

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 22

White Paper

Authors

Mark ñMitchò Mitchiner

Solutions Architect

U.S. Federal Area

mmitchin@cisco.com

Reema Prasad

Solutions Architect

U.S. Federal Area

reeprasa@cisco.com

Software-Defined Networking and Network
Programmability: Use Cases for Defense and
Intelligence Communities

Abstract

This paper examines how recent advances in software-defined

networking (SDN) and network programmability can be used to

simplify operations, enhance agility, and meet new mission

requirements within U.S. Department of Defense (DoD) and

intelligence community networks. SDN and network programmability

have emerged to address trends in IT by providing greater automation

and orchestration of the network fabric, and by allowing dynamic,

application-led configuration of networks and services. To deliver

these requirements, networks must be open, programmable, and

application aware. Networks must evolve to meet these emerging

trends without compromising their current resiliency, service richness,

or security, and without disrupting previous organizational

investments.

This paper demonstrates, by means of use cases, how current networking issues within federal agencies, such as

the DoD and intelligence community, may be solved through SDN and network programmability.

Problem Statement

Introduction

Traditionally, network architectures within corporate and government networks use network devices that combine

control plane and data plane functions in a single device, typically a router or switch. The control plane is an

element of a router or switch that determines how one individual device within a network interacts with its

neighbors. Examples of control plane protocols are routing protocols, such as Open Shortest Path First (OSPF),

Border Gateway Protocol (BGP), and Spanning Tree Protocol (STP). These protocols determine the optimal port or

interface to forward packets (that is, the data plane). While these control plane protocols scale very well, and

provide a high level of network resiliency, they pose limitations. For example, routing protocols may only be able to

determine the best path through a network based on static metrics such as interface bandwidth or hop count.

Likewise, control plane protocols do not typically have any visibility into the applications running over the network,

or how the network may be affecting application performance.

Data plane functionality includes features such as quality of service (QoS), encryption, Network Address

Translation (NAT), and access control lists (ACLs). These features directly affect how a packet is forwarded,

including being dropped. However, many of these features are static in nature and determined by the fixed

configuration of the network device. There is typically no mechanism to modify the configuration of these features

based on the dynamic conditions of the network or its applications. Finally, configuration of these features is

typically done on a device-by-device basis, greatly limiting the scalability of applying the required functionality.

mailto:mmitchin@cisco.com
mailto:reeprasa@cisco.com

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 22

Figure 1. ONF Model for SDN

SDN and Network Programming Models

The Open Network Foundation (ONF) defines SDN as a decoupling of the control plane and the data plane.

Traditional network devices have an integrated control plane and data plane. In this classic SDN architecture,

however, network intelligence is logically centralized in a controller, and there is a physical separation between

control plane and the data plane. OpenFlow is the protocol that specifies the interactions between the control plane

running in the controller and the infrastructure (Figure 1). The intent of this architecture is agility, automation, and a

decrease in overall costs of the network.

While the classic SDN approach may hold promise for some customer

segments and use cases, it may not be the best fit for others, and is not

without its limitations. This complete separation of the entire control plane

from the data plane in a classic SDN model, removing it from the network

to a centralized controller, is a radical departure from the design and

operation of most networks today. The classic SDN approach to network

architecture introduces potential challenges in availability, performance,

scale, and security. When all control plane functionality is moved to a

central controller, the controller must be highly available. The performance

should meet the rapid requests and extreme load conditions on the

network. The controller must be able to scale to very large networks, with

thousands of nodes. Finally, it must be highly secure, with only approved

applications able to modify or change the underlying network.

While the classic SDN model takes advantage of network programmability,

SDN is not a requirement for programmability. Network devices can be

exposed to the application layer through application programming

interfaces (APIs). This hybrid approach to network programmability and

SDN deployments can take advantage of hardware intelligence as well as

existing feature sets within the network operating system. This can be

accomplished without a complete decoupling of the control plane and the

data plane (Figure 2). Moreover, in a classic SDN model, one must forgo

the features of the native operation system, as those capabilities must be

re-created in a controller. The hybrid SDN model allows many of the

benefits of a classic SDN model with a centralized controller, while still allowing users to benefit from the existing

network capabilities many have come to rely upon. In many cases, the network operating system can simply be

upgraded, rather than a complete upgrade of the network infrastructure. This allows an evolutionary approach to

network programmability, as opposed to the revolutionary approach of a classic SDN model. This evolutionary

method allows users to choose which applications and features are migrated out of the network device and onto a

controller or application server. Finally, a hybrid model allows users to use their existing fault management or

network management systems. The hybrid SDN model is able to minimize some of the potential challenges that

face a classic SDN approach to network architecture.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 22

Figure 2. Hybrid SDN Model

Introduction of Cisco ONE and onePK

Overview

Cisco
®
 Open Network Environment (ONE) is a comprehensive solution

that allows networks to become more open, programmable, and

application-aware. It is a portfolio of complementary technologies, which

includes platform APIs, controller and agent technologies, and overlay

network technologies. The platform APIs are a key element within the

Cisco ONE strategy and part of a Software Development Kit (SDK) called

ONE Platform Kit (onePK). onePK is a comprehensive set of platform

APIs, providing full-duplex programmatic access to Cisco devices. It is a

toolkit, which allows developers to build custom applications that interact

with Cisco network devices in ways that have never before been possible

(Figure 3). onePK enables developers to build automation and

orchestration into the network. The benefits of onePK can be achieved

through a software update to existing routers and switches, providing

investment protection and an evolutionary path to a software-defined

network.

Figure 3. The onePK Toolkit

onePK simplifies operations by allowing automation of functions, thereby creating efficiency. It provides a

framework for innovation, providing access to network devices, which allow new services to be created. Finally,

onePK increases agility by allowing new features and extending device functionality, allowing you to move faster.

The result is a rich interaction between applications and the underlying infrastructure.

The capabilities of onePK represent a hybrid SDN model. However, these capabilities may be used to facilitate the

construction of a classic SDN-based system. For example, onePK can be used to implement OpenFlow agents, or

be used by a network controller, each of which represents typical elements in a classic SDN architecture.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 22

Cisco onePK Architecture

Cisco ONE Platform Kit is a development toolkit for major Cisco platforms. onePK is a highly flexible development

environment, providing a presentation API which supports C, Java, and Python languages (Figure 4).

Figure 4. The onePK Architecture

Central to the onePK architecture is a single set of API libraries for all Cisco major software platforms: Cisco IOS
®

and Cisco IOS XE Software, Cisco IOS XR Software, and Cisco NX-OS Software. This infrastructure layer

provides a level of abstraction for platform-specific implementations. This helps ensure that the application

developer does not have to be concerned with the specifics of the network or underlying infrastructure, greatly

increasing the scope and scale of the application. Developers can use the same APIs across the entire network,

even when devices are running different network operating systems. It is this abstraction of the infrastructure that

greatly enhances the agility and time to market for the application developer.

Between the presentation and infrastructure layer is a communication channel, which provides a typical

client/server model between the application and the network device.

Deployment Models

A deployment model describes where the onePK applications will run. The applications can run on Cisco devices,

such as routers and switches, processing blades, or on an external server. Developers and network operators can

decide which model fits their mission and the requirements of the applications they are running. Each model is

source code portable. Discussed below are the three main deployment models.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 22

Figure 5. Process Hosting Model

Figure 6 Blade Hosting Model

Figure 7. End-Node Hosting Model

Process Hosting

In the process hosting model, all onePK applications are run in a

process container directly on a Cisco network device such as a switch or

router (Figure 5). The supported containers are Linux containers (LXC)

and kernel-based virtual machine (KVM). The process hosting model

helps enable application developers to install and run applications within

a network element. This provides low-latency communication and a

single footprint for applications. Containerization helps ensure proper

resource allocation between each application.

Blade Hosting

In the blade hosting model, the applications are run on a process blade

(Figure 6). This helps enable an application to run close to the control

and data planes. This model means applications can have dedicated

resources to perform their tasks. The blade hosting model also provides

a high degree of isolation.

End-Node Hosting

In the end-node hosting model, applications are run

on an external server connected to the network

(Figure 7). This method gives users the flexibility to

use the platform of their choice. The platforms can

range from multicore Linux or Windows servers to

small mobile devices based on Android or iOS

operating systems. These platforms can run the

applications in either containers or on the host

operating systems, and they provide the highest

degree of isolation.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 22

Security

The security model for onePK involves multiple security measures, which together help ensure that applications

are run highly securely, without introducing vulnerabilities to the network. Central to the security model, however, is

the network administrator, who plays a critical role in helping to ensure the security of the entire network. The

administrator authorizes which users can run which applications, and can enable onePK services for the entire

network or for specific users and devices. No applications can be run on network elements without the active

consent of the network administrator.

Authentication, authorization, and accounting (AAA) can also be enabled on the network devices. This helps

ensure that only authenticated and authorized users can run the application. Finally, the operations performed by

the applications on the network element may be logged through process accounting. This provides auditing of all

applications developed using onePK.

When applications are deployed to run in a containerized manner, the application developer has two options:

trusted containers and untrusted containers. Trusted containers are provided as part of the Cisco infrastructure to

run on network elements or processing blades. Trusted containers allow applications to use a private trusted

communications channel. Untrusted containers allow applications to run within commodity containers on servers.

Programmed applications are required to be authenticated and communicate using highly secure channels such as

Transport Layer Security (TLS). The network administrator can enforce that the application running from an

untrusted container has valid credentials to access the network element. Cisco recommends that all applications

be run in a container and that network administrators enforce resource limits.

In addition to deploying and running applications in a highly secure manner, the onePK security model provides

security measures for authenticity of the applications themselves. For example, the administrator can work to

ensure that a chain of trust exists between the developer of the application and the device it is installed upon. A

signature can be created by the publisher of the application package and verified during the time of install. It is up

to the network administrator to decide which application publishers are trusted. Finally, the internal interprocess

communication (IPC) mechanism performs strong type check and prevents buffer overrun conditions. Any IPC

access that originates from an untrusted host is authenticated and encrypted, using TLS-based security.

Use Cases

The power of SDN and network programmability is best illustrated through use cases. While there are a very large

number of potential use cases, here we focus on issues that face the DoD and intelligence communities in

particular, although enterprise companies may find them of value as well. Finally, the use cases explore and

highlight what is both reasonable and feasible, providing detailed examples and working code. While the code

snippets shown are in the C programming language, there is also feature parity with the Java and Python

languages. Please note that this is sample code and subject to change before the General Availability release of

the API.

Use Case 1: Latency-Based Routing

The goal of a routing protocol, such as BGP, OSPF, Intermediate System-to-Intermediate System (IS-IS), or

Enhanced Interior Gateway Routing Protocol (EIGRP), is to find an optimal path to a given destination within the

network. The metric used to determine the optimal path, however, is often fixed and static, and does not vary

based on the load placed on the network or the utilization of its links. For example, in the case of OSPF or IS-IS,

the cost used to calculate the best path is the interface bandwidth, which is typically fixed. In the case of BGP,

while there are metrics that can be set by the administrator, the protocol, again, is relatively static in nature.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 22

In an era where cloud computing, big data, and surging video traffic are becoming the norm, networks are reaching

a saturation point, and unable to keep up with demand. In some cases, a path through a network may become

oversubscribed, while an alternate path may be underutilized, or not used at all. Because network traffic tends to

be ñburstyò in nature, utilization of a set of links may fluctuate greatly over time. Traditional routing protocols may

not be able to react efficiently to the dynamic nature of todayôs networks. Figure 8 shows a path through a network,

from Los Angeles to New York. This path is fixed - the lowest cost is based upon the bandwidth of each interface.

The network is unable to take into account the load on each of its links.

Figure 8. Network Path Based on OSPF Metrics

What is required is a mechanism that can dynamically react to the latency and utilization of the network in real-

time. For example, as links on a router get congested, the latency for traffic along that path increases, caused by

queuing delays in interface egress buffers. Thus, latency can be used as a metric for each path within a network,

which allows for real-time response to oversubscribed links in a network. Applications that require minimal delay

and jitter, such as mission-critical real-time traffic or voice traffic, could take a low-latency path through the network,

while all other traffic (such as bulk and transactional data) could take a path derived from the underlying routing

protocol. This allows real-time application traffic to be directed over links with the lowest latency to the destination.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 22

As shown in Figure 9, a latency-based metric follows a different path through the network: one that has the least

latency or that is currently experiencing less congestion. This allows real-time application traffic to follow a path

through the network that provides the optimal response times.

Figure 9. Network Path Based on Low-Latency Metrics

To help enable this solution, each node in the network discovers the topology of the network, and the set of links

interconnecting each device. Next, each node in the network samples the latency to each of its connected

neighbors, and the result is sent to an application server. That latency data is fed into Dijkstraôs algorithm to

determine the lowest cost path, where cost in this case is the latency measurements. From the output of Dijkstraôs

algorithm, a new set of routes can be applied to the network, routes that provide the shortest path tree based on

latency in the network. These routes are ñoverlaidò on top of the routes derived from the existing routing protocol.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 22

Figure 10 show sample code of the creation of a local application route, which can then be applied to each node in

the network through onePK.

Figure 10. Sample Code - Creation of a Local Application Route

Routes that are applied to a network node are known as application routes, as they are derived and installed by

applications. The application server installs the set of application routes on each node in the network. Figure 11

shows the routing table from a node in the network with a set of application routes.

Figure 11. Application Routes (Truncated Output)

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 22

This example provides a solution for low-latency routing, by overlaying a low-latency path through the network over

an existing routed path. Route table stability can be increased by modifying the latency data collection and

averaging mechanisms, and by implementing route dampening to minimize route flapping and prevent sustained

route oscillations. This solution can provide a routing algorithm that is able to dynamically react to the delay and

utilization of the network in real time, providing low-latency paths through a network for mission-critical application

traffic. However, great care must be taken while implementing such a solution. This example of latency-based

routing does not provide the loop-avoidance and black-hole avoidance mechanisms of mature routing protocols.

Moreover, centralization of the control plane can lead to scalability issues as well as transient micro-loops. Finally,

this solution is not intended as a replacement for existing routing protocols, as they provide the highest level of

stability and scalability. This example does, however, demonstrate the potential capabilities available in a hybrid

SDN model, highlighting the augmentation of the control plane where a subset of control plane functionality is

placed in a centralized application server.

Use Case 2: Dynamic QoS

Quality of service (QoS) refers to the ability to prioritize some applications, users, or data flows, at the detriment of

other data. It is used to help guarantee a certain level of performance to an application. For example, voice over IP

(VoIP) traffic may be prioritized and provided a fixed guarantee for delay, jitter, or bandwidth. However, such

guarantees are statically assigned to a port or interface on a router or switch, which has a fixed port speed. For

example, on a 100 Mbps Fast Ethernet interface, there may be a fixed 10 Mbps guarantee for voice traffic.

There are cases, however, where the bandwidth on an interface is not fixed, but varies over time. Traditional radios

or modems provide fixed modulation, and the bandwidth on the connected interface is also fixed. Newer wireless or

microwave radios and satellite modems, however, may provide adaptive modulation and coding mechanism. With

this technology, changes due to fluctuating weather conditions, attenuation due to obstacles, or limited line-of-site

operations may cause signal degradation and inferior signal quality, resulting in a reduction in the available

bandwidth over the link (Figure 12).

Figure 12. Impact of Signal Strength on Bandwidth

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 22

This change in bandwidth is signaled to the connected router or switch, which in turn changes its interface

bandwidth. However, it is possible that the interface bandwidth may be decreased below the reserved bandwidth

for a traffic class in the QoS policy. For example, if 10 Mbps of bandwidth were reserved for VoIP traffic, it may be

possible for the interface bandwidth to drop below this level (Figure 13). The result is inconsistent behavior, often

resulting in the removal of the QoS policy from the interface altogether.

Figure 13. Dynamic Reduction in Interface Bandwidth

What is required is the ability to actively monitor the signaled interface bandwidth, and modify the QoS parameters

based on the current bandwidth available over that interface.

The onePK toolkit brings that ability, through programmatic interfaces to network devices. Through the onePK API,

the interface bandwidth can be monitored, and a different QoS policy can be applied to an interface in real time,

based on the thresholds determined by the mission requirements. This feedback loop of monitoring the interface

and applying a QoS policy is done purely through software and without user intervention.

Figure 14 shows an example of this. Here, the available bandwidth over the wireless link drops to 5 Mbps, which is

signaled to the router interface. The onePK process on the router detects this change in bandwidth, and notifies the

onePK process running on a server. The server, based upon user-defined thresholds for interface bandwidth,

sends back a new QoS policy, which is applied to the router interface connected to the wireless modem. While an

external server is shown here, any of the three hosting models could be applied to this scenario.

Figure 14. Adaptive QoS Policy Applied to Router

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 22

Figure 15 shows sample code of a QoS policy being applied to a router interface. An interface target is first

created, and then a predefined QoS policy is applied to that target.

Figure 15. Sample Code - Applying a QoS Policy to an Interface

This use case demonstrates the value of onePK and network programmability by showing how the network can

react to dynamic external conditions and modify its state based on those conditions. This use case, in particular,

shows how network policy is no longer static, but is able to react to the current conditions and state of the network.

Use Case 3: Diversion Networking

Cyber security threats have evolved over the past decade. Attackers are increasingly improving their approaches

with greater funding, plus attacks are increasingly innovative. Defense tools must also change and adapt to this

evolving landscape. While intrusion detection and malware detection systems are essential elements of an overall

network security strategy, it is not enough to modify policies or controls. The security paradigm must be focused on

the threats themselves, and have the ability to protect against both the sophistication of the attacks as well as

against the sheer number of new attack vectors.

The new network security model must be able to detect threats and remove malicious flows in the network in real

time. However, with the migration to high-bandwidth links such as 10 Gb and eventually 100 Gb in the LAN and

even the WAN or to the Internet, traditional security devices are unable to process this amount of data. What is

needed is the ability to divert a subset of the overall network traffic off the naturally routed or switched path to a

device that can both offload the processing of the diverted traffic and provide a deeper level of inspection or

analytics.

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 22

Figure 16 shows this model. A subset of the incoming traffic from the WAN or the Internet is diverted to an

inspection server. This diversion could be copies of the packet or the original packet itself. The subset of the traffic

that is diverted could be based upon source address, destination address, protocol, port number, TCP flags or

even a pattern or signature within the packet payload itself. Furthermore, the decision to divert traffic could be

automated and based upon predefined policies or triggers.

Figure 16. Diversion Networking

In the case of a copy of the data traffic, the original traffic flow still proceeds via its original path and a copy of the

packet is sent to the inspection server. In the case of a punt, the original flow is diverted or redirected to the

inspection server.

The inspection server is able to provide forensics or higher-level analytics of the traffic. Based on the results of that

inspection, the data flow could be either dropped, or sent back to its original path. Furthermore, the inspection

server could instruct the edge router to drop all subsequent packets in that flow. Finally, the data could be sent to a

long-term storage cluster for further post-hoc forensics.

Central to the concept of diversion networking is the fact that, unless the data is dropped, the sender or source of

the traffic has no way of knowing that the traffic flow has been diverted.

