Cisco Unified Wireless Networking
Agenda

- WLAN Technology Overview
 - Design Considerations
 - Driving the standards
- 802.11n Overview
- 1140/1250 AP & M-Drive Technology
- Cisco Outdoor Wireless Mobility Solutions
WLAN Technology Overview
Wireless LAN (WLAN)

- A WLAN is a shared RF network
- An access point is a shared device and functions like a shared Ethernet Hub.
- Uses CSMA/CA protocol
- Two-way radio communications (half-duplex) are used
- The same radio frequency is used for sending and receiving (transceiver)
Wireless Technologies

WAN
(Wide Area Network)

MAN
(Metropolitan Area Network)

LAN
(Local Area Network)

PAN
(Personal Area Network)

Standards

<table>
<thead>
<tr>
<th>PAN</th>
<th>LAN</th>
<th>MAN</th>
<th>WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth</td>
<td>Wi-Fi</td>
<td>Wi-Fi WiMAX</td>
<td>GPRS, CDMA, UMTS, Satellite</td>
</tr>
<tr>
<td>Speed</td>
<td><1 Mbps</td>
<td>11 to 54 Mbps</td>
<td>11 to 100+ Mbps</td>
</tr>
<tr>
<td>Range</td>
<td>Short</td>
<td>Medium</td>
<td>Medium-Long</td>
</tr>
<tr>
<td>Applications</td>
<td>Peer-to-Peer Device-to-Device</td>
<td>Enterprise networks</td>
<td>T1 replacement, last mile access</td>
</tr>
</tbody>
</table>

Increasing Range
802.11b/g Channels (2.4 GHz)

- Non-overlapping channels should be used when deploying WLAN
- Non-overlapping channels have 22 MHz of separation
- There are 3 non-overlapping channels in the 2.4 GHz (ch 1, 6, 11)
- 3 APs can occupy same area - set at different frequencies

Channel 14 can be used as a fourth non-overlapping channel for Japan when using 802.11b access points
IEEE 802.11b/g Channel Allocations

- 5 MHz Channel separation
- 22-MHz-wide stationary channels
- 3 nonoverlapping channels (1, 6, and 11)
- 3 APs can occupy same area - set at different frequencies
802.11b/g Channel Mapping Design

15-20% Overlap
Increasing Capacity by Design

- 200 Users on the Floor
- Full Antenna Power: 30mW
- 3 Access Points
- 67 Users per AP of shared bandwidth

- 200 Users on the Floor
- Reduce Antenna power to 5mW
- 18 Access Points
- 11 Users per AP of shared bandwidth
Cisco Drives Wireless Standards (IEEE)

- CCX
 - Over the Air
 - 802.11k Radio Measurement
 - 802.11r Fast Roaming
 - 802.11u External Networks
 - 802.11v Client Management
 - 802.11w Mgmt Security
 - Over the Wire
 - 802.11j Japan Radios
 - 802.11n Next-gen Radios
 - 802.11s Mesh Networks

- LWAPP

- IETF CAPWAP
802.11n – Standards
Higher Rates

- Extends both 802.11a and 802.11g
 - Both 2.4 GHz and 5 GHz
 - Up to 300 Mbps
- Entirely new radio using MIMO technology
 - Current radios use a single Tx and Rx, implement Rx diversity
 - 11n uses multiple Tx and Rx, simultaneously, combining multiple received signals to improve quality
- Draft-11n certification launched by WFA
 - Cisco is in WFA Draft-11n testbed
Cisco Drives Wireless Certification (WFA)

Wi-Fi Alliance

- WPA
- WPA2
- WMM
- WMM Power save
- WMM Admission Control
- Voice – Personal
- Voice – Enterprise
- WMC RF
- Simple Secure Config
- Draft-11n
- Video
- Mesh
- Handover
- Regulatory
802.11n Overview
IEEE 802.11n standard is in final stages of development

- Major changes to the standard are not expected (base features are stable, a few optional features are changing)
- Architectural and Security reviews completed
- Expected official ratification date is October 09

IEEE Specifications
- 802.11i
- 802.11e
- 802.11n draft 2.0

Wi-Fi Alliance
- Draft 2.0
- Products Available in the Market

Certifications
- WPA2
- WMM
- 802.11n

Industry Standard
- Ratified 802.11n
- Products Available (Assumes No Major Changes in Standard)

Timeline:
- Draft 2.0 Spec. moved to Letter Ballot
- Letter Ballot Passes
- WFA Begins Draft 2.0 Inter-op
- Draft 2.0 Products Available in the Market
- IEEE 802.11n Standard Ratified
- Ratified 802.11n Products Available (Assumes No Major Changes in Standard)
- 3 years into a 4 Year Laptop Refresh Cycle (75% of Users Have 802.11n)

Jan '07 - Mar '07 - Jun '07 - Oct '07 - Oct '09 - Dec '09 - Nov '10
802.11n Closer Look

- Better end-user experience for high BW data.

 Higher throughput for BW intensive applications (e.g. video)

 More consistent, reliable coverage for applications requiring high QoS (e.g. voice)

- Backwards compatibility with 802.11a/g clients

 A mix of 802.11a, 802.11b/g, and 802.11n (2.4 and 5 GHz) clients will co-exist for a long time

- Primary 802.11n Components

 Multiple Input Multiple Output (MIMO) Radio Technology

 - Spatial Multiplexing

 - Beam Forming

 - and Maximal Ratio Combining (MRC)
Comparing SISO & MIMO Signal Reception

- One radio chain
- Radio “chooses” which diversity antenna to receive on
- Multipath degrades signal

- Three radio chains
- Multipath improves signal
- Better immunity to noise
- Better SNR than SISO
Illustration of 3 Multipath Reflections to SISO AP

- Radio Switches to Best Signal with Least Multipath Effect

- Multipath Reflections of Original Signal

- Signal Each Antenna Sees Due to Multipath Effect
3 Multipath Reflections to MIMO AP with MRC

The DSP Adjusts the Received Signal Phase So They Can Be Added Together

The Resulting Signal Is Addition of Adjusted Receive Signals

Multipath Reflections of Original Signal
More Efficient Spectrum Utilization with MIMO Spatial Multiplexing

- The data is broken into two streams transmitted by two transmitters.
Beam Forming

What is Beam Forming?
Signals from 2 transmit antennas are focused on 1 client:
- Increased range of higher throughput data-rates
- Increased coverage reduces blind spots

Who will benefit?
- All 802.11a/g clients download data faster
- Enhanced reliably at longer range
- Improved system performance
MIMO Increases PHY Data Rates for all clients

- **Maximal Ratio Combining (MRC)**
- **Beam forming**
- **Spatial Multiplexing**

802.11a/g AP (non-MIMO)
- 54 Mbps
- 48 Mbps
- 36 Mbps
- 24 Mbps

802.11a/g client (non-MIMO)

802.11n AP (MIMO)
- 54 Mbps

802.11n client (MIMO)
- 300 Mbps

802.11a/g AP (non-MIMO)
- 54 Mbps
- 48 Mbps
- 36 Mbps
- 24 Mbps

802.11a/g client (MIMO)
MIMO Summary

Maximal Ratio Combining
- Performed by receiver
- Combines multiple received signals
- Increases receive sensitivity
- Works with non-MIMO and MIMO clients

Transmit beam forming
- Performed by transmitter
- Ensures signal received in phase
- Increases receive sensitivity
- Works with non-MIMO and MIMO clients

Spatial Multiplexing
- Transmitter and receiver participate
- Multiple antennas transmit concurrently on same channel
- Increases bandwidth
- Requires MIMO client
1140/ 1250 and M-Drive Technology
Cisco Aironet 1140 AP

- **1140 Series Takes 802.11n Mainstream**
 - Guaranteed Interoperability – Tested/Validated
 - Built on the most widely deployed enterprise 802.11n technology in the industry
 - Backwards compatible with A/B/G

- **Simple Deployment/Energy Efficient**
 - Sleek design with integrated antennas
 - High performance energy efficient 802.3af power
 - 10 AP Eco-pack—efficient, easy, eco-friendly

- **RF Excellence**
 - Cisco M-Drive technology is a system-wide approach that manages corporate spectrum; improves wireless coverage, and increases system capacity and performance

6X performance of A/G
BF, MRC; Improved Coverage

1130 vs. 1140 Active Survey

1130 Survey
48 Mbps Coverage
86 Feet

1140 Survey
48 Mbps Coverage
102 Feet

18% Increase in 802.11g Coverage
The Aironet AP1250 is the industry’s first enterprise 802.11n upgradeable access point

- Initial release supports 802.11a and 802.11g MIMO radio modules with smart antenna capabilities
- Designed to support future 802.11n radio modules

- Modular platform
 - Ruggedized design
 - Field upgradeable radio modules
 - Flexible powering options

- Base chassis supports higher speed WLAN technologies
 - Faster CPU to handle higher data throughput
 - 10/100/1000 Ethernet port for high capacity uplink
 - Larger power supply to handle greater power requirements
 - Increased memory for expanded feature set
Cisco Next-Generation Wireless APs

- **Cisco Aironet 1140 Series**
 - Carpeted Indoor Environments
 - Easy to Deploy-Sleek design with integrated antennas
 - 802.11n performance with efficient 802.3af power
 - Blends seamlessly into the environment

- **Cisco Aironet 1250 Series**
 - Rugged Indoor Environments
 - Versatile RF coverage with external antennas
 - Modular flexible platform
 - Flexible power options for optimal RF coverage
RRM – continuously monitors, adjusts AP power, channel settings to help mitigate co-channel interference and signal coverage problems.

Beam Forming – reduces coverage holes for 802.11a/g and 802.11n clients.

Tools – Helps IT build and operate a WLAN without the need for extensive RF engineering skills.

CleanAir Technology—Cisco offers a spectrum intelligence solution to detect, classify, locate and mitigate Wi-Fi and non-Wi-Fi interference:
 - Bluetooth, microwave ovens, cordless phones and more.
Cisco Outdoor Wireless Mobility Solution
Real-Time Mobile Data Services

Wirelessly Extending Resources to Individuals Irrespective of Time or Location
Wireless Whenever You Need It, Wherever You Are Needed

The Cisco Outdoor Wireless Network Extends the Cisco Unified Wireless Network to Any Environment Where Traditional Wi-Fi Networks Cannot be Deployed
Outdoor Wireless Coverage Challenges

Dynamic outdoor environments with changing RF obstacles and interferences

Need for connectivity in difficult environmental conditions and remote areas

Cabling across Wireless LAN is not practical (regulations or interferes with aesthetics)
Benefits of Mesh Product

Integrated intelligent RF monitoring for dynamic, adaptive optimized wireless coverage

Designed to withstand difficult conditions with environmental specifications and business requirements

Provides effective coverage for large and remote or hard to reach areas without wiring for every AP (wireless backhaul)
What Does the Cisco Outdoor Wireless Solution Provide?

- **Complete Indoor and Outdoor Networking Solution**
 Part of the Unified Wireless Network for a complete end-to-end wireless solution for the mobile workforce.

- **Scalable Mesh Architecture**
 Designed to scale to various size networks from campus deployments to extensive outdoor environment such as large metropolitan areas.

- **Mobility Services and Applications**
 Designed to support robust integrated security services, guest network (public access) and vertically-focused applications.

- **secure wireless solutions**
 Prevent unauthorized Wireless connection.
Wireless Connectivity Indoor Outdoor

- Extend wireless coverage from the indoors to the outdoors
- Integrate Wi-Fi with indoor and outdoor mesh
- A wireless solution for each environment

Regular (Non-Mesh) Network

Enterprise Mesh Network

Outdoor Mesh Network
Outdoor Wireless Mesh Solution Components

- **Wireless Control System (WCS)**
 - Wireless Mesh Management System enables network-wide policy configuration and device management
 - SNMPv3, Syslog, IPSec, AAA, etc.

- **Wireless LAN Controller**
 - Handles RF algorithms and optimization
 - Seamless L3 Mobility
 - Security and Mobility control
 - Image Management

- **Root Access Point**
 - Serves as “Root” AP to the wired network
 - Typically located on roof-tops or towers
 - Connects up to 35 Mesh APs using 802.11a

- **Mesh Access Point**
 - 802.11b/g client access
 - Connects to Root AP via 802.11a
 - AC/DC power; PoE capable
 - Ethernet port for connecting peripheral devices

Industry-Proven Devices at Every Layer
1520 Mesh APs for the Most Challenging Environments

- **Wind Loads**
 - Sustained Winds: 100 mph
 - Wind Gusts: 165 mph

- **Environmental Ratings**
 - IP67 and NEMA4X
 - −40 to +55°C (−40 to +131°F) plus Solar Loading
 - Humidity 0 ~ 100%

- **Safety**
 - UL/EN/IEC 60950
 - CAN/CSA-C.22No 60950

- **Radio Approvals** (FCC Part 15.247, 90.210)
- **EMI and Susceptibility** (FCC Part 15.107, 15.109)
- **Federal Compliance** (FIPS 140-2)
Indoor / Outdoor with Single Controller

Managing Indoor and Outdoor Mesh Wireless Network

- Seamless roaming across indoors and outdoors

Single Controller

Cisco WCS

Indoor Wireless Network (Mesh & Non Mesh)

iMesh

Network Connectivity

Indoor AP: Mesh & Non Mesh AP’s

Outdoor Wireless Mesh Network

Indoor AP

Outdoor AP

RAP/MAP: 1522 & 1524
Mixed Mode Performance

- 3 Modes of operation supported
 Legacy
 Green Field
 Mixed

- Mixed mode experiences slight performance impact due to ABG clients

- 11n clients still transmit at full performance

- PHY and MAC for 11n provides co-existence and protection for ABG clients