High Availability SSO Deployment Guide for Cisco Catalyst 9800 Series Wireless Controllers, Cisco IOS XE Amsterdam 17.3

First Published: August 5, 2020
Table of Contents

Introduction .. 4
Overview.. 4
Feature Description and Functional Behavior ... 4
Platforms Supported.. 4
SSO Pre-requisites... 5
SSO on Cisco Catalyst C9800-40-K9 and C9800-80-K9 Wireless Controllers.. 5
Physical Connectivity for C9800-L, C9800-40 and C9800-80 Wireless Controller HA SSO 6
 Connecting C9800-L Wireless Controllers using RJ-45 RP Port for SSO.. 6
 Connecting C9800-40 and 9800-80 Wireless Controllers using RJ-45 RP Port for SSO................. 6
 Connecting C9800-40 and 9800-80 Wireless Controllers using SFP Gigabit RP Port for SSO 7
 Connecting a C9800 wireless controller HA pair to upstream switches.. 7
 Option 1: Single VSS switch (or stack/VSL pair/modular switch) with RP back-to-back... 8
 Option 2: Single VSS switch (or stack/VSL pair/modular switch) with RP via upstream .. 8
 Option 3: Dual Distributed switches with HSRP .. 9
 Connecting a C9800 wireless controller HA pair to upstream switches with Release 17.1 and above ... 9
SSO on Cisco Catalyst C9800-CL running on ESXi, KVM, Hyper-V.. 10
Configuring High Availability SSO using GUI.. 10
Configuring High Availability SSO using CLI... 11
Mobility MAC ... 11
Active and Standby Election Process.. 12
State Transition for HA SSO Pair formation .. 13
Monitoring the HA Pair... 14
 Monitoring HA Pair from CLI.. 17
Verifying Redundancy States .. 17
Accessing standby wireless controller console ... 19
Switchover Functionality.. 20
 Process Failure Switchover .. 20
 Power-fail Switchover ... 20
 Manual Switchover .. 20
Failover Process... 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active wireless controller</td>
<td>21</td>
</tr>
<tr>
<td>Standby wireless controller</td>
<td>21</td>
</tr>
<tr>
<td>Verifying AP and Client SSO State Sync</td>
<td>22</td>
</tr>
<tr>
<td>SSO Failover Time Metrics</td>
<td>22</td>
</tr>
<tr>
<td>Redundancy Management Interface</td>
<td>22</td>
</tr>
<tr>
<td>Redundancy Management Interface Configuration using WebUI</td>
<td>23</td>
</tr>
<tr>
<td>Redundancy Management Interface Configuration using CLI</td>
<td>24</td>
</tr>
<tr>
<td>Verifying RMI and RP configuration</td>
<td>24</td>
</tr>
<tr>
<td>RMI and RP pairing combinations</td>
<td>25</td>
</tr>
<tr>
<td>Upgrade and HA Pairing with no previous HA config</td>
<td>25</td>
</tr>
<tr>
<td>Upgrade already Paired controllers</td>
<td>25</td>
</tr>
<tr>
<td>Downgrade</td>
<td>26</td>
</tr>
<tr>
<td>Default Gateway Check</td>
<td>26</td>
</tr>
<tr>
<td>Default Gateway Check WebUI Configuration</td>
<td>27</td>
</tr>
<tr>
<td>Default Gateway Check CLI Configuration</td>
<td>28</td>
</tr>
<tr>
<td>System and Network Fault Handling</td>
<td>28</td>
</tr>
<tr>
<td>HA Unpairing Behavior</td>
<td>32</td>
</tr>
<tr>
<td>LACP, PAGP support in SSO Pair</td>
<td>34</td>
</tr>
<tr>
<td>Supported LACP, PAGP topologies</td>
<td>34</td>
</tr>
<tr>
<td>Multi-chassis Link Aggregation group</td>
<td>34</td>
</tr>
<tr>
<td>Supported Multi-chassis LAG topologies</td>
<td>35</td>
</tr>
<tr>
<td>Supported Platforms:</td>
<td>35</td>
</tr>
<tr>
<td>Supported LAG Port Grouping</td>
<td>36</td>
</tr>
<tr>
<td>Replacing a controller in an HA setup</td>
<td>36</td>
</tr>
<tr>
<td>N+1 with SSO Hybrid deployment</td>
<td>37</td>
</tr>
<tr>
<td>Standby Monitoring using RMI</td>
<td>37</td>
</tr>
<tr>
<td>Standby Monitoring CLIs</td>
<td>37</td>
</tr>
<tr>
<td>Standby Monitoring Programmatic Interfaces</td>
<td>39</td>
</tr>
<tr>
<td>Steps to monitor the standby controller using SSH to RMI IPv4</td>
<td>40</td>
</tr>
<tr>
<td>Command for Standby Monitoring using RESTCONF</td>
<td>41</td>
</tr>
<tr>
<td>Caveats of Standby Monitoring in Release 17.3</td>
<td>41</td>
</tr>
</tbody>
</table>
Introduction

High availability has been a requirement on wireless controllers to minimize downtime in live networks. This document provides information on the theory of operation and configuration for the Catalyst 9800 Wireless Controller as it pertains to supporting stateful switchover of access points and clients (AP and Client SSO). Catalyst 9800 Wireless Controller is the next generation wireless controller that can run on multiple platforms with different scalability goals from low to high scale. AP and Client SSO is supported on the physical appliances and the virtual cloud platforms of the Catalyst 9800 Wireless Controller, namely C9800-L, C9800-40, C9800-80 and C9800-CL. The underlying SSO functionality is the same on all platforms with some differences in the setup process.

Overview

The High availability SSO capability on wireless controller allows the access point to establish a CAPWAP tunnel with the Active wireless controller and the Active wireless controller to share a mirror copy of the AP and client database with the Standby wireless controller. The APs do not go into the Discovery state and clients do not disconnect when the Active wireless controller fails and the Standby wireless controller takes over the network as the Active wireless controller. There is only one CAPWAP tunnel maintained at a time between the APs and the wireless controller that is in an Active state.

Release 16.10 supports full access point and Client Stateful Switch Over. Client SSO is supported for clients which have already completed the authentication and DHCP phase and have started passing traffic. With Client SSO, a client’s information is synced to the Standby wireless controller when the client associates to the wireless controller or the client’s parameters change. Fully authenticated clients, i.e. the ones in Run state, are synced to the Standby and thus, client re-association is avoided on switchover making the failover seamless for the APs as well as for the clients, resulting in zero client service downtime and zero SSID outage. The overall goal for the addition of AP and client SSO support to the Catalyst 9800 Wireless controller is to reduce major downtime in wireless networks due to failure conditions that may occur due to box failover, network failover or power outage on the primary site.

Feature Description and Functional Behavior

All the control plane activities are centralized and synchronized between the active and standby units. The Active Controller centrally manages all the control and management communication. The network control data traffic is transparently switched from the standby unit to the active unit for centralized processing.

Bulk and Incremental configuration is synced between the two controllers at run-time and both controllers share the same IP address on the management interface. The CAPWAP state of the Access Points that are in Run State is also synced from the active wireless controller to the Hot-Standby wireless controller allowing the Access Points to be state-fully switched over when the Active wireless controller fails. The APs do not go to the Discovery state when Active wireless controller fails, and Standby wireless controller takes over as the Active wireless controller to serve the network.

The two units form a peer connection through a dedicated RP port (this can be a physical copper or fiber port) or a virtual interface for the VM. The Active/Standby election happens at boot time and it’s either based on the highest priority (priority range is <1-2>) or the lowest MAC if the priority is the same. By default the C9800 has a priority of 1. Once the HA pair is formed, all the configuration and AP and client databases are synced between Active and standby. Any configuration is done on the Active is automatically synch to the Standby. The standby is continuously monitoring the Active via keepalives over the RP link. If the Active becomes unavailable, the standby assumes the role of Active. It does that by sending a Gratuitous ARP message advertising to the network that it now owns that wireless management IP address. All the configurations and databases are already in sync, so the standby can take over without service disruption

There is no pre-empt functionality with SSO meaning that when the previous Active wireless controller resumes operation, it will not take back the role as an Active wireless controller but will negotiate its state with the current Active wireless controller and transition to Hot-Standby state.

Platforms Supported

- Cisco Catalyst C9800-40 Wireless Controller
- Cisco Catalyst C9800-80 Wireless Controller
- Cisco Catalyst C9800-CL Wireless Controller
SSO Pre-requisites

- Cisco Catalyst C9800-L Wireless Controller

SSO Pre-requisites

- HA Pair can only be form between two wireless controllers of the same form factor
- Both controllers must be running the same software version in order to form the HA Pair
- Maximum RP link latency = 80 ms RTT, minimum bandwidth = 60 Mbps and minimum MTU = 1500

SSO on Cisco Catalyst C9800-40-K9 and C9800-80-K9 Wireless Controllers

The Cisco C9800-40-K9 wireless controller is an extensible and high performing wireless controller, which can scale up to 2000 access points and 32000 clients. The controller has four 10G data ports and a throughput of 40G.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP— RJ-45 1G redundancy Ethernet port.</td>
<td>Gigabit SFP RP port</td>
</tr>
</tbody>
</table>

The Cisco C9800-80-K9 Wireless Controller is a 100G wireless controller that occupies two rack unit space and supports a pluggable Module slot, and eight built-in 10GE/1GE interfaces.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP— RJ-45 1G redundancy Ethernet port.</td>
<td>Gigabit SFP RP port</td>
</tr>
</tbody>
</table>

Both C9800-40-K9 and C9800-80-K9 Wireless controllers have two RP Ports as shown in the figures above:

- RJ-45 Ethernet Redundancy port
- SFP Gigabit Redundancy Port

If both the Redundancy Ports are connected:

- SFP Gigabit Ethernet port takes precedence if they are connected at same time.
- HA between RJ-45 and SFP Gigabit RP ports is not supported.
- Only Cisco supported SFPs (GLC-LH-SMD and GLC-SX-MMD) are supported for RP port
- 10G SFP-10G-SR is not supported on the RP port.
- When HA link is up via RJ-45, SFPs on HA port should not be inserted even if there is no link between them. As it is a physical level detection, this would cause the HA to go down as precedence is given to SFP
Physical Connectivity for C9800-L, C9800-40 and C9800-80 Wireless Controller HA SSO

The HA Pair always has one active controller and one standby controller. If the active controller becomes unavailable, the standby assumes the role of the active. The Active wireless controller creates and updates all the wireless information and constantly synchronizes that information with the standby controller. If the active wireless controller fails, the standby wireless controller assumes the role of the active wireless controller and continues to keep the HA Pair operational. Access Points and clients continue to remain connected during an active-to-standby switchover.

Connecting C9800-L Wireless Controllers using RJ-45 RP Port for SSO

Connecting C9800-40 and 9800-80 Wireless Controllers using RJ-45 RP Port for SSO
Connecting C9800-40 and 9800-80 Wireless Controllers using SFP Gigabit RP Port for SSO

Connecting a C9800 wireless controller HA pair to upstream switches

Prior to 17.1 following topologies were supported in terms of upstream connectivity to the network:

1. SSO pair connected to upstream VSS pair with split links and RP connected back to back.
2. SSO pair connected to upstream VSS pair with RP connected via the upstream set of switches in order to detect gateway down scenario.
3. SSO pair connected to upstream HSRP active and standby and RP connected via upstream set of switches in order to detect gateway down scenario.
Option 1: Single VSS switch (or stack/VSL pair/modular switch) with RP back-to-back

Single L2 port-channel on each box and enable dot1q to carry multiple VLANs. Spread the uplinks of the HA pair across the VSS pair and connect the RP back to back (no L2 network in between). Make sure that switch can scale in terms of ARP and MAC table entries.

This is a recommended topology.

Note: In HA SSO topology only LAG with mode ON is supported.

Option 2: Single VSS switch (or stack/VSL pair/modular switch) with RP via upstream

With this topology a single L2 port-channel is created on each box. Enable dot1q to carry multiple VLANs and connect the standby in the same manner. Make sure that switch can scale in terms of ARP and MAC table entries

IMPORTANT: In this topology the links are not spread across the VSS stack. Connect RP port to the same VSS/stack member as the uplinks and not back to back

Note: In HA SSO topology only LAG with mode ON is supported.
Option 3: Dual Distributed switches with HSRP

With this topology a single L2 port-channel is created on each box. Enable dot1q to carry multiple VLANs and connect the standby in the same manner. Make sure that switch can scale in terms of ARP and MAC table entries.

IMPORTANT: Connect RP port to the same distribution switch as the uplinks and not back to back

Note: In HA SSO topology only LAG with mode ON is supported prior to release 17.1. With 17.1, we additionally support LACP and PAGP. See the LACP, PAGP support in SSO Pair section for more details

Connecting a C9800 wireless controller HA pair to upstream switches with Release 17.1 and above

With the option of RMI and default gateway check feature available in release 17.1, the following topologies are now supported and recommended:

1. SSO pair connected to upstream VSS pair with split links and RP connected back to back.
2. SSO pair connected to upstream VSS pair and RP connected back to back.
3. SSO pair connected to upstream HSRP active and standby and RP connected back to back.

Note: It is recommended to configure portfast trunk in uplink switches for faster convergence using CLI "spanning-tree port type edge trunk" or "spanning-tree portfast trunk"
SSO on Cisco Catalyst C9800-CL running on ESXi, KVM, Hyper-V

The Virtual Catalyst 9800 Wireless controller can be deployed as an HA Pair in a single or dual server setup.

The figure on the left shows Redundant port connected on the same server.

The figure on the right shows Redundant port L2 connected to a separate server.

The same interface number (for example Gig3) must be used to form the HA pair on 9800-CL. The scale of templates must also match. We support SSO across 9800-CL on HyperV, VMware ESXi and KVM.

Configuring High Availability SSO using GUI

Device redundancy can be configured from the Administration > Device > Redundancy page

On the Active controller, the priority is set to a higher value than the standby controller. The wireless controller with the higher priority value is selected as the active during the active-standby election process. The Remote IP is the IP address of the standby controller’s redundancy port IP.

Note: This page has changed starting release 17.1 to include an option to configure the HA pair using RMI. Please refer to the Redundancy Management Interface section to see the updated screens for configuration.

On the standby controller, the remote IP is set to the Active controller’s redundancy port IP
Configuring High Availability SSO using CLI

- **On Virtual Catalyst 9800 Wireless controller**, enable High Availability SSO using the following command on each of the two virtual Catalyst 9800 Wireless controller instances

  ```
  chassis redundancy ha-interface <RP interface> local-ip <local IP> <local IP subnet> remote-ip <remote IP>
  ```

 e.g.

 On Virtual Catalyst 9800 Wireless controller instance-1:

  ```
  chassis redundancy ha-interface Gig 3 local-ip 172.23.174.85 /24 remote-ip 172.23.174.86
  ```

 On Virtual Catalyst 9800 Wireless controller instance-2:

  ```
  chassis redundancy ha-interface Gig 3 local-ip 172.23.174.86 /24 remote-ip 172.23.174.85
  ```

- **On C9800-40 and C9800-80 wireless controller**, enable High Availability SSO using the following command on each of the two wireless controller units

  ```
  chassis redundancy ha-interface local-ip <local IP> <local IP subnet> remote-ip <remote IP>
  ```

Reload both wireless controllers by executing the command `reload` from the CLI

Note: It is recommended to configure HA using the Redundancy Management Interface (RMI) starting Release 17.1. To see configuration using RMI please see the Redundancy Management Interface section.

Mobility MAC

The wireless mobility MAC is the MAC address used for mobility communication. In an SSO scenario, ensure that you explicitly configure the wireless mobility MAC address; otherwise, the mobility tunnel will go down after SSO. The mobility MAC address for the SSO pair can be configured either:
Active and Standby Election Process

- Before forming the SSO pair on each standalone controller. This is recommended before software release 16.12.3.
- On the active controller once the SSO pair is formed.

To configure the mobility MAC address, you can use the GUI:

![GUI screenshot showing the Mobility Configuration page]

Once you’ve entered the address, click Apply.

Note: The MAC address on the GUI is automatically derived from the wireless management interface, but you can use any other valid MAC address.

In the CLI, use the following command:

```
C9800#wireless mobility mac-address <MAC>
```

Active and Standby Election Process

An active C9800 wireless controller retains its role as an Active Controller unless one of the following events occur:

- The wireless controller HA pair is reset.
- The active wireless controller is removed from the HA pair.
- The active wireless controller is reset or powered off.
- The active wireless controller fails.

The active wireless controller is elected or re-elected based on one of these factors and in the order listed below:

1. The wireless controller that is currently the active wireless controller.
2. The wireless controller with the highest priority value.

Note: We recommend assigning the highest priority value to the wireless controller C9800 you prefer to be the active controller. This ensures that the controller is re-elected as active controller if a re-election occurs.

Setting the Switch Priority Value

```
chassis chassis-number priority new-priority-number
```

Chassis-number Specifies the chassis number and the new priority for the chassis. The chassis number range is 1 to 2.

The priority value range is <1-2>

Example

```
wireless controller#chassis 1 priority 2
```

You can display the current priority value by using the `show chassis` user EXEC command. The new priority value takes effect immediately but does not affect the current Active Controller. The new priority value
State Transition for HA SSO Pair formation

1. Active wireless controller in Non Redundant mode

State Transition for HA SSO Pair formation

3. The wireless controller with the shortest start-up time.

4. The wireless controller with the lowest MAC Address.

The HA LED on the chassis can be used to identify the current Active Controller.

State Transition for HA SSO Pair formation

1. Active wireless controller in Non Redundant mode

State Transition for HA SSO Pair formation

2. Standby Insertion for HA Pairing

Waiting for remote chassis to join

3. HA Sync in Progress
Monitoring the HA Pair

Note: Breaking the HA Pair: The HA configuration can be disabled by using the chassis clear command followed by a reload.

Monitoring the HA Pair

Both Active and Standby System can be monitored from the Management UI of the Active wireless controller. This includes information about CPU and memory utilization as well as advanced CPU and memory views.
Monitoring the HA Pair

Navigate to Monitoring > System > Redundancy on the controller Web UI. The Redundancy States page is displayed:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>My State</td>
<td>Shows the state of the active CPU controller module. Values are as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>Standby HOT</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>Peer State</td>
<td>Displays the state of the peer (or standby) CPU controller module. Values</td>
</tr>
<tr>
<td></td>
<td>are as follows:</td>
</tr>
<tr>
<td></td>
<td>Standby HOT</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>Mode</td>
<td>Displays the current state of the redundancy peer. Values are as follows:</td>
</tr>
<tr>
<td></td>
<td>Simplex— Single CPU controller module.</td>
</tr>
<tr>
<td></td>
<td>Duplex— Two CPU controller modules.</td>
</tr>
<tr>
<td>Unit ID</td>
<td>Displays the unit ID of the CPU controller module.</td>
</tr>
<tr>
<td>Redundancy Mode (Operational)</td>
<td>Displays the current operational redundancy mode supported on the unit.</td>
</tr>
<tr>
<td>Redundancy Mode (Configured)</td>
<td>Displays the current configured redundancy mode supported on the unit.</td>
</tr>
<tr>
<td>Redundancy State</td>
<td>Displays the current functioning redundancy state of the unit. Values are</td>
</tr>
<tr>
<td></td>
<td>as follows:</td>
</tr>
<tr>
<td></td>
<td>SSO</td>
</tr>
<tr>
<td></td>
<td>Not Redundant</td>
</tr>
<tr>
<td>Manual Swact</td>
<td>Displays whether manual switchovers have been enabled.</td>
</tr>
<tr>
<td>Communications</td>
<td>Displays whether communications are up or down between the two controllers.</td>
</tr>
</tbody>
</table>

The same page displays Switchover history. The description for the following parameters are displayed in the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>

16
Verifying Redundancy States

<table>
<thead>
<tr>
<th>Index</th>
<th>Displays the index number of the redundant unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Active</td>
<td>Displays the controller that was active prior to switchover.</td>
</tr>
<tr>
<td>Current Active</td>
<td>Displays the controller that is currently active.</td>
</tr>
<tr>
<td>Switch Over Time</td>
<td>Displays the system time when the switchover occurred.</td>
</tr>
<tr>
<td>Switch Over Reason</td>
<td>Displays the cause of the switchover.</td>
</tr>
</tbody>
</table>

Monitoring HA Pair from CLI

The command `show chassis` displays summary information about the HA Pair, including the MAC address, role, switch priority, and current state of each wireless controller in the redundant HA pair. By default, the Local MAC Address of the HA Pair is the MAC address of the first elected Active Controller.

```
WLC#show chassis
Chassis/Stack Mac Address : 00a3.8e23.8760 - Local Mac Address
Mac persistency wait time: Indefinite
Local Redundancy Port Type: Twisted Pair

<table>
<thead>
<tr>
<th>Chassis#</th>
<th>Role</th>
<th>Mac Address</th>
<th>Priority</th>
<th>Version</th>
<th>State</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby</td>
<td>00a3.8e23.8760</td>
<td>1</td>
<td>V02</td>
<td>Ready</td>
<td>172.20.226.133</td>
</tr>
<tr>
<td>2</td>
<td>Active</td>
<td>00a3.8e23.8900</td>
<td>1</td>
<td>V02</td>
<td>Ready</td>
<td>172.20.226.134</td>
</tr>
</tbody>
</table>
```

The `show chassis` command points to the current C9800 wireless controller on the console using the (*) symbol against the chassis number as shown above.

Verifying Redundancy States

- The command `show redundancy` can be used to monitor the state of the two units

```
wireless controller#show redundancy ?
application box 2 box application information
clients    Redundancy Facility (RF) client list
config-sync Show Redundancy Config Sync status
counters   Redundancy Facility (RF) operational counters
domain     Specify the RF domain
history    Redundancy Facility (RF) history
idb-sync-history Redundancy Facility (RF) IDB sync history
linecard-group Line card redundancy group information
rii        Display the redundancy interface identifier for Box to Box
states     Redundancy Facility (RF) states
switchover Redundancy Facility (RF) switchover
trace      Redundancy Facility (RF) trace
| Output modifiers
<cr>       <cr>
```

- The command `show redundancy` displays the redundant system and the current processor information. The redundant system information includes the system uptime, standby failures, switchover reason, hardware mode,
and configured and operating redundancy mode. The current processor information displayed includes the image version, active location, software state, BOOT variable, configuration register value, and uptime in the current state, and so on. The Peer Processor information is only available from the Active Controller.

The command `show redundancy states` displays all the redundancy states of the active and standby controllers.
Accessing standby wireless controller console

- Manual Switchover Action (Manual Swact) i.e. the command `redundancy force-switchover` cannot be executed on the Standby wireless controller and is enabled only on the Active Controller.

- Switchover History can be viewed using the following command

```
WLC#show redundancy switchover history
 Index Previous Current Switchover Switchover
   --- ------ ------ -------- -------
    1      1      2  user forced 18:16:37 UTC Thu May 10 2018
```

Accessing active wireless controller console

The active controller can be accessed through a console connection, Telnet, an SSH, or a Web Browser by using the Management IP address. To use the console on the standby wireless controller, execute the following commands from the active Catalyst 9800 Wireless controller:

```
conf t
redundancy
main-cpu
standby console enable
```

The prompt on the Standby console is appended with “-stby” to reflect the Standby wireless controller console as shown below.

```
WLC-stby#show chassis
Chassis/Stack Mac Address : 00a3.8e23.8760 - Local Mac Address
Mac persistency wait time: Indefinite
Local Redundancy Port Type: Twisted Pair
Chassis# Role Mac Address Priority H/W Version Current State IP
--- -------------------------- ------- ------- ---------- ----------
*1 Standby 00a3.8e23.8760 1 V02 Ready 0.0.0.0
 2 Active 00a3.8e23.8900 1 V02 Ready 0.0.0.0
```

Note: The `show chassis` command points to the current C9800 wireless controller on the console using the (*) symbol against the chassis number as shown above. In this case it is the console of the standby Unit.
Switchover Functionality

Process Failure Switchover

This type of switchover occurs when any of the key processes running on the Active unit fails or crashes. Upon such a failure, the Active unit reloads and the hot Standby takes over and becomes the new Active unit. When the failed system boots up, it will transition to Hot-Standby state. If the Standby unit is not yet in Hot Standby State, both units are reloaded and there will be no SSO. A process failure on the standby (hot or not) will cause it to reload.

Power-fail Switchover

This switchover from the Active to Standby unit is caused due to power failure of the current Active unit. The current Standby unit becomes the new Active unit and when the failed system boots up, it will transition to Hot-Standby state.

Manual Switchover

This is a user initiated forced switchover between the Active and Standby unit. The current Standby unit becomes the new Active unit and when the failed system boots up, it will transition to Hot-Standby state. To perform a manual switchover, execute the redundancy force-switchover command. This command initiates a graceful switchover from the active to the standby controller. The active controller reloads and the standby takes over as the New Active controller.
Failover Process

Active wireless controller

An Access Point and client Stateful Switch Over (SSO) implies that all the Access Point and client sessions are switched over statefully and continue to operate in a network with no loss of sessions, providing improved network availability and reducing service downtime.

Once a redundancy pair is formed, HA is enabled, which means that Access Points and clients continue to remain connected during an active-to-standby switchover.
Verifying AP and Client SSO State Sync

On successful switchover of the standby wireless controller as active, all access points and clients connected to the previously active wireless controller must remain connected to the new Active controller.

This can be verified by executing the commands:

- **show ap uptime**: Verifies that the uptime of the access point after the switchover is not reset.
- **show wireless client summary**: Displays the clients connected to the new Active controller.

SSO Failover Time Metrics

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure Detection</td>
<td>In the order of 50 ms. - TBD</td>
</tr>
<tr>
<td>Reconciliation Time (Standby becoming Active)</td>
<td>In the order of 1020 ms. - TBD</td>
</tr>
</tbody>
</table>

Redundancy Management Interface

With a single RP link between the SSO pair, if the heartbeat on RP fails, there is no way find out if the failure is limited to the link or if the other controller has failed. Redundancy Port (RP link) that handles state sync traffic between the active and the standby is a single point of failure.

Release 17.1 introduces the Redundancy Management Interface (RMI) as a secondary link between the active and the standby controllers. This release also introduces the support for default gateway check which is done using the redundancy management interface.
Redundancy Management Interface Configuration using WebUI

- RMI IP for chassis 1 and 2 is same across both active and standby controllers
- RP IP configuration for chassis 1 and 2 auto-generated as 169.254.x.x where x.x. is from the RMI IP
- The netmask for RMI is picked up from the netmask configured on the Wireless Management VLAN.

Peer Timeout Configuration

- Active and standby chassis send keepalives messages to each other to ensure both still available. Peer timeout is used to determine peer chassis is lost if it does not receive any keep alive message from peer chassis in the configured peer timeout.
- Default timeout is 100ms but is configurable up to 1000 ms. The keepalive retries are 5 by default but can be configured all the way to 10.
- CLI commands:

 WLC#chassis redundancy keep-alive timer ?

 <1-10> Chassis peer keep-alive time interval in multiple of 100 ms (enter 1 for default)

 WLC#chassis redundancy keep-alive retries ?

 <5-10> Chassis peer keep-alive retries before claiming peer is down (enter 5 for default)

For backward compatibility, RP based SSO configuration will also be supported, but keep in mind that this will not support default gateway check and hence is not preferred.
Redundancy Management Interface Configuration using CLI

Until 17.1, only RP-based SSO configuration was supported, i.e., chassis redundancy ha-interface <RP interface> local-ip <local IP> <local IP subnet> remote-ip <remote IP>.

17.1 and beyond, the user can use either RMI+RP or RP-based configuration. Once an HA pair is formed using RMI+RP configuration, the exec CLI for RP-based method of clearing and forming the HA pair shall not be allowed.

Note: Chassis re-number needs to be configured while bringing up HA with RMI from scratch using RMI in 17.x release.

By default, chassis number is 1. IP addresses of RP ports are derived from RMI. If the chassis number is the same on both controllers, local RP port IP derivation will be same and discovery will fail. This will result in Active-Active case.

To avoid this scenario, execute the following CLI:

```
WLC#chassis 1 renumber ?
<1-2> Renumber local chassis id assignment

WLC(config)# redundancy-management interface <VLAN> chassis 1 address <RMI IP of chassis 1> chassis 2 address <RMI IP of chassis 2>
```

Configuration example:

On WLC 1:

```
WLC(config)# redundancy-management interface Vlan112 chassis 1 address 172.20.226.148 chassis 2 address 172.20.226.149
```

On WLC 2: (Same CLI)

```
WLC(config)# redundancy-management interface Vlan112 chassis 1 address 172.20.226.148 chassis 2 address 172.20.226.149
```

Chassis numbers identify the individual controllers and must be configured before configuring the RMI IPs. It is mandatory to execute the same CLI on both controllers before forming the pair. The RMI IP configuration triggers HA pairing and forms the SSO pair. There is no IPv6 Support on RMI or Gateway IP.

Verifying RMI and RP configuration

```
WLC-9800#show chassis rmi
Sep 20 21:26:13.024: %SYS-5-CONFIG_I: Configured from console by console
Chassis/Stack Mac Address : 00a3.8e23.8760 - Local Mac Address
Mac persistency wait time: Indefinite
Local Redundancy Port Type: Twisted Pair
```

<table>
<thead>
<tr>
<th>Chassis#</th>
<th>Role</th>
<th>Mac Address</th>
<th>Priority</th>
<th>Version</th>
<th>State</th>
<th>IP</th>
<th>RMI-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redundancy Management Interface

<table>
<thead>
<tr>
<th></th>
<th>Standby</th>
<th>00a3.8e23.8760</th>
<th>2</th>
<th>VD2</th>
<th>Ready</th>
<th>169.254.226.149 172.20.226.149</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>Active</td>
<td>00a3.8e23.8900</td>
<td>1</td>
<td>VD2</td>
<td>Ready</td>
<td>169.254.226.148 172.20.226.148</td>
</tr>
</tbody>
</table>

WLC-9800#show romvar
ROMMON variables:
SWITCH_NUMBER = 1
LICENSE_BOOT_LEVEL = ...
RANDOM_NUM = 842430634
SWITCH_PRIORITY = 1
RMI_INTERFACE_NAME = Vlan112
RMI_CHASSIS_LOCAL_IP = 172.20.226.148
RMI_CHASSIS_REMOTE_IP = 172.20.226.149
CHASSIS_HA_LOCAL_IP = 169.254.226.148
CHASSIS_HA_REMOTE_IP = 169.254.226.149
CHASSIS_HA_LOCAL_MASK = 255.255.255.0

RMI and RP pairing combinations

Upgrade and HA Pairing with no previous HA config
The user shall be presented with an option to choose the existing mechanism (exec RP-based CLIs) or the RMI IP based mechanism.

If the user chooses the exec CLI based method, the RP IPs shall be configured as it happens till 16.12.

When the RMI configuration is done, it shall:
Generate the RP IPs with IPs derived from the RMI IPs and will also be used for setting RMI IPs and pair the Controllers (while pairing only standby reloads in hardware platforms. Both active and standby reload in case of 9800-CL VM). Exec RP-based CLIs are blocked in this case.

Option 1: RMI Based Configuration (Preferred)
1. Upgrade to 17.1 and connect the RPs
2. Configure RMI+RP
3. RP IPs are derived from the RMI IPs
4. RP-based exec commands are blocked
5. ROMMON RP and RMI variables are set

Option 2: RP Based Configuration
1. Upgrade to 17.1 and connect RPs
2. Configure RP via GUI/CLI
3. RP-based configuration sets the local and remote IP
4. ROMMON RP Variables are set to the local and remote IP

Upgrade already Paired controllers
If the controllers are already in an HA pair, the existing exec RP CLIs can be continued to be used.

Those who would like to migrate to the RMI based HA pairing (preferred) can enable RMI.
This will overwrite the RP IPs with RMI derived IPs. The HA pair will not be immediately disturbed, but the controllers will pick up the new IP when they reload next.
RMI feature mandates a reload for the feature to take effect. When the controllers reload, they would come up as a pair with the new RMI-derived-RP-IPs. Exec RP-based CLIs will be blocked.

Downgrade

If RMI based configuration was used, after downgrade the system will fall back to the RP-based configuration.

If RP based configuration was used, after downgrade the system will continue to use RP-based configuration.

Default Gateway Check

Default Gateway check is done by periodically sending Internet Control Message Protocol (ICMP) ping to the gateway. Both the active and the standby controllers use the RMI IP as the source IP. These messages are sent at 1 second interval. If there are 8 consecutive failures in reaching the gateway, the controller will declare the gateway as non-reachable.

After 4 ICMP Echo requests fail to get ICMP Echo responses, ARP requests are attempted. If there is no response for 8 seconds (4 ICMP Echo Requests followed by 4 ARP Requests), the gateway is assumed to be non-reachable. Currently, this feature supports IPv4 only.
The Catalyst 9800 Wireless controller has two recovery states to prevent an active-active scenario.

Recovery mode logically means a state where the controller does not have all “resources” available to provide the service. Currently, RP, RMI and Gateway are the resources. Ports will be in admin down in recovery mode, so no traffic goes through.

- **Standby-Recovery**: If Gateway goes down, standby goes to standby-recovery mode. Standby means, its state is up to date with the active. But since it does not have the other resource (Gateway) it goes to Standby-Recovery. The standby shall not be in a position to take over the active functionality when it is in standby-recovery mode. Standby-Recovery will go back to Standby without a reload, once it detects that the Gateway reachability is restored.

- **Active-Recovery**: is when the RP goes down. Active-Recovery does not have its internal state in sync with the Active. Active-Recovery will reload when the RP link comes up so that it can come up as Standby with bulk sync.

Switchover history will show switchover reason as Gateway down in the event of a switchover triggered as a result of the gateway going down.

Default Gateway Check WebUI Configuration

The default gateway check option can be configured under Administration > Device > Redundancy > Management Gateway Failover.
Default Gateway Check CLI Configuration

The following CLIs need to be configured for the gateway check functionality to be enabled and to specify the default gateway IP used by this feature.

```
WLC-9800(config)#management gateway-failover enable
WLC-9800#ip default-gateway <IP>
```

To verify if gateway check is enabled, use the CLI show redundancy state.

```
WLC-9800#show redundancy states
my state = 13 -ACTIVE
peer state = 8 -STANDBY HOT
Mode = Duplex
Unit = Primary
Unit ID = 2
Redundancy Mode (Operational) = sso
Redundancy Mode (Configured) = sso
Redundancy State = sso
...Gateway Monitoring = Enabled
```

With 17.2, usage of “ip default-gateway <IP>” shall be removed. Gateway IP will be picked up from the static IP routes configured. The HA infrastructure will choose the static route IP that matches the RMI network. If there are multiple static routes configured, the route configured for the broadest network scope shall be selected. It is possible to configure multiple gateways for the same network scope. If there are multiple gateways for the same network, broadest mask and least gateway IP is chosen. The gateway IP shall be reevaluated, if necessary, when config update to static routes happens.

Note:
- Physical port down scenario takes 8 seconds to be detected as it is detected via GW check mechanism
- Physical port status is synced from the active to standby controller in release 17.1. This has been fixed in release 17.2 and the active and standby controllers maintain their own port status.

System and Network Fault Handling

If the standby controller crashes, it shall reboot and come up as standby. Bulk sync will follow and the standby will become hot. If the active controller crashes, the standby becomes active. The new active shall assume the role of master and try to detect a dual active.

These matrices provide a clear picture of what condition the WLC Switchover will trigger:
System Issues

<table>
<thead>
<tr>
<th>Trigger</th>
<th>RP Link Status</th>
<th>Peer Reachability through RMI</th>
<th>Switchover</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Process crash</td>
<td>Up</td>
<td>Reachable</td>
<td>Yes</td>
<td>Switchover happens</td>
</tr>
<tr>
<td>Forced switchover</td>
<td>Up</td>
<td>Reachable</td>
<td>Yes</td>
<td>Switchover happens</td>
</tr>
<tr>
<td>Critical Process crash</td>
<td>Up</td>
<td>Unreachable</td>
<td>Yes</td>
<td>Switchover happens</td>
</tr>
<tr>
<td>Forced switchover</td>
<td>Up</td>
<td>Unreachable</td>
<td>Yes</td>
<td>Switchover happens</td>
</tr>
<tr>
<td>Critical Process crash</td>
<td>Down</td>
<td>Reachable</td>
<td>No</td>
<td>No action, one controller will be in recovery mode already.</td>
</tr>
<tr>
<td>Forced switchover</td>
<td>Down</td>
<td>Reachable</td>
<td>N/A</td>
<td>No action, one controller will be in recovery mode already.</td>
</tr>
<tr>
<td>Critical Process crash</td>
<td>Down</td>
<td>Unreachable</td>
<td>No</td>
<td>Double fault – as mentioned in Network Error handling</td>
</tr>
<tr>
<td>Forced switchover</td>
<td>Down</td>
<td>Unreachable</td>
<td>N/A</td>
<td>Double fault – as mentioned in Network Error handling</td>
</tr>
</tbody>
</table>

RP Link

<table>
<thead>
<tr>
<th>RP Link</th>
<th>Peer reachability through RMI</th>
<th>Gateway From Active</th>
<th>Gateway from Standby</th>
<th>Switchover</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Up</td>
<td>Reachable</td>
<td>Reachable</td>
<td>No</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Action. Standby is not ready for SSO in this state as it does not have gateway reachability. The standby shall be shown to be in standby-recovery mode. If the RP goes down, standby (in recovery mode) shall become</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Reachable</td>
<td>Unreachable</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Active Status</td>
<td>Standby Status</td>
<td>Gateway Reachability</td>
<td>Active Standby</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Unreachable</td>
<td>Reachable</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gateway reachability message is exchanged over the RMI + RP links. Active shall reboot so that standby becomes active.</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Unreachable</td>
<td>Unreachable</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With this, when the active SVI goes down, so will the standby SVI. A switchover is then triggered. If the new active discovers its gateway to be reachable, the system shall stabilize in Active - Standby Recovery. Otherwise, switchovers will happen in a ping-pong fashion.</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Reachable</td>
<td>Reachable</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Action</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Reachable</td>
<td>Unreachable</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby is not ready for SSO in this state as it does not have gateway reachability. Standby will go to recovery mode as LMP messages are exchanged over the RP link also.</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Unreachable</td>
<td>Reachable</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gateway reachability message is exchanged over RP link also. Active shall reboot so that</td>
<td></td>
</tr>
<tr>
<td>Active Status</td>
<td>Standby Status</td>
<td>Active SVI Status</td>
<td>Standby SVI Status</td>
<td>Standby Active?</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Unreachable</td>
<td>Unreachable</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With this, when the active SVI goes down, so will the standby SVI. A switchover is then triggered. If the new active discovers its gateway to be reachable, the system shall stabilise in Active - Standby Recovery. Otherwise, switchovers will happen in a ping-pong fashion.</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>Up</td>
<td>Reachable</td>
<td>Reachable</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby will become active with (old) active going to active-recovery. Config mode is disabled in active-recovery mode. All interfaces will be ADMIN DOWN with the wireless management interface having RMI IP. The controller in Active Recovery will reload to become standby when the RP link comes UP.</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>Up</td>
<td>Reachable</td>
<td>Unreachable</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same as above</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>Up</td>
<td>Unreachable</td>
<td>Reachable</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same as above</td>
<td></td>
</tr>
</tbody>
</table>
HA Unpairing Behavior

In release 16.10 and 16.11, when disjoining an HA pair by issuing the command ‘clear chassis redundancy’, the standby controller reboots and comes up with exactly the same configuration as the active controller, causing duplicate IP address error leading to the following messages:

```
WLC#sh log | i DUP
Mar 21 21:53:46.307 CET: %IP-4-DUPADDR: Duplicate address 120.0.0.1 on Vlan120, sourced by d4c9.3ccc.f98b
Mar 21 21:54:16.947 CET: %IP-4-DUPADDR: Duplicate address 172.18.50.60 on GigabitEthernet0, sourced by d4c9.3ccc.f981
```

The solution implemented in 16.12 and 17.1 is that after HA unpairing, the standby controller startup config and HA config will be cleared and standby will go to Day 0.

Before the command is executed, the user is prompted with the following warning on the active controller:
HA Unpairing Behavior

The same is seen on the CLI as well.

```plaintext
WLC#clear chassis redundancy
WARNING: Clearing the chassis HA configuration will result in both the chassis move into Stand Alone mode. This involves reloading the standby chassis after clearing its HA configuration and startup configuration which results in standby chassis coming up as a totally clean after reboot. Do you wish to continue? [y/n]? [yes]:
*Apr 3 23:42:22.985: received clear chassis.. ha_supported:1yes
WLC#
*Apr 3 23:42:25.042: clearing peer startup config
*Apr 3 23:42:25.042: chkpt send: sent msg type 2 to peer..
*Apr 3 23:42:25.043: chkpt send: sent msg type 1 to peer..
*Apr 3 23:42:25.043: Clearing HA configurations
*Apr 3 23:42:26.359: %IOSXE_REDUNDANCY-6-PEER_LOST: Active detected chassis 2 is no longer standby
```

On the standby controller, the following messages indicate that the configuration is being cleared:

```plaintext
WLC-stby#
*Apr 3 23:40:40.537: mcrprp_handle_spa_oir_tsm_event: subslot 0/0 event=2
*Apr 3 23:40:40.537: spa_oir_tsm subslot 0/0 TSM: during state ready, got event 3(ready)
*Apr 3 23:40:40.537: @@ spa_oir_tsm subslot 0/0 TSM: ready -> ready
*Apr 3 23:42:25.041: Removing the startup config file on standby
*Apr 3 23:42:26.466: Calling HA configs clear on standby
*Apr 3 23:42:26.466: Clearing HA configurations
*Apr 3 23:42:27.499: Successfully sent Set chassis mode msg for chassis 2.chasfs file updated
```

Note: To unpair the SSO pair when using RMI based config, use the “no” version of the RMI configuration followed command by reload:

```plaintext
WLC(config)# no redun-management interface <VLAN> chassis 1 address <RMI IP of chassis 1> chassis 2 address <RMI IP of chassis 2>
```
LACP, PAGP support in SSO Pair

LACP protocol (IEEE 802.3ad) aggregates physical Ethernet interfaces by exchanging the Link Aggregation Control Protocol Data Units (LACPDUs) between two devices.

LACP, PAGP support is needed on SSO pair in order to have the ability to detect and monitor the link/connectivity failures on the standby controller and to have seamless transfer of client data traffic upon switchover (SSO). Prior to 17.1 only LAG mode ON was supported in SSO mode. With 17.1 both LACP (active and passive) and PAGP will be supported in SSO mode.

This feature is supported on Cisco Catalyst 9800-L, Cisco Catalyst 9800-40 and Cisco Catalyst 9800-80 (including module ports).

Supported LACP, PAGP topologies

The following topologies are supported with SSO and LACP/PAGP

The following are not supported with LACP, PAGP topologies:

- Auto-LAG is not supported.
- C9800-CL and EWC on AP is not supported.
- L3 port-channel is not supported.

Multi-chassis Link Aggregation group

Starting with Release 17.2.1, Multi-chassis Link Aggregation Group is supported on a standalone as well as HA Pair of controllers. Multi-chassis LAG provides the capability to connect multiple uplinks from controller to separate uplink switches.

This enables flexibility in connecting controller(s) to switch infrastructure and VLAN-based traffic splitting when connected to a multi-switch topology, for e.g., to isolate Guest traffic on completely different switch/network from Enterprise traffic. Each LAG must be connected to a single switch and different VLANs must be assigned to different LAGs.
LACP, PAGP support in SSO Pair

Note: It is the user’s configuration responsibility not to create a loop.

Supported Multi-chassis LAG topologies

- Multi-chassis LAG is supported with LAG mode ON and dynamic LAG (LACP and PAGP)
- Multi-chassis LAG is supported with a standalone controller as well as an HA pair as depicted below.

Note: Controller with multiple LAGs can be connected to a single switch, However, different VLANs must be connected to different LAGs

Supported Platforms:

Multi-chassis LAG is supported on the following platforms:

- Catalyst 9800-L Wireless Controllers
- Catalyst 9800-40 Wireless Controllers
- Catalyst 9800-80 Wireless Controllers
Supported LAG Port Grouping

Best practice is to have ports of same type and speed in the port channel

- 9800-L-C with 2.5G/1G and 10G/mGig ports in different port channels
- 9800-L-F with 2.5G/1G and 10G/1G Fiber ports in different port channels

On the 9800-80 ports on Bay 0 and Bay 1 (modular slots) cannot be combined into the same port channel group. Best practice is to have ports of same slot in the port channel.

Replacing a controller in an HA setup

- Remove the active controller from the HA pair without breaking the pair. As a result of active controller going away, the standby controller will take over the role of Active.

- Prepare the new 9800 controller with the same configuration as the previous active controller. This means the same software version, licensing level, IP addresses WMI, RMI and mobility MAC.

- Configure a higher priority on the current Active controller to make sure that the current active remains the active even in the unlikely event of the active controller rebooting before the new controller is paired in SSO.

- Physically connect the new 9800 controller using the redundancy ports (RP)

- Enable SSO configuration on the new 9800 controller

- The new 9800 controller will reboot and come up as Standby paired with the current Active controller.
N+1 with SSO Hybrid deployment

A hybrid topology of SSO redundant pair and N+1 primary, secondary and tertiary model is supported as shown above. The secondary controller at the DR site can be a Catalyst C9800-L, C9800-40, C9800-80 or C9800-CL Wireless controller. Access points failing back from Catalyst 9800 Wireless controller to CUWN controllers will re-download the code before joining the CUWN wireless controller and vice versa.

Standby Monitoring using RMI

This feature enables monitoring the health of the system on standby controller in an HA pair using programmatic interfaces (NETCONF/YANG, RESTCONF) and CLIs without going through the active controller. This includes monitoring parameters such as CPU, memory, interface status, PSU (Power Supply Unit) failure, fan failure and temperature. This feature is supported on the Cisco Catalyst 9800-CL Private cloud, 9800-L, 9800-40, and 9800-80 wireless controller.

Using the RMI interface, the user can:

- Connect to the IOS SSH server on port 22 to execute a select set of show CLIs.
- Connect to the NETCONF SSH server on port 830 and use programmatic interfaces to access NETCONF/YANG.
- Connect on the HTTPS port 443 and use programmatic interfaces using RESTCONF.

The user credentials can be configured locally for Local Authentication and External AAA server using RADIUS. SSH authentication shall be through user name and password. The standby controller does not run the PKI infrastructure to be able to handle certificate based authentication. External AAA servers shall be reachable through the default route which can be statically configured on the standby controller.

Syslog is supported on the standby controller as console logs.

Standby Monitoring CLIs

- To see power supply, fan and temperature status, the below CLI can be used on physical appliances. This output will be empty for virtual platforms.

```
show environment
```

```
9800-stby#show environment summary
```

Number of Critical alarms: 0
Number of Major alarms: 0
Number of Minor alarms: 0
Standby Monitoring using RMI

<table>
<thead>
<tr>
<th>Slot</th>
<th>Sensor</th>
<th>Current State</th>
<th>Reading</th>
<th>Threshold (Minor, Major, Critical, Shutdown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Vin</td>
<td>Normal</td>
<td>218 V AC</td>
<td>na</td>
</tr>
<tr>
<td>P0</td>
<td>Iin</td>
<td>Normal</td>
<td>1 A</td>
<td>na</td>
</tr>
<tr>
<td>P0</td>
<td>Vout</td>
<td>Normal</td>
<td>12 V DC</td>
<td>na</td>
</tr>
<tr>
<td>P0</td>
<td>Iout</td>
<td>Normal</td>
<td>20 A</td>
<td>na</td>
</tr>
<tr>
<td>P0</td>
<td>Temp1</td>
<td>Normal</td>
<td>31 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>P0</td>
<td>Temp2</td>
<td>Normal</td>
<td>42 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>P0</td>
<td>Temp3</td>
<td>Normal</td>
<td>43 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>P1</td>
<td>Vin</td>
<td>Normal</td>
<td>0 V AC</td>
<td>na</td>
</tr>
<tr>
<td>P1</td>
<td>Iin</td>
<td>Normal</td>
<td>0 A</td>
<td>na</td>
</tr>
<tr>
<td>P1</td>
<td>Vout</td>
<td>Normal</td>
<td>0 V DC</td>
<td>na</td>
</tr>
<tr>
<td>P1</td>
<td>Iout</td>
<td>Normal</td>
<td>1 A</td>
<td>na</td>
</tr>
<tr>
<td>P1</td>
<td>Temp1</td>
<td>Normal</td>
<td>28 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>P1</td>
<td>Temp2</td>
<td>Normal</td>
<td>29 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>P1</td>
<td>Temp3</td>
<td>Normal</td>
<td>0 Celsius</td>
<td>(na, na, na, na)</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VX1</td>
<td>Normal</td>
<td>751 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VX2</td>
<td>Normal</td>
<td>6937 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VX3</td>
<td>Normal</td>
<td>1217 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VX5</td>
<td>Normal</td>
<td>1222 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VP1</td>
<td>Normal</td>
<td>1705 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VP2</td>
<td>Normal</td>
<td>2489 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VP3</td>
<td>Normal</td>
<td>1300 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VP4</td>
<td>Normal</td>
<td>5070 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX1: VH</td>
<td>Normal</td>
<td>11993 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VX1</td>
<td>Normal</td>
<td>853 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VX4</td>
<td>Normal</td>
<td>1016 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VX5</td>
<td>Normal</td>
<td>1019 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VP1</td>
<td>Normal</td>
<td>3325 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VP3</td>
<td>Normal</td>
<td>1826 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VP4</td>
<td>Normal</td>
<td>1050 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX2: VH</td>
<td>Normal</td>
<td>11987 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VX1</td>
<td>Normal</td>
<td>994 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VX2</td>
<td>Normal</td>
<td>1002 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VX4</td>
<td>Normal</td>
<td>750 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VX5</td>
<td>Normal</td>
<td>751 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VP1</td>
<td>Normal</td>
<td>2477 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VP2</td>
<td>Normal</td>
<td>1197 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VP3</td>
<td>Normal</td>
<td>1517 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VP4</td>
<td>Normal</td>
<td>1514 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>VRRX3: VH</td>
<td>Normal</td>
<td>11987 mV</td>
<td>na</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: RCRX IN</td>
<td>Normal</td>
<td>26 Celsius</td>
<td>(52, 57, 62, 73)</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: RCRX OUT</td>
<td>Normal</td>
<td>41 Celsius</td>
<td>(62, 67, 72, 80)</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: Yoda</td>
<td>Normal</td>
<td>47 Celsius</td>
<td>(71, 76, 81, 90)</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: XEPHY</td>
<td>Normal</td>
<td>49 Celsius</td>
<td>(110, 120, 130, 140) (Celsius)</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: CPU Die</td>
<td>Normal</td>
<td>47 Celsius</td>
<td>(61, 66, 71, 80)</td>
</tr>
<tr>
<td>R0</td>
<td>Temp: FC FANS</td>
<td>Fan Speed 40%</td>
<td>26 Celsius</td>
<td>(36, 44, 0) (Celsius)</td>
</tr>
</tbody>
</table>

- To get interface status on Standby controller, the below CLI can be used:
show ip interface brief
Eg.
9800-stby#show ip int brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet1</td>
<td>unassigned</td>
<td>YES unset down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0</td>
<td>unassigned</td>
<td>YES NVRAM administratively down</td>
<td>down</td>
</tr>
<tr>
<td>Capwap1</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap2</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap3</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap4</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap5</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap6</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap7</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap8</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap9</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Capwap10</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>Vlan1</td>
<td>unassigned</td>
<td>YES NVRAM down</td>
<td>down</td>
</tr>
<tr>
<td>Vlan56</td>
<td>111.1.1.85</td>
<td>YES unset down</td>
<td>down</td>
</tr>
<tr>
<td>Vlan111</td>
<td>111.1.1.85</td>
<td>YES NVRAM up</td>
<td>up</td>
</tr>
</tbody>
</table>

1. To see IOS task CPU on the standby, the CLI show processes can be used

9800-stby#show processes ?
<1-2147483647> IOS(d) Process Number
cpu Show CPU usage per IOS(d) process
heapcheck Show IOS(d) scheduler heapcheck configuration
history Show ordered IOS(d) process history
memory Show memory usage per IOS(d) process
platform Show information per IOS-XE process
timercheck Show IOS(d) processes configured for timercheck
|<cr> | Output modifiers
|<cr>

Standby Monitoring Programmatic Interfaces

The CPU, memory and interface status on standby controller can be monitored programmatic interfaces. Here is the list of operational models required for this purpose:

- **Cisco-IOS-XE-device-hardware-oper.yang**: This has serial number for all FRUs in the device, including chassis. It also has information about all hardware in the system.

- **Cisco-IOS-XE-process-cpu-oper.yang**: This has CPU utilization averages over intervals of past 1 min, 5 min, 5 seconds, and also per process CPU stats for IOS tasks.

- **Cisco-IOS-XE-platform-software-oper.yang**: This gives Average CPU utilization of 5-second interval and allocated memory for the processes.

2. **Cisco-IOS-XE-process-memory-oper.yang**: This gives per process memory utilization.

- **Cisco-IOS-XE/interfaces-oper.yang**: This has interface operational data including state and stats. It has a lot of other operational data about interfaces also.
Steps to monitor the standby controller using SSH to RMI IPv4

1. Enable SSH on the active controller. In order to do that, it is required to generate rsa key

```plaintext
9800(config)#crypto key generate rsa
% You already have RSA keys defined named ak_vewlc_small.cisco.com.
% Do you really want to replace them? [yes/no]: yes
Choose the size of the key modulus in the range of 2048 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [2048]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)
9800(config)#
```

Configure Local AAA or External AAA (RADIUS) with local AAA fallback as shown below.

```plaintext
line vty 0 4
  password Cisco
  authorization exec DEVICE_ADMIN
  login authentication DEVICE_ADMIN
  length 0
  transport input ssh

line vty 5 15
  password Cisco
  authorization exec DEVICE_ADMIN
  login authentication DEVICE_ADMIN
  transport input telnet ssh
  transport output telnet ssh

aaa authentication login DEVICE_ADMIN group AAA_GROUP_ISE1 local
aaa authorization exec DEVICE_ADMIN group AAA_GROUP_ISE1 local
aaa group server radius AAA_GROUP_ISE1
  server name ISE1
  radius server ISE1
  address ipv4 <RMI IP> auth-port 1812 acct-port 1813
  key <key>

Note: TACACS is not supported for standby. Make sure "LOCAL" is added in the method list. So user will be authenticated locally for standby.

aaa authentication login VTY_authen_tacacs group tacacs_ise_group local
aaa authentication login VTY_authen_tacacs group tacacs_ise_group local
```

2. Make sure default route is configured for management VLAN.

```plaintext
ip route <Destination prefix> <Destination prefix mask> <Forwarding router's address>
```

3. Login to the standby controller using the standby controller’s RMI IP address

```plaintext
ssh <username>@<RMI IP>
Password:
```

Note: To use Netconf-YANG SSH use the command:

```plaintext
ssh <username>@<RMI IP> -p 830
```

Only the default port of 830 can be used for Netconf-YANG SSH
4. Execute the commands `show environment summary`, `show processes`, `show ip interface brief` to view the CPU, memory, interface status, PSU (Power Supply Unit) failure, fan failure and temperature.

Command for Standby Monitoring using RESTCONF

GET request:

eg.

{ "Cisco-IOS-XE-native:hostname": "Catalyst 9800 HA2" }

PUT request is not supported for the standby and will return an access-denied error.

Caveats of Standby Monitoring in Release 17.3

- SNMP support on the standby controller is not supported
- Standby Monitoring on RMI IPv6 is not yet supported
- External syslog server on the standby controller is not supported
- SSH to IOS will generate syslogs on standby console. NetConf SSH login will generate syslogs on the active console.
- Standby monitoring using the service port is not supported
- Accounting on standby controller is not supported
- External AAA with TACACS is not supported
- Rad-Sec is not supported
- Embedded controller on Switch does not support this feature
- Cannot do standby monitoring on controller in Active-Recovery mode since all its interfaces will be in Admin Down state.
Legal Information

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies are considered un-Controlled copies and the original on-line version should be referred to for latest version.

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco Trademark
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Cisco Copyright
© 2020 Cisco Systems, Inc. All rights reserved.