
White paper
Cisco Public

Bring Your Own Token
to Replace Traditional
Smart Cards
This case study discusses implementing a Bring Your Own Token (BYOT)
solution with support for self-provisioning and management options to enable
users to provision digital identities used for strong authentication and signing.

© 2020 Cisco and/or its affiliates. All rights reserved.

Abstract
Smart cards are a good way to enable strong authentication to enterprise network and applications
because they provide identification, authentication, and the ability to store cryptographic key information
on a card using the embedded microchip and memory. Enterprises can provision smart cards with a
digital identity, in the form of a X509 certificate uniquely associated with a user, to enable smart card
login to servers and mutual TLS authentication to services. Traditionally, hybrid cards that provide both
the proximity card and smart card functionalities are used for this purpose so that users can have a single
card for facility access and strong authentication to IT servers or applications.

There are some limitations and challenges with using a single card as both proximity and smart card.
Proximity cards can generally preprovision in bulk because the association of the user identity to the
proximity ID can be done after the card is assigned to a user. But for the smart card, the X509 certificates
provisioned to the smart cards contain the user information that must be known at provisioning time.
This slows down the provisioning process. There are also other challenges related to issuing temporary
replacement cards for lost cards.

This white paper describes the Cisco solution to replace traditional hybrid smart cards with a Bring
Your Own Token (BYOT) model, to overcome the limitations and challenges with traditional smart card
solutions. Our solution enables users to bring their own USB tokens that are compatible with Personal
Identity Verification (PIV) and Chip Card Interface Device (CCID) standards, to self-provision digital
identities needed to enable strong authentication, signing, and other cryptographic functions.

White paper
Cisco Public

Introduction
The idea of incorporating an integrated circuit chip onto a plastic card was first introduced by two
German engineers in the late 1960s, Helmut Gröttrup and Jürgen Dethloff. A smart card1 is essentially
a plastic card with an embedded integrated circuit chip. Smart cards come in many different types
and dimensions and contact and contactless forms. Their physical characteristics, electrical interface,
transmission protocols, crypto mechanisms, etc., are defined in the ISO/IEC 7810 and ISO/IEC 7816
standards. At their core they provide a tamper-resistant secure crypto processor and secure file
system which communicates with external services using a card reader. The cryptographic key
material and digital certificates are securely generated and imported to the chip.

Smart Card Use Cases
One of the most widely adopted and successful use cases for smart cards is for mobile
communications with the Global System for Mobile Communications (GSM)2 network and the
Subscriber Identity Module (SIM)3. Another use case is in banking and retail with EMV Chip cards4 that
implement the Chip and PIN or Chip and Signature schemes for securing credit transactions. The focus
of this white paper is the use case of smart cards for IT applications to enable strong authentication,
signing, and encryption.

The traditional use of smart cards at large enterprises involved the use of hybrid cards that provide
both the physical access proximity card and the logical smart card functionality. This combined the
two functions onto a single card for enterprise facility access and strong authentication to information
systems. The digital identity certificates for strong authentication are either provisioned on premise in
the badging office using kiosks or using third-party provisioning partners.

1 https://en.wikipedia.org/wiki/Smart_card
2 https://en.wikipedia.org/wiki/GSM
3 https://en.wikipedia.org/wiki/SIM_card
4 https://en.wikipedia.org/wiki/EMV

Figure 1: Smart Card Dimensions

Figure 2: Smartcard pinout diagram

https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/SIM_card
https://en.wikipedia.org/wiki/EMV

White paper
Cisco Public

CCID and PIV Standards
The Chip Card Interface Device (CCID)5 standard, defined by the USB standards work group in March
2001, specifies the protocol and requirements for a smart card to be connected to a computer via a card
reader using a standard USB interface, without the need for each smart card manufacturer to provide its
own reader or protocol. The latest revision of CCID (1.1) was released in April 2005.

The Personal Identity Verification (PIV) standard was published by National Institute of Standards and
Technology (NIST) in February 2005 with FIPS 201 document. This specifies the architecture and technical
requirements for a common identification standard to improve the identification and authentication of
federal employees and contractors for access to federal facilities and information systems. The latest
revision of PIV (FIPS 201-2)6 was published in August 2013.

The PIV standard specifies the requirements for standard slots or data objects in smart cards listed in the
following table. The commonly used slots are 9A and 9D.

Slot

04

9A

9B

9C

9D

9E

82, 83, 84, 85, 86, 87, 88, 89, 8A, 8B,
8C, 8D, 8E, 8F, 90, 91, 92, 93, 94, 95

PIV Secure Messaging

PIV Authentication

PIV Card Application Administration

Digital Signature

Key Management

Card Authentication

Retired Key Management Key

Never

Once per session

Never

Every use

Once per session

Never

Once per session

Key Type PIN Requirement

5 https://www.usb.org/sites/default/files/DWG_Smart-Card_CCID_Rev110.pdf
6 https://doi.org/10.6028/NIST.FIPS.201-2

Table 1: List of Standard Slots

These two standards have played a significant role in standardizing and simplifying the use of smart cards
on computers for various use cases.

Limitations with Traditional Smart Cards
Most of the limitations with traditional smart cards concern the physicality of the smart card. Programming
the physical and logical portions of the card requires setting up kiosks in badging offices or using a third-
party provisioning service provider. The third-party solution introduces a delay between requesting a
badge and actual receiving a working, usable badge. It does, however, work fairly well for full-time remote
workers. Conversely, a kiosk in a badging office on a company’s campus does not work well for full-time
remote workers.

Another challenge is dealing with lost or misplaced smart cards. The same challenges in initial provisioning
of a smart card exist, with a user having to visit a badging office or wait for their new badge to be shipped.
Tangentially related, if a strong entity for authentication is provisioned to the smart card that the employee

https://www.usb.org/sites/default/files/DWG_Smart-Card_CCID_Rev110.pdf
https://doi.org/10.6028/NIST.FIPS.201-2

White paper
Cisco Public

relies on for logical access to their workstation, forgetting the badge at home and arriving at the workplace
can leave the employee without many good options. Most companies have some means to provision
temporary badges for physical access, but what about logical access?

Yet another challenge with the traditional smart card program is the need for the card reader and the
support for necessary driver or middleware on the host operating system to interact with the smart card.
Support for smart cards is not consistent across different operating systems. While the native support for
smart cards is good on Microsoft Windows, a middleware driver such as OpenSC7 or additional vendor-
specific software is required to be installed on the MacOS and Linux to interact with smart cards.

Evolution of Strong Authentication at Cisco
Cisco has been using some form of strong authentication since 1997. This has evolved over the years as
shown in the following timeline.

7 https://github.com/OpenSC/OpenSC
8 https://www.microcosm.com/blog/hotp-totp-what-is-the-difference

Figure 3: Timeline of Strong Authentication Solutions at Cisco

Safeword Premier Access
In 1997, Cisco deployed the Safeword Premier Access (SPA) product to enable users one-time password
(OTP)-based authentication to protect sensitive and privileged access operations. This was used to protect
VPN access to Cisco networks, SSH access to remote servers, and enabling root access (sudo).
The first iterations of this service offering were not self-service and required Cisco users to call into
Cisco’s internal helpdesk, the Global Technical Response Center (GTRC) for help with their tokens. SPA’s
OTP system was an event-based system (HOTP)8 and therefore the counter between the clients and
servers could get out of sync. Another problem was the counter for a particular user’s token was required
to be kept in sync between all the backend SPA servers, which was problematic when load was high and
due to network latency.

https://github.com/OpenSC/OpenSC
https://www.microcosm.com/blog/hotp-totp-what-is-the-difference

White paper
Cisco Public

GGSG Smart Card Program
Around 2003, the InfoSec team at Cisco, which was responsible for the operation of the SPA servers at
that time, began to evangelize a new combined physical and logical access token to replace the aging
infrastructure and close some vulnerabilities. No executive was willing to pay the estimated one million
USD to replace all employee’s badges, but a smaller group within Cisco, the Global Government Support
Group (GGSG) was identified as a potential candidate for rollout of such a program in 2007. A Card
Management System (CMS) was purchased from ActivIdentity9 and approximately 300 users’ badges
were replaced with the new HID-sourced PIV-C smart card.

Unfortunately, mistakes were made and the complexity, knowledge, and effort required to maintain the
CMS system was vastly underestimated. Proper resourcing was not assigned and ultimately the program
failed when the configuration broke and our limited resources were overwhelmed with user support
requests.

Corporate Smart Card Program
Around 2012 Cisco initiated a corporate smart card program called Smartbadge. The program relied on
outsourcing the CMS and printing of the badges to a third party, IDonDemand (IDOD) which was later
acquired by Identity10 as a managed service. Cisco still maintained and operated the PKI, requiring the use
of an IDOD product called Bouncer to bridge the communication between IDOD and the Microsoft CA.
Due to the cost of the managed service, a portal was developed to handle enrollment of users and cross-
charging of departments for the replacement badge. The barrier for entry was $85 per year and, at the
behest of the Cisco PKI team, was a prerequisite for also receiving an S/MIME certificate. This was meant
to drive adoption of the Smartbadge because clients throughout the company had requested S/MIME
certifications for many years prior.
Ultimately, 1815 Cisco users participated in the badge replacement program at the $85 per year cost.
Many users did not finish the activation step of enrolling their new Smartbadge with the Physical Access
System (PAC), Lenel, and simply spent the money to get a S/MIME cert so they could sign or encrypt their
emails.
During the same period, the Cisco PKI team evaluated Yubikey NEO as another option for a logical access
token as a proof of concept. The PIV applet was provisioned with some test certs and authentication to
various service was secured using them to prove out the concept.

AdminToken program
An InfoSec policy change in 2015 requiring a hardware token for Cisco administrative accounts on
Microsoft Windows machines necessitated the development of a method to request and manage the new
tokens. This was a natural second step following in the footsteps of the Smartbadge program. For this
program, the SafeNet eToken was picked as the supported hardware token.
The provisioning and shipping of the tokens was still handled by the IDonDemand managed service with
the same Cisco-run PKI on the back end. A separate portal was developed to manage the AdminToken
requests, handling cross charges, approvals, and termination.

9 https://www.hidglobal.com/products/software/activid/activid-credential-management-system
10 https://www.identiv.com/services/

https://www.hidglobal.com/products/software/activid/activid-credential-management-system
https://www.identiv.com/services/

White paper
Cisco Public

Need for a new solution
Several years after rolling out the Smartbadge and AdminToken programs, the adoption rate was still very
small. This was mainly due to the expense and usability issues associated with both programs. In February
2018, IDonDemand informed Cisco that the managed service would be terminated in January 2019.
Therefore, in early 2018 Cisco embarked on a new program called CryptoID. The program, dubbed Bring
Your Own Token (BYOT) was designed to enable Cisco employees, contractors or third parties to acquire
their own tokens and provision a digital identity certificate. Cisco wanted this solution to be entirely self-
service, avoiding the management overhead of cross-charging for hardware, and ultimately reducing
support cases by empowering users to fix their own issues. The CryptoID program would replace the
previously supported solutions with a single consolidated platform with support for different certificate
types, such as UserToken, AdminToken and S/MIME.

Solution Description
The CryptoID solution is compatible with any USB hardware token that supports the Personal Identity
Verification (PIV) and Chip Card Interface Device (CCID) standards. However, to ensure security and
usability, we onboard different token models only after a thorough evaluation.

Functional Requirements
The following are the requirements for the proposed system.
 • Ability to associate the token to a unique user
 • Ability to control what token models and firmware versions are allowed to be registered
 • Ability to control and manage the user and admin PIN policies such as retry count, length

requirements, lockout settings, etc.
 • Ability to control cryptographic algorithms and mechanisms permitted to create key materials

and certificates
 • Ability to ensure and attest that the cryptographic key materials are created on the hardware

token and are not exportable
 • Ability for users to create authenticated and attested provisioning requests and self-provision

tokens with digital identities
 • Ability for users to revoke or replace certificates

White paper
Cisco Public

High-level Design
The core components of the system are the CryptoID portal and the CryptoID client. These components
enable the BYOT and self-provisioning aspects of the solution. The components interact with other existing
IT systems such as Directory Services, single sign-on and Certificate Authority servers for the provisioning
of digital identities. The following figure illustrates the high-level system architecture of the CryptoID
solution.

Token Selection Criteria
One important aspect of the BYOT approach is the decision process around which token vendors and
models should be supported. The CryptoID solution is designed to be generic and extensible, and to
work with any of the tokens that meet some of the basic requirements for the program. Cisco established
a process and checklist to evaluate the hardware tokens against the core requirements for the CryptoID
program. Appendix F11 provides a sample evaluation form.
Based on our evaluation results, the Yubico YubiKey tokens proved to be reliable, low cost, and relatively
easy to use. The YubiKey tokens meet all our core requirements for PIV functionality and also provide
other applets such as OTP and FIDO2. The OTP and FIDO2 applets can be configured with Cisco’s Duo
single sign-on system for second factor authentication. Cisco employees no longer have to chain together
several different solutions to fit many use cases. Instead, they can entitle, enable and use one token for
many security controls.

Advantages
The following are some of the advantages of the CryptoID solution.
 • No external vendors involved in the provisioning process
 • No vendor lock-in for hardware tokens; the solution is generic and extensible
 • Flexibility to allow users to bring their own tokens to provision digital identities
 • No need to revoke or replace identities when a badge is misplaced or lost
 • Quick turnaround through self-provisioning
 • Reduced cost and overhead

11 Appendix F: Sample Token Selection Criteria Checklist Form

Figure 4: CryptoID System Design

White paper
Cisco Public

CryptoID Use Cases
The CryptoID solution currently supports provisioning of three different digital identities associated with a
user. Support for additional identity types can easily be added.
 AdminToken
 • Issued to: Cisco Admins (CN=admin_userid@cisco.com)
 • Purpose: Administrative access to remote servers (smart card login)
 UserToken
 • Issued to: Cisco Employees/Contractors (CN=userid@cisco.com)
 • Purpose: Strong Authentication (Smart card login or TLS client authentication)
 SMIME
 • Issued to: Cisco Employees/Contractors (CN=userid@cisco.com)
 • Purpose: Sending signed/encrypted emails

Users have complete control to request and manage their CryptoID certificates. They can request new
certificates and manage their lifecycle, including download, install and revocation. The CryptoID portal
automatically publishes issued certificates to Active Directory. The portal also automatically revokes the
certificates of any inactive Cisco employees.

Admin/User Token Use Cases
Both the AdminToken and UserToken identities are installed on the same slot (9A) in the token. Therefore,
users who need both AdminToken and UserToken require two different hardware tokens to work natively
and comply with the PIV standards. The AdminToken and UserToken CryptoID certificates, installed on
token slot 9A, can be used for different strong authentication use cases such as the following:
 Smart card logon
 • The CryptoID certificate on slot 9A can be used to log on to Windows servers
 • Windows natively supports smart cards that comply with PIV standards
 SSH authentication
 • The CryptoID certificate on slot 9A can be used to strongly authenticate via SSH to a server running

OpenSSH
 • There are many considerations and best practices for using the certificates and/or keys stored on a

token in slot 9A12 outside the scope of this white paper.
 TLS client authentication
 • The CryptoID certificate on slot 9A can be used to strongly authenticate to a client server properly

configured to accept certificates as an authentication option
 • Guides for configuring TLS client certificate authentication on popular client servers such as Apache

and Nginx are readily available on the internet
 • For client setup on the Chrome, Internet Explorer, Edge, and Safari browsers, very little is needed on

Windows/Mac OS. However, Firefox requires additional configurations on any platform as detailed in
Appendix D13

12 https://smallstep.com/blog/use-ssh-certificates/
13 Appendix D: Firefox Configuration for TLS Client Authentication

https://smallstep.com/blog/use-ssh-certificates/

White paper
Cisco Public

S/MIME Use Case
The Secure/Multipurpose Internet Mail Extensions (S/MIME)14 has been in existence since approximately
1997 and is widely supported in mail clients for sending signed and encrypted email. The CryptoID S/MIME
certificate can be downloaded as PKCS#1215 file that contains the private key, associated certificate, and
certificate chain (Subordinate CA and Root CA certificates). It can either be imported to the token slot 9D or
directly on the computer/mobile device’s key store. This certificate can be used for signing and encrypting
emails.

Implementation Details

Overview
The CryptoID portal and client tool were developed to give Cisco employees complete control over
provisioning and managing their digital identities. The user procures any approved token (currently, YubiKey
Series 4 or 5 with firmware v4.3.5 or greater), logs in to the CryptoID Portal and follows the instructions to
provision the required CryptoID certificate.
If a user needs both AdminToken and UserToken certificates, they must buy two tokens because both of
those certificates are installed on slot 9A to work natively and comply with the PIV standards.

AdminToken and UserToken Provisioning
The CryptoID client provides a generic interface for the users to interact with the hardware tokens. It
abstracts the token vendor specific middleware tools with the help of a standard client interface that
is extensible to implement wrappers around the different supported token types. Currently it provides
extensions for both yubico-piv-tool and ykman, provided by Yubico, to interact with the YubiKey tokens,
through a simple command-line interface.

To provision a new YubiKey, the user downloads the client, runs the client tool, and chooses option #1
to generate a new CryptoID client request. The resulting Base64-encoded CryptoID Client Request16 is
displayed to the user for pasting back into the CryptoID Portal. The CryptoID design takes two steps to
ensure the integrity and confidentiality of the request. We use the Attestation feature17 of the YubiKey
(firmware v4.3.5 or higher) to ensure the keypair that creates the Certificate Signing Request (CSR)
was generated on the YubiKey. We authenticate the user to our Active Directory (AD).

The YubiKey PIV Attestation feature shows that a certain asymmetric key has been generated on device
and not imported. This is accomplished by signing a specially crafted Certificate Signing Request
(CSR). The CSR is created from the newly-generated asymmetric key and includes specific extensions
to capture the token details and then signed by the attestation certificate in slot f9. The attestation
certificate comes pre-installed on the Yubikey and is issued by Yubico PIV CA. The CryptoID client
includes this signature in the Base64-encoded CryptoID Client Request data.

14 https://en.wikipedia.org/wiki/S/MIME
15 https://en.wikipedia.org/wiki/PKCS_12
16 Appendix B: CryptoID Provisioning Request Data
17 https://developers.yubico.com/PIV/Introduction/PIV_attestation.html

https://en.wikipedia.org/wiki/S/MIME
https://en.wikipedia.org/wiki/PKCS_12
https://developers.yubico.com/PIV/Introduction/PIV_attestation.html

White paper
Cisco Public

Because the CryptoID Client Tool is entirely separate from the CryptoID Portal and is run
asynchronously, we authenticate the user to our Active Directory (AD) and include the username in the
Base64-encoded CryptoID Client Request and on the attested Certificate Signing Request (CSR). The
username in the request is verified against the username in the CSR and the user who logged in to the
portal, to prevent any forgery.

Another precaution the CryptoID Portal takes is verifying the YubiKey token model and firmware through
a whitelist. As the Attestation feature is only available on YubiKey firmware greater than 4.3.5 that is
checked. Also, Yubico released a security advisory on 2017-10-16 about firmware versions lower
than 4.3.5 producing weak RSA keys18. The PIN policy is also checked to ensure it is set to “Never:01”,
which disables the YubiKey requiring a PIN except on first use and allowing the application to cache it.

The provisioning process includes three high-level tasks.

 1. User downloads the CryptoID client and runs the “Generate CryptoID Provisioning Request”
command. The client performs the following steps in the background to generate an attested
CryptoID provisioning request.

 a. Verify YubiKey token connected
 b. Verify PUK requirements
 c. Verify management key requirements
 d. Verify PIN requirements
 e. Authenticate user to AD
 f. Generate keypair on token
 g. Generate CSR from keypair on token
 h. Attest keypair on token
 i. Build Base64-encoded CryptoID provisioning request and display to user
 2. User submits the attested CryptoID provisioning request data to CryptoID portal. The portal

performs the following steps to validate and issue the CryptoID.
 a. Verifies userID for logged-in user and userName in request match
 b. Verifies Certificate Signing Request (CSR)
 c. Verifies Attestation in request
 d. Submits CSR to Certificate Authority (CA) over REST
 e. Receives X509 Certificate from CA
 f. Provisions X509 Certificate to user’s AD account

 3. User installs the X509 Certificate into the token’s PIV authentication slot (9A)
 a. User downloads X509 Certificate
 b. User installs X509 Certificate using CryptoID client

S/MIME Provisioning
The S/MIME certificates can be provisioned directly on the CryptoID portal. The process does not require
any request data to be generated using the CryptoID client. Cisco escrows the private key associated with
the user’s S/MIME certificates for legal purposes. So, the private key and CSR for the S/MIME certificate
is generated securely on the CryptoID server using a Hardware Security Module (HSM) and its underlying

18 https://www.yubico.com/support/security-advisories/ysa-2017-01/

https://www.yubico.com/support/security-advisories/ysa-2017-01/

White paper
Cisco Public

True Random Number Generator (TRNG)19. The CSR is then submitted to the CA to issue the cert and
finally a P12 file is created. The P12 is protected using a secure random password. Both P12 and the P12
password are encrypted using an AES-256 key before storing in the database. The AES-256 key used for
the encryption is securely generated on an HSM and marked non-exportable, non-extractable.

The user can download the P12 file, and the associated password from the CryptoID portal, and import it
either to their computer/mobile key store, or to their YubiKey slot 9D.

All the S/MIME certificates provided through the CryptoID portal have a 2-year validity period. This short
validity period was chosen because the certificates are provided in a portable format (P12) purely in
software. The user is emailed through an automated process to be notified their certificate is expiring in 90
days, 60 days, 30 days, 7 days, and 1 day.

Deprovisioning
Users can revoke their own certificates and a background task revokes certificates for inactive Cisco
employees, querying Cisco’s AD nightly. If a user loses their token, we rely on them to notice, return to the
CryptoID portal and revoke the credential. They must revoke the current credential in order to procure a
new one; that is, users cannot have more than one active AdminToken, UserToken, or S/MIME.

OTP Seed Provisioning
YubiKeys come with an OTP applet20 and the seed preprovisioned to the YubiCloud21 for authentication.
Cisco uses Duo22 for our SSO infrastructure. Duo supports YubiKey OTP as a second factor authentication
mechanism but it does not use the YubiCloud as a backend authentication service. Instead it requires the
YubiKey OTP tokens to be individually registered with the OTP seed. Duo provides an API for enabling this
provisioning. The CryptoID Client Tool was enhanced to generate this OTP seed and provide a Base64-
encoded request23 as output to be copied by the user into the self-service Duo registration portal24.
Similar to the AdminToken and UserToken provisioning process, the user initializing their OTP seed is
authenticated to Cisco’s Active Directory and their username is included in the Base64-encoded request
data. Because the Yubico tools provided no way to protect the OTP seed, an additional step to encrypt the
seed value to the CryptoID Portal’s RSA Public key was taken as a security measure.

Libraries, Tools, IDEs
The CryptoID portal was developed entirely using Java, targeting the Java v8 JRE. The team makes
extensive use of the IAIK JCA/JCE Toolkit25 as a crypto utility. The IAIK Toolkit is very similar to the more
popular, open-source BouncyCastle26 but has better documentation. The IDE used was the excellent
Eclipse Foundation27 or a variation of.
The CryptoID Client bundled the yubico-piv-tool28 compiled for Windows, Linux, and MacOS target client
platforms. See Appendix A for detailed commands used.
19 https://en.wikipedia.org/wiki/Hardware_random_number_generator
20 https://developers.yubico.com/OTP/OTPs_Explained.html
21 https://www.yubico.com/products/services-software/yubicloud/
22 https://duo.com/
23 Appendix C: OTP Registration Request Data
24 https://disco.cisco.com/
25 https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
26 https://www.bouncycastle.org/
27 https://www.eclipse.org/
28 https://developers.yubico.com/yubico-piv-tool/

https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://developers.yubico.com/OTP/OTPs_Explained.html
https://www.yubico.com/products/services-software/yubicloud/
https://duo.com/
Appendix C: OTP Registration Request Data
https://disco.cisco.com/
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
https://www.bouncycastle.org/
https://www.eclipse.org/
https://developers.yubico.com/yubico-piv-tool/

White paper
Cisco Public

Development Time
Two people from the Cisco PKI team developed CryptoID over four months to get to the v1.0 release. A
test version was ready in ~2 months for a limited release scope (10-15 users) and much positive feedback
was received. This timeline was greatly compressed because of the various lessons learned from the
previous years with the various strong authentication programs and the team’s familiarity with operating a
PKI. CryptoID is now at v1.4 and has had very little in terms of upkeep and maintenance for the developers.
Future enhancements have been thought through and are covered in the next section.

Future Enhancements

Other Token Types
Hardware security keys like those from Feitian29, PIVKey30, and SafeNet eToken31 would be nice to support
in addition to YubiKeys, giving Cisco users many form factor choices for what they want to use. The
primary roadblock to supporting more token types is the development and support of the CryptoID client.
Also, the attestation feature is something unique to the YubiKeys Cisco would miss out on implementing
support for other token types. This limitation could be partially overcome by the CryptoID client
implementing a similar feature in software.

Platform Native CryptoID Tools
For OTP seed provisioning, a standalone utility was developed in Python to utilize the ykman Python
libraries32 and then compiled to target the client platforms using pyinstaller33. This standalone utility was
then signed with the platform appropriate code sign utility for distribution. A future enhancement to the
CryptoID client tool would be to rewrite it in Python and compile a platform-specific version as well.

Alternatively, a GUI version developed using Electron34 would be attractive to those employees not
comfortable with command-line utilities. Advantages of the thick client or platform-specific binaries would
include the elimination of a copy and paste step from the client to the portal; clients could communicate
directly to the portal via APIs.

S/MIME Certificates for Vanity Email Aliases
With the development of CryptoID, Cisco added the option of a free S/MIME cert to any Cisco employee
using their username@cisco.com email address in both the Email (E) relative distinguished name35 field of
the SubjectDN36 and the rfc822 subject alternative name37 field. Almost immediately, we had requests to
support vanity email aliases that Cisco users had procured over the years. Supporting these vanity email
aliases would be a good feature to include in the future.

29 https://www.ftsafe.com/Products
30 https://pivkey.com/
31 https://safenet.gemalto.com/multi-factor-authentication/authenticators/pki-usb-authentication/
32 https://github.com/Yubico/YubiKey-manager/tree/master/ykman
33 https://www.pyinstaller.org/
34 https://electronjs.org/
35 https://ldapwiki.com/wiki/Relative%20Distinguished%20Name
36 https://ldapwiki.com/wiki/Distinguished%20Names
37 http://www.pkiglobe.org/subject_alt_name.html

mailto:username@cisco.com
https://www.ftsafe.com/Products
https://pivkey.com/
https://safenet.gemalto.com/multi-factor-authentication/authenticators/pki-usb-authentication/
https://github.com/Yubico/YubiKey-manager/tree/master/ykman
https://www.pyinstaller.org/
https://electronjs.org/
https://ldapwiki.com/wiki/Relative%20Distinguished%20Name
https://ldapwiki.com/wiki/Distinguished%20Names
http://www.pkiglobe.org/subject_alt_name.html

White paper
Cisco Public

S/MIME Certificates for Mailers
Cisco employees receive many emails from mailing lists and replies to these emails go to a group of
people. We have received a few requests for these mailers to be assigned S/MIME certs so the emails can
be signed and look more “official.” To date we have been able to support these requests in a very manual
way by going directly to the CA to issue the certs but we want to enhance the CryptoID portal to allow
owners of mailers to “enroll” on behalf of their various mailers. This would let us track these certificates,
owners could receive expiry notifications, and certs would be revoked if mailers were deleted or owners
left Cisco.

UserToken for Generic Accounts
AD generic accounts are generally used by automated scripts or processes to authenticate with remote
resources. It would be ideal to strongly authenticate these accounts with an X509 certificate much like
we can strongly authenticate regular Cisco users. Cisco has a web application for owners to easily
manage accounts owners, members, and passwords. The CryptoID portal could tie into this API to ensure
UserTokens were being requested only by generic account owners. Also, this would let us keep track of
these certificates, owners could get expiry notifications, and certs would be revoked if generic accounts
were deleted or owners left Cisco.

Lessons Learned and Key Considerations

Token use in VMware
Requiring Windows administrators to login with their PIV-enabled YubiKey quickly uncovered the fact that
many of Cisco’s Windows admins are using a different OS than Windows on their workstations (MacOS,
Linux, etc.). When attaching the YubiKey to a virtual machine (VM) in VMware the default behavior is for
that USB device to show as “shared.” Yubico had a solution involving modification of the VMware VMX
file for the VM38, marking the YubiKey as dedicated to the VM and allowing Windows to access the PIV
authentication slot (9A) on that YubiKey for authentication to the user’s privileged administrator account.

MacOS Catalina Issues
A recent problem is Apple’s release of MacOS Catalina and the disabling of 32-bit applications. Both the
CryptoID client tool and the standalone platform-specific compiled binary for the OTP seed provisioning
have encountered problems with various client installs of the new MacOS. More investigation is needed
and possibly new releases of these tools.

Involvement of Infrastructure Teams
When considering establishing a similar program at your company to offer hardware-based, strong
identity certificates, it is wise to involve your AD and PKI technical points of contact early. Cisco was
lucky in that the developers on CryptoID were the PKI team, so integration was easy. Having a good
working relationship with the AD team helped integrations, along with a generic account that had elevated
privileges to publish certificates to all user and administrator accounts in AD.
38 Appendix E: VMware Configuration for dedicated YubiKey

White paper
Cisco Public

Return on Investment (ROI)

Token Reliability
The YubiKeys have proven to be much more resilient and harder to break. Designed to be added to
keyrings, they are built for quite a bit of abuse and we are not getting very many reports of damaged
tokens. We have only received reports of couple of faulty YubiKey tokens in the last year, compared to
more than 50 token replacement requests per year with the old AdminToken program.

Token Consolidation
The multiprotocol support provided by YubiKey is very helpful to enable the same hardware token to be
used for different use cases. Apart from the PIV protocol that’s used for the CryptoID solution, YubiKey
supports OTP and FIDO2 protocols, which is integrated with Cisco’s single sign-on service as an optional
second factor authenticator

Licensing and Maintenance Costs
Setting up the dedicated environment (CMS, hardware, etc.) for Cisco cost approximately $250,000,
which covered the first year of maintenance. In addition, Cisco paid around $20 per user per year for
the “subscription” to the managed service. This totaled approximately $50,000 per year just for the
Smartbadge program.
The old managed service for AdminTokens was quite a bit more expensive, costing Cisco approximately
$300,000 per year in licenses and maintenance. All of this and the Smartbadge cost were avoided by
moving to our in-house, home-grown solution.

Support Cases
The comparison of number of support cases for the old AdminToken and Smartbadge system versus the
new CryptoID solution with YubiKeys is shown in Table 2: Comparison of Support Case Metrics. While
difference in number of cases is not very significant, the number of cases reduced significantly over time,
especially in the recent months, as shown in Figure 5: Breakdown of CryptoID cases by Cisco Fiscal
Quarter.
The CryptoID has been more reliable and easier to adapt for the users and it saved Cisco time and money.

Table 2: Comparison of Support Case Metrics Figure 5: Breakdown of CryptolID cases by Cisco Fiscal Quarter

Admin Token + Smart Badge

CryptoID

80-85

60-65

Cases/Quarter

White paper
Cisco Public

Conclusion
In this white paper we have presented the CryptoID solution that Cisco implemented to replace traditional
smart cards with BYOT support. The rollout of the CryptoID program has resulted in reduced overhead
and increased efficiency to manage the tokens and the digital identities. The best practices and lessons
learned from this implementation can help other organizations that plan to implement a similar solution.

White paper
Cisco Public

Appendix A: yubico-piv-tool and ykman Commands
The CryptoID client provides a menu-driven interface for the users to interact with the tokens. The
CryptoID CLI menu is shown in the image below. The initial version of CryptoID client used the yubico-piv-
tool to interact with the YubiKey tokens. Since Yubico decided to consolidate their client development on
the newer ykman39 tool, a version of the CryptoID client has been developed to add support for ykman.

Figure 6: CryptoID Client – Menu List

This section provides detailed steps and the yubico-piv-tool / ykman commands implemented behind
the scenes for each of the menu options in the CryptoID client.

 1. Create New CryptoID Request

 1.1 Verify Token Connection
yubico-piv-tool -a list-readers
ykman list

 1.2 Verify PUK Requirements
NOTE: The yubico-piv-tool doesn’t provide a verify PUK function, so as a workaround,
we use the change-puk method to verify
yubico-piv-tool -a change-puk -P <PUK> -N <PUK>
ykman piv change-puk -p <PUK> -n <PUK>

 1.3 Verify Management Key Requirements
NOTE: The yubico-piv-tool doesn’t provide a verify PUK function, so as a workaround,
we use the change-puk method to verify
yubico-piv-tool -a set-mgm-key -k <Mgmt_Key> -n < Mgmt_Key>
ykman piv change-management-key -m < Mgmt_Key> -n < Mgmt_Key>

39 https://github.com/Yubico/YubiKey-manager

https://github.com/Yubico/YubiKey-manager

White paper
Cisco Public

 1.4 Verify PIN Requirements
yubico-piv-tool -a verify-pin -P <PIN>
ykman piv change-pin -P <PIN> -n <PIN>

 1.5 Generate Keypair
yubico-piv-tool -a generate -k <Mgmt_Key> -s 9a --pin-policy=once --touch_policy=never -A
RSA2048 -o <publicKey_output_file>
ykman piv generate-key --pin-policy=once --touch-policy=never -a RSA2048 9a
<publicKey_output_file>

 1.6 Generate CSR
yubico-piv-tool -a verify -a request-certificate -k <Mgmt_Key> -P <PIN> -s 9a --hash SHA512
-I <publicKey_output_file> -o <csr_output_file> -S <subjectDN>
ykman piv generate-csr -P <PIN> -S <subjectDN> 9a <publicKey_output_file> <csr_output_file>

 1.7 (Attest Request)
yubico-piv-tool -a attest -k <Mgmt_Key> -s 9a -o <keyAttestion_output_file>
ykman piv attest 9a <keyAttestion_output_file>

 2. Import CryptoID AdminToken/UserToken Certificate File

 2.1 Import Certificate File
yubico-piv-tool -a import-certificate -k <Mgmt_Key> -s 9a -i <file_location>
ykman piv import-certificate -v -m <Mgmt_Key> 9a <file_location>

 2.2 Change CHUID
yubico-piv-tool -a set-chuid -k <Mgmt_Key>
ykman piv set-chuid -m <Mgmt_Key>

 3. Import CryptoID SMIME P12 File

 3.1 Import SMIME Certificate File
yubico-piv-tool -a import-key -a import-cert -k <Mgmt_Key> -s 9d -i <p12_file_location> -K
PKCS12 -p <p12_password>
ykman piv import-certificate -v -m <Mgmt_Key> -p <p12_password> 9d <p12_file_location>

 3.2 Change CHUID)
yubico-piv-tool -a set-chuid -k <Mgmt_Key>
ykman piv set-chuid -m <Mgmt_Key>

 4. Verify Token Certificates (Perform Test Sign/Verify and Encrypt/Decrypt operations)

 4.1 Test Sign and Verify
NOTE: The ykman tool doesn’t provide a verify and sign function
yubico-piv-tool -a verify-pin -a test-signature -s 9a -i <slotCert_output_file> -P <PIN>

 4.2 Test Encrypt and Decrypt
NOTE: The ykman tool doesn’t provide an encrypt and decrypt function
yubico-piv-tool -a verify-pin -a test-decipher -s 9a -i <slotCert_output_file> -P <PIN>

 5. Display Token Status
yubico-piv-tool -a status
ykman piv info

White paper
Cisco Public

 6. Change PUK (Requires the current PUK)
yubico-piv-tool -a change-puk -P <current_PUK> -N <new_PUK>
ykman piv change-puk -p <current_PUK> -n <new_PUK>

 7. Change PIN (Requires the current PIN)
yubico-piv-tool -a change-pin -P <current_PIN> -N <new_PIN>
ykman piv change-pin -P <current_PIN> -n <new_PIN>

 8. Unblock PIN (If you forgot and blocked the PIN. Requires the current PUK)
yubico-piv-tool -a unblock-pin -P <current_PUK> -N <new_PIN>
ykman piv unblock-pin -P <current_PUK> -n <new_PIN>

 9. Reset Token (If you forgot and blocked both the PIN and PUK)
yubico-piv-tool -a reset
ykman piv reset -f

 10. One-time password (OTP) Status
NOTE: The yubico-piv-tool doesn’t provide OTP functions
ykman otp info

 11. One-time password (OTP) Init
NOTE: The yubico-piv-tool doesn’t provide OTP functions
ykman otp yubitop -G -g -S -f <slot>

Appendix B: CryptoID Provisioning Request Data
The CryptoID Provisioning Request Data is organized as a simple JSON structure with the following
elements:

 • userName:
 • Cisco userID that was authenticated against AD to create the request
 • tokenType:
 • Token Type
 • csr:
 • Certificate Signing Request generated from keypair on token
 • attestionData:
 • output from “attest” command given to YubiKey
 • attestionSigner:
 • read from slot f9 of the YubiKey
 • clientHeuristics:
 • userName, hostName, and hostAddress of the machine used to run the client

Given below is a sample CryptoID Provisioning Request Data.

White paper
Cisco Public

{

 “username”: “ userid”,

 “tokenType”: “ Yubico YubiKey”,

 “csr”:”-----BEGIN NEW CERTIFICATE REQUEST-----

 <csr data>

 -----END NEW CERTIFICATE REQUEST-----”,

 “attestationData”:”-----BEGIN CERTIFICATE-----

 <attestation data>

 -----END CERTIFICATE-----”,

 “attestationSigner”:” ---BEGIN CERTIFICATE-----

 <attestation signer data>

 -----END CERTIFICATE-----”,

 “clientHueristics”: {“hostName”:”host1”, “hostAddress”:”192.168.1.193”, “userName”:”userid”}

}

Appendix C: OTP Registration Request Data
The OTP Registration Request Data is organized as a simple JSON structure with the following elements:

 • userName:
 • Cisco userID that was authenticated against AD to create the request
 • serialNumber:
 • YubiKey serial number
 • firmwareVersion:
 • YubiKey firmware version
 • deviceType:
 • Token Type
 • publicId:
 • First 12 characters of the string output by a YubiKey when pressing it
 • privateId:
 • Can be accessed when an OTP is decrypted in a Yubico OTP validation server
 • secretKey:
 • The actual OTP seed value

The entire structure is then encrypted using RSA/ECB/OAEPWithSHA1AndMGF1Padding to an RSA public
key held by the registration portal. Given below is a sample OTP Registration. Request Data.

White paper
Cisco Public

{
 “deviceType”: “YubiKey 4”,
 “firmwareVersion”: “4.3.7”,
 “privateId”: “9e14c1c2850e”,
 “publicId”: “fetchchnkglk”,
 “secretKey”: “3eb089934ee7c27091cb89b39942e1a9”,
 “serialNumber”: “7050665”,
 “userName”: “userid”
}

Appendix D: Firefox Configuration for TLS Client Authentication

White paper
Cisco Public

Appendix E: VMware Configuration for dedicated YubiKey
In order for the PIV protocol functions to work correctly with the YubiKey tokens on a virtual machine (VM)
running on VMWare Fusion or VMWare Workstation, the YubiKey must be connected to the guest VM
in dedicated mode. If it is connected in “Shared” mode, the VM will not detect the PIV slots. On some
versions of VMware Fusion and VMware workstation, it is required to make some configuration changes to
enable connecting the YubiKey in dedicated mode.
To verify if you need these changes or not, check if you are getting an option to connect the YubiKey in
dedicated mode to the VM as shown in the picture below (highlighted menu option). If you only see the
option to connect in “Shared” mode, then try following the instructions in this section.

Figure 7: Connecting YubiKey in “dedicated” mode

Figure 8: Location of the VM Configuration File

Follow these steps to make configuration changes needed to connect the YubiKey in dedicated mode to a
Virtual Machine running on VMware Fusion or VMware Workstation
 1. Ensure the VMware Tools are installed on the VM and power down the VM
 2. Check the Virtual Machine Details section in VMware Workstation / VMware Fusion and note where

the Configuration file (.vmx) is located, as shown in the image below.

White paper
Cisco Public

 3. Open the VM configuration [virtualmachinename].vmx file in a text editor.
 4. Paste the below lines at the very end of this file and save the file.
 machine. usb.generic.autoconnect = “FALSE”
 usb.generic.allowHID = “TRUE”
 usb.generic.allowLastHID = “TRUE”
 usb.generic.allowCCID = “TRUE”
Note: The first line (usb.generic.autoconnect) is optional but helps to prevent a VM from
automatically grabbing the YubiKey from another VM, or the host itself, when the YubiKey is
inserted. The remaining lines enable direct passthrough of the YubiKey to the guest VM.
 5. Power on the VM and once it boots up check if you are getting the option to connect the

YubiKey in dedicated mode. If the changes are done correctly, you should now see an option
to connect the YubiKey in dedicated mode (nonshared).

Appendix F: Sample Token Selection Criteria Checklist Form
A sample token selection criteria checklist form is provided here for reference. It includes excerpts from
Cisco’s evaluation of YubiKey NEO and YubiKey 4 Series tokens. Note that this evaluation was conducted in
early 2018 and the results are based on the features available at that time.

Self-Provisioning-Related Requirements

Requirement

Support for PIV/Smartcard slots.

Ability to generate the private keys securely and directly on
the hardware token.

Support for RSA 2048 or better

Private keys generated on the hardware token should be
NOT exportable.

Slot PIN policies should be NOT updatable once the key is generated.

Ability to attest and verify that the private key was generated on
the hardware token.

Ability to attest and verify that the PIN policies for the slot where
the private key is generated.

Ability to attest and verify the device SN, model/firmware version
of the token on which the key/CSR is generated.

Ability to create a CSR using the private keys created in the
hardware token.

Ability to import externally signed certificates to the slot that has
the associated private key.

Support for multiple slots

Supported

Supported

Supported

Supported

Supported

Supported in YubiKey 4.3 and newer

Supported in YubiKey 4.3 and newer

Supported

Supported

Supported

Supported

Finding

White paper
Cisco Public

Smartcard Logon-Related Requirements

TLS Certificate-Based Authentication-Related Requirements

Requirement

Requirement

Requirement

Smartcard Logon to Remote Windows Servers using
Remote Desktop Client

Smartcard pairing to local user account on Mac

Smartcard pairing to local user account on Windows

Certificate Based Authentication to Websites on MacOS

Certificate-Based Authentication to Websites on Windows

Email Signing on MacOS

Email Signing on Windows

Works only in Windows. The Remote Desktop
Client for Mac doesn’t support Smartcard logon.

Supported

Supported

Works in Safari, Chrome and Firefox with OpenSC
installed. In Firefox OpenSC PKCS11 module should
be loaded for this to work.

Supported

Works in Microsoft Outlook with OpenSC installed.

Works in Microsoft Outlook

Finding

Finding

Finding

SMIME Email Signing Using the Certificate in YubiKey

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S.
and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their
respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company.

