (Out-of-Band and In-Band Options)
- Cisco Catalyst® 3560
- Cisco Security Agent
- Cisco Secure Access Control Server (RADIUS)
- Clean Access Manager
- DHCP Server
- AP 1200/LWAPP
- NAC Appliance Agent for Employee Emulation/Disabled for Guest Emulation
- Guest Access Anchor Controller
- NAC Appliance Server Wireless In-Band L3 Configuration
Unified Intrusion Prevention

Business Challenge
Mitigate Network Misuse, Hacking and Malware from WLAN Clients

- Inspects traffic flow for harmful applications and blocks wireless client connections
- Eliminates risk of contamination from wireless clients
- Zero-day response to viruses, malware and suspect signatures
- Products:
 - Cisco IPS Software (AIP-SSM w/ ASA 5500)
 - Wireless LAN Controller

Diagram:
- Client Shun
- Malicious Traffic
- Enterprise Intranet
- L2 IDS
- L3-7 IDS
- Application Inspection/Control
- Cisco ASA 5500 Series w/ IPS
Client Validation and Posture Assessment

Business Challenge

Identify Who Is on the Network and Enforce Granular Policies to Prevent Exposure to Viruses and “Malware”

- Ensures wireless client is ‘up-to-date’ with latest security policies
- Quarantines and fixes any wireless client that is non-compliant
- Enforces differentiated policies and network services based on user role

Products:
- NAC Appliance
- WLAN Controller

Authenticate and Authorize
- Enforces authorization policies and privileges

Scan and Evaluate
- Agent and network scan for required versions and infections

Quarantine and Enforce
- Isolate non-compliant devices from rest of network

Update and Remediate
- Network-based tools for remediation of threats and vulnerabilities
Wireless Single Sign on and 802.1X

Business Challenge
Streamline User Experience, Consolidate Accounting, and Improve Password Management

- Integrated user authentication and posture assessment
- Protects the network from malicious code while being noninvasive to the user
- Products:
 - NAC Appliance
 - Cisco Secure ACS
 - Cisco Secure Services Client

Performing automatic login into Clean Access environment for remote user
Wireless NAC Leadership

Only Cisco Has an Integrated Wireless NAC Solution; All Others Need to Partner to Provide the Same Functionality

<table>
<thead>
<tr>
<th>Scope</th>
<th>Ease of Use</th>
<th>Enterprise-Ready</th>
</tr>
</thead>
</table>
| - Single NAC solution for both wireless and wired network
 - Apply consistent policy regardless of access method (LAN, WLAN, VPN, etc.)
| - Accommodates guest users, unmanaged PCs, and networked devices, such as printers and game consoles | - Seamless, proven integration with WLC
 - Single sign-on support for 802.1X, AD, MAC address
 - Lightweight agent (if required) for optimal user experience
 - No changes to infrastructure required | - Over 1,500 customers using Cisco NAC
- Highly scalable
- Fast deployment: fewer than two days for most
- Leverages existing investment in infrastructure and security applications
 - Does not require Cisco infrastructure |
Secure Wireless Guest Access

Business Challenge

Offer Secure, Controlled Access to Network Services for Non Employees and Contractors

- Zero touch wireless guest services with integrated stateful firewall for application level control of wireless traffic
- Control or block prohibited traffic patterns at a single point (e.g. P2P, IM, FTP)
- Products:
 - ASA 5500 Firewall
 - WLAN Controller
 - NAC Appliance (Optional)
Host Intrusion Prevention

Business Challenge
Standardize on Wireless Client Connection Policies While Protecting Them from Suspect Content and Potential Hackers

- Enforcement of client connection policies:
 - Ad-hoc, SSIDs, VPNs at hotspots
- Restrict wireless access when the device is connected to wired
- Prevents wireless client from exploitation as a bridge into the wired network
- Wireless bandwidth optimization (QoS-WMM)
- Products:
 - CSA v. 5.2

- Ad-Hoc connection attempt
- Traffic sniffing
 - Wireless Ad-Hoc restricted
 - SSID allowed
 - VPN enforced
 - Malware disabled and contained
- Wireless NIC disabled
- Malware disabled and contained
Rogue Detection and Containment

Business Challenge
Protect Network and Information Integrity from Compromise by RF Attacks

- Integrated 24/7 RF monitoring to identify, locate and contain unauthorized wireless activity
- Interfaces into WCS for a single network management view
- Proactive threat defense to ensure regulatory compliance
- Products:
 - WLAN Controller + WCS

Ad-hoc Client Associations
Rogue AP and Client
Rogue Detection Leadership

<table>
<thead>
<tr>
<th>Overlay</th>
<th>Vs.</th>
<th>Cisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand Alone IDS Application</td>
<td>Single WLAN Security Platform</td>
<td></td>
</tr>
<tr>
<td>Monitors Policy</td>
<td>Monitors and Enforces Policy</td>
<td></td>
</tr>
<tr>
<td>Requires Overlay Sensors, Cabling and Servers</td>
<td>Integrated Directly into WLAN Infrastructure</td>
<td></td>
</tr>
<tr>
<td>No Location Capability</td>
<td>Integrated Location Tracking</td>
<td></td>
</tr>
<tr>
<td>Typically Deployed at a Ratio of One Overlay Sensor for Every 5–10 APs</td>
<td>All AP’s Within the WLAN Perform IDS/IPS Functionality</td>
<td></td>
</tr>
<tr>
<td>Separate NMS—No Policy Synchronization</td>
<td>Single NMS Interface for Entire WLAN Configuration, Monitoring and Enforcement</td>
<td></td>
</tr>
<tr>
<td>No Support for Custom Signatures</td>
<td>Custom Signatures Supported</td>
<td></td>
</tr>
<tr>
<td>Additional CAPEX</td>
<td>Standard Feature</td>
<td></td>
</tr>
</tbody>
</table>
Simple, Secure Client Connectivity

Business Challenge
Deploying and Managing a Common Security Profile Across an Increasingly Diverse Array of Wireless Clients

- A single 802.1X authentication supplicant for wired and wireless devices
 - Simplified management
 - Improved security
 - Lower total cost of ownership (TCO)

- Encryption of management frames

- Products:
 - Cisco Secure Services Client
 - Cisco Secure ACS
 - Cisco Compatible Extensions

Products:
- Cisco Secure Services Client
- Cisco Secure ACS
- Cisco Compatible Extensions

- Management Frame Protection
- Fast Secure Roaming
- LEAP and EAP-FAST
Wireless Security Management

Business Challenge
Supporting and Maintaining a Diverse Range of Security Products, Correlating Events and Delivering Concise Reporting

- WCS offers central, one-touch configuration and management of wireless security profiles
- Security alerts are located and viewed graphically
- CS-MARS allows quick response with incident capture and event correlation for security alarms
- Products:
 - CS-MARS
 - WCS
Case Study: Major Financial Institution

- **Challenge**
 - Lack of visibility into events and vulnerabilities associated with the RF environment
 - Distinct need for rogue access points and device detection
 - Need secure, scalable wireless system that meets business compliance requirements

- **Solution**
 - Cisco Unified Wireless Network with integrated wireless IDS
 - The Cisco 2710 Wireless Location Appliance

- **Business Results**
 - Increased productivity—rogue access point detection has eliminated the need for IT staff to manually walk through the building scanning for rogues
 - Lower operational cost due to single management interface for wireless and security management (no need for an overlay system)
Case Study: University of Portland

- **Challenge**
 - Fear of network disruption due to viruses or “malware” from students and visitors
 - Difficult to upgrade security policies due to lack of centralized management

- **Solution**
 - Cisco Unified Wireless Network with integrated Security and Guest Services
 - Cisco Network Admission Control solution

- **Business Results**
 - Ability to offer guest services with confidence that security policies will be maintained on all devices
 - Faster response times to new security vulnerabilities or wireless upgrades through centralized management
Secure Wireless Solution Summary

- The Secure Wireless Solution builds on the robust security of the Unified Wireless Network
 - The solution is designed to be modular and flexible
 - Not all or nothing
- The Cisco Unified Wireless Network is equipped with industry leading security standards “out of the box”
 - WPA and WPA2
 - 802.1X support
- Broadest level of integrated security features
 - Unified wired and wireless IPS/IDS
 - Management Frame Protection
 - Wireless posture assessment and role based access
Contents

- 1 Wireless Overview: Drivers and Security Risks
- 2 Secure Wireless for Regulatory Compliance
- 3 Cisco Secure Wireless Solution
- 4 Wireless Security Planning: Benchmark Analysis
- 5 Architectures and Design Principles
Wireless Security Phases

Benchmark Preparedness

Phase 1: Critical
WLAN Security Fundamentals

Phase 2: Urgent
Traffic and Information Integrity

Phase 3: Recommended
Endpoint Control and Protection

Phase 4: Best Practice
Network Visibility and Policy
Critical: WLAN Security Fundamentals
Deployment of Baseline Security for a Safe Wireless LAN

- Strong user authentication
 (802.1X, EAP/EAP-Fast, ACS for AAA)
- Strong transport encryption
 (802.11i, AES, TKIP, MFP, WPA/WPA-2)
- Protect network broadcasts
 (Disable SSID broadcast)
- Detect and prevent rogue APs, clients, ad-hoc networks, DoS, etc.
 (Audits, RF scanning, wireless IPS)
- Strong passwords if using LEAP
 (Pre-configured clients and tokens)
Urgent: Traffic and Access Control

Tight Control of WLAN Traffic, Including Information Integrity and Network Access

- Device posture assessment
 (NAC for client/clientless connections)

- Dynamic, role-based network access and managed connectivity
 (NAC, CSSC, VLANs)

- WLAN threat mitigation
 (Unified wired and wireless IPS)

- Perimeter Control
 (ASA—L2-7 firewall, stateful inspection, app inspection)
Recommended: Endpoint Protection
Endpoint Inspection, Hardening, and Control

- Endpoint connection policy/status
 (WLAN Controller, NAC, MFP)

- Endpoint malware mitigation
 (CSA)

- Threat alert distribution
 (CSA + IPS + MARS)
Best Practice: Network Visibility

Network-Wide Visibility for Event Reporting and Correlation

- Comprehensive WLAN security management, rogue location prediction, client troubleshooting
 (Wireless Control System)

- Security event analysis and correlation
 (CS-MARS)

- Spectrum analysis
 (Cognio for 2.4GHz and 5GHz spectrum analysis—delineates Wi-Fi, Bluetooth, microwaves, etc.)
Wireless Security Policy Concepts

1. **Objective:**
 Clearly define policy goals, and what it is expected to achieve or prevent

2. **Ownership and authority:**
 Identify policy owners and specify intervention authority and contingencies

3. **Scope:**
 Users, groups, guests, contractors, visitors, and devices that must comply

4. **Risk assessment:**
 Potential threats, affected assets, and potential business impact

5. **Security practices:**
 Authentication, access control, authorization, confidentiality, integrity, availability, ad-hoc devices, firewall, traffic inspection

6. **Acceptable usage:**
 Client distribution, clientless access, device posture assessment, acceptable behavior, network segmentation and assignment

7. **Deployment:**
 Trial WLAN and production implementation, testing and verification, policy refinement, training administrators, educating end-users

8. **Auditing and enforcement:**
 Monitoring, identification, investigation, and permanent resolution of events, consequences of non-compliance, internal and/or third-party auditing, identification of regulatory compliance requirements
15 Minute Break
Contents

- 1 Wireless Overview: Drivers and Security Risks
- 2 Secure Wireless for Regulatory Compliance
- 3 Cisco Secure Wireless Solution
- 4 Wireless Security Planning: Benchmark Analysis
- 5 Architectures and Design Principles
WLAN Security Fundamentals

- Wi-Fi Protected Access
- IEEE 802.1X—authentication
- IEEE 802.11i—link encryption
- Management Frame Protection
- Cisco Compatible Extensions
- Fast Secure Roaming
Protected Access
All Wireless Traffic **Must Be Authenticated and Encrypted**
Between the Client and the Access Point to Ensure
Information Integrity

What are WPA and WPA2?
- Authentication and Encryption standards for Wi-Fi clients and APs
- 802.1X authentication
- WPA uses TKIP encryption
- WPA2 uses AES block cipher encryption

Which should I use?
- Gold, for supporting NIC/OS’es
- Silver, if you have legacy clients
- Lead, if you absolutely have no other choice (i.e. ASDs)

Gold
WPA2/802.11i
- EAP-FAST
- AES

Silver
WPA
- EAP
- TKIP

Lead
Dynamic WEP
- EAP/LEAP
- VLANs + ACLs

All Wireless Traffic **Must Be Authenticated and Encrypted**
Between the Client and the Access Point to Ensure
Information Integrity
802.1X Authentication Overview

- IEEE 802.11 Task group i recommendation for WLAN authentication
- Supported by Cisco since December 2000
- Extensible and interoperable—supports:
 - Different EAP authentication methods or types
 - New encryption algorithms, including AES as a replacement for RC4
- Key benefits
 - Mutual authentication between client and authentication (RADIUS) server—Mitigation for unauthorized clients/rogue AP
 - Encryption keys derived after authentication—No requirement to manually manage keys
 - Centralized policy control—Automated encryption policy/user access to authorized resources
Overview of 802.1X/EAP

- Enterprise WLAN Security relies upon 802.1X authentication
- 802.1X is port based security
 The association process establishes a virtual port
 Encryption protects that virtual port
How Does Extensible Authentication Protocol (EAP) Authenticate Clients?

Client Associates

Cannot Send Data Until…

…EAP Authentication Complete

Client Sends Data
EAP Authentication

- 802.1X ↔ RADIUS

- EAP-Identity-Request
- Forward Identity to ACS Server

- EAP-Identity-Response

- EAP-Request EAP Type
- EAP-Response EAP Type

- Authentication Conversation is Between Client and Authentication Server

- EAP Success
- EAP-Success
EAP Protocols: Feature Support

<table>
<thead>
<tr>
<th>Feature</th>
<th>EAP-TLS</th>
<th>PEAP</th>
<th>LEAP</th>
<th>EAP-FAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPA Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Client Certificates</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Server Certificates</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Application Specific Device (ASD) Support</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fast Secure Roaming (CCKM)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local Authentication</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Deployment Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>RADIUS Server Scalability Impact</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low/Medium</td>
</tr>
<tr>
<td>Off-Line Dictionary Attacks</td>
<td>No</td>
<td>No</td>
<td>Yes1</td>
<td>No</td>
</tr>
</tbody>
</table>

802.11i/WPA Authentication and Key Management Overview
Introducing:
Cisco Secure Services Client

- Cisco Solution Support:
 Network Admission Control
 Cisco Secure ACS
 Identity Based Network Security for Catalyst switches
 Cisco Unified Wireless Network

<table>
<thead>
<tr>
<th>Cisco Secure Services Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
</tr>
<tr>
<td>Unified wired and wireless client</td>
</tr>
<tr>
<td>Support for industry standards</td>
</tr>
<tr>
<td>Endpoint integrity</td>
</tr>
<tr>
<td>Single sign-on capable</td>
</tr>
<tr>
<td>Enabling of group policies</td>
</tr>
<tr>
<td>Administrative control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces client software</td>
</tr>
<tr>
<td>Simple, secure device connectivity</td>
</tr>
<tr>
<td>Minimizes chances of network compromise from infected devices</td>
</tr>
<tr>
<td>Reduces complexity</td>
</tr>
<tr>
<td>Restricts unauthorized network access</td>
</tr>
<tr>
<td>Centralized provisioning</td>
</tr>
</tbody>
</table>
CSSC Configuration

- Network Profile
- Profile restriction
- Authentication configuration
- Access devices—WLAN SSID, Ethernet interface
- Configurable for auto/manual establish
- Machine/user authentication

Flexible Credential Selection and Logon Integration Allows the CSSC Solution to Work for Many, Varied Customer Use Scenarios
CSSC Deployment Mechanism

- Administrator tool to create profiles
- "Policy" deployment restricts user control of CSSC
 - Server validation
 - EAP type
 - WLAN encryption
- Server trust requirement
 - Per PAC authority
 - Per RADIUS server certificate
CSSC “No Wireless when Wired” Feature

- Enables wireless interface to be disabled when a wired connection is present
- Note that this feature requires that both 802.11 and Ethernet connection are included under network profiles
- Port control is activated for a single 802.1X session
- Prevents unwanted wireless bridging to wired network
Demo—Disabling Wireless when Wired

Initially Connected Using Wireless Adapter

Connect Wired Ethernet

Wired Connection Established

Wireless Disabled
Cisco Compatible Extensions
The Standard for Client Advancement

Over 90% of Client Devices Cisco Compatible

Client Devices

Features
- Assured compatibility with 400+ devices
- Standards-based
- Enhanced security, mobility, and performance
- Supports Mobility Services i.e., Location, voice

Benefits
- Accelerates innovation
- Supports diverse enterprise applications
- Ensures multi-vendor interoperability
- Enables simplified deployment of mobile WLAN clients

http://www.cisco.com/go/cicsocompatible/wireless
Cisco Client Extensions (CCX) Roadmap

Future: Management and Security

- **v4:** Voice over WLAN
 - LEAP, 802.1X and VLANs per AP, TKIP, WIFI
- **v3:** Performance and Security
 - WMM, Proxy ARP, EAP-FAST, and WPA2, Single Sign-On
- **v2:** Scaling
 - AP Assisted Roam, CCKM, Radio Measurements, Transmit Power Control
- **v1:** Secure Connectivity
 - Call Admission Control, UPSD, Voice Metrics, MBSSID, Link Tests, NAC

Management Frame Protection, Client and Roaming Reporting and Diagnostics

Fast Secure Roaming—Wireless Voice

- Fast secure roaming is required:
 - For latency sensitive applications (e.g. voice)
 - To avoid application disruption due to lengthy (re)authentication times as a client roams between access points
- Cisco implements fast secure roaming via key caching:
 - Handled by the controller for the Unified Wireless Network
- Requires WPA2 client authentication
 - Implemented with Microsoft WPA2 client
 - Other WPA2 clients also support PMK caching
- Cisco delivers CCKM (802.11r) for fast secure roaming
Fast Secure Roaming for Secure Voice
Proactive Key Caching (PKC)

- Extension of Pairwise Master Key caching
- Leverages client use of Master Key caching
- Permits knowledge of Master Key before client roam to AP on new controller
- Controller mobility group automatically exchanges the key

Diagram:
- Initial Authentication
- PMK Derived
- PMK Used In 4W Handshake
- PMK Proactively Cached on New Controller
- Client Transmits Cached PMK upon New Association
- PMK Used in 4W Handshake
- Client Roam
Management Frame Protection

Problem
- Wireless management frames are not authenticated, encrypted, or signed
- A common vector for exploits

Solution
- Insert a signature (Message Integrity Code/MIC) into the management frames
- Clients and APs use MIC to validate authenticity of management frames
- APs can instantly identify rogue/exploited management frames

Diagram
- **MFP Protected**
 - AP Beacons
 - Probe Requests/Probe Responses
 - Associations/Re-associations
 - Disassociations
 - Authentications/De-authentications
 - Action Management Frames
- **Disassociation**

Cisco Confidential
Benefits of MFP

- **Protection**: For rogue AP, man-in-the-middle exploits, other management frame attacks
- **Prevention**: Will be supported in clients capable of decrypting the signature
- Increases the fidelity of rogue AP and WLAN IDS signature detection
- Cisco security leadership and innovation
- Proposed standard—IEEE 802.11w
WLAN Security Fundamentals Summary

- WLAN Security encompasses both authentication and encryption; both components are encompassed with standards bodies and industry consortiums.
- There are a number of EAP types available; be ascertain that the chosen EAP authentication type employed is compatible with authentication database and client devices.
- WPA provides both dynamic, per-packet keying in addition to key authentication/message integrity.
- Cisco Secure Services Client and Cisco Compatible Extensions improve client security and management.
- Management Frame Protection encrypts the management frames to mitigate the risk of common wireless LAN security attacks.
- Fast secure roaming improves security for latency sensitive applications including voice over wireless.
Posture and Remediation

- NAC Appliance Business Case
- NAC Deployment Options
Wireless Network Admission Control

Network Admission Control Uses the Network Infrastructure to Enforce Security Policies on Devices Seeking to Access Network Resources

- Mobile/wireless clients are obvious platform for spreading contamination
 - Users on managed devices may be in public locations
 - Users are often guests and contractors — on unmanaged devices
- IT Managers primarily concerned with controlling network access and threats to network availability
- Ensuring devices accessing the network comply with policy (security tools installed, enabled, and current) is difficult and expensive without NAC

“Gartner believes that NAC is too valuable a capability to ignore . . .”

Gartner Research Note G00143551, October 5, 2006

Source: Network Computing Reader Poll and Current Analysis
Network Computing July 2006, 303 Respondents
Wireless Network Admission Control

- Wireless LAN Controller
- RADIUS
 - Internal Server
 - Remediation Server
- 802.1X
 - Auth Req’d
- Clean Access Manager
 - NAC Complete, Client is in!
- Clean Access Server
 - Auth Complete, Clean Access!
- Enterprise Network
- Internet
Demo: Wireless NAC
NAC Appliance Process Flow
Wireless Access
Role: “Unauthenticated”

1. Wireless user connects to WLC via LWAPP and authenticates to Auth Server (any auth methods including 802.1X)
2. Wireless user obtains IP address from Auth Server
3. WLC forwards Radius accounting login info to CAS
4. Wireless user opens a browser and is redirected to download the NAC Agent (if they don’t already have it loaded)
NAC Appliance Process Flow

Wireless Access

Role: “Quarantine”

5. The Agent queries the NAC Appliance Server to discover if the wireless user is authenticated (which it will be by the radius accounting previously sent)

6. The Agent performs posture assessment and forwards results to the Server to make the network admission decision
8. NAC Server forwards posture report to NAC Manager
9. Manager determines that the user is NOT in compliance and instructs the Server to put the laptop into the “Quarantine Role”
10. NAC Manager sends remediation steps to NAC Agent
11. NAC Agent displays access time remaining in “Quarantine Role” for remote user
12. The Agent guides remote user through step-by-step remediation with one-click update for remediation
13. The Agent informs the NAC server that the wireless user has been successfully remediated
14. The NAC Server provides the user with an Acceptable User Policy (AUP) agreement
15. Upon AUP acceptance, the NAC Appliance Server assigns remote user to the “Wireless” role
16. NAC Appliance Server puts IP address of remote user into “Online User” list
17. Wireless user is now allowed to access to the Intranet server
End User Experience: With Agent

Scan Is Performed
(Types of Checks Depend on User Role)
Scan Fails
Remediate
NAC Appliance Overview: Web Login

Scan Is Performed (Types of Checks Depend on User Role/OS)

Login Screen

Click-through Remediation
Wired and Wireless IPS/IDS

- Spectrum Analysis
- RF Monitoring
- Unified Wired and Wireless IPS/IDS
Securing Against RF Interference

Bad Experiences
- Performance degradation
- Low data rates
- Lack of coverage
- Poor voice quality
- Support calls
- Increased cost of operations
- Poor user satisfaction

Security Breaches
- RF jamming and denial of service
- Non-WiFi rogues

Wi-Fi Competes for RF Spectrum
RF Interference: Cognio Spectrum Expert

- **What is it?**
 - Interference detector
 - “Smart” physical layer analyzer
 - Complements packet/integrated tools

- **What does it do?**
 - Finds interference sources by name
 - Analyzes and determines “what’s wrong”
 - Device finding
 - Baseline and alert on air quality

- **Unique advantages**
 - List interference devices by name
 - Lock onto and find individual devices
 - Baseline and trend the “air”
 - Work inside your existing laptop
 - Many others

Cisco Solutions Plus Offering to Solve Interference and Other Layer 1 (RF) Issues
Demo: Cognio
Rogue AP Detection

- Rogue AP detection has multiple facets:
 - Air/RF detection—detection of rogue devices by observing/sniffing beacons and 802.11 probe responses
 - Rogue AP location—use of the detected RF characteristics and known properties of the managed RF network to locate the rogue device
 - Wire detection—a mechanism for tracking/correlating the rogue device to the wired network

- A wireless IDS may require different deployments to effectively address all of these facets
 - For example, it is typically required to use a scanning-mode AP as a “rogue traffic injector” to attempt to trace the rogue’s connected port
Wireless Rogue Mitigation Overview
Proactive RF Defense Integrated into the Cisco Unified Wireless Network

1. Detect Rogue AP (Generate Alarm)
2. Assess Rogue AP (Identity, Location)
3. Contain Rogue AP
4. View Historical Report

- Rogues
- Manual mitigation
- Multiple rogues contained simultaneously
Rogue AP Detection and Suppression

- **Rogue AP detection methodology**
 - WLAN system collects (via beacons and probe responses) and reports BSSID information
 - System compares collected BSSID information versus authorized (i.e., managed AP) BSSID information
 - Unauthorized APs are flagged and reported via fault monitoring functionality

- **Rogue AP suppression techniques**
 - Trace the rogue AP over the wired network to verify that the rogue is internal and should be contained
 - Use of managed devices to disassociate clients from unauthorized AP and prevent further associations via 802.11 de-association frames
Cisco Unified Wireless: Locate Rogue AP (High Resolution)
Cisco Unified Wireless: Rogue Containment

Rogue AP, Rogue-Connected Client, or Ad-hoc Client May Be Contained by Controller Issuing Unicast De-Association Packets

- Maximum number of APs participating in containment is configurable
- Maximum of three simultaneous containments may operate on a single LWAPP AP
- Rogue client devices may be authenticated to a RADIUS (MAC address) database
- Maximum time for auto-containment is configurable
Cisco Unified Wireless: Rogue AP Detection and Containment

Rogue AP Detail

MAC Address: 00:07:85:b3:56:24
Type: AP
Is Rogue On Wired Network?: No
First Time Reported On: Sat Apr 8 02:33:09 2006
Last Time Reported On: Tue Apr 18 19:51:13 2006
Current Status: Alert
Update Status:

- Contain Rogue
- Alert Unknown
- Known Internal
- Acknowledge External

APs that detected this Rogue

<table>
<thead>
<tr>
<th>Base Radio MAC</th>
<th>AP Name</th>
<th>SSID</th>
<th>Channel</th>
<th>Radio Type</th>
<th>WEP</th>
<th>WPA</th>
<th>Pre-Ambled</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0b:85:14:39:70</td>
<td>ap:14:39:70</td>
<td>LEAP</td>
<td>6</td>
<td>802.11b</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Short</td>
</tr>
<tr>
<td>00:0b:85:1b:e1:c0</td>
<td>ap:b:e1:c0</td>
<td>LEAP</td>
<td>6</td>
<td>802.11b</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Short</td>
</tr>
</tbody>
</table>

Clients associated to this Rogue AP

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Last Time Heard</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:bf:0c:14:10</td>
<td>Tue Apr 18 19:48:13 2006</td>
<td></td>
</tr>
</tbody>
</table>
Rogue Location Discovery Protocol (RLDP)

1. Determine if Rogue Is on the Network
2. If it Is, Raise the Alarm Priority from “Minor” to “Critical”
Rogue Detector AP Mode

Dedicated Rogue Detector AP
- Detects all client ARPs
- Controller queries rogue detector to determine if rogue clients are on the network

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogues</td>
<td>5</td>
<td>686</td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Security</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>Controllers</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Access Points</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Wireless IDS Signatures

- Default signature file created by Cisco
- Custom signature file created by customer or 3rd party
- Customer can modify, delete, or create signatures via text editor
- Signature files uploaded or downloaded using TFTP
- Can be updated when needed
- Signature file uses a virus definitions file style approach

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Name</th>
<th>Frame Type</th>
<th>Action</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bcast deauth</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Broadcast Deauthentication Frame</td>
</tr>
<tr>
<td>2</td>
<td>NULL probe resp 1</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>NULL Probe Response - Zero length</td>
</tr>
<tr>
<td>3</td>
<td>NULL probe resp 2</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>NULL Probe Response - No SSID elem</td>
</tr>
<tr>
<td>4</td>
<td>Assoc flood</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Association Request flood</td>
</tr>
<tr>
<td>5</td>
<td>Reassoc flood</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Reassociation Request flood</td>
</tr>
<tr>
<td>6</td>
<td>Broadcast Probe flood</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Broadcast Probe Request flood</td>
</tr>
<tr>
<td>7</td>
<td>Disassoc flood</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Disassociation flood</td>
</tr>
<tr>
<td>8</td>
<td>Deauth flood</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Deauthentication flood</td>
</tr>
<tr>
<td>9</td>
<td>Res mgmt 6 & 7</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Reserved management sub-types 6</td>
</tr>
<tr>
<td>10</td>
<td>Res mgmt D</td>
<td>Management</td>
<td>Report</td>
<td>Enabled</td>
<td>Reserved management sub-type D</td>
</tr>
<tr>
<td>12</td>
<td>EAPOL flood</td>
<td>Data</td>
<td>Report</td>
<td>Enabled</td>
<td>EAPOL Flood Attack</td>
</tr>
<tr>
<td>13</td>
<td>NetStumbler 3.2.0</td>
<td>Data</td>
<td>Report</td>
<td>Enabled</td>
<td>NetStumbler 3.2.0</td>
</tr>
</tbody>
</table>
Demo: WCS Security Features and Rogue Detection
Unified Wired and Wireless IPS Event and Client “Shunning”

Alerting and Prevention of Application Layer Attacks

- Upon trigger of IPS system, e.g., from a known type of exploit (Nimda, Sasser, TCP stack exploit, etc.), activate a “Shun” or client block event

- A shun event can be invoked either inline or offline
 - Wireless “shun” is invoked at controller via offline mechanism
 - Controller periodically (configurable interval) polls CIDS for client block event

- Invokes client exclusion (blacklisting) at Cisco Controller
 - Client remains in blocked state until CIDS removes block and exclusion times out at controller
IPS Event and Client Shunning

1. Client to AP/Controller
2. Controller traffic to IPS
3. Controller Query IPS
4. Shun implemented by Controller

Deep Packet Inspection

Enterprise Network

ASA 5500 with IPS/IDS Module

LWAPP

Malicious traffic
IPS Host Block/Client Shun

Client Blocking/Client Exclusion Event
Wireless IPS/IDS Summary

- Wired and Wireless IPS are complementary—monitor and control of wireless network should be treated similarly to physical wired network access and switchport security.

- Wireless IPS is recommended for all deployments.

 Enable RF monitoring via integrated IPS system in order to detect rogue APs, as well as monitor for potential Wireless exploits.

 The Cisco Controller solution permits wireless and wired detection of rogue devices, as well as location of potential security breaches.

- Wireless access may be employed as an access enforcement point for Cisco’s Intrusion Prevention/Detection System Sensor performing L3–L7 security inspection.
Mobile Host Intrusion Detection

- Features for Trusted Networks
- Features for Un-trusted Networks
Even Security Professionals Struggle to Secure Wireless Networks

- 2007 RSA Security Conference show network:
 - Half of the wireless devices on conference net vulnerable to two classes of attacks
 - "Evil Twin" attack
 - Various "Zero Day" attacks
 - 30 devices pretended to be access points
 - "Attackers could (and may have) captured the corporate username and authentication hash sent by the users over the airwaves."

- Participants and vendors were security specialists:
 - They had the knowledge to implement best practice
 - They had the motivation to implement best practice
 - Yet, higher priorities left the network vulnerable

Source: Network World, 02/07/07
Attendees at RSA Conference Drop Ball on WiFi Security
Wireless Threat Scenario: Multi-Tenant Office Building

In-the-Office Wireless Security

- Two companies in adjacent offices, both use 802.11
- Laptop from company A may find best/only signal is from company B access point
 - Laptop associates with unsecured company B access point
- Laptop is plugged into company A Ethernet
 - Wireless active, associated with company B
 - Whose network is the laptop on?
Secure Client Connections in Multi-Tenant Office Buildings

In-the-Office Wireless Security

- CSA blocks wireless to wired bridging
 - Wireless restricted if Ethernet port is active
 - Wireless Restricted if Ethernet active

- CSA forces laptop to associate to access points from company A
 - Even if signal is stronger from other AP
 - Associate with corporate SSID
 - Use corporate crypto settings (EAP-Fast, etc)
 - Associate even if stronger signals from other APs
Wireless Client Threat Scenario:
Un-TrustEd Environments

Out-of-the-Office Wireless Security

- Fake “public access” access points
 - Software on laptop masquerades as access point
 - “Evil Twin” looks legitimate to laptop user
 - Attacker targets passwords, wireless/domain credentials, file share access
 - Location-based targeting: airport, multi-tenant office building, cafés

- Direct ad-hoc connection
 - “Promiscuous Client” is similar to “Evil Twin”
 - Direct connect via ad-hoc
 - Very mobile—airplane in flight, visitors to corporate campus
 - Ad-Hoc connection attempt
 - Traffic sniffing
 - Share snarfing
 - Attacker masquerades as AP
 - Traffic sniffing, share snarfing
CSA Protects the Mobile Device and User
Out-of-the-Office Wireless Security

- Can you trust a public hotspot?
 - CSA Forces VPN connection to corporate network – ensures data is encrypted
 - VPN encrypts all traffic – defeats sniffing

- CSA prohibits ad-hoc connections
 - Typically no reason for ad hoc mode
 - Protects laptop when no AP is present

- Attacker owns AP
- Traffic sniffing, share snarfing
- Ad-Hoc connection attempt
- Traffic sniffing
- Share snarfing

- VPN required
- File sharing, null sessions blocked
- Wireless Ad Hoc restricted
- File sharing, null sessions blocked
Summary of CSA Wireless Controls

Disable Wireless NIC when Wired Is Active

Connection Restrictions—Certain SSIDs, Encryption, Ad-hoc

Require VPN Connection when out of the Office

Per-Application QoS Prioritization
Guest Access

- Wireless Guest Access
- Enhanced Wired and Wireless Guest Access
Types of Network Users

<table>
<thead>
<tr>
<th>Corporate Employees</th>
<th>Contractors/Consultants</th>
<th>Guests Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Need internal network access</td>
<td>• Need restricted internal access</td>
<td>• Internet access only</td>
</tr>
<tr>
<td>• Can be role based to allow granular access if needs require</td>
<td>• Printers</td>
<td>• No need to access internal systems</td>
</tr>
<tr>
<td></td>
<td>• File shares</td>
<td>• Segment access completely</td>
</tr>
<tr>
<td></td>
<td>• Specific applications</td>
<td></td>
</tr>
</tbody>
</table>

Cisco Guest Services Give You Control

- **Full Access**
- **Internet Only**
Cisco Solutions for Secure Guest Access
Baseline and Enhanced Options

Wireless Guest Access in Cisco Unified Wireless
- Lobby admin portal for user provisioning
- End-user registration page with basic customization
- Network partitioning using tunneling
- User authentication and authorization in local database or AAA server
- Usage logging and reporting

Enhanced Wired and Wireless Guest Access
- Baseline, plus…
- Network privileges based on roles
- End-user security posture assessment
- Full policy-based end-user portal customization using partners
- Unification of wireless and wired guest access

Versatile Solutions for Diverse Deployment Environments
Wireless Guest Access

1. Back-end segmentation (mobility anchor)
 Separate the guest traffic from the corporate internal traffic via EoIP tunnels

2. Lobby ambassador/host portal
 Guest user creation and token generation
 Web portal—internal or external

3. Customizable guest screen
 Semi-customizable guest login screen

4. Back-end authentication
 Local user database
 External AAA authentication capable

Equipment Required:
DMZ WLAN Controller
Enhanced Wired and Wireless Guest Access

Cisco NAC Appliance provides:
- Very granular role-based access
- Endpoint posture assessment and remediation
- OS and posture restrictions
- Integration with broader AAA servers
- Bandwidth policies for guests
- Uniform guest access for wired/wireless

Cisco “GuestNet” Customized Portal:
- Cisco developed portal services for “one-stop” shop
- Basic portal customization, per-user customization

Partner User Portals provide:
- Extensive portal customization
- Customizable logging, reporting, billing
- Temporary user accounts for email, printing, etc.

Equipment Required:
- DMZ WLAN Controller
- NAC Appliance
- Advanced Services
Cisco Guest Access Options Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Wireless Guest w/ DMZ WLAN Controller</th>
<th>Enhanced Wired and Wireless with Cisco Advanced Services</th>
<th>Enhanced with Partner Portal Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobby Admin Portal with End-user Registration</td>
<td>Basic Customization Available</td>
<td>Custom built by Cisco Advanced Services</td>
<td>Fully Customizable “off the Shelf” Product</td>
</tr>
<tr>
<td>End-user Authentication</td>
<td>Local Database or AAA Server</td>
<td>Local database or AAA Server</td>
<td>Local Database or AAA Server</td>
</tr>
<tr>
<td>Logical Network Separation</td>
<td>EoIP Tunnels</td>
<td>EoIP tunnels and/or VLAN assignment</td>
<td>EoIP Tunnels and/or VLAN Assignment</td>
</tr>
<tr>
<td>Roles-based Network Privileges</td>
<td>Not Available</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>End-user Device Posture Assessment</td>
<td>Not available</td>
<td>Available; with Roles-Based Policy</td>
<td>Available; with Roles-Based Policy</td>
</tr>
<tr>
<td>Usage Logging and Reporting</td>
<td>Available</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Unified Wireless and Wired Architectures</td>
<td>Currently wireless-specific</td>
<td>Unified</td>
<td>Unified</td>
</tr>
<tr>
<td>Unified Guest/Employee NAC Architecture</td>
<td>Not Available</td>
<td>Unified</td>
<td>Unified</td>
</tr>
</tbody>
</table>
Secure Wireless Summary
Summary

Your wireless network is always on. It’s an open port anyone can see and use, so it requires 24/7 monitoring and defense-in-depth to keep it safe.

1. Create a security policy for your wireless network. Schedule regular audits and policy reviews.
2. Enable the baseline security in your wireless devices.
3. Control your WLAN traffic, including information integrity and network access.
4. Integrate your wireless and wired security solutions for end-to-end protection.
5. Apply endpoint inspection, hardening, and control wherever possible.
6. Fully integrate your wired and wireless networks for network-wide visibility, event reporting, and correlation.
Additional Resources

- For more information about Cisco Secure Wireless Solution, visit:

 http://www.cisco.com/wirelesssecurity

- For more information about Cisco NAC, visit:

 http://www.cisco.com/go/nac

- For more information about Cisco Wireless products, visit:

 http://www.cisco.com/go/wireless

- For more information about the Cisco Unified Wireless Network, visit:

 http://www.cisco.com/go/unifiedwireless
Q and A
Thank You!