Propojování datových center (Data Center Interconnect)

ARCH3 / L3
Miroslav Brzek
Systems Engineer, Cisco
mibrzek@cisco.com
Prosíme, ptejte se nás

- Twitter www.twitter.com/CiscoCZ
- Talk2cisco www.talk2cisco.cz/dotazy
- SMS 721 994 600
Agenda

- DCI Business Drivers and Solutions Overview
- SAN Extension Solutions
- LAN Extension Deployment Scenarios
 - Ethernet Based Solutions
 - MPLS Based Solutions
 - IP Based Solutions
- Path optimization
- Conclusions and Q&A
Data Center Interconnect

Business Drivers

• Data Centers are extending beyond traditional boundaries
• Virtualization applications are driving DCI across PODs (aggregation blocks) and Data Centers

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Business Solution</th>
<th>IT Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Continuity</td>
<td>✓ Disaster Recovery ✓ HA Framework</td>
<td>✓ GSLB ✓ Geo-clusters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ HA Cluster</td>
</tr>
<tr>
<td>Operation Cost Containment</td>
<td>✓ Data Center Maintenance / Migration / Consolidation</td>
<td>✓ Distributed Virtual Data Center</td>
</tr>
<tr>
<td>Business Resource Optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ Disaster Avoidance ✓ Workload Mobility</td>
<td>✓ VM Mobility</td>
</tr>
<tr>
<td>Cloud Services</td>
<td>✓ Inter-Cloud Networking ✓ XaaS</td>
<td>✓ VM Mobility ✓ Automation</td>
</tr>
</tbody>
</table>
Data Center Interconnect

Solution Components

<table>
<thead>
<tr>
<th>DCI Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Extensions</td>
<td>Providing applications access to storage locally, as well as remotely with desirable storage attributes</td>
</tr>
<tr>
<td>LAN Extensions</td>
<td>Extend same VLAN across Data Centers, to virtualize servers and applications</td>
</tr>
<tr>
<td>Path Optimization</td>
<td>Routing users to the data center where the application resides while keeping symmetrical routing in consideration for IP services (e.g. Firewall)</td>
</tr>
<tr>
<td>Inter-DC Routing</td>
<td>Provide routed connectivity between data centers (used for L3 segmentation/virtualization, etc.)</td>
</tr>
</tbody>
</table>
Agenda

- DCI Business Drivers and Solutions Overview
- SAN Extension Solutions
- LAN Extension Deployment Scenarios
 - Ethernet Based Solutions
 - MPLS Based Solutions
 - IP Based Solutions
- Path optimization
- Conclusions and Q&A
SAN Extension
Synchronous vs. Asynchronous Data Replication

- **Synchronous Data replication**: The Application receives the acknowledgement for I/O complete when both primary and remote disks are updated. This is also known as Zero data loss data replication method.

 Metro Distances (depending on the Application can be 50-300kms max)

- **Asynchronous Data replication**: The Application receives the acknowledgement for I/O complete as soon as the primary disk is updated while the copy continues to the remote disk.

 Unlimited distances
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 - Ethernet Based Solutions
 - MPLS Based Solutions
 - IP Based Solutions
• Path optimization
• Conclusions and Q&A
LAN Extension
Key Technical Challenges

Extending Layer 2 domains across data centers present challenges including, but not limited to:

- STP fault domain isolation
- Achieving High Availability (L2 dual-homing)
- Network loop avoidance, given redundant links and devices without STP
- Bridging data-plane flooding & broadcasting storm control
- Full utilization of cross sectional bandwidth across the Layer 2 domain
- Long distance link protection with fast convergence
- Path diversity
- Multicast optimization
- QoS
- Encryption
LAN Extension Technology Selection Criteria

<table>
<thead>
<tr>
<th>Technology Nature</th>
<th>Selection Criteria</th>
</tr>
</thead>
</table>
| **Ethernet** | - VSS & vPC or FabricPath
 - Multi-Chassis EtherChannel for dual site interconnection
 - FabricPath for multi-site deployments
 - Over dark fiber or protected D-WDM
 - Easy crypto using end-to-end 802.1AE |
| **MPLS** | - EoMPLS & A-VPLS
 - L2oL3 for link protection (Fast detection & convergence / Dampening)
 - Point-to-Point service model
 - Large scale & Multi-tenants
 - Works over GRE
 - Most deployed today |
| **IP** | - OTV
 - L2oL3 for link protection (Fast detection & convergence / Dampening)
 - Point-to-cloud service model
 - Enterprise focus
 - Easy integration over Core, works over any transport
 - Innovative MAC routing |
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 Ethernet Based Solutions
 VSS/vPC
 Fabric-Path
 MPLS Based Solutions
 IP Based Solutions
• Path optimization
• Conclusions and Q&A
LAN Extension - Dual Sites Interconnection
Leveraging MECs Between Sites

On DCI Etherchannel:
- STP Isolation (BPDU Filtering)
- Broadcast Storm Control
- FHRP Isolation

interface port-channel10
 desc DCI point to point connection
 switchport
 switchport mode trunk
 vpc 10
 switchport trunk allowed vlan 100-600
 spanning-tree port type edge trunk
 spanning-tree bpdufilter enable
 storm-control broadcast level 1
 storm-control multicast level x

- VSS or vPC for redundancy/multi-homing
- MEC for loop-prevention/multipathing and STP isolation
 - DCI port-channel: 2 or 4 links
- Requires protected DWDM or Direct fibers
LAN Extension - Cisco FabricPath

“FabricPath brings Layer 3 routing benefits to flexible Layer 2 bridged Ethernet networks”
Cisco FabricPath is “L2 Routing”

Forwarding decision based on ‘FabricPath Routing Table’

- FabricPath header is imposed by ingress switch
- Only switch addresses are used to make “routing” decisions
- TTL and RPF check the data plane protect against loops
 - L2 can be extended in/accross the data centers (while STP is segmented)
- No MAC learning required inside the L2 Fabric

Classical Ethernet

Single mac address lookup at the edge
Cisco FabricPath for LAN Extension
Basic Data Plane Operation

- Ingress FabricPath switch determines destination Switch ID and imposes FabricPath header
- Destination Switch ID used to make routing decisions through FabricPath core
- No MAC learning or lookups required inside core
- Egress FabricPath switch removes FabricPath header and forwards the Ethernet frame
FabricPath
Interaction with Classic Ethernet Interfaces

Classic Ethernet (CE) Interface
- Interfaces connected to existing NICs and traditional network devices
- Send/receive traffic in 802.3 Ethernet frame format
- Participate in STP domain
- Forwarding based on MAC table

FabricPath Interface
- Interfaces connected to another FabricPath device
- Send/receive traffic with FabricPath header
- No spanning tree!!!
- No MAC learning
- Exchange topology info through L2 ISIS adjacency
- Forwarding based on ‘Switch ID Table’
FabricPath for Interconnecting Multiple DC Sites
Partial-Meshed Topology for different models of DC

- Required point to point connections
- Relies on Flooding for Unknown Unicast traffic
- L2 Multipath only for equal cost path can be leveraged (i.e. A↔B or C↔D)

- Offer a full HA DCI solution with Native STP Isolation
- Dynamic VLAN pruning
- Provides easy integration with Brownfield DC
- Optimized using vPC+
Cisco FabricPath for LAN Extension

Design Considerations

Benefits

- FabricPath Offers an easy way solution to interconnect multiple DC with STP Isolation
- Optimize bandwidth using Layer 2 Multipath (up to 16 equal cost paths) in full-mesh deployment
- Native Loop free
- Reduce the number of Macs
 - The FabricPath edge devices learn only based on conversation
 - The FabricPath Core devices keep only Layer 2 information about the FP edge devices
- FabricPath is transparent to L3 protocols (anything can be carried over the fabric)

Constraints

- Maturity
- Dark Fiber (metro distances)
- Rely on flooding for Unknown Unicast traffic
- Point to point (versus point to cloud) – every device in the path must be FP enabled
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 Ethernet Based Solutions
 MPLS Based Solutions
 EoMPLS
 A-VPLS: VPLS using VSS
 IP Based Solutions
• Path optimization
• Conclusions and Q&A
LAN Extensions: P2P Topologies
Ethernet over MPLS (EoMPLS)

interface g1/1
 description EoMPLS port mode connection
 no switchport
 no ip address
 xconnect 2.2.2.2 vcid 1 encapsulation mpls
BPDU Filtering to maintain STP domains isolation
Storm-control for data-plane protection
Configuration applied at aggregation layer on the logical port-channel interface
Manual 802.1AE configuration on a physical interface level

```
interface port-channel70
description L2 PortChannel to DC 2 spanning-tree port type edge trunk spanning-tree bpdufilter enable storm-control broadcast level 1*
storm-control multicast level x
```
EoMPLS: Dealing with PseudoWire (PW) Failures
Remote Ethernet Port Shutdown

PE receives the PW down notification and shutdown its transmit signal toward aggregation

ASR1000: native support (enabled by default)
Catalyst 6500: leverage a simple EEM script
EoMPLS for Dual Sites Interconnection
With Port-Channel xconnect

- Instead of xconnecting physical port, xconnect port-channel
- LACP is kept local, no more extended over EoMPLS
- PW is virtual on both VSS members
- Requires VSS or Nexus as DC device
LAN Extensions: Multipoint Topologies
Virtual Private LAN Service (VPLS)

- MPLS Core emulates an IEEE Ethernet bridge (virtual)
- Virtual Bridges (VFI) linked with Pseudowires (PWs)

 Assuming PW full-mesh in a VFI

- Split-Horizon for Loop Avoidance in MPLS core (but only for single-homed deployments)
- BPDU are not transmitted by default
- L2 dual-homing is one of the big challenges of VPLS deployment

Mac address table population ➔ is pure Learning-Bridge
Advanced Virtual Private LAN Service
A-VPLS

A-VPLS leverages traditional VPLS while adding additional benefits making it a superior solution for Data Center Interconnect deployments

- Simplified redundancy with VSS (dual-homed deployments)
- Native STP isolation, Multipoint loop-free connectivity with VSS
- Enhanced VPLS traffic load-balancing capabilities with FAT
- VPLS configuration simplifications

A-VPLS Pseudowire — Single Virtual Ethernet Interconnect across Multiple Interfaces

[Diagram showing A-VPLS Pseudowire setup with nPE, VSL, MCEC, and Agg]
#sh mpls l2 vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI VFI_610_</td>
<td>VFI</td>
<td>10.100.2.2</td>
<td>610</td>
<td>UP</td>
</tr>
<tr>
<td>VFI VFI_610_</td>
<td>VFI</td>
<td>10.100.3.3</td>
<td>610</td>
<td>UP</td>
</tr>
<tr>
<td>VFI VFI_611_</td>
<td>VFI</td>
<td>10.100.2.2</td>
<td>611</td>
<td>UP</td>
</tr>
<tr>
<td>VFI VFI_611_</td>
<td>VFI</td>
<td>10.100.3.3</td>
<td>611</td>
<td>UP</td>
</tr>
</tbody>
</table>

Rem: One PW per VLAN per destination

interface Virtual-Ethernet1
switchport
switchport mode trunk
switchport trunk allowed vlan
610-611
transport vpls mesh
neighbor 10.100.2.2 pw-class Core
neighbor 10.100.3.3 pw-class Core

class Core
encapsulation mpls
A-VPLS - Redundancy/Dual-Homing Using VSS

- LDP session protection & Loopback usage allows PW state to be unaffected
- PW state is unaffected
- LDP + IGP convergence in sub-second
 - Fast failure detection on Carrier-delay / BFD
- Traffic flows through the VSL link
 - Traffic exits directly from egress VSS node

mpls ldp session protection
mpls ldp router-id Loopback100 force

- LDP + IGP convergence in sub-second
- Fast failure detection on Carrier-delay / BFD
- Local fast protection
- Traffic exits directly from egress VSS node
A-VPLS - Deployment Consideration
Dedicated VSS for DCI

- Extend VLAN from aggreg to core using physical octopus
- Full mesh octopus is required when STP connection
- Use A-VPLS to extend them in multi-point over MPLS
 40Gbps with ES+
- SVI routing is still in aggregation

STP Isolation (default)
Storm control
FHRP Isolation
A-VPLS - Deployment Consideration
Fusion DCI Layer into DC Core with L3 Aggregation

- Extend VLAN from aggreg to core using dot1Q
- Use A-VPLS to extend them
- SVI routing is still in aggregation
Benefits

• EoMPLS is an easy point to point solution
• A-VPLS based on node clustering (VSS)
 Dual-homing support without additional protocols
 Configuration simplicity
• Complementary with full MPLS featuring
 VRF MP-BGP
 RSVP for Traffic-Engineering & Fast-ReRoute

Constraints

• Rely on flooding for Unknown Unicast traffic
• Point to point (versus point to cloud)
• Full mesh of pseudo-wires/tunnels must be in place.
• Head-end replication for multicast and broadcast. Sub-optimal BW utilization
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 Ethernet Based Solutions
 MPLS Based Solutions
 IP Based Solutions
 Overlay Transport Virtualization
• Path optimization
• Conclusions and Q&A
Overlay Transport Virtualization
Technology Pillars

OTV is a “MAC in IP” technique to extend Layer 2 domains OVER ANY TRANSPORT

Dynamic Encapsulation
- No Pseudo-Wire State Maintenance
- Optimal Multicast Replication
- Multipoint Connectivity
- Point-to-Cloud Model

Nexus 7000
First platform to support OTV (from release 5.0)

Protocol Learning
- Preserve Failure Boundary
- Built-in Loop Prevention
- Automated Multi-homing
- Site Independence
OTV Data Plane
Inter-Sites Packet Flow

MAC TABLE

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>MAC 1</td>
<td>Eth 2</td>
</tr>
<tr>
<td>100</td>
<td>MAC 2</td>
<td>Eth 1</td>
</tr>
<tr>
<td>100</td>
<td>MAC 3</td>
<td>IP B</td>
</tr>
<tr>
<td>100</td>
<td>MAC 4</td>
<td>IP B</td>
</tr>
</tbody>
</table>

MAC TABLE

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>MAC 1</td>
<td>IP A</td>
</tr>
<tr>
<td>100</td>
<td>MAC 2</td>
<td>IP A</td>
</tr>
<tr>
<td>100</td>
<td>MAC 3</td>
<td>Eth 3</td>
</tr>
<tr>
<td>100</td>
<td>MAC 4</td>
<td>Eth 4</td>
</tr>
</tbody>
</table>

Layer 2 Lookup

1. Server 1
2. Layer 2 Lookup
3. Encap
4. OTV
5. Decap
6. Layer 2 Lookup
7. Server 3

Inter-Site Packet Flow
OTV Data Plane

Encapsulation

- OTV encapsulation adds 42 Bytes to the packet IP MTU size
 - Outer IP Header and OTV Shim Header in addition to original L2 Header
- The outer OTV shim header contains information about the overlay (VLAN, overlay number)
- The 802.1Q header is removed from the original frame and the VLAN field copied over into the OTV shim header

```
DMAC | SMAC | Ether Type | IP Header | OTV Shim | L2 Header | Payload | CRC
6B   | 6B   | 2B         | 20B       | 8B       | 14B*      | 4B
```

*4B of original 802.1Q header removed

802.1Q header removed

42 Byte total overhead
OTV Control Plane
MAC Address Advertisements (Multicast-Enabled Transport)

- Every time an Edge Device learns a new MAC address, the OTV control plane will advertise it together with its associated VLAN IDs and IP next hop.
- The IP next hops are the addresses of the Edge Devices through which these MAC addresses are reachable in the core.
- A single OTV update can contain multiple MAC addresses for different VLANs.
- A single update reaches all neighbors, as it is encapsulated in the same ASM multicast group used for the neighbor discovery.

3 New MACs are learned on VLAN 100
Vlan 100 MAC A
Vlan 100 MAC B
Vlan 100 MAC C

OTV update is replicated by the core

IP A
West

Core

East

South-East

VLAN MAC IF
100 MAC A IP A
100 MAC B IP A
100 MAC C IP A

OTV Update is replicated by the core
OTV Configuration

OTV over a Multicast Transport

- Minimal configuration required to get OTV up and running

feature otv
otv site-id 1
otv site-vlan 99
interface Overlay100
 otv join-interface e1/1
 otv control-group 239.1.1.1
 otv data-group 232.192.1.0/24
 otv extend-vlan 100-150

feature otv
otv site-id 2
otv site-vlan 99
interface Overlay100
 otv join-interface Po16
 otv control-group 239.1.1.1
 otv data-group 232.192.1.0/24
 otv extend-vlan 100-150

feature otv
otv site-id 3
otv site-vlan 99
interface Overlay100
 otv join-interface e1/1.10
 otv control-group 239.1.1.1
 otv data-group 232.192.1.0/24
 otv extend-vlan 100-150
OTV solves Layer 2 Fault Propagation

• **STP isolation** – **No configuration required**
 No BPDUs forwarded across the overlay
 STP remains local to each site

• **Unknown unicast isolation** – **No configuration required**
 No unknown unicast frames flooded onto the overlay
 Assumption is that end stations are not silent
 Option for selective unknown unicast flooding (for certain applications)

• **Proxy ARP cache for remote-site hosts** – **On by default**
 ARP cache maintained in Edge Device by snooping ARP replies
 First ARP request is broadcasted to all sites. Subsequent ARP requests are replied by local Edge Device

• Broadcast can be controlled based on a white list as well as a rate limiting profile
OTV Automated Multi-homing
Per VLAN Authoritative Edge Device

• The detection of the multi-homing is **fully automated** and **it does not require additional protocols and configuration**

• OTV provides loop-free multihoming by electing a designated forwarding device **per site for each VLAN**

• The designated forwarder is referred to as the **Authoritative Edge Device (AED)**.
 - forwards traffic to and from the overlay
 - advertises MAC addresses for any given site/VLAN

• The Edge Devices at the site peer with each other on the internal interfaces to elect the AED. The peering takes place over the OTV **“site-vlan”**. It’s recommended to use a dedicated VLAN as site-vlan.
Placement of the OTV Edge Device
Option 1: OTV in the DC Core with L3 Boundary at Aggregation

- Easy deployment for Brownfield
- L2-L3 boundary remains at aggregation
- DC Core devices performs L3 and OTV functionalities
 - May use a pair of dedicated Nexus 7000
- VLANs extended from aggregation layer
 - L2 “Octopus” design
 - Recommended to use separate physical links for L2 & L3 traffic
Placement of the OTV Edge Device

Option 2: OTV in the DC Aggregation

- L2-L3 boundary at aggregation
- DC Core performs only L3 role
- Intra-DC and Inter-DCs LAN extension provided by OTV
 Requires the deployment of dedicated OTV VDCs
- Ideal for single aggregation block topologies
- Recommended for Green Field deployments
 Nexus 7000 required in aggregation
Placement of the OTV Edge Device
Option 3: OTV over Dark Fiber Deployments

- Data Centers directly connected at the Aggregation
- Currently mandates the deployment of dedicated OTV VDCs
 OTV Control Plane messages must always be received on the Join Interface
 Requires IGP/PIM peering between aggregation devices (via peer-link)

- Advantages over VSS-vPC solution:
 ✓ Provision of Layer 2 and Layer 3 connectivity leveraging the same dark fiber connections
 ✓ Native STP isolation: no need to explicitly configure BPDU filtering
 ✓ ARP Optimization with the OTV ARP Cache
 ✓ Simplified provisioning of FHRP isolation
 ✓ Easy Addition of Sites
OTV for LAN Extensions Conclusion

Design Considerations

- Extensions over any transport (IP, MPLS)
- Failure boundary preservation
- Site independence
- Optimal BW utilization with multicast enabled transport infrastructure (no head-end replication)
- Automated Built-in Multihoming
- End-to-End loop prevention
- Scalability
 - Sites, VLANs, MACs
- Operations simplicity

Only 6 CLI commands
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 Ethernet Based Solutions
 MPLS Based Solutions
 IP Based Solutions
• Path optimization
• Conclusions and Q&A
Egress DC Routing with LAN Extension

- Extended VLAN typically has associated HSRP group
- Only one HSRP router active, with all servers pointing to HSRP VIP as default gateway

Result: sub-optimal routing
Egress DC Routing Localization
FHRP Filtering Solution

- Filter FHRP with combination of VACL or PACL
- **Result: Still have one HSRP group with one VIP**, but now have active router at each site for optimal first-hop routing
Sample Cluster - Primary Service in Left DC
FHRP Localization – Egress Path Optimization

- Asymmetrical flows
 - No Stateful device
 - Low ingress traffic

Cluster VIP = 10.1.1.100 Preempt
Default GW = 10.1.1.1
Ingress DC Routing Localization with LAN Extension

Challenge
- Subnets are spread across locations
- Subnet information in the routing tables is not specific enough
- Routing doesn’t know if a server has moved between locations
- Traffic may be sent to the location where the application is not available

Options
- DNS Based
 1. DNS redirection with ACE/GSS
- Routing Based
 1. Route Injection
 2. LISP
VMotion - Primary Service in Left DC
GSS and ACE KAL-AP

ISP A
DC A
144.254.1.100
ISP B
DC B
144.254.200.100

Layer 3 Core Intranet
KAL-AP Change IP
KAL-AP on VIP

L2 Links (GE or 10GE)
L3 Links (GE or 10GE)

VM= 10.1.1.100
Default GW = 10.1.1.1
VMotion - Primary Service in Left DC

Detection of Movement of VM using ACE Probes – Ingress Path Optimization

Layer 3 Core Intranet

ISP A

DC A

ISP B

DC B

Probe to 10.1.1.100 Failed

Public Network

VLAN A

IS 10.1.1.100 OK?

144.254.100.0/25 & 144.254.100.128/25

EEM or RHI can be used to get very granular

144.254.100.0/24

Backup for Data Center A

App VM = 10.1.1.100

Default GW = 10.1.1.1

L2 Links (GE or 10GE)

L3 Links (GE or 10GE)
VMotion - Primary Service in Left DC
Detection of Movement of VM using ACE Probes – Ingress Path Optimization

144.254.100.0/25 & 144.254.100.128/25
EEM or RHI can be used to get very granular

144.254.100.100/32 is advertised into L3 using RHI

IS 10.1.1.100 OK?

App VM = 10.1.1.100
Default GW = 10.1.1.1
LISP for Ingress Routing Localization

Needs:
- Optimized routing **across extended subnet sites**

LISP Solution:
- Automated **move detection** on xTRs
- Dynamically update EID-to-RLOC mappings
- **Traffic Redirection** on iTRs or PiTRs

Benefits:
- Direct Path (no triangulation)
- Connections maintained across move
- No routing re-convergence
- No DNS updates required
- Transparent to the hosts
Agenda

• DCI Business Drivers and Solutions Overview
• SAN Extension Solutions
• LAN Extension Deployment Scenarios
 - Ethernet Based Solutions
 - MPLS Based Solutions
 - IP Based Solutions
• Path optimization
• Conclusions and Q&A
Data Center Interconnect

Summary

LAN Extensions
- STP Isolation, End-to-End loop prevention and Multi-homing are the key elements
- DCI Solutions
 - VSS / vPC
 - OTV
 - FabricPath
 - EoMPLS / A-VPLS

SAN Extensions
- Sync or Async replication modes are driven by the applications, hence the distance/latency is the key component to select the choice
 - Distance can be improved using IO accelerator or caching

Path Optimization
- Optimal DC Egress/Ingress
- Egress routing optimization
 - Addressed by FHRP Filtering
- Ingress routing optimization:
 - DNS redirection with ACE/GSS
 - Route Injection (ACE RHI)
 - LISP
<table>
<thead>
<tr>
<th>Kód přednášky</th>
<th>Název přednášky</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DC1</td>
<td>Technologie Cisco FabricPath a zkušenosti z nasazení</td>
</tr>
<tr>
<td>T-DC2</td>
<td>Mobilita ve virtualizovaném datovém centru s OTV a LISP</td>
</tr>
<tr>
<td>ARCH5</td>
<td>LISP v příkladech</td>
</tr>
</tbody>
</table>
Extend Layer 2 Applications

Overlay Transport Protocol (OTV) technology supports transparent workload mobility within and across dispersed data centers. (3:54 min)

Get Instant Workload Mobility Among Data Centers

Cisco Data Center Interconnect (DCI) solutions can help your IT organization meet business continuity and corporate compliance objectives.

- Reduce the business impact of disaster events and help ensure business continuity
- Improve productivity through enhanced application and data availability
- Meet corporate and regulatory compliance needs and improve data security

These solutions transparently extend LAN and SAN connectivity and provide accelerated, highly secure data replication, server clustering, and workload mobility between geographically dispersed data centers. This enhances business resilience, and helps enable application and data mobility between data centers, while maintaining operational consistency.

Featured Products

Cisco Nexus 7000 Series LAN Extension
Simplify Layer 2 applications across distributed data centers.

Cisco Catalyst 6500 Series LAN Extension
Deliver high-performance, scalable Layer 2 extension with subsecond convergence.

Cisco MDS 9500 Series SAN Extension Over IP
Gain an integrated, cost-effective, reliable business continuance solution.

http://www.cisco.com/go/dci
Otázky a odpovědi

- Twitter www.twitter.com/CiscoCZ
- Talk2Cisco www.talk2cisco.cz/dotazy
- SMS 721 994 600

- Zveřejneme Vás na Ptali jste se… v sále LEO
 1.den 17:45 – 18:30
 2.den 16:30 – 17:00
Prosíme, ohodnoťte tuto přednášku.