Virtual Private Networks (VPNs)
Simplified

Erich Spengler
CSSIA CATC—Moraine Valley Community College
2008—60 Minute Session
Agenda

- Demonstration
- Introduction to VPNs
- VPN Security (IPSec, PPTP, SSL)
- VPN Technology Comparison
- VPN Group Exercise
Demonstration—Remote Network Access via VPN

Corporate Servers

VPN Server/Gateway

Internet/Unsecure Network

Remote User

- VPN Tunnel
- Encrypted Traffic to the Corporate Server
Introduction to VPNs
What Is a Virtual Private Network (VPN)?

A Remote Access VPN secures connections for remote users, such as mobile users or telecommuters, to corporate LANs over shared service provider networks.
Wireless: A New Big Driver for VPNs

- An access point (AP) is a shared device
- Remember the performance issues of shared hubs
- Bridges, and other devices allow for interconnection
- Protocols and applications work seamlessly
Basic VPN Terms

- **Router to Router VPN Gateway (Extranet)**
- **VPN Client to Router VPN via Dial-Up (Access VPN)**
- **Other Vendors to Router VPN (Extranet)**
- **Router to VPN Firewall Gateway (Extranet)**
- **VPN Client to Router VPN Network (Intranet)**
Using Site-to-Site VPNs

- Intranet
- Branch/Remote Office

- Extranet
- Business-to-Business

- Frame Relay WAN Network
- Internet VPN PSTN/ISDN Broadband
- Central Site
Using Remote-Access VPNs

Remote Access Client
- Cisco VPN Clients (IPSec)
- Microsoft Win 9x/NT/2000/XP (LTPP)
- Third-party VPN client (PPTP)

Remote Access Gateway
- Cisco WAN Router
- Cisco Secure PIX Firewall
- Or IPSec or PPTP aware device to provide firewall/VPN Tunnel Termination
VPN Components

Separate Data
- Tunneling
 - GRE
 - L2TP
 - MPLS
 - PPTP

Increase Protection
- Encryption
 - IPSec
 - DES, 3 DES
 - MPPE

Prevent Tampering
- Integrity
 - TCP Checksum
 - AH in IPSec

Identify Source
- Authentication
 - PKI
 - RSA
 - PKI
 - RSA
VPN Security
What a VPN Must Provide

- Confidentiality
- Integrity
- Availability
Network Security Model

Data Security Assurance Model (CIA)

Confidentiality
- Benefit
- Ensures data privacy
- Shuns
- Sniffing
- Replay

Integrity
- Benefit
 Ensures data is unaltered during transit
- Shuns
 Alteration
 Replay

Authentication
- Benefit
 Ensures identity of originator or recipient of data
- Shuns
 Impersonation
 Replay

Data Confidentiality and Data Integrity Depend on Encryption and Encapsulation
VPN Technology Options

Application Layer (5–7)
- SSH

Network Layer
- GRE
- PPTP
- L2TP
- MPLS
- IPSEC
- MPPE

Link/Physical Layer (1–2)
- Link-Layer Encryption

SSL
What Is an IPSec VPN?

Internet Protocol Security

- A set of security protocols and algorithms used to secure IP data at the network layer

- IPSec provides data confidentiality (encryption), integrity (hash), authentication (signature/certificates) of IP packets while maintaining the ability to route them through existing IP networks
Advantages of IPSec

- Access VPNs
- Classic site-to-site managed VPNs
- Trusted MPLS VPNs
IPSec Key Points

- IPSec can ensure the confidentiality and/or the authenticity of IP packets

- The key points are
 - Two modes of propagation (transport and tunnel)
 - Security associations (SAs)
 - Two types of header (ESP and AH)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Header</td>
<td></td>
</tr>
<tr>
<td>AH Header</td>
<td>Security association</td>
</tr>
<tr>
<td>ESP Header</td>
<td>Data encryption</td>
</tr>
<tr>
<td>IP Data (Encrypted)</td>
<td></td>
</tr>
</tbody>
</table>
IPSec Framework

- ESP—Encapsulating Security Payload
- AH—Authentication Header
- AES—Advanced Encryption Standard
- MD5, SHA—Authentication
- DH—Diffie-Hellman Identifier to Derive the Share Secret
Two Types of IPSec Security Protocols

Authentication Header
- Ensures data integrity
- Provides origin authentication—ensures packets definitely came from peer router
- Uses keyed-hash mechanism
- Does **not** provide confidentiality (no encryption)
- Provides optional replay protection

Encapsulating Security Payload
- Data confidentiality (encryption)
- Limited traffic flow confidentiality
- Data integrity
- Optional data origin authentication
- Anti-replay protection
- Does not protect IP header

All Data in Cleartext

Data Payload Is Encrypted
IP Header with IPSec Information

IP Data (Encrypted)

- IP Header
- AH Header
- ESP Header
- IP Data (Encrypted)
IPSec in a Standards World

Standards-Based Cryptography
- IKE, IPSec, 3DES
- Equipment/vendor interoperability

Periodic Re-Key

Remote Office
- Internet/IP VPN
- Firewall
- Router

Headquarters
- Firewall
- Router
- CERTIFICATE
- IKE
IKE Benefits an IPSec Environment

- Ensure confidential communications in an unsecured network
- Also known as the **Key Management Nightmare!!!**
IPSec: Building a Connection

- Two-phase protocol:
 - Phase 1 exchange: two peers establish a secure, authenticated channel with which to communicate; **Main mode or Aggressive mode** accomplishes a Phase 1 exchange
 - Phase 2 exchange: security associations are negotiated on behalf of IPSec services; **Quick mode** accomplishes a Phase 2 exchange

- Each phase has its SAs: **ISAKMP SA** (Phase 1) and **IPSec SA** (Phase 2)
How Does IKE/IPSec Work?

Phase I SA (ISAKMP SA)
- Main Mode (6 Messages)
- Aggressive Mode (3 Messages)

New IPSec Tunnel or Rekey

Phase II SA (IPSec SA)
- Quick Mode

A Protected Data B

C Protected Data D
ISAKMP Main, Quick and Aggressive Modes

ISAKMP Main Mode
(Phase 1)

Initiator
- ID/ID
- [Key]
- Nonce
- SA
- Hash
- Header

Responder
- SA
- Header
- Nonce
- Key
- Header
- Sig
- [Cert]
- ID

ISAKMP Quick Mode
(Phase 2)

Initiator
- Hash
- Header

Responder
- Header
- Hash
- SA
- Nonce
- [Key]
- ID
- /ID

ISAKMP Aggressive Mode
(Phase 1)

Initiator
- ID
- Nonce
- [Key]
- SA
- Header

Responder
- Sig
- [Cert]
- Header
- Header
- SA
- [Key]
- Nonce
- ID
- [Cert]
- Sig
What Is a Web/SSL VPN?

- Uses certificates for identification
- Private key used to prove identity
- SSL server provides all encryption keys
- Originally for HTTP/Web applications
Web/SSL VPN Features

Feature
- Access to internal web sites (HTTP/HTTPS) including filtering
- Access to internal Windows (CIFS) File Shares
- TCP port forwarding for legacy application support
- Access to e-mail via POP, SMTP, and IMAP4 over SSL
Web/SSL VPN and IPSEC Comparison

WebVPN
- Uses a standard web browser to access the corporate network
- SSL encryption native to browser provides transport security
- Application accessed through browser portal
- Limited client/server application accessed using applets

IPSEC VPN
- Uses purpose built client software for network access
- Client provides encryption and desktop security
- Client establishes seamless connection to network
- All application are accessible through their native interface
What Is a PPTP VPN?

Point to Point Tunneling Protocol

- PPTP is a network protocol used in the implementation of Virtual Private Networks (VPN); RFC 2637 is the PPTP technical specification.
- PPTP works on a client server model; PPTP clients are included by default in Microsoft Windows and also available for both Linux and Mac OS X; newer VPN technologies like L2TP and IPSec may replace PPTP someday, but PPTP/MPPE remains a popular network protocol especially on Windows computers.
VPN Technology Options

Application Layer (5–7)

Transport/Network Layer (3–4)

Link/Physical Layer (1–2)

SSH

Application Layer

SSL

Network Layer

GRE
PPTP
L2TP
MPLS

IPSEC
MPPE

Link-Layer Encryption

Link-Layer Encryption
Benefits of PPTP

PPTP
- PPoE is point-point protocol over Ethernet
- Single tunnel between end-points: Single device support (GRE = generic routing encapsulation)
- Six bytes over overhead when compression used
- No tunnel authentication
- With RADIUS server supports authentication and accounting
- CHAP V2 fixes password, masquerading, and encryption weakness
- 40 or 128 bit RC4 packet encryption
Is PPTP Secure? Yes

CHAP V2 Authentication with 40 or 128 bit RC4 Encryption

- Challenge
- Connection Request
- Response
- Challenge
- New Client Key
- New Server Key
- Encrypted Packet
- New Client Key
- New Server Key
- Encrypted Packet
VPN Technology Comparison

<table>
<thead>
<tr>
<th>Application to Application</th>
<th>SSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>End to End</td>
<td>IPSec Transport Mode</td>
</tr>
<tr>
<td>Gateway to Gateway</td>
<td>PPTP</td>
</tr>
<tr>
<td>Client to Gateway</td>
<td>PPTP</td>
</tr>
</tbody>
</table>

PPTP—Point to Point Tunneling Protocol—Layer 2—Multiprotocol
L2TP/IPSec—Layer 2 Tunneling Protocol—Multiprotocol—Encryption and Authentication
IPSec—IP Security—Layer 3—IP Protocol—Encryption and Authentication
SSL—Secure Sockets Layer—Layer 6/7—Application—Encryption and Authentication
Group Exercise
Configuring
VPNs Lab
Summary

- Demonstration
- Introduction to VPNs
- VPN Security (IPSec, PPTP, SSL)
- VPN Technology Comparison
- VPN Group Exercise