DMVPN/GET VPN
Design & Case Study

Stephen Lynn
Consulting Systems Engineer
CCIE 5507
Agenda

- Overview of Dynamic Multipoint VPNs (DMVPN)
- Overview of Group Encrypted Transport VPNs (GET VPN)
- DMVPN/GET VPN Design Selection
- DMVPN/GET VPN Network Virtualization Case Study
Session Objectives

At the end of the session, the participants should be able to:

- Understand DMVPN and GETVPN technology and describe the differences
- Understand solution positioning and select the best technology based on business requirements
- Design a network using DMVPN or GET VPN to provide network virtualization and separation
DMVPN Overview
What is Dynamic Multipoint VPN?

- DMVPN is a Cisco IOS Software solution for building IPsec+GRE VPNs in an easy, dynamic and scalable manner.
- Relies on two proven technologies:
 - Next Hop Resolution Protocol (NHRP)
 - Creates a distributed (NHRP) mapping database of all the spoke’s tunnel to real (public interface) addresses.
 - Multipoint GRE Tunnel Interface
 - Single GRE interface to support multiple GRE/IPsec tunnels.
 - Simplifies size and complexity of configuration.
DMVPN – How it works

- Spokes have a dynamic permanent GRE/IPsec tunnel to the hub, but not to other spokes. They register as clients of the NHRP server.

- When a spoke needs to send a packet to a destination (private) subnet behind another spoke, it queries the NHRP server for the real (outside) address of the destination spoke.

- Now the originating spoke can initiate a dynamic GRE/IPsec tunnel to the target spoke (because it knows the peer address).

- The spoke-to-spoke tunnel is built over the mGRE interface.
Dynamic Multipoint VPN—Example

- Static Spoke-to-hub tunnels
- Dynamic Spoke-to-spoke tunnels

Static known IP address

Dynamic unknown IP addresses

LANs can have private addressing

Physical: 172.17.0.1
Tunnel0: 10.0.0.1

Physical: dynamic
Tunnel0: 10.0.0.12

Physical: dynamic
Tunnel0: 10.0.0.11

Spoke A

Spoke B

192.168.0.0/24

192.168.1.0/24

192.168.2.0/24
Dynamic Multipoint VPN (DMVPN) Major Features

- Configuration reduction and no-touch deployment
- IP unicast, IP multicast and dynamic routing protocols
- Spokes with dynamically assigned addresses
- NAT – spoke routers behind dynamic NAT and hub routers behind static NAT
- Dynamic spoke-spoke tunnels for scaling partial/full mesh VPNs
- Can be used without IPsec Encryption
- VRFs – GRE tunnels and/or data packets in VRFs
- 2547oDMVPN – MPLS switching over tunnels
- QoS – Aggregate; Static/Manual per-tunnel
- Transparent to most data packet level features
- Wide variety of network designs and options
Network Designs

Hub-and-spoke

Spoke-to-spoke (Phase 2)

Server Load Balancing

Hierarchical (Phase 3)
DMVPN Network Designs

- Hub-and-spoke
 Spoke-to-spoke traffic via hub, Tunnels = O(n)
 Phase 1: Hub bandwidth and CPU limit VPN
 SLB: Many “identical” hubs increase CPU power
- Spoke-to-spoke – Dynamic spoke-to-spoke tunnels
 Control traffic – Hub-and-spoke; Hub to hub
 Phase 2: Single Hub-and-Spoke layer
 Phase 3: Hierarchical Hub-and-Spoke layers
 Unicast Data traffic — Dynamic mesh
 Spoke routers support spoke-hub and spoke-spoke tunnels currently in use.
 Hub supports spoke-hub traffic and overflow from spoke-spoke traffic.
 Number of tunnels > O(n), << O(n^2) (full-mesh)
Network Designs
Common Requirements

▪ Small/Medium Business
 DMVPN Phase 3 single layer design
 Dial backup and VRF for non-split-tunneling
 Up to 1000 spokes, with dynamic spoke-spoke tunnels.

▪ Larger Business
 DMVPN Phase 3 hierarchical layer design
 Dial backup, multiple ISP connections, VRF for non-split-tunneling and group separation.
 1000-2000 spokes, with dynamic spoke-spoke tunnels.

▪ Home Office - Work Access
 ECT (Enterprise Class Teleworker) designs
 DMVPN Phase 3 single layer design
 1000s of spokes
Network Designs
Common Requirements (cont.)

- Point-of-Sale / ATM
 Server Load Balancing (SLB) designs – Super Hub
 No spoke-spoke (designs now available to enable spoke-spoke)
 4000 – 20000+ spokes.

- Extranet
 DMVPN Phase 1 Hub-and-spoke design
 No spoke-spoke not even via the Hub – (using ACLs)
 Probably <1000 spokes.

- ISP
 DMVPN Phase 3 or SMB designs, MPLS (2547oDMVPN), VRFs
 Hub-and-spoke and spoke-spoke networks.
 Different size networks (# of spokes), but also supporting many DMVPN networks on the same set of hub routers.
GET VPN Overview
What is Group Encrypted Transport VPN? (GET VPN)

- GET VPN is a group key based tunnel-less VPN solution for the enterprise network using private MPLS/IP core.
- Enables secure end-to-end fully meshed network, for Data, Voice, Video, IP Multicast and other applications, without the use of point-to-point VPN tunnels.
- Relies on Open standard technologies
 Group Domain Of Interpretation (GDOI)
 RFC 3547
 Provides cryptographic keys and polices to a group of VPN gateway that share the same security policies.
 IPSec encryptions
 Supports 3DES, AES128/192/256 algorithms.
GET VPN Components

Key Server
- Validate Group Members
- Manage Security Policy
- Create Group Keys
- Distribute Policy / Keys

Routing Member
- Forwarding
- Replication
- Routing

Group Member
- Encryption Devices
- Route Between Secure / Unsecure Regions
- Multicast Participation
GETVPN - How Does it Work

- **Step 1**: Group Members (GM) “register” via GDOI (IKE) with the Key Server (KS)
 KS authenticates & authorizes the GM
 KS returns a set of IPsec SAs for the GM to use

- **Step 2**: Data Plane Encryption
 GM exchange encrypted traffic using the group keys
 The traffic uses IPSEC Tunnel Mode with “address preservation”

- **Step 3**: Periodic Rekey of Keys
 KS pushes out replacement IPsec keys before current IPsec keys expire. This is called a “rekey”

Once you have been admitted to the group, you can communicate freely with any/all group members.
Group Security Association

- Group Members share a security association
 Security association is not to a specific group member
 Security association is with a set of group members
- Safe when VPN gateways are working together to protect the same traffic
 The VPN gateways are trusted in the same way
 Traffic can flow between any of the VPN gateways
- Each group supports up to 100 ACL permit entries that define interesting traffic for encryption
 Each permit entries results in a pair of Security Associations
 Maximum IPSec SAs in a group cannot exceeds 200
Secure Data Plane Multicast

- **Premise:** Sender does not know the potential recipients
- Sender assumes that legitimate group members obtain Traffic Encryption Key from key server for the group
- Encrypt Multicast with IP Address Preservation
- Replication In the Core based on original (S,G)
Corollary: Secure Data Plane Unicast

- **Premise:** Receiver advertises destination prefix but does not know the potential encryption sources
- **Receiver assumes** that legitimate group members obtain Traffic Encryption Key from key server for the group
- **Receiver can authenticate** the group membership
Group Encrypted Transport (Data Plane)

Encapsulation without Time-Based Anti-Replay

10.1.1.4 10.1.2.32
Payload

10.1.1.4 10.1.2.32
ESP Header (SPI)

10.1.1.4 10.1.2.32
Payload

10.1.1.4 10.1.2.32
ESP Trailer

Encapsulation with Time-based Anti-Replay

10.1.1.4 10.1.2.32
Payload

10.1.1.4 10.1.2.32
ESP Header (SPI)

10.1.1.4 10.1.2.32
Cisco Meta Data

10.1.1.4 10.1.2.32
Payload

10.1.1.4 10.1.2.32
ESP Trailer

8

Time Stamp

8

Time Stamp

8
Group Policy Distribution

- **Group Keys**
 - Key Encryption Keys (Default Lifetime of 24 hours)
 - Traffic Encryption Keys (Default Lifetime of 1 hour)

- **Key Distribution Methods**
 - **Unicast**
 - Infrastructure Capable of Unicast Only
 - Requirement for Rekey Acknowledgement
 - Requirement for per GM rekey control
 - **Multicast**
 - Infrastructure Capable of Multicast
 - Requirement for more Scalable Key and Policy Distribution
Cooperative Key Server: Roles

- A Key Server is Elected Primary, Creates Keys, and Distributes Keys
- Group Members Complete Registration to an available Key Server and Receive Policy and Keys
Cooperative Key Server: Primary Processes

- Primary Key Server Generates new Keys on a Periodic Basis
- Primary Checks Consistency of Policies and Coordinates Group Member List with Secondary KS
- Primary Distributes Keys to Secondary KS and Group Members
- Primary Notifies Secondary of Primary Presence

![Diagram of Cooperative Key Server Processes]

Primary

Secondary

GET VPN

Group Member

Secondary

Group Member
<table>
<thead>
<tr>
<th>Benefits of GET VPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Limitations</td>
</tr>
</tbody>
</table>
| Multicast traffic encryption was supported through IPsec tunnels:
 – Not scalable
 – Difficult to troubleshoot | Encryption supported for Native Multicast and Unicast traffic with Group Security Association
 – Allows higher scalability
 – Simplifies Troubleshooting
 – Extensible standards-based framework |
| Overlay VPN Network
 – Overlay Routing
 – Sub-optimal Multicast replication
 – Lack of Virtualized QoS
 – Peer Mesh of IPsec States | No Overlay
 – Leverages Core network for Multicast replication via IP Header Preservation
 – Optimal Routing introduced in VPN
 – Standard QoS for encrypted traffic
 – Global Distributed IPsec State |
| Full Mesh Connectivity
 – H and S primary support
 – S to S not scalable | Any to Any Instant Enterprise Connectivity
 – Leverages core for instant communication
 – Optimal for Voice over VPN deployments |
Design Selection
Design Selection Challenge

- Wide variety of platforms and encryption modules to choose for the Hub
- Certain platforms or IOS trains do not support all the features
- Routing protocol characteristics and scalability is different
- More than one design can satisfy a given set of requirements
- Addition of certain features change the design or topology e.g. multicast
DMVPN Solution – Common Design Selection Criterion

Topology?
Hub & Spoke or Spoke to Spoke

Routing Protocol choice?
EIGRP, OSPF, BGP, RIP

Encryption Throughput?
VAM2+, VSA, SPA

Fine tune
Modify design based on platform and IOS

Step 1: Select topology based on requirement

Step 2: Select RP based on scalability requirements OR scale design based on selected RP

Step 3: Select platform and/or encryption card based on throughput requirements

Step 4: Adjust DMVPN phase or topology based on IOS, platform or traffic requirements
Step 1 – Select Topology

Resilient Hub and Spoke

All the features of basic hub and spoke design apply
Spokes connect to two or more hubs for resiliency
Based on routing, traffic can be distributed to both hubs OR can always be sent to a primary hub

Resilient Spoke to Spoke

All the features of basic spoke to spoke design apply
Spokes connect to two or more hubs for resiliency
Based on routing and/or NHRP configurations, traffic can be distributed over both hubs
Step 2 – Select a Routing Protocol based on Scalability requirements

- IOS SLB design using EIGRP or RIPv2 Passive
- BGP using Route Reflector router farm

- RIPv2
 - Passive with IP SLA: 7200/6500
 - Preferred

- ODR
 - 7200/6500

- EIGRP
 - 7200/6500
 - Preferred

- OSPF
 - 7200/6500
 - Preferred

- BGP
 - 7200
 - 6500
 - ASR

Number of Branches: 500, 1000, 1500, 2000+
Step 3 – Select Platform and Encryption Module

- **IOS SLB Design** – Crypto and MGRE terminated on same device. Throughput N x Hub Platform
- **Multi-Tier Design** – Crypto terminated on 6500/SPA and mGRE terminated on 7200 (Ph1 or Ph3)
- **6500 with IPsec SPA as crypto headend or spoke device** (DMVPN Ph1 or Ph2)
- **7200 G2/VSA**
- **7200 G2/VAM2+**
- **G1 VAM2+**

Throughput depends on number of hub platforms

Not recommended without AS support

IMIX Throughput 70% Max CPU

ASR

- 500 M
- 1.0 G
- 1.5 G
- 2.0 G
Step 4 – Final Design Adjustment

Hub and Spoke design works the same in mainline or T train. Select a stable well tested release. Spoke to spoke traffic (if allowed) will traverse the hub

Spoke to spoke design works differently depending on train and platform

| 12.4 M, pre 12.4(6)T, 12.2(33)SXH, ASR (Rel. 2) or later |
| 7200/ISR, 6500, ASR1000 as a hub or spoke |

DMVPN Phase 2
- Hubs need to be daisy chained
- Can not summarize routes
- Next hop must be unchanged
- OSPF can not support more than two hubs

| 12.4(6)T or later |
| 7200/ISR (or 6500 use for crypto offloading device) |

DMVPN Phase 3
- No daisy chain required
- Route summarization possible
- NHRP Redirect and shortcut
- Hierarchical designs for better scalability

Preferred
GETVPN Solution – Common Design Selection Criterion

Policy?
Inclusive or Exclusive

Scalability?
Rekey Method, KS Architecture

Encryption Throughput?
VAM2+, VSA, SPA

Fine tune
Policy Management and Reliability

Step 1: Determine the security policy of traffic that needs encryption and scope of the VPN

Step 2: Based on scale requirements, select KS platform, KS architecture for control plane

Step 3: Select GM platform and/or encryption card based on throughput requirements

Step 4: Adjust policy for control and management plane. Optimize timers for convergence
Step 1 – Select Policy Model and Scope

<table>
<thead>
<tr>
<th>Inclusive</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy encrypts all traffic by default</td>
<td></td>
</tr>
<tr>
<td>Exceptions defined for control plane and management</td>
<td></td>
</tr>
<tr>
<td>Exceptions defined out-of-scope VPN segments</td>
<td></td>
</tr>
<tr>
<td>Transition plan defined for eliminating exceptions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy encrypts specific ranges of subnets</td>
</tr>
<tr>
<td>Exceptions defined for specific applications and subnets</td>
</tr>
<tr>
<td>Transition plan defined for in-scope VPN segment inclusion</td>
</tr>
</tbody>
</table>
Step 2 – System Scalability

Key Server Rekey Management
Determine if multicast rekey is required (> 2000 GM)
Determine if VPN has multicast enabled
Assess routing convergence intervals

Key Server Architecture
Determine number of KS require based on GM number
Determine control plane topology (PIM-SM, -Anycast, -SSM)
Determine policy exceptions for KS control plane
Step 2 – System Scalability (Example 7200)

- 3 KS - Multicast
- 3 KS - Multicast
- 3 KS - Multicast
- 2 KS - Unicast
- 2 KS - Unicast
- 8 KS - Unicast
- 4 KS - Unicast
- 3 KS - Unicast
- 2 KS - Unicast

Number of Branches

- Preferred

Pre-shared Keys

Public Key
Step 3 – Select Platform and Encryption Module

- 6500 with Granikos SPA (4Q09)
- ASR1000 (1Q09)
- G2/VSA
- G2/VSA
- G2/VSA
- G2/VAM2+
- G1/VAM 2+
- CEF Load-Balancing

IMIX Throughput 70% Max CPU

500 M 1.0 G 1.5 G 2.0 G 2.5 G 3.0 G
Step 4 – Final Design Adjustment

- Adjust Policy to facilitate:
 - Management plane access (HTTPS, TFTP, SNMP, SSH, TACACS, etc.)
 - Sustain control plane (BGP/IGP, PIM, GDOI, IKE, etc.)

Adjust timers to optimize availability:
- COOP Protocol for KS Convergence
- Rekey Timers for Routing Convergence

IOS Current Release: 12.4(22)T

ION and XE Planned Releases

GET VPN
- Phase 1.0 - Originally released in 12.4(11)T
- Phase 1.2 – Planned release in pi12

GET VPN
- 6500 Projected release in ION Arrowhead
 - Phase 1.2 (GM Only)
- ASR Projected release in IOS XE RLS 3
 - Phase 1.2 (GM Only)
DMVPN/GET VPN
Network Virtualization
Case Study
Business Requirements

- Three Business Units (BU)
 Sites have one or more BUs
- No security policy within business unit
- Security polices will be applied to inter-BU traffic
- Data must be encrypted when passing through SP network
- Hub access must have high availability
 Hub services all BUs
- Optional, multicast traffic over the VPN network
- Optional, no disclosure of local addresses to SP
Separate DMVPN – VRF-lite

- Separate mGRE tunnel per BU
- Hub routers handle all BU DMVPN
- Multiple Hub routers for redundancy and load
 - All Hub routers configured similar to each other
 - Either manually map spokes to Hub routers
 - Need (2n) Hub routers for redundancy
 - Or use IOS SLB to dynamically map spokes to Hub routers
 - Need (n+1) Hub routers for redundancy and 2 IOS SLB routers
- EIGRP used for routing protocol outside of and over DMVPN
- BGP used only on the hub
 - For import/export of routes between VRFs
Separate DMVPN VRF-lite Logical Topology

- Yellow DMVPN 10.0.0.0/24
- Red DMVPN 10.0.1.0/24
- Green DMVPN 10.0.2.0/24

Hub1

Spoke1 192.168.x.y/24
Spoke2 192.168.x.y/24
Spoke3 192.168.x.y/24

Interface Tunnel 0
Interface Tunnel 1
Interface Tunnel 2
MPLS over DMVPN – 2547oDMVPN

- **Single DMVPN**
 MPLS VPN over DMVPN (hub-and-spoke only)
 Single mGRE tunnel on all routers

- **Simplified MPLS configuration**
 Still adds complexity for managing and troubleshooting

- **Multiple Hub routers for redundancy and load**
 Hub routers configured similar to each other
 Manually map spokes to Hub routers
 Need (2n) Hub routers for redundancy

- **EIGRP is used for routing outside the DMVPN network**

- **BGP must be used for routing protocol over DMVPN**
 Redistribute EIGRP to/from BGP for transport over DMVPN
 Import/export of routes between VRFs
MPLS over DMVPN (2547oDMVPN)
Logical Topology
GET VPN Fundamentals

- **Departmental Segmentation Requires:**
 - Route Segmentation (aka VRF)
 - Data Plane Segmentation (e.g. Tunnel, Circuit, Switched Path)
 - Control Plane Segmentation (e.g. virtual routing adjacency)

- **GET VPN Does Not Create the VPN** – it secures the VPN
 Departmental Segmentation must be accomplished using tunnels (e.g. GRE, L2TPv3, LSP, etc.)
 GET does not tunnel traffic; therefore, the addresses are exposed

- **GET VPN can secure a departmental segment**
 GET can encrypt IP tunnels
 GET can encrypt traffic forwarded into tunnels
Virtualization Decision Matrix: Selection of DMVPN or GETVPN

<table>
<thead>
<tr>
<th></th>
<th>Any-to-any Persistance</th>
<th>Secure VPN Partitioning</th>
<th>Mask VPN IP Addresses</th>
<th>Segment Creation By Customer</th>
<th>Scalability Of Routing Adjacency</th>
<th>Efficient Multicast Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate DMVPN Clouds</td>
<td></td>
</tr>
<tr>
<td>MPLS VPN Over DMVPN</td>
<td></td>
</tr>
<tr>
<td>MPLS VPN Segments</td>
<td></td>
</tr>
<tr>
<td>Policy Segmented Shared MPLS VPN</td>
<td></td>
</tr>
<tr>
<td>MPLS VPN Over GET Encrypted GRE Tunnels</td>
<td></td>
</tr>
<tr>
<td>Tunneled GET Encrypted VPN Segments</td>
<td></td>
</tr>
</tbody>
</table>
Key Takeaways

The Key Takeaways of this presentation are:

- **Positioning**
 - DMVPN generally recommended for over Public Networks
 - GET VPN Generally recommended for over Private Networks

- **Models**
 - DMVPN creates a VPN and secures the VPN
 - GET VPN secures an existing VPN

- **Virtualization**
 - DMVPN uses multiple overlays or single overlay with MPLS VPN
 - GET VPN uses distinct polices or multiple overlays
Additional Resources

- GETVPN Design & Implementation Guide

- DMVPN Design & Implementation Guide