NINIr
CISCO.

Open Source Used In NCS1004
(Bosshogg) 771_OPENROADM_GISO

Cisco Systems, Inc.
WWW.cisco.com

Cisco has more than 200 offices worldwide.
Addresses, phone numbers, and fax numbers
are listed on the Cisco website at
www.cisco.com/go/offices.

Text Part Number: 78EE117C99-1633808988

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 1

www.cisco.com
www.cisco.com/go/offices.

Thisdocument containslicenses and notices for open sour ce softwar e used in this product.
With respect to the free/open sour ce softwar e listed in this document, if you have any
questions or wish to receive a copy of any sour ce code to which you may be entitled under
the applicable free/open sour ce license(s) (such asthe GNU L esser/General Public License),
please submit thisform.

In your requests please include the following reference number 78EE117C99-1633808988

Contents

1.1 shadow 0.1

1.1.1 Available under license
1.2 python-setuptools 20.10.1

1.2.1 Available under license
1.3 libidn 2.3.0

1.3.1 Available under license
1.4 libcap 2.22

1.4.1 Available under license
1.5 netlink 3.2.25

1.5.1 Available under license
1.6 expat 2.2.7

1.6.1 Available under license
1.7 libnih 1.0.3

1.7.1 Available under license
1.8 cronie 1.4.11

1.8.1 Available under license
1.91ibnsl 2.0.0

1.9.1 Available under license
1.10 zlib 1.2.5

1.10.1 Available under license
1.11 libcli 1.9.8-4

1.11.1 Available under license
1.12 crash 6.1.4

1.12.1 Available under license
1.13 grep 2.19

1.13.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 2

https://app.smartsheet.com/b/form/ee91d37c09944d8d854376ccd9b8a41f

1.14 pcre 8.35

1.14.1 Available under license
1.15libidn 2.16.840

1.15.1 Available under license
1.16 python 3.9.1

1.16.1 Available under license
1.17 tftp-hpa 5.2

1.17.1 Available under license
1.18 xz 5.1.3alpha

1.18.1 Available under license
1.19 oniguruma 5.9.5

1.19.1 Available under license
1.20 msgp 1.0-alpha

1.20.1 Available under license
1.21 grpcio 1.40.0

1.21.1 Available under license
1.22 openconfig-gnoi 0.0.0-20210902152759-d6d0463a58fe

1.22.1 Available under license
1.23 libtirpc 0.2.5

1.23.1 Available under license
1.24 openssl 1.0.2k-21.el7_9

1.24.1 Available under license
1.25 x-crypto 0.0.0-20200622213623-75b288015ac9

1.25.1 Available under license
1.26 libx11 1.6.2

1.26.1 Available under license
1.27 linux-kernel 1.2.0

1.27.1 Available under license
1.28 sysv-init 2.86-1

1.28.1 Available under license
1.29 gnutls 3.5.3

1.29.1 Available under license
1.30 scapy 1.10.0

1.30.1 Available under license
1.31 zip 3.0-r2

1.31.1 Available under license
1.32 binutils 2.24

1.32.1 Available under license
1.33 iproute 2_3.16.0

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 3

1.33.1 Available under license
1.34 selinux 2.5-15.el7

1.34.1 Available under license
1.35golang 1.17.1

1.35.1 Available under license
1.36 tcp-wrappers 7.6-r10

1.36.1 Available under license
1.37 bolt 1.1.0

1.37.1 Available under license
1.38 linux-kernel 3.14.23

1.38.1 Available under license
1.39 libxml2 0.1

1.39.1 Available under license
1.40 visual-studio-runtime 14.00.24210.0

1.40.1 Available under license
1.41 golang 1.4.2

1.41.1 Available under license
1.42 liburcu 0.8.4

1.42.1 Available under license
1.43 pycurl 7.19.5

1.43.1 Available under license
1.44 yajl 2.1.0

1.44.1 Available under license
1.45 hd-parm 9.56

1.45.1 Available under license
1.46 bzip2 1.0.6

1.46.1 Available under license
1.47 zlib 1.2.7-18.el7

1.47.1 Available under license
1.48 openconfig-grpctunnel 0.0.0-20210927193438-50bd2bfefafa

1.48.1 Available under license
1.49 socat 1.7.2.4

1.49.1 Available under license
1.50 vaughanO0-go-ini git+a98ad7e

1.50.1 Available under license
1.51 markupsafe 1.1.1

1.51.1 Available under license
1.52 six 1.12.0-1.ph3

1.52.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 4

1.53jinja2 2.11.3

1.53.1 Available under license
1.54 go-systemd 4+gith4a58d95188dd092ae20072bacl4cecele67c388

1.54.1 Available under license
1.55 strace 4.13

1.55.1 Available under license
1.56 psmisc 22.21-2

1.56.1 Available under license
1.57 urllib3 1.26.4

1.57.1 Available under license
1.58 consul git

1.58.1 Available under license
1.59idna 13.0.0

1.59.1 Available under license
1.60 xz 5.2.2

1.60.1 Available under license
1.61 kerberos 1.15.1-50.el7

1.61.1 Available under license
1.62 libconfig 1.3.2-r2

1.62.1 Available under license
1.63 mpdecimal 2.4.1

1.63.1 Available under license
1.64 file 5.18

1.64.1 Available under license
1.65 pciutils 3.2.1-r0

1.65.1 Available under license
1.66 netns git+604eafl

1.66.1 Available under license
1.67 openssh 6.6p1l

1.67.1 Available under license
1.68 libsepol 2.6

1.68.1 Available under license
1.69 util-linux 2.24.0

1.69.1 Available under license
1.70 tcpdump 4.9.3

1.70.1 Available under license
1.71 xmldiff 2.3

1.71.1 Available under license
1.72 glib 2.40.0

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 5

1.73 libnuma 2.0.9

1.73.1 Available under license
1.74 tdb 1.43

1.74.1 Available under license
1.75 dhcp 4.3.0

1.75.1 Available under license
1.76 libssh2 1.4.3

1.76.1 Available under license
1.77 python-certifi 2020.12.05

1.77.1 Available under license
1.78 backoff 4.1.1

1.78.1 Available under license
1.79 less 321

1.79.1 Available under license
1.80 fuse 2.8.7

1.80.1 Available under license
1.81 linux-kernel 4.9.0

1.81.1 Available under license
1.82 hiredis 0.14.0

1.82.1 Available under license
1.83 memberlist 0.1.0

1.83.1 Available under license
1.84 ecdsa 0.11

1.84.1 Available under license
1.85 openssl 1.0.2k

1.85.1 Notifications

1.85.2 Available under license
1.86 gawk 4.1.1

1.86.1 Available under license
1.87 libusb 1.0.19

1.87.1 Available under license
1.88 bzip2 1.0.8
1.89 pcre 8.32

1.89.1 Available under license
1.90libnl31.1.4

1.90.1 Available under license
1.91 libusb-compat 4.4.4

1.91.1 Available under license
1.92 python-pip 18.1

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 6

1.92.1 Available under license
1.93 gzip 1.6

1.93.1 Available under license
1.94 tcl 8.3.2

1.94.1 Available under license
1.957zlib 1.2.11

1.95.1 Available under license
1.96 openssl 1.1.1d

1.96.1 Available under license
1.97 libgcrypt 1.6.1

1.97.1 Available under license
1.98 fdisk 2.28.1

1.98.1 Available under license
1.99 readline 6.3

1.99.1 Available under license
1.100 libcap-ng 0.7.3

1.100.1 Available under license
1.101 golang-genproto 0.0.0-20210811021853-ddbe55d93216

1.101.1 Available under license
1.102 csrp 1.0

1.102.1 Available under license
1.103 dmidecode 3.5

1.103.1 Available under license
1.104 librabbitmqg 0.10.0

1.104.1 Available under license
1.105 inetutils 1.9.2

1.105.1 Available under license
1.106 libxslt 1.1.28

1.106.1 Available under license
1.107 keyutils 1.5.8

1.107.1 Available under license
1.108 gosqlite 1.1.0

1.108.1 Available under license
1.109 findutils 6.5

1.109.1 Available under license
1.110 efivar 0.15

1.110.1 Available under license
1.111 nettle 2.7.1

1.111.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 7

1.112 golang 1.8.1

1.112.1 Available under license
1.113 logrus 0.11

1.113.1 Available under license
1.114 cffi 1.14.5

1.114.1 Available under license
1.115 paramiko 1.14.3

1.115.1 Available under license
1.116 packaging 20.9

1.116.1 Available under license
1.117 python-setuptools 40.6.2

1.117.1 Available under license
1.118 audit 2.3.2

1.118.1 Available under license
1.119 python-setuptools 40.8.0

1.119.1 Available under license
1.120 tar 1.27.1

1.120.1 Available under license
1.121 pyyaml 6.0

1.121.1 Available under license
1.122 gemu 1.5.3

1.122.1 Available under license
1.123 netaddr 0.8.0

1.123.1 Available under license
1.124 paho-mqtt 1.5.0

1.124.1 Available under license
1.125 openssl 1.0.2j

1.125.1 Notifications

1.125.2 Available under license
1.126 python 3.8.2

1.126.1 Available under license
1.127 fcgi 2.4.1

1.127.1 Available under license
1.128 d-bus 1.8.2

1.128.1 Available under license
1.129 kexec-tools 2.0.7

1.129.1 Available under license
1.130 libts 1.0

1.130.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 8

1.131 cpio 2.11

1.131.1 Available under license
1.132 expat 2.1.0

1.132.1 Available under license
1.133 popt 1.16

1.133.1 Available under license
1.134 libyaml 0.1.5

1.134.1 Available under license
1.135 goprotobuf 1.5.2

1.135.1 Available under license
1.136 wget 1.20.3

1.136.1 Available under license
1.137 ntp 4.2.8p10

1.137.1 Available under license
1.138 ethtool 4.19

1.138.1 Available under license
1.139 sqlite 3.36.0

1.139.1 Available under license
1.140 libpcap 1.6.1

1.140.1 Available under license
1.141 sysstat 10.2.1

1.141.1 Available under license
1.142 sed 4.2.2

1.142.1 Available under license
1.143 ncurses 5.9

1.143.1 Available under license
1.144 sysklogd 1.5.0

1.144.1 Available under license
1.145 xinetd 2.3.15

1.145.1 Available under license
1.146 netbsd-resolv 2.20

1.146.1 Available under license
1.147 elfutils 0.148

1.147.1 Available under license
1.148 newt 0.52.17

1.148.1 Available under license
1.149 minicom 2.7

1.149.1 Available under license
1.150 packaging 16.7

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 9

1.150.1 Available under license
1.151 libedit 20130712-3.1

1.151.1 Available under license
1.152 libsodium 1.0.1

1.152.1 Available under license
1.153 python 2.7.16
1.154 binutils 2.21.51

1.154.1 Available under license
1.155 dnsmasq 2.83

1.155.1 Available under license
1.156 fsnotify 1.5.1

1.156.1 Available under license
1.157 sqglite 3.8.5

1.157.1 Available under license
1.158 openssl 1.1.1k

1.158.1 Notifications

1.158.2 Available under license
1.159 json-c 0.12

1.159.1 Available under license
1.160 zlib 1.2.3

1.160.1 Available under license
1.161 libunistring 0.9.3

1.161.1 Available under license
1.162 libsdl 1.2.15-r3

1.162.1 Available under license
1.163 python-requests 2.25.1

1.163.1 Available under license
1.164 dosfs-tools 2.11-r5

1.164.1 Available under license
1.165 attr 2.4.47

1.165.1 Available under license
1.166 zeromq 4.2.5

1.166.1 Available under license
1.167 acl 2.2.52

1.167.1 Available under license
1.168 libbsd 0.7.0

1.168.1 Available under license
1.169 libevent 2.1.8

1.169.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 10

1.170 libxdmcp 6.0

1.170.1 Available under license
1.171 selinux 2.5-15.el7

1.171.1 Available under license
1.172 sudo 1.9.6p1l

1.172.1 Available under license
1.173 gmp 6.0.0

1.173.1 Available under license
1.174 slang 2.2.4

1.174.1 Available under license
1.175 pam 1.1.6

1.175.1 Available under license
1.176 vim 7.4

1.176.1 Available under license
1.177 x-net 0.0.0-20211008194852-3b03d305991f

1.177.1 Available under license
1.178 libunwind 1.1

1.178.1 Available under license
1.179 smartmontools 6.2

1.179.1 Available under license
1.180 libcgroup 0.40

1.180.1 Available under license
1.181 bluez 4.101

1.181.1 Available under license
1.182 iptables 1.4.21

1.182.1 Available under license
1.183 ncclient 0.6.3

1.183.1 Available under license
1.184 open-ldap 2.4.39

1.184.1 Available under license
1.185 libffi 3.0.13-19.el7

1.185.1 Available under license
1.186 expat 2.2.6

1.186.1 Available under license
1.187 grpc 1.14.1

1.187.1 Available under license
1.188 alsa 1.0.28

1.188.1 Available under license
1.189 go-msgpack git

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 11

1.189.1 Available under license
1.190 sshpass 1.05

1.190.1 Available under license
1.191 pixman 0.32.6

1.191.1 Available under license
1.192 netcat-openbsd 1.105

1.192.1 Available under license
1.193 godbus 4.0.0+git5f6efc7ef2759¢81b7ba87659397 1bf

1.193.1 Available under license
1.194 x-text 0.3.7

1.194.1 Available under license
1.1951z4 r127

1.195.1 Available under license
1.196 lvm2 2.02.97

1.196.1 Available under license
1.197 packaging 20.4

1.197.1 Available under license
1.198gmp 4.1.4

1.198.1 Available under license
1.199 berkeley-db 6.0.30

1.199.1 Available under license
1.200 cryptsetup 1.6.6

1.200.1 Available under license
1.201 python-pip 8.1.1

1.201.1 Available under license
1.202 x-sys 0.0.0-20211007075335-d3039528d8ac

1.202.1 Available under license
1.203 libtomcrypt 1.17

1.203.1 Available under license
1.204 sysv-init 2.88

1.204.1 Available under license
1.205 expat 2.1.1

1.205.1 Available under license
1.206 curl 7.79.1

1.206.1 Available under license
1.207 c-ares 1.14.0

1.207.1 Available under license
1.208 gorilla 1.1

1.208.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 12

1.209 efibootmgr 0.11.0

1.209.1 Available under license
1.210 ustr 1.0.4

1.210.1 Available under license
1.211 diffutils 3.3

1.211.1 Available under license
1.212 bridgeutils 1.7.1

1.212.1 Available under license
1.213rpm 5.4.14

1.213.1 Available under license
1.214 openconfig-ygot 0.10.4

1.214.1 Available under license
1.215 libtommath 0.42.0

1.215.1 Available under license
1.216 util-linux 2.24.2

1.216.1 Available under license
1.217 simplejson 2.2.1

1.217.1 Available under license
1.218 golang 1.14.2

1.218.1 Available under license
1.219 libvirt 1.1.2

1.219.1 Available under license
1.220 unzip 6.0-r5

1.220.1 Available under license
1.221 grub2 2.00

1.221.1 Available under license
1.222 autogen 5.18.3

1.222.1 Available under license
1.223 pyasnl1 0.4.8

1.223.1 Available under license
1.224 rpcbind 0.2.1

1.224.1 Available under license
1.225 openconfig-gnmi 0.0.0-20210914185457-51254b657b7d

1.225.1 Available under license
1.226 futures 3.3.0

1.226.1 Available under license
1.227 python 3.5.2

1.227.1 Available under license
1.228 rng-tools 5

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 13

1.228.1 Available under license
1.229 inotify-tools 3.14

1.229.1 Available under license
1.230 libffi 3.1

1.230.1 Available under license
1.231 curl 7.30.0

1.231.1 Available under license
1.232 python-Ixml 3.2.5

1.232.1 Available under license
1.233 gdb 7.3.1

1.233.1 Available under license
1.234 go-shellwords 1.0.0

1.234.1 Available under license
1.235 coreutils 8.22

1.235.1 Available under license
1.236 parted 1.2

1.236.1 Available under license
1.237 keyutils 1.5.9

1.237.1 Available under license
1.238 bash 4.3.30

1.238.1 Available under license
1.239 psutil 5.7.3

1.239.1 Available under license
1.240 log-rotate 3.12.3

1.240.1 Available under license
1.241 aws-sdk-go 0.9.10

1.241.1 Available under license
1.242 |sof 4.87

1.242.1 Available under license
1.243 python3-asnlcrypto 1.4.0

1.243.1 Available under license
1.244 libxcb 0.1

1.244.1 Available under license
1.245 libgpg-error 1.12

1.245.1 Available under license
1.246 jansson 2.9

1.246.1 Available under license
1.247 readline 6.2-11.el7

1.247.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 14

1.248 busybox 1.22.1

1.248.1 Available under license
1.249 e2fsprogs 1.43

1.249.1 Available under license
1.250 python 3.7.4

1.250.1 Available under license
1.251 libtasn 4.11

1.251.1 Available under license
1.252 pmylund-go-cache 2.1.0+incompatible

1.252.1 Available under license
1.253 usbutils 007-r0

1.253.1 Available under license
1.254 policycoreutils 2.6

1.254.1 Available under license
1.255 perl 5.20.0

1.255.1 Available under license
1.256 chardet 4.0.0

1.256.1 Available under license
1.257 packaging 16.8

1.257.1 Available under license
1.258 armon-go-metrics 0.3.0

1.258.1 Available under license
1.259 grpc-go 1.4.0+gitAUTOINC+777daal7ff

1.259.1 Available under license
1.260 iputils 20121221

1.260.1 Available under license
1.261 zstd 0.15.2

1.261.1 Available under license
1.262 procps 3.2.8

1.262.1 Available under license
1.263 docker 1.10.0

1.263.1 Available under license
1.264 lighttpd 1.4.35

1.264.1 Available under license
1.265 vixie-cron 0.5.10

1.265.1 Available under license
1.266 libsemanage 2.7

1.266.1 Available under license
1.267 expat 2.2.8

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 15

1.267.1 Available under license
1.268 selectors2 2.0.1

1.268.1 Available under license
1.269 zlib 1.2.8

1.269.1 Available under license
1.270 openssl 1.0.2n

1.270.1 Available under license
1.271 kmod 18

1.271.1 Available under license
1.272 glibc 2.20

1.272.1 Available under license
1.273 upstart 1.13.2

1.273.1 Available under license
1.274 net-tools 1.60

1.274.1 Available under license
1.275 grub 0.97

1.275.1 Available under license
1.276 berypt 3.1.5

1.276.1 Available under license
1.277 libdevmapper 1.02.76

1.277.1 Available under license
1.278 safeclib 4.1.9

1.278.1 Available under license
1.279 protobuf 1.27.1

1.279.1 Available under license
1.280 beecrypt 4.2.1-r3

1.280.1 Available under license
1.281 mergo 0.2.2

1.281.1 Available under license
1.282 libpciaccess 0.13.2

1.282.1 Available under license
1.283 openconfig-gribi 0.1.1-0.20211130010430-d47f805faded

1.283.1 Available under license
1.284 i2c-tools 3.1

1.284.1 Available under license
1.285vim 6.1

1.285.1 Available under license

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 16

1.1 shadow 0.1

1.1.1 Available under license :
Copyright (c) 2012 Twilio, Inc.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the " Software"), to deal in the Software without
restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERSBE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGSIN THE SOFTWARE.

1.2 python-setuptools 20.10.1

1.2.1 Available under license :

No license file was found, but |icenses were detected in source scan.

Thisfileisdual licensed under the terms of the Apache License, Version
2.0, and the BSD License. Seethe LICENSE filein the root of this repository

Found in path(s):

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/requirements.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/__about__.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/specifiers.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/_compat.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/markers.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 17

20.10.1/pkg_resources/_vendor/packaging/utils.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/_structures.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/version.py

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/pkg_resources/_vendor/packaging/__init__.py

No license file was found, but licenses were detected in source scan.

License: UNKNOWN
Classifier: License:: OSI Approved :: MIT License

Found in path(s):

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/setuptools.egg-info/PK G-INFO

* Jopt/ws_local/PERMITS_SQL/1050086594 1591660967.89/0/setuptool s-20-10-1-1-tar-gz/setuptool s-
20.10.1/PKG-INFO

No license file was found, but licenses were detected in source scan.

License:: OSI Approved :: MIT License

Found in path(s):

* Jopt/ws_|local/PERMITS_SQL/1050086594 1591660967.89/0/setuptools-20-10-1-1-tar-gz/setuptool s-
20.10.1/setup.py

No license file was found, but licenses were detected in source scan.

Building and Distributing Packages with Setuptools

““Setuptools isacollection of enhancements to the Python ““distutils™

(for Python 2.6 and up) that alow developersto more easily build and
distribute Python packages, especially ones that have dependencies on other
packages.

Packages built and distributed using *“setuptools’™ look to the user like
ordinary Python packages based on the “distutils ™. Your users don't need to
install or even know about setuptools in order to use them, and you don't
have to include the entire setuptools package in your distributions. By
including just asingle "bootstrap module”_ (a12K .py file), your package will
automatically download and install ““setuptools’ if the user is building your
package from source and doesn't have a suitable version aready installed.

.. _bootstrap module: https://bootstrap.pypa.io/ez_setup.py

Feature Highlights:

* Automatically find/download/install/upgrade dependencies at build time using

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 18

the "EasylInstall tool <easy install.html>"_,

which supports downloading viaHTTP, FTP, Subversion, and SourceForge, and
automatically scans web pages linked from PyPI to find download links. (It's
the closest thing to CPAN currently available for Python.)

* Create "Python Eggs <http://peak.telecommunity.com/DevCenter/PythonEggs>"_ -
asingle-file importable distribution format

* Enhanced support for accessing data files hosted in zipped packages.

* Automatically include all packagesin your source tree, without listing them
individually in setup.py

* Automatically include all relevant filesin your source distributions,
without needing to create a " MANIFEST.in"" file, and without having to force
regeneration of the "MANIFEST ™ file when your source tree changes.

* Automatically generate wrapper scripts or Windows (console and GUI) .exe
files for any number of "main" functionsin your project. (Note: thisis not
apy2exe replacement; the .exefiles rely on the local Python installation.)

* Transparent Pyrex support, so that your setup.py can list *".pyx" filesand
still work even when the end-user doesn't have Pyrex installed (aslong as

you include the Pyrex-generated C in your source distribution)

* Command aliases - create project-specific, per-user, or site-wide shortcut
names for commonly used commands and options

* PyPI upload support - upload your source distributions and eggs to PyPl

* Deploy your project in "development mode”, such that it's available on
“sys.path™, yet can still be edited directly from its source checkout.

* Easily extend the distutils with new commands or ““setup()*" arguments, and
distribute/reuse your extensions for multiple projects, without copying code.

* Create extensible applications and frameworks that automatically discover
extensions, using simple "entry points' declared in a project's setup script.

In addition to the PyPI downloads, the development version of ™ setuptools™

is available from the "Python SVN sandbox”_, and in-devel opment versions of the

0.6 branch™_are available as well.

.. _0.6 branch: http://svn.python.org/projects/sandbox/branches/setuptool s-0.6/#egg=setuptool s-dev06

.. _Python SVN sandbox: http://svn.python.org/projects/sandbox/trunk/setuptool s/#egg=setuptool s-dev

.. contents;: ** Table of Contents**

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 19

.. _€z_setup.py: “bootstrap module’_

Installing ~“setuptools™

Please follow the "Easylnstall Installation Instructions’_to install the
current stable version of setuptools. In particular, be sureto read the
section on “Custom Installation Locations'_if you are installing anywhere
other than Python's *“site-packages™” directory.

.. _Easylngtall Installation Instructions: easy_install.html#installation-instructions

.. _Custom Installation Locations: easy_install.html#custom-installation-locations

If you want the current in-devel opment version of setuptools, you should first
install a stable version, and then run::

€z_setup.py setuptools==dev

Thiswill download and install the latest development (i.e. unstable) version
of setuptools from the Python Subversion sandbox.

For basic use of setuptools, just import things from setuptools instead of
the distutils. Here'saminimal setup script using setuptools::

from setuptoolsimport setup, find_packages
setup(

name = "HelloWorld",

version ="0.1",

packages = find_packages(),

Asyou can seg, it doesn't take much to use setuptools in a project.
Run that script in your project folder, alongside the Python packages
you have devel oped.

Invoke that script to produce eggs, upload to

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 20

PyPI, and automatically include all packages in the directory where the
setup.py lives. See the "Command Reference’_ section below to see what
commands you can give to this setup script. For example,

to produce a source distribution, simply invoke::

python setup.py sdist

Of course, before you release your project to PyPl, you'll want to add a bit
more information to your setup script to help people find or learn about your
project. And maybe your project will have grown by then to include afew
dependencies, and perhaps some data files and scripts::

from setuptoolsimport setup, find_packages
setup(

name = "HelloWorld",

version="0.1",

packages = find_packages(),

scripts = ['say_hello.py1,

Project uses reStructuredText, so ensure that the docutils get
installed or upgraded on the target machine
install_requires = ['docutils>=0.31,

package data = {
If any package contains *.txt or *.rst files, include them:
"t st
And include any *.msg files found in the 'hello’ package, too:
‘hello’: [*.msg1,

|3

metadata for upload to PyPl

author ="Me",

author_email = "me@example.com”,

description = "Thisis an Example Package",

license = "PSF",

keywords = "hello world example examples’,

url = "http://example.com/HelloWorld/", # project home page, if any

could also include long_description, download _url, classifiers, etc.

In the sections that follow, we'll explain what most of these *“setup()™
arguments do (except for the metadata ones), and the various ways you might use
them in your own project(s).

Specifying Y our Project's Version

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 21

Setuptool s can work well with most versioning schemes; there are, however, a
few special thingsto watch out for, in order to ensure that setuptools and
Easylnstall can always tell what version of your package is newer than another
version. Knowing these things will aso help you correctly specify what
versions of other projects your project depends on.

A version consists of an alternating series of release numbers and pre-release
or post-release tags. A release number is a series of digits punctuated by
dots, suchas"2.4™" or ~°0.5"". Each seriesof digitsistreated

numericaly, soreleases 2.1 and “"2.1.0"" are different ways to spell the
same release number, denoting the first subrelease of release 2. But “"2.10™
isthe *tenth* subrelease of release 2, and so is adifferent and newer release
from 2.1 or "2.1.0°". Leading zeros within a series of digits are also
ignored, so "2.01"" isthesameas 2.1, and different from ~°2.0.1°".

Following arelease number, you can have either a pre-release or post-release
tag. Pre-release tags make aversion be considered *older* than the version
they are appended to. So, revision 2.4 is*newer* than revision " 2.4c1™,
whichin turnis newer than 2.4b1™" or “"2.4al"". Postrelease tags make
aversion be considered * newer* than the version they are appended to. So,
revisionslike "2.4-1" and " 2.4pl3"" are newer than ~"2.4™", but are *older*
than 2.4.1"" (which has a higher release number).

A pre-release tag is a series of letters that are alphabetically before

"final". Some examples of prerelease tags would include ““alpha’, “beta™,
Ta’t, ¢, dev, and so on. You do not have to place adot or dash
before the prerelease tag if it'simmediately after anumber, but it's okay to
do soif you prefer. Thus, 2.4¢c1” and “"2.4.c1" and ~"2.4-c1 all
represent release candidate 1 of version 2.4, and are treated asidentical
by setuptools.

In addition, there are three special prerelease tagsthat are treated asiif

they werethe letter “°c™™: “pre™, “preview ", and “'rc’". So, version

T 2.4rcl, T2.4prel’ and T2.4previewl are al the exact same version as
2.4¢c1™, and are treated asidentical by setuptools.

A post-release tag is either a series of letters that are alphabetically

greater than or equal to "fina", or adash ("*-"). Post-releasetags are

generally used to separate patch numbers, port numbers, build numbers, revision
numbers, or date stamps from the release number. For example, the version
"2.4-r1263"" might denote Subversion revision 1263 of a post-release patch of
version ~2.4°". Or you might use 2.4-20051127"" to denote a date-stamped
post-rel ease.

Notice that after each pre or post-release tag, you are free to place another
release number, followed again by more pre- or post-release tags. For example,
0.6a9.dev-r41475"" could denote Subversion revision 41475 of thein-

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 22

development version of the ninth alpha of release 0.6. Noticethat ““dev™ is
apre-release tag, so thisversion isa*lower* version number than 0.6a9 ",
which would be the actual ninth alpha of release 0.6. But the “"-r41475™" is
apost-release tag, so thisversion is *newer* than “0.6a9.dev™".

For the most part, setuptools' interpretation of version numbersis intuitive,
but here are afew tips that will keep you out of trouble in the corner cases:

* Don't stick adjoining pre-release tags together without a dot or number
between them. Version "1.9adev™" isthe “adev™" prerelease of "1.97,
not a development pre-release of "1.9a". Use “".dev™ instead, asin
““1.9adev’, or separate the prerelease tags with anumber, asin
1.9a0dev™". T1.9adev’’, "1.9a0dev’, and even “"1.9.adev’ are
identical versions from setuptools' point of view, so you can use whatever
scheme you prefer.

* |f you want to be certain that your chosen numbering scheme works the way
you think it will, you can use the ““pkg_resources.parse version()™" function
to compare different version numbers::

>>> from pkg_resources import parse_version

>>> parse_version('1.9.a.dev') == parse_version('1.9a0dev")
True

>>> parse version('2.1-rc2') < parse_version('2.1)

True

>>> parse_version('0.6a9dev-r41475") < parse_version('0.6a9")
True

Once you've decided on a version numbering scheme for your project, you can
have setuptool s automatically tag your in-development rel eases with various
pre- or post-release tags. See the following sections for more details:

* “Tagging and "Daily Build" or "Snapshot" Releases™

* “Managing "Continuous Releases" Using Subversion™_
* The“egg_info”_ command

New and Changed ““setup()~ Keywords

The following keyword argumentsto ~“setup() " are added or changed by
“setuptools”. All of them are optional; you do not have to supply them
unless you need the associated " setuptools ' feature.

““include_package data™
If setto "True ', thistells " setuptools™ to automatically include any
datafilesit finds inside your package directories that are specified by
your "MANIFEST.in"" file. For more information, see the section below on

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 23

“Including DataFiles™ .

““exclude package data™”
A dictionary mapping package namesto lists of glob patterns that should
be *excluded* from your package directories. Y ou can use thisto trim back
any excess filesincluded by ““include package data’™. For a complete
description and examples, see the section below on “Including Data Files .

““package data”
A dictionary mapping package namesto lists of glob patterns. For a
complete description and examples, see the section below on “Including
DataFiles'_. You do not need to use this option if you are using
“include_package data’, unless you need to add e.g. filesthat are
generated by your setup script and build process. (And are therefore not
in source control or are files that you don't want to include in your
source distribution.)

“zip_safe”
A boolean (True or False) flag specifying whether the project can be
safely installed and run from a zip file. If this argument is not
supplied, the “bdist_egg™™ command will have to analyze all of your
project's contents for possible problems each time it builds an egg.

“install_requires™
A string or list of strings specifying what other distributions need to
be installed when thisoneis. See the section below on "Declaring
Dependencies’_ for details and examples of the format of this argument.

entry_points™
A dictionary mapping entry point group namesto strings or lists of strings
defining the entry points. Entry points are used to support dynamic
discovery of services or plugins provided by a project. See *Dynamic
Discovery of Servicesand Plugins'_ for details and examples of the format
of thisargument. In addition, this keyword is used to support “Automatic
Script Creation™ .

“extras_require”
A dictionary mapping names of "extras’ (optional features of your project)
to strings or lists of strings specifying what other distributions must be
installed to support those features. See the section below on "Declaring
Dependencies’_ for details and examples of the format of this argument.

“setup_requires™
A string or list of strings specifying what other distributions need to
be present in order for the * setup script* to run. ““setuptools™ will
attempt to obtain these (even going so far asto download them using
“Easylnstall™) before processing the rest of the setup script or commands.
This argument is needed if you are using distutils extensions as part of

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 24

your build process; for example, extensions that process setup() arguments
and turn them into EGG-INFO metadata files.

(Note: projectslisted in ““setup_requires™ will NOT be automatically
installed on the system where the setup script isbeing run. They are
simply downloaded to the ./.eggs directory if they're not locally available
aready. If you want them to be installed, aswell as being available
when the setup script is run, you should add them to ““install_requires™
and ““setup_requires ".)

““dependency_links™
A list of strings naming URL s to be searched when satisfying dependencies.
These links will be used if needed to install packages specified by
““setup_requires’ or “tests require . They will also be written into
the egg's metadata for use by tools like Easylnstall to use when installing
an.egg file.

““namespace_packages'”
A list of strings naming the project's "namespace packages'. A namespace
package is a package that may be split across multiple project
distributions. For example, Zope 3's ““zope ™ package is a namespace
package, because subpackages like ~zope.interface ™ and " zope.publisher™
may be distributed separately. The egg runtime system can automatically
merge such subpackages into a single parent package at runtime, as long
as you declare them in each project that contains any subpackages of the
namespace package, and as long as the namespace package's ™™__init__.py™
does not contain any code other than a namespace declaration. Seethe
section below on “Namespace Packages _ for more information.

“test_suite™
A string naming a " "unittest. TestCase ™ subclass (or a package or module
containing one or more of them, or amethod of such a subclass), or naming
afunction that can be called with no arguments and returns a
“unittest. TestSuite™. |f the named suite is amodule, and the module
has an ““additional_tests()™" function, it is called and the results are
added to thetests to be run. If the named suite is a package, any
submodules and subpackages are recursively added to the overall test suite.

Specifying this argument enables use of the “test”™ command to run the
specified test suite, e.g. via " setup.py test™. See the section on the
“test” _ command below for more details.

“tests require”
If your project's tests need one or more additional packages besides those
needed to install it, you can use this option to specify them. It should
be astring or list of strings specifying what other distributions need to
be present for the package's teststo run. When you run the ““test™
command, " setuptools™ will attempt to obtain these (even going

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 25

so far asto download them using “"Easylnstall ™). Note that these
reguired projects will *not* be installed on the system where the tests
are run, but only downloaded to the project's setup directory if they're
not already installed locally.

.. _test loader:

“test_loader™
If you would like to use a different way of finding tests to run than what
setuptools normally uses, you can specify a module name and class namein
thisargument. The named class must be instantiable with no arguments, and
its instances must support the ““loadTestsFromNames()" method as defined
in the Python ““unittest™™ module's " TestLoader™ class. Setuptoolswill
pass only one test "name" in the ‘names’ argument: the value supplied for
the ““test_suite™” argument. The loader you specify may interpret this
string in any way it likes, as there are no restrictions on what may be
contained ina ™ test_suite” string.

The module name and class name must be separated by a™*:"". The default
value of thisargument is " setuptool s.command.test: ScanningL oader" ™. If
you want to use the default ““unittest™ behavior, you can specify

"unittest: TestLoader"™" asyour ““test_loader™ argument instead. This
will prevent automatic scanning of submodules and subpackages.

The module and class you specify here may be contained in another package,
aslong asyou use the ““tests require” option to ensure that the package
containing the loader classis available when the ““test™™ command is run.

““eager_resources”
A list of strings naming resources that should be extracted together, if
any of them is needed, or if any C extensions included in the project are
imported. Thisargument is only useful if the project will beinstalled as
azipfile, and there is aneed to have all of the listed resources be
extracted to the filesystem *as a unit*. Resources listed here
should be '/'-separated paths, relative to the source root, so to list a
resource ““foo.png™" in package ““bar.baz"", you would include the string
““bar/baz/foo.png”" in this argument.

If you only need to obtain resources one at atime, or you don't have any C
extensions that access other filesin the project (such as datafiles or

shared libraries), you probably do NOT need this argument and shouldn't
messwith it. For more details on how this argument works, see the section
below on “Automatic Resource Extraction” .

“use 2to3™
Convert the source code from Python 2 to Python 3 with 2to3 during the
build process. See :doc: python3™ for more details.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 26

““convert_2to3 doctests’™
List of doctest source files that need to be converted with 2to3.
See :doc: python3’ for more details.

“use 2to3 fixers™

A list of modulesto search for additional fixersto be used during
the 2to3 conversion. See :doc: python3™ for more details.

Using “find_packages()™

For simple projects, it's usually easy enough to manually add packages to

the ““packages ™ argument of ““setup()”". However, for very large projects
(Twisted, PEAK, Zope, Chandler, etc.), it can be a big burden to keep the

package list updated. That's what " setuptools.find_packages() " isfor.

“find_packages() ™" takes a source directory and two lists of package name
patterns to exclude and include. |f omitted, the source directory defaultsto
the same

directory asthe setup script. Some projectsusea ™ "src™ or “lib™

directory asthe root of their source tree, and those projects would of course
use "src" T or TMlib" T asthefirst argument to “find_packages()”. (And
such projects aso need something like ““package dir = {":'src’} " in their
“setup()”T arguments, but that's just a normal distutils thing.)

Anyway, “find_packages()”” walksthe target directory, filtering by inclusion
patterns, and finds Python packages (any directory). On Python 3.2 and
earlier, packages are only recognized if they includean ™ __init__.py™ file.
Finally, exclusion patterns are applied to remove matching packages.

Inclusion and exclusion patterns are package names, optionally including
wildcards. For

example, “*find_packages(exclude=["* .tests"])"" will exclude all packages whose
last name part is ““tests”. Or, ~find_packages(exclude=["* .tests",

"* tests.*"])™" will also exclude any subpackages of packages named ““tests'™,

but it still won't exclude atop-level ““tests ™ package or the children

thereof. Infact, if you really want no ““tests™ packages at all, you'll need
something like this::

find_packages(exclude=["* .tests", "* .tests.*", "tests.*", "tests'])
in order to cover all the bases. Really, the exclusion patterns are intended
to cover simpler use cases than this, like excluding a single, specified

package and its subpackages.

Regardless of the parameters, the “find_packages()™
function returns alist of package names suitable for use as the ““packages™

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 27

argument to “setup()", and so isusually the easiest way to set that

argument in your setup script. Especially since it frees you from having to
remember to modify your setup script whenever your project grows additional
top-level packages or subpackages.

Automatic Script Creation

Packaging and installing scripts can be a bit awkward with the distutils. For

one thing, there's no easy way to have a script's filename match local

conventions on both Windows and POSIX platforms. For another, you often have
to create a separate file just for the "main" script, when your actual "main"
isafunction in amodule somewhere. And even in Python 2.4, using the *™-m’™
option only works for actual ~".py " filesthat aren't installed in a package.

“setuptools fixes all of these problems by automatically generating scripts
for you with the correct extension, and on Windows it will even create an
“.exe file so that users don't have to change their "PATHEXT ™ settings.
The way to use this feature isto define "entry points" in your setup script
that indicate what function the generated script should import and run. For
example, to create two console scripts called ““foo™™ and ““bar™, and a GUI
script called ““baz™", you might do something like this::

setup(
other arguments here...
entry _points={
‘console_scripts: [
'foo = my_package.some_module:main_func',
'bar = other_module:some_func',
1,
'gui_scripts: [
'baz = my_package gui:start_func',

When this project isinstalled on non-Windows platforms (using " setup.py
install", "setup.py develop", or by using Easylnstall), aset of ““foo™,

“bar™, and “baz™" scriptswill be installed that import “"main_func™ and
““some_func™" from the specified modules. The functions you specify are called
with no arguments, and their return value is passed to “sys.exit()™", so you

can return an errorlevel or message to print to stderr.

On Windows, aset of ““foo.exe™™, “bar.exe™, and “"baz.exe " launchers are
created, aongside aset of ““foo.py™, “bar.py ", and “baz.pyw " files. The
“.exe” wrappers find and execute the right version of Python to run the

C.py T or pyw file.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 28

Y ou may define as many "console script" and "gui script” entry points as you
like, and each one can optionally specify "extras' that it depends on, that

will be added to ““sys.path™™ when the script isrun. For more information on
"extras', see the section below on "Declaring Extras’_. For more information
on "entry points" in general, see the section below on “Dynamic Discovery of
Servicesand Plugins_.

"Eggsecutable" Scripts

Occasionally, there are situations where it's desirable to makean “".egg™
file directly executable. Y ou can do this by including an entry point such
asthefollowing::

setup(
other arguments here...
entry_points={
‘setuptools.installation”: [
‘eggsecutable = my_package.some_module:main_func',

Any eggs built from the above setup script will include a short executable
prelude that imports and calls “"main_func()™ from “"my_package.some_module™.
The prelude can be run on Unix-like platforms (including Mac and Linux) by
invoking the egg with ““/bin/sh™, or by enabling execute permissions on the
.egg” file. For the executable prelude to run, the appropriate version of
Python must be available viathe "PATH™" environment variable, under its
"long" name. That is, if the egg isbuilt for Python 2.3, there must be a
“python2.3™" executable present in adirectory on “"PATH™,

Thisfeature is primarily intended to support ez_setup the installation of
setuptoolsitself on non-Windows platforms, but may also be useful for other
projects aswell.

IMPORTANT NOTE: Eggs with an "eggsecutable" header cannot be renamed, or
invoked viasymlinks. They *must* be invoked using their original filename, in
order to ensure that, once running, ~ pkg_resources ™ will know what project

and versionisin use. The header script will check this and exit with an

error if the ".egg™ file has been renamed or is invoked viaa symlink that
changes its base name.

Declaring Dependencies

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 29

““setuptools’ supports automatically installing dependencies when a package is
installed, and including information about dependencies in Python Eggs (so that
package management tools like Easylnstall can use the information).

““setuptools™ and “"pkg_resources’ use acommon syntax for specifying a
project's required dependencies. This syntax consists of a project's PyPl

name, optionally followed by a comma-separated list of "extras" in square
brackets, optionally followed by a comma-separated list of version

specifiers. A version specifier is one of the operators <™, 77>, T<="",

T>=", U==""or 1=, followed by aversion identifier. Tokens may be
separated by whitespace, but any whitespace or nonstandard characters within a

project name or version identifier must be replaced with -,

Version specifiers for a given project are internally sorted into ascending
version order, and used to establish what ranges of versions are acceptable.
Adjacent redundant conditions are also consolidated (e.g. ">1, >2""" becomes
TU>1", and T"<2,<3" becomes TT"<3"). TMI=""" versions are excised from
the ranges they fall within. A project's version is then checked for

membership in the resulting ranges. (Note that providing conflicting conditions
for the same version (e.g. "<2,>=2" or "==2,!=2") is meaningless and may
therefore produce bizarre results.)

Here are some example requirement specifiers:
docutils>= 0.3
comment lines and \ continuations are allowed in requirement strings
BazSpam ==1.1, ==1.2, ==1.3, ==1.4, ==1.5,\
==1.6, ==1.7 # and so are line-end comments
PEAK][FastCGl, reST]>=0.5a4
setuptool s==0.5a7
The simplest way to include requirement specifiersisto use the
“install_requires ™ argument to ““setup() . It takesastring or list of
strings containing requirement specifiers. If you include more than one
requirement in a string, each requirement must begin on anew line.
This has three effects:
1. When your project isinstalled, either by using Easylnstall, ““setup.py
install™, or ““setup.py develop™, al of the dependencies not already
installed will be located (via PyPl), downloaded, built (if necessary),

and installed.

2. Any scriptsin your project will be installed with wrappers that verify

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 30

the availability of the specified dependencies at runtime, and ensure that
the correct versions are added to ““sys.path™ (e.g. if multiple versions
have been installed).

3. Python Egg distributions will include a metadata file listing the
dependencies.

Note, by the way, that if you declare your dependenciesin ~“setup.py", you do
not need to use the ““require()”" function in your scripts or modules, as

long as you either install the project or use **setup.py develop™ to do
development work oniit. (See ™Development Mode"™_ below for more details on
using ““setup.py develop™.)

Dependencies that aren't in PyPI

If your project depends on packages that aren't registered in PyPl, you may
still be able to depend on them, as long as they are available for download
as.

- an egg, in the standard distutils ““sdist™ format,
-asingle ".py file, or
- aVCSrepository (Subversion, Mercuria, or Git).

You just need to add some URL s to the ““dependency_links™™ argument to
“setup()

The URLs must be either:

1. direct download URLS,
2. the URL s of web pages that contain direct download links, or
3. the repository's URL

In general, it's better to link to web pages, becauseit isusualy less
complex to update a web page than to release a new version of your project.
You can aso use a SourceForge ““showfiles.php™ link in the case where a
package you depend on is distributed via SourceForge.

If you depend on a package that's distributed asasingle “.py ™ file, you

must include an *"#egg=project-version" " suffix to the URL, to give a project
name and version number. (Be sure to escape any dashesin the name or version
by replacing them with underscores.) Easylnstall will recognize this suffix

and automatically create atrivial ““setup.py”” to wrap the single ".py " file

asan egg.

In the case of aVCS checkout, you should also append " #egg=project-version™
in order to identify for what package that checkout should be used. Y ou can

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 31

append T @REV " to the URL's path (before the fragment) to specify arevision.
Additionally, you can also force the VCS being used by prepending the URL with
acertain prefix. Currently available are;

- Tsvn+URL™ for Subversion,

- Tgit+tURL"™ for Git, and

- "hg+URL"™ for Mercurial

A more complete example would be:
“vestproto://host/path@revision#tegg=project-version™

Be careful with the version. It should match the one inside the project files.

If you want to disregard the version, you have to omit it both in the

“requires’” and in the URL's fragment.

Thiswill do acheckout (or aclone, in Git and Mercurial parlance) to a
temporary folder and run ~“setup.py bdist_egg™.

The “dependency_links™ option takes the form of alist of URL strings. For
example, the below will cause Easylnstall to search the specified page for
eggs or source distributions, if the package's dependencies aren't already
installed::
setup(
dependency _links=

"http://peak.telecommunity.com/snapshots/"
])

.. _Declaring Extras:

Declaring "Extras" (optional features with their own dependencies)

Sometimes a project has "recommended” dependencies, that are not required for
all uses of the project. For example, a project might offer optional PDF

output if ReportLab isinstalled, and reStructuredText support if docutilsis
installed. These optional features are called "extras', and setuptools alows

you to define their requirements aswell. In thisway, other projects that

require these optional features can force the additional requirements to be
installed, by naming the desired extras in their ““install_requires’.

For example, let's say that Project A offers optional PDF and reST support::

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 32

setup(
name="Project-A",

extras_require = {
'PDF": ["ReportLab>=1.2", "RXP"],
'reST": ["docutils>=0.3"],

Asyou can see, the “extras_require”” argument takes a dictionary mapping
names of "extra" features, to strings or lists of strings describing those
features requirements. These requirements will *not* be automatically
installed unless another package depends on them (directly or indirectly) by
including the desired "extras" in square brackets after the associated project
name. (Or if the extras were listed in arequirement spec on the Easylnstall
command line.)

Extras can be used by a project's “entry points _to specify dynamic
dependencies. For example, if Project A includes a"rst2pdf" script, it might
declareit like this, so that the "PDF" requirements are only resolved if the
"rst2pdf" script isrun::

setup(
name="Project-A",

entry_points = {
‘console_scripts:: [
'rst2pdf = project_a.tools.pdfgen [PDF]',
'rst2html = project_a.tools.htmlgen',
more script entry points...

1

Projects can also use another project's extras when specifying dependencies.
For example, if project B needs "project A" with PDF support installed, it
might declare the dependency like this::

setup(
name="Project-B",
install_requires = ["Project-A[PDF]"],

Thiswill cause ReportLab to be installed along with project A, if project B is
installed -- even if project A was already installed. In thisway, aproject

can encapsulate groups of optional "downstream dependencies' under afeature
name, so that packages that depend on it don't have to know what the downstream

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 33

dependencies are. If alater version of Project A builds in PDF support and

no longer needs ReportL ab, or if it ends up needing other dependencies besides
ReportLab in order to provide PDF support, Project B's setup information does
not need to change, but the right packages will still be installed if needed.

Note, by the way, that if a project ends up not needing any other packages to
support afeature, it should keep an empty requirements list for that feature
inits “extras _require’” argument, so that packages depending on that feature
don't break (dueto an invalid feature name). For example, if Project A above
buildsin PDF support and no longer needs ReportL ab, it could change its
setup to this::

setup(
name="Project-A",

extras_require = {

'‘PDF: 1,
'reST": ["docutils>=0.3"],

so that Package B doesn't have to remove the “"[PDF] ™" from its requirement
specifier.

Including Data Files

The distutils have traditionally allowed installation of "datafiles', which

are placed in a platform-specific location. However, the most common use case
for data files distributed with a package is for use *by* the package, usually

by including the data files in the package directory.

Setuptools offers three ways to specify datafiles to be included in your
packages. First, you can simply use the ““include package data’™ keyword,
eg.:

from setuptoolsimport setup, find_packages
setup(

include_package data= True

Thistells setuptools to install any datafilesit findsin your packages.

The data files must be specified viathe distutils "MANIFEST.in"" file.
(They can also be tracked by arevision control system, using an appropriate
plugin. See the section below on “Adding Support for Revision Control
Systems'_for information on how to write such plugins.)

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 34

If you want finer-grained control over what files are included (for example,
if you have documentation filesin your package directories and want to exclude
them from installation), then you can also use the ““package _data™™ keyword,

eg.:

from setuptoolsimport setup, find_packages
setup(

package data = {
If any package contains *.txt or *.rst files, include them:
"t rst],
And include any *.msg files found in the 'hello’ package, too:
‘hello’: [*.msg1,

The ““package _data™™ argument is adictionary that maps from package names to
lists of glob patterns. The globs may include subdirectory names, if the data
files are contained in a subdirectory of the package. For example, if the
package tree looks like this::

setup.py
src/
mypkg/
__init__.py
mypkg.txt
data/
somefile.dat
otherdata.dat

The setuptools setup file might look like this::

from setuptoolsimport setup, find_packages
setup(

packages = find_packages('src’), # include all packages under src
package dir ={":'src'}, #tell distutils packages are under src

package data = {
If any package contains *.txt files, include them:
" axt],
And include any *.dat files found in the 'data’ subdirectory
of the 'mypkg' package, also:
'mypkg": ['data/* .dat"],

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 35

Noticethat if you list patternsin ““package data™™ under the empty string,
these patterns are used to find filesin every package, even ones that also
have their own patterns listed. Thus, in the above example, the " mypkg.txt™
file getsincluded even though it's not listed in the patterns for ~"mypkg™.

Also notice that if you use paths, you *must* use aforward slash (/") as
the path separator, even if you are on Windows. Setuptools automatically
converts slashes to appropriate platform-specific separators at build time.

(Note: although the “"package_data™™ argument was previously only availablein
““setuptools’, it was also added to the Python ““distutils’™ package as of

Python 2.4; there is “some documentation for the feature___ available on the
python.org website. If using the setuptools-specific ““include_package data™
argument, files specified by ~“package_data™™ will *not* be automatically
added to the manifest unlessthey are listed in the MANIFEST.infile))

___http://docs.python.org/dist/nodell.html

Sometimes, the ““include package data™ or ““package data™ options alone

aren't sufficient to precisely define what files you want included. For

example, you may want to include package README filesin your revision control
system and source distributions, but exclude them from being installed. So,
setuptools offers an ““exclude _package data’™ option aswell, that allows you

to do things like this::

from setuptoolsimport setup, find_packages
setup(

packages = find_packages('src’), # include all packages under src
package dir ={":'src'}, #tell distutils packages are under src

include_package data= True, # include everything in source control

...but exclude README.txt from all packages
exclude package data={": [README.txt] },

The “exclude_package data™ option is adictionary mapping package names to
lists of wildcard patterns, just like the ““package data™™ option. And, just
aswith that option, akey of =™ will apply the given pattern(s) to all

packages. However, any files that match these patterns will be * excluded*
from installation, even if they werelisted in ““package data™ or were

included as aresult of using ““include package data.

In summary, the three options allow you to:

““include_package data™
Accept al datafiles and directories matched by "MANIFEST.in™".

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 36

““package _data™
Specify additional patternsto match files and directories that may or may
not be matched by "MANIFEST.in"" or found in source control.

“exclude_package data™
Specify patterns for data files and directories that should * not* be
included when a package isinstalled, even if they would otherwise have
been included due to the use of the preceding options.

NOTE: Due to the way the distutils build process works, a datafile that you
include in your project and then stop including may be "orphaned” in your
project's build directories, requiring you to run ““setup.py clean --al™" to

fully remove them. This may also be important for your users and contributors

if they track intermediate revisions of your project using Subversion; be sure

to let them know when you make changes that remove files from inclusion so they
can run "setup.py clean --all™".

Accessing Data Files at Runtime

Typically, existing programs manipulate apackage's ™™ file ™ attributein
order to find the location of datafiles. However, this manipulation isn't
compatible with PEP 302-based import hooks, including importing from zip files
and Python Eggs. It isstrongly recommended that, if you are using datafiles,
you should use the “Resource Management API”_ of ““pkg_resources™ to access
them. The “pkg_resources ™ module is distributed as part of setuptools, so if
you're using setuptools to distribute your package, there is no reason not to

use its resource management API. See also "Accessing Package Resources_ for
aquick example of converting code that uses ™™ file_ ™ touse
““pkg_resources’” instead.

.. _Resource Management API: http://peak.telecommunity.com/DevCenter/PythonEggs#resource-management

.. _Accessing Package Resources: http://peak.telecommunity.com/DevCenter/PythonEggstaccessing-package-
resources

Non-Package Data Files

The “distutils™ normally install general "datafiles' to a platform-specific
location (e.g. ~/usr/share™). Thisfeature intended to be used for things

like documentation, example configuration files, and the like. ™ setuptools™
does not install these datafiles in a separate location, however. They are
bundled inside the egg file or directory, a ongside the Python modules and
packages. The datafiles can aso be accessed using the "Resource Management
API"_, by specifying a ™~ "Requirement™" instead of a package name::

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 37

from pkg_resources import Requirement, resource_filename
filename = resource_filename(Requirement.parse("MyProject")," sample.conf")

The above code will obtain the filename of the "sample.conf" filein the data
root of the "MyProject" distribution.

Note, by the way, that this encapsulation of data files means that you can't
actualy install data filesto some arbitrary location on a user's machine;
thisisafeature, not abug. You can alwaysinclude a script in your
distribution that extracts and copies your the documentation or datafilesto
auser-specified location, at their discretion. If you put related data files

in asingle directory, you can use ““resource filename()™™ with the directory
name to get afilesystem directory that then can be copied with the “shutil™
module. (Even if your packageisinstaled asazipfile, calling
““resource_filename()™" on adirectory will return an actual filesystem
directory, whose contents will be that entire subtree of your distribution.)

(Of course, if you're writing a new package, you can just as easily place your
datafiles or directoriesinside one of your packages, rather than using the
distutils approach. However, if you're updating an existing application, it
may be simpler not to change the way it currently specifies these data files.)

Automatic Resource Extraction

If you are using tools that expect your resourcesto be "real" files, or your
project includes non-extension native libraries or other files that your C
extensions expect to be able to access, you may need to list those filesin
the “eager_resources ™ argument to ““setup() ", so that the files will be
extracted together, whenever a C extension in the project is imported.

Thisis especialy important if your project includes shared libraries * other*
than distutils-built C extensions, and those shared libraries use file

extensions other than ~.dII"", “".s0™", or “".dylib™", which are the

extensions that setuptools 0.6a8 and higher automatically detects as shared
libraries and adds to the ““native_libs.txt™ filefor you. Any shared

libraries whose names do not end with one of those extensions should be listed
as “eager_resources, because they need to be present in the filesystem when
he C extensions that link to them are used.

The “"pkg_resources™ runtime for compressed packages will automatically
extract *all* C extensionsand ““eager_resources™ at the same time, whenever
any C extension or eager resource is requested viathe ““resource _filename()™
API. (C extensions are imported using "~ resource_filename()™ internally.)

This ensures that C extensions will see all of the "real" filesthat they

eXpect to see.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 38

Note also that you can list directory resource namesin ““eager_resources = as
well, in which case the directory's contents (including subdirectories) will be
extracted whenever any C extension or eager resource is requested.

Please note that if you're not sure whether you need to use this argument, you
don't! It'sreally intended to support projects with lots of non-Python
dependencies and as alast resort for crufty projects that can't otherwise
handle being compressed. If your package is pure Python, Python plus data
files, or Python plus C, you really don't need this. Y ou've got to be using
either C or an external program that needs "real" filesin your project before
there's any possibility of ““eager_resources ™ being relevant to your project.

Extensible Applications and Frameworks

.. _Entry Points:

Dynamic Discovery of Services and Plugins

““setuptools’ supports creating libraries that "plug in" to extensible
applications and frameworks, by letting you register "entry points" in your
project that can be imported by the application or framework.

For example, suppose that a blogging tool wants to support plugins

that provide trandation for various file types to the blog's output format.

The framework might define an "entry point group” called “"blogtool .parsers’™,
and then allow plugins to register entry points for the file extensions they
support.

Thiswould allow people to create distributions that contain one or more
parsers for different file types, and then the blogging tool would be able to
find the parsers at runtime by looking up an entry point for the file
extension (or mime type, or however it wants to).

Note that if the blogging tool includes parsers for certain file formats, it
can register these as entry pointsin its own setup script, which means it
doesn't have to special-case its built-in formats. They can just be treated
the same as any other plugin's entry points would be.

If you're creating a project that plugsin to an existing application or
framework, you'll need to know what entry points or entry point groups are
defined by that application or framework. Then, you can register entry points
in your setup script. Here are afew examples of ways you might register an
st file parser entry point in the “blogtool.parsers’™ entry point group,

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 39

for our hypothetical blogging tool::

setup(
#...
entry_points = {'blogtool.parsers’: ".rst = some_modul e:SomeClass’}

setup(
#...
entry_points = {'blogtool.parsers [".rst = some_module:a func}

setup(
#..
entry_points =
[blogtool.parsers]
.rst = some.nested.modul e:SomeClass.some_classmethod [reST]

extras_require = dict(reST = "Docutils>=0.3.5")

The “entry_points™ argument to ~“setup() accepts either a string with
iniT-style sections, or a dictionary mapping entry point group names to
either strings or lists of strings containing entry point specifiers. An

entry point specifier consists of aname and value, separated by an ="

sign. The value consists of a dotted module name, optionally followed by a
77" and adotted identifier naming an object within the module. It can

also include a bracketed list of "extras' that are required for the entry

point to be used. When the invoking application or framework requests loading
of an entry point, any requirements implied by the associated extras will be
passed to “"pkg_resources.require()”, so that an appropriate error message
can be displayed if the needed package(s) are missing. (Of course, the
invoking app or framework can ignore such errorsif it wants to make an entry
point optional if arequirement isn't installed.)

Defining Additional Metadata

Some extensible applications and frameworks may need to define their own kinds
of metadatato include in eggs, which they can then access using the
““pkg_resources ” metadata APIs. Ordinarily, thisis done by having plugin
developersinclude additional filesin their “"ProjectName.egg-info™

directory. However, sinceit can be tedious to create such files by hand, you

may want to create a distutils extension that will create the necessary files

from argumentsto ““setup()”, in much the same way that ““setuptools™ does

for many of the “setup()”" argumentsit adds. See the section below on

“Creating distutils Extensions’_ for more details, especially the subsection on

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 40

"Adding new EGG-INFO Files™_.

"Development Mode"

Under normal circumstances, the “distutils ™ assume that you are going to
build a distribution of your project, not useit inits"raw" or "unbuilt"

form. If you wereto usethe “distutils™ that way, you would have to rebuild
and reinstall your project every time you made a change to it during
development.

Another problem that sometimes comes up with the “distutils ™ is that you may
need to do development on two related projects at the same time. 'Y ou may need
to put both projects' packages in the same directory to run them, but need to
keep them separate for revision control purposes. How can you do this?

Setuptools alows you to deploy your projects for use in acommon directory or
staging area, but without copying any files. Thus, you can edit each project's

code in its checkout directory, and only need to run build commands when you
change a project's C extensions or similarly compiled files. You can even

deploy a project into another project's checkout directory, if that's your

preferred way of working (as opposed to using acommon independent staging area
or the site-packages directory).

To do this, use the *“setup.py develop™™ command. It works very similarly to
“setup.py install™" or the EasylInstall tool, except that it doesn't actually
install anything. Instead, it creates a special ~.egg-link™" filein the
deployment directory, that links to your project's source code. And, if your
deployment directory is Python's *“site-packages ™ directory, it will also
update the ““easy-install.pth™ file to include your project's source code,
thereby making it available on ““sys.path™ for al programs using that Python
installation.

If you have enabled the “use 2to3"" flag, then of course the ".egg-link™
will not link directly to your source code when run under Python 3, since
that source code would be made for Python 2 and not work under Python 3.
Instead the *“setup.py develop™ will build Python 3 code under the ““build™
directory, and link there. This means that after doing code changes you will
have to run ““setup.py build™ before these changes are picked up by your
Python 3 installation.

In addition, the ““develop™™ command creates wrapper scriptsin the target
script directory that will run your in-development scripts after ensuring that
al your “install_requires™ packages are available on ““sys.path™.

Y ou can deploy the same project to multiple staging areas, e.g. if you have
multiple projects on the same machine that are sharing the same project you're

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 41

doing development work.
When you're done with a given development task, you can remove the project
source from a staging area using ~“setup.py develop --uninstall™", specifying

the desired staging area if it's not the default.

There are several optionsto control the precise behavior of the ““develop™
command; see the section on the “develop”_ command below for more details.

Note that you can aso apply setuptools commands to non-setuptools projects,
using commands like this::

python -c "import setuptools; execfile('setup.py")" develop
That is, you can simply list the normal setup commands and options following

the quoted part.

Distributing a " setuptools’ -based project

Using “setuptools™... Without bundling it!

Y our users might not have ““setuptools’ installed on their machines, or even
if they do, it might not be the right version. Fixing thisis easy; just
download “ez_setup.py”_, and put it in the same directory as your ““setup.py ™
script. (Besureto add it to your revision control system, too.) Then add
these two lines to the very top of your setup script, before the script imports
anything from setuptools:

.. code-block:: python

import ez_setup
ez_setup.use_setuptools()

That'sit. The “ez_setup™™ module will automatically download a matching
version of “setuptools™ from PyPl, if it isn't present on the target system.
Whenever you install an updated version of setuptools, you should aso update
your projects ““ez_setup.py " files, so that a matching version gets installed

on the target machine(s).

By the way, setuptools supports the new PyPl "upload" command, so you can use
““setup.py sdist upload™ or “setup.py bdist_egg upload™ to upload your

source or egg distributions respectively. Your project's current version must

be registered with PyPI first, of course; you can use ““setup.py register™ to
dothat. Oryoucandoitall in one step, e.g. ~setup.py register sdist

bdist_egg upload™ will register the package, build source and egg

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 42

distributions, and then upload them both to PyPI, where they'll be easily
found by other projects that depend on them.

(By theway, if you need to distribute a specific version of ““setuptools™,

you can specify the exact version and base download URL as parametersto the
“use_setuptools()” function. See the function's docstring for details.)

What Y our Users Should Know

In general, a setuptools-based project looks just like any distutils-based
project -- aslong as your users have an internet connection and are installing
to “site-packages, that is. But for some users, these conditions don't

apply, and they may become frustrated if thisistheir first encounter with

a setuptool s-based project. To keep these users happy, you should review the
following topicsin your project'sinstallation instructions, if they are

relevant to your project and your target audience isn't aready familiar with
setuptoolsand “easy_install ™.

Network Access
If your project isusing ““ez_setup’, you should inform users of the
need to either have network access, or to preinstall the correct version of
setuptools using the “Easylnstall installation instructions’_. Those
instructions also have tips for dealing with firewalls as well as how to
manually download and install setuptools.

Custom Installation Locations
Y ou should inform your usersthat if they are installing your project to
somewhere other than the main " site-packages ™ directory, they should
first install setuptools using the instructions for “Custom Installation
Locations _, before installing your project.

Y our Project's Dependencies
If your project depends on other projects that may need to be downloaded
from PyPI or elsawhere, you should list them in your installation
instructions, or tell users how to find out what they are. While most
users will not need this information, any users who don't have unrestricted
internet access may have to find, download, and install the other projects
manually. (Note, however, that they must still install those projects
using “easy_install™", or your project will not know they areinstalled,
and your setup script will try to download them again.)

If you want to be especialy friendly to users with limited network access,
you may wish to build eggs for your project and its dependencies, making
them all available for download from your site, or at least create a page
with links to al of the needed eggs. In thisway, users with limited
network access can manually download al the eggsto asingle directory,

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 43

then usethe “-f" option of “easy _install ™" to specify the directory

tofind eggsin. Userswho have full network access can just use *"-f™
with the URL of your download page, and ““easy_install™™ will find all the
needed eggs using your links directly. Thisis also useful when your
target audience isn't able to compile packages (e.g. most Windows users)
and your package or some of its dependencies include C code.

Revision Control System Users and Co-Developers
Users and co-devel opers who are tracking your in-development code using
arevision control system should probably read this manual's sections
regarding such development. Alternately, you may wish to create a
quick-reference guide containing the tips from this manual that apply to
your particular situation. For example, if you recommend that people use
““setup.py develop™ when tracking your in-development code, you should let
them know that this needs to be run after every update or commit.

Similarly, if you remove modules or data files from your project, you
should remind them to run ~“setup.py clean --all”™ and delete any obsolete
.pycor T.pyo . (Thistip appliesto the distutilsin general, not

just setuptools, but not everybody knows about them; be kind to your users
by spelling out your project's best practices rather than leaving them
guessing.)

Creating System Packages
Some users want to manage all Python packages using a single package
manager, and sometimes that package manager isn't ““easy_install ™!
Setuptools currently supports ““bdist_rpm™, “bdist_wininst™, and
“bdist_dumb™ formats for system packaging. If auser hasalocally-
installed "bdist" packaging tool that internally uses the distutils
“install™™ command, it should be able to work with “setuptools™. Some
examples of "bdist" formats that this should work with include the
“bdist_nsi* and “bdist_ msi™ formats for Windows.

However, packaging tools that build binary distributions by running
“setup.py install”™ on the command line or as a subprocess will require
modification to work with setuptools. They should use the
“--single-version-externally-managed™ option to the install”> command,
combined with the standard “--root™" or **--record™" options.

See the “install command™__ documentation below for more details. The
“bdist_deb™™ command is an example of acommand that currently requires
thiskind of patching to work with setuptools.

If you or your users have a problem building a usable system package for
your project, please report the problem viathe mailing list so that

either the "bdist" tool in question or setuptools can be modified to
resolve the issue.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 44

Setting the ““zip_safe™ flag

For some use cases (such as bundling as part of alarger application), Python
packages may be run directly from azip file.

Not all packages, however, are capable of running in compressed form, because
they may expect to be able to access either source code or datafiles as

normal operating system files. So, ~“setuptools ™ can install your project
asazipfile or adirectory, and its default choice is determined by the
project's zip_safe” flag.

You can pass a True or False value for the ““zip_safe™™ argument to the
““setup()”" function, or you can omit it. If you omit it, the “bdist_egg™
command will analyze your project's contentsto seeif it can detect any
conditions that would prevent it from working in azipfile. 1t will output
notices to the console about any such conditions that it finds.

Currently, this analysis is extremely conservative: it will consider the

project unsafeif it contains any C extensions or datafiles whatsoever. This
does *not* mean that the project can't or won't work asa zipfile! It just

means that the ““bdist_egg™ authors aren't yet comfortable asserting that

the project *will* work. If the project contains no C or datafiles, and does
no_file_ " or _path " introspection or source code manipulation, then
there is an extremely solid chance the project will work when installed asa
zipfile. (And if the project uses “pkg_resources™ for dl its datafile

access, then C extensions and other data files shouldn't be a problem at all.

See the "Accessing Data Files at Runtime _ section above for more information.)

However, if “"bdist_egg ™ can't be *sure* that your package will work, but
you've checked over all the warningsit issued, and you are either satisfied it
will work (or if you want to try it for yourself), then you should set
“zip_safe” to " True™ inyour “setup() cal. If it turns out that it

doesn't work, you can aways changeit to “"False™”, which will force
“setuptools’ to install your project as adirectory rather than as a zipfile.

Of course, the end-user can till override either decision, if they are using
Easylnstall toinstall your package. And, if you want to override for testing
purposes, you can just run " setup.py easy_install --zip-ok .>* or " setup.py
easy_install --always-unzip . in your project directory. to install the
package as a zipfile or directory, respectively.

In the future, as we gain more experience with different packages and become
more satisfied with the robustness of the ““pkg_resources™ runtime, the

"zip safety” analysis may become less conservative. However, we strongly
recommend that you determine for yourself whether your project functions
correctly when installed as a zipfile, correct any problemsif you can, and
then make an explicit declaration of "True™ or “False” for the “zip_safe™
flag, so that it will not be necessary for ““bdist_egg™™ or ~"Easylnstall™ to

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 45

try to guess whether your project can work as a zipfile.

Namespace Packages

Sometimes, alarge package is more useful if distributed as a collection of
smaller eggs. However, Python does not normally allow the contents of a
package to be retrieved from more than one location. "Namespace packages'
are asolution for this problem. When you declare a package to be a namespace
package, it means that the package has no meaningful contentsin its

T init__.py, and that it is merely a container for modules and subpackages.

The ““pkg_resources™ runtime will then automatically ensure that the contents
of namespace packages that are spread over multiple eggs or directories are
combined into asingle "virtual" package.

The ““namespace_packages™ argument to ~"setup()"" lets you declare your
project's namespace packages, so that they will beincluded in your project's
metadata. The argument should list the namespace packages that the egg
participatesin. For example, the Zopel nterface project might do this::

setup(
#...
namespace_packages = ['zope']

because it containsa ~ zope.interface ™ package that livesin the ““zope™
namespace package. Similarly, a project for a standalone * zope.publisher™
would also declare the *“zope™™ namespace package. When these projects are
installed and used, Python will see them both as part of a"virtua" ~“zope™
package, even though they will beinstalled in different locations.

Namespace packages don't have to be top-level packages. For example, Zope 3's
““zope.app packageis a namespace package, and in the future PEAK's
“peak.util™” package will be too.

Note, by the way, that your project's source tree must include the namespace
packages = __init__.py files(andthe ™ _init _.py™ of any parent
packages), in anormal Python package layout. These ™__init__.py " files
must contain theline:

__import__('pkg_resources).declare_namespace(__name_)

This code ensures that the namespace package machinery is operating and that
the current package is registered as a namespace package.

You must NOT include any other code and data in a namespace package's

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 46

T init__.py"". Eventhough it may appear to work during development, or when
projects areinstalled as *".egg” files, it will not work when the projects
areinstalled using "system" packaging tools -- in such cases the

T init__.py fileswill not beinstalled, let alone executed.

Y ou must include the ““declare_namespace()” lineinthe™ _init__.py™ of
every project that has contents for the namespace package in question, in
order to ensure that the namespace will be declared regardless of which
project'scopy of =~ __init__.py " isloaded first. If thefirst loaded

T init__.py" doesn't declareit, it will never *be* declared, because no
other copieswill ever be loaded!

TRANSITIONAL NOTE

Setuptools automatically calls ““declare_namespace()” for you at runtime,

but future versions may *not*. Thisis because the automatic declaration
feature has some negative side effects, such as needing to import all namespace
packages during the initialization of the ““pkg_resources ™ runtime, and also
the need for ““pkg_resources™ to be explicitly imported before any namespace
packages work at all. 1n some future releases, you'll be responsible

for including your own declaration lines, and the automatic declaration feature
will be dropped to get rid of the negative side effects.

During the remainder of the current development cycle, therefore, setuptools
will warn you about missing ~“declare_namespace()” callsin your

T init__.py" files, and you should correct these as soon as possible

before the compatibility support is removed.

Namespace packages without declaration lines will not work

correctly once a user has upgraded to alater version, so it's important that

you make this change now in order to avoid having your code break in thefield.
Our apologies for the inconvenience, and thank you for your patience.

Tagging and "Daily Build" or "Snapshot" Releases

When a set of related projects are under development, it may be important to
track finer-grained version increments than you would normally use for e.g.
"stable" releases. While stable rel eases might be measured in dotted numbers
with alpha/betaletc. status codes, development versions of a project often

need to be tracked by revision or build number or even build date. Thisis
especialy true when projectsin development need to refer to one another, and
therefore may literally need an up-to-the-minute version of something!

To support these scenarios, * setuptools™ allows you to "tag" your source and

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 47

egg distributions by adding one or more of the following to the project's
"officia" version identifier:

* A manually-specified pre-release tag, such as "build" or "dev", or a
manually-specified post-release tag, such as abuild or revision number
(" --tag-build=STRING, -bSTRING")

* A "last-modified revision number" string generated automatically from
Subversion's metadata (assuming your project is being built from a Subversion
"working copy") (" --tag-svn-revision, -r")

* An 8-character representation of the build date (""--tag-date, -d ™), as
apostrel ease tag

Y ou can add these tags by adding ““egg_info ™ and the desired optionsto
the command line ahead of the ““sdist™ or ““bdist™ commands that you want
to generate a daily build or snapshot for. See the section below on the
“egg_info’_ command for more details.

(Also, before you release your project, be sure to see the section above on
“Specifying Your Project's Version™_for more information about how pre- and
post-rel ease tags affect how setuptools and EasylInstall interpret version
numbers. Thisisimportant in order to make sure that dependency processing
tools will know which versions of your project are newer than others.)

Finally, if you are creating builds frequently, and either building them in a
downloadable location or are copying them to adistribution server, you should
probably also check out the ‘rotate”_ command, which lets you automatically
delete all but the N most-recently-modified distributions matching a glob
pattern. So, you can use a command line like::

setup.py egg_info -rbDEV bdist_egg rotate -m.egg -k3

to build an egg whose version info includes 'DEV-rNNNN' (where NNNN isthe
most recent Subversion revision that affected the source tree), and then

delete any egg files from the distribution directory except for the three

that were built most recently.

If you have to manage automated builds for multiple packages, each with
different tagging and rotation policies, you may aso want to check out the
“dlias’_ command, which would let each package define an diaslike ““daily™
that would perform the necessary tag, build, and rotate commands. Then, a
simpler script or cron job could just run ““setup.py daily™" in each project
directory. (And, you could also define sitewide or per-user default versions
of the “daily™ alias, so that projects that didn't define their own would

use the appropriate defaults.)

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 48

Generating Source Distributions

““setuptools™ enhances the distutils' default algorithm for sourcefile
selection with pluggable endpoints for looking up filesto include. If you are
using arevision control system, and your source distributions only need to
include files that you're tracking in revision control, use a corresponding
plugin instead of writinga "MANIFEST.in"" file. See the section below on
“Adding Support for Revision Control Systems _ for information on plugins.

If you need to include automatically generated files, or filesthat are kept in

an unsupported revision control system, you'll need to create a " MANIFEST.in™
file to specify any files that the default file location algorithm doesn't

catch. Seethe distutils documentation for more information on the format of

the "MANIFEST.in" file.

But, be sure to ignore any part of the distutils documentation that deals with
“MANIFEST " or how it's generated from “"MANIFEST.in""; setuptools shields you
from these issues and doesn't work the same way in any case. Unlikethe

distutils, setuptools regenerates the source distribution manifest file

every time you build a source distribution, and it buildsit inside the

project's “.egg-info™" directory, out of the way of your main project

directory. Y ou therefore need not worry about whether it is up-to-date or not.

Indeed, because setuptools' approach to determining the contents of a source
distribution is so much simpler, its “sdist”” command omits nearly all of

the options that the distutils more complex ““sdist™ process requires. For
all practical purposes, you'll probably use only the “--formats'™ option, if
you use any option at all.

Making your package available for Easylnstall

If you use the ““register”” command (" setup.py register™) to register your
package with PyPl, that's most of the battle right there. (Seethe
“docs for the register command™_ for more details.)

.. _docsfor the register command: http://docs.python.org/dist/package-index.html

If you also use the “upload”_ command to upload actual distributions of your
package, that's even better, because Easylnstall will be able to find and
download them directly from your project's PyPI page.

However, there may be reasons why you don't want to upload distributions to
PyPI, and just want your existing distributions (or perhaps a Subversion
checkout) to be used instead.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 49

So here's what you need to do before running the “register™™ command. There
arethree “setup()”” arguments that affect Easylnstall:

“url™ and ““download_url™
These become links on your project's PyPl page. Easylnstall will examine
them to seeif they link to a package ("primary links"), or whether they are
HTML pages. If they're HTML pages, Easylnstall scans al HREF's on the

page for primary links

“long_description™
EasylInstall will check any URLs contained in this argument to seeif they
are primary links.

A URL isconsidered a"primary link" if itisalink to a.tar.gz, .tgz, .zip,

.egg, .egg.zip, .tar.bz2, or .exefile, or if it has an ~#egg=project™ or
“#egg=project-version’” fragment identifier attached to it. EasyInstall

attempts to determine a project name and optional version number from the text
of aprimary link *without* downloading it. When it hasfound all the primary
links, Easylnstall will select the best match based on requested version,
platform compatibility, and other criteria.

So, if your ““url™ or ““download_url™" point either directly to a downloadable
source distribution, or to HTML page(s) that have direct links to such, then
Easylnstall will be able to locate downloads automatically. If you want to
make Subversion checkouts available, then you should create links with either
“#egg=project’” or ““#egg=project-version” " added to the URL. Y ou should
replace ““project’” and ““version™ with the values they would have in an egg
filename. (Be sureto actualy generate an egg and then use the initial part

of the filename, rather than trying to guess what the escaped form of the
project name and version number will be.)

Note that Subversion checkout links are of lower precedence than other kinds
of distributions, so Easylnstall will not select a Subversion checkout for
downloading unlessit has aversion included in the ““#egg="" suffix, and

it's ahigher version than EasylInstall has seen in any other links for your
project.

Asaresult, it's acommon practice to use mark checkout URLs with aversion of
"dev" (i.e., “#egg=projectname-dev "), so that users can do something like
this::

easy_install --editable projectname==dev

in order to check out the in-development version of ““projectname™.

Managing "Continuous Releases' Using Subversion

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 50

If you expect your users to track in-development versions of your project via
Subversion, there are afew additional steps you should take to ensure that
things work smoothly with Easylnstall. First, you should add the following
to your project's ““setup.cfg’ file:

.. code-block:: ini

[egg_info]
tag_build = .dev
tag svn revision=1

Thiswill tell ““setuptools™™ to generate package version numbers like
*1.0al.dev-r1263"", which will be considered to be an *older* release than
71.0al™". Thus, when you actually release “"1.0al™", the entire egg
infrastructure (including ““setuptools™, “"pkg_resources ™ and Easylnstall)

will know that " 1.0al™" supersedes any interim snapshots from Subversion, and
handle upgrades accordingly.

(Note: the project version number you specify in “setup.py” should always be
the * next* version of your software, not the last released version.

Alternately, you can leave out the ““tag_build=.dev"", and always use the
|ast release as a version number, so that your post-1.0 builds are labelled
71.0-r1263, indicating a post-1.0 patchlevel. Most projects so far,

however, seem to prefer to think of their project as being afuture version

still under development, rather than a past version being patched. It is of
course possible for a single project to have both situations, using

post-rel ease numbering on release branches, and pre-release numbering on the
trunk. But you don't have to make things this complex if you don't want to.)

Commonly, projects releasing code from Subversion will include a PyPI link to
their checkout URL (as described in the previous section) with an
““#egg=projectname-dev™" suffix. This allows usersto request Easylnstall

to download ““projectname==dev"" in order to get the latest in-development
code. Notethat if your project depends on such in-progress code, you may wish
to specify your “install_requires™ (or other requirements) to include

T==dev, eg.:

.. code-block:: python

install_requires = ["OtherProject>=0.2al.dev-r143,==dev"]

The above example says, "l really want at least this particular development
revision number, but feel free to follow and use an ™ #egg=OtherProject-dev™"
link if you find one". This avoids the need to have actual source or binary
distribution snapshots of in-development code available, just to be able to
depend on the latest and greatest a project hasto offer.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 51

A final note for Subversion development: if you are using SVN revision tags
as described in this section, it's a good idea to run “setup.py develop™

after each Subversion checkin or update, because your project's version number
will be changing, and your script wrappers need to be updated accordingly.

Also, if the project's requirements have changed, the ““develop™™ command will
take care of fetching the updated dependencies, building changed extensions,
etc. Besureto aso remind any of your users who check out your project

from Subversion that they need to run ““setup.py develop™ after every update
in order to keep their checkout completely in sync.

Making "Official" (Non-Snapshot) Releases

When you make an official release, creating source or binary distributions,
you will need to override the tag settings from ““setup.cfg’", so that you
don't end up registering versions like ““foobar-0.7al.dev-r34832°". Thisis
easy to do if you are developing on the trunk and using tags or branches for
your releases - just make the change to ““setup.cfg™ after branching or
tagging the release, so the trunk will still produce devel opment snapshots.

Alternately, if you are not branching for releases, you can override the
default version options on the command line, using something like::

python setup.py egg_info -RDb """ sdist bdist_egg register upload
Thefirst part of this command (" egg_info -RDb ""™") will override the
configured tag information, before creating source and binary eggs, registering
the project with PyPl, and uploading the files. Thus, these commands will use
the plain version from your ~“setup.py ™", without adding the Subversion

revision number or build designation string.

Of coursg, if you will be doing thisalot, you may wish to create a persona
aliasfor this operation, e.g.::

python setup.py alias -u release egg_info -RDb ""

You can then useit like this::

python setup.py release sdist bdist_egg register upload

Or of course you can create more elaborate aliases that do all of the above.
See the sections below on the “egg_info"_and “alias’__ commands for more ideas.

Distributing Extensions compiled with Pyrex

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 52

““setuptools™ includes transparent support for building Pyrex extensions, as
long as you define your extensions using " setuptools.Extension™”, * not*
“distutils.Extension™. Y ou must also not import anything from Pyrex in
your setup script.

If you follow these rules, you can safely list *".pyx " files as the source

of your "Extension’ objectsin the setup script. " setuptools™ will detect
at build time whether Pyrex isinstalled or not. If it is, then *“setuptools™
will useit. If not, then ““setuptools™ will silently change the
“Extension’ objectsto refer to the “.c™ counterparts of the ™ .pyx""
files, so that the normal distutils C compilation process will occur.

Of course, for thisto work, your source distributions must include the C

code generated by Pyrex, aswell asyour origina ~".pyx " files. Thismeans
that you will probably want to include current **.c™ filesin your revision
control system, rebuilding them whenever you check changesin for the ™ .pyx™
source files. Thiswill ensure that people tracking your project in arevision
control system will be ableto build it even if they don't have Pyrex

installed, and that your source releases will be similarly usable with or

without Pyrex.

._dias:

“dias - Define shortcuts for commonly used commands

Sometimes, you need to use the same commands over and over, but you can't
necessarily set them as defaults. For example, if you produce both development
snapshot releases and "stable" releases of a project, you may want to put

the distributions in different places, or use different ““egg_info " tagging
options, etc. In these cases, it doesn't make sense to set the optionsin

adistutils configuration file, because the values of the options changed based

on what you're trying to do.

Setuptools therefore allows you to define "aliases’ - shortcut names for

an arbitrary string of commands and options, using ~“setup.py dias aliasname
expansion’ ", where aliasname is the name of the new alias, and the remainder of
the command line suppliesits expansion. For example, this command defines
asitewide alias called "daily", that sets various ““egg_info™" tagging

options::

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 53

setup.py alias --global-config daily egg_info --tag-svn-revision \
--tag-build=devel opment

Once the aliasis defined, it can then be used with other setup commands,
eg.:

setup.py daily bdist_egg # generate adaily-build .egg file
setup.py daily sdist # generate a daily-build source distro
setup.py daily sdist bdist_egg # generate both

The above commands are interpreted as if the word ““daily™™ were replaced with
“egg_info --tag-svn-revision --tag-build=development .

Note that setuptools will expand each alias *at most once* in a given command
line. Thisservestwo purposes. Firgt, if you accidentally create an alias

loop, it will have no effect; you'll instead get an error message about an

unknown command. Second, it allows you to define an aias for a command, that
uses that command. For example, this (project-local) alias:

setup.py alias bdist_egg bdist_egg rotate -k1 -m.egg

redefines the ““bdist_egg™™ command so that it alwaysrunsthe “rotate™
command afterwards to delete all but the newest egg file. 1t doesn't loop
indefinitely on “"bdist_egg ™ because the alias is only expanded once when
used.

Y ou can remove a defined aias with the " --remove ™™ (or “*-r™") option, e.g.::

setup.py alias --global-config --remove daily

would delete the "daily" alias we defined above.

Aliases can be defined on a project-specific, per-user, or sitewide basis. The
default is to define or remove a project-specific alias, but you can use any of
the “configuration file options __ (listed under the “saveopts’ command, below)
to determine which distutils configuration file an aliases will be added to

(or removed from).

Note that if you omit the "expansion" argument to the “alias™ command,
you'll get output showing that alias' current definition (and what
configuration file it's defined in). If you omit the alias name as well,
you'll get alisting of all current aliases along with their configuration
file locations.

“bdist_egg™ - Create a Python Egg for the project

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 54

This command generates a Python Egg ("".egg ™ file) for the project. Python
Eggs are the preferred binary distribution format for Easylnstall, because they
are cross-platform (for "pure" packages), directly importable, and contain
project metadata including scripts and information about the project's
dependencies. They can be simply downloaded and added to ~"sys.path™
directly, or they can be placed in adirectory on ““sys.path™ and then
automatically discovered by the egg runtime system.

This command runsthe “egg_info’_ command (if it hasn't already run) to update
the project's metadata ("*.egg-info™) directory. If you have added any extra
metadata filesto the “".egg-info™ directory, those fileswill beincluded in

the new egg file's metadata directory, for use by the egg runtime system or by
any applications or frameworks that use that metadata.

Y ou won't usually need to specify any special options for this command; just
use “bdist_egg™" and you're done. But there are afew options that may
be occasionally useful:

“--dist-dir=DIR, -d DIR™
Set the directory where the “.egg’™ file will be placed. If you don't
supply this, then the **--dist-dir™ setting of the “bdist™ command
will be used, which isusually adirectory named ““dist™ in the project
directory.

“--plat-name=PLATFORM, -p PLATFORM ™
Set the platform name string that will be embedded in the egg's filename
(assuming the egg contains C extensions). This can be used to override
the distutils default platform name with something more meaningful. Keep
in mind, however, that the egg runtime system expects to see eggs with
distutils platform names, so it may ignore or reject eggs with non-standard
platform names. Similarly, the Easylnstall program may ignore them when
searching web pages for download links. However, if you are
cross-compiling or doing some other unusual things, you might find a use
for this option.

“--exclude-source-files™
Don't include any modules ™.py"" filesin the egg, just compiled Python,
C, and datafiles. (Notethat this doesn't affect any ~.py " filesin the
EGG-INFO directory or its subdirectories, since for example there may be
scriptswitha™.py” extension which must still be retained.) We don't
recommend that you use this option except for packages that are being
bundled for proprietary end-user applications, or for "embedded" scenarios
where spaceis at an absolute premium. On the other hand, if your package
isgoing to be installed and used in compressed form, you might as well
exclude the source because Python's ™"traceback™™ module doesn't currently
understand how to display zipped source code anyway, or how to deal with
filesthat arein adifferent place from where their code was compiled.

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 55

There are also some options you will probably never need, but which are there
because they were copied from similar ““bdist™™ commands used as an example for
creating thisone. They may be useful for testing and debugging, however,

which iswhy we kept them:

--keep-temp, -k
Keep the contents of the " --bdist-dir™" tree around after creating the
.egg file

“--bdist-dir=DIR, -b DIR™
Set the temporary directory for creating the distribution. The entire
contents of this directory are zipped to createthe “".egg’ file, after
running various installation commands to copy the package's modules, data,
and extensions here.

--skip-build™
Skip doing any "build" commands; just go straight to the
install-and-compress phases.

.. _develop:

““develop™” - Deploy the project source in "Development Mode'

This command allows you to deploy your project's source for use in one or more
"staging areas" where it will be available for importing. This deployment is
donein such away that changes to the project source are immediately available
in the staging area(s), without needing to run a build or install step after

each change.

The “develop™ command works by creating an *".egg-link™" file (named for the
project) in the given staging area. If the staging areais Python's
“site-packages " directory, it also updates an ““easy-install.pth™ file so

that the project ison “sys.path™ by default for all programs run using that
Python installation.

The “develop™ command aso installs wrapper scriptsin the staging area (or
a separate directory, as specified) that will ensure the project's dependencies
are available on ““sys.path™ before running the project's source scripts.

And, it ensures that any missing project dependencies are availablein the
staging area, by downloading and installing them if necessary.

Last, but not least, the ““develop™™ command invokes the “build_ext -i™
command to ensure any C extensionsin the project have been built and are
up-to-date, and the ““egg_info~ command to ensure the project's metadatais
updated (so that the runtime and wrappers know what the project's dependencies
are). If you make any changesto the project's setup script or C extensions,

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 56

you should rerun the ““develop™™ command against al relevant staging areasto
keep the project's scripts, metadata and extensions up-to-date. Most other
kinds of changes to your project should not require any build operations or
rerunning “develop ', but keep in mind that even minor changes to the setup
script (e.g. changing an entry point definition) require you to re-run the
““develop™ or “test”” commands to keep the distribution updated.

Here are some of the options that the ““develop™™ command accepts. Note that
they affect the project's dependencies as well as the project itself, so if you
have dependencies that need to be installed and you use " --exclude-scripts™
(for example), the dependencies scripts will not beinstalled either! For

this reason, you may want to use Easylnstall to install the project's
dependencies before using the ““develop™ command, if you need finer control
over the installation options for dependencies.

--uninstall, -u™
Un-deploy the current project. Y ou may usethe ~ --install-dir™™ or ~-d™
option to designate the staging area. The created “".egg-link™ file will
be removed, if present and it is still pointing to the project directory.
The project directory will be removed from ““easy-install.pth™ if the
staging areais Python's ““site-packages’™ directory.

Note that this option currently does * not* uninstall script wrappers! You
must uninstall them yourself, or overwrite them by using Easylnstall to
activate a different version of the package. Y ou can also avoid installing
script wrappersin the first place, if you use the “--exclude-scripts™
(aka"-x"") option when you run ““develop™ to deploy the project.

“--multi-version, -m™
"Multi-version" mode. Specifying this option prevents *“develop™ from
adding an ““easy-install.pth™ entry for the project(s) being deployed, and
if an entry for any version of a project already exists, the entry will be
removed upon successful deployment. In multi-version mode, no specific
version of the package is available for importing, unless you use
“pkg_resources.require()” to put it on “sys.path™, or you are running
awrapper script generated by ““setuptools™ or Easylnstall. (Inwhich
case the wrapper script calls “require()”" for you.)

Note that if you install to a directory other than *“site-packages™,

this option is automatically in effect, because *".pth™" files can only be
used in “site-packages™ (at least in Python 2.3 and 2.4). So, if you use
the "--install-dir™ or “-d"" option (or they are set via configuration
file(s)) your project and its dependencies will be deployed in multi-
version mode.

“--ingtall-dir=DIR, -d DIR™
Set the installation directory (staging ared). If thisoptionis not
directly specified on the command line or in a distutils configuration

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 57

file, the distutils default installation location is used. Normally, this
will be the “site-packages™ directory, but if you are using distutils
configuration files, setting things like ““prefix™" or “install_lib™,

then those settings are taken into account when computing the default
staging area.

T --script-dir=DIR, -s DIR™
Set the script installation directory. If you don't supply this option
(viathe command line or a configuration file), but you * have* supplied
an "~ --install-dir” (viacommand line or config file), then this option
defaults to the same directory, so that the scripts will be able to find
their associated package installation. Otherwise, this setting defaults
to the location where the distutils would normally install scripts, taking
any distutils configuration file settings into account.

“--exclude-scripts, -x
Don't deploy script wrappers. Thisisuseful if you don't want to disturb
existing versions of the scripts in the staging area.

“--aways-copy, -a
Copy al needed distributions to the staging area, even if they
are already present in ancther directory on ““sys.path™. By default, if
arequirement can be met using a distribution that is already availablein
adirectory on ““sys.path™, it will not be copied to the staging area.

--egg-path=DIR™
Force the generated ~".egg-link™" file to use a specified relative path
to the source directory. This can be useful in circumstances where your
installation directory is being shared by code running under multiple
platforms (e.g. Mac and Windows) which have different absolute locations
for the code under development, but the same *relative* locations with
respect to the installation directory. If you use this option when
installing, you must supply the same relative path when uninstalling.

In addition to the above options, the ““develop™™ command also accepts all of
the same options accepted by “easy_install . If you've configured any
Teasy ingtall™ settingsin your ““setup.cfg™ (or other distutils config

files), the “"develop™™ command will use them as defaults, unless you override
themina "[develop]™ section or on the command line.

“easy_install™” - Find and install packages

This command runs the "EasylInstall tool

<easy_install.html>"_ for you. Itisexactly

equivalent to running the ““easy_install”> command. All command line arguments
following this command are consumed and not processed further by the distutils,

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 58

so this must be the last command listed on the command line. Please see

the Easylnstall documentation for the options reference and usage examples.
Normally, there is no reason to use this command via the command line, as you
can just use “easy_install™ directly. It'sonly listed here so that you know

it's adistutils command, which means that you can:

* create command aliases that useit,
* create distutils extensions that invoke it as a subcommand, and

* configure options for it in your ““setup.cfg™ or other distutils config
files.

.._egg_info:

““egg_info™" - Create egg metadata and set build tags

This command performs two operations: it updates a project's ~.egg-info™
metadata directory (used by the ““bdist_egg™, “develop™, and ““test™
commands), and it allows you to temporarily change a project's version string,
to support "daily builds' or "snapshot" releases. It isrun automatically by
the sdist™, “bdist_egg™, “develop™, “register', and “'test”” commands

in order to update the project's metadata, but you can also specify it

explicitly in order to temporarily change the project's version string while
executing other commands. (It also generates the™.egg-info/ SOURCES.txt™
manifest file, which is used when you are building source distributions.)

In addition to writing the core egg metadata defined by ™ setuptools ™ and

required by ““pkg_resources ", this command can be extended to write other
metadata files as well, by defining entry pointsin the ““egg_info.writers™

group. See the section on "Adding new EGG-INFO Files_ below for more details.
Note that using additional metadata writers may require you to include a
“setup_requires’ argument to ““setup()” in order to ensure that the desired
writers are available on ““sys.path™.

Release Tagging Options

The following options can be used to modify the project's version string for

all remaining commands on the setup command line. The options are processed
in the order shown, so if you use more than one, the requested tags will be
added in the following order:

“--tag-build=NAME, -b NAME™
Append NAME to the project's version string. Due to the way setuptools
processes "pre-release” version suffixes beginning with the letters"a"
through "e" (like "apha’, "beta’, and "candidate"), you will usually want

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 59

to use atag like".build" or ".dev", asthiswill cause the version number

to be considered *lower* than the project's default version. (If you

want to make the version number *higher* than the default version, you can
always leave off --tag-build and then use one or both of the following
options.)

If you have adefault build tag set in your ™ setup.cfg ™", you can suppress
it on the command lineusing **-b "™ or ~--tag-build=
tothe "egg_info” command.

(TITARY

as an argument

T --tag-svn-revision, -’
If the current directory is a Subversion checkout (i.e. hasa ".svn™
subdirectory, this appends a string of the form "-rNNNN" to the project's
version string, where NNNN is the revision number of the most recent
modification to the current directory, as obtained from the ““svninfo™
command.

If the current directory is not a Subversion checkout, the command will
look for a "PKG-INFO™ file instead, and try to find the revision number
from that, by looking for a"-rNNNN" string at the end of the version
number. (Thisis so that building a package from a source distribution of
a Subversion snapshot will produce a binary with the correct version
number.)

If thereisno "PKG-INFO™ file, or the version number contained therein
does not end with "-r"" and a number, then "-r0"" is used.

“--no-svn-revision, -R™
Don't include the Subversion revision in the version number. This option
isincluded so you can override a default setting put in ““setup.cfg™.

“--tag-date, -d”
Add adate stamp of theform"-YYYYMMDD" (e.g. "-20050528") to the
project's version number.

“--no-date, -D™
Don't include a date stamp in the version number. This option isincluded
S0 you can override adefault setting in ~setup.cfg ™.

(Note: Because these options modify the version number used for source and
binary distributions of your project, you should first make sure that you know
how the resulting version numbers will be interpreted by automated tools
like Easylnstall. See the section above on “Specifying Y our Project's
Version_ for an explanation of pre- and post-rel ease tags, as well astips on
how to choose and verify a versioning scheme for your your project.)

For advanced uses, there is one other option that can be set, to change the

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 60

location of the project's “.egg-info™" directory. Commands that need to find
the project's source directory or metadata should get it from this setting:

Other “egg_info™™ Options

*--egg-base=SOURCEDIR, -e SOURCEDIR™
Specify the directory that should contain the .egg-info directory. This
should normally be the root of your project's source tree (which is not
necessarily the same as your project directory; some projectsusea ™ src™
or “'lib™ subdirectory as the source root). Y ou should not normally need
to specify thisdirectory, asit is normally determined from the
““package_dir” argument to the ““setup()”" function, if any. If thereis
no ““package dir set, this option defaults to the current directory.

“egg_info " Examples

Creating adated "nightly build" snapshot egg::
python setup.py egg_info --tag-date --tag-build=DEV bdist_egg

Creating and uploading a release with no version tags, even if some default
tags are specified in “setup.cfg ::

python setup.py egg_info -RDb """ sdist bdist_egg register upload

(Noticethat ““egg_info™ must always appear on the command line *before* any
commands that you want the version changes to apply to.)

.. _install command:

“install™ - Run “easy_install™” or old-style installation

The setuptools “install™™ command is basically a shortcut to run the
“easy_install”” command on the current project. However, for convenience
in creating "system packages' of setuptools-based projects, you can also
use this option:

--single-version-externally-managed™
This boolean option tellsthe “install™™ command to perform an "old style"
installation, with the addition of an ~".egg-info™" directory so that the
installed project will still have its metadata available and operate
normally. If you use this option, you *must* also specify the “--root™

Open Source Used In NCS1004 (Bosshogg) 771_OPENROADM_GISO 61

or "--record™” options (or both), because otherwise you will have no way
to identify and remove the installed files.

This option is automatically in effect when ““install ™ isinvoked by another
distutils command, so that commands like ““bdist_wininst™ and ~“bdist_rpm™
will create system packages of eggs. It isaso automatically in effect if

you specify the “--root™ option.

“install_egg_info™ - Install an “.egg-info™" directory in T site-packages™

Setuptools runs this command as part of ““ins