·IIIII CISCO

10 Gbps Cabling

DC Facilities Top of Mind

Complexity, Cost, Power, Cooling Standards Compliance Reliability, Availability Management, Security Future Proofing Increased Efficiency, Simpler Operations Scalability, Flexibility Technology Modularity, Mobility

10GE Server Evolution in the DC access

- The 10GbE LOM market will start in 2011 (Intel server arch. release cycle)
- IOG LOMs will show up first on premium servers.
- From 2011 it might take about 2 years to see the majority of servers 10GBASE-T LOM capable.
- Fiber & CX1 today (Multiple optics choices)
- Fiber, CX1, 10GBASE-T tomorrow

10 Gigabit Transmissions

Different Standards

- 10GBase-T (IEEE 802.3an)
- 10GBase-CX4 (IEEE 802.3ak)
- 10GBase-*X (IEEE 802.3ae)
- SFF 8431 (SFP+ Fiber & cu)

Applications

- Server Interconnects
- Aggregation of Network Links
- Switch to Switch Links
- Storage Area Networks (SAN)

10 Gbps Transciever Options

Connector (Media)	Cable	Distance	Power (each side)	Transceiver Latency (link)	Standard	
SFP+ CU* copper	Twinax	<10m	~ 1.5W	~.1 μs	SFF 8431**	
X2 CX4 copper	Twinax	15m	4W	~ 0.1 µs	IEEE 802.3ak	
SFP+ USR MMF, ultra short reach	MM 0M2 MM 0M3	10m 100m	1W	~ 0	none	
SFP+ SR MMF,short reach	MM 0M2 MM 0M3	82m 300m	1W	~ 0	IEEE 802.3ae	
RJ45 10GBASE-T copper	Cat6a/7 100m ~ 6W***		2.5 μs 2.5 μs 1.5 μs	IEEE 802.3an		

10GE SFP+ Optical

- Smallest 10GE form factor
- Low Power
- Low Latency
- Hot swappable
- High density
- Optical SFP+ interoperates with other 10GE modules

XFP

XENPAK

X2

SFP+ Optical Module

Optics Positioning for Data Center Applications

A look at the 100M > 1G transition

(Desktop and Server driven)

- 1G/10G server transition expected to be within ~2-years once LOM is available (slower than at 1G – source Intel)
- Switch edge port adoption of high speed technology historically took longer than server transition (hence the need for 100/1000/10000 technology on LOM)

10GBASE-T PHY Evolution

10GBASE-T PHY Evolution – Switch View

10GBASE-T PHY Evolution – Server View

Twisted Pair Cabling For 10GBASE-T (IEEE 802.3an)

U/UTP (Old designation UTP) Outer Unshielded/Inner Pairs Unschielded

Cat 6a: *100m 10GBASE-T

**largest diameter up to 0.354 in

Cat 6: *55m 10GBASE-T **larger diameter than Cat5 (~0.3 in)

F/UTP (Old designation FTP) Outer Foil Shielded/Inner Pairs Unshielded

Cat 6/6a:

*100m 10GBASE-T **More flexible/easier to manage than Cat6a U/UTP ***Equivalent diameter to Cat6

S/FTP (Old designation S/STP) Outer Foil Shielded/Inner Pairs Foil shielded

Cat 7: *100m 10GBASE-T **Most expensive ***Smaller diamter than Cat6a ****Not popular in North America

Shielded (F/UTP) vs. Unshielded (6a U/UTP)

F/UTP

- Alien XT reduction w/ shielding
- Diameter 0.3in/7.6mm
- Up to* 40% cable conduit fillratio higher than U/UTP
- Cabling choice in Cisco's new Richardson Data Center

U/UTP

- Alien XT reduction w/ spacing
- Diameter 0.354in/9mm (worst case)
- Stiffer/less flexible cable than F/UTP

Copper Cabling for Data Centers

Frequency Bandwidth	TIA (Components)	TIA (Cabling)		ISO (Components)		ISO (Cabling)	
1 - 100 MHz	Category 5e	Category 5e		Category 5e		Class D	
1 - 250 MHz	Category 6	Category 6		Category 6		Class E	
1 - 500 MHz	Category 6A	Category 6A Cat		Category 6A		Class E _A	
1 - 600 MHz	n/s	n/s	Category 7		7	Class F	
1 - 1,000 MHz	n/s	n/s Category		7 _A Class		s F _A	
Application	Category 5e Class D	Category 6 Class E		gory 6A ass E _A			Class F _A
4/16 MBPS Token Ring	Х	Х		Х	Х		х
10BASE-T	x	х		х	х		x
100BASE-T4	x	х		х	х		x
155 MBPS ATM	x	х		х	х		х
1000BASE-T	x	х		х	х		x
TIA/EIA-854		х		х	х		х
10GBASE-T				x	Х		x
Broadband CATV					х		x

10G SPF+ Cu

- SFF 8431
- Supports 10GE passive direct attached up to 10 meters
- Active cable options to be available
- Twinax with direct attached SFP+
- Primarily for in rack and rack-to-rack links
- Low Latency, low cost, low power

10G Copper Infiniband - 10GBase-CX4

- IEEE 802.3ak
- Supports 10G up to 15 meters
- Quad 100 ohm twinax, Infiniband cable and connector
- Primarily for rack-to-rack links
- Low Latency

HSSG: Higher Speed Study Group

HSSG Objectives

- Support full-duplex operation only
- Preserve the 802.3 / Ethernet frame format utilizing the 802.3 MAC
- Preserve minimum and maximum FrameSize of current 802.3 standard
- Support a BER better than or equal to 10⁻¹² at the MAC/PLS service interface
- Provide appropriate support for OTN

Support a MAC data rate of 40 Gb/s
 Provide Physical Layer specifications which support 40 Gb/s operation over:

 at least 100m on OM3 MMF
 at least 10m over a copper cable assembly
 at least 1m over a backplane

 Support a MAC data rate of 100 Gb/s
 Provide Physical Layer specifications which support 100 Gb/s operation over:

 at least 40km on SMF
 at least 10m over a copper cable assembly
 at least 10km on SMF
 at least 100m on OM3 MMF
 at least 100m on OM3 MMF

Access Layer Network Model

End of Row, Top of Rack & Blade Switches GE Access / 10GE What it used to be... Active Zone Above Top of Rack End of Row / MoR Row/Rack **Blade Switches** Row 1 Row 2 Row Row Row What else is coming... End of Row w/ Blade ToR w/ Blade **Enclosures Enclosures** What influences the physical layout... Primarily: Power Row 1 Row Row 2 Cooling End of Row w/ FEX EoR FEX Cabling Secondarily Access Model Port Density ▶ ◀ Row 1 Row 1 Row 2 Row 2

Pod Concept - Sizing

Pod Concept

Sizing

Zone: Typically mapped area in the DC

Pod: Typically mapped to agg pair with ToR switches

in EDA/ access cabinets

Size: determined by distance and density

Cabling distance from server racks to network racks

Fiber

200-500m Fiber

_Cabling density: # of servesr per rack and I/Os per server Rack

Server: 6 - 30 Servers per rack – limited by power

Network: Depends on access model: Modular, ToR or Blade

Storage: special Cabinets

Physical Infrastructure and Network Topology Modular Cabling Architecture Methodology

TIA-942 Logical Layout EIA/TIA 568 Copper & Fiber Cabling

Dual-Homed 1-G Attached Servers

ToR Configuration

Mixed 1-G and 10-G Attached Servers

Review of the Nexus 2000 Fabric Extender

Nexus 5000 Family Overview

20 Fixed Ports 10G/FCoE/Data Center Ethernet Line Rate, Non-Blocking 10G 1 Expansion Module slot

Nexus 2000 Fabric Extender (Q1CY09)

48 Fixed Ports 1G Ethernet 4 Fixed Ports 10G Uplink Distributed Virtual Line Card Hardware VN-Link Technology

40 Fixed Ports 10G/FCoE/Data Center Ethernet Line Rate, Non-Blocking 10G 2 Expansion Module slots

Ethernet 6-Port 10G/FCoE/Data Center Ethernet

Ethernet + Fibre Channel

4-Port 10G/FCoE/Data Center Ethernet 4-Port 1/2/4G Fibre Channel

Fibre Channel 8-Port 1/2/4G Fibre Channel

Fibre Channel (Q3CY09) 2/4/8G Fibre Channel

NX-OS, DCNM, CiscoWorks and Fabric Manager

Nexus 5020 Overview

Nexus 5010 Overview

Nexus 2000 Fabric Extender Virtual Chassis

Nexus 5000 Fabric EXtender (FEX)

The Nexus 5000 Fabric Extender (FEX) acts as a remote line card (module) for the Nexus 5000, retaining all centralized management and configuration on the Nexus 5000, transforming it to a Virtualized Chassis

Nexus 2000 Fabric Extender 1GE Connectivity

48 x 1 GigabitEthernet Interfaces

Hot-Swappable Fan Tray

Nexus 2000 Fabric Extender Virtual Chassis Mgmt LAN SAN A SAN B <u>×_×</u> x_x **10GE Uplink 1GE Server ports** Ports SFP+ **RJ45** Single 10GE Management From a management perspective, fabric extender is modeled as a NX5K linecard 10GE Domain Fabric Extender Fabric Extender

- Nexus 5000 and Fabric extender communicate via inband connectivity
- There is no configuration stored on the Fabric Extender
- Fabric extender is *not* an independent manageable entity

Nexus 2000 Fabric Extender Network Topology – Physical vs. Logical

Physical Topology

Logical Topology

Nexus 5000 and Fabric Extender are one logical access switch in the layer 2 topology ToR flexibility *without* a larger STP topology

Fabric Extender Design Option 1 – Dual NIC

- Dual NIC (redundant NIC) designs can leverage server side redundancy
- A common configuration for VMWare servers
- Two vSwitches configured with redundant NIC's
 - vSwitch 1 Virtual Machine port groups
 - vSwitch 2 VMkernel and service console port groups
- Common practice is to assign specific NIC's to specific traffic types

Fabric Extender Design Option 2 – Single NIC

- Single NIC (non-redundant NIC) designs usually are used:
 - For non critical systems
 - As compute nodes in a larger application architecture leveraging ACE and application level redundancy
- All upstream traffic is multiplexed over a single NIC
- Note: Dual NIC servers often leverage ACE and application redundancy in addition to the physical NIC redundancy

Fabric Extender MCEC and FEX uplink

- Design Option 2 Nexus 5000 will support a vPC uplink configuration from the Fabric Extender
- Multiple uplinks from FEX to Nexus 5000 provide data plane redundancy
- MCEC provides redundancy for the control plane
- Two elements of the MCEC configuration
 - vPC which provides the multi-chassis capabilities
 - Physical Port Channel on each of the individual Nexus 5000

Fabric Extender MCEC and FEX uplink

- The Fabric Extender MCEC vPC configuration can either be built from
 - Two individual 10GE links
 - Two physical port channels
- NX-OS can theoretically support up to 768 virtual port channels (vPC's) per pair (what will be supported at FCS still to be determined)
- Nexus 5000 will support up to 12 Ethernet physical port channels per switch

