Anatomy of Internet Routers

VT3 / L3

Josef Ungerman – Cisco, CCIE #6167
Agenda

On the Origin of Species
 • Router Evolution
 • Router Anatomy Basics

Packet Processors
 • Lookup, Memories, ASIC, NP, TM, parallelism
 • Examples, evolution trends

Switching Fabrics
 • Interconnects and Crossbars
 • Arbitration, Replication, QoS, Speedup, Resiliency

Router Anatomy
 • Past, Present, Future – CRS, ASR9000
 • 1Tbps per slot?
Hardware Router

Control Plane vs. Data Plane

Routing and Forwarding Processor
- Cisco 10000 PRE
- Cisco 7300 NSE
- Cisco ASR903 RSP
- Cisco ASR1001/1002 (fixed)
Hardware Router

Centralized Architecture

RP (Route Processor)
- Cisco ASR1000 RP
- Cisco 7600 (MSFC board)

FP (Forwarding Processor)
- Cisco ASR1000 ESP
- Cisco 7600 (PFC board, TM on LC)

Port Adapters, SIP/SPA

Peripherals
CPU
Route DRAM
NPU
Packet DRAM
TM
Control Memories
Interconnect
FP
IC
DRAM
FP
CPU
headers
Interconnect
interfaces
interfaces
Scaling the Forwarding Plane

NP Clustering

Centralized Router with ASIC Cluster
- ME3600X (fixed)
- ASR903 (modular with RSP)
- ASR1006 (modular with FP and RP)
Scaling the Forwarding Plane

Switching Fabric

Centralized Router with Switching Fabric
- Cisco 7600 without DFC (TM on LC)
- Cisco ASR9001

Port Adapters – MPA

Interconnect
Scaling the Forwarding Plane

Distributed Architecture

Distributed Router
- Cisco 7600 with DFC (ES+)
- Cisco 12000
- Cisco CRS
- Cisco ASR9000
Packet Processors
Packet Processing Trade-offs

Performance vs. Flexibility

CPU (Central Processing Unit)
- multi-purpose processors
- high s/w flexibility [weeks], but low performance [1's of Mpps]
- high power, low cost
- **usage example**: access routers (ISR’s)

ASIC (Application Specific Integrated Circuit)
- mono-purpose hard-wired functionality
- complex design process [years]
- high performance [100's of Mpps]
- high development cost (but cheap production)
- **usage example**: switches (Catalysts)

NP (Network Processor) = “something in between”
- performance [10’s of Mpps] + programmability [months]
- cost vs. performance vs. flexibility vs. latency vs. power
- high development cost
- **usage example**: core→edge, aggregation routers
“It is always something (corollary). Good, Fast, Cheap:

Pick any two (you can’t have all three).”

RFC 1925
“The Twelve Networking Truths”
Hardware Routing Terminology

AIB: Adjacency Information Base
RIB: Routing Information Base
FIB: Forwarding Information Base
LSD: Label Switch Database
FIB Memory & Forwarding Chain

TLU/PLU
- memories storing Trie Data (today typically RLDRAM)
- Typically multiple channels for parallel/pipelined lookup

• PLU (Packet Lookup Unit) – L3 lookup data (FIB itself)
• TLU (Table Lookup Unit) – L2 adjacencies data (hierarchy, load-sharing)

Diagram:
- **PLU**:
 - M-Trie or TBM Root
 - PLU Leaf for 10.1.1.0/24

- **TLU**:
 - L3 Table
 - L3 Load Balancing
 - L2 Table
 - L2 Load Balancing
 - TLU-0 (32-way)
 - TLU-1
 - TLU-2
 - TLU-3 (64-way)

Pointer chain allowing In-place Modify (PIC)
CAM (Content Addressable Memory)

“Associative Memory”

SRAM with a Comparator at each cell

Stable O(1) lookup performance

Is expensive & power-hungry

usage: L2 switching (MAC addresses)

L2 Switching (also VPLS)

Destination MAC address lookup → Find the egress port (**Forwarding**)

- Read @ Line-rate = Wire-speed Switching

Source MAC address lookup → Find the ingress port (**Learning**)

- Write @ Line-rate = Wire-speed Learning
TCAM

TCAM (Ternary CAM)
“CAM with a wildcard” (VMR)
CAM with a Selector at some cells
Stable O(1) lookup performance
3rd state – Don’t Care bit (mask)
usage: IP lookup (addr/mask)

IP Lookup Applications
L3 Switching (Dst Lookup) & RPF (Src Lookup)
Netflow Implementation (flow lookup)
ACL Implementation (Filters, QoS, Policers…)
various other lookups

TCAM Evolution
CAM2 – 180nm, 80Msps, 4Mb, 72/144/288b wide
CAM3 – 130nm, 125 Msps, 18Mb, 72/144/288b wide
CAM4 – 90nm, 250Msps, 40Mb, 80/160/320b wide
Pipelining Programmable ASIC
2002: Engine3 (ISE) – Cisco 12000

- 4 Mpps, 3 Gbps
- u-programmable stages
- 2 per LC (Rx, Tx)

Parallelism Principle #1
Pipeline
- Systolic Array, 1-D Array

Scale (Pipeline Depth):
- multiplies instruction cycle budget
- allows faster execution (MHz)
- non-linear gain with pipeline depth
- typically not more than 8-10 stages
SMP Pipelining Programmable ASIC
2004: Engine5 (SIP) – Cisco 12000

- 16 Mpps, 10 Gbps
- 130/90nm, u-programmable
- 2 per LC (Rx, Tx)
- 240W/10G = 24 W/Gbps

Parallelism Principle #2:
SMP (Symmetric Multiprocessing)
- Multi-Core, Divide & Conquer
Scale (# of cores)
- Instruction/Thread/Process/App granularity (CPU’s: 2-8 core)
- IP: tiny repeating tasks (typically up to hundreds of cores)
SMP NPU
QFA (Quantum Flow Array) – CRS

2004 QFA (SPP)
✓ 80 Mpps, 40 Gbps
✓ 130nm, 188 cores
✓ 185M transistors
✓ 2 per LC (Rx, Tx), ~9 W/Gbps

2010 QFA
✓ 125 Mpps, 140 Gbps
✓ 65nm, more cores, faster MHz
✓ Bigger, Faster Memories (RLDRAM, TCAM4)
✓ 64K queues TM
✓ 2 per LC (Rx, Tx), ~4.2 W/Gbps

Future
✓ 40nm version
✓ 400G
✓ More cores, more MHz
✓ Integrated TM
✓ Faster TCAM etc.
“If you were plowing a field, which would you rather use: Two strong oxen or 1024 chickens?”

Seymour Cray

“What would Cinderella pick to separate peas from ashes?”

Unknown IP Engineer

“Good multiprocessors are built from good uniprocessors”

Steve Krueger
PPE (Packet Processing Elements)

Generic CPU’s or COT?

- NP does not need many generic CPU features
 - floating point ops, BCD or DSP arithmetic
 - complex instructions that compiler does not use (vector, graphics, etc.)
 - privilege/protection/hypervisor
 - Large caches

- Custom improvements
 - H/W assists (TCAM, PLU, HMR…)
 - Faster memories
 - Low power
 - C language programmable! (portable, code reuse)

<table>
<thead>
<tr>
<th></th>
<th>Cisco QFP</th>
<th>Sun Ultrasparc T2</th>
<th>Intel Core 2 Mobile U7600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number processes</td>
<td>160</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>(cores x threads)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power per process</td>
<td>0.51W</td>
<td>1.01W</td>
<td>5W</td>
</tr>
<tr>
<td>Scalable traffic management</td>
<td>128k queues</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

QFP:
- >1.3B transistors
- >100 engineers
- >5 years of development
- >40 patents

Packaging Examples:
- **ESP5** = 20 PPEs @ 900MHz
- **ESP10** = 40 PPEs @ 900MHz
- **ESP20** = 40 PPEs @ 1200MHz
- **etc.**
SMP NPU (full packets processing)
QFP (Quantum Flow Processor) – ASR1000 (ESP), ASR9000 (SIP)

- **2008 QFP**
 - 16 Mpps, 20 Gbps
 - 90nm, C-programmable
 - Sees full packet bodies
 - Central or distributed

- **2012 QFP**
 - 32 Mpps, 60 Gbps
 - 45nm, C-programmable
 - Clustering capabilities
 - SOC, Integrated TM
 - Sees full packet bodies
 - Central engine (ASR1K)
Pipelining SMP NPU
Cisco 7600 ES+, ASR9000

2008 NP [Trident]:
✓ 28 Mpps, 30 Gbps
✓ 90nm, 70+ cores
✓ 3 on-board TM chips (2 Tx)
✓ 2, 4 or 8 per LC
✓ 565W/120G = 4.7 W/Gbps
✓ 7600 ES+, ASR9K -L/-B/-E

2011 NP [Typhoon]:
✓ 90 Mpps, 120 Gbps
✓ 55nm, lot more cores
✓ Integrated TM and CPU
✓ 2, 4 or 8 per LC
✓ 800W/240G = 3.3 W/Gbps
✓ ASR9K –TR/-SE

Future
✓ 40nm version
✓ 200+G
Interconnects Technology Primer
Capacity vs. Complexity

Bus
- half-duplex, shared media
- standard examples: PCI [800Mbps], PCIe [N x 2.5Gbps], LDT/HT [25Gbs]
- simple and cheap

Serial Interconnect
- full-duplex, point-to-point media
- standard examples: SPI [10Gbps], Interlaken [100Gbps]
- Ethernet interfaces are very common (SGMII, XAUI, …)

Switching Fabric (cross-bar)
- full-duplex, any-to-any media
- proprietary systems [up to multiple Tbps]
- often uses double-counting (Rx+Tx) to express the capacity
Switching Fabric

SWITCHING FABRIC
IP/MPLS unaware part
speaks cells/frames

NETWORK PROCESSOR
IP/MPLS aware part
speaks packets

Ingress Linecards

MULTICAST
to slots 2,3,4

UNICAST
to slot 3

FIA (Fabric Interface ASIC)

Egress Linecards

Fabric Port
• FPOE (Fabric Point of Exit)
• addressable entity
• single duplex pipe

Q: What’s the capacity? 4 fabric ports @ 10Gbps
A: (ENGINEERING) 4 * 10 = 40Gbps full-duplex
A: (MARKETING) 4 * 10 * 2 = 80Gbps

Q: What's the capacity?
A: (ENGINEERING) 4 * 10 = 40Gbps full-duplex
A: (MARKETING) 4 * 10 * 2 = 80Gbps

Type B (1960)
Western Electric
100-point 6-wire
crossbar switch
Fabric Port engineering – examples

CRS-3/16 – 4.48Tbps (7+1)
- 16 linecards, 2 RP
- linecard up to 140G (next 400G)
- backwards compatible

ASR9010 – 7.04Tbps (1+1)
- 8 linecards, 2 RSP
- linecard up to 360G (next 800G)
- backwards compatible
“Non-Blocking” voodoo
RFC1925: It is more complicated than you think.

Non-blocking!
• zero packet loss
• port-to-port traffic profile
• certain packet size

Blocking (same fabric)..?
• packet loss, high jitter
• added meshed traffic profile
• added Multicast
• added Voice/Video
Example: 16x Multicast Replication

Egress Replication

Good:
Egress Replication
- Cisco CRS, 12000
- Cisco ASR9K, 7600

10Gbps of multicast eats 10Gbps fabric bw!
What if the fabric can’t replicate multicast?

Ingress Replication Flavors

Bad:
Ingress Replication
• central replication or encapsulation engines
*) of course, this is used in centralized routers

10Gbps of multicast eats 160Gbps fabric bw!
(10G multicast impossible)

Good-enough/Not-bad-enough:
Binary Ingress Replication
• dumb switching fabric
• non-Cisco

10Gbps of multicast eats 80Gbps fabric bw!
(10G multicast impossible)
Cell dip explained

Cell format example:

<table>
<thead>
<tr>
<th>cell hdr [5B]</th>
<th>cell payload [48B]</th>
</tr>
</thead>
</table>

Fixed overhead [cell header, ~10%]
Relative overhead [fabric header]
Variable overhead [padding]

Cell Tax effect on traffic: saw-tooth curve

Cell overhead effect on traffic: saw-tooth curve

Good efficiency
1Mpps = 1Mcps
1Gb/s → 1.33Gb/s

Poor efficiency
1Mpps = 2Mcps
1Gb/s → 2.6Gb/s

Fair efficiency
1Mpps = 2Mcps
1Gb/s → 1.7Gb/s

Super-cell or super-frame (packet packing)

Cell overhead effect on traffic: saw-tooth curve
Cell dip – per vendor @ 41B, 46B, 53B, 103B,...

The lower ingress speedup, the more cell dips.

Q: Is this SF non-blocking?
A: (MARKETING) Yes Yes Yes!
A: (ENGINEERING) Non-blocking for unicast packet sizes above 53B.
Cell dip gets bad – too low speedup (non-Cisco)

MARKETING: this is non-blocking fabric*
*) because we can find at least one packet size that does not block
Cell dip gets worse – multicast added (non-Cisco)

MARKETING: this is non-blocking fabric*

*) because we can still find at least one packet size that does not block, and your network does not have that much multicast anyway
Router is blocking – 1 fabric cards fails (non-Cisco)

MARKETING: this is non-blocking fabric*
*) because nobody said the non-blocking capacity is “protected”
What is “Protected Non-Blocking”

CRS-1
40G non-blocking even with 1 or 2 failed fabric cards

CRS-3
100G eth. non-blocking with 1 or 2 failed fabric cards

ASR9000
200G non-blocking even with a failed RSP
HoLB (Head of Line Blocking) problem

Solution 1: Traffic Lanes per direction (= Virtual Output Queues)

Solution 2: Enough Room 😊 (= Speedup)

Red Light, or “Traffic Jam Ahead” message (= Backpressure)

Traffic Lights (= Arbiter)

Highway Radio (= Flow Control)
Good HoLB Solutions

Fabric Scheduling + Backpressure + QoS

Arbitrated: Implicit backpressure
+ Virtual Output Queues (VOQ)
 - Cisco 12000 (also ASR9000)
 - per-destination slot queues VOQ
 (Virtual Output Queues)
 - GSR: 16 slots + 2 RP’s * 8 CoS
 + 8 Multicast CoS = 152 queues per LC

Output Buffered: Explicit backpressure
+ Speedup & Fabric Queues
 - Cisco CRS (1296 slots!)
 - 6144 destination queues
 - 512 speedup queues
 - 4 queues at each point
 (Hi/Lo UC/MC) + vital bit
Multi-stage Switching Fabrics

Multi-stage Switching Fabric
• constructing large switching fabric out of smaller SF elements

50’s: Ch. Clos – general theory of multi-stage telephony switch
60’s: V. Beneš – special case of rearrangeably non-blocking Clos (n = m = 2)

CRS-1 – Benes
• Multi-chassis capabilities (2+0, N+2,…)
• Massive scalability: up to 1296 slots !!!
• Output-buffered, speedup, backpressure

ASR9000 – Clos
• Single-chassis so far
• Scales to 22 slots today
• Arbitrated VOQ’s
Virtual Output Queuing

- VOQ on ingress modules represents fabric capacity on egress modules
- VOQ is “virtual” because it represents egress capacity but resides on ingress modules, however it is still physical buffer where packets are stored
- VOQ is not equivalent to ingress or egress fabric channel buffers/queues
- VOQ is not equivalent to ingress or egress NP/TM queues

ASR9000
- Multi-stage Fabric
- Granular Central VOQ arbiter
- VOQ set per destination
 - Destination is the NP, not just slot
 - 4 per 10G, 8 per 40G, 16 per 100G
- 4 VOQ’s per set
 - 4 VOQ’s per destination, strict priority
 - Up to 4K VOQ’s per ingress FIA
- Example (ASR9922):
 - 20 LC’s * 8 10G NP’s * 4 VOQ’s
 - = up to 640 VOQ’s per ingress FIA
Router Anatomy
2004: Cisco CRS – 40G+ per slot

SPP (Silicon Packet Processor)
- 40 Gbps, 80 Mpps [u-programmable]
- one for Rx, one for Tx processing

Switch Fabric Cards
(8 planes active)
2010: Cisco CRS – 100G+ per slot

Next: 400G+ per slot (4x 100GE)

same backward-compatible architecture, same upgrade process

QFA (Quantum Flow Array)
- 140 Gbps, 125 Mpps [programmable]
- one for Rx, one for Tx processing
CRS Multi-Chassis

Switch Fabric Cards (8 planes active)

4, 8 or 16 Linecard slots + 2 RP slots
CRS Multi-Chassis (Back-to-Back, 2+0)

Switch Fabric Cards
(8 planes active)

4, 8 or 16 Linecard slots + 2 RP slots

© 2012 Cisco and/or its affiliates. All rights reserved.
Cisco Public
CRS Multi-Chassis (N+1, N+2, N+4)

Fabric Chassis

RP (active)

RP (standby)

CPU

CPU

CPU

CPU

SPA

SPA

SIP-800

MSC-40 – 40G

FP-40 – 40G

FP-140 – 140G

MSC-140 – 140G

100GE

midplane 40G

midplane 40G

midplane 140G

midplane 140G

midplane 140G

4, 8 or 16 Linecard slots + 2 RP slots

Switch Fabric Cards (8 planes active)
2009: Cisco ASR9000 – 80G+ per slot

Trident Network Processor
- 30 Gbps, 28 Mpps [programmable]
- shared for Rx and Tx processing
- one per 10GE (up to 8 per card)

RSP (Route/Switch Processor)
- CPU + Switch Fabric
- active/active fabric elements

Core or Edge LC – 8x 10GE
Core or Edge LC – 4x 10GE
4 or 8 Linecard slots
(4 planes active)
2011: Cisco ASR9000 – 200G+ per slot

Next: 800G+ per slot
new RSP, faster fabric, faster NPU’s, backwards compatible

RSP (Route/Switch Processor)
- CPU + Switch Fabric
- active/active fabric elements

Typhoon Network Processor
- 120 Gbps, 90 Mpps [programmable]
- shared or dedicated for Rx and Tx
2012: Cisco ASR9922 – 500+G per slot

Next: 1.5T+ per slot
7 fabric cards, faster traces, faster NPU’s, backwards compatible

Typhoon Network Processor
- 120 Gbps, 90 Mpps [programmable]
- shared or dedicated for Rx and Tx
Entering the 100GE world

Router port cost break-down

10G
- TDM + Packet Switching & Routing
- DWDM Optics

40G
- DWDM Commons

100G

Core Routing Example
- 130nm (2004) → 65nm (2009): 3.5x more capacity, 60% less Watt/Gbps, ~8x less $/Gbps
- 40nm (2013): up to 1Tbps per slot, adequate Watt/Gbps reduction…

Silicon keeps following Moore’s Law
Optics is fundamentally an analog problem

Cisco puts 13% revenue (almost 6B$ annually) to R&D
cca 20,000 engineers
Terabit per slot…

CMOS Photonics

What is CMOS Photonics?
• Silicon is semi-transparent for SM wavelengths
• Use case: Externally modulated lasers

Simple Laser Specifications
Low Power with Silicon based drive & modulation

System Signaling
Optical MUX

10x 100GBase-LR ports per slot
• 70% size and power reduction!
• <7.5W per port (compare with existing CFP at 24W)
• 10x 10GE breakout cable (100x 10GE LR ports per slot)
Terabit per-slot… How to make it practically useful?

Silicon Magic @ 40nm
- Power zones inside the NPU – low power mode
- Duplicate processing elements – in-service u-code upgrade

Optical Magic @ 100G
- Single-carrier DP-QPSK modulators for 100GE (>3000km)
- CMOS Photonics
- ROADM

Data Plane Magic – Multi-Chassis Architectures
- nV Satellite
- DWDM and OTN shelves

Control Plane Magic – SDN (Software Defined Networks)
- nLight: IP+Optical Integration
- MLR – Multi-Layer Restoration
- Optimal Path & Orchestration (DWDM, OTN, IP, MPLS)
Evolution: Keeping up with Moore’s Law

higher density = less W/Gbps, less $/Gbps

Switching Fabrics
• Faster, smaller, less power hungry
• Elastic – multi-stage, extensible
• Integrated – VOQ systems, arbiter systems, multi-functional fabric elements

Packet Processors
• 45nm, 40nm, 28nm, 20nm process
• Integrated functions – TM, TCAM, CPU, RLDRAM, OTN,…
• ASIC slices – Firmware ISSU, Low-power mode, Partial Power-off

Router Anatomy
• Control plane enhancements – SDN, IP+Optical
• DWDM density – OTN/DWDM satellites
• 100GE density – CMOS optics, CPAK/CFP4
• 10GE density (TGE breakout cables) and GE density (GE satellites)
Otázky a odpovědi

Zodpovíme též v “Ptali jste se” v sále LEO v 17:45 – 18:30
e-mail: connect-cz@cisco.com
Prosíme, ohodnoťte tuto přednášku.
Děkujeme za pozornost.