MPLS VPN WAN Migration
How Cisco IT in Europe Migrated to MPLS VPN WAN

A Cisco on Cisco Case Study: Inside Cisco IT
Overview

- **Challenge**
 Replace hub-and-spoke topology connecting 3 core sites, 9 hub sites, 30 partner sites, and 85 satellite sites

- **Solution**
 Deploy a Multiprotocol Label Switching (MPLS) VPN, with the core network provided by a service provider, for any-to-any connectivity

- **Results**
 Reduced operations overhead costs
 Simplified acquisitions, moves, and partner connectivity

- **Next Steps**
 Transition more network operations to Internet data centers (IDCs)
 Extend MPLS VPN to more Cisco® locations worldwide
Challenge: Quickly Improve EMEA WAN

- Acquire more bandwidth capacity
- Improve availability

 Bringing down a hub site to replace an uninterruptible power supply or upgrade the hardware caused all associated spoke sites to go down
- Gain quality of service (QoS) needed for voice over IP (VoIP)
- Transition quickly

 London core site would be moving in just four months

 Moving existing infrastructure would cost US$2 million

 Other two core sites—Amsterdam and Brussels—would need to migrate to the new topology at the same time
Solution: MPLS VPN

- **Deploy MPLS VPN**

 MPLS provides any-to-any connectivity because traffic can reach its destination over the optimal path, which improves the quality of real-time, peer-to-peer applications such as voice and video.

- **Select primary and backup managed MPLS VPN service provider**

 Selection criteria: SLAs, solution transparency, geographical reach, pricing.
Solution: MPLS Topology

- Full-mesh topology
- Core provided by managed MPLS VPN service provider
- Customer premises equipment (CPE) managed internally by Cisco IT:
 - Satellite site: Two Cisco® 3700 or 7200 series router
 - Hub sites: Two Cisco 7200 Series routers
Solution: MPLS Deployment

- Ambitious migration schedule
 - London office moving on February 29, 2003
 - Kick-off meeting with primary service provider held in October 2002
 - Four months allowed for service provider to build full MPLS cloud

 - All three offices would need to be changed at one time

- Success—All core offices transitioned in a 36-hour period between February 14, 2003 and February 16, 2003
Results: Summary (1 of 2)

- Reduced operations overhead costs

 Service provider—not Cisco® IT—handles troubleshooting and solving trouble tickets, Layer 3 routing tables, and configuring core WAN router for multicast and other technologies

 Five Cisco IT staff members made available for more strategic activities

- Streamlined acquisitions and moves

 With no network infrastructure behind each office, Cisco IT only needs to provide connectivity to the cloud, not connections from other offices
Results: Summary (1of 2)(Contd.)

- Greater flexibility in connecting partner sites

 Partners can connect directly to the cloud; previously they had to connect to one of two hub sites with firewalls, even if geographically distant
Results: Summary (1 of 2)(Contd.)

- **Cost savings**

 Cisco now pays the same for FOUR TIMES the bandwidth

 VOIP allows toll bypass, or else aggregating hop-offs at the same site for volume discounts

- **Increased security and availability**

 Services reside in the service provider’s IDC
Results: Summary (2 of 2)

Greater scalability

- With full-mesh topology, 90 sites in EMEA required more than 4000 point-to-point connections
- In the Layer 3 MPLS VPN model, each site needs only one connection to the VPN
Next Steps: Summary

- Transition more network operations to IDCs ("Telco hoteling")
 - No need for onsite personnel
 - Hardened site closet
 - Reduced access line costs
 - More flexibility in moving offices
 - Greater flexibility and scaling, because changes made to a regional hub apply to all connected offices

- Extend MPLS VPN to more Cisco® locations worldwide
To read the entire case study, or for additional Cisco IT case studies on a variety of business solutions, visit Cisco on Cisco: Inside Cisco IT

www.cisco.com/go/ciscoit