The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

Notwithstanding any other warranty herein, all document files and software of these suppliers are provided "as is" with all faults. Cisco and the above-named suppliers disclaim all warranties, expressed or implied, including, without limitation, those of merchantability, fitness for a particular purpose and noninfringement or arising from a course of dealing, usage, or trade practice.

In no event shall Cisco or its suppliers be liable for any indirect, special, consequential, or incidental damages, including, without limitation, lost profits or loss or damage to data arising out of the use or inability to use this manual, even if Cisco or its suppliers have been advised of the possibility of such damages.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2016 Cisco Systems, Inc. All rights reserved.
CHAPTER 2

Getting Started 15

ASR 5000 Configuration 15
Using the ASR 5000 Quick Setup Wizard 15
Using the CLI for Initial Configuration 20
Configuring the System for Remote Access 22
Configuring SSH Options 24

SSH Keys 25

Setting SSH Key Size 25
Specifying SSH Encryption Ciphers 25
Generating SSH Keys 26
Setting SSH Key Pair 26

Authorized SSH User Access 27

Authorizing SSH User Access 27
SSH User Login Authentication 27

Configuring the Management Interface with a Second IP Address 28

CHAPTER 3

System Settings 29

Configuring a Second Management Interface 30
Verifying and Saving Your Interface and Port Configuration 30
Configuring System Timing 31

Setting the System Clock and Time Zone 31
Verifying and Saving Your Clock and Time Zone Configuration 32
Configuring Network Time Protocol Support 32
Configuring NTP Servers with Local Sources 33
Using a Load Balancer 33

Verifying the NTP Configuration 34

Configuring Transmit Timing Source 35

Configure BITS as the Timing Source 35
Configure Line-timing as the Timing Source 36
Configure Both BITS and Line as Timing Sources 36

Confirming the Timing Source 36

Enabling CLI Timestamping 37

Configuring CLI Confirmation Prompts 37
Configuring Line Card and SPIO Port Redundancy 52
 Enabling Line Card and SPIO Port Redundancy 54
 Verifying Line Card and SPIO Port Redundancy 55
 Configuring Line Card and SPIO Port Redundancy Auto-Recovery 55
 Verifying Line Card and SPIO Port Redundancy Auto-Recovery 56
Configuring ASR 5000 Link Aggregation 56
 LAG and Master Port 57
 LAG and Port Redundancy 57
 LAG and Multiple Switches 57
 Multiple Switches without L2 Redundancy 57
 Multiple Switches with L2 Redundancy 58
 Port States for Auto-Switch 59
 Hold Time 59
 Preferred Slot 59
 Auto-Switch Criteria 59
 Distribution Option 60
 show Commands 60
QGLC Link Aggregation 60
 Requirements 60
 Operation 61
XGLC Link Aggregation 61
 Link Aggregation Control 62
 Redundancy Options 63
 Distribution Option 63
 Toggle Link 63
 Horizontal Link Aggregation with Two Ethernet Switches 63
 Link Aggregation Status 64
Configuring a Demux Card 64
 Overview 64
 Configuration 65
Configuring Flow Control on XGLCs 65

CHAPTER 4 Management Settings 67

ORBEM 67
 Configuring ORBEM Client and Port Parameters 68
Setting the Characteristics of the Channelized Line Card 87
Configuring the Channel Characteristics 87
Binding a DLCI 87
Verifying the Frame Relay Interface Configuration and Status 88
Display Port and DLCI Configuration Details 88
Display Port and DLCI Configuration and Status 88

CHAPTER 7
System Security 91
Per-Chassis Key Identifier 91
Chassis Synchronization 92
Protection of Passwords 92
Secure Password Encryption 93
Support for Non-Current Encryptions and Decryptions 93
Support for ICSR Configurations 94
Encrypted SNMP Community Strings 94
Lawful Intercept Restrictions 94
LI Server Addresses 94
Modifying Intercepts 95
Adding, Modifying and Removing Users 95
Notification of Users Being Added or Deleted 95
Notification of Changes in Privilege Levels 95
User Access to Operating System Shell 96
Test-Commands 96
Enabling cli test-commands Mode 96
Enabling Password for Access to CLI-test commands 96
Exec Mode cli test-commands 97
Configuration Mode cli test-commands 97

CHAPTER 8
Software Management Operations 99
Understanding the Local File System 99
File Types Used by the Local File System 100
Understanding the boot.sys File 100
Maintaining the Local File System 101
File System Management Commands 101
Synchronizing the File System 101
Stage 2 - Stand-alone Operation 114
Stage 3 - Management Card Upgrade 115
Stage 4 - Reboot All Packet Processing Cards 116
Stage 5 - Return System to Normal Operation 116
Performing an On-line Software Upgrade 116
Aborting an On-line Software Upgrade 119
Restoring the Previous (Pre-online Upgrade) Software Image 119

Off-line Software Upgrade 119
 Configure a Newcall Policy 120
 Configure a Message of the Day Banner 120
 Back up the Current CLI Configuration File 121
 Create a New Boot Stack Entry 121
 Synchronize File Systems 121
 Save the Running Configuration 121
 Reboot the Chassis 122
 Verify the Running Software Version 122
 Restoring the Previous Software Image 122
 Upgrading ICSR Chassis 122

Performing Dynamic Software Updates 122
Managing License Keys 123
 New System License Keys 123
 Session Use and Feature Use Licenses 123
 Installing New License Keys 123
 Cutting and Pasting the Key 124
 Adding License Keys to Configuration Files 124
 License Expiration Behavior 125
 Requesting License Keys 125
 Viewing License Information 126
 Deleting a License Key 126
 Management Card Replacement and License Keys 126

Managing Local-User Administrative Accounts 126
 Configuring Local-User Password Properties 127
 Configuring Local-User Account Management Properties 127
 Local-User Account Lockouts 127
 Local-User Account Suspensions 128
Changing Local-User Passwords 128

CHAPTER 9
Monitoring the System 129
 SNMP Notifications 129
 Monitoring System Status and Performance 129
 Clearing Statistics and Counters 131
 Monitoring ASR 5000 Hardware Status 131

CHAPTER 10
Bulk Statistics 135
 Configuring Communication with the Collection Server 135
 Configuring Standard Settings 135
 Configuring Optional Settings 136
 Configuring Bulk Statistic Schemas 136
 Using show bulkstats Commands 136
 Verifying Your Configuration 137
 Saving Your Configuration 138
 Viewing Collected Bulk Statistics Data 138
 Manually Gathering and Transferring Bulk Statistics 138
 Clearing Bulk Statistics Counters and Information 138
 Bulkstats Schema Nomenclature 138
 Statistic Types 139
 Data Types 139
 Bulk Statistics Event Log Messages 139

CHAPTER 11
System Logs 141
 System Log Types 141
 Configuring Event Logging Parameters 142
 Configuring Event Log Filters 142
 Exec Mode Filtering 142
 Global Configuration Mode Filtering 143
 Configuring syslog Servers 144
 Configuring Active Logs 144
 Specifying Facilities 145
 Configuring Trace Logging 154
 Configuring Monitor Logs 154
Contents

Enabling Monitor Logs 154
Disabling Monitor Logs 154
Viewing Logging Configuration and Statistics 155
Viewing Event Logs Using the CLI 155
Configuring and Viewing Crash Logs 156
 Crash Logging Architecture 156
 Configuring Software Crash Log Destinations 157
 Viewing Abridged Crash Log Information Using the CLI 158
Checkpointing Logs 159
Saving Log Files 160
Event ID Overview 160
 Event Severities 169
 Understanding Event ID Information in Logged Output 169

CHAPTER 12

Troubleshooting 171
Detecting Faulty Hardware 171
 Using the CLI to View Status LEDs 172
 Checking the LED on the PFU 172
 Checking the LEDs on the SMC 173
 SMC Run/Fail LED States 174
 SMC Active LED States 175
 SMC Standby LED States 176
 SMC Status LED States 177
 SMC Service LED States 177
 SMC Busy LED States 178
 Checking the LEDs on the Packet Processing Cards 178
 Packet Processing Card Run/Fail LED States 179
 Packet Processing Card Active LED States 180
 Packet Processing Card Standby LED States 181
 Checking the LEDs on the SPIO 182
 SPIO Run/Fail LED States 182
 SPIO Active LED States 183
 SPIO Standby LED States 184
 SPIO Interface Link LED States 184
 SPIO Interface – Activity LED States 185
Checking the LEDs on Ethernet Line Cards 185
 Ethernet Line Card Run/Fail LED States 186
 Ethernet Line Card Active LED States 186
 Ethernet Line Card Standby LED States 187
 Ethernet Line Card Interface – Link LED States 188
 Ethernet Line Card Interface Activity LED States 188

Checking the LEDs on the RCC 189
 RCC Run/Fail LED States 189
 RCC Active LED States 190
 RCC Standby LED States 191

Testing System Alarm Outputs 191

Taking Corrective Action 191
 Manually Initiating a Management Card Switchover 192
 Manually Initiating a Packet Processing Card Migration 192
 Manually Initiating a Line Card or SPI0 Switchover 193

Halting Cards 194
 Initiate a Card Halt 194
 Restoring a Previously Halted Card 195

Verifying Network Connectivity 195
 Using the ping or ping6 Command 195
 Syntax 195
 Troubleshooting 196
 Using the traceroute or traceroute6 Command 196
 traceroute – IPv4 Syntax 196
 traceroute6 – IPv6 Syntax 197

Viewing IP Routes 197
 Viewing the Address Resolution Protocol Table 197

Using the System Diagnostic Utilities 198
 Using the Monitor Utility 198
 Using the Protocol Monitor 198
 Using the Protocol Monitor for a Specific Subscriber 199

Generating an SSD 201

Configuring and Using the Support Data Collector 201

C H A P T E R 1 3 Access Control Lists 203
Overview 203

Understanding ACLs 204
 Rule(s) 204
 Actions 204
 Criteria 204
 Rule Order 206

Configuring ACLs on the System 206
 Creating ACLs 206
 Configuring Action and Criteria for Subscriber Traffic 207
 Configuring an Undefined ACL 207
 Verifying the ACL Configuration 208

Applying IP ACLs 208
 Applying the ACL to an Interface 210
 Applying an ACL to an Individual Interface 210
 Verifying the ACL Configuration on an Interface 211
 Applying the ACL to a Context 211
 Applying an ACL to All Traffic Within a Context 212
 Verifying the ACL Configuration in a Context 212
 Applying an ACL to a RADIUS-based Subscriber 213
 Applying an ACL to an Individual Subscriber 214
 Verifying the ACL Configuration to an Individual Subscriber 214
 Applying an ACL to the Subscriber Named default 215
 Applying an ACL to the Subscriber Named default 215
 Verifying the ACL Configuration to the Subscriber Named default 216
 Applying an ACL to Service-specified Default Subscriber 216
 Applying an ACL to Service-specified Default Subscriber 217
 Verifying the ACL Configuration to Service-specified Default Subscriber 217
 Applying a Single ACL to Multiple Subscribers 218
 Applying an ACL to Multiple Subscriber via APNs 219
 Applying an ACL to Multiple Subscriber via APNs 219
 Verifying the ACL Configuration to APNs 220

CHAPTER 14

Congestion Control 221
 Overview 221
 Configuring Congestion Control 222
Overview of BGP Support 235
Configuring BGP 236
Redistributing Routes Into BGP (Optional) 236
BGP Communities and Extended Communities 237
 BGP Communities 237
 Configuring a BGP Community 237
 Setting the Community Attribute 238
 Filtering via a BGP Community 238
 BGP Extended Communities 238
 Configuring a BGP Extended Community (Route Target) 238
 Setting the Extended Community Attribute 239
 Filtering via a BGP Extended Community 239
 BGP Local Preference 239
ICSR and SRP Groups 239
Advertising BGP Routes from a Standby ICSR Chassis 239
Configurable BGP Route Advertisement Interval for ICSR 240
BGP CLI Configuration Commands 240
 Confirming BGP Configuration Parameters 242
Bidirectional Forwarding Detection 242
 Overview of BFD Support 243
Configuring BFD 243
 Configuring a BFD Context 244
 Configuring IPv4 BFD for Static Routes 244
 Configuring IPv6 BFD for Static Routes 244
 Configuring BFD for Single Hop 245
 Configuring Multihop BFD 245
 Scaling of BFD 246
 Associating BGP Neighbors with the Context 246
 Associating OSPF Neighbors with the Context 246
 Associating BFD Neighbor Groups with the BFD Protocol 246
Enabling BFD on OSPF Interfaces 247
 All OSPF Interfaces 247
 Specific OSPF Interface 247
 Monitoring BFD Connection for ICSR 247
 Saving the Configuration 247
Chassis-to-Chassis BFD Monitoring for ICSR 247
Enable Primary Chassis BFD Monitoring 248
Set BFD to Ignore ICSR Dead Interval 248
Configure ICSR Switchover Guard Timer 248
Enable BFD Multihop Fall-over 249
ip route Command 249
ip routev6 Command 250
Adjust BFD Interval 250
Enable Advertising BGP Routes from Standby ICSR Chassis 250
Saving the Configuration 250
BFD Support for Link Aggregation Member Links 250
Overview 251
Configuring Support for BFD Linkagg Member-links 251
Saving the Configuration 252
Viewing Routing Information 252

CHAPTER 16 VLANs 255
Overview 255
Overlapping IP Address Pool Support – GGSN 256
RADIUS VLAN Support – Enhanced Charging Services 256
APN Support – PDN Gateway (P-GW) 256
Creating VLAN Tags 257
Verifying the Port Configuration 257
Configuring Subscriber VLAN Associations 258
RADIUS Attributes Used 258
Configuring Local Subscriber Profiles 258
Verify the Subscriber Profile Configuration 259
VLAN-Related CLI Commands 259

CHAPTER 17 BGP MPLS VPNs 263
Introduction 263
MPLS-CE Connected to PE 264
ASR 5x00 as a PE 265
Overview 265
Sample Configuration 265
IPv6 Support for BGP MPLS VPNs 267
 Overview 267
 Sample Configuration 268
 VPN-Related CLI Commands 270

CHAPTER 18
Content Service Steering 275
 Overview 275
 Configuring Internal Content Service Steering 276
 Defining IP Access Lists for Internal CSS 276
 Applying an ACL to an Individual Subscriber (Optional) 277
 Applying an ACL to Multiple Subscribers (Optional) 277
 Applying an ACL to the Subscriber Named default (Optional) 277
 Applying an ACL to Service-specified Default Subscribers (Optional) 277
 Applying an ACL to Multiple Subscribers via APNs (Optional) 277

CHAPTER 19
System Recovery 279
 Prerequisites 279
 Console Access 279
 Boot Image 279
 Accessing the boot CLI 280
 Initiate a Reboot 280
 Interrupt the Boot Sequence 280
 Enter CLI Mode 281
 boot Command Syntax 281
 Booting from a Selected Image 281
 Boot Using No Configuration File 281
 Boot Using A Specified Configuration File 282

CHAPTER 20
Session Recovery 283
 How Session Recovery Works 283
 Additional ASR 5x00 Hardware Requirements 286
 Configuring the System to Support Session Recovery 286
 Enabling Session Recovery 287
 Enabling Session Recovery on an Out-of-Service System 287
 Enabling Session Recovery on an In-Service System 287
Disabling the Session Recovery Feature 288
Viewing Session Recovery Status 288
Viewing Recovered Session Information 289
Recovery Control Task Statistics 290
show rct stats Command 291
Sample Output for show rct stats verbose 291

CHAPTER 21
Interchassis Session Recovery 293
Overview 293
Interchassis Communication 295
Checkpoint Messages 295
SRP CLI Commands 295
 Exec Mode CLI Commands 295
 show Commands 296
AAA Monitor 296
BGP Interaction 297
Requirements 297
ICSR Operation 298
 Chassis Initialization 301
 Chassis Operation 301
 Chassis Communication 301
 Chassis Switchover 301
Configuring Interchassis Session Recovery (ICSR) 302
 Configuring the Service Redundancy Protocol (SRP) Context 303
 Creating and Binding the SRP Context 303
 Configuring SRP Context Parameters 304
 Basic Parameters 304
 SRP Redundancy, AAA and Diameter Guard Timers 305
 DSCP Marking of SRP Messages 306
 Optimizing Switchover Transitions 306
 Allow Non-VoLTE Traffic During ICSR Switchover 307
 Allow All Data Traffic 309
 Graceful Cleanup of ICSR After Audit of Failed Calls 309
 Optimization of Switchover Control Outage Time 309
 Configuring the SRP Context Interface Parameters 310
Support Data Collector 327

Overview 327
Configuring SDR Collection 328
Displaying the SDR Collection Configuration 328
Collecting and Storing the SDR Information 329
Managing Record Collection 329
Using SDRs to Diagnose Problems 331

SDR CLI Commands 331

Configuration Commands (Global Configuration Mode) 332
 support record 332
 support collection 332

Exec Mode Commands 333
 show support record 333
 delete support record 333
 show support collection 333

Engineering Rules 335

CLI Session Rules 335
ASR 5000 Interface and Port Rules 335
 Line Card Rules 336
 Packet Data Network (PDN) Interface Rules 337
ASR 5000 Packet Processing Card Rules 337
Context Rules 337
Subscriber Rules 340
Service Rules 340
Access Control List (ACL) Engineering Rules 341
ECMP Groups 341

StarOS Tasks 343

Overview 343
Primary Task Subsystems 344
Controllers and Managers 345
Subsystem Tasks 346
 System Initiation Subsystem 346
High Availability Subsystem 347
Resource Manager Subsystem 348
Virtual Private Networking Subsystem 348
Network Processing Unit Subsystem 350
Session Subsystem 352
Platform Processes 362
Management Processes 366

APPENDIX C

ICSR Checkpointing 367
Overview of Checkpointing 367
Macro-checkpoints 367
 GGSN_APN ID MAPPING 368
 INSTANCE LEVEL CHECKPOINT 368
 SERVICE_ID MAPPING 368
 VPNMGR_ID MAPPING 369
Micro-checkpoints 369
Uncategorized 370
 SESS_UCHKPT_CMD_INVALIDATE_CRR 370
 SESS_UCKKPT_CMD_UPDATE_CLPSTATS 370
 SESS_UCHKPT_CMD_UPDATE_IDLESECS 370
DCCA Category 371
 SESS_UCHKPT_CMD_DCCA_SESS_INFO 371
ECS Category 371
 SESS_UCHKPT_CMD_ACS_CALL_INFO 371
 SESS_UCHKPT_CMD_ACS_GX_LI_INFO 372
 SESS_UCHKPT_CMD_ACS_SESS_INFO 372
 SESS_UCHKPT_CMD_DEL_ACS_CALL_INFO 372
 SESS_UCHKPT_CMD_DEL_ACS_SESS_INFO 373
 SESS_UCHKPT_CMD_DYNAMIC_CHRG_CA_INFO 373
 SESS_UCHKPT_CMD_DYNAMIC_CHRG_DEL_CA_INFO 373
 SESS_UCHKPT_CMD_DYNAMIC_CHRG_DEL_QG_INFO 374
 SESS_UCHKPT_CMD_DYNAMIC_CHRG_QG_INFO 374
 SESS_UCHKPT_CMD_DYNAMIC_RULE_DEL_INFO 374
 SESS_UCHKPT_CMD_DYNAMIC_RULE_INFO 375
ePDG Category 375
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESS_UCHKPT_CMD_DELETE_EPDPG_BEARER</td>
<td>375</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_EPDPG_BEARER</td>
<td>375</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_EPDPG_PEER_ADDR</td>
<td>376</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_EPDPG_REKEY</td>
<td>376</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_EPDPG_STATS</td>
<td>376</td>
</tr>
<tr>
<td>Firewall/ECSCategory</td>
<td></td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_SFW_DEL_RULE_INFO</td>
<td>377</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_SFW_RULE_INFO</td>
<td>377</td>
</tr>
<tr>
<td>GGSN Category</td>
<td></td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GGSN_DELETE_SUB_SESS</td>
<td>378</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GGSN_UPDATE_RPR</td>
<td>378</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GGSN_UPDATE_SESSION</td>
<td>378</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GGSN_UPDATE_STATS</td>
<td>379</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_COA_PARAMS</td>
<td>379</td>
</tr>
<tr>
<td>Gx Interface Category</td>
<td></td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_ACS_VOLUME_USAGE</td>
<td>380</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_SGX_INFO</td>
<td>380</td>
</tr>
<tr>
<td>NAT Category</td>
<td></td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GR_UPDATE_NAT_REALM_PORT_INFO1</td>
<td>380</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_GR_UPDATE_NAT_REALMS</td>
<td>381</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_NAT_SIP_ALG_CALL_INFO</td>
<td>381</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_NAT_SIP_ALG_CONTACT_PH_INFO</td>
<td>382</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_DSK_FLOW_CHKPT_INFO</td>
<td>382</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_UPDATE_NAT_BYPASS_FLOW_INFO</td>
<td>382</td>
</tr>
<tr>
<td>P-GW Category</td>
<td></td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_DELETE_SUB_SESS</td>
<td>383</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_OVRCHRG_PRTCTN_INFO</td>
<td>383</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_SGWRESTORATION_INFO</td>
<td>383</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UBR_MBR_INFO</td>
<td>384</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_APN_AMBR</td>
<td>384</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_INFO</td>
<td>384</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_LI_PARAM</td>
<td>384</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_PDN_COMMON_PARAM</td>
<td>385</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_QOS</td>
<td>385</td>
</tr>
<tr>
<td>SESS_UCHKPT_CMD_PGW_UPDATE_SGW_CHANGE</td>
<td>385</td>
</tr>
</tbody>
</table>
SESS_UCHKPT_CMD_PGW_UPDATE_STATS 385

Rf Interface Category 385

SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_QCI_RF 385
SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_QCI_RF_WITH_FC 386
SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_RATING_GROUP_RF 386
SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_RATING_GROUP_RF_WITH_FC 386

S6b Interface Category 387

SESS_UCHKPT_CMD_S6B_INFO 387

SaMOG Category 387

SESS_UCHKPT_CMD_CGW_DELETE_BEARER 387
SESS_UCHKPT_CMD_CGW_DELETE_PDN 387
SESS_UCHKPT_CMD_CGW_UPDATE_BEARER_QOS 388
SESS_UCHKPT_CMD_CGW_UPDATE_PDN 388
SESS_UCHKPT_CMD_CGW_UPDATE_STATS 388
SESS_UCHKPT_CMD_CGW_UPDATE_UE_PARAM 388
SESS_UCHKPT_CMD_SAMOG_ACCT_INTERIM_INFO 388
SESS_UCHKPT_CMD_SAMOG_ACCT_START_INFO 389
SESS_UCHKPT_CMD_SAMOG_EOGRE_TUNNEL_INFO 389
SESS_UCHKPT_CMD_SAMOG_GTPV1_UPDATE_PDN_INFO 390
SESS_UCHKPT_CMD_SAMOG_HANDOFF_AUTHEN_INFO 390
SESS_UCHKPT_CMD_SAMOG_HANDOFF_INIT_INFO 390
SESS_UCHKPT_CMD_SAMOG_LI_PROV_INFO 391
SESS_UCHKPT_CMD_SAMOG_MIPV6_TIMER_INFO 391
SESS_UCHKPT_CMD_SAMOG_MULTI_ROUND_AUTHEN_INFO 391
SESS_UCHKPT_CMD_SAMOG_REAUTHEN_INFO 392
SESS_UCHKPT_CMD_SAMOG_REAUTHOR_INFO 392

APPENDIX D

ASR 5000 SDR CLI Strings 393

ASR 5000 SDR CLI Command Strings 393
About this Guide

This preface describes the System Administration Guide, how it is organized and its document conventions. The System Administration Guide describes how to generally configure and maintain StarOS running on an ASR 5000 platform. It also includes information on monitoring system performance and troubleshooting.

- Conventions Used, page xxv
- Related Documentation, page xxvi
- Contacting Customer Support, page xxvi

Conventions Used

The following tables describe the conventions used throughout this documentation.

<table>
<thead>
<tr>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
</table>
| Text represented as a screen display | This typeface represents displays that appear on your terminal screen, for example: \nLogin: \n
| Text represented as commands | This typeface represents commands that you enter, for example: \nshow ip access-list \nThis document always gives the full form of a command in lowercase letters. Commands are not case sensitive. |
Typeface Conventions

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text represented as a command variable</td>
</tr>
<tr>
<td>This typeface represents a variable that is part of a command, for example:</td>
</tr>
<tr>
<td>show card slot_number</td>
</tr>
<tr>
<td>slot_number is a variable representing the desired chassis slot number.</td>
</tr>
<tr>
<td>Text represented as menu or sub-menu names</td>
</tr>
<tr>
<td>This typeface represents menus and sub-menus that you access within a software application, for example:</td>
</tr>
<tr>
<td>Click the File menu, then click New</td>
</tr>
</tbody>
</table>

Related Documentation

The most up-to-date information for this product is available in the product *Release Notes* provided with each software release.

The following user documents are available on www.cisco.com:

- ASR 5000 Installation Guide
- AAA Interface Administration and Reference
- Command Line Interface Reference
- GTPP Interface Administration and Reference
- IP Security (IPSec) Reference
- Release Change Reference
- SNMP MIB Reference
- Statistics and Counters Reference
- Thresholding Configuration Guide
- Product-specific and feature-specific Administration guides

Contacting Customer Support

Use the information in this section to contact customer support.

Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
System Operation and Configuration

The ASR 5000 system provides wireless carriers with a flexible solution that can support a wide variety of services.

Before you connect to the command line interface (CLI) and begin system configuration, you must understand how the system supports these services. This chapter provides terminology and background information to consider before you configure the system.

- System Management Overview, page 1
- Terminology, page 3
- How the System Selects Contexts, page 6
- Understanding the ASR 5000 Boot Process, page 8
- Understanding Configuration Files, page 10
- IP Address Notation, page 11
- Alphanumeric Strings, page 13

System Management Overview

ASR 5000 management capabilities reflect the requirements of the Telecommunications Management Network (TMN) model for network element (NE) and element management system (EMS) functions. The system also supports external element management applications via standards-based protocols (CORBA and SNMPv1, v2). Wireless operators can readily integrate the ASR 5000 into their overall network, service, and business management systems. All management is performed out-of-band for security and to maintain system performance.
There are multiple ways to manage the system either locally or remotely using its out-of-band management interfaces.

Figure 1: System Management Interfaces

Management options include:

- Local login through the Console port on the SPIO card via an RS-232 Console connection (RJ45) directly or indirectly via a terminal server

- Remote login using Telnet, and Secure Shell (SSH) access to the CLI through the SPIO card's Ethernet management interfaces:
 - Two auto-sensing RJ45 10/100/1000Base-TX shielded twisted pair (STP) ports **OR**
 - Two optical MMF 1000Base-SX SFP 802.3z-compliant Gigabit Ethernet ports

- Support for Common Object Request Broker Architecture (CORBA) via an Object Request Broker Element Manager (ORBEM) interface and Simple Network Management Protocol version 1 (SNMPv1) and version 2 (SNMPv2) for fault management

- Authentication via RADIUS/Diameter or TACACS+

The StarOS CLI provides complete Fault, Configuration, Accounting, Performance, and Security (FCAPS) capabilities as described in the remaining chapters of this guide.

Important
By default StarOS supports local Console access to the CLI via the RS-232 Console port for initial system configuration.
Terminology

This section defines important terms used throughout this guide.

Contexts

A context is a logical grouping or mapping of configuration parameters that pertain to various physical ports, logical IP interfaces, and services. A context can be thought of as a virtual private network (VPN).

The system supports the configuration of multiple contexts. Each context is configured and operates independently of the others. Once a context has been created, administrative users can configure services, logical IP interfaces, and subscribers for that context and then bind the logical interfaces to physical ports.

You can also assign a domain alias to a context; if a subscriber's domain name matches one of the configured alias names for a context, that context is used.

Ports

Ports are the physical connectors on line cards that support remote access and subscriber traffic. Port configuration includes traffic profiles, data encapsulation methods, media type, and other information for physical connectivity between the system and the rest of the network.

Ports are identified by the chassis slot number for the line card, followed by the physical connector number. For example, Port 24/1 identifies connector number 1 on the SPIO card in slot 24.

Associate ports with contexts through bindings. For additional information on bindings, refer to the Bindings section below. You can configure each physical port to support multiple logical IP interfaces, each with up to 17 IP addresses (one primary and up to 16 secondaries).

For complete information on line cards and port assignments, refer to the ASR 5000 Installation Guide.

Logical Interfaces

You must associate a port with a StarOS virtual circuit or tunnel called a logical interface before the port can allow the flow of user data. Within StarOS, a logical interface is a named interface associated with a virtual router instance that provides higher-layer protocol transport, such as Layer 3 IP addressing. Interfaces are configured as part of VPN contexts and are independent from the physical ports that will be used to bridge the virtual interfaces to the network.

Logical interfaces are associated with ethernet+ppp+tunnel addresses and are bound to a specific port during the configuration process. Logical interfaces are also associated with services through bindings. Services are bound to an IP address that is configured for a particular logical interface. When associated, the interface takes on the characteristics of the functions enabled by the service.

There are several types of logical interfaces to configure to support Simple and Mobile IP data applications. These are briefly defined below.
Management Interface

This interface provides the point of attachment to the management network. The interface supports remote access to the command line interface (CLI). It also supports Common Object Request Broker Architecture (CORBA)-based management via the Web Element Manager application, and event notification via the Simple Network Management Protocol (SNMP).

Define management interfaces in the local context and bind them to the ports on the Switch Processor Input/Output (SPIO) cards.

Bindings

A binding is an association between elements within the system. There are two types of bindings: static and dynamic.

Static binding is accomplished through system configuration. Static bindings associate:

- A specific logical interface (configured within a particular context) to a physical port. Once the interface is bound, traffic can flow through the context as if it were any physically-defined circuit. Static bindings support any encapsulation method over any interface and port type.
- A service to an IP address assigned to a logical interface within the same context. This allows the interface to take on the characteristics (that is, support the protocols) required by the service.

Dynamic binding associates a subscriber to a specific egress context based on the configuration of their profile or system parameters. This provides a higher degree of deployment flexibility, as it allows a wireless carrier to support multiple services and facilitates seamless connections to multiple networks.

Management ports can only be bound in the local context. Traffic or subscriber ports can only be bound in a non-local context.

Services

Configure services within a context to enable certain functionality. The following are examples of services you can configure on the system, subject to licensing availability and platform type:

- Gateway GPRS Support Node (GGSN) services
- Serving GPRS Support Node (SGSN) Services
- Packet Data Serving Node (PDSN) services
- Foreign Agent (FA) services
- Home Agent (HA) services
- Layer 2 Tunneling Protocol Access Concentrator (LAC) services
- Dynamic Host Control Protocol (DHCP) services
- Access Service Network Gateway (ASN-GW) services
- ASN Paging Controller and Location Registry services
- Packet Data Interworking Function (PDIF) services
- Session Control Manager (SCM) services (P-CSCF, S-CSCF, A-BG)
AAA Servers

Authentication, Authorization and Accounting (AAA) servers store profiles, perform authentication, and maintain accounting records for each mobile data subscriber. The AAA servers communicate with the system over an AAA interface. The system supports the configuration of up to 128 interfaces to AAA servers.

It is important to note that for Mobile IP, there can be Foreign AAA (FAAA) and Home AAA (HAAA) servers. FAAA servers typically reside in the carrier’s network. HAAA servers could be owned and controlled by either the carrier or the home network. If the HAAA server is owned and controlled by the home network, accounting data is transferred to the carrier via an AAA proxy server.

Important

Mobile IP support depends on the availability and purchase of a standalone license or a license bundle that includes Home Agent (HA).

Subscribers

Subscribers are the end-users of the service; they gain access to the Internet, their home network, or a public network through the system.

There are three primary types of subscribers:

• **RADIUS-based Subscribers**: The most common type of subscriber, these users are identified by their International Mobile Subscriber Identity (IMSI) number, an Electronic Serial Number (ESN), or by their domain name or user name. They are configured on and authenticated by a RADIUS AAA server.

 Upon successful authentication, various attributes that are contained in the subscriber profile are returned. The attributes dictate such things as session parameter settings (for example, protocol settings and IP address assignment method), and what privileges the subscriber has.

 Important

 Attribute settings received by the system from a RADIUS AAA server take precedence over local-subscriber attributes and parameters configured on the system.

• **Local Subscribers**: These are subscribers, primarily used for testing purposes, that are configured and authenticated within a specific context. Unlike RADIUS-based subscribers, the local subscriber's user profile (containing attributes like those used by RADIUS-based subscribers) is configured within the context where they are created.
When local subscriber profiles are first created, attributes for that subscriber are set to the system's default settings. The same default settings are applied to all subscriber profiles, including the subscriber named default which is created automatically by the system for each system context. When configuring local profile attributes, the changes are made on a subscriber-by-subscriber basis.

Important
Attributes configured for local subscribers take precedence over context-level parameters. However, they could be over-ridden by attributes returned from a RADIUS AAA server.

- **Management Subscribers**: A management user is an authorized user who can monitor, control, and configure the system through the CLI or Web Element Manager application. Management is performed either locally, through the system Console port, or remotely through the use of the Telnet or secure shell (SSH) protocols. Management users are typically configured as a local subscriber within the Local context, which is used exclusively for system management and administration. As with a local subscriber, a management subscriber's user profile is configured within the context where the subscriber was created (in this case, the Local context). However, management subscribers may also be authenticated remotely via RADIUS, if an AAA configuration exists within the local context, or TACACS+.

How the System Selects Contexts

This section describes the process that determines which context to use for context-level administrative users or subscriber sessions. Understanding this process allows you to better plan your configuration in terms of how many contexts and interfaces you need to configure.

Context Selection for Context-level Administrative User Sessions

The system comes configured with a context called local that you use specifically for management purposes. The context selection process for context-level administrative users (those configured within a context) is simplified because the management ports on the SPIO are associated only with the Local context. Therefore, the source and destination contexts for a context-level administrative user responsible for managing the entire system should always be the local context.

A context-level administrative user can also connect through other interfaces on the system and still have full system management privileges.

A context-level administrative user can be created in a non-local context. These management accounts have privileges only in the context in which they are created. This type of management account can connect directly to a port in the context in which they belong, if local connectivity is enabled (SSHD, for example) in that context.

For all FTP or SFTP connections, you must connect through an SPIO interface. If you SFTP or FTP as a non-local context account, you must use the username syntax of *username@contextname*.

The context selection process becomes more involved if you are configuring the system to provide local authentication or work with a AAA server to authenticate the context-level administrative user.

The system gives you the flexibility to configure context-level administrative users locally (meaning that their profile will be configured and stored in its own memory), or remotely on an AAA server. If a locally-configured user attempts to log onto the system, the system performs the authentication. If you have configured the user profile on an AAA server, the system must determine how to contact the AAA server to perform authentication. It does this by determining the AAA context for the session.
The following table and flowchart describe the process that the system uses to select an AAA context for a context-level administrative user. Items in the table correspond to the circled numbers in the flowchart.

Figure 2: Context-level Administrative User AAA Context
Table 1: Context-level Administrative User AAA Context Selection

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>During authentication, the system determines whether local authentication is enabled in the local context. If it is, the system attempts to authenticate the administrative user in the local context. If it is not, proceed to item 2 in this table. If the administrative user's username is configured, authentication is performed by using the AAA configuration within the local context. If not, proceed to item 2 in this table.</td>
</tr>
<tr>
<td>2</td>
<td>If local authentication is disabled on the system or if the administrative user's username is not configured in the local context, the system determines if a domain was received as part of the username. If there is a domain and it matches the name of a configured context or domain, the systems uses the AAA configuration within that context. If there is a domain and it does not match the name of a configured context or domain, go to item 4 in this table. If there is no domain as part of the username, go to item 3 in this table.</td>
</tr>
<tr>
<td>3</td>
<td>If there was no domain specified in the username or the domain is not recognized, the system determines whether an AAA Administrator Default Domain is configured. If the default domain is configured and it matches a configured context, the AAA configuration within the AAA Administrator Default Domain context is used. If the default domain is not configured or does not match a configured context or domain, go to item 4 item below.</td>
</tr>
<tr>
<td>4</td>
<td>If a domain was specified as part of the username but it did not match a configured context, or if a domain was not specified as part of the username, the system determines if the AAA Administrator Last Resort context parameter is configured. If a last resort, context is configured and it matches a configured context, the AAA configuration within that context is used. If a last resort context is not configured or does not match a configured context or domain, the AAA configuration within the local context is used.</td>
</tr>
</tbody>
</table>

Context Selection for Subscriber Sessions

The context selection process for a subscriber session is more involved than that for the administrative users. Subscriber session context selection information for specific products is located in the Administration Guide for the individual product.

Understanding the ASR 5000 Boot Process

Part of the configuration process requires that you allocate hardware resources for processing and redundancy. Therefore, before you configure the system, it is important to understand the boot process which determines how the hardware components are brought on line.
The following flowchart shows each step in the startup process. For additional information about system configuration files, refer to the Understanding Configuration Files section.

Figure 3: ASR 5500 Process Flowchart

The following steps describe the system's boot process:

Step 1 When power is first applied to the chassis, or after a reboot, only the SMC slots (slots 8 and 9) receive power. Therefore, the SMCs are the first cards to boot and their LEDs are the first to light up. After the system confirms that cards are located in slots 8 and 9, power is quickly applied to the SPIOs in slots 24 and 25.

Step 2 During the startup process, each card performs a series of power-on self tests (POSTs) to ensure that the hardware is operational.

Step 3 If the SMC in slot 8 successfully executes all POSTs, the card in slot 8 becomes the active SMC. The SMC in slot 9 becomes the standby card. If there is a problem with the SMC in slot 8, the card in slot 9 becomes the active SMC. Once the active and standby order is determined, the SPIO cards in slots 24 and 25 are placed into active and standby mode, as determined by the direct mapping of the active and standby SMCs.

Step 4 The active SMC begins loading the operating system software image designated in the boot stack. The boot stack entries are contained in the boot.sys file that resides on the SMC CompactFlash. The standby SMC observes the active card startup. If the file on the active card is loads normally, the standby SMC boots from the active card image. If the active
SMC experiences problems during this phase, the standby card loads its software image designated by its own boot stack entry in its boot.sys file and takes over control of the system as the active card.

Step 5 After the software image is loaded into SMC RAM, the active card determines whether other cards are installed in the chassis by applying power to the other chassis slots and signalling them. If the chassis slot contains an application or line card, power is left on to that slot. All empty slots are powered off. If no SMCs are installed, or if they are installed incorrectly, no other card installed in the system will boot.

Step 6 When power is applied to the PSCs and line cards installed in the system, they each perform their own series of POSTs.

Step 7 After successful POST, each of the PSCs enter standby mode.

Step 8 Installed line cards remain in steady mode until their corresponding PSC is made active via configuration. After the PSC is made active, the line card installed in the upper-rear chassis slot behind the card is also made active. The line card installed in the lower-rear chassis slot behind the card enters standby mode.

Step 9 After entering the standby mode, each of the PSC control processors (CPs) communicate with the SMC to receive the appropriate code.

Step 10 Upon successful loading of the software image, the system loads a configuration file designated in the boot stack (boot.sys file). If this is the first time the system is powered on and there is no configuration file, the active SMC invokes the system's Quick Setup wizard. Use the Quick Setup wizard to configure basic system parameters for communication across the management network.

The wizard creates a configuration file (system.cfg) that you can use as a starting point for subsequent configurations. This allows you to configure the system automatically by applying the configuration file during any subsequent boot. For additional information about system configuration files, refer to the *Understanding Configuration Files* section.

Understanding Configuration Files

The system supports the use of a file or script to modify configurable parameters. Using a file for offline system configuration reduces the time it takes to configure parameters on multiple systems.

A system configuration file is an ASCII text file that contains commands and configuration parameters. When you apply the configuration file, the system parses through the file line-by-line, testing the syntax and executing the command. If the syntax is incorrect, a message is displayed to the CLI and the system proceeds to the next command. Lines that begin with # are considered remarks and are ignored.

Important Pipes (|), used with the **grep** and **more** keywords, can potentially cause errors in configuration file processing. Therefore, the system automatically ignores keywords with pipes during processing.

Important Always save configuration files in UNIX format. Failure to do so can result in errors that prevent configuration file processing.

ASR 5000 System Administration Guide, StarOS Release 19
The commands and configuration data within the file are organized and formatted just as they would be if they were being entered at the CLI prompt. For example, if you wanted to create a context called `source` in the CLI, you would enter the following commands at their respective prompts:

```
[local] host_name(config)# context source
[local] host_name(config-ctx)# end
```

To create a context called `source` using a configuration file, you would use a text editor to create a new file that consists of the following:

```
config
  context source
end
```

There are several important things to consider when using configuration files:

- The system automatically applies a configuration file at the end of the boot process. After the system boots up for the first time, a configuration file that you have created and that is tailored to your network needs, can be applied. To make the system use your configuration file, modify the system’s boot parameters according to the instructions located in *Software Management Operations*.

- In addition to being applied during the boot process, you can also apply configuration files manually at any time by executing the appropriate commands at the CLI prompt. Refer to the instructions in *Software Management Operations*.

Important

When you apply a configuration file after the boot process, the file does not delete the configuration loaded as part of the boot process. Only those commands that are duplicated are overwritten.

- Configuration files can be stored in any of the following locations:
 - **CompactFlash™**: Installed on the SMC.
 - **PCMCIA Flash Card**: Installed in a slot on the SMC.
 - **Network Server**: Any workstation or server on the network that the system can access using the Trivial File Transfer Protocol (TFTP). This is recommended for large network deployments in which multiple systems require the same configuration.
 - **/flash**: A solid-state device with limited storage.

- Each time you save configuration changes you made during a CLI session, you can save those settings to a file which you can use as a configuration file.

IP Address Notation

When configuring a port interface via the CLI you must enter an IP address. The CLI always accepts an IPv4 address, and in some cases accepts an IPv6 address as an alternative.

For some configuration commands, the CLI also accepts CIDR notation. Always view the online Help for the CLI command to verify acceptable forms of IP address notation.
IPv4 Dotted-Decimal Notation

An Internet Protocol Version 4 (IPv4) address consists of 32 bits divided into four octets. These four octets are written in decimal numbers, ranging from 0 to 255, and are concatenated as a character string with full stop delimiters (dots) between each number.

For example, the address of the loopback interface, usually assigned the host name localhost, is 127.0.0.1. It consists of the four binary octets 01111111, 00000000, 00000000, and 00000001, forming the full 32-bit address.

IPv4 allows 32 bits for an Internet Protocol address and can, therefore, support 2^{32} (4,294,967,296) addresses.

IPv6 Colon-Separated-Hexadecimal Notation

An Internet Protocol Version 6 (IPv6) address has two logical parts: a 64-bit network prefix, and a 64-bit host address part. An IPv6 address is represented by eight groups of 16-bit hexadecimal values separated by colons (:).

A typical example of a full IPv6 address is 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

The hexadecimal digits are case-insensitive.

The 128-bit IPv6 address can be abbreviated with the following rules:

- Leading zeroes within a 16-bit value may be omitted. For example, the address fe80:0000:0000:0000:0202:b3ff:fe1e:8329 may be written as fe80::202:b3ff:fe1e:8329.
- One group of consecutive zeroes within an address may be replaced by a double colon. For example, fe80:::202:b3ff:fe1e:8329 becomes fe80::202:b3ff:fe1e:8329.

IPv6 allows 128 bits for an Internet Protocol address and can support 2^{128} (340,282,366,920,938,000,000,000,000,000,000,000,000,000,000,000) internet addresses.

CIDR Notation

Classless Inter-Domain Routing (CIDR) notation is a compact specification of an Internet Protocol address and its associated routing prefix. It is used for both IPv4 and IPv6 addressing in networking architectures.

CIDR is a bitwise, prefix-based standard for the interpretation of IP addresses. It facilitates routing by allowing blocks of addresses to be grouped into single routing table entries. These groups (CIDR blocks) share an initial sequence of bits in the binary representation of their IP addresses.

CIDR notation is constructed from the IP address and the prefix size, the latter being the number of leading 1 bits of the routing prefix. The IP address is expressed according to the standards of IPv4 or IPv6. It is followed by a separator character, the slash (/) character, and the prefix size expressed as a decimal number.

Important

On the ASR 5000, routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

The address may denote a single, distinct, interface address or the beginning address of an entire network. In the latter case the CIDR notation specifies the address block allocation of the network. The maximum size of...
the network is given by the number of addresses that are possible with the remaining, least-significant bits below the prefix. This is often called the host identifier.

For example:

- the address specification 192.168.100.1/24 represents the given IPv4 address and its associated routing prefix 192.168.100.0, or equivalently, its subnet mask 255.255.255.0.
- the IPv4 block 192.168.0.0/22 represents the 1024 IPv4 addresses from 192.168.0.0 to 192.168.3.255.
- the IPv6 block 2001:DB8::/48 represents the IPv6 addresses from 2001:DB8:0:0:0:0:0:0 to 2001:DB8:0:FFFF:FFFF:FFFF:FFFF.
- ::1/128 represents the IPv6 loopback address. Its prefix size is 128, the size of the address itself, indicating that this facility consists of only this one address.

The number of addresses of a subnet defined by the mask or prefix can be calculated as $2^{address\ size - \ mask}$, in which the address size for IPv4 is 32 and for IPv6 is 128. For example, in IPv4, a mask of /29 gives $2^{32-29} = 2^3 = 8$ addresses.

Alphanumeric Strings

Some CLI commands require the entry of an alphanumeric string to define a value. The string is a contiguous collection of alphanumeric characters with a defined minimum and maximum length (number of characters).

Character Set

The alphanumeric character set is a combination of alphabetic (Latin letters) and/or numeric (Arabic digits) characters. The set consists of the numbers 0 to 9, letters A to Z (uppercase) and a to z (lowercase). The underscore character (_) and dash/hyphen (-) are also considered to be members of the alphanumeric set of characters.

Blank spaces (whitespaces or SPACE characters) should mostly be avoided in alphanumeric strings, except in certain ruledef formats, such as time/date stamps.

Do not use any of the following "special" characters in an alphanumeric string except as noted below:

- & (ampersand)
- ' (apostrophe)
- < > (arrow brackets) [see exception below]
- * (asterisk) [see wildcard exception below]
- {} (braces)
- [] (brackets)
- $ (dollar sign) [see wildcard exception below]
- ! (exclamation point) [see exception below]
- () [parentheses]
- % (percent) [see exception below]
• # (pound sign) [see exception below]
• ? (question mark)
• ’ (quotation mark – single)
• " (quotation mark – double)
• ; (semicolon)
• \ (slash – backward) [see exception below]
• / (slash – forward) [see exception below]
• ~ (tilde)
• | (vertical bar) [see exception below]

The following characters may appear in strings entered in ruledefs, APNs, license keys and other configuration/display parameters:
• < > (arrow brackets) [less than or greater than]
• * (asterisk) [wildcard]
• : (colon)
• $ (dollar sign) [wildcard]
• . (dot)
• = (equals sign)
• !; (exclamation point)
• % (percent)
• / (slash – forward)
• | (vertical bar)

The following characters may be used to delimit the domain from the user name for global AAA functions:
• @ (at sign)
• - (dash or hyphen)
• # (hash or pound sign)
• % [percent]
• \ (slash – backward) [must be entered as double slash "\\"]
• / (slash – forward)

Quoted Strings

If descriptive text requires the use of spaces between words, the string must be entered within double quotation marks (" "). For example:

interface "Rack 3 Chassis 1 port 5/2"
Getting Started

Following successful installation of the system hardware, you must configure a set of software parameters. You then save these settings in a system configuration file that is launched whenever the system is reloaded.

This chapter provides instructions for connecting to the console port and creating the initial local context management configuration.

- ASR 5000 Configuration, page 15
- Using the ASR 5000 Quick Setup Wizard, page 15
- Using the CLI for Initial Configuration, page 20
- Configuring the System for Remote Access, page 22
- Configuring SSH Options, page 24
- Configuring the Management Interface with a Second IP Address, page 28

ASR 5000 Configuration

The first time power is applied to the system, the active System Management Card (SMC) (typically the one installed in chassis slot 8) automatically launches a Quick Setup Wizard on its console port.

The serial console port is located on the SPIO card installed in slot 24. This wizard is guide you through the initial configuration of the system.

You can choose not to use the wizard and perform the initial configuration by issuing commands via the command line interface (CLI). You can manually launch the wizard by running the setup command in the Exec mode. Refer to the Command Line Interface Reference for details.

The following sections describe how to configure the system.

Using the ASR 5000 Quick Setup Wizard

The Quick Setup Wizard consists of three parts:

- Configuring a context-level security administrator and hostname
- Configuring the Ethernet interface for out-of-band (OOB) management
• Configuring the system for remote CLI access

The following figure and table provide a flow diagram that shows the run logic of the wizard with supplemental notes.

Figure 4: ASR 5000 Quick Setup Wizard Logic Diagram
<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Description/Notes</th>
</tr>
</thead>
</table>
| 1 | Enter or exit the wizard. | Enter no at the prompt to automatically be directed to the command line interface (CLI). Proceed to the Using the CLI for Initial Configuration, on page 20 section for instructions on performing an initial system configuration with the CLI.

Enter setup at the command prompt to re-invoke the wizard. |
| 2 | For release 19.2 and higher; configure a tech-support password. | The tech-support password is used to access CLI test-commands.

Configure an administrative username/password and a hostname for the system.

The name of the default administrative user configured through the wizard is admin.

Administrative user name is an alphanumeric string of 1 through 32 characters that is case sensitive.

Administrative user password is an alphanumeric string of 1 through 63 characters that is case sensitive.

Configure a valid, non-null hostname. The hostname is an alphanumeric string of 1 through 63 characters that is case sensitive. |
| 3 | Change chassis key value. (Release 12.2 and higher) | A unique chassis key is configured at the factory for each system. This key is used to decrypt encrypted passwords found in generated configuration files. The system administrator can create a unique chassis key that will be used to encrypt passwords stored in configuration files.

Enter yes to set a new chassis key. Refer to the instructions in System Settings. Additional information can be found in System Security. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Description/Notes</th>
</tr>
</thead>
</table>
| 4 | Configure a single SPIO out-of-band management interface for out-of-band system management. | Traffic on the management LAN is not transferred over the same media as user data and control signaling.
For security reasons, management functions should be maintained on a separate network from user data and control signaling.
The port nomenclature varies based on the medium being used to access the network – Ethernet or fiber.
SPIO1 represents either the Ethernet 1 or SFP 1 interface on the SPIO. SPIO1 is the default.
SPIO2 represents either the Ethernet 2 or SFP 2 interface on the SPIO.
Use the RJ-45 interfaces to connect the system to the management network with CAT3 or CAT5 Ethernet cable. Use the SFP interfaces to connect the system to the management network with 1000Base-SX optical fiber cable. The default is rj-45.
Configure an IP address, subnet mask, and gateway for the interface.
Instructions for configuring the second management interface on the SPIO can be found in System Settings. |
| 5 | In Release 19.0 and prior releases, enable various remote access protocols for accessing the system.
In Release 19.2 and higher, enter an SSH key size. The default value is 2048 bits. | Secure Shell (SSH) uses TCP port number 22 by default, if enabled.
In Release 19.0 and prior, SSH V1 and/or V2 are supported. If SSH is enabled, you can also enable SSH File Transfer Protocol (SFTP) server functionality.
In Release 19.2 and higher, you can specify the SSH key size. The SSH v2-RSA key generation uses that key size value.
Note: For maximum security, use only SSH v2.
In Release 19.2 and higher, only SSH v2 is supported.
Secure File Transfer Protocol (SFTP) uses TCP port number 22 by default, if enabled [subsystem sftp].
Note: For maximum system security, do not enable telnet protocol.
Telnet uses TCP port number 23 by default, if enabled.
Note: For maximum system security, do not enable FTP.
File Transfer Protocol (FTP) uses TCP port number 21 by default, if enabled. |
Getting Started

Using the ASR 5000 Quick Setup Wizard

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Description/Notes</th>
</tr>
</thead>
</table>
| 6 | Review and/or modify the configuration of previous prompts. | **1** Enter the number of the prompt to be modified.
2 Configure the parameter.
3 *Optional.* Repeat step 1 and step 2 to modify additional settings.
4 Enter "done" when you have completed all changes. |
| 7 | Review the configure script created by the wizard based on your inputs. | An example of a created script is displayed in the example below. Variables are displayed in italics (*variable*). |
| 8 | Apply the configuration file to the system. | Once applied, the parameter configuration is automatically saved to the system.cfg file stored on the primary SMC compact flash card. |

Figure 5: SPIO IP Interfaces

Do you want to view the configuration script created [yes/no]: **y**

```plaintext
config
system hostname *hostname*
context local
    administrator *admin_name* password *passwd*
interface spio1
    ip address *ip_address* *subnet*  
    #exit
    ip route 0.0.0.0 0.0.0.0 *gw_address* spio1
ssh key *v1_key*
```

ASR 5000 System Administration Guide, StarOS Release 19
Using the CLI for Initial Configuration

The initial configuration consists of the following:

- Configuring a context-level security administrator and hostname
- Configuring the Ethernet interface(s) on the SPIO that is installed behind the primary SMC
- Configuring the system for remote CLI access via Telnet, SSH, or FTP (secured or unsecured)

This section provides instructions for performing these tasks using the CLI.

Step 1
At the CLI prompt, enter:
```
[local]host_name# configure
```
```
[local]host_name(config)#
```

Step 2
Enter the context configuration mode by entering the following command:
```
[local]host_name(config)# context local
```
```
[local]host_name(config-ctx)#
```

The local context is the system's management context. Contexts allow you to logically group services or interfaces. A single context can consist of multiple services and can be bound to multiple interfaces.

Step 3
Enter the following command to configure a context-level security administrator for the system:
```
administrator user_name | encrypted | password password | [ | ecs | | expiry-date date_time | | ftp | [ li-administration | | nocli | | noecs | | timeout-absolute timeout_absolute | | timeout-min-absolute timeout_min_absolute | | timeout-idle timeout_idle | | timeout-min-idle timeout_min_idle |]
```

You must configure a context-level security administrator during the initial configuration. After you complete the initial configuration process and end the CLI session, if you have not configured a security administrator, CLI access will be locked. For complete information on the above command, see the Context Configuration Mode Commands chapter of the Command Line Interface Reference.
Step 4 Enter the following command at the prompt to exit the context configuration mode:

```bash
[local]host_name(config-ctx)# exit
[local]host_name(config)#
```

Step 5 Enter the following command to configure a hostname by which the system will be recognized on the network:

```bash
[local]host_name(config)# system hostname host_name
```

host_name is the name by which the system will be recognized on the network. The hostname is an alphanumeric string of 1 through 63 characters that is case sensitive.

Step 6 Configure the network interfaces on the SPIO using the following instructions:

a) Enter the context configuration mode by entering the following commands:

```bash
[local]host_name(config)# context local
[local]host_name(config-ctx)#
```

b) Enter the following command to specify a name for the interface:

```bash
[local]host_name(config-ctx)# interface interface_name
```

interface_name is the name of the interface expressed as an alphanumeric string of 1 through 79 characters that is case sensitive. The following prompt appears as the system enters the Ethernet Interface Configuration mode:

```bash
[local]host_name(config-if-eth)#
```

c) Configure an IP address for the interface configured in the previous step by entering the following command:

```bash
{ip address|ipv6 address} ipaddress subnetmask
```

If you are executing this command to correct an address or subnet that was mis-configured with the Quick Setup Wizard, you must verify the default route and port binding configuration. Use *step 11* and *step 6* of this procedure. If there are issues, perform steps *7e* through *7k* to reconfigure the information.

d) Enter the following command to exit the Ethernet interface configuration mode:

```bash
[local]host_name(config-if-eth)# exit
[local]host_name(config-ctx)#
```

e) Configure a static route, if required, to point the system to a default gateway. Entering the following command:

```bash
{ip | ipv6} route gw_address interface_name
```

f) Enter the following to exit from the context configuration mode:

```bash
[local]host_name(config-ctx)# exit
[local]host_name(config)#
```

g) Enter the Ethernet Port Configuration mode:

```bash
[local]host_name(config)# port ethernet slot#/port#
```

h) Bind the port to the interface that you created in step 7b. Binding associates the port and all of its settings to the interface. Enter the following command:

```bash
{local}host_name(config-port-slot#/port#)# bind interface interface_name local
```

```bash
{local}host_name(config-port-slot#/port#)# no shutdown
```

interface_name is the name of the interface that you configured in *step 7b*.

i) Specify which Ethernet media you are using. Enter the following:

```bash
{local}host_name(config-port-slot#/port#)# media [ rj45 | sfp ]
```

The SPIO is equipped with dual RJ-45 and dual SFP interfaces. The RJ-45 interfaces connect the system to the management network with CAT3 or CAT5 Ethernet cable. The SFP interfaces connect the system to the management network with 1000Base-SX optical fiber cable.

j) Configure the port speed, if needed, by entering the following command:

```bash
medium { auto | speed { 10 | 100 | 1000 | 10000 } duplex { full | half } }
```
k) Exit the Ethernet Interface Configuration mode by entering the command:

```
[local] host_name(config-port-slot#/port#)# exit
[local] host_name(config)#
```

Important See below for instructions on configuring the SPIO management interface with a second IP address.

Configuring the System for Remote Access

Configure the system for remote access. An administrative user may access the system from a remote location over a local area network (LAN) or wide area network (WAN):

- Telnet
- Secure Shell (SSH)
- File Transfer Protocol (FTP) (secured or unsecured)
- Trivial File Transfer Protocol (TFTP)

Important If there are two simultaneous telnet sessions, and one administrator deletes the context into which the other administrator is logged, the administrator in the deleted context will not be automatically kicked into the local context. Although the deleted context will still appear in the CLI prompt, context specific commands will generate errors.

Important For maximum security, use SSH v2.

Step 1

Enter the context configuration mode by entering the following command:

```
[local] host_name(config)# context local
[local] host_name(config-ctx)#
```

Step 2

Configure the system to allow Telnet access, if desired:

```
[local] host_name(config-ctx)# server telnetd
```

Important For maximum system security, do not enable telnet.

Step 3

Configure the system to allow SSH access:

```
[local] host_name(config-ctx)# ssh generate key [ type { v1-rsa | v2-rsa | v2-dsa } ]
```

Important v2-rsa is the recommended key type.
Important In StarOS 19.2 and higher, the v1-rsa keyword has been removed from and the v2-dsa keyword has been concealed within the Context Configuration mode ssh generate CLI command. A keyword that was supported in a previous release may be concealed in subsequent releases. StarOS continues to parse concealed keywords in existing scripts and configuration files created in a previous release. But the concealed keyword no longer appears in the command syntax for use in new scripts or configuration files. Entering a question mark (?) will not display a concealed keyword as part of the Help text. A removed keyword generates an error message when parsed.

Step 4 Configure the system to support SFTP:
[local]host_name(config-ctx)# server sshd
[local]host_name(config-sshd)# subsystem sftp
[local]host_name(config-sshd)# exit

For additional information about SSH, see Configuring SSH Options, on page 24.

Step 5 Configure the system to allow FTP access, if desired, by entering the following command:
[local]host_name(config-ctx)# server ftpd

For maximum system security, do not enable FTP.

Step 6 Exit the configuration mode by entering the following command:
[local]host_name(config-ctx)# end
[local]host_name#

Step 7 Verify the configuration by entering the following command:
[local]host_name# show configuration

The CLI output should be similar to the sample output:

```
context local
    interface interface_name
        ip address ipaddress subnetmask
        exit
    subscriber default
        exit
    administrator admin_name password admin_password
    no server telnetd
    no server ftpd
    ssh generate key
    server sshd
    subsystem sftp
    exit
port ethernet 24/1
    bind interface interface_name local
    exit
port ethernet 24/1
    no shutdown
    exit
snmp engine-id local 800007e580ed826c191ded2d3d
end
```

Step 8 Verify the configuration of the IP routes by entering the following command:
[local]host_name# show ip route
The CLI output should be similar to the sample output:

```
** indicates the Best or Used route.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>*0.0.0.0/0</td>
<td>ipaddress</td>
<td>static</td>
<td>1</td>
<td>0</td>
<td>spio1</td>
</tr>
<tr>
<td>*network</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td>spio1</td>
</tr>
</tbody>
</table>
```

Step 9 Verify the interface binding by entering the following command:

```
[local]host_name# show ip interface name interface_name
```

`interface_name` is the name of the interface that was configured in step 7b. The CLI output should be similar to the sample output:

```
Intf Name: spio1
Intf Type: Broadcast
Description: 
IP State: UP (Bound to 24/1 untagged, ifIndex 402718721)
IP Address: ipaddress
Subnet Mask: subnetmask
Bcast Address: bcastaddress
MTU: 1500
Resoln Type: ARP ARP timeout: 3600 secs
L3 monitor LC-port switchover: Disabled
Number of Secondary Addresses: 0
```

Step 10 Save your configuration as described in *Verifying and Saving Your Configuration*.

Configuring SSH Options

SSHv2 RSA is the only version of SSH supported under StarOS. Keywords previously supported for SSHv1 RSA and SSHv2 DSA have been removed from or concealed within the StarOS CLI.

Important

A keyword that was supported in a previous release may be concealed in subsequent releases. StarOS continues to parse concealed keywords in existing scripts and configuration files created in a previous release. But the concealed keyword no longer appears in the command syntax for use in new scripts or configuration files. Entering a question mark (?) will not display a concealed keyword as part of the Help text. Removed keywords generate an error message when parsed.

Version 1 of the SSH protocol is now obsolete due to security vulnerabilities. The `v1-rsa` keyword has been removed for the Context Configuration mode `ssh` command. Running a script or configuration that uses the SSHv1-RSA key returns an error message and generates an event log. The output of the error message is shown below:

```
CLI print failure Failure: SSH V1 contains multiple structural vulnerabilities and is no longer considered secure. Therefore we don't support v1-rsa SSH key any longer, please generate a new v2-rsa key to replace this old one.
```

If the system boots from a configuration that contains the `v1-rsa` key, you can expect a boot failure when logging in through SSH. The workaround is to log in via the Console port, re-generate a new ssh v2-rsa key, and configure server sshd. It will then be possible to log in via ssh.

The `v2-dsa` keyword is now concealed for the Context Configuration mode `ssh` command.

The `v1-rsa` keyword has been removed from the Exec mode `show ssh key` CLI command.
SSH Keys

Setting SSH Key Size

The Global Configuration mode ssh key-size CLI command configures the key size for SSH key generation for all contexts (RSA host key only).

Step 1
Enter the Global Configuration mode.

```
[local] host_name# configure
[local] host_name(config)#
```

Step 2
Specify the bitsize for SSH keys.

```
[local] host_name(config)# sshkey-size {2048 | 3072 | 4096 | 5120 | 6144 | 7168 | 9216 }
```

The default bitsize for SSH keys is 2048 bits.

Specifying SSH Encryption Ciphers

The SSH Configuration mode ciphers CLI command configures the cipher priority list in sshd for SSH symmetric encryption. It changes the cipher options for that context.

Step 1
Enter the SSH Configuration mode.

```
[local] host_name(config-ctx)# server sshd
```

Step 2
Specify the desired encryption algorithms.

```
[local] host_name(config-sshd)# ciphers algorithm
```

Notes:

- `algorithm` is a string of 1 through 511 alphanumeric characters that specifies the algorithm(s) to be used as a single string of comma-separated variables (no spaces) in priority order from those shown below:

 - `blowfish-cbc` – symmetric-key block cipher, Cipher Block Chaining, (CBC)
 - `3des-cbc` – Triple Data Encryption Standard, CBC
 - `aes128-cbc` – Advanced Encryption Standard (AES), 128-bit key size, CBC
 - `aes128-ctr` – AES, 128-bit key size, Counter-mode encryption (CTR)
 - `aes192-ctr` – AES, 192-bit key size, CTR
 - `aes256-ctr` – AES, 256-bit key size, CTR
 - `aes128-gcm@openssh.com` – AES, 128-bit key size, Galois Counter Mode [GCM], OpenSSH
 - `aes256-gcm@openssh.com` – AES, 256-bit key size, GCM, OpenSSH
chacha20-poly1305@openssh.com – ChaCha20 symmetric cipher, Poly1305 cryptographic Message Authentication Code [MAC], OpenSSH

The default string for *algorithm* is:

- blowfish-cbc, 3des-cbc, aes128-cbc, aes128-ctr, aes128-gcm@openssh.com,
- chacha20-poly1305@openssh.com

Step 3 Exit the SSH Configuration mode.

```
[local] host_name (config-sshd) # end
[local] host_name #
```

Generating SSH Keys

The **ssh generate** command generates a public/private key pair which is to be used by the SSH server. The **v1-rsa** keyword has been removed from and the **v2-dsa** keyword concealed within the **ssh generate** CLI command. The only keyword available for generating SSH keys is **v2-rsa**.

Important

The generated key pair remains in use until the command is issued again.

Step 1 Enter the context configuration mode:

```
[local] host_name (config) # context context_name
[local] host_name (config-ctx) #
```

Step 2 Generate an SSH key pair.

```
[local] host_name (config-ctx) # ssh generate key type v2-rsa
[local] host_name (config-ctx) #
```

Setting SSH Key Pair

The **ssh key** command sets the public/private key pair to be used by the system. The **v2-dsa** keyword is concealed in the **ssh key** command.

Specify the SSH key pair parameters.

```
[local] host_name (config-ctx) # ssh key data length octets type v2-rsa
```

Notes:

- *data* is the encrypted key expressed as an alphanumeric string of 1 through 1023 characters
- *length octets* is the length of the encrypted key in octets expressed as an integer from 0 through 65535
• **type** specifies the key type; **v2-rsa** is the only supported type.

Authorized SSH User Access

You must authorize users to access a StarOS context from a specific host with an SSH authentication-key pair.

Authorizing SSH User Access

The SSH Configuration mode **authorized-key** command grants user access to a context from a specified host.

Step 1

Go to the SSH Configuration mode.

```
[local]host_name(config-ctx)# server sshd
[local]host_name(config-sshd)#
```

Step 2

Specify administrative user access via the **authorized-key** command.

```
[local]host_name(config-sshd)# authorized-key username user_name host host_ip [ type { v2-dsa | v2-rsa } ]
```

Notes:

- **username user_name** specifies an existing StarOS administrator user name as having authorized keys for access to the sshd server. The **user_name** is expressed as an alphanumeric string of 1 through 255 characters. User names should have been previously created via the Context Configuration mode **administrator** command using the **nopassword** option to prevent bypassing of the sshd keys. Refer to the **System Settings** chapter for additional information on creating administrators.

- **host host_ip** specifies the IP address of an SS host having the authorization keys for this username. The IP address must be in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

- **type** specifies the key type; **v2-rsa** is the only supported type.

SSH User Login Authentication

StarOS authenticates SSH user login attempts via authorized-key/user-account pairings for the following scenarios:

- User tries to login with local context username through local context (VPN) interface with authorized-key configured on local context.

- User tries to login with non-local context username through non-local context interface with authorized-key configured on non-local context.
• User tries to login with local context username through non-local context interface with authorized-key configured on local context.
• User tries to login with non-local context username through local context interface with authorized-key configured on non-local context.

A failure to authenticate based on the current system configuration prevents the login and generates an error message.

StarOS does not permit users with different user IDs but having the same public SSH key to login to an unauthorized context. Authentication of the user takes into account the authorized-key/user-account pairing.

Configuring the Management Interface with a Second IP Address

If necessary, you can configure a second IP address on the SPIO management interface.

Step 1
Enter the configuration mode by entering the following command at the prompt:

```
[local]host_name# configure
[local]host_name(config)#
```

Step 2
Enter the following to enter the context configuration mode:

```
[local]host_name(config)# context local
[local]host-name(config-ctx)#
```

Step 3
Enter the interface slot number and port number by entering the following command:

```
[local]host_name(config-ctx)# 24/1
[local]host_name(config-if-eth)#
```

Step 4
Enter the secondary IP address and subnet mask by entering the following command:

```
[local]host_name(config-if-eth)# { ip | ipv } address ipaddress subnet_mask secondary
```

Step 5
Exit the configuration mode by entering the following command:

```
[local]host_name(config-if-eth)# end
```

Step 6
Confirm the interface IP addresses by entering the following command:

```
[local]host_name# show config context local
```

The CLI output should look similar to this example:

```
config
c
context local
interface interface_name
  ip address ipaddress subnetmask
  ip address ipaddress subnetmask secondary
#exit
```

Step 7
Save your configuration as described in *Verifying and Saving Your Configuration*.
System Settings

It is assumed that the procedures to initially configure the system as described in Getting Started have been completed.

Important

The commands used in the configuration examples in this section are the most likely-used commands and/or keyword options. In many cases, other optional commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information.

- Configuring a Second Management Interface, page 30
- Verifying and Saving Your Interface and Port Configuration, page 30
- Configuring System Timing, page 31
- Configuring Transmit Timing Source, page 35
- Enabling CLI Timestamping, page 37
- Configuring CLI Confirmation Prompts, page 37
- Configuring System Administrative Users, page 39
- Configuring TACACS+ for System Administrative Users, page 44
- Configuring a Chassis Key, page 47
- Configuring Virtual MAC Addresses, page 49
- Verifying Virtual MAC Address Configuration, page 50
- Configuring Packet Processing and Line Card Availability, page 50
- Configuring Line Card and SPIO Port Redundancy, page 52
- Configuring ASR 5000 Link Aggregation, page 56
- Configuring a Demux Card, page 64
- Configuring Flow Control on XGLCs, page 65
Configuring a Second Management Interface

Refer to Getting Started for instructions on configuring a system management interface on the Switch Processor Input/Output (SPIO) card. This section provides described how to configure a second management interface.

Use the following example to configure a second management interface:

```
configure
  context local
    interface interface_name
      ip address ipaddress subnetmask
      exit
    ip route 0.0.0.0 0.0.0.0 gw_address interface_name
      exit
    port ethernet slot#/port#
      bind interface interface_name local
      no shutdown
      media [rj45 | sfp]
    exit
end
```

Notes:

- For `port ethernet slot#`, use the actual chassis slot in which the SPIO is installed (slot number 24 or 25).
- Enter IP addresses using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- For `port ethernet port#`, use the physical port on the SPIO card that will be used. This is either port 1 or 2. Port 1 represents the top-most port (either RJ-45 or SFP).
- The SPIO is equipped with dual RJ-45 (copper) and dual SFP (optical fiber) interfaces. The RJ-45 interfaces connect the system to the management network with CAT3 or CAT5 Ethernet cable. The SFP interfaces connect the system to the management network with 1000Base-SX optical fiber cable.
- Option: In the Ethernet Port configuration mode, configure the port speed, if needed, by entering the `medium` command. Refer to the Command Line Interface Reference for a complete explanation of this command.
- In the `{ ip | ipv6 } route` command, other keyword options, instead of the gateway IP address, are available and include: `next-hop` IP address, `point-to-point`, and `tunnel`.

Verifying and Saving Your Interface and Port Configuration

Verify that your interface configuration settings are correct by entering the following command:

```
show ip interface
```

The output from this command should be similar to that shown below. In this example an interface named `mgmt2` was configured in the local context.

```
Intf Name:            mgmt2
Intf Type:            Broadcast
Description:          management2
VRF:                  None
IP State:             UP (Bound to 24/2)
IP Address:           192.168.100.3  Subnet Mask: 255.255.255.0
Bcast Address:        192.168.100.255  MTU: 1500
Resoln Type:          ARP  ARP timeout: 60 secs
```
L3 monitor LC-port switchover: Disabled
Number of Secondary Addresses: 0

Verify that the port configuration settings are correct by entering the following command:

```
show configuration port slot#/port#
```

slot# is the chassis slot number of the line card where the physical port resides. *slot#* is either 24 or 25. *port#* is the number of the port (either 1 or 2).

This *show* command produces an output similar to the one shown below. It displays the configuration of port 2 of the SPIO installed in chassis slot 24. In this example, the port is bound to an interface called *mgmt2*.

```
config
  port ethernet 24/2
    description management2
    no shutdown
    bind interface mgmt2 local
#exit
end
```

Save your configuration as described in *Verifying and Saving Your Configuration*.

Configuring System Timing

The system is equipped with a clock that supplies the timestamp for statistical counters, accounting records, logging, and event notification. After the initial configuration of the system clock, you can configure the system to communicate with one or more Network Time Protocol (NTP) server(s) to ensure that the clock is always accurate.

In the event of a power outage, the clock is maintained with an accuracy of +/- one minute per month for up to 10 years. This ensures that when power is restored, the system is ready to process sessions and generate accounting, log, and event data with accurate timestamps.

In addition to configuring the timing source, you must configure the system's time zone.

Setting the System Clock and Time Zone

Use the following command example to configure the system clock and time zone:

```
clock set date:time
configure
  clock timezone timezone [ local ]
end
```

Notes:

- Enter the date and time in the format YYYY:MM:DD:HH:mm or YYYY:MM:DD:HH:mm:ss.
- Refer to the online Help for the *clock timezone* command for a complete list of supported time zones.
- The optional *local* keyword indicates that the time zone specified is the local timezone.
- Daylight Savings Time is automatically adjusted for time zones supporting it.

Save your configuration as described in *Verifying and Saving Your Configuration*.
Verifying and Saving Your Clock and Time Zone Configuration

Enter the following command to verify that you configured the time and time zone correctly:

```
show clock
```

The output displays the date, time, and time zone that you configured.

Configuring Network Time Protocol Support

This section provides information and instructions for configuring the system to enable the use of the Network Time Protocol (NTP).

Important

Configure the system clock and time zone prior to implementing NTP support. This greatly reduces the time period that must be corrected by the NTP server.

Many of the services offered by the ASR 5x00 platform require accurate timekeeping derived through NTP. If the time reference(s) used by StarOS are not accurate, the services may be unreliable. For this reason it should be assumed that normal system operation requires that NTP be configured.

The system uses NTP to synchronize internal clocks on the chassis to external time sources (typically GPS NTP sources, or other Stratum 2 or 3 servers, switches or routers).

By default, NTP is not enabled externally and should be configured when the system is initially installed. When enabled, the active SMC will synchronize with external sources. If not enabled, the active SMC will use its local clock as a time source. In the event of an NTP server or network outage, an already running SMC will continue to use NTP to maintain time accuracy, but in a holdover mode.

All cards with CPUs synchronize to the active SMC internally. This occurs even if an external NTP server is not configured. In the event of a SMC switchover, all other cards will start synchronizing with the newly active SMC automatically.

The system should have:

- NTP enabled.
- NTP configured for use in the `local` context only. Use of other contexts (which can be specified in the enable configurable) will cause issues.
- NTP configured for at least three external NTP servers. With three or more servers, outliers and broken or misconfigured servers can be detected and excluded. Generally, the more servers the better (within reason).

Important

Do not configure any external NTP servers using the `prefer` keyword. The NTP clock selection algorithms already have the built-in ability to pick the best server. Use of `prefer` usually results in a poorer choice than NTP can determine for itself.
Important Do not change the `maxpoll`, `minpoll`, or `version` keyword settings unless instructed to do so by Cisco TAC.

Use the following example to configure the necessary NTP association parameters:

```plaintext
configure
  ntp
    enable
    server ip_address1
    server ip_address2
    server ip_address3
end
```

Notes:

• By default `context_name` is set to `local`. This is the recommended configuration.

• A number of options exist for the `server` command. Refer to the NTP Configuration Mode Commands chapter in the Command Line Interface Reference for more information.

• Enter the IP address of NTP servers using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

Important Configure the system with at least three (preferably four) NTP servers.

Save the configuration as described in Verifying and Saving Your Configuration.

Configuring NTP Servers with Local Sources

NTP can use network peers, local external clocks (such as GPS devices), or a local clock with no external source.

A local clock with no external source is usually a last-resort clock when no better clock is available. It is typically configured on a site's intermediate NTP server so that when a WAN network outage occurs, hosts within the site can continue to synchronize amongst themselves.

You can configure this in ntpd or on many commercially available NTP devices. This local clock should always have a high stratum number (8+) so that under normal conditions (when real sources are available) this local clock will not be used.

Using a Load Balancer

The NTP daemon and protocol assume that each configured server is running NTP. If a NTP client is configured to synchronize to a load balancer that relays and distributes packets to a set of real NTP servers, the load balancer may distribute those packets dynamically and confuse the NTP client. NTP packets are latency and jitter sensitive. Relaying them through a load balancer can confuse the NTP client and is not a supported practice.
Verifying the NTP Configuration

Verify the NTP configuration is correct. Enter the following command at the Exec mode prompt:

```bash
show ntp associations
```

The output displays information about all NTP servers. See the output below for an example deploying two NTP servers.

```
+----Peer Selection: ( ) - Rejected / No Response
| (x) - False Tick
| (.) - Excess
| (-) - Outlier
| (+) - Candidate
| (#) - Selected
| (*) - System Peer
| (o) - PPS Peer
```

<table>
<thead>
<tr>
<th>remote</th>
<th>refid</th>
<th>st</th>
<th>t</th>
<th>poll</th>
<th>reach</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.81.254.202</td>
<td>GPS.</td>
<td>1</td>
<td>160</td>
<td>1024</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22.516</td>
<td></td>
<td>0.019</td>
</tr>
</tbody>
</table>

The following table describes the parameters output by the `show ntp associations` command.

<table>
<thead>
<tr>
<th>Column Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote</td>
<td>List of the current NTP servers. One of these characters precedes each IP address to show the server's current condition:</td>
</tr>
<tr>
<td></td>
<td>• () Rejected/No response</td>
</tr>
<tr>
<td></td>
<td>• X False tick</td>
</tr>
<tr>
<td></td>
<td>• . Excess</td>
</tr>
<tr>
<td></td>
<td>• - Outlier</td>
</tr>
<tr>
<td></td>
<td>• + Candidate</td>
</tr>
<tr>
<td></td>
<td>• # Selected</td>
</tr>
<tr>
<td></td>
<td>• * System peer</td>
</tr>
<tr>
<td></td>
<td>• (o) PPS peer</td>
</tr>
<tr>
<td>refid</td>
<td>Last reported NTP reference to which the server is synchronizing.</td>
</tr>
<tr>
<td>st</td>
<td>NTP server stratum level.</td>
</tr>
<tr>
<td>t</td>
<td>Communication type: broadcast, multicast, etc.</td>
</tr>
<tr>
<td>when</td>
<td>Number of seconds since the last contact.</td>
</tr>
<tr>
<td>poll</td>
<td>Polling interval between the system and the NTP server.</td>
</tr>
<tr>
<td>reach</td>
<td>Octal value of the reachability shift register indicating which responses were received for the previous eight polls to this NTP server.</td>
</tr>
</tbody>
</table>
Configuring Transmit Timing Source

This feature is only for application services that use SDH or SONET over optical (OLC/OLC2) or channelized (CLC/CLC2) line cards.

In general, the SPIO automatically provides clocking based on the system clock. However, some application services that use SDH or SONET require greater clocking precision to ensure synchronous transmission. The timing source options include Building Integrated Timing Supply (BITS) and line-timing.

BITS-timing accepts external clock signals from a BITS source that relies on Stratum 1 or GPS timing signals for high accuracy.

Line-timing recovers the transmit timing from a specified port on an OLC/OLC2 or CLC/CLC2. This method of timing requires that the SPIO be equipped with the optional Stratum 3 clock module.

The timing is then distributed via the SPIO to all line cards in the chassis.

Important

To use BITS-timing, the SPIO card must include the optional BITS E1 BNC or T1 (DS1)3-pin timing interface. For additional interface information, refer to the *ASR 5000 Installation Guide*.

You can enable and configure up to four timing sources: two BITS-timing and two line-timing sources. Having more than one timing source assures redundancy. When enabled BITS-timing always takes priority over line-timing for system clocking.

Configure BITS as the Timing Source

Use the following example to configure BITS as the timing source:

```bash
configure
  port bits slot#/port#
    mode {e1|t1} framing type
    no shutdown
  end
end
```

For additional information, refer to the *BITS Port Configuration Mode Commands* chapter of the *Command Line Interface Reference*.

Save the configuration according to the steps in *Verifying and Saving Your Configuration*.
Configure Line-timing as the Timing Source

Use the following example to configure line-timing as the timing source:

```bash
configure
  port atm slot#/port#
  line-timing
  no shutdown
  exit
  port bits slot#/port#
  recover line1 linecard_slot #
  shutdown
  end
```

For additional information, refer to the *ATM Port Configuration Mode Commands (OLC)* and *Channelized Port Configuration Mode Commands (CLC)* chapters of the *Command Line Interface Reference*. Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configure Both BITS and Line as Timing Sources

Use the following example to configure both BITS and line-timing as the timing sources:

```bash
configure
  card CLC_slot#
  framing mode
  exit
  port atm OLC_slot#/port#
  line-timing
  no shutdown
  exit
  port channelized CLC_slot#/port#
  line-timing
  no shutdown
  exit
  port bits slot#/port#
  recover line1 LC_slot#/port#
  recover line2 LC_slot#/port#
  no shutdown
  end
```

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Confirming the Timing Source

Use the `show timing` command, documented in the *Exec Mode Commands* chapter of the *Command Line Interface Reference*, to confirm that the timing source has been configured correctly.
Enabling CLI Timestamping

To display a timestamp (date and time) for every command that is executed on the CLI, enter the following command at the root prompt for the Exec mode:

```
timestamps
```

The date and time appear immediately after you execute the command.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring CLI Confirmation Prompts

A number of Exec mode and Global Configuration mode commands prompt users for a confirmation (Are you sure? [Yes|No]:) prior to executing the command.

This section describes configuration settings that:

- Automatically confirm commands for the current CLI session (Exec mode) or for all CLI sessions and users (Global Configuration mode).
- Requires confirmation prompting only for the Exec mode `configure` command and `autoconfirm` command.
- Selectively requires confirmation of Exec mode configuration commands.

Enabling Automatic Confirmation

You can use the `autoconfirm` command to disable confirmation prompting for configuration commands. The `autoconfirm` command is available in the Exec mode and Global Configuration mode. Enabling the autoconfirm feature automatically supplies a "Yes" response to configuration command prompts, including for critical commands such as `reload` and `shutdown`. By default autoconfirm is disabled.

In the Exec mode, autoconfirm applies only to the current interactive CLI session.

In the Global Configuration mode, autoconfirm applies to all CLI sessions for all CLI users:

```
configure
    autoconfirm
end
```

To disable autoconfirm once it has been enabled, use the `no autoconfirm` command.

Important

If commandguard is enabled, autoconfirm will disable commandguard.

Autoconfirm is intended as an "ease-of-use" feature. It presumes that the answer to "Are you sure? [Y/N]" prompts will be "Yes", and skips the prompt. Its use implies that the user is an expert who does not need these "safety-net" prompts.
Requiring Confirmation for autoconfirm and configure Commands

You can require confirmation prompting for the `autoconfirm` (Exec mode and Global Configuration mode) and `configure` (Exec mode) commands via the Global Configuration mode `commandguard` command.

Important

If autoconfirm is enabled, commandguard will not take effect until autoconfirm is disabled in both Exec and Global Configuration modes.

The following command sequence enables the commandguard feature:
```
configure
  commandguard
end
```

With commandguard enabled the confirmation prompt appears as shown in the example below:
```
[local]host_name(config) #
```

To disable commandguard once it has been enabled, use the `no commandguard` command.

The status of `commandguard` is output in `show configuration` commands.

Requiring Confirmation for Specific Exec Mode Commands

A keyword for the `commandguard` command allows you to apply mandatory prompting for specified categories of Exec mode configuration commands, even when autoconfirm is enabled.

The command syntax is as follows:
```
configure
  commandguard exec-command exec_mode_category
end
```

Notes:

- `exec-command exec_mode_category` specifies one of the following categories of Exec mode configuration commands:
 - card
 - clear
 - copy
 - debug
 - delete
 - filesystem
 - hd
 - reload
 - rename
 - shutdown
You can enter multiple `commandguard exec-command exec_mode_category` commands.

• All Exec mode commands beginning with the specified category word will prompt for confirmation, regardless if autoconfirm is enabled.

• You can turn off confirmation prompting for a specific category using `no commandguard exec-command exec_mode_category`.

• If autoconfirm is overridden by `commandguard exec-command` for an Exec mode command, StarOS displays an informational message indicating why autoconfirm is being overridden when you attempt to execute the command.

• Users may selectively override confirmation prompting for any Exec mode configuration command that supports the `-noconfirm` keyword.

For example, with `commandguard exec-command card` enabled, the confirmation prompt appears as shown below:

```
[local]host_name# card busy-out 1
Info: commandguard prevents autoconfirm of this command
Are you sure? [Yes|No]: yes
[local]host_name#
```

Configuring System Administrative Users

Getting Started describes how to configure a context-level security administrator for the system.

This section provides instructions for configuring additional administrative users having the following privileges:

• **Security Administrators**: have read-write privileges and can execute all CLI commands, including those available to Administrators, Operators, and Inspectors.

• **Administrators**: have read-write privileges and can execute any command in the CLI except for a few security-related commands that can only be configured by Security Administrators. Administrators can configure or modify system settings and execute all system commands, including those available to the Operators and Inspectors.

• **Operators**: have read-only privileges to a larger subset of the Exec Mode commands. They can execute all commands that are part of the inspector mode, plus some system monitoring, statistic, and fault management functions. Operators do not have the ability to enter the Config Mode.

• **Inspectors**: are limited to a few read-only Exec Mode commands. The bulk of these are `show` commands for viewing a variety of statistics and conditions. An Inspector cannot execute `show configuration` commands and does not have the privilege to enter the Config Mode.

Configuration instructions are categorized according to the type of administrative user: context-level or local-user.

Important

For information on the differences between these user privileges and types, refer to *Getting Started*.
If your deployment does not require the configuration of additional administrative users, proceed to the Configuring Packet Processing and Line Card Availability section.

Configuring Context-level Administrative Users

This user type is configured at the context-level and relies on the AAA subsystems for validating user names and passwords during login. This is true for both administrative user accounts configured locally through a configuration file or on an external RADIUS or TACACS+ server. Passwords for these user types are assigned once and are accessible in the configuration file.

This section contains information and instructions for configuring context-level administrative user types.

Configuring Context-level Security Administrators

Use the example below to configure additional security administrators:

```
configure
c   context local
       administrator user_name   { [ encrypted ] | nopassword | password  password  }
end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the *Command Line Interface Reference* for more information about the `administrator` command.
- The `nopassword` option allows you to create an administrator without an associated password. Enable this option when using ssh public keys (*authorized key* command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an administrator password to gain access to the user account.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configuring Context-level Administrators

Use the example below to configure context-level administrators:

```
configure
   context local
       config-administrator user_name   { [ encrypted ] | nopassword | password  password  }
end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the *Command Line Interface Reference* for more information about the `config-administrator` command.
- The `nopassword` option allows you to create a config-administrator without an associated password. Enable this option when using ssh public keys (*authorized key* command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using a config-administrator password to gain access to the user account.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.
Configuring Context-level Operators

Use the example below to configure context-level operators:

```bash
configure
color local
    operator user_name { [ encrypted | nopassword | password password }
end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the `operator` command.

- The `nopassword` option allows you to create an operator without an associated password. Enable this option when using ssh public keys (authorized key command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an operator password to gain access to the user account.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring Context-level Inspectors

Use the example below to configure context-level inspectors:

```bash
configure
color local
    inspector user_name { [ encrypted | nopassword | password password }
end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the `inspector` command.

- The `nopassword` option allows you to create an inspector without an associated password. Enable this option when using ssh public keys (authorized key command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an inspector password to gain access to the user account.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying Context-level Administrative User Configuration

Verify that the configuration was successful by entering the following command:

```bash
show configuration context local
```

This command displays all of the configuration parameters you modified within the Local context during this session. The following displays sample output for this command. In this example, a security administrator named `testadmin` was configured.

```bash
config
color local
    interface mgmt1
```
Configuring Local-User Administrative Users

The local user type supports ANSI T1.276-2003 password security protection. Local-user account information, such as passwords, password history, and lockout states, is maintained in /flash. This information is saved immediately in a separate local user database subject to AAA based authentication and is not used by the rest of the system. As such, configured local-user accounts are not visible with the rest of the system configuration.

Use the example below to configure local-user administrative users:

```
configure
    local-user username name
end
```

Notes:
- Additional keyword options are available identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the `local-user username` command.

Verifying Local-User Configuration

Verify that the configuration was successful by entering the following command:

```
show local-user verbose
```

This command displays information on configured local-user administrative users. A sample output for this command appears below. In this example, a local-user named SAUser was configured.

```
Username: SAUser
Auth Level: secadmin
Last Login: Never
Login Failures: 0
Password Expired: Yes
Locked: No
Suspended: No
Lockout on Pw Aging: Yes
Lockout on Login Fail: Yes
```

Updating Local-User Database

Update the local-user (administrative) configuration by running the following Exec mode command. This command should be run immediately after creating, removing or editing administrative users.

```
update local-user database
```
Restricting User Access to a Specified Root Directory

By default an admin user who has FTP/SFTP access can access and modify any files under the /mnt/user/ directory. Access is granted on an "all-or-nothing" basis to the following directories: /flash, /cdrom, /hd-raid, /records, /usb1 and /usb2.

An administrator or configuration administrator can create a list of SFTP subsystems with a file directory and access privilege. When a local user is created, the administrator assigns an SFTP subsystem. If the user's authorization level is not security admin or admin, the user can only access the subsystem with read-only privilege. This directory is used as the user's root directory. The information is set as environmental variables passed to the openssh sftp-server.

You must create the SFTP root directory before associating it with local users, administrators and config administrators. You can create multiple SFTP directories; each directory can be assigned to one or more users.

Configuring an SFTP root Directory

The `subsystem sftp` command allows the assignment of an SFTP root directory and associated access privilege level.

```
configure context local server sshd
  subsystem sftp  [ name sftp_name root-dir pathname mode { read-only | readwrite } ]
```

Notes:
- `sftp_name` is an alphanumeric string that uniquely identifies this subsystem.
- `pathname` specifies the root directory to which SFTP files can be transferred. Options include:
 - */hd-raid/records/cdr
 - */flash

Associating an SFTP root Directory with a Local User

The `local-user username` command allows an administrator to associate an SFTP root directory with a specified username.

```
configure
  local-user username user_name authorization-level level ftp sftp-server sftp_name password password
  exit
```

Associating an SFTP root Directory with an Administrator

The `administrator` command allows an administrator to associate an SFTP root directory for a specified administrator.

```
configure
  context local
    administrator user_name password password ftp sftp-server sftp_name
    exit
```
Associating an SFTP root Directory with a Config Administrator

The config-administrator command allows an administrator to associate an SFTP root directory with a specified configuration administrator.

```
configure
  context local
    config-administrator user_name password password ftp sftp-server sftp_name
  exit
```

Configuring TACACS+ for System Administrative Users

This section describes TACACS+ (Terminal Access Controller Access Control System+) AAA (Authentication Authorization and Accounting) service functionality and configuration on the ASR 5x00.

Operation

TACACS+ is a secure, encrypted protocol. By remotely accessing TACACS+ servers that are provisioned with the administrative user account database, the ASR 5000 can provide TACACS+ AAA services for system administrative users. TACACS+ is an enhanced version of the TACACS protocol that uses TCP instead of UDP.

The ASR 5x00 system serves as the TACACS+ Network Access Server (NAS). As the NAS the system requests TACACS+ AAA services on behalf of authorized system administrative users. For the authentication to succeed, the TACACS+ server must be in the same local context and network accessed by the system.

The system supports TACACS+ multiple-connection mode. In multiple-connection mode, a separate and private TCP connection to the TACACS+ server is opened and maintained for each session. When the TACACS+ session ends, the connection to the server is terminated.

TACACS+ is a system-wide function on the ASR 5x00. TACACS+ AAA service configuration is performed in TACACS Configuration Mode. Enabling the TACACS+ function is performed in the Global Configuration Mode. The system supports the configuration of up to three TACACS+ servers.

Once configured and enabled on the system, TACACS+ authentication is attempted first. By default, if TACACS+ authentication fails, the system then attempts to authenticate the user using non-TACACS+ AAA services, such as RADIUS.

Important

For releases after 15.0 MR4, TACACS+ accounting (CLI event logging) will not be generated for Lawful Intercept users with privilege level set to 15 and 13.

User Account Requirements

Before configuring TACACS+ AAA services, note the following TACACS+ server and StarOS user account provisioning requirements.
TACACS+ User Account Requirements

The TACACS+ server must be provisioned with the following TACACS+ user account information:

- A list of known administrative users.
- The plain-text or encrypted password for each user.
- The name of the group to which each user belongs.
- A list of user groups.
- TACACS+ privilege levels and commands that are allowed/denied for each group.

Important

TACACS+ privilege levels are stored as Attribute Value Pairs (AVPs) in the network's TACACS+ server database. Users are restricted to the set of commands associated with their privilege level. A mapping of TACACS+ privilege levels to ASR 5x00 CLI administrative roles and responsibilities is provided in the table below.

To display the default mapping of TACACS+ privilege levels to CLI administrative roles, run the Exec mode show tacacs priv-lvl command. The default mapping varies based on the StarOS release.

TACACS+ priv-levels can be reconfigured from their default StarOS authorization values via the TACACS+ Configuration mode priv-lvl and user-id commands. For additional information, see the TACACS+ Configuration Mode Commands chapter of the Command Line Interface Reference.

StarOS User Account Requirements

TACACS+ users who are allowed administrative access to the system must have the following user account information defined in StarOS:

- username
- password
- administrative role and privileges

Important

For instructions on defining users and administrative privileges on the system, refer to Configuring System Administrative Users.

Configuring TACACS+ AAA Services

This section provides an example of how to configure TACACS+ AAA services for administrative users on the system.
When configuring TACACS+ AAA services for the first time, the administrative user must use non-TACACS+ services to log into the ASR 5x00. Failure to do so will result in the TACACS+ user being denied access to the system.

Log in to the system using non-TACACS+ services.

Use the example below to configure TACACS+ AAA services on the system:

```
configure
tacacsmode
server priority priority_number ip-address tacacs+srvr_ip_address
end
```

Note:

- **server priority priority_number**: Must be an integer from 1 to 3 (releases prior to 18.2) or 1 through 4 (releases 18.2+), that specifies the order in which this TACACS+ server will be tried for TACACS+ authentication. 1 is the highest priority, and 3 or 4 is the lowest. The priority number corresponds to a configured TACACS+ server.
- **ip-address**: Must be the IPv4 address of a valid TACACS+ server that will be used for authenticating administrative users accessing this system via TACACS+ AAA services.
- By default, the TACACS+ configuration will provide authentication, authorization, and accounting services.

Enable TACACS+ on the ASR 5x00:

```
configure
  aaa tacacs+
end
```

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

For complete information on all TACACS+ Configuration Mode commands and options, refer to the TACACS Configuration Mode Commands chapter of the Command Line Reference.

Configuring TACACS+ for Non-local VPN Authentication

By default TACACS+ authentication is associated with login to the local context. TACACS+ authentication can also be configured for non-local context VPN logins. TACACS+ must configured and enabled with the option described below.

A **stop** keyword option is available for the TACACS+ Configuration mode on-unknown-user command. If TACACS+ is enabled with the command-keyword option, the VPN context name into which the user is attempting a login must match the VPN name specified in the username string. If the context name does not match, the login fails and exits out.

Without this option the login sequence will attempt to authenticate in another context via an alternative login method. For example, without the **on-unknown-user stop** configuration, an admin account could log into
the local context via the non-local VPN context. However, with the **on-unknown-user stop** configuration, the local context login would not be attempted and the admin account login authentication would fail.

```
configure
tacacs mode
  on-unknown-user stop &quest;
end
```

Verifying the TACACS+ Configuration

This section describes how to verify the TACACS+ configuration:

Log out of the system CLI, then log back in using TACACS+ services.

Important

Once TACACS+ AAA services are configured and enabled on the ASR 5x00, the system first will try to authenticate the administrative user via TACACS+ AAA services. By default, if TACACS+ authentication fails, the system then continues with authentication using non-TACACS+ AAA services.

At the Exec Mode prompt, enter the following command:

```
show tacacs [client | priv-lvl | session | summary ]
```

The output of the `show tacacs` commands provides summary information for each active TACACS+ session such as username, login time, login status, current session state and privilege level. Optional filter keywords provide additional information.

An example of this command's output is provided below. In this example, a system administrative user named `asradmin` has successfully logged in to the system via TACACS+ AAA services.

```
active session #1:
  login username : asradmin
  login tty : /dev/pts/1
  login server priority : 1
  current login status : pass
  current session state : user login complete
  current privilege level : 15
  remote client application : ssh
  remote client ip address : 111.11.11.11
  last server reply status : -1
  total TACACS+ sessions : 1
```

Important

For details on all TACACS+ maintenance commands, refer to the *Command Line Interface Reference*.

Configuring a Chassis Key

A chassis key should be configured for each system. This key is used to decrypt encrypted passwords found in configuration files.

Overview

The chassis key is used to encrypt and decrypt encrypted passwords in the configuration file. If two or more chassis are configured with the same chassis key value, the encrypted passwords can be decrypted by any of
the chassis sharing the same chassis key value. As a corollary to this, a given chassis key value will not be able to decrypt passwords that were encrypted with a different chassis key value.

The chassis key is used to generate the chassis ID which is stored in a file and used as the master key for protecting sensitive data (such as passwords and secrets) in configuration files.

For release 15.0 and higher, the chassis ID is an SHA256 hash of the chassis key. The chassis key can be set by users through a CLI command or via the Quick Setup Wizard. If the chassis ID does not exist, a local MAC address is used to generate the chassis ID.

For release 19.2 and higher, the user must explicitly set the chassis key through the Quick Setup Wizard or CLI command. If it is not set, a default chassis ID using the local MAC address will not be generated. In the absence of a chassis key (and hence the chassis ID), sensitive data will not appear in a saved configuration file. The chassis ID is the SHA256 hash (encoded in base36 format) of the user entered chassis key plus a 32-byte secure random number. This assures that the chassis key and chassis ID have 32-byte entropy for key security.

If a chassis ID is not available encryption and decryption for sensitive data in configuration files will not work.

Configuring a New Chassis Key Value

CLI Commands

| Important | Only a user with Security Administrator privilege can execute the **chassis key value** and **chassis keycheck** commands. |

Use the Exec mode **chassis key value key_string** command to enter a new chassis key.

The **key_string** is an alphanumeric string of 1 through 16 characters. The chassis key is stored as a one-way encrypted value, much like a password. For this reason, the chassis key value is never displayed in plain-text form.

The Exec mode **chassis keycheck key_string** command generates a one-way encrypted key value based on the entered **key_string**. The generated encrypted key value is compared against the encrypted key value of the previously entered chassis key value. If the encrypted values match, the command succeeds and keycheck passes. If the comparison fails, a message is displayed indicating that the key check has failed. If the default chassis key (MAC address) is currently being used, this key check will always fail since there will be no chassis key value to compare against.

Use the **chassis keycheck** command to verify whether multiple chassis share the same chassis key value.

| Important | For release 19.2 and higher, in the absence of an existing chassis ID file the **chassis keycheck** command is hidden. |

For additional information, refer to the Exec Mode Commands chapter in the Command Line Interface Reference.

Beginning with Release 15.0, the chassis ID will be generated from the chassis key using a more secure algorithm. The resulting 44-character chassis ID will be stored in the same file.
Release 14 and Release 15 chassis IDs will be in different formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis key is reset in Release 15 through the Quick Setup Wizard or CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release 14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.

For release 19.2 and higher, in a chassis where the chassis ID file already exists nothing is changed. However, if the chassis ID file is lost in both management cards, all existing configuration files become invalid. Entering a new chassis key that is the same as the original value will not resolve the issue because of the new method used to generate the chassis ID.

⚠️ Caution ⚠️

After setting a new chassis key, you must save the configuration before initiating a reload. See the Verifying and Saving Your Configuration chapter.

Quick Setup Wizard

The Quick Setup Wizard prompts the user to enter a chassis key value. If a chassis key value is not entered a default chassis is generated using the chassis' MAC address.

To run the Quick Setup Wizard, execute the Exec mode `setup` command.

```
[local]host_name# setup
1. Do you wish to continue with the Quick Setup Wizard[yes/no]: y
2. Enable basic configuration[yes/no]: y
3. Change chassis key value[yes/no]: y
4. New chassis key value: key_string
```

Configuring Virtual MAC Addresses

When you enable virtual MAC addressing, a single block of 256 addresses is added to the system configuration. The MAC addresses assigned and stored in the EPROM on Ethernet Line Cards are disregarded; MAC addresses for all ports on all Ethernet Line Cards are assigned from the specified block of virtual MAC addresses. This does not affect the MAC addresses on SPIO cards.

As in normal MAC address assignments, the corresponding ports on the upper and lower line cards have the same assigned MAC address. When you enable virtual MAC addressing, these addresses are all assigned from the specified block of 256 addresses.

If you enable virtual MAC addressing and remove a line card from the system, MAC addresses do not have to be reassigned because the MAC addresses in use do not belong to any line card. Therefore, if a line card is removed from the system, there is no possibility that any port on a line card in the system is using any of the MAC addresses that belong to the removed line card.

Use the following example to configure virtual MAC addressing:

```
configure
    port mac-address virtual-base-address MAC_Address
end
```
Notes:

- **MAC Address** is the first address of a block of 256 MAC addresses. The system has reserved 65536 MAC addresses (00:05:47:FF:00:00 to 00:05:47:FF:FF:FF) for use by customers. This range allows you to create 256 address blocks each containing 256 MAC addresses (for example, 00:05:47:FF:00:00, 00:05:47:FF:01:00, 00:05:47:FF:02:00, 00:05:47:FF:03:00, 00:05:47:FF:04:00, etc.).

Caution

This configuration requires a valid block of unique MAC addresses that are not used anywhere else. The use of non-unique MAC addresses can degrade and impair the operation of your network.

Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Verifying Virtual MAC Address Configuration

Verify port information by entering the following command

```
show port info slot#/port#
```

slot# is the chassis slot number of the line card on which the physical port resides. *port#* is the physical port on the line card.

The output of this command should be similar to that shown in the example below.

```
Port: 36/8
  Port Type : 1000 Ethernet
  Role : Service Port
  Description : (None Set)
  Controlled By Card : 4 (Packet Services Card 2)
  Redundancy Mode : Port Mode
  Framing Mode : Unspecified
  Redundant With : 20/8
  Preferred Port : Non-Revertive
  Physical ifIndex : 604504064
  Administrative State : Enabled
  Configured Duplex : Auto
  Configured Speed : Auto
  MAC Address : 00-05-47-02-04-3F
  Boxer Interface TAP : None
  Link State : Up
  Link Duplex : Full
  Link Speed : 100 Mb
  Flow Control : Disabled
  Link Aggregation Group : None
  Logical ifIndex : 604504065
  Operational State : Down, Standby
  SFP Module : 1000Base-SX
```

Configuring Packet Processing and Line Card Availability

As discussed in the *Understanding the System Boot Process* section of *System Operation and Configuration*, when the system boots up, all installed packet processing cards are placed into standby mode. You must activate some of these cards in order to configure and use them for session processing. Others may remain in standby mode to serve as redundant components.

When you activate an application card, the line card behind it shows up as attached and in a Ready state. Only when you bind a logical interface to one of the ports of the line card pair will the line cards assume an active and standby state.
This section provides instructions for activating packet processing cards and specifying their redundancy.

Enter the following command to check the application card's operational status:

```
show card table
```

This command lists the packet processing cards and RCCs installed in the system by their slot number, their operational status, whether or not the card is a single point of failure (SPOF), and its attachment to a line card.

Check the line card operational status by entering the following command:

```
show linecard table
```

This command lists the line cards installed in the system by their slot number, their operational status, whether or not the card is a single point of failure (SPOF), and its attachment to a packet processing card or SPC/SMC.

Use the following example to configure packet processing card and line card availability:

```
configure
card slot#
    mode active { pac | psc }
exit
card-standby-priority slot#_p1 slot#_p2 ... slot#_pn
end
```

Notes:

- When activating cards, remember to keep at least one card in standby mode for redundancy.
- Repeat for every other packet processing card in the chassis that you wish to activate.
- `card-standby-priority` specifies the order in which the system will use standby packet processing cards as redundant components.
 - By default, the system uses the standby packet processing card in the highest-numbered slot (slot 16) as the first card to use for redundancy. This step is required if there are processing cards installed in the system that are in standby mode, and you want to configure the system to use an order other than the default.
 - `slot#_p1` is the chassis slot number of the standby packet processing card that you want to use first as a redundant component. `slot#_p2` is the chassis slot number of the standby processing card that you want to use second as a redundant component. `slot#_pn` is the chassis slot number of the standby packet processing card that you want to use as the last redundant component.

For example, a system has three packet processing cards that are in standby mode. They are installed in chassis slots 14, 15 and 16. If an active processing card fails, and you want the packet processing card in slot 15 to replace the failed packet processing card followed by the packet processing card in slot 14, enter the following command:

```
card-standby-priority 15 14
```

In the unlikely event that the packet processing cards in chassis slots 15 and 14 are unavailable, the system automatically uses the remaining standby packet processing card in slot 16 for redundancy.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.
Verifying Packet Processing and Line Card Configurations

Verify that the configuration was successful. Depending on the type of card(s) you activated, enter either or both of the following commands:

```
show card table
show linecard table
```

Any card that you made active should now have an operational status of *Active*.

Configuring Line Card and SPIO Port Redundancy

Port redundancy for line cards and SPIOs provides an added level of redundancy that minimizes the impact of network failures that occur external to the system. Examples include switch or router port failures, disconnected or cut cables, or other external faults that cause a link down error.

Caution

To ensure that system line card and port-level redundancy mechanisms function properly, disable the Spanning Tree protocol on devices connected directly to any system port. Failure to turn off the Spanning Tree protocol may result in failures in the redundancy mechanisms or service outage.

By default, the system provides port-level redundancy when a failure occurs, or you issue the `port switch to` command. In this mode, the ports on active and standby line cards (for example, 17/1 and 33/1) have the same MAC address, but since only one of these ports may be active at any one time there are no conflicts. This eliminates the need to transfer MAC addresses and send gratuitous ARPs in port failover situations. Instead, for Ethernet ports, three Ethernet broadcast packets containing the source MAC address are sent so that the external network equipment (switch, bridge, or other device) can re-learn the information after the topology change. However, if an line card removal is detected, the system sends out gratuitous ARPs to the network because of the MAC address change that occurred on the specific port.

With port redundancy, if a failover occurs, only the specific port(s) become active. For example; if port 17/1 fails, then port 33/1 becomes active, while all other active ports on the line card in slot 17 remain in the same active state. In port failover situations, use the `show port table` or `show linecard table` commands to check that ports are active on both cards and that both cards are active.

Take care when administratively disabling a port that is one of a redundant pair. A redundant pair comprises both the active and standby ports—for example 17/1 and 33/1. If 17/1 is active, administratively disabling 17/1 through the CLI does not make 33/1 active. It disables both 17/1 and 33/1 because an action on one port has the same effect on both. Refer to *Enabling Line Card and SPIO Redundancy* below, and *Creating and Configuring Ethernet Interfaces and Ports* in *System Interface and Port Configuration Procedures*.

If card-level redundancy is initiated, there is no port-level redundancy in a line card or SPIO failover. The standby line card or SPIO becomes active and all ports on that card become active. With line cards, the system automatically copies all the MAC addresses and configuration parameters used by the failed line card to its redundant counterpart. The ports on SPIOs keep their original MAC addresses, and the system automatically copies the failed SPIO's configuration parameters to its redundant counterpart. The packet processing card automatically re-routes to its redundant line card.

With the SPIO cards, any time there is a port or card switch gratuitous ARPs are sent.
Important Be aware that in the case of a system with only one SMC and two SPIO cards, both SPIOs come up online. Automatic switching of Ethernet ports does not occur in this scenario, but you can initiate card and port switching by using the `card spio switch to` and `port switch to` commands.

Port redundancy can be configured to be revertive or non-revertive. With revertive redundancy service is returned to the original port when service is restored.

This feature requires specific network topologies to work properly. The network must have redundant switching components or other devices that the system is connected to. The following diagrams show examples of a redundant switching topologies and how the system reacts to various external network device scenarios.

Figure 6: Network Topology Example Using Line Card Port Redundancy

Figure 7: Port Redundancy Failover in Cable Defect Scenario

In the example above, an Ethernet cable is cut or unplugged, causing the link to go down. When this event occurs, the system, with port-mode redundancy enabled, recognizes the link down state and makes port 33/1 the active port. The switching devices, using some port redundancy scheme, recognizes the failure and enables
the port on the secondary switch that the line card in slot 33 is connected to, allowing it to redirect and transport data.

Figure 8: Port Redundancy Failover in External Network Device Failure Scenario

In the example above, a switch failure causes a link down state on all ports connected to that switch. This failure causes all redundant ports on the line card in slot 33 to move into the active state and utilize the redundant switch.

Enabling Line Card and SPIO Port Redundancy

Use the following example to enable port redundancy:

```plaintext
configure
card slot#
  redundancy { card-mode | mixed-mode | port-mode }
end
```

Notes:

- The **card-mode** keyword indicates that no port redundancy is used. The system provides card-level redundancy, which is triggered by an internal failure. The **port-mode** keyword, available for Ethernet and SPIO line cards, indicates that port redundancy will be enabled. This is the default redundancy mode.

Important

You do not need to use this configuration for each line card or SPIO. The system intuitively understands that if the command is entered for an active line card, the standby line will operate in the same mode. For example, if you enter the command for the line card in slot 17, it automatically places the line card in Slot 33 into port redundant operation.

Important

If you network-boot a dual-SMC chassis with SPIO port redundancy enabled, you should have CFE1.1.0 or greater in flash on both SMCs. Otherwise, you risk having a standby SMC that can't boot from the network in certain circumstances. You can use any version of the CFE with SPIO port redundancy if the SMCs boot from a local file system (/flash, /pcmcia1, or /pcmcia2).

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.
Verifying Line Card and SPIO Port Redundancy

View the configuration of the card by entering the following command:

```
show configuration card  slot#
```

`slot#` is the chassis slot number where the line card or SPIO you want to configure is installed.

The following is a sample of output for an line card in slot 17 and a SPIO in slot 24 that both have redundancy enabled.

```
[local]host_name#  show config card 17
config
  card 17
    redundancy port-mode
#exit
end

[local]host_name#  show config card 24
config
  card 24
    redundancy port-mode
#exit
end
```

Configuring Line Card and SPIO Port Redundancy Auto-Recovery

When port redundancy is enabled at the card level, you can configure a port auto-recovery feature. When a port failure occurs and the preferred port is returned to service (link is up), control is automatically returned to that port. By default, ports are in a non-revertive state, meaning that no ports are preferred, requiring a manual port switch to return use to the original port.

This feature is applied on a per port basis, allowing you to configure specific ports to be used on individual line cards or SPIOs. For example, you could configure ports 1 through 4 as preferred on the line card in slot 17, and configure ports 5 through 8 as the preferred ports on the line card in slot 33. On a SPIO, you could configure port 1 as preferred on the SPIO in slot 24 and configure port 2 as preferred on the SPIO in slot 25. In this scenario, both line cards or SPIOs would be in an active state while providing line card and port redundancy for the other.

Use the following example to configure a preferred port for revertive, automatic return to service when a problem has cleared:

```
configure
  port ethernet  slot#/port#
    preferred slot  slot#
end
```

Notes:

- If you do not specify a preference, redundancy is non-revertive. If you do specify a preference, redundancy is revertive to the specified card.
- Repeat for each additional port that you want to make preferred.
A preference cannot be configured in normal redundancy mode. Attempting to do so will produce an error message from the CLI command.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Verifying Line Card and SPIO Port Redundancy Auto-Recovery

Verify port information by entering the following command:

```
show port info slot#/port#
```

slot# is the chassis slot number of the line card on which the physical port resides.

port# is the physical port on the line card.

The following shows a sample output of this command for port 1 on the LC in slot 17:

```
Port: 17/1
Port Type : 1000 Ethernet
Role : Service Port
Description : (None Set)
Controlled By Card : 1 (Packet Services Card 2)
Redundancy Mode : Port Mode
Framing Mode : Unspecified
Redundant With : 33/1
Preferred Port : Revertive to port 17/1
Physical ifIndex : 285278208
Administrative State : Enabled
Configured Duplex : Auto
Configured Speed : Auto
MAC Address : 00-05-47-01-11-00
Boxer Interface TAP : None
Link State : Up
Link Duplex : Unknown
Link Speed : Unknown
Flow Control : Disabled
Link Aggregation Group : None
Logical ifIndex : 285278209
Operational State : Down, Active
SFP Module : 285278209
```

Configuring ASR 5000 Link Aggregation

A Link Aggregation Group (LAG) works by exchanging control packets via Link Aggregation Control Protocol (LACP) over configured physical ports with peers to reach agreement on an aggregation of links as defined in IEEE 802.3ad. The LAG sends and receives the control packets directly on physical ports attached to different QGLCs (Quad Gigabit Line Cards) or XGLCs (10 Gigabit Line Cards).

Link aggregation (also called trunking or bonding) provides higher total bandwidth, auto-negotiation, and recovery by combining parallel network links between devices as a single link. A large file is guaranteed to be sent over one of the links, which removes the need to address out-of-order packets.

A LAG can be formed by configuring:

- Ports from the same QGLC
- Ports from top-bottom QGLCs with port redundancy
- Ports from side-by-side XGLCs
• Ports from horizontal QGLCs where ports could be from different cards, while some cards could be in L2 (side-by-side) redundancy.

Important

LAG cannot be configured when XGLCs have been configured for side-by-side redundancy. A failure message appears on the CLI when such an attempt is made.

LAG and Master Port

Logical port configurations (VLAN and binding) are defined in the master port of the LAG. If the master port is removed because of a card removal/failure, another member port becomes the master port (resulting in VPN binding change and outage), unless there is a redundant master port available.

LAG and Port Redundancy

A LAG supports redundant ports, either top-down on the QGLC (vertical link aggregation) or horizontal link aggregation on the XGLC, when only one port is active in the pair. By default, active ports in a LAG can be on any XGLC or QGLC, but optionally, all ports in a LAG can be auto-switched to another card when certain active port counts or bandwidth thresholds are crossed.

LAG and Multiple Switches

This feature connects ports on XGLCs or QGLCs to ports on Ethernet switches. A port failure/switch forces all ports in a LAG to switch to another XGLC or QGLC when a specified threshold is crossed. This works in a way similar to the auto-switch feature for port redundancy. LACP runs between the ASR 5000 and the Ethernet switch, exchanging relevant pieces of information, such as health status.

The following table summarizes typical LAG functionality with QGLCs or XGLCs.

Table 4: QGLC and XGLC LAG Functionality

<table>
<thead>
<tr>
<th>Card Type</th>
<th>ASR 5000</th>
<th>LAGID</th>
<th>Ethernet Switch A</th>
<th>Ethernet Switch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>QGLC</td>
<td>Port 1</td>
<td>1</td>
<td>Port 1</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Port 2</td>
<td>1</td>
<td>Port 2</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Port 3</td>
<td>1</td>
<td>----</td>
<td>Port 1</td>
</tr>
<tr>
<td>XGLC</td>
<td>Slot 1</td>
<td>1</td>
<td>Port 1</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>1</td>
<td>----</td>
<td>Port 1</td>
</tr>
</tbody>
</table>

Multiple Switches without L2 Redundancy

If one LAG is connected to different peers, by default, the implementation selects the higher bandwidth peer to form aggregation. If there are several horizontal cards with LAG ports that are all in active mode (no L2
redundancy) connected to different switches, each card provides a candidate aggregation of bandwidth. Selection by bandwidth works because the failure of one port causes that card’s bandwidth to be lower, thus causing another card to be selected.

The figure below shows an LAG established across two line card ports without L2 redundancy.

Figure 9: LAG without L2 Redundancy, Two Ethernet Switches

![Diagram of LAG without L2 Redundancy](image)

Multiple Switches with L2 Redundancy

To handle the implementation of Link Aggregation Control Protocol without requiring standby ports to pass LACP packets, two separate instances of LACP are started on redundant cards. The two LACP instances and port link state are monitored to determine whether to initiate an auto-switch (including automatic L2 port switch).

Two switches can also be connected to odd and even slots of an XGLC in active-active mode without L2 redundancy. Two LACP instances are started for odd and even slots, and similar monitoring and switching occurs.

The figure below shows an LAG established across two line card ports with L2 redundancy.

Figure 10: LAG with L2 Redundancy, Two Ethernet Switches

![Diagram of LAG with L2 Redundancy](image)

An LACP implementation with L2 redundancy cannot pass traffic even though standby ports have link up. For example, with two QGLCs connected to two different Ethernet switches configured as a top-bottom pair and all ports in the same LAG, failure of ports would not trigger a LAG switch until the active port number ratio flipped (more ports down than up).
To handle this case without requiring standby ports to pass LACP packets, separate instances of LACP are started on redundant cards. The LAG manager monitors the two LACP instances and port link states to decide whether to auto-switch (including automatic L2 port switching).

Port States for Auto-Switch

Ports are classified in one of four states to determine whether to start auto-switching. See the table below. For counters, State(x) represents the number of ports on a card in that state.

Table 5: Auto-Switch Port States

<table>
<thead>
<tr>
<th>State</th>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>L(x)</td>
<td>Physical link up</td>
</tr>
<tr>
<td>Standby</td>
<td>S(x)</td>
<td>Link up but in standby mode</td>
</tr>
<tr>
<td>Waiting</td>
<td>W(x)</td>
<td>Waiting for Link Aggregation Control Protocol negotiation</td>
</tr>
<tr>
<td>Aggregated</td>
<td>A(x)</td>
<td>Aggregation formed</td>
</tr>
</tbody>
</table>

Hold Time

Once the LAG manager switches to another LACP instance, it does not consider another change for a short period to let link and LACP negotiation settle down. This "hold time" is configurable. The LAG manager also enters/extends the hold period when an administrator manually switches ports to trigger a card switch.

Preferred Slot

You can define which card is preferred per LAG group as a **preferred slot**. When a preferred slot is specified, system behavior varies based on card type:

- **QGLC** – the preferred slot is selected when both the top and bottom slots have the same number of active LACP ports.
- **XGLC** – the preferred slot is selected for the initial timeout period to make the selection of switch less random.

Port preference is **not** allowed in this mode.

Auto-Switch Criteria

The following criteria determine the switching of card x to card y to provide better bandwidth while allowing manual intervention. The evaluation of the criteria occurs outside of the hold period. Ports are automatically switched from card x to card y when A(y) = 1, at least one port is in aggregated state on card y, and one of the following conditions is true (in order of precedence):

- L(x) L(y) Less ports with link Up on card x than card y
• S(x) S(y) More ports in Standby state on card x than card y
• W(x) W(y) More ports in Waiting state on card x than card y
• A(x) A(y) Fewer ports in Aggregated state on card x than card y
• Card y is preferred
• Card y is selected.

Distribution Option

The specified distribution option controls how the LAG hash map is generated. This option is set on the master port for use by the whole LAG via the link-aggregation distribution command. The following table identifies the distribution options (assuming port index 0,1,2,3 were selected):

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Repetition of all selected port indices</td>
<td>0123012301230123…</td>
</tr>
<tr>
<td>Rotate</td>
<td>Repetition of the rotated port indices</td>
<td>0123123023013012…</td>
</tr>
<tr>
<td>Block</td>
<td>Blocks of the same port index</td>
<td>000011122222333</td>
</tr>
<tr>
<td>Random</td>
<td>Based on pseudo random number</td>
<td>—</td>
</tr>
</tbody>
</table>

show Commands

You can verify the LAG configuration and monitor LAG performance via the following Exec mode CLI commands:

• show configuration link-aggregation group group_number
• show link-aggregation { info | lacp info | statistics | table all | utilization table } group group_number

See the Command Line Interface Reference for detailed information on each command.

QGLC Link Aggregation

The aggregated ports must be on the same QGLC redundant pair. Link aggregation does not work across line card slots. In the event of a failure of one or more of the member physical ports, the remaining ports continue to be aggregated. Top and bottom QGLCs can be connected to different switches in a LAG.

Requirements

Observe the following requirements:

• Assure that links between the two systems are full duplex and at the same speed.
- Set the port medium configuration to auto or full duplex and maximum speed.
- An aggregation group can consist of from one to four ports. A port can only be in one aggregation group; for example, Port 3 can be in Group A linked to Switch 1, but it cannot simultaneously be in Group B linked to Switch 2.
- Certain physical port configuration changes, such as the MAC address or Service Redundancy Protocol (SRP), are prohibited on any interface participating in link aggregation.

There is additional information on configuring ports and port redundancy in Configuring Line Card and SPIO Port Redundancy.

Operation

Link aggregation operates as a sublayer between the MAC client and the MAC layer.

Each MAC passes received frames up for control or collection in an aggregator—a logical MAC that aggregates several links together. The MAC client sends frames to the aggregator for distribution among MACs, as follows:

Figure 11: OGLC Link Aggregation Traffic Flow

The aggregator and each MAC share the same MAC address, which means the MAC has no need to parse two different unicast MAC addresses.

Frame distribution uses an algorithm to distribute frames among MACs that prevents both the mis-ordering of frames belonging to the same "conversation," and frame duplication.

XGLC Link Aggregation

Because the XGLC is a full-height card that requires top and bottom card slots, link aggregation takes place horizontally within ports on different XGLCs.
Link Aggregation Control

One port in an aggregation group is configured as a master so that all traffic (except control traffic) in the aggregation group logically passes through this port. It is recommended (although not required) that you set up the master first by managing card/slot/ports, and unset last.

The following command creates link aggregation group N with port slot/#/port# as master. Only one master port is allowed for a group. N must be in the range of [1...1023].

```
configure
port ethernet slot/#/port#
  link-aggregation master group $N$
exit
```

Important Link Aggregation Control Protocol (LACP) starts running only when the master port is enabled.

Use the following command to add a port as a member of the link aggregation group number N only if the master port is assigned. Otherwise, it is added to the group when the master port is assigned:

```
port ethernet slot/#/port#
  link-aggregation member group $N$
exit
```

Important The VPN can only bind the master port, and a VLAN can only be created on the master port. A failure message is returned if you attempt to bind to a link aggregation member port.

Two redundant line cards and their controlling packet services card function as a system; this allows loopback addressing between vertical slots. Each system that participates in link aggregation has a unique system ID that consists of a two-byte priority (where the lowest number [0] has the highest priority) and a six-byte MAC address derived from the first port's MAC address.

The following command sets the system priority used to form the system ID. P can be one of the following options:

- a hexadecimal number in the range [0x0000..0xFFFF, default = 0x8000]
- an integer from 0 through 65535
- auto

```
card slot#
  link-aggregation system-priority $P$
```

Ports in a system are assigned keys. The group number maps directly to the key, whereupon only ports with the same key can be aggregated. Ports on each side of the link use a different aggregation key.

The system ID, port key and port ID of two peers form the Link Aggregation Group Identifier (LAGID). You can aggregate links having the same LAGID. Systems are often configured initially with each port in its own aggregation (requiring a separate key per port), or with all ports in the same aggregation (a single key for all ports). Negotiation via LACP would qualify the actual aggregation.

Systems exchange information about system ID, port key and port ID with peers across the physical links using LACP.
LACP packets are defined with the Slow Protocol format. Each system sends out its own ("actor") information and its last received information about its peer ("partner") over the physical link.

Use the following commands to set the LACP parameters. LACP can run in active mode to send LACP packets periodically, or in passive mode, in which it only responds to LACP packets it receives.

LACP can send packets at either a slow (30s) or fast (1s) rate. The defaults for this release are Active and Slow; see the sample configuration below:

```
config
  port ethernet slot#/port#
    link-aggregation lacp { active | passive } [ rate { auto | fast | slow } ] [ timeout { long | short } ]
```

Peers send out LACP packets when the state changes or if a difference is found from a received LACP packet about its own state.

Corresponding ports on a QGLC or XGLC redundant pair cannot be active at the same time. Redundant ports share the same MAC address, so after a failover is resolved, the original port rejoins the LAG.

Redundancy Options

For redundancy, there is an option that controls the auto-switching of L2 redundant or active-active ports when they are connected to two switches. Set this option on the master port for use with the whole group.

```
link-aggregation redundancy { standard | switched } [ hold-time sec ] [ preferred slot { card_number | none } ]
```

Distribution Option

This option controls how a LAG hash map is generated and is required for Equal Cost Multiple Path (ECMP) over LAG. Set this option on the master port for use with the whole group.

```
link-aggregation distribution { simple | rotate | block | random }
```

The following list defines the distribution options (assuming port index 0,1,2,3 were selected.

- **simple**: Repetition of all selected port indexes (Example: 0123012301230123…)
- **rotate**: Repetition of rotated port index (Example: 0123123023013012…)
- **block**: Blocks of the same port index (Example: 00011122223333)
- **random**: Based on pseudo random number

Toggle Link

A port or card switch within the LAG can be set to toggle the link. Enable this option via the `link-aggregation toggle-link` command at the Card Configuration Mode or Ethernet Port Configuration Mode.

Horizontal Link Aggregation with Two Ethernet Switches

When a LAG contains two sets of ports each connecting to a different Ethernet switch, the operator has the ability to specify the slot/port (connected to the destination switch) when switching ports.

The Exec mode `link-aggregation port switch to slot/port` command is used to configure this option. The following criteria apply to the setting of this option:
• *slot/port* must support LAG.
• *slot/port* must be configured with LAG.
• *slot/port* must not be already actively distributing.
• *slot/port* must have negotiated a link aggregation partner in standard mode.
• *slot/port*'s partner must have an equal or higher in standard mode.
• *slot/port*'s partner bundle must have equal or higher bandwidth in standard mode.
• Switching to *slot/port* must not violate preference within hold-time in standard mode.

Link Aggregation Status

To check the status of link aggregation, use the following commands:

- `show port table`
- `show port info slot/port`

Configuring a Demux Card

You can dedicate a packet processing card to function as a demux card. Demux is a generic term for signal demultiplexing tasks. These are the tasks responsible for parsing call setup (signaling packets) and distributing the calls internally. For this reason there almost as many tasks running on a demux card as there are services.

The vpnmgr tasks responsible for each context also run on the demux card. The number of vpnmgr tasks correspond to the number of contexts. A vpnmgr is responsible for IP address assignment to mobile equipment, IP routing (such as BGP, OSPF), as well as a variety of associated tasks.

Overview

Designating a packet processing card as a demux card frees up resources for session handling, which has the potential to increase system throughput. However, there is no increased support in total subscriber capacity due to other system resource restrictions.

This feature is disabled by default and can be enabled via the Global Configuration mode `require demux card` command. It is only supported for a limited number of products. Refer to the product Administration Guide for additional information.

Important

On an ASR 5000 one of the packet processing cards must be configured as a demux card in order for Bidirectional Forwarding Detection (BFD) to function.
Configuration

To configure a packet processing card as a demux card enter the following CLI commands:

```
configure
  require demux card
end
```

Configuring Flow Control on XGLCs

To minimize the possibility of a port shutdown on an XGLC, you must enable flow control on the XGLC port. If an XGLC locks down due to a port shutdown, the only method for recovery is to reboot the card via the Exec mode `card reboot` command.

Flow control must be enabled on all XGLCs in the chassis, including active and standby redundant pairs.

The following command sequence enables flow control on an XGLC:

```
configure
  port ethernet slot_number/1
  flow-control
```

Notes:

- `slot_number` is the location of the XGLC in the ASR 5000 chassis. The XGLC is a one-port card.

You should also configure flow control at 6Gbps on the peer ports of all routers in your network that are connected to the ASR 5000. Bidirectional flow control slows down the traffic flow rate from these routers when the ASR 5000 sends a flow control beacon whenever an XGLC is throttled.
Management Settings

This chapter provides instructions for configuring Object Request Broker Element Management (ORBEM) and Simple Network Management Protocol (SNMP) options.

This chapter includes the following sections:

- ORBEM, page 67
- SNMP MIB Browser, page 69
- SNMP Support, page 72

ORBEM

The system can be managed by a Common Object Broker Request Architecture (CORBA)-based, Element Management System (EMS).

You must configure the ORBEM settings on the ASR 5x00 that allow the system to communicate with the server running the EMS application.

Important

Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the Command Line Interface Reference for detailed information about all commands.

To configure the system to communicate with an EMS:

- **Step 1** Set client ID parameters and configure the STOP/TCP port settings by applying the example configuration in Configuring ORBEM Client and Port Parameters, on page 68
- **Step 2** Configure Internet Inter-ORB Protocol (IIOP) transport parameters by applying the example configuration in Configuring IIOP Transport Parameters, on page 68
- **Step 3** View your new ORBEM configuration by following the steps in Verifying ORBEM Parameters, on page 69
- **Step 4** Save the configuration as described in Verifying and Saving Your Configuration.
Configuring ORBEM Client and Port Parameters

Use the following example to set client ID parameters and configure the SIOP/TCP port settings:

```
configure
  orbem
    client id encrypted password  password
    max-attempt  number
    session-timeout  time
    siop-port  port_number
    event-notif-siop-port  siop_notif_port
    event-notif-service
end
```

Notes:

- You can issue the client id command multiple times to configure multiple clients.
- If a client ID is de-activated due to reaching the configured maximum number of attempts, use the `activate client id` command to reactivate it.
- If a firewall exists between the system and the EMS, open the SIOP port number and the TCP port number 15011.
- If the ORB Notification Service is enabled via the `event-notif-service` command, you can set filters to determine which events are to be sent. By default, the Service sends all error and higher level events, "info" level events for the ORBS facility, CLI command logs, and license change logs. Optionally, configure a filter by including the `event-notif-service filter` command. Enter this command for each filter you need to configure.

Configuring IIOP Transport Parameters

Use the following example to configure Internet Inter-ORB Protocol (IIOP) transport parameters that enable ORB-based management to be performed over the network:

```
configure
  orbem
    iiop-transport
    iiop-port  iiop_port_number
    event-notif-iiop-port  iiop_notif_port
end
```

Notes:

- If you are using the Secure Sockets Layer (SSL) option, do not enable the IIOP transport parameter.
- You configure the ORBEM interface to use SSL by specifying a certificate and private key.
Verifying ORBEM Parameters

Step 1 Run the **show orbem client table** command to verify that the client was configured properly. This command lists the configured ORBEM clients and displays their state and privileges.

Step 2 Run the **show orbem status** command to verify the ORBEM parameter configuration. The following displays a sample of this command's output.

```
Service State : On
Management Functions : FCAPS
IOP Address : 192.168.1.150
SSL Port : 14131
TCP Port : 14132
Notification SSL Port : 7777
Notification TCP Port : 7778
Session Timeout : 86400 secs
Max Login Attempts : 5
IIOP Transport : On
Notification : On
Debug Level : Off
IDL Version Check : On
Number of Current Sessions : 1
Number of Event Channels Open : 0
Number of Operations Completed : 2895
Number of Events Processed : 0
Avg Operation Processing time : 87214 usecs
(last 1000) : 87950 usecs
```

SNMP MIB Browser

This section provides instructions to access the latest Cisco Starent MIB files using a MIB Browser. An updated MIB file accompanies every StarOS release. For assistance to set up an account and access files, please contact your Cisco sales or service representative for additional information.

A MIB Browser allows the user to pull out data from SNMP enabled devices. You can load standard and proprietary MIBs. The tool allows the user to see the MIB data in a readable format and also offers the ability to search for a specific OID. The Browser displays all of the MIBs in a MIB tree which makes it easy to find and identify all Objects, Traps or Conformances.
Use the following procedure to view the SNMP MIBs for a specific StarOS build:

Step 1 Contact Cisco sales or a service representative, to obtain access to the MIB files for a specific StarOS release.

Step 2 Download the compressed companion file to a folder on your desktop. The file name follows the convention: `companion_xx.x.x.tgz`

Step 3 Open the companion file, unzip it and extract it to the same folder.

Step 4 Double click on the new `companion-xx.x.x.xxxxx` file folder.

Step 5 Unzip and extract the `companion-xx.x.x.xxxxx.tar` file.

Step 6 From your MIB browser, search for and open the `starent.my` file within the `.tar` file. You can use any SNMP MIB Browser that allows you to compile a MIB `.my` file before viewing it.

Step 7 To compile the MIB file, click on the STARENT-MIB file and select **File > Open**.

The STARENT-MIB.vosmi file opens.
In the example below the MIB Browser presents a tree diagram that allows you to display details for each Object, Trap and Conformance. The example below includes the OID number and trap details for the starCardPACMigrateFailed trap.

The SNMP MIB browser allows you to search for specific MIBs. You can search for a specific OID (object identifier) to find a specific MIB entry.

Important For information on SNMP MIBs changes for a specific release, refer to the SNMP MIB Changes in Release xx chapter of the appropriate version of the to the Release Change Reference.
SNMP Support

The system uses the SNMP to send traps or events to the EMS server or an alarm server on the network. You must configure SNMP settings to communicate with those devices.

Important

Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the *Command Line Interface Reference* for complete information.

The *SNMP MIB Reference* describes the MIBs and SNMP traps supported by the ASR 5x00 platform.

To configure the system to communicate with the EMS server or an alarm server:

Step 1
Set SNMP parameters such as UDP port, and alarm server target by applying the example configuration in *Configuring SNMP and Alarm Server Parameters*, on page 72

Step 2
To view your new SNMP configuration, follow the steps in *Verifying SNMP Parameters*, on page 73

Step 3
Save the configuration as described in *Verifying and Saving Your Configuration*.

Configuring SNMP and Alarm Server Parameters

Use the following example to set SNMP and alarm server parameters:

```
configure
    system contact contact_name
    system location location_name
    snmp authentication-failure-trap
    snmp community community_string
    snmp server port port_number
    snmp target name ip_address
    snmp engine-id local id_string
    snmp notif-threshold value low low_value period time_period
    snmp user user_name
    snmp mib mib_name
    snmp runtime-debug | debug-tokens token_id token_id token_id...token_id
end
```

Notes:

- The **system contact** is the name of the person to contact when traps are generated that indicate an error condition.

- An **snmp community** string is a password that allows access to system management information bases (MIBs).
- The system can send SNMPv1, SNMPv2c, or SNMPv3 traps to numerous target devices. However, an EMS may only process SNMP version 1 (SNMPv1) and SNMP version 2c (SNMPv2c) traps. If the SNMP target you are configuring is the EMS application, use the `snmp target` command to configure use of version 1 or version 2c. Issue this command as many times as you need to configure multiple targets. If you configure multiple targets, generated alarms are sent to every configured target.

- The `snmp notif-threshold` command configures the number of SNMP notifications that need to be generated for a given event and the number of seconds in the monitoring window size (default = 300), before the notification is propagated to the SNMP users (default = 300).

- The `snmp engine-id local` command is optional. It is only required if your network requires SNMP v3 support. The engine ID uniquely identifies the SNMP engine and associated SNMP entities, thus providing a security association between the two for the sending and receiving of data.

- The `snmp user` name is for SNMP v3 and is optional. There are numerous keyword options associated with this command.

- Use the `snmp mib` command to enable other industry standard and Cisco MIBs. By default only the STARENT-MIB is enabled.

- By default SNMP runtime debugging always runs and consumes CPU cycles for event logging. To control CPU usage you can set `no snmp runtime-debug` to disable runtime debugging. An option to this command allows you to specify SNMP token values that will locate and parse specified MIBs.

Important

SNMPv3 traps may not be supported by some EMS applications.

Verifying SNMP Parameters

Step 1

Run the `show snmp server` command to verify that the SNMP server information is correctly configured. The following displays a sample output of this command.

```
SNMP Server Configuration:
  Server State : enabled
  SNMP Port : 161
  sysLocation : chicago
  sysContact : admin
  authenticationFail traps : Enabled
  EngineID : 123456789
  Alert Threshold : 100 alerts in 300 seconds
  Alert Low Threshold : 20 alerts in 300 seconds
SNMP Agent Mib Configuration:
  STARENT-MIB : Enabled
  IF-MIB : Disabled
  ENTITY-MIB : Disabled
  ENTITY-STATE-MIB : Disabled
  ENTITY-SENSE-MIB : Disabled
  HOST-RESOURCES-MIB : Disabled
  CISCO-MOBILE-WIRELESS-SERVICE-MIB : Disabled
  CISCO-ENTITY-DISPLAY-MIB : Disabled
```
CISCO-PROCESS-MIB : Disabled
CISCO-ENTITY-FRU-CONTROL-MIB : Disabled

Step 2 Verify that the SNMP community(ies) were configured properly by entering the following command:
show snmp communities
The output of this command lists the configured SNMP communities and their corresponding access levels.

Step 3 Verify that the SNMP transports are configured properly by entering the following command:
show snmp transports
The following displays a sample output:

Target Name: rms1
IP Address: 192.168.1.200
Port: 162
Default: Default
Security Name: public
Version: 1
Security:
View:
Notif Type: traps

Controlling SNMP Trap Generation

The system uses SNMP traps (notifications) to indicate that certain events have occurred. By default, the system enables the generation of all traps. However, you can disable individual traps to allow only traps of a certain type or alarm level to be generated. This section provides instructions for disabling/enabling SNMP traps.

Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands.

Important

To configure SNMP trap generation:

Step 1 Set parameters by applying the following example configuration:
configure
snmp trap suppress
snmp trap suppress trap_name1 trap_name2 ... trap_nameN
If at a later time you wish to re-enable a trap that was previously suppressed, use the snmp trap enable command.

Step 2 Save the configuration as described in Verifying and Saving Your Configuration.
Verifying and Saving Your Configuration

This chapter describes how to save your system configuration.

- Verifying the Configuration, page 75
- Synchronizing File Systems, page 77
- Saving the Configuration, page 77

Verifying the Configuration

You can use a number of commands to verify the configuration of your feature, service, or system. Many are hierarchical in their implementation and some are specific to portions of or specific lines in the configuration file.

Feature Configuration

In many configurations, you have to set and verify specific features. An example includes IP address pool configuration. Using this example, enter the following commands to verify proper feature configuration:

Enter the `show ip pool` command to display the IP address pool configuration. The output from this command should look similar to the sample shown below. In this example, all IP pools were configured in the `isp1` context.

```
context : isp1:
++++++Type:  (P) - Public    (R) - Private
|        (S) - Static    (E) - Resource
|        |++++++State:  (G) - Good    (D) - Pending Delete    (R)-Resizing
|        ||++++++Priority:  0..10 (Highest 0) .. Lowest (10))
|        |||++++++Busyout:  (B) - Busyout configured
|vvvvv
vvvvv
Pool Name Start Address Mask/End Address Used Avail
----- ------------------ --------------- --------------- ----------------
PG00  ipsec 12.12.12.0 255.255.255.0 0 254
PG00  pool1 10.10.0.0 255.255.0.0 0 65534
BG00  vpnpool 192.168.1.250 192.168.1.254 0 5

Total Pool Count: 5
```
To configure features on the system, use the `show` commands specifically for these features. Refer to the *Exec Mode show Commands* chapter in the *Command Line Interface Reference* for more information.

Service Configuration

Verify that your service was created and configured properly by entering the following command:

```
show service_type service_name
```

The output is a concise listing of the service parameter settings similar to the sample displayed below. In this example, a P-GW service called `pgw` is configured.

<table>
<thead>
<tr>
<th>Service name</th>
<th>: pgw1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-Id</td>
<td>: 1</td>
</tr>
<tr>
<td>Context</td>
<td>: test1</td>
</tr>
<tr>
<td>Status</td>
<td>: STARTED</td>
</tr>
<tr>
<td>Restart Counter</td>
<td>: 8</td>
</tr>
<tr>
<td>EGTP Service</td>
<td>: egtp1</td>
</tr>
<tr>
<td>LMA Service</td>
<td>: Not defined</td>
</tr>
<tr>
<td>Session-Delete-Delay Timer</td>
<td>: Enabled</td>
</tr>
<tr>
<td>Session-Delete-Delay timeout</td>
<td>: 10000(msecs)</td>
</tr>
<tr>
<td>PLMN ID List</td>
<td>: MCC: 100, MNC: 99</td>
</tr>
<tr>
<td>Newcall Policy</td>
<td>: None</td>
</tr>
</tbody>
</table>

Context Configuration

Verify that your context was created and configured properly by entering the `show context name name` command.

The output shows the active context. Its ID is similar to the sample displayed below. In this example, a context named `test1` is configured.

<table>
<thead>
<tr>
<th>Context Name</th>
<th>ContextID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>test1</td>
<td>2</td>
<td>Active</td>
</tr>
</tbody>
</table>

System Configuration

Verify that your entire configuration file was created and configured properly by entering the `show configuration` command.

This command displays the entire configuration including the context and service configurations defined above.

Finding Configuration Errors

Identify errors in your configuration file by entering the `show configuration errors` command.

This command displays errors it finds within the configuration. For example, if you have created a service named "service1", but entered it as "srv1" in another part of the configuration, the system displays this error.
You must refine this command to specify particular sections of the configuration. Add the `section` keyword and choose a section from the help menu as shown in the examples below.

```
show configuration errors section ggsn-service
```

or

```
show configuration errors section aaa-config
```

If the configuration contains no errors, an output similar to the following is displayed:

```
##############################################################################
Displaying Global AAA-configuration errors
##############################################################################
Total 0 error(s) in this section!
```

Synchronizing File Systems

Whenever changes are made to a configuration or StarOS version boot order in a system with redundant management cards, the file systems must be synchronized across the management cards. This assures that the changes are identically maintained across the management cards.

Enter the following Exec mode command to synchronize the local file systems:

```
[local] host_name# filesystem synchronize all
```

The `filesystem` command supports multiple keywords that allow you to check for and repair file system corruption, as well as synchronize a file system with a specific storage device. For additional information, see the Exec Mode Commands chapter in the Command Line Interface Reference.

Saving the Configuration

These instructions assume that you are at the root prompt for the Exec mode:

```
[local] host_name#
```

To save your current configuration, enter the following command:

```
save configuration url obsolete-encryption showsecrets verbose [-redundant] [-noconfirm]
```

`url` specifies the location in which to store the configuration file. It may refer to a local or a remote file.

Important

The `obsolete-encryption` and `showsecrets` keywords have been removed from the `save configuration` command in StarOS 19.2 and higher. If you run a script or configuration that contains the removed keyword, a warning message is generated.

For complete information about the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

Important

Do not use the "/" (forward slash), ":" (colon) or "@" (at sign) characters when entering a string for the following URL fields: directory, filename, username, password, host or port#.
The **-redundant** keyword is only applicable when saving a configuration file to a local device (pcmcia1) that is installed on both SMCs. This command does not synchronize the local file system. If you have added, modified, or deleted other files or directories to or from a local device for the active SMC, you must synchronize the local file system on both SMCs. See Synchronizing File Systems, on page 77.

To save a configuration file called `system.cfg` to a directory that was previously created called `cfgfiles` on the CompactFlash in the SMC, enter the following command:

```
save configuration /flash/cfgfiles/system.cfg
```
CHAPTER 6

System Interfaces and Ports

This chapter describes how to create a context and configure system interfaces and ports within the context. Before beginning these procedures, refer to your product-specific administration guide for configuration information for your product.

Important
Make sure at least one packet processing card is active before you configure system elements. Refer to System Settings in this guide for information and instructions on activating packet processing cards.

- Contexts, page 79
- Ethernet Interfaces and Ports, page 80
- ATM Interfaces and Ports, page 83
- Frame Relay Interfaces and Ports, page 86

Contexts

Even though multiple contexts can be configured to perform specific functions, they are all created using the same procedure.

Creating Contexts

Important
Commands used in the configuration examples in this section represent the most common or likely commands and/or keyword options. In many cases, other commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands.

To create a context, apply the following example configuration:

```
configure
c   context name
   end
```
Repeat to configure additional contexts.

Important

We recommend that if your system is using Fast Ether Line Cards (FELCs, Ethernet 10/100), at least one context be configured per physical port in order to ensure adequate bandwidth for subscriber sessions.

Viewing and Verifying Contexts

Step 1
Verify that your contexts were successfully created by entering the following command:
```
[local] host_name > show context all
```
The output is a two-column table similar to the example below. This example shows that two contexts were created: one named `source` and one named `destination`.

<table>
<thead>
<tr>
<th>Context Name</th>
<th>ContextID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1</td>
<td>Active</td>
</tr>
<tr>
<td>source</td>
<td>2</td>
<td>Active</td>
</tr>
<tr>
<td>destination</td>
<td>3</td>
<td>Active</td>
</tr>
</tbody>
</table>

The left column lists the contexts that are currently configured. The center column lists the corresponding context ID for each of the configured contexts. The third column lists the current state of the context.

Step 2
Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Step 3
Now that the context has been created, interfaces and specific functionality can be configured within the context. Proceed to other sections for instructions on configuring specific services and options.

Ethernet Interfaces and Ports

Regardless of the type of application interface, the procedure to create and configure it consists of the following:

Step 1
Create an interface and assign an IP address and subnet mask to it by applying the example configuration in *Creating an Interface*, on page 81.

Step 2
Assign a physical port for use by the interface and bind the port to the interface by applying the example configuration in *Configuring a Port and Binding It to an Interface*, on page 81.

Step 3
Optionally configure a static route for the interface by applying the example configuration in *Configuring a Static Route for an Interface*, on page 82.

Step 4
Repeat the above steps for each interface to be configured.

This section provides the minimum instructions for configuring interfaces and ports to allow the system to communicate on the network. Commands that configure additional interface or port properties are described in the *Ethernet Port Configuration Mode Commands* and *Ethernet Interface Configuration Mode Commands* chapters of the *Command Line Interface Reference*.
To ensure that system line card and port-level redundancy mechanisms function properly, the Spanning Tree protocol must be disabled on devices connected directly to any system port. Failure to turn off the Spanning Tree protocol may result in failures in the redundancy mechanisms or service outage.

Creating an Interface

Use the following example to create a new interface in a context:

```
configure
    context context_name
    interface name
        { ip | ipv6 } address address subnetmask [ secondary ]
end
```

Notes:

- **Optional:** Add the `loopback` keyword option to the `interface name` command, to set the interface type as "loopback" which is always UP and not bound to any physical port.

- **Optional:** Add the `secondary` keyword to the `{ ip | ipv6 } address` command, to assign multiple IP addresses to the interface. IP addresses can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

- **Optional:** In the interface config mode, add the `port-switch-on-L3-fail address` command, to configure the interface for switchover to the port on the redundant line card if connectivity to a specified IP address is lost. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

Configuring a Port and Binding It to an Interface

Use the following example configuration to configure and assign a port to an interface:

```
configure
    port ethernet slot#/port#
        description description
        no shutdown
        bind interface interface_name context_name
end
```

Notes:

- For `port ethernet slot#`, use the actual chassis slot in which the line card is installed. This could be any number from 17 to 23, or 26 to 39, or 42 to 48.

- For `port ethernet port#`, on FELCs, this value can be from 1 to 8. For the GELC/GLC2s and XGLCs this value must be 1. For for QGLCs enter a value from 1 to 4.

- **Optional:** In the Ethernet Port configuration mode, add the preferred `slot slot#` command if line card port redundancy was enabled at the card level and you want to specify a port preference.
• *Optional:* In the Ethernet Port configuration mode, configure the port speed, if needed, by entering the `medium` command. Refer to the *Command Line Interface Reference* for a complete explanation of this command.

• Binding associates the port and all of its settings to the named interface.

Configuring a Static Route for an Interface

Use the following example to configure a static route for an interface:

```
configure
context context_name
  { ip | ipv6 } route ip_address netmask next-hop gw_address interface_name
end
```

Notes:

• `ip_address` and `netmask` are the IP address and subnet mask of the target network. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

• `gw_address` is the IP address of the default gateway or next-hop route. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

• To configure a route to the gateway router, use 0.0.0.0 for the network and mask variables.

• Repeat as needed. Multiple static routes can be configured to the same destination to provide an alternative means of communication in case the preferred route fails.

Viewing and Verifying Port Configuration

Step 1 Verify that your interface configuration settings are correct by entering the following commands:

```
[local]host_name+ context context_name
{ context_name } host_name+ show { ip | ipv6 } interface
```

`context_name` represents the name of the context in which the interface was created. The output from these commands should be similar to the following example.

In this example an interface named `mgmt1` was configured in the local context.

```
Intf Name: mgmt1
Intf Type: Broadcast
IP State: UP (Bound to 17/1 untagged, ifIndex 285278209)
IP State: UP (Bound to 17/1 untagged, ifIndex 285278209)
IP State: UP (Bound to 5/11 untagged, ifIndex 285278209)
IP Address: 192.168.100.3  Subnet Mask: 255.255.255.0
Bcast Address: 192.168.100.255  MTU: 1500
Resoln Type: ARP  ARP timeout: 3600 secs
L3 monitor LC-port switchover: Disabled
Number of Secondary Addresses: 0
Total interface count: 1
```
Step 2 Verify that your port configuration settings are correct by entering the following command:

```
{context_name} host_name# show configuration port slot#/port#
```

`slot#` is the chassis slot number of the line card on which the physical port resides. `slot#` can be any integer value from 17 to 39, and 42 to 48.

This command produces an output similar to that displayed in the following example that shows the configuration for port 1 on the line card installed in chassis slot 17.

In this example, the port is bound to an interface called `rp1` configured in a context called `source`.

```
config
  port ethernet 17/1
    description LC17/1_RP1
    no shutdown
    bind interface rp1 source
#end
```

Step 3 Verify that your static route(s) was configured properly by entering the following command:

```
{context_name} host_name# show ip static-route
```

This command produces an output similar to that displayed in the following example that shows a static route to a gateway with an IP address of 192.168.250.1.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>192.168.250.1</td>
<td>Static</td>
<td>0</td>
<td>0</td>
<td>SPIO1</td>
</tr>
<tr>
<td>0.0.0.0/0</td>
<td>192.168.250.1</td>
<td>Static</td>
<td>0</td>
<td>0</td>
<td>rp1 source</td>
</tr>
</tbody>
</table>

Step 4 Save the configuration as described in the Verifying and Saving Your Configuration chapter.

ATM Interfaces and Ports

This section describes the minimum configuration required to use IP over ATM (IPoA) through an Optical ATM line card (OLC/OLC2). The procedures describe how to:

Step 1 Set the framing method for a specific OLC-type line card and make the card "active" by using the procedure defined in Enabling the OLC (ATM) Line Card, on page 84.

Step 2 Create an IP over ATM interface (PVC interface) by following the example configuration in Creating an IP Interface for Use with an ATM Port, on page 84.

Step 3 Enable the ATM port, create the IPoA (PVC) interface for the ATM port, and enable the PVC by applying the example configuration in Configuring an ATM Port to Use an IP Interface, on page 84. Steps 2 and 3 together configure the data plane.

Step 4 Configure an ATM port to use with an SS7 link ID by applying the example configuration in Configuring an ATM Port for an SS7 Link, on page 85. Step 4 configures the control plane through an SS7/IPoA (PVC) interface.

Do not attempt to bind the link at this time. Complete the rest of the procedure (steps 5, 6, and 7) and return to bind the link to the port. The SS7 link can only be bound to the ATM port after the configuration for the SS7 routing domain has been completed as described in the 3G SGSN Configuration section of the SGSN Administration Guide.
Step 5 Configure the appropriate timing source (BITS from the SPIO or line-timing from an attached remote) to ensure transmit synchronization by applying the example configuration in the Configuring Transmit Timing Source section of System Settings.

Step 6 Verify the port and interface configuration as described in Verifying Port and Interface Configuration, on page 85.

Step 7 Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Enabling the OLC (ATM) Line Card

Use the following example to select an OLC and set the framing type:

```
configure
  card slot#
    framing {SDH | SONET}
    no shutdown
  end
```

Notes:
- The default framing type is SONET (Synchronous Optical Network) for an Optical (ATM) line card.
- Setting the framing method is required to make the card operational.
- Entering no shutdown makes the card active.

Creating an IP Interface for Use with an ATM Port

Use the following example to create an IP interface to use with ATM:

```
configure
  context ctxt_name
    interface intf_name point-to-point
      ip address ip_addr net_mask
      ip address ip_addr net_mask secondary
    end
```

Notes:
- The context must be the one in which you have or will configure the SGSN service.
- You must enter the point-to-point keyword to create the PVC (Permanent Virtual Connection) interface for the IP over ATM.

Configuring an ATM Port to Use an IP Interface

Use the following example to configure an ATM port to use with an IP interface:

```
configure
  port atm slot#/port#
    no shutdown
    pvc vpi vpi_num vci vci_num
```
Configuring an ATM Port for an SS7 Link

Use the following example to configure an ATM port to use with an SS7 (Signalling System No. 7) link:

```bash
configure
  port atm slot#/port#
  no shutdown
  pvc vpi vpi_num vci vci_num
  no shutdown
end
```

Notes:
- The PVC for the SS7 link has been created but can not be bound unless the SS7 routing domain configuration has already been completed (see the SGSN Administration Guide).
- Complete optional ATM port configuration (see the ATM Port Configuration Mode Commands chapter in the Command Line Interface Reference) and the other steps in this procedure to set timing and save the configuration.

Binding an SS7 Link to an ATM Port

Use the following example to bind an already configured SS7 link to a PVC interface for an ATM port:

```bash
configure
  port atm slot#/port#
  pvc vpi vpi_num vci vci_num
  bind link ss7-routing-domain ss7rd_id linkset-id id link-id id
end
```

Notes:
- Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying Port and Interface Configuration

Step 1 Verify that your interface configuration settings are correct by entering the following commands:
```
[local] host_name# context context_name
[context_name] host_name# show ip interface
```

`context_name` represents the name of the context in which the interface was created. The output from these commands should look similar to that displayed in the following example.
In this example an interface named mgmt1 was configured in the local context.

Intf Name: ipoa
Intf Type: Point to point
IP State: UP (Bound to 31/1 untagged, ifIndex 285278209)
IP Address: 192.168.100.3 Subnet Mask: 255.255.255.0
Bcast Address: 192.168.100.255 MTU: 1500
Resoln Type: ARP ARP timeout: 3600 secs
Number of Secondary Addresses: 0
Total interface count: 1

Step 2
Verify that your port configuration settings are correct by entering the following command:

```
show configuration port slot#/port#
```

This command produces an output similar to that displayed in the following example:

```
config
  port atm 31/1
    no shutdown
    pvc vpi 121 vci 4444
      no shutdown
    bind interface ipoa sgsn3g
  #exit
#exit
```

Frame Relay Interfaces and Ports

This section shows the minimum configuration required to configure a frame relay interface on a channelized line card. To create and configure the frame relay interfaces and ports:

Step 1
Select a channelized line card (CLC/CLC2) and set the framing method by applying the example configuration in Setting the Characteristics of the Channelized Line Card, on page 87

Step 2
Configure the path, framing, mapping, Frame Relay characteristics, and the data link connection identifiers (DLCIs) as illustrated in the example configuration in Configuring the Channel Characteristics, on page 87

Step 3
Configure the appropriate timing source (BITS from the SPIO or line-timing from attached remote) to ensure transmit synchronization by applying the example configuration in the Configuring Transmit Timing Source section in System Settings.

Before you can move to **Step 4** to bind a DLCI to a port, you must complete the link configuration by configuring Peer-NSEIs and/or SS7 routing domains as described in SGSN Service Configuration Procedures in the SGSN Administration Guide. Return to this procedure when your link configuration is complete.

Step 4
Bind the link to the port by applying the example configuration in the section for Binding a DLCI, on page 87

Step 5
Verify the card, port and link configuration and status with the commands illustrated in the verification examples below.

Step 6
Save the configuration as described in the Verifying and Saving Your Configuration chapter.
Setting the Characteristics of the Channelized Line Card

Use the following example to set the operational characteristics, the framing type, the header type, the service type, and the boot time E1 framing type, for the Frame Relay Channelized Line Card (CLC):

```
configure
card slot
  framing framing_type { ds1 | e1 } 
  header-type { 2-byte | 4-byte }
  initial-e1-framing { crc4 | standard }
  service-type frame-relay
  no shutdown
end
```

Notes:

- Make a note of the information you configure - you will need it again later for the `path` command used to configure channel characteristics.
- The default `framing_type` is SONET for the channelized line card.
- With releases 8.1 and higher, we recommend that you include the signal type, either `ds1` (24 timeslots, 1.536 Mbps) or `e1` (32 timeslots, 2.048 Mbps), when defining the framing.
- With releases 8.1 and higher, you need to set the `service-type` for the CLC card to `frame-relay`. All other options are not fully supported at this time.

Configuring the Channel Characteristics

Use the following example to configure the path, framing, mapping, timeslots, and the Frame Relay interface and LMI characteristics for a specific CLC/CLC2 port:

```
configure
  port channelized slot#/port#
    path path_id { ds1 | e1 } number_of_connections frame_mapping multiplex# multiplex# framing
    framing_mode multiplex_mode { timeslots timeslot# timeslot# } |
```

Important

You should record the path definition values you enter as the information will be needed again with other configuration commands.

```
frame-relay path path_id { ds1 | e1 } number_of_connections { timeslot timeslot# timeslot# } intf_type
  intf_type { lmi-type lmi_type } |
  dlc path path_id { ds1 | e1 } number_of_connections { dlc dlc_id timeslot timeslot# } |
  no shutdown
end
```

Binding a DLCI

Use the following procedure to bind the data link connection identifier (DLCI) to the channelized (Frame Relay) port.
This procedure should not be attempted until after the configuration is completed for Peer-NSEIs and/or SS7 routing domains as described in the *SGSN Administration Guide*.

```
configure
  port channelized port#
  bind link ( peer-nsei nse_id ns-vc-id nsve_id | ss7-routing-domain ss7rd_id linkset-id id
  link-id id}
end
```

Verifying the Frame Relay Interface Configuration and Status

Several commands generate display outputs that provide information about the Frame Relay card, port, DLCI and link configurations. The most commonly used commands are illustrated below. All of these commands are issued from the Exec mode.

Display Port and DLCI Configuration Details

```
[local] host_name> show port info 27/1
Port: 27/1
  Port Type : STM1/OC3 Channelized
  Description : (None Set)
  Controlled By Card : 11 (Packet Services Card)
  Redundancy Mode : Port Mode
  Framing Mode : SDH
  Redundant With : Not Redundant
  Preferred Port : Non-Revertive
  Physical ifIndex : 453050368
  Administrative State : Disabled
  Link State : Unknown
  Line Timing : Yes
  SFP Module : Not Present
  Path 1 e1 1 : tu12-au3 1/1 crc4 bit-async
    Timeslots : 12-14
    Frame Relay Intf Typ : DCE
    Frame Relay LMI Type : Q933A
    Frame Relay LMI n391 : 6
    Frame Relay LMI n392 : 2
    Frame Relay LMI n393 : 2
    Frame Relay LMI t391 : 10
    Frame Relay LMI t392 : 15
    Frame Relay DLCI 243
      Logical ifIndex : 453050369
      Admin State : Disabled
      Operational State : Down, Standby
      Shaping : WFQ: Weight 1
      Number of DLCI : 1
      Reserved Bandwidth : 0 of 192000 bits/sec
    Path 1 e1 2 : Unused
      Number of DLCI : 1
```

Display Port and DLCI Configuration and Status

The following display is only a partial output of the `show` command to illustrate the channelized port and DLCIs.

```
[local] host_name> show port table
Port Type Admin Oper Link State Redundant With
---- ---------------------- -------- ---- -------- --------------
ASR 5000 System Administration Guide, StarOS Release 19
| FR DLCI | 1 1 1 52 | Enabled | Up | Active |
| FR DLCI | 1 2 1 53 | Enabled | Down | Active |

27/1 STM1/OC3 Channelized Enabled – Up – None

Verifying the Frame Relay Interface Configuration and Status
Verifying the Frame Relay Interface Configuration and Status
System Security

This chapter describes the security features supported on the ASR 5000 platform.

- Per-Chassis Key Identifier, page 91
- Encrypted SNMP Community Strings, page 94
- Lawful Intercept Restrictions, page 94
- Adding, Modifying and Removing Users, page 95
- Test-Commands, page 96

Per-Chassis Key Identifier

A user can set a unique chassis key which will work only for a chassis or for any set of chassis that will share the same configuration information.

The chassis key consists of 1 to 16 alphanumeric ASCII characters. The chassis key plain-text value is never displayed to the user; it is entered interactively and not echoed to the user.

On the ASR5000 the encrypted chassis key is stored in the Compact Flash card on each SMC.

If the chassis key identifier stored in the header comment line of the configuration file does not match the chassis key, an error message is displayed to the user. The user can change the chassis key value simply by entering the chassis key again. The previous chassis key is replaced by a new chassis key. The user is not required to enter a chassis key.

If the user does not configure a chassis key, the system generates a unique value for that chassis.

Important

Changing a chassis key may invalidate previously generated configurations. This is because any secret portions of the earlier generated configuration will have used a different encryption key. For this reason the configuration needs to be recreated and restored.
To make password configuration easier for administrators, the chassis key should be set during the initial chassis set-up.

The configuration file contains a one-way encrypted value of the chassis key (the chassis key identifier) and the version number in a comment header line. These two pieces of data determine if the encrypted passwords stored within the configuration will be properly decrypted.

While a configuration file is being loaded, the chassis key used to generate the configuration is compared with the stored chassis key. If they do not match the configuration is not loaded.

The user can remove the chassis key identifier value and the version number header from the configuration file. Also, the user may elect to create a configuration file manually. In both of these cases, the system will assume that the same chassis key will be used to encrypt the encrypted passwords. If this is not the case, the passwords will not be decrypted due to resulting non-printable characters or memory size checks. This situation is only recoverable by setting the chassis key back to the previous value, editing the configuration to have the encrypted values which match the current chassis key, or by moving the configuration header line lower in the configuration file.

Beginning with Release 15.0, the chassis ID will be generated from an input chassis key using the SHA2-256 algorithm followed by base36 encoding. The resulting 44-character chassis ID will be stored in the same chassisid file in flash.

Release 14 and Release 15 chassis IDs will be in different encryption formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis key is reset in Release 15 through the setup wizard or chassis-key CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.

### Chassis Synchronization

Both SMCs in the same chassis must contain the same chassis key. If they do not, a failover from one SMC to another would result in the configuration containing encrypted passwords which cannot be decrypted.

Chassis synchronization occurs as follows:

- When a secondary SMC comes up, it copies the chassis key from the primary SMC.
- When a primary SMC changes its key, it also changes the key on the secondary SMC.
- Whenever a user requests that the two SMCs synchronize, the chassis key on the secondary SMC is forced to match the chassis key on the primary SMC.

### Protection of Passwords

Users with privilege levels of Inspector and Operator cannot display decrypted passwords in the configuration file via the ASR 5x00 command line interface (CLI).
Secure Password Encryption

By default the system encrypts passwords using an MD5-based cipher (option A). These passwords also have a random 64-bit (8-byte) salt added to the password. The chassis key is used as the encryption key.

Setting a chassis key supports an encryption method where the decryption requires the knowledge of a "shared secret". Only a chassis with knowledge of this shared secret can access the passwords. To decipher passwords, a hacker who knew the chassis key would still need to identify the location of the 64-bit random salt value within the encryption.

Passwords encrypted with MD-5 will have "+A" prefixes in the configuration file to identify the methodology used for encrypting.

For release 15.0 and higher, another type of encryption algorithm can be specified. The Global Configuration mode cli-encrypt-algorithm command allows an operator to configure the password/secret encryption algorithm. The default encryption/password algorithm is MD-5 as described above (option A). A second password encryption algorithm (option B) uses AES-CBC-128 for encryption and HMAC-SHA1 for authentication. The encryption key protects the confidentiality of passwords, while the authentication key protects their integrity. Passwords encrypted with this key will have "+B" prefixes in the configuration file.

For release 19.2 and higher, a third type of encryption algorithm can be specified (option C). This algorithm specifies the use of the HMAC-SHA512 cipher algorithm for encryption and authentication. Passwords encrypted with this key will have "+C" prefixes in the configuration file.

Also for release 19.2 and higher, the encryption key is hashed from the chassis ID and a 16-byte Initialization Vector (IV) obtained from an internal random number generator. No two passwords are encrypted using the same encryption key/IV pair. The Security Administrator must set a chassis key in order to generate the chassis ID and resulting encryption key. A default chassis key based on a local MAC address is no longer supported.

The syntax for the cli-encrypt-algorithm command is:

```
config
 cli-encrypt-algorithm { A | B | C }
```

Support for Non-Current Encryptions and Decryptions

The system supports previously formatted encrypted passwords. The syntax of the encrypted passwords indicates to the ASR 5x00 which methodology was used for encryption. If the system does not see a prefix before the encrypted password, the earlier encryption method using a fixed key will be used. If the encrypted password includes the "+A" prefix, the decryption method uses the chassis key and random salt.

If the user saves a new configuration, the generated file will always contain passwords encrypted by the most recent method. The user cannot generate the earlier DES-based encryption values. However, all future StarOS releases will continue to support plain-text password entry for all two-way encryptable passwords.

The recommended process for changing the chassis key without causing a "lock-out" state is as follows:

- Load the configuration file of the last good configuration using the previous chassis key.
- Change the chassis key to the new desired value.
- Save the configuration with this new chassis key.

Refer to Configuring a Chassis Key in System Settings for additional information.
Support for ICSR Configurations

Inter-Chassis Session Recovery (ICSR) is a redundancy configuration that employs two identically configured ASR 5x00 chassis as a redundant pair.

ICSR chassis share the same chassis key. If the ICSR detects that the two chassis have incompatible chassis keys, an error message is logged but the ICSR system will continue to run. Without the matching chassis key, the standby ICSR chassis can recover services if the active chassis goes out of service; the standby chassis will still have access to the passwords in their decrypted form.

ICSR chassis use Service Redundancy Protocol (SRP) to periodically check to see if the redundancy configuration matches with either decrypted passwords or DES-based two-way encryption strings. Since the configuration is generated internally to the software, users are not able to access the configuration used to check ICSR compatibility.

Encrypted SNMP Community Strings

Simple Network Management Protocol (SNMP) uses community strings as passwords for network elements. Although these community strings are sent in clear-text in the SNMP PDUs, the values can be encrypted in the configuration file.

The `snmp community encrypted name` command enables the encryption of SNMP community strings. For additional information, see the Global Configuration Mode Commands chapter in the Command Line Interface Reference.

Lawful Intercept Restrictions

This section describes some of the security features associated with the provisioning of Lawful Intercept (LI). For additional information, refer to the Lawful Intercept Configuration Guide.

LI Server Addresses

An external authenticating agent (such as RADIUS or Diameter) sends a list of LI server addresses as part of access-accept. For any intercept that was already installed or will be installed for that subscriber, a security check is performed to match the LI server address with any of the LI-addresses that were received from the authenticating agent. Only those addresses that pass this criteria will get the intercepted information for that subscriber.

While configuring a campon trigger, the user will not be required to enter the destination LI server addresses. When a matching call for that campon trigger is detected, a security check is done with the list received from the authentication agent. The LI-related information is only forwarded if a matching address is found.

When an active-only intercept is configured, if a matching call is found, a security check is made for the LI address received from the authentication agent and the intercept configuration will be rejected.

If no information related to LI server addresses is received for that subscriber, LI server addresses will not be restricted.
A maximum of five LI server addresses are supported via an authenticating agent.

The ability to restrict destination addresses for LI content and event delivery using RADIUS attributes is supported only for PDSN and HA gateways.

Modifying Intercepts

One LI administrator can access and/or modify the intercepts created by another LI administrator. Whenever an intercept is added, removed or modified, an event log is displayed across LI administrators about the change. An SNMP trap is also generated.

Adding, Modifying and Removing Users

It is considered uncommon for a user to be added or removed from the ASR 5x00. Likewise, it is considered uncommon for a user's privileges to modified. However, if the system is compromised, it is common for attackers to add or remove a privileged user, raise their privileges or lower the privileges of others.

As a general rule, lower privileged users should not be allowed to increase their privileges or gain access to sensitive data, such as passwords, which were entered by higher privileged users.

The ASR 5x00 can only detect changes in users and user attributes, such as privilege level, when these users are configured through the ASR 5x00.

Notification of Users Being Added or Deleted

Users with low level authorization should not be able to create users with high level authorization. However, if a malicious actor were to be able to create a high level authorized user, they could then delete the other high level authorized users, thereby locking them out of the system.

The following SNMP traps notify an administrator when users are added or removed:

- **starLocalUserAdded** – indicates that a new local user account has been added to the system.
- **starLocalUserRemoved** – indicates that a local user account has been removed from the system.

Notification of Changes in Privilege Levels

Whenever a user's privilege level is increased or decreased, an SNMP notification will be sent out. A malicious actor may gain access to more privileged commands by somehow promoting their privileges. Once this is done, they could then "demote" the privileges of all the other users, thereby locking the proper administrators out of the system.
The `starLocalUserPrivilegeChanged` trap indicates that a local user's privilege level has been changed.

**User Access to Operating System Shell**

The `starOsShellAccessed` trap indicates that a user has accessed the operating system shell.

**Test-Commands**

Users with Security Administrator or Administrator privilege can enable the display of previously hidden test-commands. The CLI test-commands mode displays new command keywords for existing commands, as well as new commands.

---

**Caution**

CLI test-commands are intended for diagnostic use only. Access to these commands is not required during normal system operation. These commands are intended for use by Cisco TAC personnel only. Some of these commands can slow system performance, drop subscribers, and/or render the system inoperable.

---

**Enabling cli test-commands Mode**

To enable access to test-commands, a Security Administrator must log into the Global Configuration mode and enter `cli hidden`.

This command sequence is shown below.

```
[local] host_name(config) # cli hidden
```

By default `cli hidden` is disabled.

---

**Important**

Low-level diagnostic and test commands/keywords will now be visible to a user with Administrator or higher privilege. There is no visual indication on the CLI that the test-commands mode has been enabled.

---

**Enabling Password for Access to CLI-test commands**

A Security Administrator can set a plain-text or encrypted password for access to CLI test commands. The `password` value is stored in `/flash` along with the boot configuration information. The `show configuration` and `save configuration` commands will never output this value in plain text.

The Global Configuration mode command `tech-support test-commands [encrypted] password new_password | old-password old_password` sets an encrypted or plain-text password for access to CLI test-commands.

This command sequence is shown below.

```
[local] host_name(config) # tech-support test-commands password new_password | old-password
```
If the new password replaces an existing password, you must enter the old password for the change to be accepted.

If the old password is not entered or does not match the existing configured value, the following error message appears: "tech-support password is already configured". A prompt then appears to accept entry of the old password: "Enter old tech-support password:"

Entering old-password old_password allows you to replace the existing password without being prompted to enter the old password. If you incorrectly enter the old password or do not enter the old password, an error message appears: "Failure: Must enter matching old tech-support password to replace existing password".

The Quick Setup Wizard (Exec mode setup command) also prompts for entry of a tech-support test-commands password. If you have forgotten the old tech-support password, you can run setup directly from the Console port to enter a new tech-support password.

When a test-commands password is configured, the Global Configuration mode command cli test-commands | [encrypted] password password requires the entry of the password keyword. If the encrypted keyword is specified, the password argument is interpreted as an encrypted string containing the password value. If the encrypted keyword is not specified, the password argument is interpreted as the actual plain text value.

**Important** If tech-support test-commands password is never configured, StarOS will create a new password. If the password keyword is not entered for cli test-commands, the user is prompted (no-echo) to enter the password. Also, cli hidden must be enabled by an administrator to access the CLI test-commands.

---

**Exec Mode cli test-commands**

Exec mode commands are available to a privileged user who enters the command cli test-commands from Exec mode.

```
[local]host_name(config)# cli test-commands [encrypted] password password
```

Warning: Test commands enables internal testing and debugging commands

**Important** An SNMP trap (starTestModeEntered) is generated whenever a user enters CLI test-commands mode.

---

**Configuration Mode cli test-commands**

Configuration commands which provided access to low-level software parameters are accessible only after a privileged user enters the command cli test-commands from Global Configuration mode.

```
[local]host_name# config
d[local]host_name(config)# cli test-commands [encrypted] password password
```

Warning: Test commands enables internal testing and debugging commands

**Important** An SNMP trap (starTestModeEntered) is generated whenever a user enters CLI test-commands mode.
An SNMP trap (starTestModeEntered) is generated whenever a user enters CLI test-commands mode.
Software Management Operations

This chapter provides information about software management operations on the system.

- Understanding the Local File System, page 99
- Maintaining the Local File System, page 101
- Configuring the Boot Stack, page 105
- Upgrading the Operating System Software, page 109
- Performing Dynamic Software Updates, page 122
- Managing License Keys, page 123
- Managing Local-User Administrative Accounts, page 126

Understanding the Local File System

The System Management Card provides control and management for the system. The local file system is made up of files that are stored on one or more of the following:

- /flash - A CompactFlash card, located on the circuit board of the SMC, is the default storage media for the operating system software image, CLI configuration, and crash log files used by the system.

- /pcmcia1 - This device is available when an ATA Type I or Type II PCMCIA card is inserted into PC-Card Slot on the front panel of the SMC.

- /hd-raid - This is the hard drive installed on the SMC. Disk names "hd-local1" and "hd-remote1" are used on ASR 5000s. An XFS-formatted RAID disk is mounted on "/mnt/hd-raid". Users can gain access to part of it from either "/hd-raid" or "/mnt/user/hd-raid".

**Important**

For this release, local filesystem access is via the master SMC only.
File Types Used by the Local File System

The following file types can be located in the local file system:

- **Operating System Software Image File**: This binary file type is identified by its `.bin` extension. The file is the operating system that is loaded by the system upon startup or reloading. This is an executable, read-only file that cannot be modified by end users.

- **CLI Configuration File**: This file type is identified by its `.cfg` extension. These are text files that contain CLI commands that work in conjunction with the operating system software image. These files determine services to be provided, hardware and software configurations, and other functions performed by the system. The files are typically created by the end user. You can modify the files both on and off-line and use descriptive long filenames.

- **System File**: Only one file identified by a `.sys` extension is used by the system. The boot.sys file contains system-specific information, which describes how the system locates, and in what priority it loads, file groups (paired .bin and .cfg files) from its boot stack.

- **Abridged Crash Log**: The abridged crash log, identified by its `crashlog` filename, contains summary information about software or hardware failures that occur on the system. This file is located in the `/flash/crsh2/` directory on the device. You can view the contents of this file through the CLI, but you cannot modify the file.

Understanding the boot.sys File

The system uses the boot.sys file to store the prioritized boot stack parameters and file groups the system uses during startup. Modify this file only through system CLI commands and not through external means. Boot parameters contain information the system needs to locate the operating system image file, including:

- **bootmode**: This setting is typically configured to normal, and identifies how the system starts.

- **network interface configuration**: Use these optional boot method settings when you configure the system to obtain its operating system image from an external network server that is using one of the management LAN interfaces on the SPIO card.

- **terminal-speed configuration**: This parameter identifies the data transfer rate at which a serial interface communicates on the console port. The default setting for this parameter is 115200 bps (115.2 Kbps). You can change this and other settings with RS-232 Port Configuration Mode commands.

- **boot stack information**: The boot stack is made up of prioritized file group entries that designate the operating system image file and the CLI configuration file to load.

When a system is unpacked and started for the first time, the boot.sys file is configured to use the normal boot mode and load the operating system software image from the `/flash` directory.

There is no CLI configuration file contained on the local file system. This causes the system to automatically start its CLI-based Quick Setup Wizard upon the first successful boot. Refer to Getting Started for more information on using the Quick Setup Wizard.
Maintaining the Local File System

Use CLI commands to manage and maintain the devices that make up the local file system. Execute all the commands described in this section in the Exec Mode. Unless otherwise specified, you must have security administrator or administrator privileges to execute these commands.

**Important**
For complete information about the commands listed below, see the Exec Mode Commands chapter of the Command Line Interface Reference.

File System Management Commands

Use the commands in this section to manage and organize the local file system.

**Synchronizing the File System**

Commands are supported for mirroring the local file systems from the active SMC to the standby SMC in systems containing two cards. Use these commands to synchronize any or all of the local devices.

**Important**
Crash log files are not synchronized when these commands are executed.

The following command synchronizes the file systems between two SMCs:

```
[local]host_name# filesystem synchronize { /flash | /pcmcia1 | all } [checkonly | [from | to] } [-noconfirm]
```

The following command synchronizes the file systems on two SMC /flash devices.

```
[local]host_name# filesystem synchronize /flash
```

**Creating Directories**

Use the `mkdir` command to create a new directory on the specific local device. This directory can then be incorporated as part of the path name for any file located in the local file system.

```
[local]host_name# mkdir { /flash | /pcmcia1 | /hd-raid } /dir_name
```

Use the following command to create a directory named configs:

```
[local]host_name# mkdir /flash/configs
```

**Renaming Files and Directories**

Use the `rename` command to change the name of a file from its original name to a different name. Remember to use the same file extension, if applicable, to ensure that the file type remains unchanged.

```
[local]host_name# rename { /flash | /pcmcia1 | /hd-raid } /src_filename { /flash | /pcmcia1 | /hd-raid } /dst_filename [-noconfirm]
```
Use the following command to rename a file named `iot_test.cfg` to `iot_accept.cfg` on the `/flash` local device.

```bash
[local]host_name# rename /flash/iot_test.cfg /flash/iot_accept.cfg -noconfirm
```

**Important** Use the `rename` command only within the same local device. You cannot rename a file and place it onto another local device at the same time. To move a renamed file, you must use the `copy` command.

### Copying Files

These instructions assume that you are at the root prompt for the Exec mode. To copy files, enter the following command:

```bash
[local]host_name# copy from_url to_url [-noconfirm]
```

To copy a configuration file called `system.cfg` from a directory that was called `cfgfiles` to a directory named `configs_old` on the CompactFlash in the SMC, enter the following command:

```bash
[local]host_name# copy /flash/cfgfiles/system.cfg /flash/configs_old/system_2011.cfg
```

To copy a configuration file called `init_config.cfg` to the root directory of a TFTP server with a hostname of `config_server`, enter the following command:

```bash
[local]host_name# copy /flash/cfgfiles/init_config.cfg tftp://config_server/init_config.cfg
```

### Deleting Files

The `delete` command removes a designated file from its specified location on the local file system. This command can only be issued to a local device on the SMC. Note that this command does not allow for wildcard entries; each filename must be specified in its entirety.

**Caution** Do not delete the `boot.sys` file. If deleted, the system will not reboot on command and will be rendered inoperable.

```bash
[local]host_name# delete { /flash | /pcmcia1 | /hd-raid } /filename [-noconfirm]
```

The following command deletes a file named `test.cfg` from the `/flash` directory.

```bash
[local]host_name# delete /flash/test.cfg
```

### Removing Directories

The `rmdir` command deletes a current directory on the specific local device. This directory can then be incorporated as part of the path name for any file located in the local file system.

**Important** The directory you want to remove (delete) must be empty before executing the `rmdir` command. If the directory is not empty, the CLI displays a "Directory not empty" message and will not execute.

```bash
[local]host_name# rmdir url /dir_name
```

`url` specifies the location of the CLI configuration file to be removed. It may refer to a local or a remote file.
The following command deletes an empty directory named `configs` in the `/flash` directory.

```
[local]host_name# rmdir /flash/configs
```

### Formatting Local Devices

The `format` command performs a low-level format of a local device. This operation formats the device to use the FAT16 formatting method, which is required for proper read/write functionality with the operating system.

**Important**

Local devices that have been formatted using other methods such as NTFS or FAT32 may be used to store various operating system, CLI configuration, and crash log files. However, when placing a new local device into the SMC for regular use, you should format the device via the system prior to use. This ensures that the FAT16 file allocation table format is used, preventing any possible discrepancies between other formats used with other operating systems.

**Caution**

The `filesystem format` command removes all files and information stored on the device.

To format a local device for use by the local file system, enter the following command:

```
[local]host_name# filesystem format { /flash | /pcmcia1 | /hd-raid }
```

### Applying Pre-existing CLI Configuration Files

A pre-existing CLI configuration file is any `.cfg` file created to provide utility functions (such as clearing all statistics during testing) or created off-line using a text editor. There may be pre-existing configuration files stored on the local file system that can be applied to a running system at any time.

**Caution**

If a configuration file is applied to a system currently running another CLI configuration, any like contexts, services, logical interfaces, physical ports, IP address pools, or other configured items will be overwritten if the same command exists in the configuration file being applied. Take caution to ensure that you are knowledgeable of the contents of the file being applied and understand what the service ramifications are if a currently running command is overwritten. Also note that changes will not be saved automatically.

A CLI configuration file, or script containing CLI commands, can be applied to a running system by entering the following command at the Exec mode prompt.

```
[local]host_name# configure url [verbose]
```

`url` specifies the location of the CLI configuration file to be applied. It may refer to a local or a remote file.

The following command applies a pre-existing CLI configuration file named `clearcmds.cfg` in the `/flash` directory.

```
[local]host_name# configure /flash/clearcmds.cfg
```

### Viewing Files on the Local File System

This section describes how to view a variety of files.
Viewing the Contents of a Local Device

The contents, usage information, and file system directory structure of any local device can be viewed by entering the following command at the Exec mode prompt:

```
[local] host_name$ directory { /flash | /pcmcia1 | /hd-raid }
```

Viewing CLI Configuration and boot.sys Files

The contents of CLI configuration and boot.sys files, contained on the local file system, can be viewed off-line (without loading them into the OS) by entering the following command at the Exec mode prompt:

```
[local] host_name$ show file url { /flash | /pcmcia1 | /hd-raid } /filename
```

Where: `url` is the path name for the location of the file and `filename` is the name of the file, including any extension.

---

**Important**

Operator and inspector-level users can execute the `show file` command but cannot execute the `directory` command.

---

Validating an Operating System File

The operating system software image file, identified by its .bin extension, is a non-readable, non-editable file that executes on the system, creating its runtime operating system (OS).

It is important to verify a new operating system image file before attempting to load it. To accomplish this, a proprietary checksum algorithm is used to create checksum values for each portion of the application stored within the .bin file during program compilation.

This information can be used to validate the actual file against the checksum values stored within the file during its compilation. If any portion of the image file has become corrupted (for example, the file was truncated or was transferred using ASCII mode instead of binary mode), then this information is reported and the file is deemed unusable.

To validate an operating system software image file, enter the following command at the Exec mode prompt:

```
[local] host_name$ show version { /flash | /pcmcia1 | /hd-raid } { /directory } /filename [all]
```

The output of this command displays the following information:

- Version number
- Description
- Date
- Boot Image
- Size
- Flags
If an invalid file is found, the system displays a failure message similar to these:

Failure: Image /flash/image_version.bin CRC check failed!
Failure: /flash/image_version.bin, has a bad magic number

**Configuring the Boot Stack**

The boot stack consists of a prioritized listing of operating system software image-to-CLI configuration file associations. These associations determine the software image and configuration file that gets loaded during system startup or upon a reload/reboot. Though multiple associations can be configured, the system uses the association with the highest priority. In the event that there is an error processing this association (for example, one of the files cannot be located), the system attempts to use the association with the next highest priority. Priorities range from 1 to 100, with 1 being the highest priority. The maximum number of boot stack entries that may be configured in the boot.sys file is 10.

Boot stack information is contained in the boot.sys file, described in [Understanding the boot.sys File](#) on page 100. In addition to boot stack entries, the boot.sys file contains any configuration commands required to define the system boot method as explained in the section that follows.

**System Boot Methods**

The local-boot method uses software image and configuration files stored locally on the system. Upon system startup or reboot, the system looks on one of its local devices or `/hd-raid` located on the active SMC for the specific software image and accompanying configuration text file. When using the local-booting method, you only need to configure boot stack parameters.

The system can also be configured to obtain its software image from a specific external network server while it is paired with a configuration text file that resides on the system. When using network booting, you need to configure the following:

- Boot stack parameters, which define the files to use and in what priority to use them
- Boot interface and network parameters defining the SPIO management LAN interface and the methods to use to reach the external network server
- Network booting delay time and optional name server parameters defining the delay period (in seconds) to allow for network communications to be established, and the IP address of any Domain Name Service (DNS) name server that may be used

Detailed information on how to configure the system to use the network booting method appears in [Network Booting Configuration Requirements](#) on page 107.

**Viewing the Current Boot Stack**

To view the boot stack entries contained in the boot.sys file run the Exec mode `show boot` command.

---

**Important**

Operator and inspector-level users can execute the `show boot` command.
The examples below show the command output for a local booting configuration. Notice that in these examples both the image file (operating system software) and configuration file (CLI commands) are located on the /flash device.

Important

The StarOS image filename scheme changed with release 16.1. Pre-16.1, format = "production.image.bin". For 16.1 onwards, format = "asr5500-image_number.bin". This change is reflected in the examples provided below.

Example 1 – StarOS releases prior to 16.1:

```
boot system priority 18 \
 image /flash/15-0-builds/production.45666.bin \
 config /flash/general_config.cfg

boot system priority 19 \
 image /flash/15-0-builds/production.45717.bin \
 config /flash/general_config_3819.cfg

boot system priority 20 \
 image /flash/15-0-builds/production.45069.bin \
 config /flash/general_config_3665.cfg
```

Example 2 – StarOS release 16.1 onwards:

```
boot system priority 18 \
 image /flash/16-1-builds/asr5000-16.1.3.bin \
 config /flash/general_config.cfg

boot system priority 19 \
 image /flash/16-1-builds/asr5000-16.1.1.bin \
 config /flash/general_config_3819.cfg

boot system priority 20 \
 image /flash/16-1-builds/asr5000-16.1.0.bin \
 config /flash/general_config_3665.cfg
```

The example below shows the output for a combination network booting and local booting configuration. Notice in this example that the first two boot stack entries (Priorities 18 and 19) load the image file (operating system software) from an external network server using the Trivial File Transfer Protocol (TFTP), while all configuration files are located on the /flash device.

Also notice the boot network interface and boot network configuration commands located at the top of the boot stack. These commands define what SPIO management LAN interface(s) to use and information about communicating with the external network server that hosts the operating system software image file.

```
boot interface local-eth1 medium auto media rj45
boot networkconfig static ip address spio24 192.168.1.150 netmask 255.255.255.0
boot delay 15

boot system priority 18 image tftp://192.168.1.161/tftpboot/image_version.bin \
 config /flash/general_config.cfg

boot system priority 19 image tftp://192.168.1.161/tftpboot/image_version.bin \
 config /flash/general_config.cfg

boot system priority 20 image /flash/image_version.bin \
 config /flash/general_config.cfg
```

To identify the boot image priority that was loaded at the initial boot time enter:

```
show boot initial-config
```

The example below displays the output:

```
[local] host_names show boot initial-config
Initial (boot time) configuration:
 image tftp://192.168.1.161/tftpboot/image_version.bin \
 config /flash/config_name.cfg
 priority 1
```
Adding a New Boot Stack Entry

Important Before performing this procedure, verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (i.e. that minimally there is no priority 1 entry in the boot stack). Refer to Viewing the Current Boot Stack for more information.

If priority 1 is in use, then you must renumber the existing entry(ies) to ensure that at least that priority is available. The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Refer to Deleting a Boot Stack Entry for more information.

This procedure details how to add new boot stack entries to the boot.sys file. Make sure you are at the Exec mode prompt and enter the following commands:

```
configure
 boot system priority number image image_url config cfg_url
```

For complete information about the above command, see the Global Configuration Mode Commands chapter of the Command Line Interface Reference.

The following command creates a new boot stack entry, using a boot priority of 3.

```
boot system priority 3 image /flash/image_filename.bin config /flash/config_name.cfg
```

Important Boot stack changes saved to the boot.sys file are not executed until the system is rebooted.

Synchronize the local file systems on the SMCs by the following command:

```
[local]host_name# filesystem synchronize all
```

Deleting a Boot Stack Entry

This procedure details how to remove an individual boot stack entry from the boot.sys file. Make sure you are at the Exec mode prompt and enter the following commands:

```
configure
 no boot system priority number
```

Where `number` specifies the boot priority used for the boot stack entry. This command removes that specific entry from the boot stack, causing the boot.sys file to be overwritten.

Network Booting Configuration Requirements

Configuring the Boot Interface

Boot interface parameters define the SPIO management LAN interface that the system will use to communicate with the management network when using the network booting method.
Booting a dual-SMC chassis with SPIO port redundancy enabled requires that both SMCs have CFE1.1.0 or greater in flash. If CFE1.1.0 or greater is not present on both cards, the standby SMC may not be able to boot from the network in certain circumstances.

This procedure details how to configure the boot interface for reliable communications with your network server. Make sure you are at the Exec mode prompt:

```
[local] host_name#
```

**Step 1**

Enter the Global Configuration mode by entering the following command:

```
configure
```

The following prompt appears:

```
[local] host_name(config)#
```

**Step 2**

Enter the following command:

```
[local] host_name(config)# boot interface { local-eth1 | local-eth2 } medium { auto | speed { 10 | 100 | 1000 } duplex { full | half } } media { rj45 | sfp }
```

For complete information on the above command, see the *Global Configuration Mode Commands* chapter of the Command Line Interface Reference.

**Step 3**

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

---

**Configuring the Boot Network**

Boot network parameters define the protocols and IP address information for SPIO interfaces used to reach the external network server that hosts the operating system software image file. To configure boot network parameters, make sure you are at the Exec mode prompt:

```
[local] host_name#
```

**Step 1**

Enter the Global Configuration mode by entering the following command:

```
[local] host_name# configure
```

The following prompt appears:

```
[local] host_name(config)#
```

**Step 2**

Enter the following command:

```
[local] host_name(config)# boot networkconfig { dhcp | { dhcp-static-fallback | static } ip address spio24 ip_address24 | spio25 ip_address25 | netmask subnet_mask | gateway gw_ip_address } }
```

For complete information about the above command, see the *Global Configuration Mode Commands* chapter of the Command Line Interface Reference.

The following command configures the boot network to communicate using DHCP, with a static-fallback IP address for SPIO in slot 24 of 192.168.206.101 and a Class C netmask.

```
boot networkconfig dhcp-static-fallback ip address spio24 192.168.206.101 netmask 255.255.255.0
```
The next example uses static IP addresses for SPIOs in both slots 24 and 25, which can access the external network server through a gateway whose IP address is 135.212.10.2.

```
boot networkconfig static ip address spio24 192.168.206.101 spio25 192.168.206.102 netmask 255.255.255.0 gateway 135.212.10.2
```

**Step 3** Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

---

### Configuring Boot Network Delay Time

An optional delay period, in seconds, can be configured for systems booting from a network. The purpose of this parameter is to allow time for external devices, such as switches, that use the Spanning Tree Protocol (STP) to determine the network route to a specified IP address.

To configure a boot network delay, enter the following command from the Global Configuration mode prompt.

```
[local]host_name(config)# boot delay time
```

Where *time* is an integer from 1 to 300 seconds before attempting to contact the external network server. If your network uses STP, a typical delay time of 30 seconds should suffice.

**Important** Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

---

### Configuring a Boot Nameserver

To enter the hostname of the network server that hosts the operating system software image, first configure the IP address of the Domain Name Service (DNS) server, referred to as a name server, that can resolve the host name for the machine.

To configure a boot nameserver address, enter the following command from the Global Configuration mode prompt.

```
[local]host_name(config)# boot nameserver ip_address
```

Where *ip_address* is the IP address of the DNS server entered in IPv4 dotted-decimal notation.

**Important** Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

---

### Upgrading the Operating System Software

The following information is required prior to performing a software upgrade:

- Current operating system version
- New operating system version
- Upgrade method
Identifying OS Release Version and Build Number

The operating system can be configured to provide services and perform pre-defined functions through commands issued from the CLI or through the Web Element Manager application.

The operating system software is delivered as a single binary file (.bin file extension) and is loaded as a single instance for the entire system.

• For StarOS releases prior to 16.1, the image filename is identified by its release type, build number and platform type. For example: production.build_number.asr5000.bin. For example, production.54029.asr5000.bin.

• For StarOS release 16.1 onwards, the image filename is identified by a suffix identifying its platform type and release number. For example, asr5000-release_number.bin. For example, asr5000-16.1.0.bin.

The software version information can be viewed from the CLI in the Exec mode by entering the show version command.

[local] host_name# show version

Verify Free Space on the /flash Device

Verify that there is enough free space on the /flash device to accommodate the new operating system image file by entering the following Exec mode command:

[local] host_name# directory /flash

The following is an example of the type of directory information displayed:

-rwxrwxr-x 1 root root 7334 May 5 17:29 asr-config.cfg
-rwxrwxr-x 1 root root 399 Jun 7 18:32 system.cfg
-rwxrwxr-x 1 root root 10667 May 14 16:24 testconfig.cfg
-rwxrwxr-x 1 root root 10667 Jun 1 11:21 testconfig_4.cfg
-rwxrwxr-x 1 root root 5926 Apr 7 16:27 tworpcontext.cfg
-rwxrwxr-x 1 root root 15534 Aug 4 13:31 test_vlan.cfg
-rwxrwxr-x 1 root root 2482 Nov 18 11:09 gateway2.cfg
-rwxrwxr-x 1 root root 159106048 Dec 31 2011 image_filename

1136352 /flash
Filesystem 1k-blocks Used Available Use% Mounted on
/var/run/storage/flash/part1 31154688 1136352 30018336 4% Mounted on
/mnt/user/.auto/onboard/flash

Note the "Available" blocks in the last line of the display. After displaying the directory information, the CLI returns to root and the following prompt appears:

[local] host_name#

Download the Software Image from the Support Site

Access to the Cisco support site and download facility is username and password controlled. You must have an active customer account to access the site and download the StarOS image.

Download the software image to a network location or physical device (PCMCIA card) from which it can be uploaded to the /flash device.

Contact your Cisco representative or Cisco TAC for additional information.
Transfer StarOS Image to /flash on the Chassis

Transfer the new operating system image file to the /flash device on the SMC using one of the following methods:

- Copy the file from a network location or local device plugged in into the SMC by entering the following command:

  
  [local]host_name# copy from_url to_url [-noconfirm]

- Transfer the file to the /flash device using an FTP client with access to the system.

  Important Whenever transferring a operating system software image file using the file transfer protocol (FTP), the FTP client must be configured to transfer the file using binary mode. Failure to use binary transfer mode will make the transferred operating system image file unusable.

- Transfer the file to the /flash device using an SFTP client with access to the system.

Verify that the image file was successfully transferred to the /flash device by running the following Exec mode command:

  [local]host_name# directory /flash

The image filename should appear in the displayed output.

Run the show version /flash/image_filename command to verify the build information.

  [local]host_name# show version /flash/image_filename.bin

Saving a Copy of the Current Configuration File

Prior to upgrading to a new software release, you should copy and rename the current configuration file to the /flash device and to an off-chassis location (external memory device or network URL). This renamed copy assures that you will have a fallback, loadable configuration file should a problem be encountered during the upgrade.

  Important Configuration files created and saved in StarOS release 12.2 and higher cannot be shared across multiple chassis due to a change in the encryption algorithm for passwords and secrets. These release 12.2+ changes modify encrypted data in the configuration file so that it cannot be recognized by software builds prior to 12.2. If it is necessary to revert to a previous build, the chassis must be booted with the copy of the original configuration file. If this copy is not available, then the chassis must be loaded as if it is a new chassis.
Preparing for a Software Downgrade

Downgrading from Release 12.2 to 12.0

If a software upgrade to release 12.2+ fails, you may need to downgrade to a previous software release, such as 12.0. Since the encryption algorithm for passwords and secrets is different from 12.0 to 12.2+, you must save the 12.0 configuration file using the `obsolete-encryption` keyword to preserve passwords and secrets that used the earlier algorithm.

Important

You must save the configuration prior to upgrading to release 12.2+.

The general sequence for a software downgrade in this scenario is as follows:

- Develop a downgrade plan with the assistance of Cisco support personnel.
- Save the pre-12.2 configuration using the `obsolete-encryption` keyword in conjunction with the Exec mode `save configuration` command as shown in the example.

```
[local] host_name# save configuration /flash/v120_system.cfg obsolete-encryption
```

Warning: Use of weaker encryption significantly reduces the security of the system
Are you sure? [Yes|No]: Yes

- To reboot the system using the old configuration, change the boot configuration via the Global Configuration mode to use the old boot image and its previously saved configuration. See the example below.

```
[local] host_name(config)# boot system priority 1 image /flash/v120_asr5000.bin config /flash/v120_system.cfg
```

- Reload the system using the pre-12.2 image and configuration.
- Once the system has reloaded, verify that the configuration is correct.
- Save the current configuration as a backup once the configuration has been validated.

Downgrading from Release 15.0 to 14.0

Release 14 and Release 15 chassis IDs use different encryption formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis key is reset in Release 15 through the setup wizard or `chassis-key` CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release 14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.
Software Upgrade Methods

Occasional software upgrades are required to add features and/or functionality, and to correct any previous defects. There are two software upgrade methods used to add features, functionality, and correct known software defects. They are:

- **On-Line Software Upgrade**, on page 113
- **Off-line Software Upgrade**, on page 119

A brief overview accompanies each upgrade procedure.

### On-Line Software Upgrade

This method is used to perform a software upgrade of the entire operating system.

**Important**

This method is **not** supported for the SGSN or for PDIF. Refer to the appropriate Administration Guide for upgrade information.

This method allows active sessions to be maintained until they are either self-terminated (subscriber ends session) or meet the optionally defined upgrade limit values.

This method upgrades all standby packet processing cards simultaneously, then upgrades any active cards simultaneously.

No new sessions will be accepted by the system during an on-line software upgrade. For PDSN and GGSN: All new session requests are blocked from entering the system through the use of an overload policy. Failure to configure this policy to redirect calls elsewhere can result in a significant service outage. For Closed R-P: There is no explicit overload policy configuration for Closed R-P. The default overload behavior for Closed R-P is to reject calls.

**Caution**

To minimize the risk of service outages, the on-line software upgrade should be performed during a planned maintenance window.

An on-line software upgrade is performed in five stages, where each stage is limited to performing only specific functions until the system is prepared to move to the next stage. Each stage is explained below.

### System Requirements to Support the On-line Software Upgrade Method

A system requires a minimal amount of hardware to support this software upgrade method. The minimum required application cards are:

- Two SMCs (one Active and one Standby)
- Two RCCs (required to support packet processing card migrations)
- Three packet processing cards (one must be a standby, but two standby cards are recommended)
If your system does not meet this minimal system requirement, then this method of software upgrade cannot be supported and you must use the Off-line Software Upgrade, on page 119 method.

**CLI Verification and System Preparation**

After initiating the upgrade command, before beginning Stage 1 of the on-line software upgrade process the system performs a series of checks and procedures. These include:

- Verifying that an open boot priority is available in the boot stack.
- Ensuring that the current local file system is synchronized.
- Creating the new boot stack entry using the new operating system image, boot priority, and configuration file information.
- Performing an SMC synchronization of the new local file system.
- Creating a temporary copy of the configuration that is currently running on the system. This configuration may or may not match the saved CLI configuration file that is named in the boot stack entry. This temporary copy is re-applied to the system during Stage 5 of the on-line software upgrade process.

If any errors are detected during this verification process, the on-line software upgrade is aborted and an error message is displayed.

**Stage 1 - Soft Busy-out**

The system remains in this Stage 1 until either all current sessions are self-terminated by users or the configured session upgrade limits are reached. In the latter case, when one of the two upgrade limits are reached, the system will automatically terminate all sessions that meet the time limit (maximum session life) or, when the usage limit (minimum number of sessions) on the system is met and all sessions are terminated.

For Closed R-P: There is no explicit overload policy configuration for Closed R-P. The default overload behavior for Closed R-P is to reject calls.

For PDSN and GGSN: During this stage, all Session Manager tasks on the system are busied out and incoming session requests are redirected to other systems or rejected by the system, based on the configured overload policy for each service.

This is the only stage in which the `abort upgrade` command may be used. Once Stage 2 is entered, the on-line software upgrade should not be cancelled unless an emergency exists. After Stage 1, the only way that an on-line software upgrade can be terminated is to issue the `reload` command. This causes a system restart that could leave the system in an abnormal state, requiring manual intervention. Issuing the `reload` command should be avoided, and only used as a last resort.

Once all the calls on the system are terminated, the software upgrade enters Stage 2.

**Stage 2 - Stand-alone Operation**

In stage 2, the system switches from normal call operations, leaving only a minimal set of system-level tasks running on the packet processing cards to ensure that any errors are detected and that the re-directors used by the defined overload policy for each service remain in effect.
For Closed R-P: There is no explicit overload policy configuration for Closed R-P. The default overload behavior for Closed R-P is to reject calls.

At this point, the SMCs are fully operational, but each packet processing card in the system is running independently of the others, with no communications occurring between them. In this stage, the network processor units (NPUs) are placed into global bypass mode, wherein the redirector tasks are supported to deny any new session requests to access the system by redirecting them to other devices.

While in global bypass mode, Line Card (LC) ports will be limited to the following services:

- Respond to Ethernet ARP requests
- Respond to ICMP echo requests
- Session rejections or redirection

The following list defines LC features or services that will be unavailable:

- No AAA packets or logs will be sent for each session reject or redirect
- All other packets are discarded
- Port counters will be unavailable
- Port redundancy operations, if configured, will not be operational
- All routing protocols, if enabled and configured, will be disabled
- Routing tables will remain fixed (no updates) throughout the upgrade
- PCF monitoring will be unavailable

---

**Important** Once Stage 2 has begun, no CLI configuration mode commands, except `end` and `exit` (if this stage is entered while a management user is in a configuration mode) will be accepted by the system. Only non-configuration commands within the Exec mode, such as `show` commands may be executed. You can monitor the progress of the on-line software upgrade by entering the `show upgrade` command.

---

Once all of the packet processing cards are operating in stand-alone mode, the on-line software upgrade can proceed.

### Stage 3 - Management Card Upgrade

During this stage, the system performs an SMC switchover, wherein all tasks running on the active SMC are transferred to the standby SMC, which then becomes active and takes control of the system.

The new standby SMC is then restarted and the new operating system software image is loaded onto that SMC. It is important to note that the full CLI configuration that was temporarily saved by the system is not loaded at this point. Instead, only minimal commands used to control the system are loaded.

Once this SMC is operational, another SMC switchover occurs and the second SMC is restarted, loading the new software version. During this period, since both SMC are effectively now running the new operating system software image, the system can continue to perform the on-line software upgrade process without waiting until the last SMC finishes booting up and is placed into its normal standby operational mode.
Stage 4 - Reboot All Packet Processing Cards

In this stage, the active SMC is aware of all system and card-level states and tasks. All packet processing cards that are in standby operational mode are restarted simultaneously, and after passing their Power On Self Test (POST) diagnostics, their control processors (CPs) are loaded with the new operating system software image.

The remaining packet processing cards, which may be enforcing overload policies that prevent any new sessions from entering the system, are then migrated to the cards that are running the new operating system software. The overload policies and minimal system tasks continue running on the newly upgraded packet processing cards. The original active packet processing cards are then restarted, all at once, and upgraded to the new operating system software image.

Important

The system will only migrate as many active packet processing cards as there are standby cards. If this is not a 1:1 correlation, the system will repeat this procedure of migrating - updating - migrating back until all normally active packet processing cards have been upgraded.

Once all of the cards have been upgraded and returned to their desired (normal) operating states, the system can proceed to the final stage of the on-line software upgrade procedure.

Stage 5 - Return System to Normal Operation

In this stage, all cards are running the new operating system software, but the full CLI configuration file that was created at the beginning of the upgrade has not yet been re-loaded and all network processor units (NPUs) are still operating in global bypass mode.

The system begins loading the temporary CLI configuration file that was created at the beginning of the on-line software upgrade. This process can take over a minute to complete, depending on the size and complexity of the configuration file. As this process begins, the NPUs are programmed and all normal tasks are brought on-line, even though they are still in global bypass mode.

Once the configuration is fully loaded, returning the system to its pre-upgrade configuration, the system will switch the NPUs from global bypass mode. This cancels all redirection tasks configured by the overload policies, and the system can once again begin accepting new sessions.

Performing an On-line Software Upgrade

This procedure describes how to perform a software upgrade using the on-line software upgrade method. This procedure assumes that you have a CLI session established and are placing the new operating system image file onto the local file system.

Optional for PDSN: If you want to use the IP Pool Sharing Protocol during your upgrade, refer to Configuring IPSP Before the Software Upgrade in the PDSN Administration Guide.
To begin, make sure you are at the Exec mode prompt.

[local]host_name#

**Step 1**
Verify that there is enough free space on the device to accommodate the new operating system image file by entering the following command:

```
directory { /flash | /pcmcia1 | /hd-raid }
```

The following is an example of the type of directory information displayed:

```
-rwxrwxr-x 1 root root 7334 May 5 2012 startconfig.cfg
-rwxrwxr-x 1 root root 399 Jun 7 18:32 system.cfg
-rwxrwxr-x 1 root root 10667 May 14 16:24 testconfig.cfg
-rwxrwxr-x 1 root root 10667 Jun 1 11:21 testconfig_4.cfg
-rwxrwxr-x 1 root root 5926 Apr 7 2012 tworpcontext.cfg
-rwxrwxr-x 1 root root 15534 Aug 4 2012 test_vlan.cfg
-rwxrwxr-x 1 root root 2482 Nov 18 2011 gateway2.cfg
```

94844 /flash

Filesystem  1k-blocks  Used  Available  Use%  Mounted on
/dev/hda1 124778 94828 29950 76% /flash

Note the "Available" blocks in the last line of the display. After displaying the directory information, it again returns to the root and the following prompt appears:

[local]host_name#

**Step 2**
View the boot stack entries and note the name and location (local device) of the CLI configuration file for the first entry (highest priority) by entering the following command:

```
[local]host_name# show boot
```

**Step 3**
Verify that there are less than 10 boot stack entries in the boot.sys file and that a higher priority in the boot stack is available (minimally there is no priority 1 entry in the boot stack). Refer to **Configuring the Boot Stack** for more information.

The system will automatically create a new boot stack entry for this software, using the <N-1> method, wherein the new entry will have a priority of one less than the previous entry (currently used).

**Step 4**
Using either an FTP client or the `copy` command, transfer the new operating system software image file to the location (network server or local device from where it will be loaded by the system).

For information on how to use the `copy` command, please reference the **Copying Files and Directories** section.

When transferring an operating system software image file via file transfer protocol (FTP), the FTP client must be configured to transfer the file using binary mode. Failure to use binary transfer mode will render the transferred operating system image file unusable.

**Step 5**
Back up the current CLI configuration file by entering the following command:

```
[local]host_name# copy from_url to_url [-noconfirm]
```

For information on using the `copy` command, please see the **Copying Files and Directories** section.

The following command example creates a backup copy of a file called `general.cfg` located on the `/flash` device to a file called `general_3652.cfg`.

```
[local]host_name# copy /flash/general.cfg /flash/general_3652.cfg
```

**Step 6**
Synchronize the local file systems on the management cards by entering the following command:

```
[local]host_name# filesystem synchronize all
```
**Step 7** Enter the Global Configuration mode by entering the following command:

```
configure
```

The following prompt appears:

```
[local]host_name(config)#
```

**Step 8** For PDSN and HA services, configure an overload policy for each service that redirects new session requests to other devices or rejects them as given procedure below.

Note that there is no explicit overload policy configuration for Closed R-P. The default overload behavior for Closed R-P is to reject calls.

a) Enter the Context Configuration mode by entering the following command:

```
context context_name
```

The following prompt appears:

```
[context_name]host_name(config-ctx)#
```

b) Enter the Service Configuration mode for the service to be configured by entering the following command:

```
pdsn-service | ha-service service_name
```

The following prompt appears:

```
[context_name]host_name(config-service_type-service)#
```

c) Configure the overload policy for this service by entering the following command:

```
overload { redirect ipv4_address [weight weight_num] | ipv4_address2 [weight weight_num] | ... ipv4_address16 [weight weight_num] | reject [use-reject-code insufficient-resources] | service-option enforce }
```

For complete information about the above command, see the Context Configuration Mode Commands chapter of the Command Line Interface Reference.

An overload policy must be defined for each service configured in the system.

There is no explicit overload policy configuration for Closed R-P. The default overload behavior for Closed R-P is to reject calls.

d) Repeat step c to configure the overload policy for another configured service.

**Step 9** Return to the Exec mode prompt by entering the following command:

```
end
```

The following prompt appears:

```
[local]host_name#
```

Once the software upgrade process has started, any failure that results in the reboot of the system prior to the upgrading of both SMCs may result in unexpected behavior by the system that requires manual intervention to correct.

**Step 10** Save your configuration as described in the Verifying and Saving Your Configuration chapter.

**Step 11** Begin the on-line software upgrade by entering the following command:

```
upgrade online image_url config cfg_url [-noconfirm]
```

The SMCs within the system load the new operating system image and the local file system is synchronized. The system then updates all standby packet processing cards. Next, it begins to update each active packet processing card, one at a time. The system monitors all sessions being processed by active packet processing cards. When all sessions facilitated by a specific Session Manager task are either self-terminated or automatically terminated based on the thresholds configured in step 8, the system migrates the packet processing cards in active mode to standby mode. Each new standby
packet processing card is upgraded and rebooted. Once booted, the card is placed back into service as an active packet processing card.

For complete information about the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

Step 12  Optional: To view the status of an on-line software process, enter the following command from the Exec mode prompt:

```
[local] host_name# show upgrade
```

This command displays the status of the on-going on-line software upgrade. Once all SMCs have been upgraded, the full configuration file is loaded, the NPUs are taken out of global bypass mode, and the system is returned to normal operation. When the on-line software upgrade has been completed, all sessions on the system will be new and all system statistics will have been reset. Upon completion of the software upgrade, the system will automatically begin accepting new sessions, using the pre-existing configuration that was running. All system statistical counters will have been reset to zero.

---

**Aborting an On-line Software Upgrade**

Abort the on-line software upgrade process by entering the following command:

```
[local] host_name# abort upgrade [-noconfirm]
```

**Important**  The `abort upgrade` command can only be used during Stage 1 (busy-out) of an on-line software upgrade.

---

**Restoring the Previous (Pre-online Upgrade) Software Image**

If for some reason you need to restore the system to the software image that was running before the online upgrade process, perform the On-Line Software Upgrade again and specify the locations of the original software image and configuration files.

---

**Off-line Software Upgrade**

An off-line software upgrade can be performed for any system, upgrading from any version of operating system software to any version, regardless of version number. This process is considered off-line because while many of the steps can be performed while the system is currently supporting sessions, the last step of this process requires a reboot to actually apply the software upgrade.

This procedure assumes that you have a CLI session established and are placing the new operating system image file onto the local file system. To begin, make sure you are at the Exec mode prompt:

```
[local] host_name#
```
Configure a Newcall Policy

Configure a newcall policy from the Exec mode to meet your service requirements. When enabled the policy redirects or rejects new calls in anticipation of the chassis reload that completes the upgrade process. This reduces the amount of service disruption to subscribers caused by the system reload that completes the upgrade.

Important

Newcall policies are created on a per-service basis. If you have multiple services running on the chassis, you can configure multiple newcall policies.

The syntax for newcall policies is described below:

```
[local] host_name# newcall policy { asngw-service | asnpc-service | sgsn-service } { all | name service_name } reject
[local] host_name# newcall policy cscf-service { all | name service_name } { redirect target_ip_address | weight weight_num | target_ipaddress2 | weight weight_num | ... target_ip address16 | weight weight_num | reject }
[local] host_name# newcall policy { fa-service | lns-service | mipv6ha-service } { all | name service_name } reject
[local] host_name# newcall policy ha-service { all | name service_name } { redirect target_ip_address | weight weight_num | target_ipaddress2 | weight weight_num | ... target_ip address16 | weight weight_num | reject }
[local] host_name# newcall policy ggsn-service { apnname apn_name | all | name service_name } reject
[local] host_name# newcall policy hnbgw-service { all | name service_name } reject
[local] host_name# newcall policy { pcc-af-service | pcc-policy-service } { all | name service_name } reject
[local] host_name# newcall policy mme-service { all | name service_name } reject
```

For complete information about the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

Configure a Message of the Day Banner

Optional: Configure a "Message of the Day" banner informing other management users that the system will be rebooted by entering the following command from the Global Configuration mode prompt.

```
[local] host_name(config)# banner motd "banner_text"
```

`banner_text` is the message that you would like to be displayed and can be up to 2048 alphanumeric characters. Note that `banner_text` must begin with and end in quotation marks (" "). For more information in entering CLI banner information, see the CLI Reference. The banner is displayed when an administrative user logs onto the CLI.
Back up the Current CLI Configuration File

Back up the current CLI configuration file by entering the following command:

```plaintext
[local] host_name# copy from_url to_url [-noconfirm]
```

This creates a mirror-image of the CLI configuration file linked to the operating system defined in the current boot stack entry.

The following command example creates a backup copy of a file called `general.cfg` located on the `/flash` device to a file called `general_3652.cfg`:

```plaintext
[local] hcopost_name# copy /flash/general.cfg /flash/general_3652.cfg
```

Create a New Boot Stack Entry

Create a new boot stack entry for the new file group, consisting of the new operating system image file and the currently used CLI configuration file by entering the following Global Configuration command:

```plaintext
[local] host_name(config)# boot system priority number image image_url /flash/filename config cfg_url /flash/filename
```

Assign the next highest priority to this entry, by using the `<N-1>` method, wherein you assign a priority number that is one number less than your current highest priority.

---

**Important**  
Run the Exec mode `show boot` command to verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (minimally there is no priority 1 entry in the boot stack).

If priority 1 is in use, you must renumber the existing entries to ensure that at least that priority is available.

The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Use the no boot system priority command to delete a boot stack entry.

```plaintext
[local] host_name# configure
[local] host_name(config)# no boot system priority number
```

To add new boot stack entries to the boot.sys file enter the following commands:

```plaintext
[local] host_name# configure
[local] host_name(config)# boot system priority number image image_url config cfg_url
```

For information on using the `boot system priority` command, refer to the Adding a New Boot Stack Entry, on page 107.

Synchronize File Systems

Synchronize the local file systems on the management cards by entering the following command:

```plaintext
[local] host_name# filesystem synchronize all
```

Save the Running Configuration

Save the currently running, upgraded configuration prior to rebooting the chassis.
To save the running configuration to the current configuration file:

```
[local] host_name# save configuration /flash
```

**Reboot the Chassis**

Reboot the chassis by entering the following command:

```
[local] host_name# reload [-noconfirm]
```

As the system reboots, it loads the new operating system software image and its corresponding CLI configuration file using the new boot stack entry configured earlier.

After the system reboots, establish a CLI session and enter the `show version` command to verify that the active software version is correct.

*Optional for PDSN:* If you are using the IP Pool Sharing Protocol during your upgrade, refer to Configuring IPSP Before the Software Upgrade in the PDSN Administration Guide.

**Verify the Running Software Version**

After the system has successfully booted, verify that the new StarOS version is running by executing the Exec mode `show version` command.

```
[local] host_name# show version
```

**Restoring the Previous Software Image**

If for some reason you need to undo the upgrade, perform the upgrade again except:

- Specify the locations of the upgrade software image and configuration files. *Then*
- Specify the locations of the original software image and configuration files.

**Upgrading ICSR Chassis**

The procedure for upgrading primary and backup ICSR chassis is described in the Interchassis Session Recovery chapter. Essentially the procedure requires upgrading the primary and standby chassis using the off-line method while each is in standby mode.

**Performing Dynamic Software Updates**

StarOS allows the runtime loading of plugins. All StarOS builds include a "default" baseline plugin.

This feature is currently used to dynamically update the detection logic used to filter P2P applications via the Application Detection and Control (ADC) feature.

Patching is the process used to install a plugin as an incremental update to a StarOS release. One plugin can be provided to multiple, compatible, concurrent product releases. A plugin is distributed in the form of a compressed distribution kit via the internet or by other means (USB stick, CD, etc.).
A plugin is a functional software entity that provides incremental updates to a pre-existing StarOS software component. Plugins have the characteristic of being dynamically loadable at runtime and do not require a system restart. A plugin has a name and one or more versions. All plugin names are known to the system at product release.

For complete information on the Dynamic Software Update process, refer to the ADC Administration Guide.

Managing License Keys

License keys define capacity limits (number of allowed subscriber sessions) and available features on your system. Adding new license keys allows you to increase capacity and add new features as your subscriber base grows.

New System License Keys

New systems are delivered with no license keys installed. In most cases, you receive the license key in electronic format (usually through mail).

When a system boots with no license key installed a default set of restricted session use and feature licenses is installed. The following Exec Mode command lists the license information:

```
[local]host_name# show license information
```

With no license key installed, the session use licenses for PDSN, HA, GGSN, and L2TP LNS are limited to 10,000 sessions.

SMCs are shipped with a CompactFlash card installed. A single license key is generated using the serial numbers from the CompactFlash cards. If two SMCs are installed, the license key is generated from the serial numbers of both CompactFlash cards. This allows the license to be distributed across both SMCs, ensuring that licensed capacity and features remain available during a switchover event.

Session Use and Feature Use Licenses

Session use and feature use licenses are software mechanisms that provide session limit controls and enable special features within the system. These electronic licenses are stored in the system's configuration file that is loaded as part of the system software each time the system is powered on or restarted.

- Session use licenses limit the number of concurrent sessions that a system is capable of supporting per service type and are acquired on an as-needed basis. This allows carriers to pay only for what they are using and easily increase capacity as their subscriber base grows.
- Feature use licenses enable specific features/functionality within the system and are distributed based on the total number of sessions supported by the system.

Installing New License Keys

Use the instructions below to install a new license key.
Cutting and Pasting the Key

If you have a copy of the license, use the following configuration to cut and paste just the license key part:

**Step 1**
From the Exec mode, enter the following:
```
configure
license key license
exit
```

*license* is the license key string. The license can be an alphanumeric string of 1 through 1023 characters that is case sensitive. Copy the license key as shown in the example below, including the "" (double-quote slash). Please note: this is not a functional license.
```
"\VER=1|C1M=000-0000-00|C1S=03290231803|C2M=11-1111-11-1|C2S=\ STCB21M82003R0411A4|DOI=0000000000|DOE=0000000000|ISS=1|NUM=13459| 0000000000000000|LSL=0000000000000000|LSG=5000000000000000|LSL=5000000000000000\|FIS=Y| FR4=Y|FPP=Y|FCM=Y|FTC=Y|FMG=Y|FRS-Y|FPM-Y|FID-Y|SIG=MCwCF\ Esng6Bz/XdmyfLe7rHcD4sVP2bzAhQ3IeHDoyyd6388jHaHD99ag36SG267gahssja777 end
```

**Step 2**
Verify that the license key just entered was accepted by entering the following command at the Exec mode prompt:
```
[local] host_name# show license key
```
The new license key should be displayed. If it is not, return to the Global configuration mode and re-enter the key using the *license key* command.

An invalid license will not be accepted. A Failure error will appear in the output of the *license key* command when you attempt to configure an invalid license key. If you use the -force option to install an invalid license key, the license will be placed into a 30-day grace period. StarOS will generate daily syslog error messages and SNMP traps during the grace period. The output of the *show license information* command will indicate "License State" as "Not Valid".

**Step 3**
Verify that the license key enabled the correct functionality by entering the following command:
```
[local] host_name# show license information
```
All license keys and the new session capacity or functionality enabled should be listed. If the functionality or session capacity enabled by the new key is incorrect, please contact your service representative.

**Step 4**
Save your configuration as described in the Verifying and Saving Your Configuration chapter. Failure to save the new license key configuration in the current CLI configuration file will result in the loss of any of the new features enabled by the license key once the system is reloaded.

**Adding License Keys to Configuration Files**

License keys can be added to a new or existing configuration file.
License key information is maintained as part of the CLI configuration. Each time a key is installed or updated, you must re-save the configuration file.

Important

Step 1
Open the configuration file to which the new license key commands are to be copied.

Step 2
Copy the license as shown in the example, including the "" (double-quote slash). Please note: this is not a functional license.
""
VER=1|C1M=000-0000-00|C1S=03290231803|C2M=11-1111-11-1|C2S=\STCB21M82003R80411A4| DOI=0000000000|DOE=0000000000|ISS=1|NUM=13459|0000000000000|LSP=000000|LSH=000000| LSG=500000|LSL=500000|FIAS=Y|FR4=Y|FFP=Y|FCS=Y|FTC=Y|FMG=Y|FCR=Y|FSR=Y|FPP=Y|FID=Y|SIG=MCwCF\Esnq6Bs/XdmmyLe7rHcld45b32AhQ31eHdoyyd6388jHsHD999s3SsG2s7gshsaja77 end

Step 3
Paste the license key into the configuration
Paste the license key information at the beginning of the configuration file to ensure the system has the expected capacity and features before it configures contexts.

Step 4
Save your configuration as described in the Verifying and Saving Your Configuration chapter.

License Expiration Behavior

When a license expires, there is a built-in grace period of 30 days that allows normal use of the licensed session use and feature use licenses. This allows you to obtain a new license without any interruption of service.

The following Exec mode command lists the license information including the date the grace period is set to expire:
[local]host_name# show license information

Requesting License Keys

License keys for the system can be obtained through your Cisco account representative. Specific information is required before a license key may be generated:

• Sales Order or Purchase Order information
• Desired session capacity
• Desired functionality
• CompactFlash detail

To obtain the model and serial number of a CompactFlash card, enter the following command at the Exec mode prompt:
[local]host_name# show card hardware slot_number

Where slot# is either 8 or 9, depending on the chassis card slot where the SPC/SMC is installed.
Look under the "Compact Flash" heading for "Serial Number" as shown in the example below:

<table>
<thead>
<tr>
<th>Compact Flash</th>
<th>Type</th>
<th>Model</th>
<th>Serial number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>128M disk</td>
<td>TOSHIBATHNCF128MBA</td>
<td>RSTCBZ1M82003R80411A4</td>
</tr>
</tbody>
</table>

**Important**

The ICSR license key for Active and Standby chassis are uniquely coded to each chassis. Two separate license keys are required.

---

**Viewing License Information**

To see the license detail, enter the following command from the Exec mode:

```
[local] host_name# show license information [full] [key] [full]
```

**Deleting a License Key**

Use the procedure below to delete the session and feature use license key from a configuration. You must be a security administrator or administrator.

```
configure
 no license key
exit

[local] host_name# show license key
```

The output of this command should display: "No license key installed".

**Management Card Replacement and License Keys**

In the event that an individual SMC is replaced, the CompactFlash card on the new SMC must be exchanged with the CompactFlash from the original SMC because the license key was generated based on the serial number of the CompactFlash card associated with the original SMC.

Exchanging the two CompactFlash card modules ensures that license redundancy is maintained, as the license key will continue to match both CompactFlash serial numbers on both SPCs/SMCs.

**Important**

Failure to provide license key redundancy can result in the loss of session capacity and enhanced features should a failover or manual switchover occur.

Instructions for the removal and installation of the CompactFlash on SMCs can be found in the *ASR 5000 Installation Guide*.

**Managing Local-User Administrative Accounts**

Unlike context-level administrative accounts which are configured via a configuration file, information for local-user administrative accounts is maintained in a separate file in flash memory and managed through the
software's Shared Configuration Task (SCT). Because local-user accounts were designed to be compliant with ANSI T1.276-2003, the system provides a number of mechanisms for managing these types of administrative user accounts.

**Configuring Local-User Password Properties**

Local-user account password properties are configured globally and apply to all local-user accounts. The system supports the configuration of the following password properties:

- **Complexity**: Password complexity can be forced to be compliant with ANSI T1.276-2003.
- **History length**: How many previous password versions should be tracked by the system.
- **Maximum age**: How long a user can use the same password.
- **Minimum number of characters to change**: How many characters must be changed in the password during a reset.
- **Minimum change interval**: How often a user can change their password.
- **Minimum length**: The minimum number of characters a valid password must contain.

Refer to the `local-user password` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details on each of the above parameters.

**Configuring Local-User Account Management Properties**

Local-user account management includes configuring account lockouts and user suspensions.

**Local-User Account Lockouts**

Local-user accounts can be administratively locked for the following reasons:

- **Login failures**: The configured maximum login failure threshold has been reached. Refer to the `local-user max-failed-logins` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.

- **Password Aging**: The configured maximum password age has been reached. Refer to the `local-user password` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.

Accounts that are locked out are inaccessible to the user until either the configured lockout time is reached (refer to the `local-user lockout-time` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference*) or a security administrator clears the lockout (refer to the `clear local-user` command in the *Exec Mode Commands* chapter of the *Command Line Interface Reference*).

**Important**

Local-user administrative user accounts could be configured to enforce or reject lockouts. Refer to the `local-user username` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.
Local-User Account Suspensions

Local-user accounts can be suspended as follows:

```bash
configure
 suspend local-user name
```

A suspension can be removed by entering:

```bash
configure
 no suspend local-user name
```

Changing Local-User Passwords

Local-user administrative users can change their passwords using the `password change` command in the Exec mode. Users are prompted to enter their current and new passwords.

Security administrators can reset passwords for local-users by entering the following command from the root prompt in the Exec mode:

```bash
[local] host_name# password change username name
```

`name` is the name of the local-user account for which the password is to be changed. When a security administrator resets a local-user’s password, the system prompts the user to change their password the next time they login.

All new passwords must adhere to the password properties configured for the system.
Monitoring the System

This chapter provides information for monitoring system status and performance using the `show` commands found in the Command Line Interface (CLI). These commands have many related keywords that allow them to provide useful information on all aspects of the system ranging from current software configuration through call activity and status.

The selection of keywords described in this chapter is intended to provide the most useful and in-depth information for monitoring the system. For additional information on these and other `show` command keywords, refer to the *Exec Mode show Commands* chapter in the *Command Line Interface Reference*.

This chapter includes the following sections:

- SNMP Notifications, page 129
- Monitoring System Status and Performance, page 129
- Clearing Statistics and Counters, page 131
- Monitoring ASR 5000 Hardware Status, page 131

### SNMP Notifications

In addition to the CLI, the system supports Simple Network Management Protocol (SNMP) notifications that indicate status and alarm conditions. Refer to the *SNMP MIB Reference* for a detailed listing of these notifications.

### Monitoring System Status and Performance

This section contains commands used to monitor the status of tasks, managers, applications and other software components in the system. Output descriptions for most of the commands are located in the *Statistics and Counters Reference*.

**Table 7: System Status and Performance Monitoring Commands**

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Administrative Information</td>
<td></td>
</tr>
</tbody>
</table>
### To do this: | Enter this command:
--- | ---
Display Current Administrative User Access | show administrators
View a list of all administrative users currently logged on the system | show administrators
View the context in which the administrative user is working, the IP address from which the administrative user is accessing the CLI, and a system generated ID number | show administrators session id
View information pertaining to local-user administrative accounts configured for the system | show local-user verbose
View statistics for local-user administrative accounts | show local-user statistics verbose
View information pertaining to your CLI session | show cli

#### Determining System Uptime

View system uptime (time since last reboot) | show system uptime

#### View NTP Server Status

View NTP servers status | show ntp status

#### View System Resources

View all system resources such as CPU resources and number of managers created | show resources [ cpu ]

#### View System Alarms

View information about all currently outstanding alarms | show alarm outstanding all verbose
View system alarm statistics | show alarm statistics

#### View Congestion-Control Statistics

View Congestion-Control Statistics | show congestion-control statistics

#### View Remote Management Statistics

Display SNMP Notification Statistics | show snmp notifies
View SNMP notification statistics | show snmp notifies
Display SNMP Access Statistics | show snmp accesses
View SNMP access statistics | show snmp accesses
Display SNMP Trap History | show snmp trap history
View SNMP trap history | show snmp trap history
Display SNMP Trap Statistics | show snmp trap statistics
View SNMP Trap Statistics | show snmp trap statistics
Display ORBEM Information | show orbem client id
View ORBEM client status | show orbem client id
To do this:	Enter this command:
View ORBEM session information | show orbem session table
View individual ORBEM sessions | show orbem session id orbem
View ORBEM status information | show orbem status
View Port Counters
Display Port Datalink Counters | show port datalink counters slot#/port#
View datalink counters for a specific port
Display Port Network Processor Unit (NPU) Counters | show port npu counters slot#/port#
View NPU counters for a specific port

**Important** The commands or keywords/variables that are available are dependent on platform type, product version, and installed license(s).

**Important** Some commands have different outputs depending on the platform type.

### Clearing Statistics and Counters

It may be necessary to periodically clear statistics and counters in order to gather new information. The system provides the ability to clear statistics and counters based on their grouping (PPP, MIPHA, MIPFA, etc.). Statistics and counters can be cleared using the CLI `clear` command. Refer to the *Exec Mode Commands* chapter in the *Command Line Interface Reference* for detailed information on using this command.

### Monitoring ASR 5000 Hardware Status

Use the commands contained in this section to monitor the status of the hardware components in the chassis. For output descriptions for most of the commands, refer to the *Statistics and Counters Reference*.

**Important** The commands or keywords and variables are dependent on platform type, product version, and installed license(s). Some commands produce different outputs, depending on the platform type.

**Table 8: Hardware Monitoring Commands**

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the Status of the Power System</td>
<td></td>
</tr>
<tr>
<td>To do this:</td>
<td>Enter this command:</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>View the status of the PFUs</td>
<td><code>show power chassis</code></td>
</tr>
<tr>
<td>View the power status of the individual chassis slots</td>
<td><code>show power all</code></td>
</tr>
<tr>
<td><strong>View the Status of the Fan Trays</strong></td>
<td></td>
</tr>
<tr>
<td>View the status of the fan trays, including current relative speeds and temperatures.</td>
<td><code>show fans</code></td>
</tr>
<tr>
<td><strong>Determine the Status of Installed Cards</strong></td>
<td></td>
</tr>
<tr>
<td>View a listing of installed application cards</td>
<td><code>show card table</code></td>
</tr>
<tr>
<td>View a listing of installed line cards</td>
<td><code>show linecard table</code></td>
</tr>
<tr>
<td><strong>View Line Card-to-Application Card Mappings</strong></td>
<td></td>
</tr>
<tr>
<td>View line card-to-application card mappings</td>
<td><code>show card mappings</code></td>
</tr>
<tr>
<td><strong>Perform a Hardware Inventory</strong></td>
<td></td>
</tr>
<tr>
<td>View all cards installed in the chassis and their hardware revision, part, serial, assembly, and fabrication numbers</td>
<td><code>show hardware inventory</code></td>
</tr>
<tr>
<td>View all cards installed in the chassis and their hardware revision, and the firmware version of the on-board Field Programmable Gate Array (FPGAs)</td>
<td><code>show hardware version board</code></td>
</tr>
<tr>
<td>View details of a specific card. Output contains same information as output of both show hardware inventory and show hardware version board</td>
<td><code>show hardware card slot_number</code></td>
</tr>
<tr>
<td><strong>View Card Diagnostics</strong></td>
<td></td>
</tr>
<tr>
<td>View boot, power and temperature diagnostics</td>
<td><code>show maximum-temperature; show card diag slot_number</code></td>
</tr>
<tr>
<td>View temperature diagnostics</td>
<td><code>show temperature</code></td>
</tr>
<tr>
<td>View runtime, or real time, information</td>
<td><code>show card info slot_number</code></td>
</tr>
<tr>
<td><strong>View the LED Status of All Installed Cards</strong></td>
<td></td>
</tr>
<tr>
<td>Note Refer to the descriptions of card-level and system-level LEDs in the <em>ASR 5000 Installation Guide</em> for detailed information.</td>
<td></td>
</tr>
<tr>
<td>View the LED status for all installed cards</td>
<td><code>show leds all</code></td>
</tr>
<tr>
<td><strong>View Available Physical Ports</strong></td>
<td></td>
</tr>
<tr>
<td>View ports that are available to the system</td>
<td><code>show port table</code></td>
</tr>
<tr>
<td>View detailed information for a specific port</td>
<td><code>show port info slot_number/port_number</code></td>
</tr>
<tr>
<td><strong>View CPU Resource Information</strong></td>
<td></td>
</tr>
<tr>
<td>View CPU resource information</td>
<td><code>show resource cpu</code></td>
</tr>
<tr>
<td>View CPU resources</td>
<td>`show resources { cpu</td>
</tr>
<tr>
<td>View CPU usage information</td>
<td><code>show cpu table; show cpu info</code></td>
</tr>
</tbody>
</table>
## Monitoring the System

### Monitoring ASR 5000 Hardware Status

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View CPU usage information</td>
<td>`show cpu info [ graphs</td>
</tr>
<tr>
<td><strong>View Component Temperature Information</strong></td>
<td></td>
</tr>
<tr>
<td>View current component temperatures</td>
<td><code>show temperature</code></td>
</tr>
<tr>
<td>View maximum temperatures reached since last timestamp.</td>
<td><code>show maximum-temperatures</code></td>
</tr>
</tbody>
</table>
Bulk Statistics

This chapter provides configuration information for:

- Configuring Communication with the Collection Server, page 135
- Viewing Collected Bulk Statistics Data, page 138
- Manually Gathering and Transferring Bulk Statistics, page 138
- Clearing Bulk Statistics Counters and Information, page 138
- Bulkstats Schema Nomenclature, page 138
- Bulk Statistics Event Log Messages, page 139

Configuring Communication with the Collection Server

Two configuration methods are available for defining how bulk statistics are collected and managed. A "standard" configuration allows the system to automatically assign a number to the bulk statistics file. Optionally, a number can be specified by an administrator in the optional configuration method. Command details and descriptions of keywords and variables for commands in this chapter are located in the Bulk Statistics Configuration Mode Commands and Bulk Statistics File Configuration Mode Commands chapters in the Command Line Interface Reference.

Configuring Standard Settings

The configuration example in this section defines basic operation of the bulk statistics feature. Use the following example configuration to set up the system to communicate with the statistic collection server:

```
configure
 bulkstats mode
 schema name format format_string
 sample-interval time_interval
 transfer-interval xmit_time_interval
 limit mem_limit
 exit
 bulkstats collection
end
```
Configuring Optional Settings

This section describes optional commands that can be used within the Bulk Statistics Configuration mode. Specifically, you can configure bulk statistic "files" under which to group the bulk statistics. "Files" are used to group bulk statistic schema, delivery options, and receiver configuration. Because multiple "files" can be configured, this functionality provides greater flexibility because it allows you to configure different schemas to go to different receivers.

```plaintext
configure
 bulkstats mode
 file number
 receiver ip_address { primary | secondary }
 [mechanism { (ftp | sftp) | login user_name }
 [encrypted] password pwd]
 receiver mode { redundant | secondary-on-failure }
 remote file format naming_convention [both-receivers | primary-receiver | secondary-receiver]
 header format header_format
 footer format footer_format
 exit
 exit
bulkstats collection
end
```

Configuring Bulk Statistic Schemas

In each configuration example described in Configuring Standard Settings, on page 135 and Configuring Optional Settings, on page 136, the following is the primary command used to configure the type of schema and the statistics collected:

```plaintext
configure
 bulkstats mode
 schema_type schema format format_string
 exit
bulkstats collection
end
```

Refer to the Bulk Statistics Configuration Mode Commands and Bulk Statistics File Configuration Mode Commands chapters in the Command Line Interface Reference for more information regarding supported schemas, available statistics, and proper command syntax.

Using show bulkstats Commands

There are several Exec mode `show bulkstats` commands that display information about defined parameters.

- `show bulkstats data` – displays criteria contained in the statistics gathering scheme for up to four files. See Viewing Collected Bulk Statistics Data, on page 138.
- `show bulkstats schemas` – displays the scheme used to gather statistics including collection and transmission statistics. See Verifying Your Configuration, on page 137.
Verifying Your Configuration

After configuring support for bulk statistics on the system, you can check your settings prior to saving them. Follow the instructions in this section to verify your bulk statistic settings. These instructions assume that you are at the root prompt for the Exec mode.

Check your collection server communication and schema settings by entering the following Exec mode command:

`show bulkstats schemas`

The following is an example command output:

Bulk Statistics Server Configuration:
- Server State: Enabled
- File Limit: 6000 KB
- Sample Interval: 15 minutes (0D 0H 15M)
- Transfer Interval: 480 minutes (0D 0H 15M)
- Collection Mode: Cumulative
- Receiver Mode: Secondary-on-failure
- Local File Storage: None

Bulk Statistics Server Statistics:
- Records awaiting transmission: 114
- Bytes awaiting transmission: 8092
- Total records collected: 4190178
- Total bytes collected: 4188512
- Total records transmitted: 59812
- Total bytes transmitted: 4188512
- Total records discarded: 0
- Total bytes discarded: 0
- Last collection time required: 2 second(s)
- Last transfer time required: 0 second(s)
- Last successful transfer: Wednesday December 7 12:14:30 EDT 2011
- Last successful tx recs: 190
- Last successful tx bytes: 13507
- Last attempted transfer: Wednesday December 7 12:14:30 EDT 2011

File 1
- Remote File Format: /users/ems/server/data/chicago/bulkstat%date%%time%.txt
- File Header: "CHI_test %time%"
- File Footer: ""

Bulkstats Receivers:
- Primary: 192.168.0.100 using FTP with username administrator
- Records awaiting transmission: 0
- Bytes awaiting transmission: 0
- Total records collected: 0
- Total bytes collected: 0
- Total records transmitted: 0
- Total bytes transmitted: 0
- Total records discarded: 0
- Total bytes discarded: 0
- Last transfer time required: 0 second(s)
- No successful data transfers
- No attempted data transfe

File 2 not configured
File 3 not configured
File 4 not configured

- `show bulkstats variables` – displays available bulkstat variables (%variable%) by schema type that can be incorporated into a schema format.
Saving Your Configuration

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Viewing Collected Bulk Statistics Data

The system provides a mechanism for viewing data that has been collected but has not been transferred. This data is referred to as "pending data".

View pending bulk statistics data per schema by entering the following Exec mode command:

```
show bulkstats data
```

The above command also shows the statistics of remote files, if configured as described in Configuring Optional Settings, on page 136.

Manually Gathering and Transferring Bulk Statistics

There may be times where it is necessary to gather and transfer bulk statistics outside of the scheduled intervals. The system provides commands that allow you to manually initiate the gathering and transferring of bulk statistics.

To manually initiate the gathering of bulk statistics outside of the configured sampling interval, enter the following Exec mode command:

```
bulkstats force gather
```

To manually initiate the transferring of bulk statistics prior to reaching the of the maximum configured storage limit, enter the following Exec mode command:

```
bulkstats force transfer
```

Clearing Bulk Statistics Counters and Information

It may be necessary to periodically clear counters pertaining to bulk statistics in order to gather new information or to remove bulk statistics information that has already been collected. The following Exec mode command can be used to perform either of these functions:

```
clear bulkstats { counters | data }
```

The clear bulkstats data command clears any accumulated data that has not been transferred. This includes any "completed" files that have not been successfully transferred.

Bulkstats Schema Nomenclature

This section describes the nomenclature associated with configuring and viewing bulkstats.
Statistic Types

The following statistic types are defined in the *Statistics and Counters Reference* user document and displayed in the output of the Exec mode `show bulkstats variables` command:

- **Counter:** A counter records incremental data cumulatively and rolls over when the counter limit is reached.
  - All counter statistics are cumulative and reset only by one of the following methods: roll-over when the limit is reached, after a system restart, or after a clear command is performed.
  - The limit depends upon the data type.

- **Gauge:** A gauge statistic indicates a single value; a snapshot representation of a single point in time within a defined time frame. The gauge changes to a new value with each snapshot though a value may repeat from one period to the next. The limit depends upon the data type.

- **Information:** This type of statistic provides information, often intended to differentiate sets of statistics; for example, a VPN name or IP address. The type of information provided depends upon the data type.

Data Types

The data type defines the format of the data for the value provided by the statistic. The following data types appear in the *Statistics and Counters Reference* and the output of the Exec mode `show bulkstats variables` command:

- **Int32:** A 32-bit integer; the roll-over to zero limit is 4,294,967,295.
- **Int64:** A 64-bit integer; the roll-over to zero limit is 18,446,744,073,709,551,615.
- **Float:** A numeric value that includes decimal points; for example, 1.345.
- **String:** A series of ASCII alphanumeric characters in a single grouping, usually pre-configured.

Bulk Statistics Event Log Messages

The stat logging facility captures several events that can be useful for diagnosing errors that could occur with either the creation or writing of a bulk statistic data set to a particular location.

The following table displays information pertaining to these events.

*Table 9: Logging Events Pertaining to Bulk Statistics*

<table>
<thead>
<tr>
<th>Event</th>
<th>Event ID</th>
<th>Severity</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local File Open Error</td>
<td>31002</td>
<td>Warning</td>
<td>&quot;Unable to open local file filename for storing bulkstats data&quot;</td>
</tr>
<tr>
<td>Receiver Open Error</td>
<td>31018</td>
<td>Warning</td>
<td>&quot;Unable to open url filename for storing bulkstats data&quot;</td>
</tr>
<tr>
<td>Event</td>
<td>Event ID</td>
<td>Severity</td>
<td>Additional Information</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------------------------------------------------------</td>
</tr>
<tr>
<td>Receiver Write Error</td>
<td>31019</td>
<td>Warning</td>
<td>&quot;Unable to write to url <code>filename</code> while storing bulkstats data&quot;</td>
</tr>
<tr>
<td>Receiver Close Error</td>
<td>31020</td>
<td>Warning</td>
<td>&quot;Unable to close url <code>filename</code> while storing bulkstats data&quot;</td>
</tr>
</tbody>
</table>
System Logs

This chapter describes how to configure parameters related to the various types of logging and how to viewing their content. It includes the following sections:

- System Log Types, page 141
- Configuring Event Logging Parameters, page 142
- Configuring Active Logs, page 144
- Specifying Facilities, page 145
- Configuring Trace Logging, page 154
- Configuring Monitor Logs, page 154
- Viewing Logging Configuration and Statistics, page 155
- Viewing Event Logs Using the CLI, page 155
- Configuring and Viewing Crash Logs, page 156
- Checkpointing Logs, page 159
- Saving Log Files, page 160
- Event ID Overview, page 160

System Log Types

There are five types of logs that can be configured and viewed on the system:

- **Important** Not all Event Logs can be configured on all products. Configurability depends on the hardware platform and licenses in use.

- **Event**: Event logging can be used to determine system status and capture important information pertaining to protocols and tasks in use by the system. This is a global function that will be applied to all contexts, sessions, and processes.
Active: Active logs are operator configurable on a CLI instance-by-CLI instance basis. Active logs configured by an administrative user in one CLI instance cannot be viewed by an administrative user in a different CLI instance. Each active log can be configured with filter and display properties that are independent of those configured globally for the system. Active logs are displayed in real time as events are generated.

Trace: Trace logging can be used to quickly isolate issues that may arise for a particular connected subscriber session. Traces can be taken for a specific call identification (callid) number, IP address, mobile station identification (MSID) number, or username.

Monitor: Monitor logging records all activity associated with a particular session. This functionality is available in order to comply with law enforcement agency requirements for monitoring capabilities of particular subscribers. Monitors can be performed based on a subscriber's MSID or username.

Crash: Crash logging stores useful information pertaining to system software crashes. This information is useful in determining the cause of the crash.

Configuring Event Logging Parameters

The system can be configured to generate logs based on user-defined filters. The filters specify the facilities (system tasks or protocols) that the system is to monitor and severity levels at which to trigger the generation of the event entries.

Event logs are stored in system memory and can be viewed via the CLI. There are two memory buffers that store event logging information. The first buffer stores the active log information. The second buffer stores inactive logging information. The inactive buffer is used as a temporary repository to allow you to view logs without having data be overwritten. Logs are copied to the inactive buffer only through manual intervention.

Each buffer can store up to 50,000 events. Once these buffers reach their capacity, the oldest information is removed to make room for the newest.

To prevent the loss of log data, the system can be configured to transmit logs to a syslog server over a network interface.

Important

For releases after 15.0 MR4, TACACS+ accounting (CLI event logging) will not be generated for Lawful Intercept users (priv-level 15 and 13).

Configuring Event Log Filters

You can filter the contents of event logs at the Exec mode and Global Configuration mode levels. For additional information, see the Command Line Interface Reference.

Exec Mode Filtering

These commands allow you to limit the amount of data contained in logs without changing global logging parameters.
Follow the example below to filter logs via Exec mode commands.

```
logging active | copy runtime filters | [event-verbosity event_level] | [pdu-data format] | [pdu-verbosity pdu_level]
```

Notes:

- **copy runtime filters** – Copies the runtime filters and uses that copy to filter the current logging session.
- **event-verbosity event_level** – Specifies the level of verboseness to use in logging of events as one of:
  - **min** – Displays minimal information about the event. Information includes event name, facility, event ID, severity level, date, and time.
  - **concise** – Displays detailed information about the event, but does not provide the event source within the system.
  - **full** – Displays detailed information about event, including source information, identifying where within the system the event was generated.

- **pdu-data format** – Specifies output format for packet data units when logged as one of:
  - **none** – raw format (unformatted).
  - **hex** – hexadecimal format
  - **hex-ascii** – hexadecimal and ASCII similar to a main-frame dump

- **pdu-verbosity pdu_level** – Specifies the level of verboseness to use in logging of packet data units as an integer from 1 through 5, where 5 is the most detailed.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

**Global Configuration Mode Filtering**

You can filter the contents of event logs at the Exec mode and Global Configuration mode levels.

Follow the example below to configure run time event logging parameters for the system:

```
configure
 logging filter runtime facility facility level report_level
 logging display { event-verbosity | pdu-data | pdu-verbosity }
end
```

Notes:

- **facility facility and level severity_level** – Configure the logging filter that determines which system facilities should be logged and at what levels. For detailed information, see *Specifying Facilities*, on page 145 and *Event Severities*, on page 169.

- Repeat for every facility that you would like to log.

- **Optional:** Configure event ID restrictions by adding the **logging disable eventid** command. The system provides the ability to restrict the sending of a specific event ID or a range of event IDs to minimize the amount of data logged to that which is most useful. Repeat to disable logging for additional event IDs or event ID ranges.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.
Configuring syslog Servers

Information generated by the run time event logging filters can be transmitted to a syslog server for permanent storage.

Important

The data transmitted to the syslog server is meant to be used for informational purposes. Functions such as billing and performance monitoring should not be based on syslogs.

Important

Although the system provides the flexibility to configure syslog servers on a context-by-context basis, it is recommended that all servers be configured in the `local` context in order to isolate the log traffic from the network traffic.

Use the following example to configure syslog servers:

```plaintext
configure
context local
logging syslog ip_address
end
```

Notes:

- `ip_address` specifies the IP address of a system log server on the network in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- A number of keyword options/variables are available for the `logging syslog` command. Refer to the `Context Configuration Mode Commands` chapter in the `Command Line Interface Reference` for more information.
- Repeat as needed to configure additional syslog servers. There is no limit to the number of syslog servers that can be configured.

Save the configuration as described in the `Verifying and Saving Your Configuration` chapter.

Configuring Active Logs

Active logs are event logs that are operator configurable on a CLI instance-by-CLI instance basis. Active logs configured by an administrative user in one CLI instance are not displayed to an administrative user in a different CLI instance. Each active log can be configured with filter and display properties that are independent of those configured globally for the system. Active logs are displayed in real time as they are generated.

Active logs are not written to the active memory buffer by default. To write active logs to the active memory buffer execute the following command in the Global Configuration mode:

```plaintext
[local]host_name(config)# logging runtime buffer store all-events
```

When active logs are written to the active memory buffer, they are available to all users in all CLI instances.

Use the following example to configure active logging in Global Configuration mode:

```plaintext
[local]host_name(config)# logging filter runtime facility facility level report_level
```

Notes:
• Configure the logging filter that determines which system facilities should be logged and at what levels. For detailed information, see Specifying Facilities, on page 145 and Event Severities, on page 169.

• Repeat for every facility that you would like to log.

• Optional: Configure event ID restrictions by adding the logging disable eventid command. The system provides the ability to restrict the sending of a specific event ID or a range of event IDs to minimize the amount of data logged to that which is most useful. Repeat to disable logging for additional event IDs or event ID ranges.

• A number of keyword options/variables are available for the Exec mode logging active command. Refer to the Exec Mode Commands chapter in the Command Line Interface Reference for more information.

Once all of the necessary information has been gathered, the Active log display can be stopped by entering the following command in the Exec mode:

no logging active

---

Specifying Facilities

The actual facilities available for logging vary by platform type, StarOS version and installed product licenses.

The following facilities can be configured for logging event data:

- **a10**: A10 interface facility
- **a11**: A11 interface facility
- **a11mgr**: A11 Manager facility
- **aaa-client**: Authentication, Authorization and Accounting (AAA) client facility
- **aaamgr**: AAA manager logging facility
- **aaaproxy**: AAA Proxy facility
- **aal2**: ATM Adaptation Layer 2 (AAL2) protocol logging facility
- **acl-log**: Access Control List (ACL) logging facility
- **acsctrl**: Active Charging Service (ACS) Controller facility
- **acsmgr**: ACS Manager facility
- **afctrl**: Fabric Controller facility [ASR 5500 only]
- **afmgr**: Fabric Manager logging facility [ASR 5500 only]
- **alarmcntl**: Alarm Controller facility
- **alcap**: Access Link Control Application Part (ALCAP) protocol logging facility
- **alcapmgr**: ALCAP manager logging facility
- **all**: All facilities
- **bfd**: Bidirectional Forwarding Detection (BFD) protocol logging facility
• **bgp**: Border Gateway Protocol (BGP) facility
• **bindmux**: IP CF BindMux-Demux Manager logging facility
• **bngmgr**: Broadband Network Gateway (BNG) Demux Manager logging facility
• **bssap+**: Base Station Sub-system Application Part+ protocol facility for the login interface between the SGSN and the MSC/VLR (2.5G and 3G)
• **bssgp**: Base Station Sub-system GPRS Protocol logging facility handles exchange information between the SGSN and the BSS (2.5G only)
• **callhome**: Call Home application logging facility
• **cap**: CAMEL Application Part (CAP) logging facility for protocol used in prepaid applications (2.5G and 3G)
• **cbsmgr**: Cell Broadcasting Service (CBS) logging facility [HNBGW]
• **cdf**: Charging Data Function (CDF) logging facility
• **cgw**: Converged Access Gateway (CGW) logging facility
• **cli**: Command Line Interface (CLI) logging facility
• **cmp**: Certificate Management Protocol (IPSec) logging facility
• **connectedapps**: SecGW ASR 9000 oneP communication protocol
• **connproxy**: Controller Proxy logging facility
• **credit-control**: Credit Control (CC) facility
• **cscf**: IMS/MMD Call Session Control Function (CSCF)
• **cscfpmgr**: CSCFCMPGR logging facility
• **csefmg**: SIP CSCF Manager facility
• **cscfnpdb**: CSCF Number Portability Database (NPDB) logging facility
• **csefrtcp**: IMS/MMD CSCF RTCP log facility
• **csefrtp**: IMS/MMD CSCF RTP log facility
• **csefttmgr**: SIP CSCF Tunnel and Transport Manager facility
• **esp**: Card/Slot/Port controller facility
• **css**: Content Service Selection (CSS) facility
• **css-sig**: CSS RADIUS Signaling facility
• **cx-diameter**: Cx Diameter Messages facility [CSCF <-> HSS]
• **data-mgr**: Data Manager Framework logging facility
• **dcardctrl**: IPSec Daughter Card Controller logging facility
• **dcardmgr**: IPSec Daughter Card Manager logging facility
• **demuxmgr**: Demux Manager API facility
• **dgmbmgr**: Diameter Gmb Application Manager logging facility
• **dhcp**: Dynamic Host Configuration Protocol (DHCP) logging facility

• **dhcpv6**: DHCPv6

• **dhost**: Distributed Host logging facility

• **diabase**: Diabase messages facility

• **diactrl**: Diameter Controller proclet logging facility

• **diameter**: Diameter endpoint logging facility

• **diameter-acct**: Diameter Accounting

• **diameter-auth**: Diameter Authentication

• **diameter-dns**: Diameter DNS subsystem

• **diameter-ecs**: ACS Diameter signaling facility

• **diameter-engine**: Diameter version2 engine logging facility

• **diameter-hdd**: Diameter Horizontal Directional Drilling (HDD) Interface facility

• **diameter-svc**: Diameter Service

• **diamproxy**: DiamProxy logging facility

• **dpath**: IPSec Data Path facility

• **drvctrl**: Driver Controller facility

• **dpath**: IPSec Data Path logging facility

• **drvctrl**: Driver Controller logging facility

• **doulosuemgr**: Doulos (IMS-IPSec-Tool) user equipment manager

• **eap-diameter**: Extensible Authentication Protocol (EAP) IP Security facility

• **eap-ipsec**: Extensible Authentication Protocol (EAP) IPSec facility

• **eap-sta-s6a-s13-s6b-diameter**: EAP/STA/S6A/S13/S6B Diameter messages facility

• **ecs-cs**: ACSEMSGR <-> Session Manager Signalling Interface facility

• **egtpc**: eGTP-C logging facility

• **egtpmgr**: enhanced GPRS Tunneling Protocol (eGTP) manager logging facility

• **egtpu**: eGTP-U logging facility

• **embms**: evolved Multimedia Broadcast Multicast Services Gateway facility

• **embms**: eMBMS Gateway Demux facility

• **epdg**: evolved Packet Data (ePDG) gateway logging facility

• **event-notif**: Event Notification Interface logging facility

• **evlog**: Event log facility

• **famgr**: Foreign Agent manager logging facility

• **firewall**: Firewall logging facility
- **fng**: Femto Network Gateway (FNG) logging facility
- **gbmgr**: SGSN Gb Interface Manager facility
- **gmm**:
  - For 2.5G: Logs the GPRS Mobility Management (GMM) layer (above LLC layer)
  - For 3G: Logs the access application layer (above the RANAP layer)
- **gprs-app**: GPRS Application logging facility
- **gprs-ns**: GPRS Network Service Protocol (layer between SGSN and the BSS) logging facility
- **gq-rx-tx-diameter**: Gq/Rx/Tx Diameter messages facility
- **gss-gcdr**: GTPP Storage Server GCDR facility
- **gtpc**: GTP-C protocol logging facility
- **gtpcmgr**: GTP-C protocol manager logging facility
- **gtpp**: GTP-prime protocol logging facility
- **gtpu**: GTP-U protocol logging facility
- **gtpumgr**: GTP-U Demux manager
- **gx-ty-diameter**: Gx/Ty Diameter messages facility
- **gy-diameter**: Gy Diameter messages facility
- **h248prt**: H.248 port manager facility
- **hamgr**: Home Agent manager logging facility
- **hat**: High Availability Task (HAT) process facility
- **hdctrl**: HD Controller logging facility
- **henbapp**: Home Evolved NodeB (HENB) App facility (Do not use this keyword for HENB-GW in Release 20)
- **henbgw**: HENB-GW facility (Do not use this keyword for HENB-GW in Release 20)
- **henbgw-pws**: HENB-GW Public Warning System logging facility (Do not use this keyword for HENB-GW in Release 20)
- **henbgw-sctp-acs**: HENB-GW access Stream Control Transmission Protocol (SCTP) facility (Do not use this keyword for HENB-GW in Release 20)
- **henbgw-sctp-nw**: HENBGW network SCTP facility (Do not use this keyword for HNB-GW in Release 20)
- **henbgwdemux**: HENB-GW Demux facility (Do not use this keyword for HNB-GW in Release 20)
- **henbgwmgr**: HENB-GW Manager facility (Do not use this keyword for HNB-GW in Release 20)
- **hnbgw**: HNB-GW (3G Femto GW) logging facility (Do not use this keyword for HNB-GW in Release 20)
- **hnbgwmg**: HNB-GW Demux Manager logging facility (Do not use this keyword for HNB-GW in Release 20)
- **hss-peer-service**: Home Subscriber Server (HSS) Peer Service facility
- **igmp**: Internet Group Management Protocol (IGMP)
- **ikev2**: Internet Key Exchange version 2 (IKEv2)
- **ims-authorizatn**: IP Multimedia Subsystem (IMS) Authorization Service facility
- **ims-sh**: HSS Diameter Sh Interface Service facility
- **imsimgr**: SGSN IMSI Manager facility
- **imsue**: IMS User Equipment (IMSUE) facility
- **ip-arp**: IP Address Resolution Protocol facility
- **ip-interface**: IP interface facility
- **ip-route**: IP route facility
- **ipms**: Intelligent Packet Monitoring System (IPMS) logging facility
- **ipne**: IP Network Enabler (IPNE) facility
- **ipsec**: IP Security logging facility
- **ipseedemux**: IPSec demux logging facility
- **ips**: IP Service Gateway interface logging facility
- **ipsgmgr**: IP Services Gateway facility
- **ips**: IP Pool Sharing Protocol logging facility
- **kvstore**: Key/Value Store (KVSTORE) Store facility
- **l2tp-control**: Layer 2 Tunneling Precool (L2TP) control logging facility
- **l2tp-data**: L2TP data logging facility
- **l2tpdemux**: L2TP Demux Manager logging facility
- **l2tpmgr**: L2TP Manager logging facility
- **lagmgr**: Link Aggregation Group (LAG) manager logging facility
- **lcs**: Location Services (LCS) logging facility
- **ldap**: Lightweight Directory Access Protocol (LDAP) messages logging facility
- **li**: Refer to the *Lawful Intercept Interface Reference* for a description of this command.
- **linkmgr**: SGSN/BSS SS7 Link Manager logging facility (2.5G only)
- **llc**: Logical Link Control (LLC) Protocol logging facility; for SGSN: logs the LLC layer between the GMM and the BSSGP layers for logical links between the MS and the SGSN
- **local-policy**: Local Policy Service facility
- **location-service**: Location Services facility
- **m3ap**: M3 Application Protocol facility
- **m3ua**: M3UA Protocol logging facility
- **magmgr**: Mobile Access Gateway manager logging facility
• **map**: Mobile Application Part (MAP) protocol logging facility
• **megadiammgr**: MegaDiameter Manager (SLF Service) logging facility
• **mme-app**: Mobility Management Entity (MME) Application logging facility
• **mme-embms**: MME evolved Multimedia Broadcast Multicast Service facility
• **mme-misc**: MME miscellaneous logging facility
• **mmedemux**: MME Demux Manager logging facility
• **mmemgr**: MME Manager facility
• **mmgr**: Master Manager logging facility
• **mobile-ip**: Mobile IP processes
• **mobile-ip-data**: Mobile IP data facility
• **mobile-ipv6**: Mobile IPv6 logging facility
• **mpls**: Multiprotocol Label Switching (MPLS) protocol logging facility
• **mrme**: Multi Radio Mobility Entity (MRME) logging facility
• **mseg-app**: Mobile Services Edge Gateway (MSEG) application logging facility (This option is not supported in this release.)
• **mseg-gtpc**: MSEG GTP-C application logging facility (This option is not supported in this release.)
• **mseg-gtpu**: MSEG GTP-U application logging facility (This option is not supported in this release.)
• **msegmgr**: MSEG Demux Manager logging facility (This option is not supported in this release.)
• **mtp2**: Message Transfer Part 2 (MTP2) Service logging facility
• **mtp3**: Message Transfer Part 3 (MTP3) Protocol logging facility
• **multicast-proxy**: Multicast Proxy logging facility
• **nas**: Non-Access Stratum (NAS) protocol logging facility [MME 4G]
• **netwstrg**: Network Storage facility
• **npucr**: Network Processor Unit Control facility
• **npudrv**: Network Processor Unit Driver facility [ASR 5500 only]
• **npumgr**: Network Processor Unit Manager facility
• **npumgr-acl**: NPUMGR ACL logging facility
• **npumgr-dr**: NPUMGR DRV logging facility
• **npumgr-f**: NPUMGR FLOW logging facility
• **npumgr-fwd**: NPUMGR FWD logging facility
• **npumgr-init**: NPUMGR INIT logging facility
• **npumgr-lc**: NPUMGR LC logging facility
• **npumgr-port**: NPUMGR PORT logging facility
• **npumgr-recovery**: NPUMGR RECOVERY logging facility
• **npumgr-ri**: NPUMGR RRI (Reverse Route Injection) logging facility

• **npumgr-vpn**: NPUMGR VPN logging facility

• **npusim**: NPUSIM logging facility [ASR 5500 only]

• **ntfy-intf**: Notification Interface logging facility [Release 12.0 and earlier versions only]

• **ocsp**: Online Certificate Status Protocol logging facility.

• **orbs**: Object Request Broker System logging facility

• **ospf**: OSPF protocol logging facility

• **ospfv3**: OSPFv3 protocol logging facility

• **p2p**: Peer-to-Peer Detection logging facility

• **pagingmgr**: PAGINGMGR logging facility

• **pccmgr**: Intelligent Policy Control Function (IPCF) Policy Charging and Control (PCC) Manager library

• **pdg**: Packet Data Gateway (PDG) logging facility

• **pdgdmgr**: PDG Demux Manager logging facility

• **pdif**: Packet Data Interworking Function (PDIF) logging facility

• **pgw**: Packet Data Network Gateway (PGW) logging facility

• **pmm-app**: Packet Mobility Management (PMM) application logging facility

• **ppp**: Point-To-Point Protocol (PPP) link and packet facilities

• **pppoe**: PPP over Ethernet logging facility

• **procl-enfrwk**: Procl mapping framework logging facility

• **push**: VPNMGR CDR push logging facility

• **radius-acct**: RADIUS accounting logging facility

• **radius-auth**: RADIUS authentication logging facility

• **radius-coa**: RADIUS change of authorization and radius disconnect

• **ranap**: Radio Access Network Application Part (RANAP) Protocol facility logging info flow between SGSN and RNS (3G)

• **rct**: Recovery Control Task logging facility

• **rdt**: Redirect Task logging facility

• **resmgr**: Resource Manager logging facility

• **rf-diameter**: Diameter RF interface messages facility

• **rip**: Routing Information Protocol (RIP) logging facility [RIP is not supported at this time.]

• **rlf**: Rate Limiting Function (RLF) logging facility

• **rohc**: Robust Header Compression (RoHC) facility

• **rsvp**: Reservation Protocol logging facility

• **rua**: RANAP User Adaptation (RUA) [3G Femto GW - RUA messages] logging facility
• **s102**: S102 protocol logging facility
• **s102mgr**: S102Mgr logging facility
• **s1ap**: S1 Application Protocol (S1AP) Protocol logging facility
• **sabp**: Service Area Broadcast Protocol (SABP) logging facility
• **saegw**: System Architecture Evolution (SAE) Gateway facility
• **sbe**: SBc protocol logging facility
• **scep**: Signalling Connection Control Part (SCCP) Protocol logging (connection-oriented messages between RANAP and TCAP layers).
• **sct**: Shared Configuration Task logging facility
• **sctp**: Stream Control Transmission Protocol (SCTP) Protocol logging facility
• **sef_ecs**: Severely Errored Frames (SEF) APIs printing facility
• **sess-gr**: SM GR facility
• **sessctrl**: Session Controller logging facility
• **sessmgr**: Session Manager logging facility
• **sesstrc**: session trace logging facility
• **sft**: Switch Fabric Task logging facility
• **sgs**: SGs interface protocol logging facility
• **sgsn-app**: SGSN-APP logging various SGSN "glue" interfaces (for example, between PMM, MAP, GPRS-FSM, SMS).
• **sgsn-failures**: SGSN call failures (attach/activate rejects) logging facility (2.5G)
• **sgsn-gtpc**: SGSN GTP-C Protocol logging control messages between the SGSN and the GGSN
• **sgsn-gtpu**: SGSN GTP-U Protocol logging user data messages between the SGSN and GGSN
• **sgsn-mbms-bearer**: SGSN Multimedia Broadcast/Multicast Service (MBMS) Bearer app (SMGR) logging facility
• **sgsn-misc**: Used by stack manager to log binding and removing between layers
• **sgsn-system**: SGSN System Components logging facility (used infrequently)
• **sgsn-test**: SGSN Tests logging facility; used infrequently
• **sgtpcmgr**: SGSN GTP-C Manager logging information exchange through SGTPC and the GGSN
• **sgw**: Serving Gateway facility
• **sh-diameter**: Sh Diameter messages facility
• **sitmain**: System Initialization Task main logging facility
• **sils**: Service Level Specification (SLS) protocol logging facility
• **sm-app**: SM Protocol logging facility
• **sms**: Short Message Service (SMS) logging messages between the MS and the SMSC
• **sndcp**: Sub Network Dependent Convergence Protocol (SNDCP) logging facility
• **snmp**: SNMP logging facility
• **sprmgr**: IPCF Subscriber Policy Register (SPR) manager logging facility
• **srdb**: Static Rating Database
• **srp**: Service Redundancy Protocol (SRP) logging facility
• **sscfnni**: Service-Specific Coordination Function for Signaling at the Network Node Interface (SSCF-NNI) logging facility
• **sscop**: Service-Specific Connection-Oriented Protocol (SSCOP) logging facility
• **ssh-ipsec**: Secure Shell (SSH) IP Security logging facility
• **ssl**: Secure Socket Layer (SSL) message logging facility
• **stat**: Statistics logging facility
• **supserv**: Supplementary Services logging facility [H.323]
• **system**: System logging facility
• **tacacsplus**: TACACS+ Protocol logging facility
• **tcap**: TCAP Protocol logging facility
• **testctrl**: Test Controller logging facility
• **testmgr**: Test Manager logging facility
• **threshold**: threshold logging facility
• **ttg**: Tunnel Termination Gateway (TTG) logging facility
• **tucl**: TCP/UDP Convergence Layer (TUCL) logging facility
• **udr**: User Data Record (UDR) facility (used with the Charging Service)
• **user-data**: User data logging facility
• **user-l3tunnel**: User Layer 3 tunnel logging facility
• **usertcp-stack**: User TCP Stack
• **vim**: Voice Instant Messaging (VIM) logging facility
• **vinfo**: VINFO logging facility
• **vmgctrl**: Virtual Media Gateway (VMG) controller facility
• **vmgctrl**: VMG Content Manager facility
• **vpn**: Virtual Private Network logging facility
• **wimax-data**: WiMAX DATA
• **wimax-r6**: WiMAX R6
• **wsg**: Wireless Security Gateway (ASR 9000 Security Gateway)
• **x2gw-app**: X2GW (X2 proxy Gateway, eNodeB) application logging facility
• **x2gw-demux**: X2GW demux task logging facility
Configuring Trace Logging

Trace logging is useful for quickly resolving issues for specific sessions that are currently active. They are temporary filters that are generated based on a qualifier that is independent of the global event log filter configured using the `logging filter` command in the Exec mode. Like event logs, however, the information generated by the logs is stored in the active memory buffer.

All debug level events associated with the selected call are stored.

**Important**

Trace logs impact session processing. They should be implemented for debug purposes only.

Use the following example to configure trace logs in the Exec mode:

```
[local]# host_name

logging trace { callid call_id | ipaddr ip_address | msid ms_id | username username }
```

Once all of the necessary information has been gathered, the trace log can be deleted by entering the following command:

```
[local]# host_name

no logging trace { callid call_id | ipaddr ip_address | msid ms_id | username username }
```

Configuring Monitor Logs

Monitor logging records all activity associated with all of a particular subscriber's sessions. This functionality is available in compliance with law enforcement agency requirements for monitoring capabilities of particular subscribers.

Monitors can be performed based on a subscriber's MSID or username, and are only intended to be used for finite periods of time as dictated by the law enforcement agency. Therefore, they should be terminated immediately after the required monitoring period.

This section provides instructions for enabling and disabling monitor logs.

Enabling Monitor Logs

Use the following example to configure monitor log targets:

```
configure

logging monitor { ip_addr | ipv6_addr | msid id | username name }
end
```

Repeat to configure additional monitor log targets.

Disabling Monitor Logs

Use the following example to disable monitor logs:

```
configure

no logging monitor { ip_addr | ipv6_addr | msid id | username name }
end
```
Viewing Logging Configuration and Statistics

Logging configuration and statistics can be verified by entering the following command from the Exec mode:

```
[local]\host_name# show logging [active | verbose]
```

When no keyword is specified, the global filter configuration is displayed as well as information about any other type of logging that is enabled.

The following table provides information and descriptions of the statistics that are displayed when the `verbose` keyword is used.

**Table 10: Logging Configuration and Statistics Commands**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General Logging Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Total events received</td>
<td>Displays the total number of events generated by the system.</td>
</tr>
<tr>
<td>Number of applications receiving events</td>
<td>Displays the number of applications receiving the events.</td>
</tr>
<tr>
<td><strong>Logging Source Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Event sequence ids by process</td>
<td>Displays a list of system processes that have generated events and the reference identification number of the event that was generated.</td>
</tr>
<tr>
<td>Msg backlog stat with total cnt</td>
<td>Displays the number of event messages that have been back logged in comparison to the total number of events generated.</td>
</tr>
<tr>
<td>LS L2 filter drop rate</td>
<td>Displays the percentage of logging source (LS) layer 2 (L2) event drops.</td>
</tr>
<tr>
<td><strong>Abnormal Log Source Statistics</strong></td>
<td>Displays abnormal logging source (LS) statistics, if any.</td>
</tr>
<tr>
<td><strong>Runtime Logging Buffer Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Active buffer</td>
<td>Displays the number of events currently logged in the active memory buffer as well as a date/time timestamp for the oldest and most recent entries in the buffer.</td>
</tr>
<tr>
<td>Inactive buffer</td>
<td>Displays the number of events currently logged in the inactive memory buffer.</td>
</tr>
</tbody>
</table>

Viewing Event Logs Using the CLI

Event logs generated by the system can be viewed in one of the following ways:

- **From the syslog server:** If the system is configured to send logs to a syslog server, the logs can be viewed directly on the syslog server.

- **From the system CLI:** Logs stored in the system memory buffers can be viewed directly from the CLI.
• **From the console port:** By default, the system automatically displays events over the console interface to a terminal provided that there is no CLI session active.

This section provides instructions for viewing event logs using the CLI. These instructions assume that you are at the root prompt for the Exec mode.

---

**Step 1**
Copy the active log memory buffer to the inactive log memory buffer.

When the active log memory buffer is copied to the inactive log memory buffer existing information in the inactive log memory buffer is deleted.

Both active and inactive event log memory buffers can be viewed using the CLI in Exec mode. However, it is preferable to view the inactive log in order to prevent any data from being over-written. The information from the active log buffer can be copied to the inactive log buffer by entering the following command:

```
[local] host_name# logs checkpoint
```

**Step 2**
View the logs by entering the following command:

```
[local] host_name# show logs
```

A number of optional keywords/variables are available for the `show logs` command. Refer to the *Exec Mode Show Commands* chapter in the *Command Line Interface Reference* for more information.

---

**Configuring and Viewing Crash Logs**

In the unlikely even of a software crash, the system stores information that could be useful in determining the reason for the crash. This information can be maintained in system memory or it can be transferred and stored on a network server.

The system supports the generation of the following two types of logs:

- **Crash log:** Crash logs record all possible information pertaining to a software crash (full core dump). Due to their size, they can not be stored in system memory. Therefore, these logs are only generated if the system is configured with a Universal Resource Locator (URL) pointing to a local device or a network server where the log can be stored.

- **Abridged crash log:** Crash event records are automatically generated when a software crash occurs and are stored in flash memory on management cards. The abridged crash log contains a list crash event records along with associated dump files. This log allows you to view event records and dump files via CLI commands.

**Crash Logging Architecture**

The crash log is a persistent repository of crash event information. Each event is numbered and contains text associated with a CPU (minicore), NPU or kernel crash. The logged events are recorded into fixed length records and stored in `/flash/crashlog2`.

Whenever a crash occurs, the following crash information is stored:

1. The event record is stored in `/flash/crashlog2` file (the crash log).
The associated minicore, NPU or kernel dump file is stored in the /flash/crsh2 directory.

A full core dump is stored in a user configured directory.

---

**Important**

The crashlog2 file along with associated minicore, NPU and kernel dumps are automatically synchronized across redundant management cards (SMC, MIO/UMIO). Full core dumps are not synchronized across management cards.

The following behaviors apply to the crash logging process.

- When a crash event arrives on an active management card, the event record is stored in its crashlog2 file along with the minicore, NPU, or kernel dump file in /flash/crsh2. The crash event and dump file are also automatically stored in the same locations on the standby management card.

- When a crash log entry is deleted via CLI command, it is deleted on both the active and standby management cards.

- When a management card is added or replaced, active and standby cards will automatically synchronize crash logs and dump files.

- When a crash event is received and the crash log file is full, the oldest entry in the crash log and its related dump file will be replaced with the latest arrived event and dump file on both management cards. Information for a maximum of 120 crash events can be stored on management cards.

- Duplicate crash events bump the count of hits in the existing record and update the new record with the old crash record. Additions to the count use the timestamp for the first time the event happened.

---

### Configuring Software Crash Log Destinations

The system can be configured to store software crash log information to any of the following locations:

- **On the ASR 5000:**
  - **CompactFlash™:** Installed on the SMC [abridged crash log and associated dump files only]
  - **PCMCIA Flash Card:** Installed in the PCMCIA1 slot on the SMC

- **On the ASR 5500:**
  - **Flash memory:** Installed on the active MIO/UMIO [abridged crash log and associated dump files only]
  - **USB memory stick:** Installed in the USB slot on the active MIO/UMIO

- **On VPC**
  - **Flash memory:** Accessible by the virtual machine
  - **USB memory stick:** Installed in the USB slot of the platform (USB slot has been enabled via the hypervisor)

- **Network Server:** Any workstation or server on the network that the system can access using the Trivial File Transfer Protocol (TFTP), the File Transfer Protocol (FTP), the Secure File Transfer Protocol
(SFTP), or the Hyper-Text Transfer Protocol (HTTP); this is recommended for large network deployments in which multiple systems require the same configuration.

Crash log files (full core dumps) are written with unique names as they occur to the specified location. The name format is crash-card-cpu-time-core. Where card is the card slot, cpu is the number of the CPU on the card, and time is the Portable Operating System Interface (POSIX) timestamp in hexadecimal notation.

Use the following example to configure a software crash log destination in the Global Configuration mode:

```plaintext
configure
 crash enable [encrypted] url crash_url
end
```

Notes:

- Refer to the Global Configuration Mode Commands chapter in the Command Line Interface Reference for more information on this command.
- Repeat to configure additional software crash log destinations. There is no limit to the number of destinations that can be configured.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

### Viewing Abridged Crash Log Information Using the CLI

You can view abridged crash information that is stored as a set of event records in flash memory on management cards (/flash/crashlog2). Each crash event record has an associated dump file (minicore, NPU or kernel) that can also be displayed (/flash/crash2).

Follow the instructions in this section to view software crash events that have occurred on the system. These instructions assume that you are at the root prompt for the Exec mode.

#### Step 1

View a list of software crash events by entering the following Exec mode command:

```plaintext
[local]host_name# show crash { all | list | number crash_num }
```

Notes:

- Run `show crash list` to obtain the number for a specific crash event.
- Run `show crash number crash_num` to display the output for the target crash event.

The resulting output may not be the same for all platforms:

Information about similar crash events is suppressed in the output of this command.

#### Step 2

View the dump file associated with a specific crash event. The information contained in the dump file helps identify and diagnose any internal or external factors causing the software to crash.

- Crash # – unique number assigned by StarOS when logging the crash event
- SW Version – StarOS build release in format: RR.n(bbb)
- Similar Crash Count – number of similar crashes
- Time of first crash – timestamp when first crash occurred in format: YYYYY-MM-DD+hh:mm:ss
• Failure message – text of event message
• Function – code identifier
• Process – where the crash occurred (Card, CPU, PID, etc.)
• Crash time – timestamp for when the crash occurred in the format: YYY-MM-DD+hh:mm:ss time zone
• Recent errno – text of most recent error number.
• Stack – memory stack information
• Last Bounce – information about the messaging received prior to the crash
• Registers – memory register contents
• Current inbound message – hexadecimal information for the current inbound message
• Address Map
• Recent heap activity (oldest first)
• Recent events (oldest first)
• Profile depth

The informational content of each crash log entry varies based on the type of crash and the StarOS release.

### Checkpointing Logs

Checkpointing identifies logged data as previously viewed or marked. Checkpointing allows you to only display log information since the last checkpoint.

Individual logs may have up to 50,000 events in the active log. Checkpointing the logs results in at most 50,000 events being in the inactive log files. This gives a maximum of 100,000 events in total which are available for each facility logged.

You checkpoint log data via the Exec mode logs checkpoint command to set the log contents to a well-known point prior to special activities taking place. This command may also be a part of periodic regular maintenance to manage log data.

Checkpointing logs moves the current log data to the inactive logs. Only the most recently check pointed data is retained in the inactive logs. A subsequent check pointing of the logs results in the prior check pointed inactive log data being cleared and replaced with the newly check pointed data. Checkpointed log data is not available for viewing.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpointing logs should be done periodically to prevent the log files becoming full. Logs which have 50,000 events logged will discard the oldest events first as new events are logged.</td>
</tr>
</tbody>
</table>
Saving Log Files

Log files can be saved to a file in a local or remote location specified by a URL. Use the following Exec mode command to save log files:

```
save logs { url } [active | [inactive] | [callid call_id] | [event-verbosity evt_verboseness] | [facility facility] | [level severity_level] | [pdu-data pdu_format] | [pdu-verbosity pdu_verboseness] | [since from_date_time] | [until to_date_time]] | [grep grep_options] | more }
```

For detailed information on the `save logs` command, see the Exec Mode Commands chapter in the Command Line Interface Reference.

Event ID Overview

The use of event IDs depends on the platform type and the licenses running on the platform.

Identification numbers (IDs) are used to reference events as they occur when logging is enabled on the system. As described previously, logs are collected on a per facility basis. Each facility possesses its own range of event IDs as indicated in the following table.

**Table 11: System Facilities and Event ID Ranges**

<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
<th>Event ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a10</td>
<td>A10 Protocol Facility</td>
<td>28000-28999</td>
</tr>
<tr>
<td>a11</td>
<td>A11 Protocol Facility</td>
<td>29000-29999</td>
</tr>
<tr>
<td>a11mgr</td>
<td>A11 Manager Facility</td>
<td>9000-9999</td>
</tr>
<tr>
<td>aaa-client</td>
<td>AAA Client Facility</td>
<td>6000-6999</td>
</tr>
<tr>
<td>aaamgr</td>
<td>AAA Manager Facility</td>
<td>36000-36999</td>
</tr>
<tr>
<td>aaaproy</td>
<td>AAA Proxy Facility</td>
<td>64000-64999</td>
</tr>
<tr>
<td>aal2</td>
<td>AAL2 Protocol Facility</td>
<td>173200-173299</td>
</tr>
<tr>
<td>acl-log</td>
<td>IP Access Control List (ACL) Facility</td>
<td>21000-21999</td>
</tr>
<tr>
<td>acscrl</td>
<td>Active Charging Service Controller (ACSCtrl) Facility</td>
<td>90000-99999</td>
</tr>
<tr>
<td>acsmgr</td>
<td>Active Charging Service Manager (ACSMgr) Facility</td>
<td>91000-91999</td>
</tr>
<tr>
<td>afctrl</td>
<td>Ares Fabric Controller (ASR 5500 only) Facility</td>
<td>186000-186999</td>
</tr>
<tr>
<td>afmgr</td>
<td>Ares Fabric Manager (ASR 5500 only) Facility</td>
<td>187000-187999</td>
</tr>
<tr>
<td>alarmctrl</td>
<td>Alarm Controller Facility</td>
<td>65000-65999</td>
</tr>
<tr>
<td>alcap</td>
<td>Access Link Control Application Part (ALCAP) Protocol Facility</td>
<td>160900-161399</td>
</tr>
<tr>
<td>alcapmgr</td>
<td>ALCAP Manager Facility</td>
<td>160500-160899</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>asf</td>
<td>ASF Facility</td>
<td>73000-73999</td>
</tr>
<tr>
<td>asfprt</td>
<td>ASFPRT Facility</td>
<td>59000-59999</td>
</tr>
<tr>
<td>asngwmgmr</td>
<td>Access Service Network (ASN) Gateway Manager Facility</td>
<td>100000-100499</td>
</tr>
<tr>
<td>asnpcmgr</td>
<td>ASN Paging/Location-Registry Manager Facility</td>
<td>100500-100999</td>
</tr>
<tr>
<td>bcmcs</td>
<td>Broadcast/Multicast Service (BCMCS) Facility</td>
<td>109000-109999</td>
</tr>
<tr>
<td>bfd</td>
<td>Bidirectional Forwarding Detection (BFD) Protocol Facility</td>
<td>170500-170999</td>
</tr>
<tr>
<td>bgp</td>
<td>Border Gateway Protocol (BGP) Facility</td>
<td>85000-85999</td>
</tr>
<tr>
<td>bindmux</td>
<td>BindMux Manager Facility [Intelligent Policy Control Function (IPCF)]</td>
<td>158200-158999</td>
</tr>
<tr>
<td>bngmgr</td>
<td>Broadband Network Gateway (BNG) Manager Facility</td>
<td>182000-182999</td>
</tr>
<tr>
<td>bssap</td>
<td>Base Station System Application Part+ (BSSAP+) Service Facilities</td>
<td>131000-131199</td>
</tr>
<tr>
<td>bssgp</td>
<td>Base Station System GPRS Protocol (BSSGP) Facility</td>
<td>115050-115099</td>
</tr>
<tr>
<td>callhome</td>
<td>Call Home Facility</td>
<td>173600-173999</td>
</tr>
<tr>
<td>cap</td>
<td>CAMEL Application Part (CAP) Facility</td>
<td>87900-88099</td>
</tr>
<tr>
<td>chatconf</td>
<td>CHATCONF Facility</td>
<td>74000-74999</td>
</tr>
<tr>
<td>cli</td>
<td>Command Line Interface (CLI) Facility</td>
<td>30000-30999</td>
</tr>
<tr>
<td>connproxy</td>
<td>Connection Proxy Facility</td>
<td>190000-190999</td>
</tr>
<tr>
<td>crdt-ctl</td>
<td>Credit Control Facility</td>
<td>127000-127999</td>
</tr>
<tr>
<td>cscf</td>
<td>Call Session Control Function (CSCF) Facility</td>
<td>105000-108924</td>
</tr>
<tr>
<td>cscfpmgr</td>
<td>CSCF CP Manager Facility</td>
<td>197000-197999</td>
</tr>
<tr>
<td>cscfmrgr</td>
<td>CSCF FM Manager Facility</td>
<td>101000-101999</td>
</tr>
<tr>
<td>cscfnpdb</td>
<td>CSCF NPDB Facility</td>
<td>108925-108949</td>
</tr>
<tr>
<td>cscfrtcp</td>
<td>CSCF RTCP Facility</td>
<td>108976-108999</td>
</tr>
<tr>
<td>cscfrtp</td>
<td>CSCF RTP Facility</td>
<td>108950-108975</td>
</tr>
<tr>
<td>cscftmgr</td>
<td>CSCF TT Manager Facility</td>
<td>163000-163499</td>
</tr>
<tr>
<td>csg</td>
<td>Closed Subscriber Groups (CSG) Facility</td>
<td>188000-188999</td>
</tr>
<tr>
<td>csg-acl</td>
<td>CSG Access Control List (ACL) Facility</td>
<td>189000-189999</td>
</tr>
<tr>
<td>csp</td>
<td>Card/Slot/Port (CSP) Facility</td>
<td>7000-7999</td>
</tr>
<tr>
<td>css</td>
<td>Content Steering Service (CSS) Facility [ESC]</td>
<td>77000-77499</td>
</tr>
<tr>
<td>css-sig</td>
<td>Content Service Selection (CSS) RADIUS Signaling Facility</td>
<td>77500-77599</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>cx-diameter</td>
<td>Cx Diameter Message Facility</td>
<td>92840-92849</td>
</tr>
<tr>
<td>dcardctrl</td>
<td>Daughter Card Controller Facility</td>
<td>62000-62999</td>
</tr>
<tr>
<td>dcardmgr</td>
<td>Daughter Card Manager Facility</td>
<td>57000-57999</td>
</tr>
<tr>
<td>demuxmgr</td>
<td>Demux Manager Facility</td>
<td>110000-110999</td>
</tr>
<tr>
<td>dgmbmgr</td>
<td>Diameter Gmb (DGMB) Application Manager Facility</td>
<td>126000-126999</td>
</tr>
<tr>
<td>dhcp</td>
<td>DHCP Facility</td>
<td>53000-53999</td>
</tr>
<tr>
<td>dhcpv6</td>
<td>DHCPv6 Protocol Facility</td>
<td>123000-123999</td>
</tr>
<tr>
<td>dhost</td>
<td>Distributed Host Manager Facility</td>
<td>83000-83999</td>
</tr>
<tr>
<td>diameter</td>
<td>Diameter Endpoint Facility</td>
<td>92000-92599</td>
</tr>
<tr>
<td>diabase</td>
<td>Diabase Message Facility</td>
<td>92800-92809</td>
</tr>
<tr>
<td>diameter-acct</td>
<td>Diameter Accounting Protocol Facility</td>
<td>112000-112999</td>
</tr>
<tr>
<td>diameter-auth</td>
<td>Diameter Authentication Protocol Facility</td>
<td>111000-111999</td>
</tr>
<tr>
<td>diameter-dns</td>
<td>Diameter DNS Subsystem Facility</td>
<td>92600-92699</td>
</tr>
<tr>
<td>diameter-ecs</td>
<td>ECS Diameter Signaling Facility</td>
<td>81990-81999</td>
</tr>
<tr>
<td>diameter-hdd</td>
<td>Diameter Horizontal Directional Drilling (HDD) Facility</td>
<td>92700-92799</td>
</tr>
<tr>
<td>diameter-svc</td>
<td>Diameter Service Facility</td>
<td>121200-121999</td>
</tr>
<tr>
<td>diamproxy</td>
<td>Diameter Proxy Facility</td>
<td>119000-119999</td>
</tr>
<tr>
<td>dpath</td>
<td>Data Path for IPSec Facility</td>
<td>54000-54999</td>
</tr>
<tr>
<td>drvctrl</td>
<td>Driver Controller Facility</td>
<td>39000-39999</td>
</tr>
<tr>
<td>ds3mgr</td>
<td>DS3 and DS3/E Line Card Manager Facility (part of NPU Manager Controller Facility)</td>
<td>40000-40999</td>
</tr>
<tr>
<td>eap-diameter</td>
<td>Extensible Authentication Protocol (EAP) Diameter Facility</td>
<td>92870-92879</td>
</tr>
<tr>
<td>eap-ipsec</td>
<td>EAP IPSec Facility</td>
<td>118000-118999</td>
</tr>
<tr>
<td>ecs-css</td>
<td>ACS Session Manager (ACSMgr) Signalling Interface Facility</td>
<td>97000-97099</td>
</tr>
<tr>
<td>edr</td>
<td>Event Data Record (EDR) Facility</td>
<td>80000-80999</td>
</tr>
<tr>
<td>egtpc</td>
<td>eGTP-C Facility</td>
<td>141000-141999</td>
</tr>
<tr>
<td>egtpmgr</td>
<td>eGTP Manager Facility</td>
<td>143000-143999</td>
</tr>
<tr>
<td>egtpu</td>
<td>eGTP-U Facility</td>
<td>142000-142999</td>
</tr>
<tr>
<td>epdg</td>
<td>Evolved Packet Data Gateway (ePDG) Facility</td>
<td>178000-178999</td>
</tr>
<tr>
<td>evlog</td>
<td>Event Log Facility</td>
<td>2000-2999</td>
</tr>
<tr>
<td>famgr</td>
<td>Foreign Agent (FA) Manager Facility</td>
<td>33000-33999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>firewall</td>
<td>Firewall Facility</td>
<td>96000-96999</td>
</tr>
<tr>
<td>fng</td>
<td>Femto Network Gateway (FNG) Facility</td>
<td>149000-149999</td>
</tr>
<tr>
<td>gbrmgr</td>
<td>Gb-Manager Facility</td>
<td>201900-202699</td>
</tr>
<tr>
<td>gcdr</td>
<td>GGSN-Charging Data Record (G-CDR) Facility</td>
<td>66000-66999</td>
</tr>
<tr>
<td>gmm</td>
<td>GPRS Mobility Management (GMM) Facility</td>
<td>88100-88299</td>
</tr>
<tr>
<td>gprs-app</td>
<td>General Packet Radio Service (GPRS) Application Facility</td>
<td>115100-115399</td>
</tr>
<tr>
<td>gprs-ns</td>
<td>GPRS-NS Protocol Facility</td>
<td>115000-115049</td>
</tr>
<tr>
<td>gq-rx-tx-diameter</td>
<td>Gq/Rx/Tx Diameter Messages Facility</td>
<td>92830-92839</td>
</tr>
<tr>
<td>gss-gcdr</td>
<td>GTPP Storage Server GCDR Facility</td>
<td>98000-98099</td>
</tr>
<tr>
<td>gtpc</td>
<td>GTPC Protocol Facility</td>
<td>47000-47999</td>
</tr>
<tr>
<td>gtpcmgr</td>
<td>GTPC Signaling Demultiplexer Manager Facility</td>
<td>46000-46999</td>
</tr>
<tr>
<td>gtpu</td>
<td>GTPU Protocol Facility</td>
<td>52000-52999</td>
</tr>
<tr>
<td>gtpumgr</td>
<td>GTPU Manager Facility</td>
<td>45000-45999</td>
</tr>
<tr>
<td>gx-ty-diameter</td>
<td>Gx/Ty Diameter Messages Facility</td>
<td>92820-92829</td>
</tr>
<tr>
<td>gy-diameter</td>
<td>Gy Diameter Messages Facility</td>
<td>92810-92819</td>
</tr>
<tr>
<td>h248prt</td>
<td>H.248 Protocol Facility</td>
<td>42000-42999</td>
</tr>
<tr>
<td>hamgr</td>
<td>Home Agent (HA) Manager Facility</td>
<td>34000-34999</td>
</tr>
<tr>
<td>hat</td>
<td>High Availability Task (HAT) Facility</td>
<td>3000-3999</td>
</tr>
<tr>
<td>hdctrl</td>
<td>Hard Disk (HD) Controller Facility</td>
<td>132000-132999</td>
</tr>
<tr>
<td>hddshare</td>
<td>HDD Share Facility</td>
<td>184000-184999</td>
</tr>
<tr>
<td>hnb-gw</td>
<td>Home eNodeB-GW Facility</td>
<td>195000-195999</td>
</tr>
<tr>
<td>hnbapp</td>
<td>Home eNodeB Application Facility</td>
<td>196000-196999</td>
</tr>
<tr>
<td>hnbgwdemux</td>
<td>Home eNodeB-GW Demux Facility</td>
<td>194000-194999</td>
</tr>
<tr>
<td>hnbgwmgr</td>
<td>Home eNodeB-GW Manager Facility</td>
<td>193000, 193999</td>
</tr>
<tr>
<td>hnb-gw</td>
<td>Home NodeB (HNB) Gateway Facility</td>
<td>151000-151999</td>
</tr>
<tr>
<td>hnbmgr</td>
<td>HNB Manager Facility</td>
<td>158000-158199</td>
</tr>
<tr>
<td>hss-peer-service</td>
<td>Home Subscriber Server (HSS) Facility [MME]</td>
<td>138000-138999</td>
</tr>
<tr>
<td>igmp</td>
<td>Internet Group Management Protocol (IGMP) Facility</td>
<td>113000-113999</td>
</tr>
<tr>
<td>ikev2</td>
<td>IKEv2 Facility</td>
<td>122000-122999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ims-authorization</td>
<td>IMS Authorization Service Library Facility</td>
<td>98100-98999</td>
</tr>
<tr>
<td>ims-sh</td>
<td>IMS SH Library</td>
<td>124000-124999</td>
</tr>
<tr>
<td>imsimgr</td>
<td>International Mobile Subscriber Identity (IMSI) Manager Facility</td>
<td>114000-114999</td>
</tr>
<tr>
<td>imsue</td>
<td>IMS User Equipment (IMSUE) Facility</td>
<td>144000-145999</td>
</tr>
<tr>
<td>ip-arp</td>
<td>IP Address Resolution Protocol (ARP) Facility</td>
<td>19000-19999</td>
</tr>
<tr>
<td>ip-interface</td>
<td>IP Interface Facility</td>
<td>18000-18999</td>
</tr>
<tr>
<td>ip-route</td>
<td>IP Route Facility</td>
<td>20000-20999</td>
</tr>
<tr>
<td>ipms</td>
<td>Intelligent Packet Monitoring System (IPMS) Facility</td>
<td>134000-134999</td>
</tr>
<tr>
<td>ipne</td>
<td>IP Network Enabler (IPNE) Facility</td>
<td>192000-192999</td>
</tr>
<tr>
<td>ipsec</td>
<td>IPSec Protocol Facility</td>
<td>55000-56998</td>
</tr>
<tr>
<td>ipsg</td>
<td>IP Services Gateway (IPSG) Facility</td>
<td>128000-128999</td>
</tr>
<tr>
<td>ipsgmgr</td>
<td>IPSG Manager (IPSGMgr) Facility</td>
<td>99000-99999</td>
</tr>
<tr>
<td>ipsp</td>
<td>IP Pool Sharing Protocol (IPSP) Facility</td>
<td>68000-68999</td>
</tr>
<tr>
<td>kvstore</td>
<td>Key/Value Store (KVSTORE) Facility</td>
<td>125000-125999</td>
</tr>
<tr>
<td>l2tp-control</td>
<td>L2TP Control PDU Protocol Facility</td>
<td>50000-50999</td>
</tr>
<tr>
<td>l2tp-data</td>
<td>L2TP Data PDU Protocol Facility</td>
<td>49000-49999</td>
</tr>
<tr>
<td>l2tpdemux</td>
<td>L2TP Demux Facility</td>
<td>63000-63999</td>
</tr>
<tr>
<td>l2tpmgr</td>
<td>L2TP Manager Facility</td>
<td>48000-48999</td>
</tr>
<tr>
<td>lagmgr</td>
<td>Link Aggregation Group (LAG) Manager Facility</td>
<td>179000-179999</td>
</tr>
<tr>
<td>ldap</td>
<td>Lightweight Directory Access Protocol (LDAP) Request Facility</td>
<td>160000-160499</td>
</tr>
<tr>
<td>li</td>
<td>Lawful Intercept (LI) Log Facility</td>
<td>69000-69999</td>
</tr>
<tr>
<td>linkmgr</td>
<td>Link Manager Facility</td>
<td>89500-89999</td>
</tr>
<tr>
<td>llc</td>
<td>Logical Link-Control (LLC) Layer Facility (GPRS)</td>
<td>115700-115799</td>
</tr>
<tr>
<td>local-policy</td>
<td>Local Policy Configuration Facility</td>
<td>161400-162399</td>
</tr>
<tr>
<td>m3ap</td>
<td>M3 Application Protocol (M3AP) Facility</td>
<td>211500-211999</td>
</tr>
<tr>
<td>m3ua</td>
<td>MTP Level 3 (M3UA) Protocol Facility [SIGTRAN]</td>
<td>87500-87699</td>
</tr>
<tr>
<td>magmgr</td>
<td>Mobile Access Gateway (MAG) Manager Facility</td>
<td>137500-137999</td>
</tr>
<tr>
<td>map</td>
<td>Mobile Application Part (MAP) Protocol Facility [SS7]</td>
<td>87100-87299</td>
</tr>
<tr>
<td>megadiammgr</td>
<td>MegaDiameter Manager Facility</td>
<td>121000-121199</td>
</tr>
<tr>
<td>mme-app</td>
<td>Mobility Management Entity (MME) Application Facility</td>
<td>147000-147999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>mme-embms</td>
<td>MME evolved Multimedia Broadcast Multicast Service (eMBMS) Facility</td>
<td>212000-212499</td>
</tr>
<tr>
<td>mme-misc</td>
<td>MME Miscellaneous Facility</td>
<td>155800-156199</td>
</tr>
<tr>
<td>mmedemux</td>
<td>MME Demux Manager Facility</td>
<td>154000-154999</td>
</tr>
<tr>
<td>mmemgr</td>
<td>MME Manager Facility</td>
<td>137000-137499</td>
</tr>
<tr>
<td>mmgr</td>
<td>Master Manager (MMGR) Facility</td>
<td>86000-86399</td>
</tr>
<tr>
<td>mobile-ip</td>
<td>Mobile IP (MIP) Protocol Facility</td>
<td>26000-26999</td>
</tr>
<tr>
<td>mobile-ip-data</td>
<td>MIP Tunneled Data Facility</td>
<td>27000-27999</td>
</tr>
<tr>
<td>mobile-ipv6</td>
<td>Mobile IPv6 Facility</td>
<td>129000-129999</td>
</tr>
<tr>
<td>mpls</td>
<td>Multiprotocol Label Switching (MPLS) Facility</td>
<td>163500-163999</td>
</tr>
<tr>
<td>mseg-app</td>
<td>Mobile Services Edge Gateway (MSEG) Application Facility</td>
<td>172300-172999</td>
</tr>
<tr>
<td>mseg-gtpc</td>
<td>MSEG GTPC Application Facility</td>
<td>172000-172199</td>
</tr>
<tr>
<td>mseg-gtpu</td>
<td>MSEG GTPU Application Facility</td>
<td>172200-172299</td>
</tr>
<tr>
<td>msegmgr</td>
<td>MSEG Manager Facility</td>
<td>171000-171999</td>
</tr>
<tr>
<td>mtp2</td>
<td>Message Transfer Part 2 (MTP2) Service Facility [SS7]</td>
<td>116900-116999</td>
</tr>
<tr>
<td>mtp3</td>
<td>Message Transfer Part 3 (MTP3) Service Facility [SS7]</td>
<td>115600-115699</td>
</tr>
<tr>
<td>multicast-proxy</td>
<td>Multicast Proxy Facility</td>
<td>94000-94999</td>
</tr>
<tr>
<td>nas</td>
<td>Network Access Signaling (NAS) Facility</td>
<td>153000-153999</td>
</tr>
<tr>
<td>netwstrg</td>
<td>Network Storage Facility</td>
<td>78000-78999</td>
</tr>
<tr>
<td>npuctrl</td>
<td>Network Processing Unit (NPU) Control Facility</td>
<td>16000-16999</td>
</tr>
<tr>
<td>npudrv</td>
<td>NPU Driver Facility</td>
<td>191000-191999</td>
</tr>
<tr>
<td>npumgr</td>
<td>NPU Manager (NPUMGR) Facility</td>
<td>17000-17999</td>
</tr>
<tr>
<td>npumgr-acl</td>
<td>NPUMGR ACL Facility</td>
<td>169000-169999</td>
</tr>
<tr>
<td>npumgr-driv</td>
<td>NPUMGR Driver Facility</td>
<td>185000-185999</td>
</tr>
<tr>
<td>npumgr-flow</td>
<td>NPUMGR Flow Facility</td>
<td>167000-167999</td>
</tr>
<tr>
<td>npumgr-fwd</td>
<td>NPUMGR Forwarding Facility</td>
<td>168000-168999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>npumgr-init</td>
<td>NPUMGR Initialization Facility</td>
<td>164000-164999</td>
</tr>
<tr>
<td>npumgr-lc</td>
<td>NPUMGR LC Facility</td>
<td>180000-180999</td>
</tr>
<tr>
<td>npumgr-port</td>
<td>NPUMGR Port Facility</td>
<td>166000-166999</td>
</tr>
<tr>
<td>npumgr-recovery</td>
<td>NPUMGR Recovery Facility</td>
<td>165000-165999</td>
</tr>
<tr>
<td>npumgr-vpn</td>
<td>NPUMGR VPN Facility</td>
<td>181000-181999</td>
</tr>
<tr>
<td>npusim</td>
<td>NPUSIM Facility</td>
<td>176000-176999</td>
</tr>
<tr>
<td>ntfy-intf</td>
<td>Event Notification Interface Facility</td>
<td>170000-170499</td>
</tr>
<tr>
<td>orbs</td>
<td>Object Request Broker (ORB) System Facility</td>
<td>15000-15999</td>
</tr>
<tr>
<td>ospf</td>
<td>Open Shortest Path First (OSPF) Protocol Facility</td>
<td>38000-38999</td>
</tr>
<tr>
<td>p2p</td>
<td>Peer-to-Peer (P2P) Facility</td>
<td>146000-146999</td>
</tr>
<tr>
<td>pccmgr</td>
<td>Policy Charging and Control (PCC) Manager Facility</td>
<td>159000-159499</td>
</tr>
<tr>
<td>pdg</td>
<td>Packet Data Gateway (PDG) Facility</td>
<td>152010-152999</td>
</tr>
<tr>
<td>pdgdmgr</td>
<td>PDG TCP Demux Manager (pdgdmgr) Facility (this is a customer-specific facility)</td>
<td>162400-162999</td>
</tr>
<tr>
<td>pdif</td>
<td>Packet Data Interworking Function (PDIF) Facility</td>
<td>120000-120999</td>
</tr>
<tr>
<td>pgw</td>
<td>Packet Data Network Gateway (PGW) Facility</td>
<td>139000-139999</td>
</tr>
<tr>
<td>pmm-app</td>
<td>Packet Mobility Management (PMM) Application Facility [SGSN]</td>
<td>89200-89499</td>
</tr>
<tr>
<td>ppp</td>
<td>Point-To-Point Protocol (PPP) Facility</td>
<td>25000-25999</td>
</tr>
<tr>
<td>pppoe</td>
<td>Point-To-Point Protocol over Ethernet (PPPoE) Facility</td>
<td>183000-183999</td>
</tr>
<tr>
<td>ptt</td>
<td>PTT Facility</td>
<td>76000-76999</td>
</tr>
<tr>
<td>push</td>
<td>PUSH (VPNMgr CDR Push) Facility</td>
<td>133000-133999</td>
</tr>
<tr>
<td>radius-acct</td>
<td>RADIUS Accounting Protocol Facility</td>
<td>24000-24999</td>
</tr>
<tr>
<td>radius-auth</td>
<td>RADIUS Authentication Protocol Facility</td>
<td>23000-23999</td>
</tr>
<tr>
<td>radius-coa</td>
<td>RADIUS Change of Authorization (CoA) and Disconnect Facility</td>
<td>70000-70999</td>
</tr>
<tr>
<td>ranap</td>
<td>Radio Access Network Application Part (RANAP) Facility</td>
<td>87700-87899</td>
</tr>
<tr>
<td>rct</td>
<td>Recovery Control Task (RCT) Facility</td>
<td>13000-13999</td>
</tr>
<tr>
<td>rdt</td>
<td>Redirector Task (RDT) Facility</td>
<td>67000-67999</td>
</tr>
<tr>
<td>resmgr</td>
<td>Resource Manager (RM) Facility</td>
<td>14000-14999</td>
</tr>
<tr>
<td>rf-diameter</td>
<td>Rf Diameter Messages Facility</td>
<td>92860-92869</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>rip</td>
<td>Routing Information Protocol (RIP) Facility</td>
<td>35000-35999</td>
</tr>
<tr>
<td>rohc</td>
<td>Robust Header Compression (ROHC) Protocol Facility</td>
<td>103000-103999</td>
</tr>
<tr>
<td>rsvp</td>
<td>RSVP Protocol Facility</td>
<td>93000-93999</td>
</tr>
<tr>
<td>rua</td>
<td>RANAP User Adaptation (RUA) Protocol Facility</td>
<td>152000-152009</td>
</tr>
<tr>
<td>s1ap</td>
<td>S1 Application Protocol (S1AP) Facility</td>
<td>155200-155799</td>
</tr>
<tr>
<td>saegw</td>
<td>System Architecture Evolution Gateway Facility</td>
<td>191000-191999</td>
</tr>
<tr>
<td>sct</td>
<td>Shared Configuration Task (SCT) Facility</td>
<td>32000-32099</td>
</tr>
<tr>
<td>sctp</td>
<td>Stream Control Transmission Protocol (SCTP) Protocol Facility</td>
<td>87300-87499</td>
</tr>
<tr>
<td>sess-gr</td>
<td>SESS-GR Facility</td>
<td>77600-77999</td>
</tr>
<tr>
<td>sessctrl</td>
<td>Session Controller Facility</td>
<td>8000-8999</td>
</tr>
<tr>
<td>sessmgr</td>
<td>Session Manager Facility</td>
<td>10000-12999</td>
</tr>
<tr>
<td>sesstrc</td>
<td>Session Trace Facility</td>
<td>155000-155199</td>
</tr>
<tr>
<td>sft</td>
<td>Switch Fabric Task (SFT) Facility</td>
<td>58000-58999</td>
</tr>
<tr>
<td>sgs</td>
<td>SGs Interface Protocol Facility [MME]</td>
<td>173000-173199</td>
</tr>
<tr>
<td>sgsn-app</td>
<td>SGSN Application Interface Facility</td>
<td>115900-115999</td>
</tr>
<tr>
<td>sgsn-failures</td>
<td>SGSN Call Failures Facility</td>
<td>89100-89199</td>
</tr>
<tr>
<td>sgsn-gtpc</td>
<td>SGSN GTP-C Protocol Facility</td>
<td>116000-116599</td>
</tr>
<tr>
<td>sgsn-gtpu</td>
<td>SGSN GTP-U Protocol Facility</td>
<td>86900-87099</td>
</tr>
<tr>
<td>sgsn-mbms-bearer</td>
<td>SGSN MBMS Bearer Application (SMGR) Facility</td>
<td>116600-116799</td>
</tr>
<tr>
<td>sgsn-misc</td>
<td>SGSN Miscellaneous Facility</td>
<td>88800-89099</td>
</tr>
<tr>
<td>sgsn-system</td>
<td>SGSN System Components Facility</td>
<td>86400-86499</td>
</tr>
<tr>
<td>sgsn-test</td>
<td>SGSN Tests Facility</td>
<td>88700-88799</td>
</tr>
<tr>
<td>sgsn2</td>
<td>SGSN2 Facility</td>
<td>114000-117999</td>
</tr>
<tr>
<td>sgtpcmgr</td>
<td>SGSN GTP-C (SGTPC) Manager Facility</td>
<td>117000-117999</td>
</tr>
<tr>
<td>sgw</td>
<td>Serving Gateway (SGW) Facility</td>
<td>140000-140999</td>
</tr>
<tr>
<td>sh-diameter</td>
<td>Sh Diameter Messages Facility</td>
<td>92850-92859</td>
</tr>
<tr>
<td>sipcdprt</td>
<td>SIPCDPRT Facility</td>
<td>95000-95999</td>
</tr>
<tr>
<td>sitmain</td>
<td>System Initiation Task (SIT) Main Facility</td>
<td>4000-4999</td>
</tr>
<tr>
<td>sm-app</td>
<td>Short Message Service (SMS) Facility</td>
<td>88300-88499</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>sms</td>
<td>SMS Service Facility</td>
<td>116800-116899</td>
</tr>
<tr>
<td>sndcp</td>
<td>Sub Network Dependent Convergence Protocol (SNDCP) Facility</td>
<td>115800-115899</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol (SNMP) Facility</td>
<td>22000-22999</td>
</tr>
<tr>
<td>sprmgr</td>
<td>Subscriber Policy Register (SPR) Manager Facility</td>
<td>159500-159999</td>
</tr>
<tr>
<td>srdb</td>
<td>Static Rating Database Facility</td>
<td>102000-102999</td>
</tr>
<tr>
<td>srp</td>
<td>Service Redundancy Protocol (SRP) Facility</td>
<td>84000-84999</td>
</tr>
<tr>
<td>sscfnni</td>
<td>SSCFNNI Protocol Facility [ATM]</td>
<td>115500-115599</td>
</tr>
<tr>
<td>sscp</td>
<td>SSCOP Protocol Facility [ATM]</td>
<td>115400-115499</td>
</tr>
<tr>
<td>ssh-ipsec</td>
<td>SSH IP Security Facility</td>
<td>56999-56999</td>
</tr>
<tr>
<td>ssl</td>
<td>SSL Facility (this is a customer-specific facility)</td>
<td>156200-157199</td>
</tr>
<tr>
<td>stat</td>
<td>Statistics Facility</td>
<td>31000-31999</td>
</tr>
<tr>
<td>system</td>
<td>System Facility</td>
<td>1000-1999</td>
</tr>
<tr>
<td>tacacs+</td>
<td>TACACS+ Protocol Facility</td>
<td>37000-37999</td>
</tr>
<tr>
<td>tacлеп</td>
<td>TACLCP Facility</td>
<td>44000-44999</td>
</tr>
<tr>
<td>tcap</td>
<td>Transaction Capabilities Application Part (TCAP) Protocol</td>
<td>86500-86699</td>
</tr>
<tr>
<td>testctrl</td>
<td>Test Controller Facility</td>
<td>174000-174999</td>
</tr>
<tr>
<td>testmgr</td>
<td>Test Manager Facility</td>
<td>175000-175999</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold Facility</td>
<td>61000-61999</td>
</tr>
<tr>
<td>ttg</td>
<td>Tunnel Termination Gateway (TTG) Facility</td>
<td>130000-130999</td>
</tr>
<tr>
<td>tucl</td>
<td>TCP/UDP Convergence Layer (TUCL) Facility [SS7]</td>
<td>88500-88699</td>
</tr>
<tr>
<td>udr</td>
<td>User Data Record (UDR) Facility</td>
<td>79000-79999</td>
</tr>
<tr>
<td>user-data</td>
<td>User-Data Facility</td>
<td>51000-51999</td>
</tr>
<tr>
<td>user-l3tunnel</td>
<td>User L3 Tunnel Facility</td>
<td>75000-75999</td>
</tr>
<tr>
<td>usertcp-stack</td>
<td>User TCP Stack Facility</td>
<td>173300-173499</td>
</tr>
<tr>
<td>vim</td>
<td>Voice Instant Message (VIM) Facility</td>
<td>60000, 60999</td>
</tr>
<tr>
<td>vinfo</td>
<td>VINFO Facility</td>
<td>82000, 82999</td>
</tr>
<tr>
<td>vmgctrl</td>
<td>Virtual Media Gateway (VMG) Controller Facility</td>
<td>41000, 41999</td>
</tr>
<tr>
<td>vmgctxmgr</td>
<td>VMG Context Manager Facility</td>
<td>43000, 43999</td>
</tr>
<tr>
<td>vpn</td>
<td>Virtual Private Network (VPN) Facility</td>
<td>5000-5999</td>
</tr>
<tr>
<td>wimax-data</td>
<td>WiMAX DATA Facility</td>
<td>104900-104999</td>
</tr>
</tbody>
</table>
Event Severities

The system provides the flexibility to configure the level of information that is displayed when logging is enabled. The following levels are supported:

- **critical**: Logs only those events indicating a serious error has occurred that is causing the system or a system component to cease functioning. This is the highest severity level.
- **error**: Logs events that indicate an error has occurred that is causing the system or a system component to operate in a degraded state. This level also logs events with a higher severity level.
- **warning**: Logs events that may indicate a potential problem. This level also logs events with a higher severity level.
- **unusual**: Logs events that are very unusual and may need to be investigated. This level also logs events with a higher severity level.
- **info**: Logs informational events and events with a higher severity level.
- **trace**: Logs events useful for tracing and events with a higher severity level.
- **debug**: Logs all events regardless of the severity.

Each of the above levels correspond to the "severity" level of the event ID. Therefore, only those event IDs with a "severity" level equal to the logging level are displayed.

Understanding Event ID Information in Logged Output

This section explains the event information that is displayed when logging is enabled.

The following displays a sample output for an event that was logged:

```
2011-Dec-11+5:18:41.993 [cli 30005 info] [8/0/609 cli:8000609 _commands_cli.c:1290] [software internal system] CLI session ended for Security Administrator admin on device /dev/pts/2
```

The following table describes the elements of contained in the sample output.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-Dec-11+5:18:41.993</td>
<td>Date/Timestamp indicating when the event was generated</td>
</tr>
<tr>
<td>Element</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| [cli 30005 info] | Information about the event including:  
  - The facility the event belongs to  
  - The event ID  
  - The event's severity level  
  In this example, the event belongs to the CLI facility, has an ID of 3005, and a severity level of “info”. |
| [8/0/609 cli:8000609_commands_cli.c:1290] | Information about the specific CLI instance. |
| [software internal system] | Indicates that the event was generated because of system operation. |
| CLI session ended for Security Administrator admin on device /dev/pts/2 | The event's details. Event details may, or may not include variables that are specific to the occurrence of the event. |
Troubleshooting

This chapter provides information and instructions for using the system command line interface (CLI) for troubleshooting any issues that may arise during system operation.

Refer to the *ASR 5000 Installation Guide* for comprehensive descriptions of the hardware components addressed by these troubleshooting procedures.

- Detecting Faulty Hardware, page 171
- Taking Corrective Action, page 191
- Verifying Network Connectivity, page 195
- Using the System Diagnostic Utilities, page 198
- Generating an SSD, page 201
- Configuring and Using the Support Data Collector, page 201

Detecting Faulty Hardware

When power is applied to the chassis, power is sequentially applied to management cards, application cards and line cards.

Each PFU, application and line card installed in the system incorporates light emitting diodes (LEDs) that indicate its operating status. This section describes how to use these status LEDs to verify that all of the installed components are functioning properly.

As the system progresses through its boot process, some cards will not exhibit immediate LED activity. Allow several minutes to elapse after a reboot is initiated before checking the LEDs on the various cards to verify that the boot process has successfully completed.
Using the CLI to View Status LEDs

The status of application and line card LEDs can be viewed through the CLI by entering the `show leds all` command in Exec mode.

```
 [local] host_name# show leds all
```

The following displays a sample of this command's output.

```
Slot 01: Run/Fail: Green | Active: Off | Standby: Green
Slot 08: Run/Fail: Green | Active: Green | Standby: Off
 Status: Green | Service: Off |
 Slot 09: Run/Fail: Green | Active: Off | Standby: Green
 Status: Green | Service: Off |
 Slot 12: Run/Fail: Green | Active: Green | Standby: Off
 Slot 14: Run/Fail: Green | Active: Green | Standby: Off
 Slot 17: Run/Fail: Green | Active: Green | Standby: Off
 Slot 24: Run/Fail: Green | Active: Green | Standby: Off
 Slot 25: Run/Fail: Green | Active: Off | Standby: Green
 Slot 30: Run/Fail: Green | Active: Green | Standby: Off
 Slot 33: Run/Fail: Green | Active: Off | Standby: Off
 Slot 40: Run/Fail: Green | Active: Off | Standby: Off
```

The status of the two Power Filter Units (PFUs) can be viewed by entering the `show power chassis` command in the Exec mode.

Checking the LED on the PFU

Each PFU has a single status LED labeled **POWER**.

This LED should be green for normal operating conditions.

*Figure 12: PFU LED Location*

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information below to diagnose the problem.
### Table 13: PFU POWER LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>PFU powered with no errors detected</td>
<td>None needed.</td>
</tr>
<tr>
<td>None</td>
<td>PFU is not receiving power</td>
<td>Verify that the power switch is in the ON position.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the RTN and -VDC lugs are attached properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the ground lug is attached properly. Verify that the power source is on and is supplying the correct voltage and sufficient current.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the cables from the power source to the rack for continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a power distribution panel (PDP) is installed between the power distribution frame (PDF) and the chassis, verify that the circuit breakers are set to ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a PDP is installed between the PDF and the chassis, check the cables from the PDP to the chassis for continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If all of the above suggestions have been verified, then it is likely that the PFU is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

### Checking the LEDs on the SMC

Each SMC is equipped with the following LEDs as shown in the accompanying figure:

- Run/Fail
- Active
- Standby
- Status
- Service
The possible states for all SMC LEDs are described in the sections that follow.

**SMC Run/Fail LED States**

The SMC **Run/Fail** LED indicates the overall status of the card. This LED should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
### Table 14: SMC Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software.</td>
<td>This is normal operation during boot-up.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the command line interface during boot. Refer to one or more of the following to help analyze this problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring the System for <code>show</code> commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Logs for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>SNMP MIB Reference</code> for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the <code>POWER</code> LEDs on the PFUs are green. If they are not, check the PFU power feeds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the power source is supplying ample voltage and current to the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the card is properly installed per the instructions in the <code>ASR 5000 Installation Guide</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If all of the above suggestions have been verified, it is possible that the SMC is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

### SMC Active LED States

The `Active` LED on the SMC indicates that the software is loaded on the card and it is ready for operation. For the SMC installed in chassis slot 8, this LED should be green for normal operation. For the SMC installed in slot 9, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

#### Table 15: SMC Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>None needed for the SMC in slot 8. If green for the SMC in slot 9, verify that the SMC in slot 8 is installed properly according to the instructions in this document.</td>
</tr>
</tbody>
</table>
Troubleshooting

Checking the LEDs on the SMC

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes are being migrated from the active SMC to the redundant/secondary SMC.</td>
<td>Verify that the Standby LED on the redundant SMC is also blinking green. If so, there is an issue with the active SMC. Refer to one or more of the following to help analyze this problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Monitoring the System</strong> for show commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>System Logs</strong> for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>The SNMP MIB Reference</strong> for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the state of the Standby LED. If it is green, the card is in standby mode. If needed, refer to the Configuring Packet Processing Card and Line Card Availability section of System Settings for information on making the card active.</td>
</tr>
</tbody>
</table>

SMC Standby LED States

The Standby LED on the SMC indicates that software is loaded on the card, but it is serving as a redundant component. For the SMC installed in slot 9, this LED should be green for normal operation. For the SMC installed in slot 8, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 16: SMC Standby LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode.</td>
<td>None needed for the SMC in slot 9. If green for the SMC in slot 8, then verify it is installed properly according to the instructions in this document.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes are being migrated from the active SMC to the redundant/secondary SMC.</td>
<td>Verify that the Active LED on the redundant SMC is also blinking green. If so, there is an issue with the active SMC. Refer to one or more of the following to help analyze this problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Monitoring the System</strong> for show commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>System Logs</strong> for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>The SNMP MIB Reference</strong> for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Active Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the state of the Active LED. If it is green, the card is in active mode.</td>
</tr>
</tbody>
</table>
SMC Status LED States

The Status LEDs on the SMC indicate the status of system level hardware such as installed cards, fans, and PFUs. This LED is green during normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information also provided to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>No system errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Red</td>
<td>Failures detected.</td>
<td>Check the Run/Fail LEDs for all installed application cards, and line cards. If any are red or off, refer to the troubleshooting information in this chapter pertaining to that device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring the System for show commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Logs for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The SNMP MIB Reference for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power.</td>
</tr>
</tbody>
</table>

SMC Service LED States

The Service LEDs on the SMCs indicate that the system requires maintenance or service (for example, the system could not locate a valid software image at boot-up, or a high temperature condition exists).

This LED is off during normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>System requires maintenance (fan filter, temperature warning, PFU outage etc.).</td>
<td>Refer to one or more of the following to help analyze this problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring the System for show commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Logs for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The SNMP MIB Reference for information on associated status and alarm conditions.</td>
</tr>
</tbody>
</table>
### SMC Busy LED States

The **Busy** LEDs on the SMCs indicate that there is activity on one of their memory devices. Activity is displayed for the following memory devices:

- CompactFlash module
- PCMCIA device
- Nand Flash (used to store SMC firmware).
- Hard Drive

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

#### Table 19: SMC Busy LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green/ Blinking Green</td>
<td>Data is being read from/written to one of the memory devices.</td>
<td>No maintenance needed. <strong>NOTE:</strong> You should wait until this LED is off before removing the SMC from the chassis. This practice ensures the integrity of all data being transferred to or from the memory device.</td>
</tr>
<tr>
<td>None</td>
<td>The memory devices are not in use.</td>
<td>No maintenance needed.</td>
</tr>
</tbody>
</table>

### Checking the LEDs on the Packet Processing Cards

The ASR 5000 supports a variety of packet processing cards (PSC\(n\) and PPC). For detailed information about the types of cards and their applications, refer to the *ASR 5000 Installation Guide*.

Each packet processing card is equipped with the status LEDs listed below:

- Run/Fail
- Active
- Standby
- Status
Service

Figure 14: Packet Processing Card LEDs

The possible states for all packet processing card LEDs are described below.

**Packet Processing Card Run/Fail LED States**

The packet processing card Run/Fail LED indicates the overall status of the card. This LED should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 20: Packet Processing Card Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Card is initializing and/or loading software.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the system's command line interface during the boot process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring the System for <code>show</code> commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Logs for information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>SNMP MIB Reference</code> for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the <code>POWER</code> LEDs on the PFUs are green. If they are not, check the PFU power feeds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the power source is supplying ample voltage and current to the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the card is properly installed per the instructions in the <code>ASR 5000 Installation Guide</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If all of the above suggestions have been verified, it is possible that the packet processing card is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

Packet Processing Card Active LED States

The `Active` LED on a packet processing card indicates that the software is loaded on the card and that the card is ready for operation. When the system first boots up, all installed packet processing cards are booted into standby mode. The system must then be configured as to which packet processing cards should serve as redundant components (remain in standby mode) and which should function as active components.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 21: Packet Processing Card Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The first time power is applied to the system, all of the packet processing cards should be booted into the standby mode. Therefore, this LED should be off.</td>
</tr>
</tbody>
</table>
### Troubleshooting

**Packet Processing Card Standby LED States**

The *Standby* LED on a packet processing card indicates that software is loaded on the card, but the card is serving as a redundant component. When the system first boots up, all installed packet processing cards are booted into standby mode. The system must then be configured as to which packet processing cards should be redundant (remain in standby mode) and which should be active.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes are being migrated from an active card to a redundant/secondary card.</td>
<td>Verify that the <em>Standby</em> LED on a redundant packet processing card is also blinking green. If so, there is an issue with the card that was active and is transferring its processes. Refer to <em>Monitoring the System</em> for information on determining the status of the packet processing card and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the <em>Run/Fail</em> LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the <em>Standby</em> LED. If it is green, the card is in standby mode. This is normal operation for the initial power-up. If needed, refer to the <em>Configuring Packet Processing and Line Card Availability</em> section of <em>System Settings</em> for information on making the card active.</td>
</tr>
</tbody>
</table>

### Table 22: Packet Processing Card Standby LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode.</td>
<td>The first time power is applied to the system, all of the packet processing cards should be booted into the standby mode. Therefore, this is normal operation.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes are being migrated from the active SMC to the redundant/secondary SMC.</td>
<td>Verify that the <em>Active</em> LED on the redundant packet processing card is also blinking green. If so, there is an issue with the active packet processing card and the system is transferring its processes. <em>Monitoring the System</em> for <em>show</em> commands, the outputs of which will assist in further determining the problem. <em>System Logs</em> for information on how to view logs. The <em>SNMP MIB Reference</em> for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card in Active Mode.</td>
<td>Verify that the <em>Run/Fail</em> LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the <em>Active</em> LED. If it is green, the card is in active mode.</td>
</tr>
</tbody>
</table>
Checking the LEDs on the SPIO

Each SPIO is equipped with the following status LEDs:

- Run/Fail
- Active
- Standby

In addition to the LEDs listed above, each interface to the management network (both RJ-45 and SFP) are equipped with the following LEDs:

- Link
- Activity

The possible states for all of the SPIO LEDs are described in the sections that follow.

**SPIO Run/Fail LED States**

The SPIO Run/Fail LED indicates the overall status of the card. This LED should be green for normal operation. The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 23: SPIO Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the command line interface during the boot process. Refer to Monitoring the System for information on determining the status of system hardware components.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the POWER LEDs on the PFUs are green. If they are not, check PFU power feeds. Verify that the power source is supplying ample voltage and current to the chassis. Verify that the card is properly installed per the instructions in the ASR 5000 Installation Guide. If all of the above suggestions have been verified, it is possible that the SPIO is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

**SPIO Active LED States**

The Active LED on the SPIO indicates that the software is loaded on the card and that the card is ready for operation. For the SPIO installed in chassis slot 24, this LED should be green for normal operation. For the SPIO installed in slot 25, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 24: SPIO Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>None needed for SPIO in slot 24. If green for SPIO in slot 25, then verify that SPIO in slot 24 is installed properly.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. <strong>OR</strong> Card in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the Standby LED. If it is green, the card is in standby mode. This is normal for the SPIO in slot 25 since the chassis automatically places the card into standby mode at boot up.</td>
</tr>
</tbody>
</table>
SPIO Standby LED States

The Standby LED on the SPIO indicates that software is loaded on the card, but it is serving as a redundant component. For the SPIO installed in slot 25, this LED should be green for normal operation. For the SPIO installed in slot 24, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 25: SPIO Standby LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode.</td>
<td>None needed for SPIO in slot 25. If green for SPIO in slot 24, check the status of the SMC installed in slot 8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the SMC in slot 8 is in standby mode, it is possible that there is a problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring the System for show commands, the outputs of which will assist in further determining the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Logs or information on how to view logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The SNMP MIB Reference for information on associated status and alarm conditions.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Active Mode.</td>
<td>None needed. Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the Active LED. If it is green, the card is in active mode. This is normal for the SPIO in slot 24 since the chassis automatically makes the card active at boot up.</td>
</tr>
</tbody>
</table>

SPIO Interface Link LED States

The Link LED, associated with a particular SPIO interface indicates the status of the network link. This LED should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 26: SPIO Interface – Link LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Link is up.</td>
<td>None needed. Note: This LED will not indicate the presence of a network link until the interface parameters are set during the software configuration process.</td>
</tr>
</tbody>
</table>
Troubleshooting

Verify that the Run/Fail LED is green. If so, the card is receiving power. If it is off, the card is not receiving power.

Verify that the interface is cabled properly.

Verify that the device on which the interface is located is cabled and powered properly.

## SPIO Interface – Activity LED States

The *Activity* LED associated with a particular SPIO interface indicates the presence of traffic on the network link. This LED should be green when data is being transmitted or received over the interface.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No power is available to card.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power.</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>If it is off, the card is not receiving power.</td>
</tr>
<tr>
<td></td>
<td>Link is down.</td>
<td>Verify that the interface is cabled properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the device on which the interface is located is cabled and powered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>properly.</td>
</tr>
</tbody>
</table>

### Table 27: SPIO Interface Activity LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing Green</td>
<td>Traffic is present on the link.</td>
<td>None needed.</td>
</tr>
<tr>
<td>None</td>
<td>No traffic is present on the link.</td>
<td>None needed if there is no activity on the link. Prior to configuration, this is normal operation.</td>
</tr>
</tbody>
</table>

## Checking the LEDs on Ethernet Line Cards

The ASR 5000 can be equipped with a variety of Ethernet line cards that support subscriber traffic. For detailed information about the types of line cards and their applications, refer to the *ASR 5000 Installation Guide*.

The following line cards are currently supported on the ASR 5000:

- Fast Ethernet Line Card (FELC and FLC2): half-height, 8-ports, 10/100Base-T interfaces
- Gigabit Ethernet Line Card (GELC and GLC2): half-height, 1-ports, SFP interface
- Quad GigE Line Card (QGLC): half-height, 4-ports, SFP interfaces
- 10 Gigabit Line Card (XGLC): full-height, 1-port, SFP+ interfaces

Each of the Ethernet cards listed above is equipped with status LEDs as listed below:

- Run/Fail
- Active
- Standby

In addition to the LEDs listed above, each network interface is equipped with the *Link* and *Activity* LEDs.

The possible states for all LEDs on these Ethernet line cards are described below.
**Ethernet Line Card Run/Fail LED States**

The *Run/Fail* LEDs on the Ethernet line cards indicate the overall status of the cards. These LEDs should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

**Table 28: Ethernet Line Card Run/Fail LED States**

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the command line interface during the boot process. Refer to <em>Monitoring the System</em> for information on determining the status of system hardware components.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the <em>POWER</em> LEDs on the PFUs are green. If they are not, check the PFU power feeds. Verify that the power source is supplying ample voltage and current to the chassis. Verify that the card is properly installed per the instructions in the <em>ASR 5000 Installation Guide</em>. If all of the above suggestions have been verified, it is possible that the line card is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

**Ethernet Line Card Active LED States**

The *Active* LEDs on the Ethernet line cards indicate that the operating software is loaded on the card and that the card is ready for operation.

*Important*  
QGLCs and XGLCs only work in an ASR 5000 behind specific types of packet processing cards. Refer to the *ASR 5000 Installation Guide* for details.

The line cards will remain in a ready mode until their corresponding packet processing card is made active via configuration. While in ready mode the *Active* LED should be off. After the packet processing card is made active, the line card installed in the upper-rear chassis slot behind the packet processing card will also be made active. The line card (except for the Full-height XGLC) installed in the lower-rear chassis slot behind the packet processing card will enter the standby mode.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 29: Ethernet Line Card Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>None needed for line cards installed in slots 17 through 23 and 26 through 32 after configuration. If green for half-height line cards in slots 33 through 39 and 42 through 48, verify that the corresponding line card installed in the upper-rear chassis slot is installed properly according to the instructions in this document. For example, if this LED is green for a line card in slot 33, verify that the line card in slot 17 is installed properly.</td>
</tr>
<tr>
<td>None</td>
<td>Card is in Ready Mode. OR Card is not receiving power. OR Card is in Standby Mode.</td>
<td>This is normal prior to configuration. Neither the Active or the Standby LED on the card is on. Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the Standby LED. If it is green, the card is in standby mode. This is normal operation for the initial power-up. If needed, refer to the Configuring Packet Processing and Line Card Availability section of System Settings for information on making the card active.</td>
</tr>
</tbody>
</table>

Ethernet Line Card Standby LED States

The Standby LEDs on the Ethernet line cards indicate that software is loaded on the cards, but are serving as redundant components.

The line cards will remain in a ready mode until their corresponding packet processing card is made active via configuration. While in ready mode, the Active LED should be off. After the packet processing card is made active, the line card installed in the upper-rear chassis slot behind the packet processing card will also be made active. The line card (except for the full-height XGLC) installed in the lower-rear chassis slot behind the packet processing card will also enter the standby mode.

The possible states for this LED are described below. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 30: Ethernet Line Card Standby LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode.</td>
<td>None needed for half-height line cards installed in slots 33 through 39 and 42 through 48 after configuration. If green for line cards installed in slots 17 through 23 and 26 through 32, refer to Monitoring the System for information on determining the status of the line card and system software processes.</td>
</tr>
</tbody>
</table>
### Ethernet Line Card Interface – Link LED States

The *Link* LEDs, associated with a particular network interface on the Ethernet line cards, indicate the status of the network link. These LEDs should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

#### Table 31: Ethernet Line Card Interface – Link LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Link is up.</td>
<td>None needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>NOTE:</strong> This LED will not indicate the presence of a network link until the interface parameters are set during the software configuration process.</td>
</tr>
<tr>
<td>None</td>
<td>No power is available to the card.</td>
<td>Verify that the <em>Run/Fail</em> LED is green. If so, the card is receiving power. If it is off, the card is not receiving power.</td>
</tr>
<tr>
<td>OR</td>
<td>Link is down.</td>
<td>Verify that the interface is cabled properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the device where the interface is connected to is cabled and powered properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the cable for continuity.</td>
</tr>
</tbody>
</table>

### Ethernet Line Card Interface Activity LED States

The *Activity* LEDs, associated with a particular network interface on the Ethernet line cards, indicate the presence of traffic on the network link. These LEDs should be green when data is being transmitted or received over the interface.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 32: Ethernet Line Card Interface Activity LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing Green</td>
<td>Traffic is present on the link.</td>
<td>None needed.</td>
</tr>
<tr>
<td>None</td>
<td>No traffic is present on the link.</td>
<td>None needed if there is no activity on the link. Prior to configuration, this is normal operation.</td>
</tr>
</tbody>
</table>

Checking the LEDs on the RCC

Each RCC is equipped with status LEDs as listed below:

- Run/Fail
- Active
- Standby

Figure 16: RCC LED Locations

The possible states for all of the RCC LEDs are described in the sections that follow.

RCC Run/Fail LED States

The Run/Fail LED indicates the overall status of the card. This LED should be green for normal operation.
The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

**Table 33: RCC Run/Fail LED States**

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the command line interface during the boot process. Refer to <em>Monitoring the System</em> for information on determining the status of system hardware components.</td>
</tr>
<tr>
<td>None</td>
<td>Card powered with error(s) detected.</td>
<td>Verify that the POWER LEDs on the PFUs are green. If they are not, check the PFU power feeds. Verify that the power source is supplying ample voltage and current to the chassis. Verify that the card is properly installed per the instructions in the <em>ASR 5000 Installation Guide</em>. If all of the above suggestions have been verified, it is possible that the RCC is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

**RCC Active LED States**

The *Active* LED on the RCC indicates that the card is being used. For normal operation, this LED should be off on both RCCs.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

**Table 34: RCC Active LED States**

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The RCC is actively routing traffic from a line card installed behind a packet processing card that has failed to a redundant packet processing card. The RCC installed in chassis slot 40 processes traffic for the line cards in chassis slots 17 through 23 and 26 through 32. The RCC installed in chassis slot 41 processes traffic for the line cards in slots 33 through 39 and 42 through 48.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the Standby LED. If it is green, the card is in standby mode. This is the normal operating mode.</td>
</tr>
</tbody>
</table>
RCC Standby LED States

The Standby LED on the RCC indicates that software is loaded on the card and is ready to provide a path for data or signalling traffic from a line card to a redundant packet processing card. This LED should be on for normal operation for both RCCs installed.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 35: RCC Standby LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in standby mode.</td>
<td>This is the normal operating mode.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST test results are positive. If it is off, the card is not receiving power. Check the state of the Active LED. If it is green, the card is in active mode and the RCC is actively routing traffic from a line card installed behind a packet processing card that has failed. Information on determining the cause of the failure can be found in Monitoring the System.</td>
</tr>
<tr>
<td></td>
<td>Card is in Active Mode.</td>
<td></td>
</tr>
</tbody>
</table>

Testing System Alarm Outputs

The system provides the following two physical alarm mechanisms:

- **System Audible Alarm**: Located on the SPC/SMC, the speaker is used to provide an audible indicator that a minor, major, or critical alarm has occurred.

- **CO Alarms Interface**: Located on the SPIO, this interface provides a 10-pin connector that enables three dry-contact relays (Form C) for the triggering of external audio and/or visual indicators. These indicators can be used to alert that either a minor, major, or critical alarm has occurred.

The operation of these alarms can be tested by issuing the following command:

```
[local]host_name# test alarm { audible | central-office | critical | major | minor }
```

For a complete description of the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

When this command is executed, the specified alarm is activated for a period of 10 seconds. After this time, the alarm will return to its previous condition.

Taking Corrective Action

In the event that an issue was discovered with an installed application or line card, depending on the severity, it may be necessary to take corrective action.
The system provides several redundancy and fail-over mechanisms to address issues with application and line cards in order to minimize system downtime and data loss. These mechanisms are described in the sections that follow.

**Manually Initiating a Management Card Switchover**

When the system boots up, the SMC installed in chassis slot 8 will boot into the "active" mode and begin booting other system components. The SMC installed in chassis slot 9 will automatically be booted into "standby" mode dictating that it will serve as a redundant component. However, the active SMC will frequently synchronize currently running tasks or processes with the redundant SMC.

In the event of a critical failure on the SMC in slot 8, system control will be switched to the redundant SMC in slot 9. This is a relatively seamless transition because the two are synchronized. The formerly active SMC will then enter the standby mode allowing it to be safely replaced or restored.

In the event that an issue arises that is not severe enough for the system to perform an automatic switchover, a manual switch over can be invoked by executing the following instructions from the Exec mode prompt.

### Step 1
Initiate a manual SMC switch over by entering the following command:

```
[local]host_name# card smc switchover
```

```
[local]host_name# card switch from <24 or 25> to <25 or 24>
```

You will receive the following prompt:

```Are You Sure? [Yes|No]:```

Step 2
Press Y to start the switchover.

Step 3
Verify that the switchover was successful by entering the following command.

```
[local]host_name# show card table
```

Check the entry in the **Oper State** column next to the SMC just switched. Its state should be **Standby**.

Manually Initiating a Packet Processing Card Migration

When the system boots up, all packet processing cards enter the "standby" mode. The standby mode indicates that the card is available for use but is not configured for operation. Installed components can be made active through the software configuration process. Cards that are not configured to enter the "active" mode will remain in standby mode for use as redundant components.

In the event of the critical failure of a packet processing card, tasks will be automatically be migrated from the active card to a redundant card in standby mode. The line card installed behind the packet processing card that was formerly active will still be used to maintain the interfaces to external network equipment. Installed Redundancy Crossbar Cards (RCCs) will provide a path for signalling and data traffic between the line card and the now active packet processing card. Therefore, redundant packet processing cards do not require that line cards be installed behind them.
In the event that an issue arises that is not severe enough for the system to perform an automatic migration, a manual migration can be invoked. Follow the instructions below to manually initiate a packet processing card migration. These instructions assume you are at the root prompt for the Exec mode.

Step 1
Initiate a manual packet processing card migration by entering the following command:

```
[local] host_name# card migrate from original_slot# to final_slot#
```

You will receive the following prompt:

Are You Sure? [Yes|No]:

For a complete description of the above command, see the Exec Mode Commands chapter of the Command line Interface Reference.

Step 2
Press Y to start the migration.

Step 3
Verify that the migration was successful by entering the following command.

```
[local] host_name# show card table
```

Check the entry in the Oper State column next to the packet processing card that was just migrated from. Its state should be Standby. The state of the packet processing card migrated to should be Active.

Manually Initiating a Line Card or SPIO Switchover

Ethernet line cards are installed in the half-height slots at the rear of the chassis. This design allows for two half-height line cards to be installed behind every application card (vertical redundancy). With two line cards installed, booting their associated application card causes the card in the upper-rear chassis slot to automatically be made active while the card in the lower-rear chassis slot will automatically be placed in standby mode. In the event that the active card experiences a failure, the system will automatically switch traffic to the standby card in the lower slot.

The XGLC is a full-height card that supports 1:1 side-by-side redundancy. Side-by-side (horizontal) redundancy allows two XGLC cards installed in neighboring slots to act as a redundant pair. Side-by-side pair slots for the XGLC are: 17-18, 19-20, 21-22, 23-26, 27-28, 29-30, and 31-32. If the XGLCs are not configured for side-by-side redundancy, they run independently without redundancy.

When configured for side-by-side redundancy, The XGLC is referenced only by the upper slot number (17 through 23, 26 through 33); the lower slot number is not recognized. All other configuration commands work as if the side-by-side slots were top-bottom slots. Configuration commands directed at the bottom slots either fail with errors or are disallowed.

In the event that a SPIO experiences a failure, the system will automatically switch traffic to the redundant SPIO installed behind the redundant SMC.

In the event that an issue arises that is not severe enough for the system to perform an automatic switchover, a manual switchover can be performed. Follow the instructions below to manually initiate a line card or SPIO switchover. These instructions assume you are at the root prompt for the Exec mode:

Step 1
Initiate a manual line card or SPIO migration by entering the following command:

```
[local] host_name# card switch from slot# to slot#
```
You will receive the following prompt:

Are You Sure? [Yes|No]:

For a complete description of the above command, see the Exec Mode Commands chapter of the Command line Interface Reference.

Step 2
Press Y to start the switch.

Step 3
Verify that the migration was successful by entering the following command:
```
[local]host_name# show card table
```
Check the entry in the Oper State column next to the line card or SPIO that was just switched from. Its state should be Standby. The state of the line card or SPIO switched to should be Active.

Halting Cards

Packet processing cards or line cards that are in either the active or standby modes can be halted. Halting these cards places them into the "offline" mode. In this mode, the card is unusable for session processing as either an active or redundant component.

If a card in the active mode is halted, its tasks, processes, or network connections will be migrated to a redundant component prior to entering the offline mode.

This section describes how to initiate a card halt and restore halted components.

Initiate a Card Halt

Follow the instructions below to manually initiate a card halt. These instructions assume you are at the root prompt for the Exec mode.

Step 1
Initiate a manual card migration by entering the following command:
```
[local]host_name# card halt slot#
```
slot# is the chassis slot number in which the card to be halted is installed. It can be any integer value between 1 and 7, 10 through 48. You will receive the following prompt:

Are You Sure? [Yes|No]:

Step 2
Press Y to initiate the halt operation.

Step 3
Verify that the migration was successful by entering the following command:
```
[local]host_name# show card table
```
Check the entry in the Oper State column next to the line card that was just halted. Its state should be Offline. If the card was in active mode prior to the execution of this command, the state of the redundant component associated with it should now be Active.
Restoring a Previously Halted Card

Follow the instructions below to restore a card that was previously halted. These instructions assume you are at the root prompt for the Exec mode.

Step 1
Reboot the card to be restored by entering the following command.

```
[local] host_name# card reboot slot# -force
```

You will receive the following prompt:

```
Are You Sure? [Yes|No]:
```

Step 2
Press **Y** to start the reboot of the card.

Step 3
Verify that the migration was successful by entering the `show card table` command at the prompt. Check the entry in the Oper State column next to the line card that was just restored. Its state should be the state of that it was in before it was halted.

Verifying Network Connectivity

There are multiple commands supported by the system to verify and/or troubleshoot network connectivity. Note that network connectivity can only be tested once system interfaces and ports have been configured and bound.

The commands specified in this section should be issued on a context-by-context basis. Contexts act like virtual private networks (VPNs) that operate independently of other contexts. Ports, interfaces, and routes configured in one context cannot be tested from another context without additional configuration.

To switch between contexts enter the following command at the root prompt for the Exec mode:

```
[local] host_name# context context_name
```

context_name is the name of the context to which you wish to switch. The following prompt appears:

```
[context_name] host_name#
```

Using the ping or ping6 Command

The `ping` or `ping6` command verifies the system's ability to communicate with a remote node in the network by passing data packets between and measuring the response. This command is useful in verifying network routing and if a remote node is able to respond at the IP layer. The command has the following syntax:

Syntax

The `ping` command has the following syntax:

```
ping host_ipv4_address [count num_packets] [pattern packet_pattern] [size octet_count] [src {src_host_name | src_host_ipv4_address}] [vrf vrf_nam]
```

The `ping6` command has the following syntax:

```
ping6 host_ipv6_address [count num_packets] [flood] [pattern packet_pattern] [size octet_count] [src {src_host_name | src_host_ipv6_address}] [vrf vrf_nam]
```
For complete descriptions of the above commands, see the Exec Mode Commands chapter of the Command Line Interface Reference.

The following displays a sample of a successful ping (IPV4) response.

PING 192.168.250.1 (192.168.250.1): 56 data bytes
64 bytes from 192.168.250.1: icmp_seq=0 ttl=255 time=0.4 ms
64 bytes from 192.168.250.1: icmp_seq=1 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=2 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=3 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=4 ttl=255 time=0.2 ms
--- 192.168.250.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.4 ms

Troubleshooting

If no response is received from the target follow these troubleshooting procedures:

• Verify that the correct IP address was entered.

• Attempt to ping a different device on the same network. If the ping was successful then it is likely that your system configuration is correct. Verify that the device you are attempting to ping is powered and functioning properly.

• Verify the port is operational.

• Verify that the configuration of the ports and interfaces within the context are correct.

• If the configuration is correct and you have access to the device that you're attempting to ping, ping the system from that device.

• If there is still no response, it is likely that the packets are getting discarded by a network device. Use the traceroute or traceroute6 and show ip static-route commands discussed in this chapter to further troubleshoot the issue.

Using the traceroute or traceroute6 Command

The traceroute or traceroute6 command collects information on the route data will take to a specified host. This is a useful troubleshooting command that can be used to identify the source of significant packet delays or packet loss on the network. This command can also be used to identify bottle necks in the routing of data over the network.

traceroute – IPv4 Syntax

The traceroute command has the following syntax:

```
traceroute { host_name | host_ipv4_address } [count packets] [df] [maxttl max_ttl] [minttl min_ttl] [port port_number] [size octet_count] [src { src_host_name | src_host_ipv4_address }] [timeout seconds] [vrf vrf_name]
```

For a complete description of the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

The following displays a sample output.

```
traceroute to 192.168.250.1 (192.168.250.1), 30 hops max, 40 byte packets
1  192.168.250.1 (192.168.250.1) 0.446 ms 0.235 ms 0.178 ms
```
traceroute6 – IPv6 Syntax

The traceroute6 command has the following syntax:

```
traceroute6 { host_name | host_ipv6_address } [ count packets ] [ maxttl max_ttl ] [ port port_number ] [ size octet_count ] [ src { src_host_name | src_host_ipv6_address } ] [ timeout seconds ] [ vrf vrf_name ]
```

For a complete description of the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

The following displays a sample output.

```
traceroute6 to 2001:4A2B::1f3F (2001:4A2B::1f3F), 30 hops max, 40 byte packets
1  2001:4A2B::1f3F (2001:4A2B::1f3F) 0.446 ms 0.235 ms 0.178 ms
```

Viewing IP Routes

The system provides a mechanism for viewing route information to a specific node or for an entire context. This information can be used to verify network connectivity and to ensure the efficiency of the network connection. The command has the following syntax:

```
show ip route [ route_ip_address ]
show ipv6 route [ route_ipv6_address ]
```

For a complete description of the above command, see the Exec Mode show Commands chapter of the Command Line Interface Reference.

If no keywords are specified, all IP routes within the context's routing table are displayed.

The following displays a sample of this command's output showing a context IPv4 routing table.

```
"*" indicates the Best or Used route.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>*0.0.0.0/0</td>
<td>10.0.4.1</td>
<td>static</td>
<td>0</td>
<td>0</td>
<td>SFI01</td>
</tr>
<tr>
<td>*10.0.4.0/24</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SFI01</td>
</tr>
<tr>
<td>*10.0.4.32</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SFI01</td>
</tr>
<tr>
<td>*10.0.4.255/32</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SFI01</td>
</tr>
</tbody>
</table>
```

Viewing the Address Resolution Protocol Table

The system provides a mechanism for viewing Address Resolution Protocol (ARP) table information to a specific node or for an entire context. This information can be used to verify that when the system sends an ARP packet, it receives valid responses from other network nodes. The command has the following syntax:

```
show ip arp [ arp_ip_address ]
```

`arp_ip_address` specifies a specific network node for which to display ARP information. The address can be entered in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation. If this keyword is not specified, all entries within the context's ARP table are displayed.

Important

Restarting the VPN Manager removes all interfaces from the kernel which in turn removes all ARP entries. However, the NPU still retains all of the ARP entries so that there is no traffic disruption. From a user point of view, `show ip arp` is broken since this command gathers information from the kernel and not the NPU.
The following displays a sample of this command's output showing a context's ARP table.

Flags codes:
C - Completed, M - Permanent, P - Published, ! - Not answered
T - has requested trailers

<table>
<thead>
<tr>
<th>Address</th>
<th>Link Type</th>
<th>Link Address</th>
<th>Flags</th>
<th>Mask</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.4.2 ether 00:05:47:02:20:20</td>
<td>C</td>
<td>SPI01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.4.2 ether 00:05:47:02:03:36</td>
<td>C</td>
<td>SPI01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.4.2 ether 00:01:30:F2:7F:00</td>
<td>C</td>
<td>SPI01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the System Diagnostic Utilities

The system provides protocol monitor and test utilities that are useful when troubleshooting or verifying configurations. The information generated by these utilities can help identify the root cause of a software or network configuration issue.

This section describes how to use these utilities.

Important

Only an administrator with Operator or higher privilege can run the diagnostic utilities described in this section.

Using the Monitor Utility

For troubleshooting purposes, the system provides a protocol monitoring utility. This tool displays protocol information for a particular subscriber session or for every session being processed.

Caution

The monitor tool may cause session processing delays and/or data loss. Therefore, it should be used only when troubleshooting.

Using the Protocol Monitor

The protocol monitor displays information for every session that is currently being processed. Depending on the number of protocols monitored, and the number of sessions in progress, a significant amount of data is generated. You should enable logging on your terminal client to capture all of the information that is generated.

Follow the instructions in this section to invoke and configure the protocol monitoring tool.

Step 1

Invoke the protocol monitor from the Exec mode by entering the `monitor protocol` command.

```
{local} host_name: monitor protocol
```

An output listing all the currently available protocols, each with an assigned number, is displayed.
Step 2 Choose the protocol that you wish to monitor by entering the associated number at the Select: prompt. A right arrow (>) appears next to the protocol you selected.

Step 3 Repeat step 2 as needed to choose multiple protocols.

Step 4 Press B to begin the protocol monitor.
WARNING!!! You have selected options that can DISRUPT USER SERVICE
Existing CALLS MAY BE DROPPED and/or new CALLS MAY FAIL!!!(Under heavy call load, some debugging output may not be displayed)
Proceed? - Select (Y)es or (N)o

Step 5 Enter Y to proceed with the monitor or N to go back to the previous menu.

C - Control Events (ON)
D - Data Events (ON)
E - EventID Info (ON)
H - Display ethernet (ON)
I - Inbound Events (ON)
O - Outbound Event (ON)
S - Sender Info (OFF)
T - Timestamps (ON)
A - PDU Hexdump (OFF)
+/ Verbosity Level (1)
L - Limit Context (OFF)
M - Match Newcalls (ON)
R - RADIUS Dict (no-override)
G - GTPP Dict (no-override)
Y - Multi-Call Trace (OFF)

(Q)uit, <ESC> Prev Menu, <SPACE> Pause, <ENTER> Re-Display Options

Step 6 Configure the amount of information that is displayed by the monitor. To enable or disable options, enter the letter associated with that option (C, D, E, etc.). To increase or decrease the verbosity, use the plus (+) or minus (-) keys. The current state, ON (enabled) or OFF (disabled), is shown to the right of each option.

Step 7 Press the Enter key to refresh the screen and begin monitoring.
The monitor remains active until disabled. To quit the protocol monitor and return to the prompt, press q.

Using the Protocol Monitor for a Specific Subscriber

The protocol monitor can be used to display information for a specific subscriber session that is currently being processed. Depending on the number of protocols monitored, and the number of sessions in progress, a significant amount of data is generated. It is highly recommended that logging be enabled on your terminal client in order to capture all of the information that is generated.

Follow the instructions in this section to invoke and configure the protocol monitoring tool for a specific subscriber session.
Step 2 Specify the method the monitor should use by entering the appropriate keyword.

Step 3 Select other options and/or enter the appropriate information for the selected keyword. If no session matching the specified criteria was being processed when the monitor was invoked, a screen of available monitoring options appears.

Step 4 Configure the amount of information that is displayed by the monitor. To enable or disable options, enter the letter associated with that option (C, D, E, etc.). To increase or decrease the verbosity, use the plus (+) or minus (-) keys. The current state, ON (enabled) or OFF (disabled), is shown to the right of each option.

Option Y for performing multi-call traces is only supported for use with the GGSN.

Step 5 Repeat step 6 as needed to enable or disable multiple protocols.

Step 6 Press Enter to refresh the screen and begin monitoring.

The following displays a portion of a sample of the monitor's output for a subscriber named user2@aaa. The default protocols were monitored.

```
Incoming Call:
MSID: 000012345 Callid: 002dc6c2
Username: user2@aaa SessionType: unknown
Status: Active Service Name: xxx1
Src Context: source Dest Context:
```

```
...............OUTBOUND 10:02:35:415 Eventid:25001(0)
PPP Tx PDU (9)
PAP 9: Auth-Ack(1), Msg=
...............OUTBOUND 10:02:35:416 Eventid:25001(0)
PPP Tx PDU (14)
IPCP 14: Conf-Req(1), IP-Addr=192.168.250.70
...............OUTBOUND 10:02:35:416 Eventid:25001(0)
PPP Tx PDU (27)
CCP 27: Conf-Req(1), MPPC, Stac-LZS, Deflate, MVRCA
.............INBOUND>>>>> 10:02:35:517 Eventid:25000(0)
PPP Rx PDU (30)
IPCP 30: Conf-Req(1), IP-Comp VJ-Comp, IP-Addr=0.0.0.0, Pri-DNS=0.0.0.0, Sec-DNS=0.0.0.0
.............OUTBOUND 10:02:35:517 Eventid:25001(0)
PPP Tx PDU (26)
IPCP 26: Conf-Rej(1), IP-Comp VJ-Comp, Pri-DNS=0.0.0.0, Sec-DNS=0.0.0.0
.............INBOUND>>>>> 10:02:35:518 Eventid:25000(0)
PPP Rx PDU (31)
LCP 31: Prot-Rej(1), Rejected-Protocol=CCP (0x80fd)
```
Generating an SSD

An SSD is an instance of the output when the Exec mode `show support details` command is run. It displays a comprehensive list of system information that is useful for troubleshooting purposes. In most cases, the output of this command is requested by the Technical Assistance Center (TAC).

An SSD output .tar file can be redirected to a local or remote location (URL).

The .tar file includes:

- **support_summary** - An ASCII text file that contains the support detail information.
- **information.minicores.tar** - A .tar file that contains any minicore files found on the system. Minicore files contain memory core dumps that are captured during some events. These core dumps provide specific memory locations and other information about the event. This information is useful to the technical support team in identifying where and when an event occurred along with its probable cause.

The `show support details` command includes information that is not otherwise accessible to users but that is helpful in the swift resolution of issues by TAC.

Important

Platforms with large configuration files can take up to 30 minutes to complete an SSD. Executing the `show support details` command consumes system resources and may reduce traffic throughput.

For additional information about the `show support details` command, see the Exec Mode show Commands (Q-S) chapter in the Command Line Interface Reference.

Configuring and Using the Support Data Collector

The task of collecting the support data is performed by a background CLI task called the record collector. The administrator configures the Support Data Collector (SDC) via the CLI with the commands to be executed on a periodic basis. The record collector always runs in the background and checks if there are records to be collected.
When it is time to collect support data, the scheduler executes the configured sequence of CLI commands and stores the results in a gunzipped (.gz) file on the hard-disk. This file is called an SDR (Support Data Record), and represents a snapshot of the overall state of the system at that time.

Technical Assistance Center (TAC) personnel and local administrators can review the SDRs on-line or by transferring them off the system. They may also wish to investigate the collector state information.

Refer to the Support Data Collector chapter for a complete description of SDC functionality.
CHAPTER 13

Access Control Lists

This chapter describes system support for access control lists and explains how they are configured. The product administration guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model before using the procedures described below.

Important

You do not require a license to configure ACLs. However, the number of ACLs configured may impact performance significantly.

Important

Not all commands and keywords/variables may be available. Availability depends on the platform type.

This chapter contains the following sections:

- Overview, page 203
- Understanding ACLs, page 204
- Configuring ACLs on the System, page 206
- Applying IP ACLs, page 208

Overview

IP access lists, commonly known as access control lists (ACLs), control the flow of packets into and out of the system. They are configured on a per-context basis and consist of "rules" (ACL rules) or filters that control the action taken on packets that match the filter criteria. Once configured, an ACL can be applied to any of the following:

- An individual interface
- All traffic facilitated by a context (known as a policy ACL)
- An individual subscriber
- All subscriber sessions facilitated by a specific context
Separate ACLs may be created for IPv4 and IPv6 access routes.

Understanding ACLs

This section discusses the two main aspects to ACLs on the system:

- Rule(s), on page 204
- Rule Order, on page 206

Important

Refer to _ACL Configuration Mode Commands_ and the _IPv6 ACL Configuration Mode Commands_ chapter in the _Command Line Interface Reference_ for the full command syntax.

Rule(s)

A single ACL consists of one or more ACL rules. Each rule is a filter configured to take a specific action when packets matching specific criteria. Up to 128 rules can be configured per ACL.

Important

Configured ACLs consisting of no rules imply a "deny any" rule. The _deny_ action and _any_ criteria are discussed later in this section. This is the default behavior for an empty ACL.

Each rule specifies the action to take when a packet matches the specified criteria. This section discusses the rule actions and criteria supported by the system.

Actions

ACLs specify that one of the following actions can be taken on a packet that matches the specified criteria:

- **Permit**: The packet is accepted and processed.
- **Deny**: The packet is rejected.
- **Redirect**: The packet is forwarded to the specified next-hop address through a specific system interface or to the specified context for processing.

Important

Redirect rules are ignored for ACLs applied to specific subscribers or all subscribers facilitated by a specific context, or APN for UMTS subscribers.

Criteria

Each ACL consists of one or more rules specifying the criteria that packets will be compared against. The following criteria are supported:
• **Any**: Filters all packets
• **Host**: Filters packets based on the source host IP address
• **ICMP**: Filters Internet Control Message Protocol (ICMP) packets
• **IP**: Filters Internet Protocol (IP) packets
• **Source IP Address**: Filter packets based on one or more source IP addresses
• **TCP**: Filters Transport Control Protocol (TCP) packets
• **UDP**: Filters User Datagram Protocol (UDP) packets

Each of the above criteria are described in detail in the sections that follow.

Important

The following sections contain basic ACL rule syntax information. Refer to the *ACL Configuration Mode Commands* and *IPv6 ACL Configuration Mode Commands* chapters in the *Command Line Interface Reference* for the full command syntax.

• **Any**: The rule applies to all packets.
• **Host**: The rule applies to a specific host as determined by its IP address.
• **ICMP**: The rule applies to specific Internet Control Message Protocol (ICMP) packets, Types, or Codes. ICMP type and code definitions can be found at www.iana.org (RFC 3232).
• **IP**: The rule applies to specific Internet Protocol (IP) packets or fragments.
• **IP Packet Size Identification Algorithm**: The rule applies to specific Internet Protocol (IP) packets identification for fragmentation during forwarding.

This configuration is related to the "IP Identification field" assignment algorithm used by the system, when subscriber packets are being encapsulated (such as Mobile IP and other tunneling encapsulation). Within the system, subscriber packet encapsulation is done in a distributed way and a 16-bit IP identification space is divided and distributed to each entity which does the encapsulation, so that unique IP identification value can be assigned for IP headers during encapsulation.

Since this distributed IP Identification space is small, a non-zero unique identification will be assigned only for those packets which may potentially be fragmented during forwarding (since the IP identification field is only used for reassembly of the fragmented packet). The total size of the IP packet is used to determine the possibility of that packet getting fragmented.

• **Source IP Address**: The rule applies to specific packets originating from a specific source address or a group of source addresses.
• **TCP**: The rule applies to any Transport Control Protocol (TCP) traffic and could be filtered on any combination of source/destination IP addresses, a specific port number, or a group of port numbers. TCP port numbers definitions can be found at www.iana.org
• **UDP**: The rule applies to any User Datagram Protocol (UDP) traffic and could be filtered on any combination of source/destination IP addresses, a specific port number, or a group of port numbers. UDP port numbers definitions can be found at www.iana.org.
Rule Order

A single ACL can consist of multiple rules. Each packet is compared against each of the ACL rules, in the order in which they were entered, until a match is found. Once a match is identified, all subsequent rules are ignored.

Additional rules can be added to an existing ACL and properly ordered using either of the following options:

- Before
- After

Using these placement options requires the specification of an existing rule in the ACL and the configuration of the new rule as demonstrated by the following flow:

```
| before | after | { existing_rule }
```

Configuring ACLs on the System

This section describes how to configure ACLs.

Important

This section provides the minimum instruction set for configuring access control list on the system. For more information on commands that configure additional parameters and options, refer to the ACL Configuration Mode Commands and IPv6 ACL Configuration Mode Commands chapters in the Command Line Interface Reference.

To configure the system to provide an access control list facility to subscribers:

Step 1
Create the access control list by following the example configuration in Creating ACLs, on page 206

Step 2
Specify the rules and criteria for action in the ACL list by following the example configuration in Configuring Action and Criteria for Subscriber Traffic, on page 207

Step 3
Optional. The system provides an "undefined" ACL that acts as a default filter for all packets into the context. The default action is to "permit all". Modify the default configuration for "unidentified" ACLs for by following the example configuration in Configuring an Undefined ACL, on page 207

Step 4
Verify your ACL configuration by following the steps in Verifying the ACL Configuration, on page 208

Step 5
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode save configuration command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Creating ACLs

To create an ACL, enter the following command sequence from the Exec mode of the system CLI:

```
configure
c context acl_ctxt_name [-noconfirm]
```
{ ip | ipv6 } access-list acl_list_name
end

Notes:

• The maximum number of ACLs that can be configured per context is limited by the amount of available memory in the VPN Manager software task. Typically, the maximum is less than 200.

Configuring Action and Criteria for Subscriber Traffic

To create rules to deny/permit the subscriber traffic and apply the rules after or before action, enter the following command sequence from the Exec mode of the system CLI:

```
configure context acl_ctxt_name [-noconfirm]
{ ip | ipv6 } access-list acl_list_name
deny { ip_address | any | host | icmp | ip | log | tcp | udp }
permit { ip_address | any | host | icmp | ip | log | tcp | udp }
after { deny | permit | readdress | redirect }
before { deny | permit | readdress | redirect }
end
```

Notes:

⚠️ Caution

The system does not apply a "deny any" rule, unless it is specified in the ACL. This behavior can be changed by adding a "deny any" rule at the end of the ACL.

• The maximum number of rules that can be configured per ACL varies depending on how the ACL is to be used. For more information, refer to the Engineerng Rules chapter.

• Use the information provided in the Actions and Criteria to configure the rules that comprise the ACL. For more information, refer to the ACL Configuration Mode Commands and IPv6 ACL Configuration Mode Commands chapters in the Command Line Interface Reference.

Configuring an Undefined ACL

As discussed previously the system uses an "undefined" ACL mechanism for filtering the packet(s) in the event that an ACL that has been applied is not present. This scenario is likely the result of a mis-configuration such as the ACL name being mis-typed during the configuration process.

For these scenarios, the system provides an "undefined" ACL that acts as a default filter for all packets into the context. The default action is to "permit all".

To modify the default behavior for unidentified ACLs, use the following configuration:

```
configure context acl_ctxt_name [-noconfirm]
access-list undefined { deny-all | permit-all }
end
```

Notes:
Verifying the ACL Configuration

To verify the ACL configuration, enter the Exec mode `show { ip | ipv6 } access-list` command.

The following is a sample output of this command. In this example, an ACL named `acl_1` was configured.

```plaintext
ip access-list acl_1
  deny host 10.2.3.4
  deny ip any host 10.2.3.4
  permit any 10.2.4.4
1 ip access-lists are configured.
```

Applying IP ACLs

Once an ACL is configured, it must be applied to take effect.

Important

All ACLs should be configured and verified according to the instructions in the Configuring ACLs on the System, on page 206 prior to beginning these procedures. The procedures described below also assume that the subscribers have been previously configured.

As discussed earlier, you can apply an ACL to any of the following:

- **Applying an ACL to an Individual Interface**, on page 210
- **Applying an ACL to All Traffic Within a Context**, on page 212 (known as a policy ACL)
- **Applying an ACL to an Individual Subscriber**, on page 214
- **Applying a Single ACL to Multiple Subscribers**, on page 218
- **Applying a Single ACL to Multiple Subscribers**, on page 218 (for 3GPP subscribers only)

Important

ACLs must be configured in the same context in which the subscribers and/or interfaces to which they are to be applied. Similarly, ACLs to be applied to a context must be configured in that context.
If ACLs are applied at multiple levels within a single context (such as an ACL is applied to an interface within the context and another ACL is applied to the entire context), they will be processed as shown in the following figure and table.

Figure 17: ACL Processing Order

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An inbound ACL configured for the receiving interface in the Source Context is applied to the tunneled data (such as the outer IP header). The packet is then forwarded to the Destination Context.</td>
</tr>
<tr>
<td>2</td>
<td>An inbound ACL configured for the subscriber (either the specific subscriber or for any subscriber facilitated by the context) is applied.</td>
</tr>
<tr>
<td>3</td>
<td>A context ACL (policy ACL) configured in the Destination Context is applied prior to forwarding.</td>
</tr>
<tr>
<td>4</td>
<td>An outbound ACL configured on the interface in the Destination Context through which the packet is being forwarded, is applied.</td>
</tr>
</tbody>
</table>

Packet coming from the packet data network to the mobile node (right to left)

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An inbound ACL configured for the receiving interface configured in the Destination Context is applied.</td>
</tr>
<tr>
<td>2</td>
<td>An outbound ACL configured for the subscriber (either the specific subscriber or for any subscriber facilitated by the context) is applied. The packet is then forwarded to the Source Context.</td>
</tr>
<tr>
<td>3</td>
<td>A context ACL (policy ACL) configured in the Source Context is applied prior to forwarding.</td>
</tr>
<tr>
<td>4</td>
<td>An outbound ACL configured on the interface in the Source Context through which the packet is being forwarded, is applied to the tunneled data (such as the outer IP header).</td>
</tr>
</tbody>
</table>
In the event that an IP ACL is applied that has not been configured (for example, the name of the applied ACL was configured incorrectly), the system uses an "undefined" ACL mechanism for filtering the packet(s). This section provides information and instructions for applying ACLs and for configuring an "undefined" ACL.

Applying the ACL to an Interface

To apply the ACL to an interface, use the following configuration:

```
configure
  context acl_ctxt_name [-noconfirm]
  interface interface_name
    { ip | ipv6 } access-group acl_list_name { in | out } [ preference ]
end
```

Notes:
- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Applying an ACL to an Individual Interface

This section provides information and instructions for applying one or more ACLs to an individual interface configured on the system.

Important

This section provides the minimum instruction set for applying the ACL list to an interface on the system. For more information on commands that configure additional parameters and options, refer to the Ethernet Interface Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide ACL facility to subscribers:

Step 1
Apply the configured access control list by following the example configuration in Applying the ACL to an Interface, on page 210

Step 2
Verify that ACL is applied properly on interface by following the steps in Verifying the ACL Configuration on an Interface, on page 211

Step 3
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.
Verifying the ACL Configuration on an Interface

This section describes how to verify the ACL configuration.

In the Exec Mode, enter the following command:

```
[local]host_name# show configuration context context_name
```

`context_name` is the name of the context containing the interface to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
  context context_name
  ip access-list acl_name
    deny host ip_address
    deny ip any host ip_address
  exit
  ip access-group access_group_name
  service-redundancy-protocol
  exit
  interface interface_name
    ip address ip_address/mask
  exit
  subscriber default
  exit
  aaa group default
  exit
  gtp group default
end
```

Applying the ACL to a Context

To apply the ACLs to a context, use the following configuration:

```
configure
  context acl_ctxt_name [-noconfirm ]
    { ip | ipv6 } access-group acl_list_name [ in | out ] [ preference ]
end
```

Notes:

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- The context-level ACL is applied to outgoing packets. This applies to incoming packets also if the flow match criteria fails and forwarded again.

The `in` and `out` keywords are deprecated and are only present for backward compatibility.

Context ACL will be applied in the following cases:
• Outgoing packets to an external source.

• Incoming packets that fail flow match and are forwarded again. In this case, the context ACL applies first and only if it passes are packets forwarded.

 During forwarding, if an ACL rule is added with a destination address as a loopback address, the context ACL is also applied. This is because StarOS handles packets destined to the kernel by going through a forwarding lookup for them. To apply ACL rules to incoming packets, the interface ACL must be used instead of the context ACL.

• The ACL to be applied must be configured in the context specified by this command.

• Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Applying an ACL to All Traffic Within a Context

This section provides information and instructions for applying one or more ACLs to a context configured within a specific context on the system. The applied ACLs, known as policy ACLs, contain rules that apply to all traffic facilitated by the context.

Important

This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the *Context Configuration Mode Commands* chapter in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

Step 1
Apply the configured ACL as described in *Applying the ACL to a Context*, on page 211

Step 2
Verify that ACL is applied properly on interface as described in *Verifying the ACL Configuration in a Context*, on page 212

Step 3
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the *Verifying and Saving Your Configuration* chapter.

Verifying the ACL Configuration in a Context

To verify the ACL configuration:

Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
{local}host_name# show configuration context context_name
```

`context_name` is the name of the context to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.
Applying an ACL to a RADIUS-based Subscriber

IP ACLs are applied to subscribers via attributes in their profile. The subscriber profile could be configured locally on the system or remotely on a RADIUS server.

To apply an ACL to a RADIUS-based subscriber, use the `Filter-Id` attribute.

For more details on this attribute, if you are using StarOS 12.3 or an earlier release, refer to the *AAA and GTPP Interface Administration and Reference*. If you are using StarOS 14.0 or a later release, refer to the *AAA Interface Administration and Reference*.

This section provides information and instructions for applying an ACL to an individual subscriber whose profile is configured locally on the system.

Important

This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the *Subscriber Configuration Mode Commands* chapter in the *Command Line Interface Reference*.

To configure the system to provide access control list facility to subscribers:

Step 1

Apply the configured access control list by following the example configuration in *Applying an ACL to an Individual Subscriber*, on page 214

Step 2

Verify that ACL is applied properly on interface by following the steps in *Verifying the ACL Configuration to an Individual Subscriber*, on page 214

Step 3

Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the *Verifying and Saving Your Configuration* chapter.
Applying an ACL to an Individual Subscriber

To apply the ACL to an individual subscriber, use the following configuration:

```
configure
c  ontex acl_ctxt_name [-noconfirm ]
     subscriber name subs_name
        { ip | ipv6 } access-group acl_list_name [ in | out ]
end
```

Notes:

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- If neither the `in` nor the `out` keyword is specified, the ACL will be applied to all inbound and outbound packets.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration to an Individual Subscriber

These instructions are used to verify the ACL configuration.

Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
[local] host_name> show configuration context context_name
```

`context_name` is the name of the context containing the subscriber subs1 to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
c  ontex context_name
     ip access-list acl_name
          deny host ip_address
          deny ip any host ip_address
          exit
     ip access-group access_group_name
     service-redundancy-protocol
     exit
     interface interface
          ip address ip_address/mask
          exit
     subscriber default
     exit
     subscriber name subscriber_name
```
Applying an ACL to the Subscriber Named default

This section provides information and instructions for applying an ACL to the subscriber named default.

Important This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to Subscriber Configuration Mode Commands in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

Step 1 Apply the configured access control list by following the example configuration in Applying an ACL to the Subscriber Named default, on page 215

Step 2 Verify that ACL is applied properly on interface by following the steps in Verifying the ACL Configuration to the Subscriber Named default, on page 216

Step 3 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Applying an ACL to the Subscriber Named default

To apply the ACL to the subscriber named default, use the following configuration:

```
configure
  context acl_ctxt_name [ -noconfirm ]
  subscriber name subs_name
    { ip | ipv6 } access-group acl_list_name [ in | out ]
end
```

Notes:

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
• If neither the in nor the out keyword is specified, the ACL will be applied to all inbound and outbound packets.
• The ACL to be applied must be configured in the context specified by this command.
• Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration to the Subscriber Named default

These instructions are used to verify the ACL configuration.

Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

[local]host_name+ show configuration context context_name

context_name is the name of the context containing the subscriber default to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
  context context_name
    ip access-list acl_name
      deny host ip_address
      deny ip any host ip_address
    exit
    ip access-group access_group_name
    service-redundancy-protocol
    exit
    interface interface
      ip address ip_address/mask
    exit
    subscriber name default
      ip access-group access_group_name in
      ip access-group access_group_name out
    exit
    aaa group default
    exit
    gtpp group default
    exit
    content-filtering server-group cfsg_name
      response-timeout response_timeout
      connection retry-timeout retry_timeout
    end
```

Applying an ACL to Service-specified Default Subscriber

This section provides information and instructions for applying an ACL to the subscriber to be used as the "default" profile by various system services.
This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the Subscriber Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

Step 1 Apply the configured access control list by following the example configuration in Applying an ACL to the Subscriber Named default, on page 215.

Step 2 Verify that the ACL is applied properly on interface by following the steps in Verifying the ACL Configuration to Service-specified Default Subscriber, on page 217.

Step 3 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Applying an ACL to Service-specified Default Subscriber

To apply the ACL to a service-specified Default subscriber, use the following configuration:

```bash
configure
  context acl_ctxt_name [ -noconfirm ]
  { pdsn-service | fa-service | ha-service } service_name
default subscriber svc_default_subs_name
  exit
subscriber name svc_default_subs_name
  { ip | ipv6 } access-group acl_list_name [ in | out ]
end
```

Notes:

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- If neither the `in` nor the `out` keyword is specified, the ACL will be applied to all inbound and outbound packets.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration to Service-specified Default Subscriber

To verify the ACL configuration.

Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
[local]host_name# show configuration context context_name
```
context_name is the name of the context containing the service with the default subscriber to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
c   context context_name
       ip access-list acl_name
       deny host ip_address
       deny ip any host ip_address
       exit
     ip access-group access_group_name
       interface interface
       ip address ip_address/mask
       exit
     subscriber default
     exit
     subscriber name subscriber_name
       ip access-group access_group_name in
       ip access-group access_group_name out
       exit
     pdsn-service service_name
       default subscriber subscriber_name
   end
```

Applying a Single ACL to Multiple Subscribers

As mentioned in the previous section, IP ACLs are applied to subscribers via attributes in their profile. The subscriber profile could be configured locally on the system or remotely on a RADIUS server.

The system provides for the configuration of subscriber functions that serve as default values when specific attributes are not contained in the individual subscriber's profile. The following table describes these functions.

Table 37: Functions Used to Provide "Default" Subscriber Attributes

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber named default</td>
<td>Within each context, the system creates a subscriber called default. The profile for the subscriber named default provides a configuration template of attribute values for subscribers authenticated in that context. Any subscriber attributes that are not included in a RADIUS-based subscriber profile is configured according to the values for those attributes as defined for the subscriber named default. NOTE: The profile for the subscriber named default is not used to provide missing information for subscribers configured locally.</td>
</tr>
</tbody>
</table>
When configured properly, the functions described in the table above could be used to apply an ACL to:

- All subscribers facilitated within a specific context by applying the ACL to the profile of the subscriber named default.
- All subscribers facilitated by specific services by applying the ACL to a subscriber profile and then using the default subscriber command to configure the service to use that subscriber as the "default" profile.

Applying an ACL to Multiple Subscriber via APNs

To apply the ACL to multiple subscribers via APN, use the following configuration:

```
configure
  context dest_context_name [-noconfirm]
  apn apn_name
    { ip | ipv6 } access-group acl_list_name [ in | out ]
end
```

Notes:

- The ACL to be applied must be in the destination context of the APN (which can be different from the context where the APN is configured).
- If neither the in nor the out keyword is specified, the ACL will be applied to all inbound and outbound packets.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Applying an ACL to Multiple Subscriber via APNs

If IP ACLs are applied to subscribers via attributes in their profile, the subscriber profile could be configured locally on the system or remotely on a RADIUS server.

To reduce configuration time, ACLs can alternatively be applied to APN templates for GGSN subscribers. When configured, any subscriber packets facilitated by the APN template would then have the associated ACL applied.

This section provides information and instructions for applying an ACL to an APN template.
This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the *Subscriber Configuration Mode Commands* chapter in the *Command Line Interface Reference*.

To configure the system to provide access control list facility to subscribers:

Step 1 Apply the configured access control list by following the example configuration in *Applying an ACL to Multiple Subscriber via APNs*, on page 219.

Step 2 Verify that ACL is applied properly on interface by following the steps in *Verifying the ACL Configuration to APNs*, on page 220.

Step 3 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the *Verifying and Saving Your Configuration* chapter.

Verifying the ACL Configuration to APNs

To verify the ACL configuration:

Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context containing the APN `apn1` having `default` subscriber to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
  context context_name
    ip access-list acl_name
      deny host ip_address
      deny ip any host ip_address
    exit
    ip access-group access_group_name
    interface interface
      ip address ip_address/mask
    exit
    subscriber default
    exit
  apn apn_name
    ip access-group access_group_name in
    ip access-group access_group_name out
  end
```
Overview

Congestion Control monitors the system for conditions that could potentially degrade performance when the system is under heavy load. Typically, these conditions are temporary (for example, high CPU or memory utilization) and are quickly resolved. However, continuous or large numbers of these conditions within a specific time interval may impact the system's ability to service subscriber sessions. Congestion control helps identify such conditions and invokes policies for addressing the situation.

Congestion control operation is based on configuring the following:

- **Congestion Condition Thresholds:** Thresholds dictate the conditions for which congestion control is enabled and establishes limits for defining the state of the system (congested or clear). These thresholds function in a way similar to operation thresholds that are configured for the system as described in the Thresholding Configuration Guide. The primary difference is that when congestion thresholds are reached, a service congestion policy and an SNMP trap (starCongestion) are generated. A threshold tolerance dictates the percentage under the configured threshold that must be reached in order for the condition to be cleared. An SNMP trap, starCongestionClear, is then triggered.
 - **Port Utilization Thresholds:** If you set a port utilization threshold, when the average utilization of all ports in the system reaches the specified threshold, congestion control is enabled.
 - **Port-specific Thresholds:** If you set port-specific thresholds, when any individual port-specific threshold is reached, congestion control is enabled system-wide.

- **Service Congestion Policies:** Congestion policies are configurable for each service. These policies dictate how services respond when the system detects that a congestion condition threshold has been crossed.
This section provides the minimum instruction set for configuring congestion control. Commands that configure additional interface or port properties are provided in Subscriber Configuration Mode in the Command Line Interface Reference. Always refer to the Administration Guides for all of the licensed products running on this platform for additional configuration information with respect to congestion control. Congestion control functionality varies based on product and StarOS version.

For the MME three levels of congestion control thresholds are supported – critical, major and minor. By default only the critical threshold is supported for other products. SNMP traps also support major and minor congestion control thresholds. A set of congestion-action-profile commands allows an operator to establish additional actions to be taken for specific thresholds and threshold levels.

Configuring Congestion Control

To configure Congestion Control functionality:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure congestion control thresholds as described in Configuring the Congestion Control Threshold, on page 222</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure service congestion policies as described in Configuring Service Congestion Policies, on page 223</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enable redirect overload policies as described in Enabling Congestion Control Redirect Overload Policy, on page 224</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configure disconnecting subscribers based on call or inactivity time as described in Disconnecting Subscribers Based on Call or Inactivity Time, on page 224</td>
</tr>
<tr>
<td>Step 5</td>
<td>Save your configuration as described in the Verifying and Saving Your Configuration chapter.</td>
</tr>
</tbody>
</table>

Configuring the Congestion Control Threshold

To configure congestion control threshold, apply the following example configuration in the Global Configuration mode of the CLI:

```bash
configure
congestion-control threshold max-sessions-per-service-utilization percent
congestion-control threshold tolerance percent
disable
```

Notes:

- There are numerous threshold parameters. See Global Configuration Mode Commands in the Command Line Interface Reference for more information.
- The tolerance is the percentage under a configured threshold that dictates the point at which the condition is cleared.
- Multiple levels of congestion thresholds – critical, major and minor – are supported for various types of congestion control thresholds. If a threshold level is not specified, the default is critical. Currently, major and minor thresholds are only supported for the MME. The congestion-action-profile command under lte-policy defines the action to be taken when thresholds are exceeded. See Global Configuration...
Configuring Service Congestion Policies

To create a congestion control policy, apply the following example configuration in the Global Configuration mode of the CLI:

```
configure
    congestion-control policy service action { drop | none | redirect | reject }
end
```

Notes:

- When the redirect action occurs for PDSN services, the PDSN responds to the PCF with a reply code of 136, "unknown PDSN address" along with the IP address of an alternate PDSN.
- `redirect` is not available for PDIF. The default action for PDIF is "none."
- When the redirect action occurs for HA services, the system responds to the FA with a reply code of 136, "unknown home agent address".
- `redirect` cannot be used in conjunction with GGSN services.
- `redirect` is not available for the Local Mobility Anchor (LMA) service.
- When setting the action to `reject`, the reply code is 130, "insufficient resources".
- For the GGSN, the reply code is 199, "no resources available".
- For the SaMOG, MME, `redirect` is not available.
- For the MME, create action profiles for optional major and minor thresholds using the `congestion-action-profile` command under `lte-policy` in the Global Configuration mode.
- For the MME, you can specify `service` as `critical`, `major` or `minor` to set a policy and associate an action-profile for the respective threshold. See `Global Configuration Mode Commands` in the `Command Line Interface Reference` for more information.

Configuring Overload Reporting on the MME

When an overload condition is detected on an MME and the report-overload keyword is enabled in the `congestion-control policy` command, the system reports the condition to a specified percentage of eNodeBs and proceeds to take the configured action on incoming sessions. To create a congestion control policy with overload reporting, apply the following example configuration:

```
configure
    congestion-control policy mme-service action report-overload reject-new-sessions enodeb-percentage percentage
end
```

Notes:

- Other overload actions include `permit-emergency-sessions` and `reject-non-emergency-sessions`.

Mode Commands, LTE Policy Configuration Mode Commands and Congestion Action Profile Configuration Mode Commands in the Command Line Interface Reference for more information.

• Repeat this configuration as needed for additional thresholds.
Enabling Congestion Control Redirect Overload Policy

To create a congestion control policy and configure a redirect overload policy for the service, apply the following example configuration:

```
configure
  congestion-control
  context context_name
    {service_configuration_mode}
        policy overload redirect address
  end
```

Notes:

- **Optional**: If the congestion control policy action was configured to `redirect`, then a redirect overload policy must be configured for the service(s) that are affected.
- There are several service configuration modes that you can configure. See the *Command Line Interface Reference* for a complete list of modes.
- You can set various options for redirection. See the *Command Line Interface Reference* for more information.
- Repeat this configuration example to configure overload policies for additional services configured in the same context.

Verify the Service Overload Policies

To verify that the service overload policies were properly configured enter the following command in the Exec Mode:

```
[local] host_name# show service_type name service_name
```

This command lists the entire service configuration. Verify that the information displayed for the "Overload Policy" is accurate.

Repeat this configuration example to configure additional services in other contexts.

Verify the Congestion Control Configuration

Verify MME Congestion Action Profiles

To verify MME multilevel congestion action profiles, run the following Exec mode command:

```
[local] host_name# show lte-policy congestion-action-profile { name profile_name | summary }
```

Disconnecting Subscribers Based on Call or Inactivity Time

During periods of heavy system load, it may be necessary to disconnect subscribers in order to maintain an acceptable level of system performance. You can establish thresholds to select subscribers to disconnect based on the length of time that a call has been connected or inactive.
To enable overload disconnect for the currently selected subscriber, use the following configuration example:

```
configure
context context_name
    subscriber name subscriber_name
        default overload-disconnect threshold inactivity-time dur_thresh
        default overload-disconnect threshold connect-time dur_thresh
    end
end
```

To disable the overload disconnect feature for this subscriber, use the following configuration example:

```
configure
context context_name
    subscriber subscriber_name
        no overload-disconnect { [threshold inactivity-time] | [threshold connect-time] }
    end
end
```

Notes:

- **overload-disconnect** is not supported for the Call Session Control Function (CSCF) service.
CHAPTER 15

Routing

This chapter provides information on configuring an enhanced, or extended, service. The product administration guides provide examples and procedures for configuring basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model before using the procedures described below.

This chapter includes the following sections:

- **Routing Policies**, page 227
- **Static Routing**, page 229
- **OSPF Routing**, page 230
- **OSPFv3 Routing**, page 233
- **Equal Cost Multiple Path (ECMP)**, page 234
- **BGP-4 Routing**, page 235
- **Bidirectional Forwarding Detection**, page 242
- **Viewing Routing Information**, page 252

Routing Policies

This section describes how to configure the elements needed to define routing policies. Routing policies modify and redirect routes to and from the system to satisfy specific network deployment requirements.

Use the following building blocks to configure routing policies:

- **Route Access Lists** – The basic building block of a routing policy. Route access lists filter routes based on a range of IP addresses.
- **IP Prefix Lists** – A more advanced element of a routing policy. An IP Prefix list filters routes based on IP prefixes.
- **AS Path Access Lists** – A basic building block used for Border Gateway Protocol (BGP) routing. These lists filter Autonomous System (AS) paths.
- **Route Maps** – Route-maps provide detailed control over routes during route selection or route advertisement by a routing protocol, and in route redistribution between routing protocols. For this level
of control you use IP Prefix Lists, Route Access Lists and AS Path Access Lists to specify IP addresses, address ranges, and Autonomous System paths.

Creating IP Prefix Lists

Use the following configuration example to create IP Prefix Lists:

```plaintext
config
context context_name
   ip prefix-list name list_name { deny | permit } network_address/net_mask
```

Notes:

- Set the IP prefix list to deny, permit or match any prefix.
- IPv4 dotted-decimal and IPv6 colon-separated-hexadecimal addresses are supported.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Creating Route Access Lists

Use the following procedure to create a Route Access List:

```plaintext
config
context context_name
   route-access-list { extended identifier } { deny | permit } [ ip address ip_address ]
   route-access-list named list_name { deny | permit } [ ip_address/mask | any | exact-match ]
```

```plaintext
route-access-list
standard identifier { permit | deny } [ ip_address wildcard_mask | any | network_address ]
```

Notes:

- A maximum of 64 access lists are supported per context.
- A maximum of 16 entries can defined for each route-access-list.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Creating AS Path Access Lists

Use the following procedure to create an AS Path Access List:

```plaintext
config
context context_name
   ip as-path access-list list_name [ { deny | permit } reg_expr ]
```

Notes:

- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
Creating Route Maps

Use the following configuration example to create a Route Map:

```config
context context_name
  route-map map_name { deny | permit } seq_number
```

Notes:

- Use the `match` and `set` commands in Route Map Configuration mode to configure the route map. Refer to the Command Line Interface Reference for more information on these commands.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Sample Configuration

The example below shows a configuration that creates two route access lists, applies them to a route map, and uses that route map for a BGP router neighbor.

```config
context ispl
  route-access-list named RACLin1a permit 88.151.1.0/30
  route-access-list named RACLin1a permit 88.151.1.4/30
  route-access-list named RACLany permit any
  route-map RMnet1 deny 100
    match ip address route-access-list RACLin1a
  #exit
  route-map RMnet1 deny 200
    match ip address route-access-list RACLin1b
  #exit
  route-map RMnet1 permit 1000
    match ip address route-access-list RACLany
  #exit
  router bgp 1
    neighbor 152.20.1.99 as-path 101
    neighbor 152.20.1.99 route-map RMnet1
```

Static Routing

The system supports static network route configuration on a per context basis. Define network routes by specifying the:

- IP address and mask for the route
- Name of the interface in the current context that the route must use
- Next hop IP address

Important

On the ASR 5000, static routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.
Adding Static Routes to a Context

To add static routes to a context configuration, you must know the names of the interfaces that are configured in the current context. Use the `show ip interface` command to list the interfaces in the current context (Exec mode).

Information for all interfaces configured in the current context is displayed as shown in the following example.

```
[local] host_name# show ip interface
Intf Name: Egress 1
Description:
IP State: Up (Bound to slot/port untagged ifIndex 402718721)
IP Address: 192.168.231.5
Subnet Mask: 255.255.255.0
Bcast Address: 192.168.231.255
MTU: 1500
Resoln Type: ARP ARP timeout: 3600 secs
L3 monitor LC-port switchover: Disabled
Number of Secondary Addresses: 0
Total interface count: 1
```

The first line of information for each interface lists the interface name for the current context as shown in the example output. In this example, there is one interface with the name Egress 1.

```
config
c
context context_name
  ip route { ip_address | ip_mask | ip_addr_mask_combo } { next-hop next_hop_address | egress_name
  | precedence precedence | cost cost }
```

Notes:

- You can configure a maximum of 1,200 static routes per context. Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Deleting Static Routes From a Context

Use the following configuration example to remove static routes from a context's configuration:

```
config
c
context context_name
  no ip route { ip_address ip_mask | ip_addr_mask_combo } next_hop_address egress_name
  | precedence precedence | cost cost }
```

Notes

- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

OSPF Routing

This section gives an overview of Open Shortest Path First (OSPF) routing and its implementation in the system. It also describes how to enable the base OSPF functionality and lists the commands that are available for more complex configurations.

You must purchase and install a license key before you can use this feature. Contact your Cisco account representative for more information on licenses.
During system task recovery, it is possible for a dynamically-learned forwarding entry to incorrectly remain in the system forwarding table if that forwarding entry has been removed from the dynamic routing protocol during the recovery.

On the ASR 5000, OSPF routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

OSPF Version 2 Overview

OSPF is a link-state routing protocol that employs an interior gateway protocol (IGP) to route IP packets using the shortest path first based solely on the destination IP address in the IP packet header. OSPF routed IP packets are not encapsulated in any additional protocol headers as they transit the network.

An Autonomous System (AS), or Domain, is defined as a group of networks within a common routing infrastructure.

OSPF is a dynamic routing protocol that quickly detects topological changes in the AS (such as router interface failures) and calculates new loop-free routes after a period of convergence. This period of convergence is short and involves a minimum of routing traffic.

In a link-state routing protocol, each router maintains a database, referred to as the link-state database, that describes the Autonomous System's topology. Each participating router has an identical database. Each entry in this database is a particular router's local state (for example, the router's usable interfaces and reachable neighbors). The router distributes its local state throughout the AS by flooding.

All routers run the same algorithm in parallel. From the link-state database, each router constructs a tree of shortest paths with itself as root to each destination in the AS. Externally derived routing information appears on the tree as leaves. The cost of a route is described by a single dimensionless metric.

OSPF allows sets of networks to be grouped together. Such a grouping is called an area. The topology of this area is hidden from the rest of the AS, which enables a significant reduction in routing traffic. Also, routing within the area is determined only by the area's own topology, lending the area protection from bad routing data. An area is a generalization of an IP subnetted network.

OSPF enables the flexible configuration of IP subnets so that each route distributed by OSPF has a destination and mask. Two different subnets of the same IP network number may have different sizes (that is, different masks). This is commonly referred to as variable-length subnetting. A packet is routed to the best (longest or most specific) match. Host routes are considered to be subnets whose masks are "all ones" (0xffffffff).

OSPF traffic can be authenticated or non-authenticated, or can use no authentication, simple/clear text passwords, or MD5-based passwords. This means that only trusted routers can participate in the AS routing. You can specify a variety of authentication schemes and, in fact, you can configure separate authentication schemes for each IP subnet.

Externally derived routing data (for example, routes learned from an exterior protocol such as BGP) is advertised throughout the AS. This externally derived data is kept separate from the OSPF link state data.

Each external route can also be tagged by the advertising router, enabling the passing of additional information between routers on the boundary of the AS.

OSPF uses a link-state algorithm to build and calculate the shortest path to all known destinations.
Basic OSPFv2 Configuration

This section describes how to implement basic OSPF routing.

Enabling OSPF Routing For a Specific Context

Use the following configuration example to enable OSPF Routing for a specific context:

```
config
  context context_name
    router ospf
  end

Notes:
  • Save your configuration as described in the Verifying and Saving Your Configuration chapter.
```

Enabling OSPF Over a Specific Interface

After you enable OSPF, specify the networks on which it will run. Use the following command to enable OSPF:

```
network network_ip_address/network_mask area { area_id | area_ip_address }
```

Important
The default cost for OSPF on the system is 10. To change the cost, refer to the `ip ospf cost` command in the Ethernet Interface Configuration Mode Commands chapter of the Command Line Interface Reference.

Notes:
 • Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Redistributing Routes Into OSPF (Optional)

Redistributing routes into OSPF means any routes from another protocol that meet specified a specified criterion, such as route type, metric, or rule within a route-map, are redistributed using the OSPFv2 protocol to all OSPF areas. This is an optional configuration.

```
config
  context context_name
    router ospf
      redistribute { connected | static }
    end

Notes:
  • Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Confirming OSPF Configuration Parameters

To confirm the OSPF router configuration, use the following command and look for the section labeled `router ospf` in the screen output:

```
show config context ctxt_name [verbose]
```

OSPFv3 Routing

This section gives an overview of Open Shortest Path First Version 3 (OSPFv3) routing and its implementation in the system. It also describes how to enable the base OSPFv3 functionality and lists the commands that are available for more complex configurations.

**Important**

On the ASR 5000, OSPFv3 routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

OSPFv3 Overview

Much of OSPF version 3 is the same as OSPF version 2. OSPFv3 expands on OSPF version 2 to provide support for IPv6 routing prefixes and the larger size of IPv6 addresses. OSPFv3 dynamically learns and advertises (redistributes) IPv6 routes within an OSPFv3 routing domain.

In OSPFv3, a routing process does not need to be explicitly created. Enabling OSPFv3 on an interface will cause a routing process and its associated configuration to be created.

Basic OSPFv3 Configuration

This section describes how to implement basic OSPF routing.

Enabling OSPFv3 Routing For a Specific Context

Use the following configuration example to enable OSPF Routing for a specific context:

```
config
context context_name
 router ospfv3
end
```

Notes:

- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
Enabling OSPFv6 Over a Specific Interface

After you enable OSPFv3 specify the area in which it will run. Use the following command to enable OSPFv3:

```plaintext
area { area_id | area_ip_address } [default-cost dflt-cost] [stub stub-area] [virtual-link vl-neighbor-ipv4address]
```

Important

The default cost for OSPFv3 on the system is 10. To change the cost, refer to the `ipv6 ospf cost` command in the Ethernet Interface Configuration Mode Commands chapter of the Command Line Interface Reference.

Notes:

- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Redistributing Routes Into OSPFv3 (Optional)

Redistributing routes into OSPFv3 means any routes from another protocol that meet specified specified criterion, such as route type, metric, or rule within a route-map, are redistributed using the OSPFv3 protocol to all OSPF areas. This is an optional configuration.

```plaintext
config context context_name
 router ospf3
 redistribute { connected | static }
end
```

Notes:

- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Confirming OSPFv3 Configuration Parameters

To confirm the OSPF router configuration, use the following command and look for the section labeled `router ipv6 ospf` in the screen output:

```plaintext
show config context ctxt_name [verbose]
```

Equal Cost Multiple Path (ECMP)

The system supports ECMP for routing protocols. ECMP distributes traffic across multiple routes that have the same cost to lessen the burden on any one route.

ECMP can be used in conjunction with most routing protocols, since it is a per-hop decision that is limited to a single router. It potentially offers substantial increases in bandwidth by load-balancing traffic over multiple paths.
The following command configures the maximum number of equal cost paths that can be submitted by a routing protocol:

```config
context context_name
 ip routing maximum-paths | max_num |
```

Notes:
- `max_num` is an integer from 1 through 10 (releases prior to 18.2) or 1 through 32 (release 18.2+).
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

**BGP-4 Routing**

The Border Gateway Protocol 4 (BGP-4) routing protocol is supported through a BGP router process that is implemented at the context level.

Border Gateway Protocol (BGP) is an inter-AS routing protocol. An Autonomous System (AS) is a set of routers under a single technical administration that use an interior gateway protocol and common metrics to route packets within the AS. The set of routers uses an exterior gateway protocol to route packets to other autonomous systems.

BGP runs over TCP. This eliminates the need for the BGP protocol to implement explicit update fragmentation, retransmission, acknowledgement, and sequencing information. Any authentication scheme used by TCP may be used in addition to BGP's own authentication mechanisms.

BGP routers exchange network reachability information with other BGP routers. This information builds a picture of AS connectivity from which routes are filtered and AS-level policy decisions are enforced.

BGP-4 provides classless inter-domain routing. This includes support for advertising an IP prefix and eliminates the concept of network class within BGP. BGP-4 also allows the aggregation of routes, including the aggregation of AS paths.

---

**Important**

On the ASR 5000, BGP routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

---

**Overview of BGP Support**

Mobile devices communicate to the Internet through Home Agents (HAs). HAs assign IP addresses to the mobile node from a configured pool of addresses. These addresses are also advertised to Internet routers through an IP routing protocol to ensure dynamic routing. The BGP-4 protocol is used as a monitoring mechanism between an HA and Internet router with routing to support Interchassis Session Recovery (ICSR). (Refer to Interchassis Session Recovery for more information.)

The objective of BGP-4 protocol support is to satisfy routing requirements and monitor communications with Internet routers. BGP-4 may trigger an active to standby switchover to keep subscriber services from being interrupted.

The following BGP-4 features are supported:
- Exterior Border Gateway Protocol (EBGP) multi-hop
• Route Filtering for inbound and outbound routes
• Route redistribution and route-maps
• Support for BGP communities and extended communities in route maps
• Local preference for IPv4 and IPv6 (IBGP peers)

IP pool routes and loopback routes are advertised in the BGP domain in the following ways:

• Through BGP Configuration Mode redistribution commands, all or some of the connected routes are redistributed into the BGP domain. (IP pool and loopback routes are present in the IP routing table as connected routes.) The network routemap command provides the flexibility to change many BGP attributes.

• Through the BGP Configuration Mode network commands, connected routes are explicitly configured for advertisement into the BGP domain. The network routemap command provides the flexibility to change many BGP attributes. Refer to the BGP Configuration Mode Commands chapter of the Command Line Interface Reference for details on these commands.

---

**Important**

If a BGP task restarts because of a processing card failure, a migration, a crash, or the removal of a processing card, all peering session and route information is lost.

---

### Configuring BGP

This section describes how to configure and enable basic BGP routing support in the system.

```
config
context context_name
 router bgp AS_number
 neighbor ip_address remote-as AS_num
```

Notes:

• A maximum of 64 BGP peers are supported per context.

• Save your configuration as described in the Verifying and Saving Your Configuration chapter.

### Redistributing Routes Into BGP (Optional)

Redistributing routes into BGP simply means that any routes from another protocol that meet a specified criterion, such as a route type, or a rule within a route-map, are redistributed through the BGP protocol to all BGP areas. This is an optional configuration.

```
config
context context_name
 router bgp AS_number
 redistribute bgp { bgp | connected | static } [metric metric_value] [metric-type { 1 | 2 }] [route-map route_map_name]
```

Notes:
The redistribution options are connected, ospf, rip, or static. Refer to the Border Gateway Protocol Configuration Mode Commands chapter of the Command Line Interface Reference for details on the redistribute command.

- A maximum of 64 route-maps are supported per context.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

BGP Communities and Extended Communities

Route filtering based on a BGP community or extended community (route target) is configured via CLI Route Map Configuration mode commands.

BGP Communities

Configuring a BGP Community

A BGP community is a group of destinations that share some common attribute. Each destination can belong to multiple communities. Autonomous system administrators define to which communities a destination belongs.

You configure a BGP community via a Context Configuration mode command.

```
config
 context context_name
 ip community-list { named named_list | standard identifier } { deny | permit } { internet | local-AS | no-advertise | no-export | value AS-community_number AS-community_number AS-community_number ...
 { internet | local-AS | no-advertise | no-export | value AS-community_number
 AS-community_number AS-community_number ...
 { internet | local-AS | no-advertise | no-export | value AS-community_number
 AS-community_number AS-community_number ...
```

You can permit or deny the following BGP community destinations.

- **internet** – Advertise this route to the internet community, and any router that belongs to it.
- **local-AS** – Use in confederation scenarios to prevent sending packets outside the local autonomous system (AS).
- **no-advertise** – Do not advertise this route to any BGP peer, internal or external.
- **no-export** – Do not advertise to external BGP (eBGP) peers. Keep this route within an AS.
- **value AS-community_number** – Specifies a community string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters).

You can enter multiple destinations and AS community numbers for each community. For additional information, see the Command Line Interface Reference.

Multiple community-list entries can be attached to a community-list by adding multiple permit or deny clauses for various community strings. Up to 64 community-lists can be configured in a context.
Setting the Community Attribute

You set the BGP community attribute via a `set community` command in a route map.

```
config
 context context_name
 route-map map_name { deny | permit } sequence_number
 set community [additive] { internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ...
 { internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ...
 } { internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ...
 }
```

The `additive` option allows you to enter multiple destinations and AS community numbers. For additional information, see the Command Line Interface Reference.

Filtering via a BGP Community

To filter routes based on a BGP community, you configure a `match` clause in a route map. The command sequence follows below.

```
config
 context context_name
 route-map map_name { deny | permit } sequence_number
 match community { named named_list | standard identifier }
```

BGP Extended Communities

Configuring a BGP Extended Community (Route Target)

A BGP extended community defines a route target. MPLS VPNs use a 64-bit Extended Community attribute called a Route Target (RT). An RT enables distribution of reachability information to the correct information table.

You configure a BGP extended community via a Context Configuration mode command.

```
config
 context context_name
 ip extcommunity-list { named named_list | standard identifier } { deny | permit } rt rt_number rt_number ...
```

`rt_number` specifies a Route Target as a string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters). You can add multiple route numbers to an IP extcommunity list.

Multiple extended community-list entries can be attached to an extended community-list by adding multiple permit or deny clauses for various extended community strings. Up to 64 extended community-lists can be configured in a context.
Setting the Extended Community Attribute

You set the BGP extended community attribute via a `set extcommunity` command in a route map.

```
config
 context context_name
 route-map map_name { deny | permit } sequence_number
 set extcommunity rt rt_number rt_number rt_number ...
```

`rt_number` specifies a Route Target as a string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters). You can add multiple route numbers to an IP extcommunity list.

Filtering via a BGP Extended Community

To filter routes based on a BGP extended community (route target), you configure a `match` clause in a route map. The command sequence follows below.

```
config
 context context_name
 route-map map_name { deny | permit }
 [no] match extcommunity { named named_list | standard identifier }
```

BGP Local Preference

The BGP local preference attribute is sent by a BGP speaker only to IBGP peers. It is set in a route map via the following command sequence:

```
config
 context context_name
 route-map map_name { deny | permit }
 set local-preference pref_number
```

There is no `match` clause corresponding to local preference in the route-map because local-preference is directly used in the route selection algorithm.

ICSR and SRP Groups

BGP is employed with Interchassis Session Recovery (ICSR) configurations linked via Service Redundancy Protocol (SRP). By default an ICSR failover is triggered when all BGP peers within a context are down.

Optionally, you can configure SRP peer groups within a context. ICSR failover would then occur if all peers within a group fail. This option is useful in deployments in which a combination of IPv4 and IPv6 peers are spread across multiple paired VLANs, and IPv4 or IPv6 connectivity is lost by all members of a peer group.

For additional information refer to Interchassis Session Recovery in this guide and the description of the `monitor bgp`, `monitor diameter` and `monitor authentication-probe` commands in the Service Redundancy Protocol Configuration Mode Commands chapter of the Command Line Interface Reference.

Advertising BGP Routes from a Standby ICSR Chassis

An SRP Configuration mode command enables advertising BGP routes from an ICSR chassis in standby state. This command and its keywords allow an operator to take advantage of faster network convergence accrued
from deploying BGP Prefix Independent Convergence (PIC) in the Optical Transport Network Generation Next (OTNGN).

BGP PIC is intended to improve network convergence which will safely allow for setting aggressive ICSR failure detection timers.

```bash
configure
 context context_name
 service-redundancy-protocol
 advertise-routes-in-standby-state [hold-off-time hold-off-time] [reset-bfd-nbrs bfd-down-time]
 end
```

Notes:

- **hold-off-time** `hold-off-time` delays advertising the BGP routes until the timer expires. Specify `hold-off-time` in seconds as an integer from 1 to 300.
- After resetting BFD, `reset-bfd-nbrs bfd-down-time` keeps the BFD sessions down for the configured number of milliseconds to improve network convergence. Specify `bfd-down-time` as an integer from 50 to 120000.

## Configurable BGP Route Advertisement Interval for ICSR

By default, the MinRtAdvInterval is set for each peer with a value of 5 seconds for an iBGP peer and 30 seconds for an eBGP peer. An operator can use the `neighbor identifier advertisement-interval` command to globally change the default interval.

The BGP advertisement-interval can also be separately set for each address family. If configured, this value over-rides the peer's default advertisement-interval for that address-family only. BGP will send route update-message for each AFI/Safi based on the advertisement-interval configured for that AFI/SAFI. If no AFI/SAFI advertisement-interval is configured, the peer-based default advertisement-interval is used.

In ICSR configurations, this feature can be used to speed route advertisements and improve network convergence times.

The `timers bgp icsr-aggr-advertisement-interval` command is available in both the BGP Address-Family (VPNv4/VPNv6) Configuration and BGP Address-Family (VRF) Configuration modes.

```bash
configure
 context context_name
 router bgp as_number
 address-family { ipv4 | ipv6 | vpnv4 | vpnv6 }
 timers bgp icsr-aggr-advertisement-interval seconds
```

Notes:

- `seconds` – sets the number of seconds as an integer from 0 to 30. Default: 0.

## BGP CLI Configuration Commands

The following table lists the BGP Configuration mode CLI commands that support the configuration of various BGP parameters. For additional information, refer to the **BGP Configuration Mode Commands** chapter of the Command Line Interface Reference.
configure
ccontext context_name
router bgp as_number

Table 38: BGP Configuration Mode CLI Commands

<table>
<thead>
<tr>
<th>bgp Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-zero-as-rd</td>
<td>Configures to accept VPN prefixes with Route Distinguisher (RD) value having Administrator Subfield, which is an AS number 0.</td>
</tr>
<tr>
<td>address-family { ipv4</td>
<td>ipv6 }</td>
</tr>
<tr>
<td>address-family { vpnv4</td>
<td>vpnv6 }</td>
</tr>
<tr>
<td>bgp graceful-restart { restart-time rest_time</td>
<td>stalepath-time stale_time</td>
</tr>
<tr>
<td>description text</td>
<td>Allows you to enter descriptive text for this configuration.</td>
</tr>
<tr>
<td>distance { admin distance prefix prefix_addr</td>
<td>route-access-list list_name</td>
</tr>
<tr>
<td>enforce-first-as</td>
<td>Enforces the first AS for Exterior Border Gateway Protocol (eBGP) routes.</td>
</tr>
<tr>
<td>ip vrf vrf_name</td>
<td>Adds a preconfigured IP VRF context instance to the BGP ASN and configures the BGP attributes and related parameters to the VRF.</td>
</tr>
<tr>
<td>maximum-paths { ebgp max_num</td>
<td>ibgp max_num }</td>
</tr>
</tbody>
</table>
bpg Command

| neighbor ip_address { activate | advertisement-interval adv_time | capability graceful-restart | default-originate | route-map map_name | distribute-list dist_list in | out } | ebgp-multihop max-hop number | encrypted password encrypted_password | fall-over bfd | multihop | filter-list filt_list in | out } | max-prefix max_num | threshold thresh_percent | warning-only | next-hop-self | password password | remoteas AS_num | remove-private-AS | restart-time rest_time | route-map map_name in | out | send-community both extended standard | shutdown | srp-activated-soft-clear | timers { connect-interval conn_time | [ [ keepalive-interval keep_time holdtimeinterval hold_time ] | update-source ip_address | weight value } |

| network ip_address/mask { route-map map_name } |

| redistribute { connected | ospf | rip | static } { route-map map_name } |

| router-id ip_address |

| scan-time time |

| timers bgp keepalive-interval interval holdtime-interval time | min-peer-holdtimeinterval time |

| Description |

- Configures BGP routers that interconnect to non-broadcast networks. Note that a remote AS number must be specified for a neighbor before other parameters can be configured.
- **Note:** The advertisement-interval must be explicitly configured for an address-family so that it can take effect for that address-family. By default it will be applicable only for the IPv4 address-family. Specify the address family via the address-family command. You can then set the neighbor advertisement-interval in the address family configuration mode.

- Specifies a network to announce via BGP.
- Redistributes routes via BGP from another protocol to BGP neighbors.
- Overrides the configured router identifier and causes BGP peers to reset.
- Configures the BGP background scanner interval in seconds. BGP monitors the next hop of the installed routes to verify next-hop reachability and to select, install, and validate the BGP best path. loops.
- Configures BGP routing timers.

### Confirming BGP Configuration Parameters

To confirm the BGP router configuration, use the following command and look for the section labeled **router bbgp** in the screen output:

```
show config context ctxt_name [verbose]
```

### Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) is a network protocol used to detect faults between two forwarding engines connected by a link. BFD establishes a session between two endpoints over a particular link. If more than one link exists between two systems, multiple BFD sessions may be established to monitor each one of
them. The session is established with a three-way handshake, and is torn down the same way. Authentication may be enabled on the session. A choice of simple password, MD5 or SHA1 authentication is available.

**Overview of BFD Support**

BFD does not have a discovery mechanism; sessions must be explicitly configured between endpoints. BFD may be used on many different underlying transport mechanisms and layers, and operates independently of all of these. Therefore, it needs to be encapsulated by whatever transport it uses.

Protocols that support some form of adjacency setup, such as OSPF or IS-IS, may also be used to bootstrap a BFD session. These protocols may then use BFD to receive faster notification of failing links than would normally be possible using the protocol's own keepalive mechanism.

In asynchronous mode, both endpoints periodically send Hello packets to each other. If a number of those packets are not received, the session is considered down.

When Echo is active, a stream of Echo packets is sent to the other endpoint which then forwards these back to the sender. Echo can be globally enabled via the `bfd-protocol` command, and/or individually enabled/disabled per interface. This function is used to test the forwarding path on the remote system.

The system supports BFD in asynchronous mode with optional Echo capability via static or BGP routing.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>On an ASR 5000 one of the packet processing cards must be configured as a demux card in order for BFD to function. See the Configuring a Demux Card section in the System Settings chapter for additional information.</td>
</tr>
</tbody>
</table>

**Configuring BFD**

This section describes how to configure and enable basic BFD routing protocol support in the system. There are several factors affecting the configuration of BFD protocol:

- Configuring a BFD Context, on page 244
- Configuring IPv4 BFD for Static Routes, on page 244
- Configuring IPv6 BFD for Static Routes, on page 244
- Configuring BFD for Single Hop, on page 245
- Configuring Multihop BFD, on page 245
- Scaling of BFD, on page 246
- Associating BGP Neighbors with the Context, on page 246
- Associating OSPF Neighbors with the Context, on page 246
- Associating BFD Neighbor Groups with the BFD Protocol, on page 246
- Enabling BFD on OSPF Interfaces, on page 247
- Monitoring BFD Connection for ICSR, on page 247
Configuring a BFD Context

```
config
 context context_name
 bfd-protocol [bfd echo]
 exit
```

Notes:

- Echo function can be optionally enabled for all interfaces in this context.
- 16 BFD sessions per context and 64 per chassis.

Configuring IPv4 BFD for Static Routes

Enable BFD on an interface.

```
config
 context bfd_context_name
 interface if_name
 ip address ipv4_address ipv4_mask
 bfd interval interval_value min_rx rx_value multiplier multiplier_value [bfd echo]
 exit
```

Configure BFD static route.

```
ip route static bfd if_name ipv4_gw_address
```

Add static routes.

```
ip route ipv4_address ipv4_mask
ip route ipv4_address ipv4_mask
```

Configuring IPv6 BFD for Static Routes

Enable BFD on an Interface

```
config
 context bfd_context_name
 interface if_name
 ipv6 address ipv6_address ipv6_mask
 bfd interval interval_value min_rx rx_value multiplier multiplier_value [bfd echo]
 exit
```

Configure BFD static route.

```
ipv6 route static bfd if_name ipv6_gw_address
```

Add static routes.

```
ipv6 route ipv6_address ipv6_mask
ipv6 route ipv6_address ipv6_mask
```
### Configuring BFD for Single Hop

Enable BFD on an interface.

```config
context bfd_context_name
interface if_name
 ip address ipv4_address ipv4_mask
 ipv6 address ipv6_address ipv6_mask
 bfd interval interval_value min_rx rx_value multiplier multiplier_value
 [bfd echo]
exit
```

Enable BFD on a BGP Neighbor. For additional information, see Associating BGP Neighbors with the Context, on page 246.

Enable BFD on an OSPF Neighbor. For additional information, see Associating OSPF Neighbors with the Context, on page 246.

---

### Configuring Multihop BFD

Enable BFD on an interface.

```config
context bfd_context_name
interface if_name
 ip address ipv4_address ipv4_mask
 ipv6 address ipv6_address ipv6_mask
 bfd interval interval_value min_rx rx_value multiplier multiplier_value
 [bfd echo]
exit
```

Configure a Multihop BFD session.

```config
bfd-protocol
 bfd multihop peer destination-address interval interval-value multiplier multiplier-value
```

Enable BFD on a BGP Neighbor. For additional information, see Associating BGP Neighbors with the Context, on page 246.

---

**Important**

On the ASR 5000, routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

---

**Important**

On the ASR 5000, static routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.
Scaling of BFD

Configure an active BFD session using one of the above methods and use same BFD neighbor while configuring the active interface. For additional information, see Associating BFD Neighbor Groups with the BFD Protocol, on page 246.

```
bfd-protocol
 bfd nbr-group-name grp_name active-if-name if_name nexthop_address
```

Apply the same BFD results to one or more passive interfaces.

```
bfd nbr-group-name grp_name passive-if-name if_name nexthop_address
```

Associating BGP Neighbors with the Context

```
config
context context_name
 router bgp AS_number
 neighbor neighbor_ip-address remote-as rem_ASN_number
 neighbor neighbor_ip-address ebgp-multihop max-hop max_hops
 neighbor neighbor_ip-address update-source update-src_ip-address
 neighbor neighbor_ip-address failover bfd [multihop]
```

Notes:

- Repeat the sequence to add neighbors.

Associating OSPF Neighbors with the Context

```
config
context context_name
 router ospf
 neighbor neighbor_ip-address
```

Notes:

- Repeat the sequence to add neighbors.

Associating BFD Neighbor Groups with the BFD Protocol

```
config
 context context_name
 bfd-protocol
 bfd nbr-group-name grp_name active-if-name if_name nexthop_address
 bfd nbr-group-name grp_name passive-if-name if_name nexthop_address
```
Enabling BFD on OSPF Interfaces

**All OSPF Interfaces**

```config
context context_name
router ospf
bfd-all-interfaces
```

**Specific OSPF Interface**

```config
context context_name
interface interface_name
broadcast
ip ospf bfd
```

Monitoring BFD Connection for ICSR

For ICSR configurations, the following command sequence initiates monitoring of the connection between the primary chassis and the BFD neighbor in the specified context. If the connection drops, the standby chassis becomes active.

```config
context context_name
service-redundancy-protocol
monitor bfd context context_name { ipv4_address | ipv6_address } { chassis-to-chassis | chassis-to-router }
```

Notes:

- `ipv4_address | ipv6_address` defines the IP address of the BFD neighbor to be monitored, entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation

- `chassis-to-chassis` enables BFD to run between primary and backup chassis on non-SRP links.

- `chassis-to-router` enables BFD to run between chassis and router.

Saving the Configuration

Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Chassis-to-Chassis BFD Monitoring for ICSR

An operator can configure BFD to more quickly advertise routes during an ICSR switchover. This solution complements the feature that allows the advertising of BGP routes from a Standby ICSR chassis. The overall goal is to support more aggressive failure detection and recovery in an ICSR configuration when implementing of VoLTE.

You must configure the following features for chassis-to-chassis BFD monitoring in ICSR configurations:
Enable Primary Chassis BFD Monitoring

You must enable monitoring of the connection between the primary chassis and specified BFD neighbors. If the connection drops, the standby chassis becomes active. For more information, see Monitoring BFD Connection for ICSR, on page 247.

Set BFD to Ignore ICSR Dead Interval

The SRP Configuration mode `bfd-mon-ignore-dead-interval` command causes the standby ICSR chassis to ignore the dead interval and remain in the standby state until all the BFD chassis-to-chassis monitors fail. Enable this feature in association with BFD chassis-to-chassis monitoring to support more aggressive ICSR failure detection times.

```configure
context context_name
 service-redundancy-protocol variable
 bfd-mon-ignore-dead-interval
 end
```

Configure ICSR Switchover Guard Timer

The SRP Configuration mode `guard timer` command configures the redundancy-guard-period and monitor-damping-period for SRP service monitoring. Use these guard timers to ensure that local failures, such as card reboots and task restarts, do not result in ICSR events which can be disruptive.

```configure
context context_name
 service-redundancy-protocol variable
 guard-timer { aaa-switchover-timers { damping-period seconds | guard-period seconds } |
 diameter-switchover-timers { damping-period seconds | guard-period seconds } |
 srp-redundancy-timers { aaa { damping-period seconds | guard-period seconds } |
 bgp { damping-period seconds } |
 guard-period seconds } |
 diam { damping-period seconds | guard-period seconds } }
 end
```

Notes:

- `aaa-switchover-timers` – sets timers that prevent back-to-back ICSR switchovers due to an AAA failure (post ICSR switchover) while the network is still converging.
  - `damping-period` – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
  - `guard-period` – configures the local-failure-recovery network-convergence timer.
• **diameter-switchover-timers** – sets timers that prevent a back-to-back ICSR switchover due to a Diameter failure (post ICSR switchover) while the network is still converging.
  
  - **damping-period** – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
  
  - **guard-period** – configures the local-failure-recovery network-convergence timer.

• **srp-redundancy-timers** – sets timers that prevent an ICSR switchover while the system is recovering from a local card-reboot/critical-task-restart failure.
  
  - **aaa** – local failure followed by AAA monitoring failure
  
  - **bgp** – local failure followed by BGP monitoring failure
  
  - **diam** – local failure followed by Diameter monitoring failure

---

### Enable BFD Multihop Fall-over

A **fall-over bfd multihop mhsess_name** keyword in the Context Configuration mode ip route and ipv6 route commands enables fall-over BFD functionality for the specified multihop session. The **fall-over bfd** option uses BFD to monitor neighbor reachability and liveness. When enabled it will tear down the session if BFD signals a failure.

```bash
configure
 context context_name
 ip route { ip_address/ip_mask | ip_address ip_mask } { gateway_ip_address | next-hop
 next_hop_ip_address | point-to-point | tunnel } egress_intrfc_name [cost cost] [fall-over bfd multihop
 mhsess_name] [[precedence precedence] | [vrf vrf_name | cost value] | [fall-over bfd multihop
 mhsess_name] [[precedence precedence]]
end
```

The **ip route** command now also allows you to add a static multihop BFD route.

```bash
ip route static multihop bfd mhbfd_sess_name local_endpt_ipaddr remote_endpt_ipaddr
```

---

**Important**

SNMP traps are generated when BFD sessions go up and down (BFDSSessUp and BFDSSessDown).

---

**ip route Command**

```bash
configure
 context context_name
 ip route { ip_address/ip_mask | ip_address ip_mask } { gateway_ip_address | next-hop
 next_hop_ip_address | point-to-point | tunnel } egress_intrfc_name [cost cost] [fall-over bfd multihop
 mhsess_name] [[precedence precedence] | [vrf vrf_name | cost value] | [fall-over bfd multihop
 mhsess_name] [[precedence precedence]]
end
```

The **ip route** command now also allows you to add a static multihop BFD route.

```bash
ip route static multihop bfd mhbfd_sess_name local_endpt_ipaddr remote_endpt_ipaddr
```
ip route6 Command

```
configure
 context context_name
 ipv6 route ipv6_address/prefix_length { interface name | next-hop ipv6_address interface name } | cost
cost] | fall-over bfd multihop mhsess_name | | precedence precedence | | vrf vrf_name | cost value
| | fall-over bfd multihop mhsess_name | | precedence precedence |
end
```

The `ipv6 route` command now also allows you to add a static multihop BFD route.

```
ipv6 route static multihop bfd mhbfd_sess_name local_endpt_ipv6addr remote_endpt_ipv6addr
```

Adjust BFD Interval

Set the transmit interval (in milliseconds) between BFD packets to meet the convergence requirements of your network deployment.

```
configure
 context context_name
 interface interface_name broadcast
 bfd interval interval_num min_rx milliseconds multiplier value
end
```

Notes:

- `milliseconds` is an integer from 50 through 10000. (Default 50)

Enable Advertising BGP Routes from Standby ICSR Chassis

For information on configuring the feature, see Advertising BGP Routes from a Standby ICSR Chassis, on page 239.

Saving the Configuration

Save your configuration as described in the Verifying and Saving Your Configuration chapter.

BFD Support for Link Aggregation Member Links

Member-link based BFD detects individual link failures faster than LACP and reduces the overall session/traffic down period as a result of single member link failure.
Overview

A BFD Configuration mode CLI command configures BFD interactions with the linkagg task. Once a session is configured, BFD creates per member link BFD sessions and starts sending packets on each of the linkagg member links. If a member link BFD session fails, StarOS notifies failures to the linkagg task.

Figure 18: BFD Interactions

If you define a linkagg-peer using a slot number, you may configure a linkagg-peer for a redundant LC (Line Card) slot which must also specify a slot in its member-link configuration. Likewise, if you configure a linkagg-peer without a slot, you must delete it before configuring a peer with a slot specified.

Important

Only one IPv4 or IPv6 BFD session-based configuration is allowed per linkagg interface for compliance with RFC 7130.

Configuring Support for BFD Linkagg Member-links

The `bfd linkagg-peer` command enables member-link BFD and configures the BFD link aggregation (linkagg) session values [RFC 7130].

```
configure
context context_name
bfd-protocol
```
### bfd linkagg-peer

- `linkagg_group_id` local-endpt-addr local-endpt_ipaddress remote-endpt-addr remote_endpt_ipaddress
  - `interval tx_interval min_rx rx_interval multiplier multiplier_value` [slot slot_number]

- `no bfd linkagg-peer linkagg_group_id` [slot slot_number]

#### Notes:

- `linkagg_group_id` specifies the LAG number as an integer from 1 through 255.
- `local-endpt-addr local-endpt_ipaddress` specifies the source address of the multihop BFD session in IPv4 or IPv6 notation.
- `remote-endpt-addr remote-endpt_ipaddress` specifies the remote address of the multihop BFD session in IPv4 or IPv6 notation.
- `interval tx_interval` specifies the transmit interval of control packets in milliseconds as an integer from 50 through 10000.
- `min_rx rx_interval` specifies the receive interval of control packets in milliseconds as an integer from 50 through 10000.
- `multiplier multiplier_value` specifies the value used to compute hold-down time as an integer from 3 through 50.
- `slot slot_number` for redundant active-standby link aggregation, this option specifies the card for which this configuration is intended.

### Saving the Configuration

Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

### Viewing Routing Information

To view routing information for the current context, run one of the following Exec mode commands:

- `show ip route`: Displays information for IPv4 routes in the current context.
- `show ipv6 route`: Displays information for ipv6 routes in the current context.
- `show ip static-route`: Displays information only for IPv4 static routes in the current contextospf.
- `show ip ospf`: Displays IPv4 OSPF process summary information in the current context.
- `show ipv6 ospf`: Displays IPv6 OSPFv3 process summary information in the current context.
- `show ip bgp`: Displays IPv4 BGP information.

This example shows sample output of the command, `show ip route`.

```plaintext
[local]host_name# show ip route
** indicates the Best or Used route.
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>*44.44.44.0/24</td>
<td>208.230.231.50</td>
<td>static</td>
<td>1</td>
<td>0</td>
<td>local1</td>
</tr>
<tr>
<td>*192.168.82.0/24</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*192.168.83.0/24</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>208.230.231.0/24</td>
<td>0.0.0.0</td>
<td>ospf</td>
<td>110</td>
<td>10</td>
<td>local1</td>
</tr>
</tbody>
</table>
```
*208.230.231.0/24 0.0.0.0 connected 0 0 local1
Total route count: 5
This chapter provides information on configuring virtual local area networks (VLANs) in support of enhanced or extended services. The product administration guides provide examples and procedures for configuration of services on the system that may utilize VLANs. You should select the configuration example that best meets your service model before using the procedures described below.

Important

VLAN – Layer 2 Traffic Management is a Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.

- Overview, page 255
- Creating VLAN Tags, page 257
- Verifying the Port Configuration, page 257
- Configuring Subscriber VLAN Associations, page 258
- VLAN-Related CLI Commands, page 259

Overview

Virtual LANs (VLANs) provide greater flexibility in the configuration and use of contexts and services. They are configured as "tags" on a per-port basis and allow more complex configurations to be implemented. The VLAN tag allows a single physical port to be bound to multiple logical interfaces that can be configured in different contexts. Therefore, each Ethernet port can be viewed as containing many logical ports when VLAN tags are employed.

Important

VLANS are supported in conjunction with subscriber traffic ports on Ethernet line cards. The system supports the configuration limits for VLANs as described in Engineering Rules.
Overlapping IP Address Pool Support – GGSN

Overlapping IP Address pools provides allow operators to more flexibly support multiple corporate VPN customers with the same private IP address space without expensive investments in physically separate routers or virtual routers.

The system supports two types of overlapping pools – resource and overlap. Resource pools are designed for dynamic assignment only, and use a VPN tunnel (such as a GRE tunnel) to forward and receive the private IP addresses to and from the VPN. Overlapping type pools can be used for both dynamic and static addressing, and use VLANs and a next hop forwarding address to connect to the VPN customer.

To forward downstream traffic to the correct PDP context, the GGSN uses either the GRE tunnel ID or the VLAN ID to match the packet. When forwarding traffic upstream, the GGSN uses the tunnel and forwarding information in the IP pool configuration; overlapping pools must be configured in the APN in such instances.

When a PDP context is created, the IP address is assigned from the IP pool. In this case the forwarding rules are also configured into the GGSN. If the address is assigned statically, when the GGSN confirms the IP address from the pool configured in the APN, the forwarding rules are also applied.

The GGSN can scale to as many actual overlapping pools as there are VLAN interfaces per context, and there can be multiple contexts per GGSN. This scalability allows operators who wish to provide VPN services to customers using the customer's private IP address space, not to be concerned about escalating hardware costs or complex configurations.

RADIUS VLAN Support – Enhanced Charging Services

VPN customers often use private address space which can easily overlap with other customers. The subscriber addresses are supported with overlapping pools which can be configured in the same virtual routing context.

RADIUS Server and NAS IP addresses do not need to be in separate contexts, thereby simplifying APN and RADIUS configuration and network design. This feature allows the following scenarios to be defined in the same context:

• Overlapping RADIUS NAS-IP addresses for various RADIUS server groups representing different APNs.

• Overlapping RADIUS server IP addresses for various RADIUS servers groups.

Every overlapping NAS-IP address is given a unique next-hop address which is then bound to an interface that is bound to a unique VLAN, thereby allowing the configuration to exist within the same context.

The system forwards RADIUS access requests and accounting messages to the next hop defined for that NAS-IP; the connected routers forward the messages to the RADIUS server. The next hop address determines the interface and VLAN to use. Traffic from the server is identified as belonging to a certain NAS-IP by the port/VLAN combination.

The number of RADIUS NAS-IP addresses that can be configured is limited by the number of loopback addresses that can be configured.

APN Support – PDN Gateway (P-GW)

P-GW Access Point Name (APN) supports extensive parameter configuration flexibility for the APN. VLAN tagging may be selected by the APN, but are configured in the P-GW independently from the APN.
Creating VLAN Tags

Use the following example to create VLANs on a port and bind them to pre-existing interfaces. For information on creating interfaces, refer to System Interface and Ports.

```
config
  port ethernet slot/port
  no shutdown
  vlan vlan_tag_ID
  no shutdown
  bind interface interface_name context_name
end
```

Notes:

- **Optional:** Configure VLAN-subscriber associations. Refer to Configuring Subscriber VLAN Associations, on page 258 for more information.
- Repeat this procedure as needed to configure additional VLANs for the port.
- Refer to VLAN-Related CLI Commands, on page 259 and the Command Line Interface Reference for additional information.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying the Port Configuration

Run the following command to verify the port configuration:

```
[local] host_name# show port info slot/port
```

An example of this command’s output when at least one VLAN has been configured for the port is shown below:

```
Port: 17/1
  Port Type : 1000 Ethernet
  Role : Service Port
  Description : (None Set)
  Controlled By Card : 1 (Packet Services Card)
  Redundancy Mode : Port Mode
  Framing Mode : Unspecified
  Redundant With : 33/1
  Physical ifIndex : 553713664
  Administrative State : Enabled
  Configured Duplex : Auto
  Configured Speed : Auto
  MAC Address : 02-05-47-72-78-00
  Boxer Interface TAP : None
  Link State : Up
  Link Duplex : Unknown
  Link Speed : Unknown
  Flow Control : Disabled
  Link Aggregation Group : None
  Untagged:
    Logical ifIndex : 285278209
    Operational State : Up, Active
  Tagged VLAN: VID 10
    Logical ifIndex : 285278210
    VLAN Type : Subscriber
    VLAN Priority : 0
    Administrative State : Enabled
    Operational State : Up, Active
```
Number of VLANs : 1
SFP Module : Not Present

Notes:

• Repeat this sequence as needed to verify additional ports.

• Optional: Configure VLAN-subscriber associations. Refer to Configuring Subscriber VLAN Associations, on page 258 for more information.

• Refer to VLAN-Related CLI Commands, on page 259 and the Command Line Interface Reference for additional information.

• Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring Subscriber VLAN Associations

Subscriber traffic can be routed to specific VLANs based on the configuration of their user profile. This functionality provides a mechanism for routing all traffic from a subscriber over the specified VLAN. All packets destined for the subscriber must also be sent using only IP addresses valid on the VLAN or they will be dropped.

RADIUS Attributes Used

The following RADIUS attributes can be configured within subscriber profiles on the RADIUS server to allow the association of a specific VLAN to the subscriber:

• SN-Assigned-VLAN-ID: In the Starent VSA dictionary
• SN1-Assigned-VLAN-ID: In the Starent VSA1 dictionary

Important
Since the instructions for configuring subscriber profiles differ between RADIUS server applications, this section only describes the individual attributes that can be added to the subscriber profile. Please refer to the documentation that shipped with your RADIUS server for instructions on configuring subscribers.

Configuring Local Subscriber Profiles

Use the configuration example below to configure VLAN associations within local subscriber profiles on the system.

Important
These instructions assume that you have already configured subscriber-type VLAN tags according to the instructions provided in Creating VLAN Tags, on page 257

```
config
context context_name
subscriber name user_name
  ip vlan vlan_id
end
```
Verify the Subscriber Profile Configuration

Use the following command to view the configuration for a subscriber profile:

```
[local]host_name# show subscriber configuration username user_name
```

Notes:

- Repeat this command for each subscriber.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

VLAN-Related CLI Commands

VLAN-related features and functions are supported across several CLI command modes. The following tables identify commands associated with configuration and monitoring of VLAN-related functions.

For detailed information regarding the use of the commands listed below, see the Command Line Interface Reference.

Table 39: VLAN-Related Configuration Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| AAA Server Group Configuration Mode | radius attribute nas-ip-address address ip_address nexthop-forwarding-address ip_address vlan vlan_id | Sets the RADIUS client to provide the VLAN ID with the nexthop forwarding address to a system when running in single nexthop gateway mode.
Note: To access the `vlan` keyword, `aaa-large configuration` must be enabled via the Global Configuration mode. |
| ACS Charging Action Configuration Mode | ip vlan vlan_id | Configures the VLAN identifier to be associated with the subscriber traffic in the destination context. |
| Context Configuration Mode | ip pool pool_name nexthop forwarding address ip_address overlap vlanid vlan_id | When a nexthop forwarding address is configured, the `overlap vlanid` keyword enables support for overlapping IP address pools and associates the pool with the specified VLAN ID. |
| Context Configuration Mode | ip routing overlap-pool | Advertises overlap-pool addresses in dynamic routing protocols when overlap pools are configured using VLAN IDs. When enabled, the overlap addresses are added as interface addresses and advertised. |
VLAN-Related CLI Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context Configuration Mode</td>
<td>radius attribute nas-ip-address address ip_address nexthop-forwarding-address ip_address vlan vlan_id</td>
<td>Specifies the VLAN ID to be associated with the next-hop IP address.</td>
</tr>
<tr>
<td>Ethernet Interface Configuration Mode</td>
<td>[no] logical-port-statistics</td>
<td>Enables or disables the collection of logical port (VLAN and NPU) bulk statistics for the first 32 configured Ethernet or PVC interface types.</td>
</tr>
<tr>
<td>Ethernet Interface Configuration Mode</td>
<td>vlan-map next-hop ipv4_address</td>
<td>Sets a single next-hop IP address so that multiple VLANs can use a single next-hop gateway. The vlan-map is associated with a specific interface.</td>
</tr>
<tr>
<td>Ethernet Port Configuration Mode</td>
<td>vlan vlan_id</td>
<td>Enters VLAN Configuration mode.</td>
</tr>
<tr>
<td>PVC Configuration Mode</td>
<td>[no] shutdown</td>
<td>Enables or disables traffic over a specified VLAN. See below.</td>
</tr>
<tr>
<td>Subscriber Configuration Mode</td>
<td>ip vlan vlan_id</td>
<td>Configures the subscriber VLAN ID that is used with the assigned address for the subscriber session to receive packets. If the IP pool from which the address is assigned is configured with a VLAN ID, this subscriber configured VLAN ID overrides it.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>bind interface interface_name context_name</td>
<td>Binds a virtual interface and context to support VLAN service.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>[no] ingress-mode</td>
<td>Enables or disables port ingress incoming) mode.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>priority value</td>
<td>Configures an 802.1p VLAN priority bit for ASN-GW service only.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>[no] shutdown</td>
<td>Enables or disables traffic over the current VLAN.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>vlan-map interface if_name context_name</td>
<td>Associates an IP interface having a VLAN ID with a context.</td>
</tr>
</tbody>
</table>

Table 40: VLAN-Related Monitoring Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Mode</td>
<td>clear port slot/port vlan vlan_id</td>
<td>Clears NPU statistics for the port that has a previously configured VLAN ID.</td>
</tr>
<tr>
<td>CLI Mode</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Exec Mode</td>
<td>`show logical-port utilization table vlan {5-minute</td>
<td>hourly}`</td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>show port info slot/port vlan vlan_id</code></td>
<td>Displays NPU counters for a previously configured VLAN ID.</td>
</tr>
</tbody>
</table>
BGP MPLS VPNs

This chapter describes services that are supported by the ASR 5x00 for Border Gateway Protocol (BGP) Multi-Protocol Label Switching (MPLS) Virtual Private Networks (VPNs).

Important

MPLS is a licensed Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the *Managing License Keys* section of *Software Management Operations*.

It includes the following topics:

- Introduction, page 263
- MPLS-CE Connected to PE, page 264
- ASR 5x00 as a PE, page 265
- IPv6 Support for BGP MPLS VPNs, page 267
- VPN-Related CLI Commands, page 270

Introduction

Service providers require the ability to support a large number of corporate Access Point Names (APNs) which have a number of different addressing models and requirements. The ASR 5x00 uses BGP MPLS Layer 3 VPNs to segregate corporate customer APNs in a highly scalable manner. This solution conforms to RFC 4364 – *BGP/MPLS IP Virtual Private Networks (VPNs)*.

The BGP/MPLS solution supports the following scenarios:

- MPLS-CE Connected to PE, on page 264
- ASR 5x00 as a PE, on page 265

The ASR 5x00 also supports VPNv6 as described in RFC 4659 – *BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN*. See IPv6 Support for BGP MPLS VPNs, on page 267 for details.
MPLS-CE Connected to PE

In this scenario the ASR 5x00 functions as an MPLS-CE (Customer Edge) network element connected to a Provider Edge (PE) Label Edge Router (LER), which in turn connects to the MPLS core (RFC 4364). See the figure below.

Figure 19: ASR 5x00 MPLS-CE to PE

The MPLS-CE functions like a PE router within its own Autonomous System (AS). It maintains Virtual Routing and Forwarding (VRF) routes and exchanges VPN route information with the PE via an MP-eBGP (Multi-Protocol-external BGP) session.

The PE is also configured with VRFs and exchanges VPN routes with other PEs in its AS via MP-iBGP (Multi-Protocol-internal BGP) connections and the MPLS-CE via an MP-eBGP connection.

The EBGP connection allows the PE to change next-hop IP addresses and labels in the routes learned from IBGP peers before advertising them to the MPLS-CE. The MPLS-CE in this case uses only MP-eBGP to advertise and learn routes. Label Distribution Protocol (LDP) and Resource Reservation Protocol (RSVP) are not required because of direct-connect EBGP peering. The MPLS-CE in this scenario pushes/pops a single label (learned over the MP-eBGP connection) to/from the PE.
ASR 5x00 as a PE

Overview

In this scenario, the ASR 5x00 functions as a PE router sitting at the edge of the MPLS core. See the figure below.

Figure 20: ASR 5x00 as a PE

The ASR 5x00 eliminates the need for an ASBR or PE as shown in the first two scenarios. In this scenario, two main requirements are introduced: IBGP functionality and MPLS label distribution protocols.

The ASR 5x00 can be configured to add two labels:

- an outer label learned from LDP or RSVP-TE (RSVP-Traffic Engineering)
- an inner label learned from MP-iBGP

This solution supports traffic engineering and QoS initiated via the ASR 5x00.

Sample Configuration

In this example, VRFs are configured on the ASR 5x00 PE and pools are associated with VRFs. The ASR 5x00 exchanges VPN routes with its IBGP peers (PE routers) and learns the MPLS paths to reach PEs via...
LDP. The ASR 5x00 forwards the packets to the next-hop with two labels – an inner label learned from PE and an outer label learned from the next hop IBGP neighbor.

Figure 21: Sample Configuration

```plaintext
mpls ip
  protocol ldp
  enable
  exit
exit

ip vrf vrf1
  mpls traffic-class copy
  exit
ip vrf vrf2
  mpls traffic-class value 5
  exit

router bgp 300
  ip vrf vrf1
    route-target export 300 1
    route-target import 300 1
    route-distinguisher 300 1
  exit
  ip vrf vrf2
    route-target export 300 2
    route-target import 300 2
    route-distinguisher 300 2
  exit
  router-id 2.2.2.2
  neighbor 192.168.107.20 remote-as 300
  neighbor 192.168.107.20 update-source node1_loopback

  address-family vpnv4
    neighbor 192.168.107.20 activate
    neighbor 192.168.107.20 send-community both
    neighbor 192.168.107.20 next-hop-self
  exit

  address-family ipv4 vrf vrf1
    redistribute connected
  exit

  address-family ipv4 vrf vrf2
    redistribute connected
  exit

interface interface_to_internet
  ip address 192.168.109.65/24
  mpls ip
  exit
router ospf
```
IPv6 Support for BGP MPLS VPNs

Overview

The ASR 5x00 supports VPNv6 as described in RFC 4659 – BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN.

An IPv6 VPN is connected over an IPv6 interface or sub-interface to the Service Provider (SP) backbone via a PE router. The site can be both IPv4 and IPv6 capable. Each VPNv6 has its own address space which means a given address denotes different systems in different VPNs. This is achieved via a VPNv6 address-family which prepends a Route Distinguisher (RD) to the IP address.

A VPNv6 address is a 24-byte quantity beginning with an 8-byte RD and ending with a 16-byte IPv6 address. When a site is IPv4 and IPv6 capable, the same RD can be used for the advertisement of both IPv4 and IPv6 addresses.

The system appends RD to IPv6 routes and exchanges the labeled IPv6-RD using the VPNv6 address-family. The Address Family Identifier (AFI) and Subsequent Address Family Identifier (SAFI) fields for VPNv6 routes will be set to 2 and 128 respectively.

The IPv6 VPN traffic will be transported to the BGP speaker via IPv4 tunneling. The BGP speaker advertises to its peer a Next Hop Network Address field containing a VPN-IPv6 address whose 8-octet RD is set to zero and whose 16-octet IPv6 address is encoded as an IPv4-mapped IPv6 address (RFC 4291) containing the IPv4 address of the advertising router. It is assumed that only EBGP peering will be used to exchange VPNv6 routes.

Support for VPN-IPv6 assumes the following:

- Dual Stack (IPv4/IPv6) routing
- IPv6 pools in VRFs
- BGP peering over a directly connected IPv4 interface

See the figure below.

Figure 22: IPv6-RD Support for VPNv6
Sample Configuration

This example assumes three VRFs. VRF 1 has only IPv4 routes, VRF 2 has both IPv4 and IPv6 routes, and VRF 3 has only IPv6 routes.

Figure 23: VPNv6 Sample Configuration

Configure VRFs.

```text
ip vrf vrf1
exit
ip vrf vrf2
exit
ip vrf vrf3
exit
```

Enable MPLS BGP forwarding.

```text
mpls bgp forwarding
```

Configure pools.

```text
ip pool vrf1-pool 51.52.53.0 255.255.255.0 private 0 vrf vrf1 exit
ip pool vrf2-pool 51.52.53.0 255.255.255.0 private 0 vrf vrf2 exit ipv6 pool vrf2-v6pool prefix 2005:0101::/32 private 0 vrf vrf2 exit
ipv6 pool vrf3-v6pool prefix 2005:0101::/32 private 0 vrf vrf3 exit
```

Configure interfaces.

```text
interface ce_interface_to_rtr
  ip address 192.168.110.90 255.255.255.0 exit
interface ce_v6_interface
  ip address 2009:0101:0101:0101::1/96 exit
interface ce_loopback loopback
  ip address 52.1.2.3 255.255.255.255 exit
interface vrf1-loop loopback
  ip vrf forwarding vrf1
  ip address 1.52.53.54 255.255.255.255 exit
interface vrf2-loop loopback
  ip vrf forwarding vrf2
  ip address 2.52.53.54 255.255.255.255 exit
interface vrf2-v6loop loopback
  ip vrf forwarding vrf2
```
ip address 2005:0202:0101::1/128
exit
interface vrf3-v6loop loopback
 ip vrf forwarding vrf3
 ip address 2005:0303:0101::1/128
exit

Configure BGP along with address families and redistribution rules.

```
router bgp 800
  router-id 1.1.1.1
  neighbor 192.168.110.20 remote-as 1003
  neighbor 192.168.110.20 activate
  address-family vpnv4
    neighbor 192.168.110.20 activate
    neighbor 192.168.110.20 send-community both
  exit
  address-family vpnv6
    neighbor 192.168.110.20 activate
    neighbor 192.168.110.20 send-community both
  exit
  ip vrf vrf1
    route-distinguisher 800 1
    route-target export 800 1
    route-target import 800 1
  exit
  address-family ipv4 vrf vrf1
    redistribute connected
    redistribute static
  exit
  ip vrf vrf2
    route-distinguisher 800 2
    route-target export 800 2
    route-target import 800 2
  exit
  address-family ipv4 vrf vrf2
    redistribute connected
    redistribute static
  exit
  address-family ipv6 vrf vrf2
    redistribute connected
    redistribute static
  exit
  ip vrf vrf3
    route-distinguisher 800 3
    route-target export 800 3
    route-target import 800 3
  exit
  address-family ipv6 vrf vrf3
    redistribute connected
    redistribute static
  exit
```

Configure APNs.

```
apn walmart51.com
  selection-mode sent-by-ms
  accounting-mode none
  aaa group walmart-group
  authentication pap 1 chap 2 allow-noauth
  ip context-name Gi_ce
  ip address pool name vrf1-pool
exit
apn amazon51.com
  selection-mode sent-by-ms
  accounting-mode none
  aaa group amazon-group
  authentication pap 1 chap 2 allow-noauth
  ip context-name Gi_ce
  ip address pool name vrf2-pool
  ipv6 address prefix-pool vrf2-v6pool
exit
apn apple51.com
  selection-mode sent-by-ms
```
VPN-Related CLI Commands

VPN-related features and functions are supported across several CLI command modes. The following tables identify commands associated with configuration and monitoring of VPN-related functions.

For detailed information regarding the use of the commands listed below, see the Command Line Interface Reference.

Table 41: VPN-Related Configuration Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Address-Family (IPv4/IPv6) Configuration Mode</td>
<td>neighbor ip_address activate</td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>BGP Address-Family (IPv4/IPv6) Configuration Mode</td>
<td>neighbor ip_address send community { both</td>
<td>extended</td>
</tr>
<tr>
<td>BGP Address-Family (IPv4/IPv6) Configuration Mode</td>
<td>redistribute connected</td>
<td>Redistributes routes into BGP from another protocol as BGP neighbors.</td>
</tr>
<tr>
<td>BGP Address-Family (VPNv4) Configuration Mode</td>
<td>neighbor ip_address activate</td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>BGP Address-Family (VPNv4) Configuration Mode</td>
<td>neighbor ip_address send community { both</td>
<td>extended</td>
</tr>
<tr>
<td>BGP Address-Family (VRF) Configuration Mode</td>
<td>neighbor ip_address activate</td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>CLI Mode</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>BGP Address-Family (VRF) Configuration Mode</td>
<td>neighbor ip_address send community { both \</td>
<td>extended \</td>
</tr>
<tr>
<td></td>
<td>redistribute connected</td>
<td>Redistributes routes into BGP from another protocol as BGP neighbors.</td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td>address-family { ipv4 vrf vrf_name \</td>
<td>vpnv4 }</td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td>address-family { ipv6 vrf vrf_name \</td>
<td>vpnv6 }</td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td>ip vrf vrf_name</td>
<td>Adds a VRF to BGP and switches to the VRF Configuration mode to allow configuration of BGP attributes for the VRF.</td>
</tr>
<tr>
<td>BGP IP VRF Configuration Mode</td>
<td>route-distinguisher { as_value \</td>
<td>ip_address \</td>
</tr>
<tr>
<td>BGP IP VRF Configuration Mode</td>
<td>route-target { both \</td>
<td>import \</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>ip pool pool_name addr_range vrf vrf_name { mpls-label input inlabel1 output outlabel1 outlabel2 }</td>
<td>Configures a pool into the specified VRF. This parameter must be specified with the Next-Hop parameter. inlabel1 is the MPLS label that identifies inbound traffic destined for this pool. outlabel1 and outlabel2 specify the MPLS labels to be added to packets sent for subscribers from this pool.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>ip vrf vrf_name</td>
<td>Creates a VRF and assigns a VRF-ID. A VRF is created in the router.</td>
</tr>
<tr>
<td>CLI Mode</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>ipv6 pool pool_name vrf vrf_name</td>
<td>Associates the pool with that VRF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: By default the configured ipv6 pool will be associated with the global routing domain.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>mpls bgp forwarding</td>
<td>Globally enables MPLS Border Gateway Protocol (BGP) forwarding.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>mpls exp value</td>
<td>Sets the default behavior as Best Effort using a zero value in the 3-bit MPLS EXP header. This value applies to all the VRFs in the context. The default behavior is to copy the DSCP value of mobile subscriber traffic to the EXP header, if there is no explicit configuration for DSCP to EXP (via the <code>mpls map-dscp-to-exp dscp n exp m</code> command). mpls exp disables the default behavior and sets the EXP value to the configured value.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>mpls ip</td>
<td>Globally enables the MPLS forwarding of IPv4 packets along normally routed paths.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td>radius change-authorize-nas-ip</td>
<td>Configures COA traffic to use the specified MPLS labels. <code>inlabel</code> identifies inbound COA traffic. <code>outlabel1</code> and <code>outlabel2</code> specify the MPLS labels to be added to the COA response. <code>outlabel1</code> is the inner output label; <code>outlabel2</code> is the outer output label.</td>
</tr>
<tr>
<td></td>
<td>ip_address ip_address { encrypted</td>
<td>key } value port port_num mpls input inlabel output outlabel1 outlabel2</td>
</tr>
<tr>
<td>Ethernet Interface Configuration</td>
<td>mpls ip</td>
<td>Enables dynamic MPLS forwarding of IP packets on this interface.</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exec Mode</td>
<td>clear ip bgp peer</td>
<td>Clears BGP sessions.</td>
</tr>
<tr>
<td>Exec Mode</td>
<td>lsp-ping ip_prefix_FEC</td>
<td>Checks MPLS Label-Switched Path (LSP) connectivity for the specified forwarding equivalence class (FEC). It must be followed by an IPv4 or IPv6 FEC prefix.</td>
</tr>
<tr>
<td>CLI Mode</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>lsp-traceroute ip_prefix_FEC</code></td>
<td>Discovers MPLS LSP routes that packets actually take when traveling to their destinations. It must be followed by an IPv4 or IPv6 FEC prefix.</td>
</tr>
<tr>
<td>IP VRF Context Configuration Mode</td>
<td><code>mpls map-dscp-to-exp dscp</code></td>
<td>Maps the final differentiated services code point (DSCP) bit value in the IP packet header to the final Experimental (EXP) bit value in the MPLS header for incoming traffic.</td>
</tr>
<tr>
<td>IP VRF Context Configuration Mode</td>
<td><code>mpls map-exp-to-dscp exp</code></td>
<td>Maps the incoming EXP bit value in the MPLS header to the internal DSCP bit value in IP packet headers for outgoing traffic.</td>
</tr>
<tr>
<td>MPLS-IP Configuration Mode</td>
<td><code>protocol ldp</code></td>
<td>Creates the MPLS protocol family configuration modes, or configures an existing protocol and enters the MPLS-LDP Configuration Mode in the current context. This command configures the protocol parameters for the MPLS protocol family.</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>`advertise-labels { explicit-null</td>
<td>implicit-null }`</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>`discovery { hello { hello-interval seconds }</td>
<td>hold-interval seconds }</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td><code>enable</code></td>
<td>Enables Label Distribution Protocol (LDP).</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td><code>router-id ip_address</code></td>
<td>Configures the LDP Router ID.</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>`session timers { hold-interval seconds }</td>
<td>keepalive-interval seconds }`</td>
</tr>
</tbody>
</table>
Table 42: VPN-Related Monitoring Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show ip bgp neighbors</code></td>
<td>Displays information regarding BGP neighbors.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>`show ip bgp vpnv4 { all</td>
<td>route-distinguisher</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show ip bgp vpnv6</code></td>
<td>Displays contents of VPNv6 routing table.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>`show ip bgp vpnv6 { all</td>
<td>route-distinguisher</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show ip pool</code></td>
<td>Displays pool details including the configured VRF.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls cross-connect</code></td>
<td>Displays MPLS cross-connect information. MPLS tunnel cross-connects between interfaces and Label-Switched Paths (LSPs) connect two distant interface circuits of the same type via MPLS tunnels that use LSPs as the conduit.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls ftn [vrf vrf_name]</code></td>
<td>Displays MPLS FEC-to-NHLFE (FTN) table information.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls ftn [vrf vrf_name]</code></td>
<td>Displays contents of the MPLS FTN table for a specified VRF.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls ilm</code></td>
<td>Displays MPLS Incoming Label Map (ILM) table information.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls ldp</code></td>
<td>Displays the MPLS LDP information.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td><code>show mpls nexthop-label-forwarding-entry</code></td>
<td>Displays MPLS Next-Hop Label Forwarding Entry (NHLFE) table information.</td>
</tr>
</tbody>
</table>
Content Service Steering

This chapter provides information on configuring Content Service Steering (CSS). The product administration guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model as described in the respective product administration guide, before using the procedures described below.

Important

Internal CSS is a generic feature, if an ECSv2 license is installed on your system, internal CSS can be enabled. A separate license is not required to enable internal CSS. Contact your local Cisco account representative for information on how to obtain a license.

This chapter contains the following topics:

- Overview, page 275
- Configuring Internal Content Service Steering, page 276

Overview

Content Server Selection (CSS) is a StarOS function that defines how traffic will be handled based on the "content" of the data presented by a mobile subscriber (or to a mobile subscriber). CSS is a broad term that includes features such as load balancing, NAT, HTTP redirection, and DNS redirection.

The content server (services) can be either external to the platform or integrated inside the platform.

CSS uses Access Control Lists (ACLs) to redirect subscriber traffic flows. ACLs control the flow of packets into and out of the system. ACLs consist of "rules" (ACL rules) or filters that control the action taken on packets matching the filter criteria.

ACLs are configurable on a per-context basis and applies to a subscriber through either a subscriber profile (or an APN profile in the destination context. For additional information, refer to the Access Control Lists chapter.
Configuring Internal Content Service Steering

To configure and activate a single CSS service for redirecting all of a subscriber's IP traffic to an internal in-line service:

Step 1 Define an IP ACL as described in Defining IP Access Lists for Internal CSS, on page 276.

Step 2 Optional: Apply an ACL to an individual subscriber as described in Applying an ACL to an Individual Subscriber (Optional), on page 277.

Step 3 Optional: Apply a single ACL to multiple subscribers as described in Applying an ACL to Multiple Subscribers (Optional), on page 277.

Step 4 Optional: Apply an ACL to multiple subscribers via APNs as described in Applying an ACL to Multiple Subscriber via APNs, on page 219.

Step 5 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Commands used in the configuration examples in this section provide base functionality to the extent that the most common or likely commands and/or keyword options are presented. In many cases, other optional commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands. Not all commands or keywords/variables may be supported or available. Availability varies on the platform type and installed license(s).

Defining IP Access Lists for Internal CSS

IP ACLs specify what type of subscriber traffic and which direction (uplink, downlink, or both) traffic is redirected. The IP ACL must be specified in the context in which subscriber authentication is performed.

Caution To minimize the risk of data loss, do not make configuration changes to ACLs while the system is facilitating subscriber sessions.

Use the following configuration example to define an IP ACL for internal CSS; start in the Exec mode of the CLI:

```
configure
  context context_name
  ip access-list acl_name
    redirect css service service_name keywords options
  end
```

Notes:

- `service_name` must be an ACL service name.
- For information on the keywords and options available with the `redirect css service` command, see the ACL Configuration Mode Commands chapter in the Command Line Interface Reference.
• For IPv6 ACLs, the same configurations must be done in the IPv6 ACL Configuration Mode. See the IPv6 ACL Configuration Mode Commands chapter in the Command Line Interface Reference.

Applying an ACL to an Individual Subscriber (Optional)

For information on how to apply an ACL to an individual subscriber, refer to the Applying an ACL to an Individual Subscriber section of the Access Control Lists chapter.

Applying an ACL to Multiple Subscribers (Optional)

IP ACLs are applied to subscribers via attributes in their profiles. The subscriber profile can be configured locally on the system or remotely on a RADIUS server.

The system provides for the configuration of subscriber functions that serve as default values when specific attributes are not contained in the individual subscriber's profile. When configured properly, the functions can be used to apply an ACL to:

• All subscribers facilitated within a specific context by applying the ACL to the profile of the subscriber named default.

• All subscribers facilitated by specific services by applying the ACL to a subscriber profile and then using the default subscriber command to configure the service to use that subscriber as the "default" profile.

Applying an ACL to the Subscriber Named default (Optional)

For information on how to apply an ACL to the default subscriber, refer to the Applying an ACL to the Subscriber Named default section in the Access Control Lists chapter.

Applying an ACL to Service-specified Default Subscribers (Optional)

For information on how to apply an ACL to the subscriber to be used as the "default" profile by various system services, refer to the Applying an ACL to Service-specified Default Subscribers section in the Access Control Lists chapter.

Applying an ACL to Multiple Subscribers via APNs (Optional)

IP ACLs are applied to subscribers via attributes in their profiles. The subscriber profile can be configured locally on the system or remotely on a RADIUS server.

To reduce configuration time, ACLs can alternatively be applied to APN templates. When configured, any subscriber packets facilitated by the APN template would then have the associated ACL applied.

For information on how to apply an ACL to multiple subscribers via APNs, refer to the Applying a Single ACL to Multiple Subscribers via APNs section in the Access Control Lists chapter.
Applying an ACL to Multiple Subscribers via APNs (Optional)
System Recovery

This chapter describes how to recover a system after it has failed to complete a reboot following a power off cycle or interruption of the normal boot sequence following a `reload` command.

Caution

This system recovery process interrupts subscriber service by dropping any existing flows and preventing traffic from being processed during the boot interval. It should only be initiated as an emergency measure.

This chapter includes the following sections:

- Prerequisites, page 279
- Accessing the boot CLI, page 280
- Booting from a Selected Image, page 281

Prerequisites

Successful recovery from a failed reboot requires that you have access to the system via a console port, and have an uncorrupted copy of the StarOS boot image file stored in flash memory on the management card, or accessible from an external memory device.

Console Access

The boot recovery sequence can only be executed via a terminal connected to the serial console port on the active management card. This connection can be through a terminal server that is accessible via a LAN interface.

The boot recovery sequence can only be viewed via the Console port.

Boot Image

The boot recovery command line interface allows you to specify from which boot image you would like to boot the system. If the system failed to reload following a software update, you can initiate a boot from a previously stored image.
The system recovery procedure will prompt you to enter the path name for the location of the StarOS boot image from which the system will boot. By default the boot command will timeout and attempt to reload the highest priority image from flash memory using the default configuration file.

The operating system software is delivered as a single binary file (.bin file extension) and is loaded as a single instance for the entire system.

- For StarOS releases prior to 16.1, the image filename is identified by its release version and corresponding build number. Format = production.build_number.platform.bin.
- For StarOS release 16.1 onwards, the image filename is identified by its platform type and release number. Format = platform-release_number.bin.

Refer to the Configuring the Boot Stack section in the Software Management Operations chapter for additional information on boot stack entries and prioritization.

Accessing the boot CLI

To access the boot CLI you must interrupt an in-progress reload (reboot) sequence.

Caution

This system recovery process interrupts subscriber service by dropping any existing flows and preventing traffic from being processed during the boot interval. It should only be initiated as an emergency measure.

Initiate a Reboot

A reload can be initiated in one of two ways:

- Power cycle the chassis – Turn the circuit breakers on the power filter units (PFUs) Off (0) and then On (1).
- Execute a `reload` command

```
[local]host_name# reload -noconfirm
```

The boot sequence displays messages on the terminal as it steps through its processes.

Interrupt the Boot Sequence

When the "Booting priority" message line appears (and not before), press CTRL+C to break out of the boot process as shown in the example below:

```
Booting priority 8
   image: /flash/image_filename.bin
   config: /flash/system.cfg
   Entry at 0x000000000c000c0a45e0
```

Press CTRL+C at this point in the sequence.

A message similar to the following appears after the boot process has been interrupted:

```
*******9/0 Ctrl-C Pressed-----------------------------------------------
Failed.
```
Enter CLI Mode

With the boot prompt displayed, enter cli to access the boot recovery CLI. The CLI prompt changes as shown below:

8/0:boot> cli
8/0:cli>

boot Command Syntax

The boot recovery command has the following syntax:

```
boot [-show | -priority=* | -config=* | -noconfig] {bootfile_URL}
```

The options for this command include:

- **-show**: displays the current boot configuration
- **-priority=***: selects the desired boot stack priority (*)
- **-config=***: enters the desired configuration filename (*), if not the default file
- **-noconfig**: boots using no configuration file

bootfile_URL is the URL for the location of the StarOS boot image file. It specifies the path and file name of the StarOS .bin file from which the system will be booted.

The URL may refer to a local file (flash) or an external file on a memory device attached to the management card. The URL must be entered in the following format:

```
{/flash | /pcmcia1 | /usb1}/filename
```

Booting from a Selected Image

You will issue a **boot** command via the boot CLI to initiate the system recovery process.

Boot Using No Configuration File

This procedure boots the system using the specified boot image without also loading a configuration file. A sample command string appears below:

```
8/0:cli>boot -noconfig /flash/image_filename.bin
```

The boot sequence ends with a prompt to enter the Quick Setup Wizard for creating a configuration file.

```
Launching StarOS
Starting program at 0x000000000100000
Starent Networks ASR5x00 Intelligent Mobile Gateway
management_card is starting up.............................
Starting software image_version_number...
No configuration found, press enter to continue.
1. Do you wish to continue with the Quick Setup Wizard[yes/no]:
```
You can exit the Quick Setup Wizard by entering no in response to the above prompt. Load a desired configuration file using the Exec mode configure command followed by the URL for the configuration file as shown in the example below:

```
[local] host_name# configure /flash/system.cfg
```

Boot Using A Specified Configuration File

This procedure boots the system using the specified boot image and configuration file. A sample command string appears below:

```
8/0:cli> boot -config=/flash/system.cfg /flash/image_filename.bin
```

The boot sequence ends with the appearance of the CLI prompt.

```
[local] host_name#
```

Confirm that the desired configuration has loaded by running the Exec mode show configuration command.
Session Recovery

With robust hardware failover and redundancy protection, any card-level hardware failures on the system can quickly be corrected. However, software failures can occur for numerous reasons, often without prior indication.

This chapter describes the Session Recovery feature that provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault.

Important

Session Recovery is a licensed Cisco feature. A separate feature license may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.

This chapter includes the following sections:

- How Session Recovery Works, page 283
- Additional ASR 5x00 Hardware Requirements, page 286
- Configuring the System to Support Session Recovery, page 286
- Recovery Control Task Statistics, page 290

How Session Recovery Works

This section provides an overview of how this feature is implemented and the recovery process.

The Session Recovery feature provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault within the system preventing a fully connected user session from being disconnected.

Session recovery is performed by mirroring key software processes (for example, session manager and AAA manager) within the system. These mirrored processes remain in an idle state (standby-mode) wherein they perform no processing, until they may be needed in the event of a software failure (for example, a session manager task aborts).

The system spawns new instances of "standby mode" session and AAA managers for each active control processor (CP) being used. These mirrored processes require both memory and processing resources, which
means that additional hardware may be required to enable this feature (see Additional ASR 5x00 Hardware Requirements, on page 286).

Other key system-level software tasks, such as VPN manager, are performed on a physically separate packet processing card to ensure that a double software fault (for example, session manager and VPN manager fails at same time on same card) cannot occur. The packet processing card that hosts the VPN manager process is in active mode and reserved by the operating system for this sole use when session recovery is enabled.

There are two modes of session recovery.

- **Task recovery mode**: Wherein one or more session manager failures occur and are recovered without the need to use resources on a standby packet processing card. In this mode, recovery is performed by using the mirrored "standby-mode" session manager task(s) running on active packet processing cards. The "standby-mode" task is renamed, made active, and is then populated using information from other tasks such as AAA manager. In case of Task failure, limited subscribers will be affected and will suffer outage only until the task starts back up.

- **Full packet processing card recovery mode**: Used when a packet processing card hardware failure occurs, or when a planned packet processing card migration fails. In this mode, the standby packet processing card is made active and the "standby-mode" session manager and AAA manager tasks on the newly activated packet processing card perform session recovery.

Session/Call state information is saved in the peer AAA manager task because each AAA manager and session manager task is paired together. These pairs are started on physically different packet processing cards to ensure task recovery.

There are some situations wherein session recovery may not operate properly. These include:

- Additional software or hardware failures occur during the session recovery operation. For example, an AAA manager fails while the state information it contained was being used to populate the newly activated session manager task.

- A lack of hardware resources (packet processing card memory and control processors) to support session recovery.

Important

After a session recovery operation, some statistics, such as those collected and maintained on a per manager basis (AAA Manager, Session Manager, etc.) are in general not recovered, only accounting and billing related information is checkpointed and recovered.

Session Recovery is available for the following functions:

- Any session needing L2TP LAC support (excluding regenerated PPP on top of an HA or GGSN session)
- ASR 5000 only – Closed RP PDSN services supporting simple IP, Mobile IP, and Proxy Mobile IP
- CSCF sessions
- ASR 5000 only – eHRPD service (evolved High Rate Packet Data)
- ASR 5000 only – ePDG service (evolved Packet Data Gateway)
- GGSN services for IPv4 and PPP PDP contexts
- HA services supporting Mobile IP and/or Proxy Mobile IP session types with or without per-user Layer 3 tunnels
Session Recovery

- ASR 5000 only – HNB-GW: HNB Session over IuH
- ASR 5000 only – HNB-GW: HNB-CN Session over IuPS and IuCS
- ASR 5000 only – HNB-GW: SeGW Session IPSec Tunnel
- ASR 5000 only – HSGW services for IPv4
- IPCF (Intelligent Policy Control Function)
- ASR 5000 only – IPSG-only systems (IP Services Gateway)
- LNS session types (L2TP Network Server)
- MME (Mobility Management Entity)
- ASR 5000 only – NEMO (Network Mobility)
- P-GW services for IPv4
- ASR 5000 only – PDIF (Packet Data Interworking Function)
- PDSN services supporting simple IP, Mobile IP, and Proxy Mobile IP
- S-GW (Serving Gateway)
- SaMOG (S2a Mobility over GTP) Gateway (CGW and MRME)
- ASR 5000 only – SAE-GW (System Architecture Evolution Gateway)
- ASR 5000 only – SGSN services (3G and 2.5G services) for IPv4 and PPP PDP contexts

Session recovery is not supported for the following functions:

- Destination-based accounting recovery
- GGSN network initiated connections
- GGSN session using more than 1 service instance
- MIP/L2TP with IPSec integration
- MIP session with multiple concurrent bindings
- Mobile IP sessions with L2TP
- Multiple MIP sessions

Important
Always refer to the Administration Guides for individual products for other possible session recovery and Interchassis Session Recovery (ICSR) support limitations.

When session recovery occurs, the system reconstructs the following subscriber information:

- Data and control state information required to maintain correct call behavior.
- A minimal set of subscriber data statistics; required to ensure that accounting information is maintained.
- A best-effort attempt to recover various timer values such as call duration, absolute time, and others.
- The idle time timer is reset to zero and the re-registration timer is reset to its maximum value for HA sessions to provide a more conservative approach to session recovery.
Any partially connected calls (for example, a session where HA authentication was pending but has not yet been acknowledged by the AAA server) are not recovered when a failure occurs.

Additional ASR 5x00 Hardware Requirements

Because session recovery requires numerous hardware resources, such as memory, control processors, NPU processing capacity, some additional hardware may be required to ensure that enough resources are available to fully support this feature.

Important

A minimum of four packet processing cards (three active and one standby) per individual chassis is required to use this feature.

To allow for complete session recovery in the event of a hardware failure during a packet processing card migration, a minimum of three active packet processing cards and two standby packet processing cards should be deployed.

To assist you in your network design and capacity planning, consider the following factors:

- Subscriber capacity is decreased depending on the hardware configuration. A fully configured chassis would experience a smaller decrease in subscriber capacity versus a minimally configured chassis.
- The amount by which control transaction processing capacity is reduced.
- The reduction in subscriber data throughput.
- The recovery time for a failed software task.
- The recovery time for a failed packet processing card.

A packet processing card migration may temporarily impact session recovery as hardware resources (memory, processors, etc.) that may be needed are not available during the migration. To avoid this condition, a minimum of two standby packet processing cards should be configured.

Configuring the System to Support Session Recovery

The following procedures allow you to configure the session recovery feature for either an operational system that is currently in-service (able to accept incoming calls) or a system that is out-of-service (not part of your production network and, therefore, not processing any live subscriber/customer data).

Important

The session recovery feature, even when the feature use key is present, is disabled by default on the system.
Enabling Session Recovery

As noted earlier, session recovery can be enabled on a system that is out-of-service (OOS) and does not yet have any contexts configured, or on an in-service system that is currently capable of processing calls. However, if the system is in-service, it must be restarted before the session recovery feature takes effect.

Enabling Session Recovery on an Out-of-Service System

The following procedure is for a system that does not have any contexts configured.

To enable the session recovery feature on an out-of-service system, follow the procedure below. This procedure assumes that you begin at the Exec mode prompt.

Step 1

At the Exec mode prompt, verify that the session recovery feature is enabled via the session and feature use licenses on the system by running the `show license info` command.

If the current status of the Session Recovery feature is Disabled, you cannot enable this feature until a license key is installed in the system.

Step 2

Use the following configuration example to enable session recovery.

```
configure
  require session recovery
end
```

Step 3

Save your configuration as described in Verifying and Saving Your Configuration.

The system, when started, enables session recovery, creates all mirrored "standby-mode" tasks, and performs packet processing card reservations and other operations automatically.

Step 4

After the system has been configured and placed in-service, you should verify the preparedness of the system to support this feature as described in Viewing Session Recovery Status, on page 288

Enabling Session Recovery on an In-Service System

When enabling session recovery on a system that already has a saved configuration, the session recovery commands are automatically placed before any service configuration commands in the configuration file.

To enable the session recovery feature on an in-service system, follow the procedure below. This procedure assumes that you begin at the Exec mode prompt.

Step 1

At the Exec mode prompt, verify that the session recovery feature is enabled via the session and feature use licenses on the system by running the `show license info` command:

If the current status of the Session Recovery feature is Disabled, You cannot enable this feature until a license key is installed in the system.
Step 2 Use the following configuration example to enable session recovery.
```
configure
    require session recovery
end
```
This feature does not take effect until after the system has been restarted.

Step 3 Save your configuration as described in Verifying and Saving Your Configuration.

Step 4 Perform a system restart by entering the `reload` command:
The following prompt appears:
```
Are you sure? [Yes|No]:
```
Confirm your desire to perform a system restart by entering `yes`.

The system, when restarted, enables session recovery and creates all mirrored "standby-mode" tasks, performs packet processing card reservations, and other operations automatically.

Step 5 After the system has been restarted, you should verify the preparedness of the system to support this feature as described in Viewing Session Recovery Status, on page 288
More advanced users may opt to simply insert the `require session recovery` command syntax into an existing configuration file using a text editor or other means, and then applying the configuration file manually. Exercise caution when doing this to ensure that this command is placed among the first few lines of any existing configuration file; it must appear before the creation of any non-local context.

Disabling the Session Recovery Feature

To disable the session recovery feature on a system, enter the `no require session recovery` command from the Global Configuration mode prompt.

Important

If this command is issued on an in-service system, then the system must be restarted by issuing the `reload` command.

Viewing Session Recovery Status

To determine if the system is capable of performing session recovery, when enabled, enter the `show session recovery status verbose` command from the Exec mode prompt.

The output of this command should be similar to the examples shown below.

```
[local] host_name# show session recovery status
Session Recovery Status:
  Overall Status : SESSMGR Not Ready For Recovery
  Last Status Update : 1 second ago

[local] host_name# show session recovery status
Session Recovery Status:
  Overall Status : Ready For Recovery
  Last Status Update : 8 seconds ago
```
Viewing Recovered Session Information

To view session state information and any session recovery status, enter the following command:

```
[local]host_name# show subscriber debug-info { callid id | msid id | username name }
```

The following example shows the output of this command both before and after a session recovery operation has been performed. The "Redundancy Status" fields in this example have been bold-faced for clarity.

```
username: user1  callid: 01ca11b1  msid: 0000100003
Card/Cpu: 4/2
Sessmgr Instance: 7
Primary callline:
Redundancy Status: Original Session

Checkpoints Attempts Success Last-Attempt Last-Success
Full: 69 68 29800ms 29800ms
Micro: 1 206 20100ms 20100ms
Current state: SMGR_STATE_CONNECTED
FSM Event trace:
State          Event
SMGR_STATE_OPEN  SMGR_EVT_NEWCALL
SMGR_STATE_NEWCALL_ARRIVED  SMGR_EVT_ANSWER_CALL
SMGR_STATE_NEWCALL_ANSWERED  SMGR_EVT_LINE_CONNECTED
SMGR_STATE LINE CONNECTED  SMGR_EVT_LINK_CONTROL_UP
SMGR_STATE LINE CONNECTED  SMGR_EVT_AUTH_REQ
SMGR_STATE LINE CONNECTED  SMGR_EVT_IPADDR_ALLOC_SUCCESS
SMGR_STATE_LINE_CONNECTED  SMGR_EVT_AUTH_SUCCESS
SMGR_STATE_LINE_CONNECTED  SMGR_EVT_UPDATE_SESS_CONFIG
SMGR_STATE_LINE_CONNECTED  SMGR_EVT_LOWER_LAYER_UP

Data Reorder statistics
Total timer expiry: 0  Total flush (tmr expiry): 0
Total no buffers: 0  Total flush (no buffers): 0
Total flush (queue full): 0  Total flush (out of range): 0
Total flush (svc change): 0  Total out-of-seq pkt drop: 0
Total out-of-seq arrived: 0
IPv4 Reassembly Statistics:
Success: 0  In Progress: 0
Failure (timeout): 0  Failure (no buffers): 0
Failure (other reasons): 0
Redirected Session Entries: Allowed: 2000
Current: 0  Added: 0  Deleted: 0
Revoked for use by different subscriber: 0

Peer callline:
Redundancy Status: Recovered Session

Checkpoints Attempts Success Last-Attempt Last-Success
```
Recovery Control Task Statistics

Recovery Control Task (RCT) statistics show the following:

- Recovery action taken – Migration, Shutdown, Switchover
- Type of event – Planned or Unplanned
- From card to card – slot numbers
- Start time – YYYY-MM-DD+hh:mm:ss.sss
- Duration – seconds
- Card failure device (such as CPU\n)
- Card failure reason
- Card is in usable state or not failed
- Recovery action status – Success or failure reason
- If recovery action failed, failure time stamp
- If recovery action failed, failure task facility name
- If recovery action failed, failure instance number
show rct stats Command

The Exec mode `show rct stats` command employs the following syntax:

```
[local] host_name# show rct stats [verbose]
```

Without the `verbose` keyword, a summary output is displayed as show in the example below:

RCT stats Summary

Migrations = 0
Switchovers = 1, Average time = 25.855 sec

With the `verbose` keyword the detailed statistics shown in Sample Output for show rct stats verbose, on page 291 are provided.

Sample Output for show rct stats verbose

```
[local] host_name# show rct stats verbose

RCT stats Details (Last 5 Actions)
Stats 1:
  Action : Shutdown
  From : 4
  To : 5
  Start Time : 2013-Aug-30+03:02:00.132
  Duration : 002.804 sec
  Is Card Usable : Yes
  Failure Reason : CPU_CRITICAL_TASK_FAILURE
  Failure Device : CPU_0
  Recovery Status : Success
  Facility : N.A
  Instance : N.A

RCT stats Details (Last 5 Actions)
Stats 2:
  Action : Shutdown
  From : 12
  To : 13
  Start Time : 2013-Aug-30+03:02:10.100
  Duration : 002.901 sec
  Is Card Usable : Yes
  Failure Reason : NPU_LC_CONNECT_TOP_FAIL
  Failure Device : PAC_LC_CONNECT_HARDWARE
  Recovery Status : Success
  Facility : N.A
  Instance : N.A

Stats 3:
  Action : Migration
  From : 7
  To : 11
  Start Time : 2013-Aug-30+03:03:40.120
  Duration : 003.423 sec
  Is Card Usable : Yes
  Failure Reason : N.A.
  Failure Device : N.A
  Recovery Status : Success
  Facility : N.A
  Instance : N.A

Stats 4:
  Action : Migration
  From : 7
  To : 11
```
Sample Output for show rct stats verbose

```
Start Time : 2013-Aug-30+03:03:41.256
Duration : 005.222 sec
Is Card Usable : Yes
Failure Reason : N.A.
Failure Device : N.A.
Recovery Status : TASK_MIGRATION_FAIL_PREMIGRATE
Facility : vpnmgr
Instance : 13

Stats 5:
Action : Migration
From : 6
To : 7
Start Time : 2013-Aug-30+04:18:30.106
Duration : 004.134 sec
Is Card Usable : Yes
Failure Reason : N.A.
Failure Device : N.A.
Recovery Status : TASK_MIGRATION_FAIL_RENAME
Facility : sessmgr
Instance : 63

RCT stats Summary
-----------------
Migrations = 3, Average time = 4.260 sec
Switchovers = 0
```
Interchassis Session Recovery

This chapter describes how to configure Interchassis Session Recovery (ICSR). The product Administration Guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model as described in the respective product Administration Guide, before using the procedures described below.

Important

ICSR is a licensed Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.

This chapter discusses the following:

- Overview, page 293
- ICSR Operation, page 298
- Configuring Interchassis Session Recovery (ICSR), page 302
- Updating the Operating System, page 315

Overview

The ICSR feature provides the highest possible availability for continuous call processing without interrupting subscriber services. ICSR allows the operator to configure geographically distant gateways for redundancy purposes. In the event of a node or gateway failure, ICSR allows sessions to be transparently routed around the failure, thus maintaining the user experience. ICSR also preserves session information and state.

ICSR is implemented through the use of redundant chassis. The chassis are configured as primary and backup, with one being active and one standby. Both chassis are connected to the same AAA server. A checkpoint duration timer controls when subscriber data is sent from the active chassis to the standby chassis. If the active chassis handling the call traffic goes out of service, the standby chassis transitions to the active state and continues processing the call traffic without interrupting the subscriber session.

The chassis determine which is active through a proprietary TCP-based connection known as the Service Redundancy Protocol (SRP) link. The SRP link is used to exchange Hello messages between the primary and backup chassis and must be maintained for proper system operation.
ICSR licenses are currently supported for the following services:

- eHRPD – Evolved High Rate Packet Data
- ePDG – Evolved Packet Data Gateway
- GGSN – Gateway GPRS Support Node
- HA – Home Agent
- MME – Mobility Management Entity
- P-GW – Packet Data Network Gateway
- PDIF – Packet Data Interworking Function
- PDSN – Packet Data Serving Node
- S-GW – Serving Gateway
- SAEGW – System Architecture Evolution Gateway
- SaMOG – S2a Mobility over GTP

L2TP Access Concentrator (LAC) functionality for ICSR is supported by the following protocol and services:

- eGTP – enhanced GPRS Tunneling Protocol
- GGSN – Gateway GPRS Support Node
- P-GW – Packet Data Network Gateway
- SAEGW – System Architecture Evolution Gateway

L2TP Access Concentrator (LAC) functionality for ICSR is not supported by the following services:

- HA – Home Agent
- PMIP – Proxy Mobile IP

L2TP Network Server (LNS) functionality for ICSR is not supported by any services.

Important

For releases prior to 17.0, ICSR should not be configured on chassis supporting L2TP calls.

Important

ICSR support for LAC requires a separate LAC license, as well as an Inter-Chassis Session Recovery license.

Important

Contact your Cisco account representative to verify whether a specific service supports ICSR as an option.
Interchassis Communication

Chassis configured to support ICSR communicate using periodic Hello messages. These messages are sent by each chassis to notify the peer of its current state. The Hello message contains information about the chassis such as its configuration and priority. A dead interval is used to set a time limit for a Hello message to be received from the chassis' peer. If the standby chassis does not receive an Hello message from the active chassis within the dead interval, the standby chassis transitions to the active state. In situations where the SRP link goes out of service, a priority scheme is used to determine which chassis processes the session. The following priority scheme is used:

- route modifier
- chassis priority
- SPIO MAC address

Checkpoint Messages

Checkpoint messages are sent from the active chassis to the standby chassis. These messages are sent at specific intervals and contain all the information needed to recreate the sessions on the standby chassis, if that chassis were to become active. Once a session exceeds the checkpoint duration, checkpoint data is collected on the session.

SRP CLI Commands

Exec Mode CLI Commands

Exec mode srp CLI configuration commands can be used to enable, disable and initiate SRP functions. The table below lists and briefly describes these commands. For complete information see the Exec Mode Commands (D-S) chapter of the Command Line Interface Reference.

Table 43: srp CLI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srp initiate-audit manual-with-sync</td>
<td>Initiates a forced audit between ICSR chassis. This audit ensures that two ICSR peers are synchronized and identifies any discrepancies prior to scheduled or unscheduled switchover events.</td>
</tr>
<tr>
<td>srp initiate-swichover</td>
<td>Executes a forced switchover from active to inactive. When executed on the active chassis, this command switches the active chassis to the inactive state and the inactive chassis to an active state.</td>
</tr>
<tr>
<td>srp reset-auth-probe-fail</td>
<td>Resets the auth probe monitor failure information to 0.</td>
</tr>
<tr>
<td>srp reset-diameter-fail</td>
<td>Resets the Diameter monitor failure information to 0.</td>
</tr>
<tr>
<td>srp terminate-post-process</td>
<td>Forcibly terminates post-switchover processing.</td>
</tr>
</tbody>
</table>
Description

Command	Description
srp validate-configuration | Validates the configuration for an active chassis.
srp validate-switchover | Validates that both active and standby chassis are ready for a planned SRP switchover.

show Commands

Exec mode **show srp** commands display a variety of information related to SRP functions. The table below lists and briefly describes these commands. For complete information on these commands, see the *Exec Mode show Commands (Q-S)* chapter of the *Command Line Interface Reference*.

Table 44: show srp Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show srp audit-statistics</td>
<td>Displays statistics of an external audit.</td>
</tr>
<tr>
<td>show srp call-loss statistics</td>
<td>Displays the history of calls lost during switchover.</td>
</tr>
<tr>
<td>show srp checkpoint statistics</td>
<td>Displays checkpointing statistics on session redundancy data (session managers, current call recovery records, etc.).</td>
</tr>
<tr>
<td>show srp info</td>
<td>Displays Service Redundancy Protocol information (context, chassis state, peer, connection state, etc.).</td>
</tr>
<tr>
<td>show srp monitor</td>
<td>Displays SRP monitor information.</td>
</tr>
<tr>
<td>show srp statistics</td>
<td>Displays SRP statistics (hello messages sent, configuration validation, resource messages, switchovers, etc.).</td>
</tr>
</tbody>
</table>

For additional information about the output of **show srp** commands, see the *Statistics and Counters Reference*.

AAA Monitor

AAA servers are monitored using the authentication probe mechanism. AAA servers are considered Up if the authentication-probe receives a valid response. AAA servers are considered Down when the **max-retries count** specified in the configuration of the AAA server has been reached. SRP initiates a switchover when none of the configured AAA servers responds to an authentication probe. AAA probing is only performed on the active chassis.

Important

A switchover event caused by an AAA monitoring failure is non-revertible.

If the newly active chassis fails to monitor the configured AAA servers, it remains as the active chassis until one of the following occurs:

- a manual switchover
another non-AAA failure event causes the system to switchover

a CLI command is used to clear the AAA failure flag and allow the chassis to switch to standby

BGP Interaction

The Service Redundancy Protocol implements revertible switchover behavior via a mechanism that adjusts the route modifier value for the advertised loopback/IP Pool routes. The initial value of the route modifier value is determined by the chassis' configured role and is initialized to a value that is higher than a normal operational value. This ensures that in the event of an SRP link failure and an SRP task failure, the correct chassis is still preferred in the routing domain.

Important

For ICSR you must configure busyout ip pool commands in the same order on Active and Standby chassis to avoid SRP validation failures.

The Active and Standby chassis share current route modifier values. When BGP advertises the loopback and IP pool routes, it converts the route modifier into an autonomous systems (AS) path prepend count. The Active chassis always has a lower route modifier, and thus prepends less to the AS-path attribute. This causes the route to be preferred in the routing domain.

If communication on the SRP link is lost, and both chassis in the redundant pair are claiming to be Active, the previously Active chassis is still preferred since it is advertising a smaller AS-path into the BGP routing domain. The route modifier is incremented as switchover events occur. A threshold determines when the route modifier should be reset to its initial value to avoid rollover.

Requirements

ICSR configurations require the following:

• Two chassis configured for the same service types. The services must be bound on an SRP-activated loopback interface.

• Both chassis must have identical hardware.

• Three contexts:

 • Redundancy – to configure the primary and backup chassis redundancy.

 • Source – AAA configuration of the specified nas-ip-address must be the IP address of an interface bound to an HA, or any core network service configured within the same context.

 • Destination – to configure monitoring and routing to the PDN.

• AAA RADIUS server

• Border Gateway Protocol (BGP) – ICSR uses the route modifier to determine the chassis priority.
ICSR is a licensed Cisco feature. Verify that each chassis has the appropriate license before using these procedures. To do this, log in to both chassis and execute a `show license information` command. Look for "Inter-Chassis Session Recovery". If the chassis is not licensed, please contact your Cisco account representative.

The following figure shows an ICSR network.

Figure 24: ASR 5000 ICSR Network

ICSR Operation

This section shows operational flows for ICSR.
The following figure shows an ICSR process flow due to a primary failure.

Figure 25: ICSR Process Flow (Primary Failure)

- **Primary**
 - State = Active
 - **Backup**
 - State = Standby

 Pass Hello messages.

 Send session checkpoint message after call duration of 60 seconds

 Fails and stops sending hello messages. State = Active

 Hello Message
 - State = Standby

 Hello Message
 - State = Standby

 Hello Message
 - State = Standby

 Dead Interval (Default = 60 sec)*

 Detects that the primary has not sent a hello within the dead-interval and initiates switchover from the standby to the active state. State = Active

 Begins advertising the srp-activated loopback and pool routes into the routing domain, and AAA services are enabled. Begins taking calls. State = Active

 Recover and begins sending hello messages. State = Standby

 Hello Message
 - State = Standby

 Hello Message
 - State = Active

 Receives hello message with backup status of active and transitions to the standby state. State = Standby
The following figure shows an ICSR process flow due to a manual switchover.

Figure 26: ICSR Process Flow (Manual Switchover)

![ICSR Process Flow Diagram](image)
Chassis Initialization

When the chassis are simultaneously initialized, they send Hello messages to their configured peer. The peer sends a response, establishes communication between the chassis, and messages are sent that contain configuration information.

During initialization, if both chassis are misconfigured in the same mode - both active (primary) or both standby (backup), the chassis with the highest priority (lowest number set with the ICSR priority command) becomes active and the other chassis becomes the standby.

If the chassis priorities are the same, the system compares the two MAC addresses and the chassis with the higher SPIO MAC address becomes active. For example, if the chassis have MAC addresses of 00-02-43-03-1C-2B and 00-02-43-03-01-3B, the last 3 sets of octets (the first 3 sets are the vendor code) are compared. In this example, the 03-1C-2B and 03-01-3B are compared from left to right. The first pair of octets in both MAC addresses are the same, so the next pairs are compared. Since the 01 is lower than the 1C, the chassis with the SPIO MAC address of 00-02-43-03-1C-2B becomes active and the other chassis the standby.

Chassis Operation

This section describes how the chassis communicate, maintain subscriber sessions, and perform chassis switchover.

Chassis Communication

If one chassis in the active state and one in the standby state, they both send Hello messages at each hello interval. Subscriber sessions that exceed the checkpoint session duration are included in checkpoint messages that are sent to the standby chassis. The checkpoint message contains subscriber session information so if the active chassis goes out of service, the backup chassis becomes active and is able to continue processing the subscriber sessions. Additional checkpoint messages occur at various intervals whenever subscriber session information is updated on the standby chassis.

The SRP Configuration mode checkpoint session command includes a number of keywords that allows you to:

- Set the type of compression algorithm to be used for SRP payload messages.
- Set the amount of time the chassis waits before checking an existing call session. Checkpoints can be separately set for IMS and/or non-IMS sessions.
- Enable the NACK feature for handling checkpointing messaging on the Standby chassis.
- Configure the interval between the sending of macro-checkpoints (full checkpoints) between the active and standby chassis.

For additional information see the Service Redundancy Protocol Configuration Mode Commands chapter in the Command Line Interface Reference.

Chassis Switchover

If the active chassis goes out of service, the standby chassis continues to send Hello messages. If the standby chassis does not receive a response to the Hello messages within the dead interval, the standby chassis initiates...
a switchover. During the switchover, the standby chassis begins advertising its srp-activated loopback and pool routes into the routing domain. Once the chassis becomes active, it continues to process existing AAA services and subscriber sessions that had checkpoint information, and is also able to establish new subscriber sessions.

When the primary chassis is back in service, it sends Hello messages to the configured peer. The peer sends a response, establishes communication between the chassis, and sends Hello messages that contain configuration information. The primary chassis receives an Hello message that shows the backup chassis state as active and then transitions to standby. The Hello messages continue to be sent to each peer, and checkpoint information is now sent from the active chassis to the standby chassis at regular intervals.

When chassis switchover occurs, the session timers are recovered. The access gateway session recovery is recreated with the full lifetime to avoid potential loss of the session and the possibility that a renewal update was lost in the transitional checkpoint update process.

Configuring Interchassis Session Recovery (ICSR)

Important

The ICSR configuration must be the same on the primary and backup chassis. If each chassis has a different Service Redundancy Protocol (SRP) configuration, the session recovery feature does not function and sessions cannot be recovered when the active chassis goes out of service.

This section describes how to configure basic ICSR on each chassis. For information on commands that configure additional parameters and options, refer to the Command Line Interface Reference.

Caution

ICSR should not be configured for chassis supporting L2TP calls.

The procedures described below assume the following:

- The chassis have been installed and configured with core network services.
 For more configuration information and instructions on configuring services, refer to the respective product Administration Guide.
- In addition, the IP address pools must be srp activated.
- AAA server is installed, configured and accessible by both chassis.
 For more information on configuring the AAA server, refer to the AAA Interface Administration and Reference.
- BGP router installed and configured. See Routing for more information on configuring BGP services.
To configure the ICSR on a primary and/or backup chassis:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Configure the SRP context by applying the example configuration in Configuring the Service Redundancy Protocol (SRP) Context, on page 303.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Modify the source context of the core network service by applying the example configuration in Modifying the Source Context for ICSR, on page 311.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Modify the destination context of core network service by applying the example configuration in Modifying the Destination Context for ICSR, on page 312.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Optional: Disable bulk statistics collection on the standby system by applying the example configuration in Disabling Bulk Statistics Collection on a Standby System, on page 313.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Verify your primary and backup chassis configuration as described in Verifying the Primary and Backup Chassis Configuration, on page 313.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Save your configuration as described in Verifying and Saving Your Configuration.</td>
</tr>
</tbody>
</table>

Configuring the Service Redundancy Protocol (SRP) Context

To configure the system to work with ICSR:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Create the chassis redundancy context and bind it to the IP address of the primary chassis by applying the example configuration in Creating and Binding the SRP Context, on page 303.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Configure the chassis redundancy context with priority, chassis mode, hello interval, dead-interval and peer IP address by applying the example configuration in Configuring SRP Context Parameters, on page 304.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configure the SRP context with interface parameters (including interface name, IP address and port number) for interchassis communication by applying the example configuration in Configuring the SRP Context Interface Parameters, on page 310.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify your SRP context configuration as described in Verifying SRP Configuration, on page 310.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Save your configuration as described in Verifying and Saving Your Configuration.</td>
</tr>
</tbody>
</table>

Creating and Binding the SRP Context

Use the example below to create the SRP context and bind it to primary chassis IP address:
ICSR is configured using two systems. Be sure to create the redundancy context on both systems. CLI commands must be executed on both systems. Log onto both chassis before continuing. Always make configuration changes on the primary chassis first. Before starting this configuration, identify which chassis to configure as the primary and use that login session.

```
configure
  context srp_ctxt_name [-noconfirm]
  service-redundancy-protocol
    bind address ip_address
end
```

Notes:

- ICSR should be configured and maintained in a separate context.
- Be sure to bind the local IP address to the primary chassis. When configuring the backup chassis, be sure to bind the local IP address to the backup chassis.

Configuring SRP Context Parameters

Important

CLI commands must be executed on both chassis. Log onto both chassis before continuing. Always make configuration changes on the primary chassis first.

Basic Parameters

This configuration assigns a chassis mode and priority, and also configures the redundancy link between the primary and backup chassis:

```
configure
  context srp_ctxt_name
  service-redundancy-protocol
    chassis-mode { primary | backup }
    priority priority
    peer-ip-address ip_address
    hello-interval dur_sec
    dead-interval dead_dur_sec
end
```

Notes:

- ICSR should be configured and maintained in a separate context.
- When assigning the chassis mode on the backup chassis be sure to enter the `backup` keyword.
- The `checkpoint` command sets the amount of time the chassis waits before check pointing an existing call session. Checkpoints can be set for IMS (VoLTE) and/or non-IMS sessions. The checkpoint is a snapshot of the current application state that can be used to restart its execution in case of failure. The default setting is 60 seconds.
The priority determines which chassis becomes active in the event that both chassis are misconfigured with the same chassis mode; see Chassis Initialization, on page 301. The higher priority chassis has the lower number. Be sure to assign different priorities to each chassis.

Enter the IP chassis of the backup chassis as the peer-ip-address to the primary chassis. Assign the IP address of the primary chassis as the peer-ip-address to the backup chassis.

The dead-interval must be at least three times greater than the hello-interval. For example, if the hello interval is 10, the dead interval should be at least 30. System performance is severely impacted if the hello interval and dead interval are not set properly. An optional delay-interval command allows you to delay the start dead-interval for an interval following the loading of configuration files.

SRP Redundancy, AAA and Diameter Guard Timers

Guard timers ensure that local failures, such as card reboots and task restarts, do not result in ICSR events which can be disruptive.

The guard timer command configures the redundancy-guard-period and monitor-damping-period for SRP service monitoring.

```plaintext
configure
context context_name
  service-redundancy-protocol variable
guard-timer { aaa-switchover-timers { damping-period seconds | guard-period seconds } |
diameter-switchover-timers { damping-period seconds | guard-period seconds } | srp-redundancy-timers
  { aaa { damping-period seconds | guard-period seconds } | bgp { damping-period seconds
  | guard-period seconds } | diam { damping-period seconds | guard-period seconds } }
end
```

Notes:

- **aaa-switchover-timers** – sets timers that prevent back-to-back ICSR switchovers due to an AAA failure (post ICSR switchover) while the network is still converging.
 - **damping-period** – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
 - **guard-period** – configures the local-failure-recovery network-convergence timer.

- **diameter-switchover-timers** – sets timers that prevent a back-to-back ICSR switchover due to a Diameter failure (post ICSR switchover) while the network is still converging.
 - **damping-period** – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
 - **guard-period** – configures the local-failure-recovery network-convergence timer.

- **srp-redundancy-timers** – sets timers that prevent an ICSR switchover while the system is recovering from a local card-reboot/critical-task-restart failure.
 - **aaa** – local failure followed by AAA monitoring failure
 - **bgp** – local failure followed by BGP monitoring failure
 - **diam** – local failure followed by Diameter monitoring failure
DSCP Marking of SRP Messages

You can enable separate DSCP marking of SRP control and checkpoint messages. The `dscp-marking` command sets DSCP marking values for SRP control and checkpoint (session maintenance) messages.

```
configure
context context_name
    service-redundancy-protocol
dscp-marking { control | session } dscp_value
```

Notes:

- `dscp_value` can be:
 - *af11* – Assured Forwarding Class 1 low drop PHB (Per Hop Behavior)
 - *af12* – Assured Forwarding Class 1 medium drop PHB
 - *af13* – Assured Forwarding Class 1 high drop PHB
 - *af21* – Assured Forwarding Class 2 low drop PHB
 - *af22* – Assured Forwarding Class 2 medium drop PHB
 - *af23* – Assured Forwarding Class 2 high drop PHB
 - *af31* – Assured Forwarding Class 3 low drop PHB
 - *af32* – Assured Forwarding Class 3 medium drop PHB
 - *af33* – Assured Forwarding Class 3 high drop PHB
 - *af41* – Assured Forwarding Class 4 low drop PHB
 - *af42* – Assured Forwarding Class 4 medium drop PHB
 - *af43* – Assured Forwarding Class 4 high drop PHB
 - *be* – Best effort Per-Hop-Behaviour (default)
 - *cs1* – Class selector 1 PHB
 - *cs2* – Class selector 2 PHB
 - *cs3* – Class selector 3 PHB
 - *cs4* – Class selector 4 PHB
 - *cs5* – Class selector 5 PHB
 - *cs6* – Class selector 6 PHB
 - *cs7* – Class selector 7 PHB
 - *ef* – Expedited Forwarding PHB, for low latency traffic

Optimizing Switchover Transitions

There are several SRP configuration options that reduce transition time from the active to standby gateways (primarily P-GW) in support of VoLTE traffic.
Important

These features require an updated ICSR license to support the enhancements. Contact your Cisco account representative for additional information.

Allow Non-VoLTE Traffic During ICSR Switchover

The ICSR framework reduces switchover disruption for VoLTE traffic by enabling VoLTE traffic on the newly active gateway prior to reconciling the billing information and enabling communication with the newly active gateway when accounting is not deemed critical.

This functionality extends to all other traffic, including data sessions and default bearer traffic for IMS/e911. The following ICSR functionality is provided for all non-VoLTE data traffic:

• When a switchover occurs, the newly active gateway forwards all traffic the moment the gateway becomes active.

• External communication with billing servers is deferred. See the traffic flow diagram below.
When the newly active gateway receives all billing-related checkpointing information from the previously active gateway, it reconciles the billing data before communicating with external billing servers OCS (Online Charging System) or OFCS (Offline Charging System).

Figure 27: Call Flow: Reduce Non-VoLTE Data Outage

The **switchover allow-all-data-traffic** SRP Configuration mode CLI command allows all data traffic (VoLTE and non-VoLTE) during switchover transition. This command overwrites the **switchover allow-volte-data-traffic** command if enabled on a P-GW.

```
configure
  context context_name
  service-redundancy-protocol
  switchover allow-all-data-traffic
```

Important The **switchover allow-all-data-traffic** command must be run on both chassis to enable this feature.

The **switchover allow-volte-data-traffic** SRP Configuration mode CLI command allows VoLTE data traffic during ICSR switchover transition.

```
configure
  context context_name
```

ASR 5000 System Administration Guide, StarOS Release 19
service-redundancy-protocol
switchover allow-volte-data-traffic [maintain-accounting]

Notes:

• When maintain-accounting is enabled, accounting accuracy is maintained for VoLTE calls. VoLTE data is allowed on the active gateway after VoLTE accounting statistics are flushed.

Allow All Data Traffic

The SRP Configuration mode switchover allow-all-data-traffic command allows all data traffic (VoLTE and non-VoLTE) during switchover transition. This command overwrites the switchover allow-volte-data-traffic command if enabled on a P-GW. This feature reduces data traffic outage during the switchover.

Important

This CLI command must be run on both the active and standby chassis to enable this feature.

All data traffic is allowed on the active chassis during flushing and internal auditing. The billing information is reconciled in the background once the flush is complete.

Graceful Cleanup of ICSR After Audit of Failed Calls

During an Audit on the gateways (P-GW/S-GW/GGSN/SAE-GW) after Session Recovery or an ICSR event, if any critical information, internally or externally related to a subscriber session seems inconsistent, ICSR will locally purge the associated session information.

Since external gateways (peer nodes) are unaware of the purging of this session, the UE session may be maintained at other nodes. This leads to hogging of resources external to the gateway and an unreachable UE for VoLTE calls.

When this feature is enabled, graceful cleanup for an ICSR audit of failed calls occurs. External signaling notifies peers of session termination before purging the session. The gateway will attempt to notify external peers of the removal of the session. External nodes to the local gateway include S-GW, P-GW, SGSN, MME, AAA, PCRF and IMSA.

Audit failure can occur because of missing or incomplete session information. Therefore, only the peers for which the information is available will be notified.

The require graceful-cleanup-during-audit-failure Global Configuration mode CLI command enables or disables the graceful cleanup feature.

configure
require graceful-cleanup-during-audit-failure [del-cause non-ims-apn { system-failure | none }]

Optimization of Switchover Control Outage Time

The ICSR framework minimizes control outage time associated with the flushing of critical full checkpoint statistics, network convergence and internal auditing.

The amount of time consumed by the following activities affects control outage time during switchover:

• Critical Flush – During the Active to Pending-Standby transition, all sessmgrs flush any pending critical FCs (Full Checkpoints). During this time, the active chassis drops all control packets. If control signaling
is allowed during this stage, a call may get disconnected based on the control message type and accounting information will be lost.

- **Network Convergence** – This encompasses the amount of time taken to update routes and send control/data to the newly active chassis. Control messages are dropped during the transition.

- **Accounting Flush** – During this flush stage data counts are synchronized between chassis. If control signaling is allowed during this flush, the call may get disconnected based on the control message type, and accounting information will be lost for calls that existed before switchover.

- **Audit** – During audit new calls are not allowed because synchronization of call resources may result in clearing of the calls.

The **switchover control-outage-optimization** CLI command allows new calls during the Accounting Flush, as soon as the Audit is completed. This SRP Configuration mode command enables the quicker restoration of control traffic (call-setup, modification, deletion) following an ICSR switchover.

```
configure
c   context context_name
   service-redundancy-protocol
   switchover control-outage-optimization
end
```

Configuring the SRP Context Interface Parameters

This procedure configures the communication interface with the IP address and port number within the SRP context. This interface supports interchassis communication.

Important

CLI commands must be executed on both chassis. Log onto both chassis before continuing. Always make configuration changes on the primary chassis first.

```
configure
c   context vpn_ctx_name [-noconfirm]
   interface srp_if_name
      ip-address { ip_address | ip_address/mask }
   exit
   exit
   port ethernet slot_num/port_num
      description des_string
      medium { auto | speed { 10 | 100 | 1000 } duplex { full | half } }
      no shutdown
      bind interface srp_if_name vpn_ctx_name
end
```

Verifying SRP Configuration

Verify that your SRP contexts were created and configured properly by running the **show srp info** command (Exec Mode) on each chassis.
Modifying the Source Context for ICSR

To modify the source context of core service:

Step 1 Add the Border Gateway Protocol (BGP) router AS-path and configure the gateway IP address, neighbor IP address, remote IP address in the source context where the core network service is configured, by applying the example configuration in Configuring BGP Router and Gateway Address, on page 311.

Step 2 Configure the service redundancy context with the BGP neighbor context and IP address to monitor the BGP link activity by applying the example configuration in Configuring the SRP Context for BGP, on page 311.

Step 3 Verify your BGP context configuration by following the steps in Verifying BGP Configuration, on page 312.

Step 4 Save your configuration as described in Verifying and Saving Your Configuration.

Configuring BGP Router and Gateway Address

Use the following example to create the BGP context and network addresses.

```
configure
  context source_ctxt_name
  router bgp AS_num
    network gw_ip_address
    neighbor neighbor_ip_address remote-as AS_num
  end
```

Notes:

- `source_ctxt_name` is the context where the core network service is configured.

Configuring the SRP Context for BGP

Use the following example to configure the BGP context and IP addresses in the SRP context.

```
configure
  context srp_ctxt_name
  service-redundancy-protocol
    monitor bgp context source_ctxt_name neighbor_ip_address
  end
```

`neighbor_ip_address` can be entered in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation. Multiple IP addresses can be added per context as IPv4 and/or IPv6 IP addresses.

An ICSR failover is triggered when all BGP peers within a context are down.

Optionally, you can configure SRP peer groups within a context. ICSR failover would then occur if all peers within a group fail. This option is useful in deployments in which a combination of IPv4 and IPv6 peers are spread across multiple paired VLANs, and IPv4 or IPv6 connectivity is lost by all members of a peer group.

A sample configuration for SRP peer groups within a context ("PGWin") appears below.

```
monitor bgp context PGWin 10.1.1.16 group 1
monitor bgp context PGWin 10.1.1.17 group 1
monitor bgp context PGWin 69.2.215.0 group 2
```
In the above sample configuration, ICSR failover would occur if both addresses in group 1, 2 or 3 lost connectivity.

For additional information refer to the description of the monitor bgp, monitor diameter and monitor authentication-probe commands in the Service Redundancy Protocol Configuration Mode Commands chapter of the Command Line Interface Reference.

Verifying BGP Configuration

Verify your BGP configuration by entering the show srp monitor bgp command (Exec Mode).

Modifying the Destination Context for ICSR

To modify the destination context of core service:

Step 1
Add the BGP router and configure the gateway IP address, neighbor IP address, remote IP address in the destination context where the core network service is configured, by applying the example configuration in Configuring BGP Router and Gateway Address in Destination Context, on page 312.

Step 2
Configure the service redundancy context with BGP neighbor context and IP address to monitor the BGP link activity by applying the example configuration in Configuring SRP Context for BGP for Destination Context, on page 313.

Step 3
Set the subscriber mode to default by following the steps in Setting Subscriber to Default Mode, on page 313.

Step 4
Verify your BGP context configuration by following the steps in Verifying BGP Configuration in Destination Context, on page 313.

Step 5
Save your configuration as described in Verifying and Saving Your Configuration.

Configuring BGP Router and Gateway Address in Destination Context

Use the following example to create the BGP context and network addresses.

```plaintext
configure
context dest_ctxt_name
  router bgp AS_num
    network gw_ip_address
    neighbor neighbor_ip_address remote-as AS_num
  end
end
```

Notes:

- `AS_num` is the autonomous systems path number for this BGP router.
Configuring SRP Context for BGP for Destination Context

Use the following example to configure the BGP context and IP addresses in the SRP context.

```bash
configure
  context srp_ctxt_name
  service-redundancy-protocol
  monitor bgp context dest_ctxt_name neighbor_ip_address
end
```

Setting Subscriber to Default Mode

Use the following example to set the subscriber mode to `default`.

```bash
configure
  context dest_ctxt_name
  subscriber default
end
```

Verifying BGP Configuration in Destination Context

Verify your BGP configuration by entering the `show srp monitor bgp` command (Exec Mode).

Disabling Bulk Statistics Collection on a Standby System

You can disable the collection of bulk statistics from a system when it is in the standby mode of operation.

When this feature is enabled and a system transitions to standby state, any pending accumulated statistical data is transferred at the first opportunity. After that no additional statistics gathering takes place until the system comes out of standby state.

Use the following example to disable the bulk statistics collection on a standby system.

```bash
configure
  bulkstat mode
  no gather-on-standby
end
```

Repeat this procedure for both systems.

Verifying the Primary and Backup Chassis Configuration

This section describes how to compare the ICSR configuration on both chassis.

Enter the `show configuration srp` command on both chassis (Exec mode).
Verify that both chassis have the same SRP configuration information. The output looks similar to the following:

```plaintext
config
  context source
    interface haservice loopback
      ip address 172.17.1.1 255.255.255.255 srp-activate
    #exit
  radius attribute nas-ip-address address 172.17.1.1
  radius server 192.168.83.2 encrypted key 01abd002c82b4a2c port 1812
  radius accounting server 192.168.83.2 encrypted key 01abd002c82b4a2c port 1813
  ha-service ha-pdsn
    mn-ha-spi spi-number 256 encrypted secret 6c93f7960b726b6f6c93f7960b726b6f hash-algorithm md5
    fa-ha-spi remote-address 192.168.82.0/24 spi-number 256 encrypted secret 1088b0d6817f64df
    bind address 172.17.1.1
  #exit
  context destination
    ip pool dynamic 172.18.0.0 255.255.0.0 public 0 srp-activate
    ip pool static 172.19.0.0 255.255.240.0 static srp-activate
  #exit
  context srp
    service-redundancy-protocol
  #end
```

Configuring Subscriber State Management Audit Process

This audit ensures that two ICSR peers are in synch and identifies any discrepancies prior to any scheduled or unscheduled switchover events.

Step 1
Enter the SRP Context mode and then enter the `service-redundancy-protocol` command.

Step 2
Enter the `audit daily-start-time` command. Specify the daily start time as an hour and minute. For example, a start time of 06 00 indicates that the audit will begin at 6:00 AM.

Step 3
Enter the `audit periodicity` command. Specify the interval in minutes for generating SRP audit statistics as an integer from 60 through 1440. For example, a periodicity of 90 indicates that SRP audit statistics will be generated every 90 minutes beginning at the specified start time. Default = 60.

A sample configuration sequence appears below.

```plaintext
config
  context ctx_name
    service-redundancy-protocol
    audit daily-start-time 06 00
    audit periodicity 90
  end
```
Updating the Operating System

Updating the operating system (StarOS™) on ICSR chassis requires performing an Off-line update of each chassis while it is standby mode. Traffic disruption is minimal since an active chassis will be handling call sessions while the standby chassis is being updated.

The general upgrade sequence is as follows:

- Download the StarOS software image and copy/transfer it to both chassis.
- Save the currently running configurations on both chassis.
- Update the standby backup chassis first.
- Initiate an SRP switchover from the active primary chassis to make the standby backup chassis active.
- Update the standby primary chassis.
- Initiate an SRP switchover from the active backup chassis to make the standby primary chassis active.
The four-part flowchart below shows a more complete view of all the procedures required to complete the StarOS upgrade process.

Figure 28: ICSR Software Upgrade – Part 1
Figure 29: ICSR Software Upgrade – Part 2
Figure 30: ICSR Software Upgrade – Part 3
Figure 31: ICSR Software Upgrade – Part 4
Both ICSR Chassis

Log into the CLI of the primary and backup and perform the tasks described below.

Downloading and Transferring the StarOS Build

Step 1 Verify that there is enough free space on the `/flash` device to accommodate the new operating system image file by entering the following Exec mode command:

```
[local] host_name# directory /flash
```

Step 2 Access to the Cisco support site and download facility is username and password controlled. Download the software image to a network location or physical device (PCMCIA card) from which it can be uploaded to the `/flash` device.

Step 3 Transfer the new operating system image file to the `/flash` device on the SMC using one of the following methods:
a) Copy the file from a network location or local device plugged into the SMC using the `copy` command

```
[local]\host_name\> copy from_url to_url [-noconfirm]
```

b) Transfer the file to the `/flash` device using an FTP client with access to the system. The FTP client must be configured to transfer the file using binary mode.

c) Transfer the file to the `/flash` device using an SFTP client with access to the system.

Step 4
Verify that the image file was successfully transferred to the `/flash` device by running the Exec mode the following command

```
[local]\host_name\> directory /flash
```

Step 5
Run the `show version /flash/image_filename` command to verify the build information. For example:

```
[local]\host_name\> show version /flash/image_filename.bin
```

Important Any CRC errors will be displayed in the output of the above command. If any errors appear, check the build and re-transfer it onto the chassis. Confirm that the correct image version and build description is displayed.

Standby Backup Chassis

Log into the backup standby chassis and perform the tasks described below.

Performing Health Checks

Health checks are a series of Exec mode `show` commands to determine the readiness of the system to handle a software update.

Step 1
Run `show card table all |grep unknown`. No output should be displayed.

Step 2
Run `show card table |grep offline`. No output should be displayed.

Step 3
Run `show resources |grep Status`. The output should display "Within acceptable limits".

Step 4
Run `show alarm outstanding`. Review the output for any issues that may preclude performing the software update.

Performing SRP Checks

Service Redundancy Protocol (SRP) checks verify that the mechanism for monitoring ICSR system status is operational.

Step 1
Run `show srp monitor all`.

Step 2
Review the output for any issues that may preclude performing the software update.
Performing BGP Checks

Border Gateway Protocol (BGP) checks are only required when BGP is used to support redundant interchassis communication. These checks are run per context and per service type.

Step 1
For each BGP-enabled context, run `show ip bgp summary`. Verify that the BGP peers are connected and IPv4 and IPv6 peers are up. Repeat for all BGP-enable contexts.

Step 2
Run `show service_name all | grep "Service Status:"`. The service should be "Started". Repeat for all services running on the chassis.

Updating the Boot Record

You must add a new boot stack entry for the recently downloaded software image (.bin) file.

Step 1
Run the Exec mode `show boot` command to verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (minimally there is no priority 1 entry in the boot stack).

Step 2
Create a new boot stack entry for the new file group, consisting of the new operating system image file and the currently used CLI configuration file by entering the following Global Configuration command:

```
[local]host_name(config)# boot system priority number image image_url /flash/filename config cfg_url /flash/filename
```

Step 3
Assign the next highest priority to this entry, by using the N-1 method, wherein you assign a priority number that is one number less than your current highest priority.

If priority 1 is in use, you must renumber the existing entries to ensure that at least that priority is available.

The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Use the `no boot system priority` command to delete a book stack entry.

For information on using the `boot system priority` command, refer to the Adding a New Boot Stack Entry section in this guide.

Synchronizing File Systems

Synchronize the local file systems by entering the following Exec mode command:

```
[local]host_name+ filesystem synchronize all
```
Reloading the Chassis

Reboot the chassis by entering the following command:

```
[local] host_name# reload [-noconfirm]
```

As the system reboots, it loads the new operating system software image and its corresponding CLI configuration file using the new boot stack entry configured earlier.

After the system reboots, establish a CLI session and enter the `show version` command to verify that the active software version is correct.

Optional for PDSN: If you are using the IP Pool Sharing Protocol during your upgrade, refer to *Configuring IPSP Before the Software Upgrade* in the *PDSN Administration Guide*.

Updating the Configuration File

Features in the new operating system may require changes to the configuration file. These changes can be done manually or facilitated by custom scripts prepared by Cisco TAC. Make whatever changes are necessary prior to saving the updated configuration file.

Verifying the Software Version

After the system has successfully booted, verify that the new StarOS version is running by executing the Exec mode `show version` command.

Saving the Configuration File

Use the Exec mode `save configuration` command to save the currently running configuration to the `/flash` device and to an off-chassis location (external memory device or network URL). The off-chassis copy assures that you will have a fallback, loadable configuration file should a problem be encountered.

Completing the Update Process

Repeat the following tasks to complete the upgrade process on the standby secondary chassis:

- Synchronizing File Systems, on page 322
- Performing Health Checks, on page 321
- Performing SRP Checks, on page 321
- Performing BGP Checks, on page 322
Waiting for Session Synchronization

Allow time for session synchronization to occur between the ICSR chassis before proceeding to the next steps.

Step 1
Run the `show session recovery status verbose` command on both chassis. Proceed to the next steps only when no errors are seen in the output of this command.

Step 2
On the standby chassis, run `show srp checkpoint statistics | more`.

Step 3
On active chassis, run `show subs summary | grep Total`.

Step 4
Compare the number of subscribers on the active chassis and the number of Current pre-allocated calls: on the standby chassis. They should be similar (within 5%). Allow a few minutes for systems to complete synchronization.

Primary Chassis

Log into the active primary chassis and complete the tasks described below.

Initiating an SRP Switchover

An SRP switchover places the primary chassis in standby mode and makes the backup chassis active. The secondary chassis is now processing sessions with the upgraded software.

Step 1
On the primary chassis run the `srp initiate-switchover` command. All existing sessions will be migrated to the backup chassis and it begins servicing new session requests. Allow the switchover process to complete.

Step 2
On the primary chassis, run the `show srp info` command. Chassis State should indicate Standby when switchover is complete.

Step 3
On the backup chassis, confirm the switchover is complete by running the `show srp info` command. Chassis State should indicate Active when switchover is complete.

Checking AAA Monitor Status on the Newly Active Chassis

If your network deployment requires communication with AAA servers, log into the newly active chassis and perform an AAA monitor check. You will be checking for the existence of any SNMP traps that indicate the chassis cannot communicate with AAA servers (`starSRPAAAUnreachable`).

Step 1
Run the Exec mode command `show snmp trap history | grep starSRPAAAUnreachable`.

Step 2
There should be no output for this command, or no very recent SNMP trap notifications (based on the event timestamp).

Step 3
If the active chassis cannot communicate with one or more AAA servers, refer to AAA Monitor for additional information.
Completing the Software Update

Log into the standby chassis and repeat the following tasks to complete the upgrade process on the standby primary chassis:

- Updating the Boot Record, on page 322
- Reloading the Chassis, on page 323
- Updating the Configuration File, on page 323
- Verifying the Software Version, on page 323
- Saving the Configuration File, on page 323
- Synchronizing File Systems, on page 322
- Performing Health Checks, on page 321
- Performing SRP Checks, on page 321
- Performing BGP Checks, on page 322
- Waiting for Session Synchronization, on page 324

Initiating an SRP Switchover

An SRP switchover places the primary chassis in active mode and makes the backup chassis active. The primary chassis is now processing sessions with the upgraded software.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>On the backup chassis run the <code>srp initiate-switchover</code> command. All existing sessions will be migrated to the primary chassis and it begins servicing new session requests. Allow the switchover process to complete.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the backup chassis, run the <code>show srp info</code> command. Chassis State should indicate Standby when switchover is complete.</td>
</tr>
<tr>
<td>Step 3</td>
<td>On the primary chassis, confirm the switchover is complete by running the <code>show srp info</code> command. Chassis State should indicate Active when switchover is complete.</td>
</tr>
</tbody>
</table>

Making Test Calls

Once the chassis state is verified and subscribers are migrated, perform new call testing to make sure calls are successful.
Fallback Procedure

To revert to the previous configuration and software build, perform the following steps as a user with administrative privileges.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Run the Exec mode <code>show boot</code> command. The topmost lowest numbered entry of the displayed output should be the new configuration with the new software build. The second topmost entry should be the backup configuration.</td>
</tr>
</tbody>
</table>
| **Step 2** | Remove the topmost boot entry `n`, and synchronize the configuration across the management cards.
```plaintext  
[local]host_name# config  
[local]host_name(config)# no boot system priority  
[local]host_name(config)# end  
[local]host_name# filesystem synchronize all  
```
| **Step 3** | Reboot the system to load its previous configuration.
```plaintext  
[local]host_name# reload  
```
| **Step 4** | Perform health checks as described in *Performing Health Checks*, on page 321. |
Support Data Collector

The Support Data Collector (SDC) is a system feature that allows scheduled collection of process state, counter, event and attribute data that may be useful when troubleshooting problems at an installation site. This chapter includes the following sections:

- Overview, page 327
- Configuring SDR Collection, page 328
- Displaying the SDR Collection Configuration, page 328
- Collecting and Storing the SDR Information, page 329
- Managing Record Collection, page 329
- Using SDRs to Diagnose Problems, page 331
- SDR CLI Commands, page 331

Overview

The task of collecting the support data is performed by a background CLI task called the record collector. The administrator configures the SDC via the CLI with the commands to be executed on a periodic basis. The record collector always runs in the background and checks if there are records to be collected.

When it is time to collect support data, the scheduler executes the configured sequence of CLI commands and stores the results in a gunzipped (.gz) file on the hard-disk. This file is called an SDR (Support Data Record), and represents a snapshot of the overall state of the system at that time.

Technical Assistance Center (TAC) personnel and local administrators can review the SDRs on-line or by transferring them off the system. They may also wish to investigate the collector state information. The figure
below shows system tasks that contain state and counter information. Arrows between tasks and processes represent messenger requests and indicate the predominant flow of data.

Figure 32: SDC Tasks and Processes

Configuring SDR Collection

The Support Data Record (SDR) is an ordered set of the CLI support commands' display output that is stored in a stand-alone compressed file. Each CLI support command output is stored in its own record section. The record section is identified by a record section name and its ASCII command syntax. For example, the record section `show_version` would have a CLI command string of "show version".

The order in which the record section commands appear in the configuration is significant. All of the support record section commands must be configured together as an ordered set. In other words, just specifying one command by itself will result in just that one command output constituting the contents of the entire SDR.

The user may configure a specific set of record sections for the SDR which may or may not include some or all of the default SDR record sections. This configuration is stored in the Global Configuration section of the configuration file. Refer to *Configuration Commands (Global Configuration Mode)*, on page 332 for more detail on the **support record section** command.

Displaying the SDR Collection Configuration

The **show configuration verbose** command displays the default support record sections, if the user has not specified any support record sections. If the user has configured support record sections, then the **show configuration** command displays user-configured support record sections. The support collection schedule configuration also appears in the **show configuration** output under the Global Configuration section.
Collecting and Storing the SDR Information

At the scheduled time, the Support Data Collector (SDC), if active, runs in the background to collect all the record section commands that have been specified. This information is concatenated as one contiguous output. The output is compressed and stored as a file on disk in the /hd-raid/support/record/ directory.

The periodicity of the SDC is configured by the support collection schedule command under Global Configuration Mode. Once the SDR is stored, the SDC waits the sleep-duration interval specified via the support collection command before collecting another SDR.

Important
The period between SDRs is equal to the configured sleep-duration interval + the time taken to collect the previous record.

Managing Record Collection

The SDRs are stored together in a self-relative set. This self-relative set is called a Support Record Collection. Each individual SDR is identified with a record-id. The record-id of the most recent SDR is always 0 (zero).
The next older SDR is record-id 1, and so on, for the number of records in the stored collection. For example, if there are five SDRs, they are identified as SDR-0 through SDR-4.

Figure 33: Support Data Collection Hierarchy

When a new SDR is created, the numbers all increment by one and the newest SDR is given the value of 0. If the total number of records exceeds a configured maximum, then the oldest SDR is deleted.

Using the example above, when the maximum SDR count of 5 is reached, the SDRs continue to be SDR-0 through SDR-4, with the file timestamps indicating that the files are changing over time.

The time interval between collections may vary by several minutes in relation to the specified sleep-duration. This is because the interval specifies the idle time between scheduled collection runs. Since the actual overhead of the collecting process is not included in the scheduled intervals, the time differences between collections includes this non-deterministic amount of time.
Using a shorter interval to compensate for this behavior is not recommended, since it will only add to the overhead incurred by the collection process and will ultimately impact the overall system performance. The sleep-duration (idle-time) between scheduled collections is an important component of the "self-throttling" mechanism that should not be circumvented by the user.

The Exec Mode show support collection command displays useful information about the Support Data Collector. The output includes information about when the collector last ran, how long it took to run, when it is scheduled to run again, as well as the number of SDRs currently stored, where they are stored, and how much storage space is being used. Refer to Exec Mode Commands, on page 333 for more detail about this command.

Using SDRs to Diagnose Problems

The user can compare the SDRs by examining two or more in sequence. These SDRs are dumped out in their CLI-formatted output display. Comparing the display outputs reveals trends and performance or configuration differences that indicate problem areas.

Once specific record sections have been identified as having problematic characteristics, only the CLI show commands associated with those sections need be monitored and compared to further isolate the problem areas. In addition, individual SDRs may be transferred via system-supported protocols to remote system, or the current collection may be transferred as a set for later analysis.

SDR CLI Commands

You may use the collected support data records to view support data chronologically. If the default list and sequence of sections is inadequate for system monitoring, you can configure your own set of record section commands that make up a particular support record.

Refer to the SDR CLI Command Strings appendix for a listing of supported CLI strings (show commands) for record sections. The listing also identifies the CLI strings supported as default record sections. You can obtain the same listing by running the show support collection definitions command.

Important

You may enter up to 200 SDR CLI strings in a single record section command. If you attempt to add more than 200 CLI strings, an error message appears. You may also receive an error message if the system is unable to parse all of the requested CLI strings because they are too complicated to parse.

After configuring the SDR you then configure the sleep-duration interval between record collections and the number of historical records to be retained before being overwritten. By default, configuring this collection information makes the collector mechanism active (if not already active).

After one or more collection intervals have passed, the SDR data becomes available for analysis. The administrator can then use CLI commands to examine the SDR information to perform root cause analysis and trend analysis based on how the data has changed over time. The administrator may decide to transfer the SDRs off the system to be analyzed remotely, for example, by Cisco TAC.
For complete descriptions of the CLI commands discussed below, refer to the Command Line Interface Reference.

Configuration Commands (Global Configuration Mode)

support record

```
support record section section-name command "command-string" [ section section-name command "command-string" ]...
no support record [ all | section section-name ]
default support record [ all | section section-name ]
```

The `support record section` command configures a specific record section or set of record sections for a support information output command. The order in which record sections are saved is fixed, regardless of the sequence in which the CLI commands were entered.

For example:

```
[local]host_name(config)# support record section show_context command "show context"
```

If the `support record section` command is not explicitly configured by the user, a default set of record section commands are used. These default record section commands are displayed when you run the `show configuration verbose` command. If support record section commands are explicitly configured, they replace the default commands.

Important

Refer to the SDR CLI Command Strings appendix for a listing of supported CLI strings (`show` commands) for record sections. The listing also identifies the CLI strings included in default record sections.

The `no support record` command removes either a specific section of the record definition or all of the sections. If you specify the `default support record` command, the default record section definition of that specified record section is used. If neither the keyword `all` or `section` is specified, all the record section definitions are removed.

support collection

```
support collection [ sleep-duration | hours h | minutes m ] | | max-records n ]
no support collection
default support collection
```

The `support collection` command modifies and/or enables the support collection process. If support collection has been previously disabled, this command enables the collection activity. If the support collection is currently enabled, this command may be used to modify the sleep-duration interval and/or the maximum number of SDRs that can be collected and stored.

The `sleep duration` keyword specifies the time interval between the collection of support data. It can be specified in hours or minutes with a default of one hour (60 minutes).

The `max-records` keyword specifies the number of SDRs to store as an integer from 1 to 65535. When this value is exceeded, the new SDR overwrites the oldest SDR. The default value is 168.
Important

SDR files will be stored in the /hd-raid/support/records/ directory.

For example:

[local] host_name(config)# support collection sleep-duration minute 30 max-records 50

Use the no support collection command to explicitly disable the collection of the SDRs. If no record section commands are defined, the support data collector mechanism is also effectively disabled.

Use the default support collection command to enable the support data collector using the default record sections.

Exec Mode Commands

show support record

show support record record-id | to record-id | section section_name |

The show support record command displays a collection of SDRs. The SDRs are displayed in order from lowest record-id to highest record-id.

Each SDR is identified by a time index called the record-id. For example, the most recent record is always record-id 0 (filename = sdr.0.gz). The next older record is record-id 1 (filename = sdr.1.gz), and so on.

When a new record is collected it is given a record-id of 0. The previously most recent record is renamed to record-id 1, and so on. The display includes the record-id along with the collection time-stamp.

The record-id variable identifies a single SDR. The to keyword specifies the endpoint record-id when displaying a range of SDRs.

The section keyword displays a particular section of the record.

delete support record

delete support record record-id | to record-id |

The delete support records command removes an SDR with a specified record-id or all SDRs in the specified range of record-ids.

show support collection

show support collection | definitions |

The show support collection command displays information on SDC activity. It display informations such as the start time of the last scheduled collection, the duration of the last scheduled collection, whether the collection is still in progress, etc. In addition this command lists the currently stored set of SDR record-ids, their respective timestamps, and size of each SDR.

[local] host_name# show support collection
Record Collection Enabled : yes
Last Collection Start Time : Monday October 21 06:29:06 PDT 2013
Last Collection End Time : Monday October 21 06:29:09 PDT 2013
Est. Collection Next Start : Monday October 21 07:29:13 PDT 2013 (40 minutes)

Support Data Records at /var/tmp/support-records/
The optional **definitions** keyword displays the list of default support record section definitions. This is the list of all valid record section definitions. The display also indicates whether the record section is enabled or disabled by default.

```
[local] host_name+ show support collection definitions
```

The output of this command reflects the sequence in which record sections will be output, regardless of the sequence in which they may have been entered by the user. Refer to the *SDR CLI Command Strings* appendix for additional information.
Engineering Rules

This appendix provides engineering guidelines for configuring the system to meet network deployment requirements.

- CLI Session Rules, page 335
- ASR 5000 Interface and Port Rules, page 335
- ASR 5000 Packet Processing Card Rules, page 337
- Context Rules, page 337
- Subscriber Rules, page 340
- Service Rules, page 340
- Access Control List (ACL) Engineering Rules, page 341
- ECMP Groups, page 341

CLI Session Rules

Multiple CLI session support is based on the amount of available memory. The Resource Manager reserves enough resources to support a minimum of six CLI sessions at all times. One of the six sessions is further reserved for use exclusively by a CLI session on a Console serial interface.

Additional CLI sessions beyond the pre-reserved limit are permitted if sufficient management resources are available. If the Resource Manager is unable to reserve resources for a CLI session beyond those that are pre-reserved, users with administrator-privileges are prompted to create the new CLI session, even without reserved resources.

ASR 5000 Interface and Port Rules

The rules discussed in this section pertain to the following Ethernet line cards and their interfaces regardless of the application.

- Fast Ethernet 10/100 (FELC/FLC2)
- Gigabit Ethernet 1000 (GELC/GLC2)
• Quad Gigabit Ethernet (QGLC)
• 10 Gigabit Ethernet Line Card (XGLC)

Line Card Rules

The following engineering rules apply to the Fast Ethernet 10/100, Gigabit Ethernet 1000, Quad Gigabit Ethernet and 10 Gigabit Ethernet line cards:

• Give all logical interfaces a unique name to identify the interface from others in the same context. Logical interfaces in different contexts may have the same name.

• A single physical port can support multiple logical interfaces when you configure VLAN tags for that physical port. You can use VLAN tagging to bind a single physical port to multiple logical interfaces that reside in different contexts.

• Assign all logical interfaces a valid IP address and subnet.
 • Give each logical interface within a context a unique IP address(es). Logical interfaces in different contexts can have the same IP address(es).
 • If multi-homing is supported on the network, you can assign all logical interfaces a single primary IP address and up to 16 secondary IP addresses.

• You can configure a logical interface in only one context, but you can configure multiple interfaces (up to 512 Ethernet or 1,024 ATM) in a single context.

• You can apply a maximum of 128 access control list (ACL) rules to a single logical interface.

• All ports are identified by their <slot#/port#>.

• Each physical port on a Gigabit Ethernet 1000 or Quad Gigabit line card may contain up to a maximum of 1,024 VLAN tags.

• Each physical port on an Fast Ethernet 10/100 Line card may contain up to a maximum of 256 VLAN tags.

• The total number of VLANs untagged and/or tagged on each Fast Ethernet 10/100 Line Card must not exceed 1025 (8 untagged + 1,017 tagged).

• A logical interface is limited to using a single VLAN or ATM PVC on a single physical port, identified by its <cardslot#/port#>.

• When using redundant (standby) line cards:
 • You must configure the active line card only. In the event of a failover, all relevant information (including the IP address) is transferred to the standby line card.
 • Half-height line cards must installed in the upper and lower chassis slots behind a sa packet processor card must be of the same type: FELC/FLC2,GELC/GLC2, or QGLC line cards.
If you have enabled the Port Redundancy feature, it is possible for ports on both line cards to be active while one provides line card redundancy for the other. With the port redundancy feature, each physical port has a primary MAC address. Each corresponding standby port has a different (alternate) MAC address.

Packet Data Network (PDN) Interface Rules

The following engineering rules apply to the interface to the packet data network (PDN):

- Configure the logical interfaces used to facilitate the PDN interface within the egress context.
- The default is to use a single interface within the egress context to facilitate the PDN interface.
- You can configure multiple interfaces in the egress context by using static routes or dynamic routing protocols.
- You may also configure next-hop default gateways.

ASR 5000 Packet Processing Card Rules

The following engineering rules apply to the packet processing application cards:

- Configuring a line card to enter the active mode results in the following:
 - The total number of packet processing cards that will become operationally active is increased by one.
 - In the event of a failure, the line card(s) directly behind the packet processing cards will become available directly, or to another packet processing cards via the RCC.

- If you want processing-only application cards, all line card slots directly behind the such cards can be empty. Otherwise, disable those line card slots with the **shutdown** command described in the *Command Line Interface Reference*.

- If you want standby (redundant) packet processing cards, do not populate line card slots directly behind them since they will not be used. If the slots are populated, disable the line card slots with the **shutdown** command as described in the *Card Configuration Mode Commands* chapter of the *Command Line Interface Reference*.

- A line card will not handle subscriber traffic unless the packet processing card directly in front of it is made active.

Context Rules

- A maximum of 63 contexts may be configured per chassis.
- Interfaces per Context

 - 512 Ethernet+PPP+tunnel interfaces
• 32 ipv6ip tunnel interfaces
• 511 GRE tunnels (2,048 GRE tunnels per chassis)
• 256 loopback interfaces

• IP Addresses and IP Address Pools

 • Up to 2,000 IPv4 address pools can be configured within a single context (regardless of the number of packet processing cards) with a total system limit of 5,000 IPv4 address pools for all contexts.

 • Prior to Release 15.0: Up to 32 IPv6 pools can be configured within a single context.

 • For Release 15.0 and higher: Up to 256 IPv6 pools can be configured within a single context.

 • Each context supports up to 32,000,000 static IP pool addresses. You can configure a maximum total of 96,000,000 static IP pool addresses per chassis. Each static IP pool can contain up to 500,000 addresses.

 • Each context supports up to 16,000,000 dynamic IP pool addresses. You can configure a maximum total of 32,000,000 dynamic IP pool addresses per chassis. Each dynamic IP pool can contain up to 500,000 addresses.

 Important The actual number of IP Pools supported per context and chassis depends on how many addresses are being used and how they are subnetted.

 Important Each address in the pool requires approximately 60 bytes of memory. The amount of memory required, however, depends on a number of factors such as the pool type, and hold-timer usage. Therefore, in order to conserve available memory, you may need to limit the number of pools depending on the number of addresses to be configured and the number of installed application cards.

• The maximum number of simultaneous subscriber sessions is controlled by the installed capacity license for the service(s) supported.

• The maximum number of static address resolution protocol (ARP) entries per context is 128.

• The maximum number of domains per context is 2,048.

• ASN-GW services configured within the same context cannot communicate with each other.

• Routes

 • Up to 1,200 static routes per context (48,000 per chassis).

 • 6,000 pool routes per context (6,000 per chassis)

 • Releases prior to 18.5: 5,000 pool explicit host routes per context (6,000 per chassis)

 • Release 18.5 and higher: 24,000 pool explicit host routes per context (24,000 per chassis)

 • 64 route maps per context

• BGP
Releases 12 and 14: 16,000 BGP prefixes can be learned/advertised per context (64,000 per chassis)
Releases 15 and 16: 32,000 BGP prefixes can be learned/advertised per context (64,000 per chassis)
Releases 17, 18 and higher: 64,000 BGP prefixes can be learned/advertised per context (64,000 per chassis)
64 EBGP peers can be configured per context (512 per chassis)
16 IBGP peers per context
512 BGP/AAA monitors per context in support of Interchassis Session Recovery (ICSR)

OSPF
- 200 OSPF neighbors per chassis
- 10,000 OSPF routes per context (64,000 per chassis)

MPLS
- 16 label distribution protocol (LDP) sessions per context
- 8,000 forwarding equivalence class (FEC) entries per context (48,000 per chassis)
- Up to 8,000 incoming label map (ILM) entries per context (48,000 per chassis)

VRF
Prior to Release 15.0: 250 virtual routing and forwarding (VRF) tables per context (1,024 or 2,048
[release 14.0+] VRFs per chassis)
Release 15.0 and higher: 300 virtual routing and forwarding (VRF) tables per context (2,048 VRFs
per chassis)
APN limit is 2,048 per chassis; VRF limits and APN limits should be identical.
64,000 IP routes

NEMO (Network Mobility)
Prior to Release 15.0: 256K prefixes/framed routes per chassis and up to 8 dynamically learned
prefixes per MR (Mobile Router)
Release 15.0 and higher: 512K prefixes/framed routes per chassis and up to 16 dynamically learned
prefixes per MR (Mobile Router)

128 AAA servers per context for a default AAA server group. The servers can be configured as
accounting, authentication, charging servers, or any combination thereof.
You can configure up to 800 AAA server groups per context with following limitations:
- 128 servers per AAA server group (accounting, authentication, charging server, or any combination
thereof)
- 1,600 servers per context in AAA Server group mode (accounting, authentication, charging server,
or any combination thereof)
- 800 NAS-IP address/NAS identifier (one primary and one secondary per server group) per context
Subscriber Rules

The following engineering rules apply to subscribers configured within the system:

- Configure a maximum of 2,048 local subscribers per context.
- You may configure attributes for each local subscriber.
- The system creates a default subscriber for each context when the context is made. Configure attributes for each default subscriber. If a AAA-based subscriber is missing attributes in the authentication reply message, the default subscriber attributes in the context where the subscriber was authenticated are used.

Important

Default is not used when local authentication (for local subscribers) is performed.

- Configure default subscriber templates on a per AAA realm (domain aliases configured within a context) basis.
- Configure default subscriber templates on a per PDSN, FA, ASN-GW, or HA service.
- For AAA authenticated subscribers, the selection of local subscriber template to use for setting attributes is in the following order:
 - If the username (NAI) matches any local domain name and the domain name has a local subscriber name configured, that local subscriber template is used.
 - If the first case fails, and if the serving service has a default username configured, that subscriber template is used.
 - If the first two cases fail, the default subscriber template in the AAA context is used.

Service Rules

The following engineering rules apply to services configured within the system:

- Configure a maximum of 256 services (regardless of type) per system.
Large numbers of services greatly increase the complexity of management and may affect overall system performance. Therefore, you should not configure a large number of services unless your application absolutely requires it. Please contact your Cisco service representative for more information.

- The total number of entries per table and per chassis is limited to 256.
- Although you can use service names that are identical to those configured in different contexts on the same system, this is not a good practice. Services with the same name can lead to confusion and difficulty in troubleshooting problems, and make it difficult to understand the output of show commands.

Access Control List (ACL) Engineering Rules

The following rules apply to Access Control Lists:

- The maximum number of rules per ACL is 128.
- The maximum number of ACL rules applied per port is 128.
- The maximum number of ACL rules applied per context is 1,024.
- The maximum number of ACL rules per IPSec policy is 1.
- The maximum number of IPSec ACL rules per context is 1,024.
- The maximum number of IPSec ACL rules per crypto map is 8.
- The maximum number of ACLs you can configure per context is limited by the number of rules allowed within each ACL. If each ACL contained the maximum number of rules (128), the maximum number of ACLs per context is 8 (128 x 8 ACLs = 1,024 ACL rules per context).
- The maximum number of ACLs applied to an IP access group is 1, whether it is configured for a port or context. Since the maximum number of IP access groups you can apply to an interface or context is 16, the following calculations apply:
 - For each interface/port: 8 rules per ACL multiplied by 16 IP access groups = 128 (the ACL rules limit per port)
 - For each context: 64 rules per ACL multiplied by 16 IP access groups = 1,024 (the ACL rules limit per context)

ECMP Groups

The maximum number of ECMP groups are as follows:

- For releases prior to 17.0, StarOS supports a maximum of 512 groups.
- For release 17.0 and higher, StarOS supports a maximum of 2048 groups.
StarOS Tasks

This appendix describes system and subsystem tasks running under StarOS on an ASR 5x00 and virtualized platforms.

Important
This appendix is not a comprehensive list of all StarOS tasks. It simply provides general descriptions of the primary tasks and subsystems within StarOS.

It includes the following sections:

- Overview, page 343
- Primary Task Subsystems, page 344
- Controllers and Managers, page 345
- Subsystem Tasks, page 346

Overview

For redundancy, scalability and robust call processing, StarOS supports a series of tasks that perform specific functions. These tasks communicate with each other as needed to share control and data signals. As a result, processes can be distributed across multiple tasks thus reducing the overall work-load on any given task and improving system performance. This distributed design provides fault containment that greatly minimizes the impact to processes or sessions due to a failure.

The Exec mode show task command displays snapshots of running processes within StarOS. For detailed information about this command, see the Command Line Interface Reference and Statistics and Counters Reference.

The following sections describe the primary tasks that are implemented by StarOS:

- Primary Task Subsystems, on page 344
- Controllers and Managers, on page 345
Primary Task Subsystems

The individual tasks that run on the CPUs are divided into subsystems. Following is a list of the primary subsystems responsible for call session processing:

• **System Initiation Task (SIT):** This subsystem starts tasks and initializes the system. This includes starting a set of initial tasks at system startup time (static tasks), and starting individual tasks on demand at arbitrary times (dynamic tasks).

• **High Availability Task (HAT):** With the Recovery Control Task (RCT) subsystem, the HAT subsystem maintains the operational state of the system. HAT monitors the various software and hardware components of the system. If there are unusual activities, such as the unexpected termination of another task, the HAT subsystem takes a suitable course of action, such as triggering an event to the RCT subsystem to take corrective action or to report the status. The primary function of the HAT task is to minimize service impacts.

• **Recovery Control Task (RCT):** This subsystem executes a recovery action for any failure that occurs in the system. The RCT subsystem receives signals from the HAT subsystem (and in some cases from the NPU subsystem) and determines what recovery actions are needed.

The RCT subsystem runs on the active management card and synchronizes the information it contains with the RCT subsystem on the standby management card.

• **Shared Configuration Task (SCT):** This subsystem provides a facility to set, retrieve, and receive notification of system configuration parameters. The SCT is mainly responsible for storing configuration data for the applications that run on the system.

The SCT subsystem runs only on the active management card and synchronizes the information it contains with the SCT subsystem on the standby management card.

• **Resource Management (RM):** This subsystem assigns resources, such as CPU loading and memory, for every system task upon start-up. The RM subsystem monitors resource use to verify that allocations are as specified. RM also monitors all sessions and communicates with the Session Controller to enforce capacity licensing limits.

• **Virtual Private Network (VPN):** This subsystem manages the administrative and operational aspects of all VPN-related entities in the system. The functions performed by the VPN subsystem include:
 • Creating separate VPN contexts
 • Starting the IP services within a VPN context
 • Managing IP pools and subscriber IP addresses, and distributing the IP flow information within a VPN context.

All IP operations within StarOS are done within specific VPN contexts. In general, packets are not forwarded across different VPN contexts. The only exception currently is the Session subsystem.

• **Network Processing Unit** (npuctrl/npumgr on ASR 5000; npusim on ASR 5500, and knpusim on VPC-DI and VPC-SI): This subsystem is responsible for the following:
 • Using the database to match address and port numbers to destination tasks for fast-path forwarding of dataframes
 • Receiving and transmitting user data frames to/from various physical interfaces
 • IP forwarding decisions (both unicast and multicast)
• Per-interface packet filtering
• Traffic management and traffic engineering
• Passing user data frames to/from packet processing CPUs
• Modifying, adding, or stripping datalink/network layer headers
• Recalculating checksums
• Maintaining statistics
• Managing external Ethernet interfaces

• Card/Slot/Port (CSP): Coordinates the events that occur when any card is inserted, locked, unlocked, removed, shutdown, or migrated. CSP also performs auto-discovery and configures ports on a newly-inserted interface card. It determines how interface cards map to packet processing cards.

The CSP subsystem runs only on the active management card and synchronizes the information it contains with the SCT subsystem on the standby management card. It is started by the SIT subsystem and monitored by the HAT subsystem.

• Session Manager (SM): Performs high-touch processing of mobile subscribers' packet-oriented data session flows. High-touch user data processing consists of the following:
 • Payload transformation
 • Filtering and scheduling
 • Statistics collection
 • Policing

Controllers and Managers

Many of the primary subsystems are composed of controller tasks called Controllers, and subordinated tasks called Managers.

Controllers serve several purposes:
 • Monitor the state of their Managers and allow communication between Managers within the same subsystem.
 • Enable inter-subsystem communication since they can communicate with the controllers of other subsystems.
 • Mask the distributed nature of the software from the user allowing for ease of management.

Managers manage resources and mappings between resources. In addition, some managers are directly responsible for call processing.

For information about the primary subsystems that are composed of critical, controller, and /or manager tasks, see Subsystem Tasks, on page 346.
Subsystem Tasks

The following subsections list and briefly describe StarOS tasks for various subsystems:

- System Initiation Subsystem, on page 346
- High Availability Subsystem, on page 347
- Resource Manager Subsystem, on page 348
- Virtual Private Networking Subsystem, on page 348
- Network Processing Unit Subsystem, on page 350
- Session Subsystem, on page 352
- Platform Processes, on page 362
- Management Processes, on page 366

System Initiation Subsystem

Table 45: System Initiation Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITMAIN</td>
<td>System Initiation Task – Main</td>
<td>Initiated at system start-up. Reads and provides startup configuration to other SIT components. Starts SITREAP sub-function. Maintains CPU state information.</td>
</tr>
<tr>
<td>SITPARENT</td>
<td>SIT Parent Sub-function</td>
<td>Starts management cards in either active or standby mode. Registers tasks with HAT task. Notifies CSP task of CPU startup completion. Brings up packet processing cards in standby mode.</td>
</tr>
<tr>
<td>SITREAP</td>
<td>SIT Reap Sub-function</td>
<td>Shuts down tasks as required.</td>
</tr>
</tbody>
</table>

ASR 5000 System Administration Guide, StarOS Release 19
High Availability Subsystem

Table 46: High Availability Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>hatcpu</td>
<td>High Availability Task CPU</td>
<td>Performs device initialization and control functions based on the CPUs hardware capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports the loss of any task on its CPU to hatsystem sub-function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls the LEDs on the packet processing cards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initializes and monitors the dedicated hardware on packet processing cards. (ASR 5x00 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collects CPU monitoring information periodically and reports to the master hatcpu sub-function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports the loss of any task on its CPU to the master hatcpu sub-function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs device initialization and control functions because of the CPU's hardware capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports the loss of any task on its CPU to hatsystem sub-function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls the LEDs on the management card. (ASR 5x00 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initializes and monitors the dedicated hardware on the management card. (ASR 5x00 only)</td>
</tr>
<tr>
<td>hatsystem</td>
<td>High Availability Task System Controller</td>
<td>Controls all the HAT sub-function tasks in the system. It is initiated on system start-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initializes system components (such as the Gigabit Ethernet switches and switch fabric).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitors system components such as fans for state changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triggers actions for redundancy in the event of fault detection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The HAT subsystem on the redundant management card mirrors the HAT subsystem on the active management card.</td>
</tr>
</tbody>
</table>
Resource Manager Subsystem

Table 47: Resource Manager (RM) Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmctrl</td>
<td>Resource Manager Controller</td>
<td>Started by the sitparent task on StarOS startup, and monitored by HAT for a failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initializes resources such as CPUs and memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requests updated card status from the CSP subsystem and updates the system card table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communicates with all rmctrls to request their most recent set of resource data.</td>
</tr>
<tr>
<td>rmctrl</td>
<td>Resource Manager Managers</td>
<td>Started by the sitparent task, and monitored by HATs for failures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initializes the local resource data and local resource scratch space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communicates with the SIT task on the local CPU to get its entire task table and the resources associated with each task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gathers current resource utilization for each task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sends the resource data to the rmctrl task.</td>
</tr>
</tbody>
</table>

Virtual Private Networking Subsystem

Table 48: Virtual Private Networking (VPN) Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpnctrl</td>
<td>VPN Controller</td>
<td>Created at system start-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiates the VPN Manager for each context.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informs the Session Controller task when there are additions or changes to contexts. Only one Session Controller operates at any time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routes context specific operation information to the appropriate VPN Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs VPN Manager recovery and saves all VPN-related configuration information in SCT.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>vpnmgr</td>
<td>VPN Manager</td>
<td>Started by the VPN Controller for each configured context (one is always present for the local context). Performs IP address pool and subscriber IP address management. Performs all context specific operations including but not limited to: UCM services, IP interfaces, the Address Resolution Protocol (ARP), IP address pool management, slow path forwarding, NPU flows, port Access Control Lists (ACLs), and logging. Provides IP interface address information for each context to the Session Controller.</td>
</tr>
<tr>
<td>bgp</td>
<td>Border Gateway Protocol</td>
<td>Created by the VPN Manager for each context that has enabled the BGP routing protocol (router bgp Context Configuration mode CLI command). Responsible for learning and redistributing routing information via the BGP protocol. Maintains the BGP peering connections. Applies any defined BGP routing policy.</td>
</tr>
<tr>
<td>ospf</td>
<td>Open Shortest Path First</td>
<td>Created by VPN Manager for each context that has enabled the OSPF routing protocol (router ospf Context Configuration mode CLI command). Responsible for learning and redistributing routing information via the OSPF protocol. Maintains the OSPF neighboring relationship. Maintains the LSA database. Performs SPF calculations. Applies any defined OSPF routing policy.</td>
</tr>
<tr>
<td>ospfv3</td>
<td>Open Shortest Path First</td>
<td>Created by VPN Manager for each context that has enabled the OSPFv3 routing protocol (router ospfv3 Context Configuration mode CLI command) Responsible for learning and redistributing routing information via the OSPFv3 protocol. Maintains the OSPFv3 neighboring relationship. Maintains the LSA database. Performs OSPFv3 SPF calculations. Applies any defined OSPFv3 routing policy.</td>
</tr>
</tbody>
</table>
Network Processing Unit Subsystem

Table 49: Network Processing Unit (NPU) Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>rip</td>
<td>Routing Information Protocol</td>
<td>Created by VPN Manager for each context that has enabled the RIP routing protocol (router rip Context Configuration mode CLI command)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Responsible for learning and redistributing routing information via the RIP protocol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains the RIP database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sends periodic RIP update messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applies any defined RIP routing policy.</td>
</tr>
<tr>
<td>zebos</td>
<td>L2 and L3 Switching</td>
<td>Created by VPN Manager for each context.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains the routing table (RIB and FIB) for the context.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs static routing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interfaces to the kernel for routing & interface updates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redistributes routing information to dynamic routing protocols.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculates next hop reachability.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>npuctrl</td>
<td>NPU Controller</td>
<td>Created at StarOS start-up. Only one NPU Controller operates in the system at any time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitors the state of NPU Managers in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Registers to receive notifications when NPU Manager crashes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls recovery operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides a centralized location for CLI commands related to NPU Manager state.</td>
</tr>
<tr>
<td>npumgr</td>
<td>NPU Manager</td>
<td>Created for every packet processing card that is installed and started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides port configuration services to the CSP task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides interface binding and forwarding services to the VPN Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides flow insertion and removal services to Session Manager and AAA Manager tasks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides recovery services to the NPU Controller.</td>
</tr>
<tr>
<td>npusim</td>
<td>NPU Simulator [ASR 5500]</td>
<td>Created for every DPC installed and started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides port configuration services to the CSP task</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides interface binding and forwarding services to the VPN Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides flow insertion and removal services to Session Manager and AAA Manager tasks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides recovery services to the NPU Controller.</td>
</tr>
</tbody>
</table>
Session Subsystem

Table 50: Session Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>sessctrl</td>
<td>Session Controller</td>
<td>Created at StarOS start-up. Only one Session Controller instantiated in the system at any time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acts as the primary point of contact for the Session Subsystem. Since it is aware of the other subsystems running within the system, the Session Controller acts as a proxy for the other components, or tasks, that make up the subsystem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starts, configures, and coordinates the efforts of the Session Processing Subsystem sub-managers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Works with Resource Manager to start new Session Managers when all existing Session Managers exceed their capacity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives context information from VPN Managers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distributes IP interface address information to other Session Processing Subsystem sub-managers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manages Enhanced Charging Service (ECS), Content Filtering and URL Blacklisting services.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sessmgr</th>
<th>Session Manager</th>
<th>Created by the Session Controller.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Provides a subscriber processing system that supports multiple session types.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple Session Managers can run on a single CPU and/or can be distributed throughout any CPU present in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A single Session Manager can service sessions from multiple A11 Managers, and from multiple contexts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processes protocols for A10/A11, GRE, R3, R4, R6, GTPU/GTPC, PPP, and Mobile IP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manages Enhanced Charging Service, Content Filtering and URL Blacklisting services.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Session Managers are paired with AAA Managers.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>a11mgr</td>
<td>A11 Manager</td>
<td>Created by the Session Controller for each context in which a PDSN service is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives the R-P sessions from the PCF and distributes them to different Session Manager tasks for load balancing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains a list of current Session Manager tasks to aid in system recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The A11 Manager task is also known as the Signaling De-multiplexing task (SDT).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>aaamgr</td>
<td>Authorization, Authentication, and Accounting (AAA) Manager</td>
<td>Paired with Session Managers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs all AAA protocol operations and functions for subscribers and administrative users within the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acts as a AAA client to AAA servers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manages GTP Prime (GTP') messaging with charging gateway functions (CGFs).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple AAA Managers can run on a single CPU and/or can be distributed throughout any CPU present in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAA operations for the CLI are done through a AAA Manager running on the active management card.</td>
</tr>
<tr>
<td>aaaproxy</td>
<td>Authorization, Authentication, and Accounting (AAA) Proxy Manager</td>
<td>Starts whenever the Global Configuration mode <code>gtp single-source</code> command is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When GTPP single-sourcing is enabled, aaaproxy generates requests to the accounting server using a single UDP source port number, instead of having each AAA Manager generate independent requests with unique UDP source port numbers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Runs on a demux card when session recovery is enabled. If session recovery is not enabled, the Global Configuration mode <code>require demux card</code> command starts aaaproxy on the designated demux card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writes CDRs to a file in its VRAM-disk. The enqueued CDRs are then periodically synchronized with a HDD for transfer.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ascctrl</td>
<td>Active Charging System (ACS) Controller</td>
<td>Active Charging service is defined at the global level and can be utilized through CSS commands from any VPN context. Enable via the Global Configuration mode active-charging service CLI command. The ACS controller runs on the primary packet processing card and is responsible for managing the ACS service. Reads and writes ACS configuration information into SCT. The ACS Controller monitors the ACS Manager's recovery process and performs cleanup when redundancy is enabled.</td>
</tr>
<tr>
<td>acsmgr</td>
<td>Active Charging System (ACS) Controller</td>
<td>Created by ACS Controller to perform IP session processing for a specific number of flows. Sends and receives data through Session Managers. Active/Standby acsmgr tasks are created when session recovery (SR) is enabled.</td>
</tr>
<tr>
<td>alcapmgr</td>
<td>Access Link Control Application Part Manager</td>
<td>Starts when an ALCAP service configuration is detected. There can be multiple instances of this task for load sharing. Runs the ALCAP protocol stack and handles the IuCS-over-ATM associations. Maintains AAL2 node entity databases. Provides nodal functions for IuCS-over-ATM interface on ALCAP protocol.</td>
</tr>
<tr>
<td>cdrmod</td>
<td>Charging Detail Record Module</td>
<td>Responsible for receiving EDR/UDR records from different ACSMGR instances in the system. Responsible for writing the received EDR/UDR records in files using the configured file naming conventions.</td>
</tr>
<tr>
<td>dgmbmgr</td>
<td>Diameter Gmb interface Application Manager</td>
<td>Provides Multimedia Broadcast/Multicast Service (MBMS) feature support for GGSN. It is instantiated when an MBMS policy CLI is configured in the GGSN Service configuration mode. dgmbmgr Maintains the MBMS UE and bearer contexts. Handles the Gmb interface over a Diameter connection to a BMSC Server for MBMS bearer sessions. dgmbmgr recovers by polling all sessmgrs for MBMS session states and recreating the MBMS UE and MBMS bearer context information.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>diamproxy</td>
<td>Diameter Proxy</td>
<td>Created by diactrl (which runs as part of vpnctrl) and the number of diamproxy tasks spawned is based on the configuration to use "multiple" or "single" proxies. In instances that a single proxy is configured, only one diamproxy task is spawned for the entire chassis and runs on demux packet processing cards. When multiple proxies are configured, one diamproxy task is run per packet processing card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains Diameter base connections to all peers configured in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informs applications about any change in the connection status.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acts as a pass-through to the messages from application to the Diameter server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Just acts as a forwarding agent (does not maintain any queues).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A single Diameter proxy is used to service multiple Diameter applications.</td>
</tr>
<tr>
<td>egtpemgr</td>
<td>Enhanced GPRS Tunneling Protocol</td>
<td>Created by the Session Controller for each context in which an egtp-service of interface type sgw-egress or MME is configured.</td>
</tr>
<tr>
<td></td>
<td>Egress Manager</td>
<td>Handles certain EGTP messages from SGW, PGW.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains list of current EGTP sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains list of current Session Manager tasks which aids in session recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles GTP Echo messaging.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>egtpimgr</td>
<td>Enhanced GPRS Tunneling Protocol Ingress Manager</td>
<td>Created by Session Controller for each context in which an egtp-service of interface type sgw-ingress or pgw-ingress is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives EGTP sessions from MME/S4 SGSN/SGW and distributes them to different Session Manager tasks for load balancing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains list of current EGTP sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains list of current Session Manager tasks which aids in session recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles GTP Echo messaging.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>gtpcmgr</td>
<td>GPRS Tunneling Protocol Control (GTP-C) Message Manager</td>
<td>Created by the Session Controller for each context in which a GGSN service is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives the GTP sessions from the SGSN and distributes them to different Session Manager tasks for load balancing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains a list of current Session Manager tasks to aid in system recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verifies validity of GTPC messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains a list of current GTPC sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles GTPC Echo messaging to/from SGSN.</td>
</tr>
<tr>
<td>gtpumgr</td>
<td>GPRS Tunneling Protocol User (GTP-U Manager)</td>
<td>Created by the Session Controller for each context in which a GTPU service is configured. Supported for both GTPUv0 and GTPUv1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains a list of the GTPU-services available within the context and performs load-balancing (of only Error-Ind) for them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supports GTPU Echo handling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides Path Failure detection on no response for GTPU echo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives Error-Ind and demuxes it to a particular Session Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serves as the Default GTPU listener. GTPUMGR will process GTPU packets with invalid TEID.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>hamgr</td>
<td>Home Agent (HA) Manager</td>
<td>Created by the Session Controller for each context in which an HA service is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receives Mobile IP sessions from the Foreign Agents (FAs) and distributes them to different Session Manager tasks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains a list of current Session Manager tasks that aids in system recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functions as the DemuxMgr – handles all the PMIP signaling packets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functions as the Demuxmgr for MIPv6/MIPv4 HA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>hnbdemux</td>
<td>Home NodeB (HNB) Demux Manager</td>
<td>Started as part of HNB-GW service creation procedure. There is only one hnbdemux in the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distributes incoming Iuh connections to HNB Managers in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remains aware of all the active HNB-GW services in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>hnbmgr</td>
<td>Home NodeB (HNB) Manager</td>
<td>Starts when an HNB-GW service configuration is detected. There can be multiple instances of this task for load sharing. All HNB Managers have all the Active HNB-GW Services configured and be identical in configuration and capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Runs the SCTP protocol stack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles the SCTP associations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains Home-NodeB databases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides nodal functions for Iuh interface on SCTP protocol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>imsimgr</td>
<td>International Mobile Subscriber Identity Manager for MME</td>
<td>Starts when an MME service configuration is detected. There is only one instance of this task:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects which SessMgr to use for new subscriber sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains and reports MME-related demux statistics on events like Attach by IMSI, Attach by GUTI, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can interact with the following tasks in the system:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Session Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MME Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Session Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Started by the Session Controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects SessMgr, when not done by linkmgr or sgtpcmgr tasks, for calls sessions based on IMSI/P-TMSI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load-balances across SessMgrs to select one to which a subscriber will be assigned.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains records for all subscribers on the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains mapping between the IMSI/P-TMSI and SessMgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active demux packet processing card.</td>
</tr>
<tr>
<td>ipsgmgr</td>
<td>IP Services Gateway Manager</td>
<td>Created by the Session Controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Server mode, acts as a RADIUS server, and supports Proxy functionality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Snoop mode supports snooping RADIUS Accounting messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load balances requests among different SessMgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activates and deactivates sessions.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>l2tpdemux</td>
<td>L2TP Demultiplexor Task</td>
<td>Created by the Session Controller when an LNS service is created. Only one L2TPDemux task is invoked for the entire system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>De-multiplexes and forwards new incoming tunnel create requests to L2TPMgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains information about current active tunnels in all L2TPMgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load balances requests among L2TPMgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>l2tpmgr</td>
<td>Layer 2 Tunneling Protocol Manager</td>
<td>Created by the Session Controller for each context in which a LAC or LNS service is configured. Additional managers are created as needed depending on loading.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Responsible for all aspects of L2TP processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains protocol state machines for all L2TP sessions and tunnels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triggers IPSec encryption for new L2TP tunnels as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Works with Session Managers to gracefully bring down tunnels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>linkmgr</td>
<td>SS7 Link Manager</td>
<td>Created by the Session Controller when the first SS7RD (routing domain) is activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-instanced for redundancy and scaling purposes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides SS7 and Gb connectivity to the platform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routes per subscriber signalling across the SS7 (including Iu) and Gb interfaces to the SessMgr.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>magmgr</td>
<td>Mobile Access Gateway (MAG) Manager</td>
<td>Created by the Session Controller when the first MAG service is created in a context. Sends and receives PMIP control messages (PBU/PBA). Adds an NPU flow to receive MIPv6 PBA packets. This flow is identical to the flow used in the HAMgr. Maintains the Binding Update List used to keep track of the mobile node's bindings. Originates PBU-based on trigger received from the Session Manager during error conditions. Receives PBA and forwards it to Session Manager. Supports debugging facility – "magmgr" and "mobile-ipv6".</td>
</tr>
<tr>
<td>mmgr</td>
<td>SGSN Master Manager</td>
<td>Created upon provisioning of SS7RDs/SCCP-NWs/etc. The Session Controller provides the initial system configuration which includes a detailed description of each distributed protocol layer, its resources sets, and a list of its service user protocol layers and service provider protocol layers. Runs as a single instance. Handles nodal SS7, Iu, and Gb functionality. Implements master linkmgr functionality for SS7 route status aggregation. Implements master linkmgr functionality for RNC and BSC status aggregation. With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active demux packet processing card.</td>
</tr>
<tr>
<td>mmedemux</td>
<td>Mobility Management Entity Demux Manager</td>
<td>Started as part of MME service creation procedure. There is only one mmedemux in the chassis. Distributes incoming S1-MME SCTP connections to mmemgr tasks in the system. Remains aware of all the active MME services in the system. With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>mmemgr</td>
<td>Mobility Management Entity Manager</td>
<td>Starts when an MME service configuration is detected. There can be multiple instances of this task for load sharing. All mmemgrs will have all the Active MME Services configured and will be identical in configuration and capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Runs the SCTP protocol stack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles the SCTP associations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains TA List.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manage eNodeB databases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides nodal functions for S1-MME protocol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>pccdemux</td>
<td>Policy and Charging Control Bindmux Manager</td>
<td>Started as part of PCC service creation procedure. There is only one instance of BindMux MGR in the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles multiplexing of the sessions across the available pccmgrs along with the session binding functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitors load on pccmgrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distributes incoming IP-CAN connections across pccmgrs in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs session binding; binds IP-CAN/Gateway session with the AF-Session.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensures all messaging for an IMSI across various interfaces is directed towards the selected pccmgr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remains aware of all the active PCC services in the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active packet processing card.</td>
</tr>
<tr>
<td>pccmgr</td>
<td>Policy and Charging Control Bindmux Manager</td>
<td>pccmgr is part of a Session Manager instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles all PCRF service sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interfaces with PCC-Core while processing different events associated with individual subscriber sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintains subscriber information while applying business logic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creates calline and corresponding APN session for each subscriber.</td>
</tr>
</tbody>
</table>
Platform Processes

Table 51: Platform Process Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>sgpctrm</td>
<td>SGSN GPRS Tunneling Protocol Control message Manager</td>
<td>Created by the Session Controller for each VPN context in which an SGSN service is configured. Terminates Gn/Gp and GTP-U interfaces from peer GGSNs and SGSNs for SGSN Services. Terminates GTP-U interfaces from RNCs for IuPS Services. Controls standard ports for GTP-C and GTP-U. Processes and distributes GTP-traffic received from peers on these ports. Performs all node level procedures associated with Gn/Gp interface. With session recovery (SR) enabled, this demux manager is usually established on one of the CPUs on the first active demux packet processing card.</td>
</tr>
<tr>
<td>srb</td>
<td>Standard Routing Database</td>
<td>Eight srb are created by the Session Controller when Content Filtering in the Enhanced Charging Service is enabled. A minimum of two packet processing cards are required to initiate these eight tasks. Receives the static database from the session controller. Each srb task loads two database volumes (one primary and one secondary). The srb task also stores the static DB. Rates and categorizes the URL based on the DB volumes and CSI (Category Set Index) stored on it. Performs peer loading in case its peer fails. If both the srb task and its peer fail, the session controller performs the loading.</td>
</tr>
<tr>
<td>afctrl</td>
<td>ASR 5500 Fabric Controller</td>
<td>Responsible for the overall management of the system fabric. Manages the pool of Rendezvous Destinations and coordinates fabric recovery by the afmgr proclets after a fault. A single afctrl instance runs on the active MIO/UMIO only.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>afmgr</td>
<td>ASR 5500 Fabric Manager</td>
<td>Responsible for the management of fabric resources on a particular card. There is one afmgr on every CPU that is responsible for one or more fabric access processors (FAPs) or fabric elements (FEs). afmgr supports recovery but not migration.</td>
</tr>
<tr>
<td>afio</td>
<td>ASR 5500 Fabric I/O Driver</td>
<td>Responsible for the direct configuration of the fabric chipset. afio supports non-messenger interprocess communication (IPC) with the local afmgr and with other local afio instances.</td>
</tr>
<tr>
<td>connproxy</td>
<td>TCP/SCTP Connection proxy</td>
<td>Allows applications on any card to share the same TCP/SCTP connection to the same remote endpoint instead of opening a new connection for each application on the card.</td>
</tr>
<tr>
<td>cspctrl</td>
<td>Card-Slot-Port Controller</td>
<td>Manages physical chassis components.</td>
</tr>
</tbody>
</table>
| cssctrl | Content Server Selection (CSS) Controller | Maintains all global CSS properties which include a list of CSS servers that can be bound to a service in a context.
CSS defines how traffic will be handled based on the "content" of the data presented by or sent to a mobile subscriber. CSS encompasses features such as load balancing, NAT, HTTP redirection, DNS redirection.
The content server (services) can be either external to the platform or integrated within the platform. External CSS servers are configured via the Context Configuration mode css server command.
The CSS Controller does not create CSS Managers. CSS Managers are stopped and started by VPN Managers. A CSS Manager is automatically created for each context. |
| cssmgr | Content Server Selection (CSS) Manager | Spawned by the VPN Manager within a StarOS context.
Manages the keepalives to a CSS server within the specific VPN context.
Fetches the CSS related information for a subscriber
If a CSS server goes down, the cssmgr task reprograms the NPUs to by-pass the service or redistribute the data among the rest of the servers in the service. |
<p>| dcardctrl | Daughter Card Controller [ASR 5x00 only] | Spawns daughter card managers during system initialization and monitors daughter card managers during system steady state execution. It also spawns daughter card managers whenever a daughter card manager task fails. |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcardmgr</td>
<td>Daughter Card Manager [ASR 5x00 only]</td>
<td>Responsible for managing IPSec Security Associations for AH- and ESP-based sessions. Interfaces with the on-board hardware accelerated cryptographic chip which executes cryptographic algorithms associated with the given IPSec Security Associations.</td>
</tr>
<tr>
<td>dhmgr</td>
<td>Distributed Host Manager</td>
<td>Started automatically on each CPU by SITPARENT. Coordinates establishment of locally terminated TCP, SCTP, and UDP connections on behalf of multi-instanced tasks such as Diameter endpoints among sessmgr tasks.</td>
</tr>
<tr>
<td>drvctrl</td>
<td>Driver Controller</td>
<td>Centralizes access to many of the system device drivers. It also performs temperature and voltage monitoring.</td>
</tr>
<tr>
<td>hdctrl</td>
<td>Hard Drive Controller</td>
<td>Controls and manages the drive array spanning the management cards.</td>
</tr>
<tr>
<td>hwctrl</td>
<td>Hardware Controller</td>
<td>The hwctrl task has several timers that manage polling loops for hardware sensor readings, sensor threshold monitoring, and fan tray monitoring.</td>
</tr>
<tr>
<td>hwmgr</td>
<td>Hardware Manager</td>
<td>The hwmgr task runs on all cards in the chassis to read local accessible hardware sensors and report them back to the hwctrl.</td>
</tr>
<tr>
<td>inetd</td>
<td>InterNET Service Daemon</td>
<td>The subsystem responsible for starting most of the network services. Listens for requests from connecting clients, such as FTP, SFTP, and telnet. When a TCP packet or UDP packet arrives with a particular destination port number, inetd launches the appropriate server program to handle the connection.</td>
</tr>
<tr>
<td>ipsecctrl</td>
<td>IPSec Controller</td>
<td>Started by SIT on system startup regardless of configuration. Starts ipsecmgr tasks based on configuration and maintains its list for task recovery. Receives and maintains user configuration for IPSec. Manages the configured IPSec crypto maps and its assignment to ipsecmgrs. Interfaces with the vpnmgr task for required IPSec configuration parameters such as IP Access Lists, IP pools, interface addresses, and interface state notifications.</td>
</tr>
<tr>
<td>ipsecmgr</td>
<td>IPSec Manager</td>
<td>Created by the Session Controller, establishes and manages secure IKEv1, IKEv2 and IPSec data tunnels.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>kvctrl</td>
<td>Key Value Controller</td>
<td>Central key value store (kvstore) function that runs on the management card. Its primary function is to support recovery and distribution functions.</td>
</tr>
<tr>
<td>lagmgr</td>
<td>Link Aggregation Group Manager [ASR 5x00 only]</td>
<td>Started by npucr on the demux card's primary CPU (ASR 5000) or MIO (ASR 5500) with a facility level between CSP and npumgr to receive configuration/status notification from npumgr and build global LAG database. Exchanges control packets (LACP and Marker) over configured physical ports with peers to reach agreement on an aggregation of links.</td>
</tr>
<tr>
<td>msgd</td>
<td>Messenger Daemon</td>
<td>Implements the Name Service and related functions for the internal message passing system.</td>
</tr>
<tr>
<td>msgproxy</td>
<td>Message Proxy</td>
<td>The Messenger Proxy process handles broadcast messages send from any single application (referred to as a client) to any facility which has one instance per thread (referred to as the Target Facility). One msgproxy task runs on each CPU complex on the SMC (ASR 5000), DPCs (ASR 5500) and SF Virtual Machine (VPC-DI). Processes incoming broadcast messages from the Client processes, such as sessctl, distributes them to the correct Target Facility, such as sessmgr, creates the correct responses and sends them back to the correct Client.</td>
</tr>
<tr>
<td>nscontrol</td>
<td>Name Service Controller</td>
<td>As part of the Messenger process, provides a reliable channel for tasks to send control messages to the Messenger Daemon.</td>
</tr>
<tr>
<td>ntpd</td>
<td>Network Time Protocol (NTP) Daemon</td>
<td>Maintains the system time in synchronization with time servers using NTP. Enabled when one or more NTP servers have been configured via the NTP Configuration mode ntp server CLI command.</td>
</tr>
<tr>
<td>rct</td>
<td>Recovery Control Task</td>
<td>Monitors tasks/managers/facilities across the system and performs recovery in the event of a failure.</td>
</tr>
<tr>
<td>sct</td>
<td>Shared Configuration Task</td>
<td>Performs the redundant storage of configuration information and other state information in an in-memory database.</td>
</tr>
<tr>
<td>sft</td>
<td>Switch Fabric Task</td>
<td>Monitors the switch fabric and the gigabit Ethernet control plane.</td>
</tr>
<tr>
<td>sshd</td>
<td>Secure SHell Daemon</td>
<td>Supports secure login to the StarOS CLI. Enabled via the Context Configuration mode server sshd CLI command.</td>
</tr>
<tr>
<td>ucm</td>
<td>Utilities Configuration Manager</td>
<td>DHCPD, DNS, FTPD, INETD, NTPD, PING, RLOGIN, SFTP, SFTP-SERVER, SNMPD, SSH, SSHD, TELNET, TELNETD, TFTP, TRACEROUTE</td>
</tr>
</tbody>
</table>
Management Processes

Table 52: Management Process Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulkstat</td>
<td>Bulk Statistics Manager</td>
<td>Periodically polls and gathers bulk statistics and transfers this data to external management systems.</td>
</tr>
<tr>
<td>evlogd</td>
<td>Event Log Daemon</td>
<td>Handles event logging functions including the interface to external syslogd servers and the internal event logs.</td>
</tr>
<tr>
<td>orbs</td>
<td>ORBEM Service [ASR 5x00 only]</td>
<td>The orbs task is also known as the ORB Element Manager (ORBEM). An Element Management System (EMS) requests orbs to perform Element Management Functions on the system using secure IIOP. ORBS then interacts with concerned Controller Tasks to execute the function. The response/errors from the execution are interpreted, formulated into an EMF response, and handed off to EMS servers.</td>
</tr>
<tr>
<td>orbns</td>
<td>ORBEM Notification Service [ASR 5x00 only]</td>
<td>Notifies the EMS servers of event occurrences. Registers such EMS servers and subscribes them to associated event types. As the events occur, the concerned Controller Task notifies orbs (ORBEM), which then notifies the subscribing EMS servers.</td>
</tr>
<tr>
<td>sesstrc</td>
<td>Session Trace Collection Task</td>
<td>Implements the standards-based session trace functionality. Manages both CLI and signaling-based subscriber traces. It collects messages to be traced and generates trace files as needed. It uploads trace files to the Trace Collection Entity as needed.</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol</td>
<td>Handles inboard SNMP operations if configured, and sends SNMP notifications (traps) if enabled.</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold Server</td>
<td>Handles monitoring of threshold crossing alerts, if configured. Polls the needed statistics/variables, maintains state, and generates log messages/SNMP notification of threshold crossings.</td>
</tr>
</tbody>
</table>
ICSR Checkpointing

This appendix lists and describes macro- and micro-checkpoints employed by the Interchassis Session Recovery framework. Checkpoints are exchanged between the active and standby ICSR chassis via the Service Redundancy Protocol (SRP).

The following topics are discussed:

- Overview of Checkpointing, page 367
- Macro-checkpoints, page 367
- Micro-checkpoints, page 369

Overview of Checkpointing

Interchassis Session Recovery (ICSR) provides a framework for sessmgr instance-level checkpointing within an ICSR framework. A checkpoint is a snapshot of the status of an application. Checkpointing can be used by sessmgr to push instance level information to the peer chassis.

Instance-level checkpointing sends messages to specific sessmgr instances. Each application, such as GGSN, PDSN, P-GW, S-GW or SGSN, is responsibility for encoding and decoding the checkpoint message. The ICSR framework provides the APIs for transport of the instance-level checkpoint information and associated statistics.

Macro-checkpoints contain full session information and micro-checkpoints contain only a few variables. Macro-checkpoints are sent initially from the active chassis to the standby chassis on power up and reload, and periodically thereafter. When a standby chassis receives macro-checkpoints, it clears any existing CRR (Call Recovery Record) or CLP (Call Line Pointer) related to that session, and creates a new CRR or CLP. Macro-checkpoints are also known as full checkpoints (FCs).

To conserve processing cycles and memory, dynamic and periodic updates from an active chassis to a standby chassis are done using micro-checkpoints.

The output of the Exec mode `show srp info` command displays a complete list of SRP checkpoints.

Macro-checkpoints

This section lists and briefly describes ICSR macro-checkpoints.
GGSN_APN ID MAPPING

This macro-checkpoint is sent from the active to the standby chassis to map APN names on the standby chassis.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs whenever a TCP connection is established between the sessmgrs and they move to READY_STATE.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **Related CLI command:** show session subsystem facility sessmgr instance <instance no> debug-info and show srp micro-checkpoint statistics

INSTANCE LEVEL CHECKPOINT

This macro-checkpoint is generated by ECS (Enhanced Charging System) to send new rules to the standby chassis. It is also used by ECS to delete or modify a rule on the standby chassis.

- **Time based:** Yes
- **Frequency:** 30 minutes
- **Event based:** Yes
- **Events:** Occurs:
 1. When a new rule is added or deleted on the active chassis.
 2. Every 30 minutes if the ECS is registered for periodic micro-checkpointing.
- **Accounting:** —
- **Delta/Cumulative:** —
- **Related CLI command:** show session subsystem facility sessmgr instance <instance no> debug-info and show srp micro-checkpoint statistics

SERVICE_ID MAPPING

This macro-checkpoint is sent from the active to the standby chassis to map Service IDs on the standby chassis.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs whenever a TCP connection is established between the sessmgrs and they move to READY_STATE.
• Accounting: No
• Delta/Cumulative: N/A
• Related CLI command: show session subsystem facility sessmgr instance <instance no> debug-info

VPNMG_ID MAPPING

This macro-checkpoint is sent from the active to the standby chassis to map VPNs on the standby chassis.

• Time based: No
• Frequency: N/A
• Event based: Yes
• Events: Occurs whenever a TCP connection is established between the sessmgrs and they move to READY_STATE.
• Accounting: No
• Delta/Cumulative: N/A
• Related CLI command: show session subsystem facility sessmgr instance <instance no> debug-info

Micro-checkpoints

This section lists and briefly describes the characteristics of micro-checkpoints by application category. Micro-checkpoints are listed in alphabetical order under the following categories:

• Uncategorized, on page 370
• DCCA Category, on page 371
• ECS Category, on page 371
• ePDG Category, on page 375
• Firewall/ECS Category, on page 377
• GGSN Category, on page 378
• Gx Interface Category, on page 380
• NAT Category, on page 380
• P-GW Category, on page 383
• RF Interface Category, on page 385
• S6b Interface Category, on page 387
• SaMOG Category, on page 387
Uncategorized

SESS_UCHKPT_CMD_INVALIDATE_CRR

This micro-checkpoint is sent to the standby chassis to clear a deleted call. It carries the Call ID and other information that must be deleted on the standby chassis.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs when a call is deleted on the active chassis.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 1
- **Related CLI command:** None

SESS_UCKKPT_CMD_UPDATE_CLPSTATS

This micro-checkpoint sends VoLTE data statistics.

- **Time based:** Yes
- **Frequency:** —
- **Event based:** Yes
- **Events:** Occurs during ICSR background checkpointing. A chassis switchover triggers the sending of VoLTE data stats.
- **Accounting:** —
- **Delta/Cumulative:** —
- **CMD-ID:** 4
- **Related CLI command:** None

SESS_UCHKPT_CMD_UPDATE_IDLESECS

This micro-checkpoint sends remaining number of seconds before idle timeout.

- **Time based:** Yes
- **Frequency:** —
- **Event based:** No
- **Events:** Occurs during ICSR background checkpointing.
DCCA Category

SESS_UCHKPT_CMD_DCCA_SESS_INFO

This micro-checkpoint sends Credit Control (CC) related information.

- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 2
- **Related CLI command**: None

ECS Category

SESS_UCHKPT_CMD_ACS_CALL_INFO

This micro-checkpoint sends critical ECS call level data.

- **Time based**: Yes
- **Frequency**: 18 seconds for GR micro-checkpoint
- **Event based**: Yes
- **Events**: Sent along with the macro-checkpoint/CCA/Assume-positive-state-transitions.
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative
- **CMD-ID**: 19
- **Related CLI command**: None
SESS_UCHKPT_CMD_ACS_GX_LI_INFO

This micro-checkpoint sources lawful intercept (LI) related information maintained by ECS.

- **Time based:** Yes
- **Frequency:** —
- **Event based:** Yes
- **Events:** Occurs whenever LI information is created or modified.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 75
- **Related CLI command:** None

SESS_UCHKPT_CMD_ACS_SESS_INFO

This micro-checkpoint sends ECS-level bearer-related data

- **Time based:** Yes
- **Frequency:** —
- **Event based:** Yes
- **Events:** Occurs whenever ECS bearer information is created or modified.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 33
- **Related CLI command:** None

SESS_UCHKPT_CMD_DEL_ACS_CALL_INFO

This micro-checkpoint notifies that a Release Call event has occurred.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs whenever an ECS Release Call message is processed.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 188
- **Related CLI command:** —
SESS_UCHKPT_CMD_DYN_ACS_SESS_INFO

This micro-checkpoint notifies that a Release Bearer event has occurred.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs whenever an ECS Release Bearer message is processed.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 187
- **Related CLI command**: None

SESS_UCHKPT_CMD_DYN_DYNAMIC_CHRG_CA_INFO

This micro-checkpoint sends dynamic charging action information maintained by ECS.

- **Time based**: Yes
- **Frequency**: —
- **Event based**: Yes
- **Events**: Occurs whenever dynamic charging action information is created or modified.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 141
- **Related CLI command**: None

SESS_UCHKPT_CMD_DYN_DYNAMIC_CHRG_DEL_CA_INFO

This micro-checkpoint notifies that a dynamic charging action has been deleted.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs whenever a dynamic charging action has been deleted.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 183
- **Related CLI command**: None
SESS_UCHKPT_CMD_DYNAMIC_CHRG_DEL_QG_INFO

This micro-checkpoint notifies that a dynamic QoS group has been deleted.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs whenever a dynamic QoS group has been deleted.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 182
- **Related CLI command:** None

SESS_UCHKPT_CMD_DYNAMIC_CHRG_QG_INFO

This micro-checkpoint sends dynamic QoS group related information maintained by ECS.

- **Time based:** Yes
- **Frequency:** —
- **Event based:** Yes
- **Events:** Occurs whenever dynamic QoS group information is created or modified.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 140
- **Related CLI command:** None

SESS_UCHKPT_CMD_DYNAMIC_RULE_DEL_INFO

This micro-checkpoint notifies that a dynamic rule has been deleted.

- **Time based:** No
- **Frequency:** —
- **Event based:** Yes
- **Events:** Occurs whenever a dynamic rule has been deleted.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 178
- **Related CLI command:** None
SESS_UCHKPT_CMD_DYNAMIC_RULE_INFO
This micro-checkpoint sources predefined and dynamic rule related information maintained by ECS.

- **Time based:** Yes
- **Frequency:** No
- **Event based:** Yes
- **Events:** Occurs whenever a dynamic rule is created or modified.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 43
- **Related CLI command:** None

ePDG Category

SESS_UCHKPT_CMD_DELETE_EPDG_BEARER
This micro-checkpoint synchronizes deleted ePDG bearers between the active and standby chassis.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** N/A
- **Accounting:** Yes
- **Delta/Cumulative:** Cumulative
- **CMD-ID:** 110
- **Related CLI command:** show srp micro-checkpoint statistics debug-info

SESS_UCHKPT_CMD_UPDATE_EPDG_BEARER
This micro-checkpoint synchronizes ePDG bearers between the active and standby chassis.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** No
- **Events:** N/A
- **Accounting:** Yes
- **Delta/Cumulative:** Cumulative
• CMD-ID: 110
• Related CLI command: show srp micro-checkpoint statistics debug-info

SESS_UCHKPT_CMD_UPDATE_EPDPG_PEER_ADDR
This micro-checkpoint synchronizes ePDG peer addresses between the active and standby chassis.
• Time based: No
• Frequency: N/A
• Event based: Yes
• Events: —
• Accounting: Yes
• Delta/Cumulative: Cumulative
• CMD-ID: 110
• Related CLI command: show srp micro-checkpoint statistics debug-info

SESS_UCHKPT_CMD_UPDATE_EPDPG_REKEY
This micro-checkpoint synchronizes ePDG rekey statistics between the active and standby chassis.
• Time based: Yes
• Frequency: 30 seconds
• Event based: No
• Events: N/A
• Accounting: Yes
• Delta/Cumulative: Cumulative
• CMD-ID: 110
• Related CLI command: show srp micro-checkpoint statistics debug-info

SESS_UCHKPT_CMD_UPDATE_EPDPG_STATS
This micro-checkpoint synchronizes session statistics between the active and standby chassis.
• Time based: Yes
• Frequency: 30 seconds
• Event based: No
• Events: N/A
• Accounting: Yes
Firewall/ECS Category

SESS_UCHKPT_CMD_SFW_DEL_RULE_INFO

This micro-checkpoint is sent when a ruledef is deleted for a bearer.

- Time based: No
- Frequency: N/A
- Event based: Yes
- Events: Occurs whenever PCRF sends a command to disable the predefined stateful firewall access rules.
- Accounting: No
- Delta/Cumulative: N/A
- CMD-ID: 186
- Related CLI command: None

SESS_UCHKPT_CMD_SFW_RULE_INFO

This micro-checkpoint notifies the addition of dynamically enabled stateful firewall (SFW) access rules.

- Time based: No
- Frequency: N/A
- Event based: Yes
- Events: Occurs whenever PCRF sends a command to enable the predefined SFW access rules.
- Accounting: Yes
- Delta/Cumulative: Cumulative
- CMD-ID: 185
- Related CLI command: None
GGSN Category

SESS_UCHKPT_CMD_GGSN_DELETE_SUB_SESS
This micro-checkpoint sends an update when a secondary bearer is deleted.
- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Occurs upon secondary bearer deletion
- **Accounting:** —
- **Delta/Cumulative:** —
- **CMD-ID:** 117
- **Related CLI command:** None

SESS_UCHKPT_CMD_GGSN_UPDATE_RPR
If RPR (Resilient Packet Ring) is configured in the GGSN service, an RPR timer is started during secondary bearer creation. This checkpoint is sent upon expiry of this timer.
- **Time based:** Yes
- **Frequency:** RPR timer
- **Event based:** Yes
- **Events:** Occurs when the secondary bearer creation RPR timer expires.
- **Accounting:** —
- **Delta/Cumulative:** —
- **CMD-ID:** 118
- **Related CLI command:** —

SESS_UCHKPT_CMD_GGSN_UPDATE_SESSION
This micro-checkpoint is sent in a Network or UE initiated update procedure except for updates that result in the following scenarios:
- Creation or deletion of the beare
- TFT change or inter-RAT handovers
- Gn-Gp handoff

Parameters associated with this micro-checkpoint are shown below.
• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Occurs for a network initiated or UE initiated update.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 171
• **Related CLI command:** show srp checkpoint statistics active verbose, and show session subsystem facility sessmgr instance <instance_number> debug-info.

SESS_UCHKPT_CMD_GGSN_UPDATE_STATS

This micro-checkpoint periodically sends session statistics.

• **Time based:** Yes
• **Frequency:** Every five minutes
• **Event based:** No
• **Events:** N/A
• **Accounting:** Yes
• **Delta/Cumulative:** Cumulative
• **CMD-ID:** 116
• **Related CLI command:** None

SESS_UCHKPT_CMD_UPDATE_COA_PARAMS

This micro-checkpoint updates input and output ACL parameters.

• **Time based:** —
• **Frequency:** —
• **Event based:** Yes
• **Events:** COA (Change of Authorization) response
• **Accounting:** —
• **Delta/Cumulative:** —
• **CMD-ID:** 83
• **Related CLI command:** None
Gx Interface Category

SESS_UCHKPT_CMD_ACS_VOLUME_USAGE
This micro-checkpoint sends volume usage over Gx accounting buckets.

- **Time based**: Yes
- **Frequency**: 4 seconds for aamgr micro-checkpoint and 18 seconds for GR micro-checkpoint
- **Event based**: No
- **Events**: Send along with macro-checkpoint
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative
- **CMD-ID**: 79
- **Related CLI command**: —None

SESS_UCHKPT_CMD_UPDATE_SGX_INFO
This micro-checkpoint sends Gx session-related information.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Triggered on receiving CCA-I/U or RAR from PCRF.
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative
- **CMD-ID**: 137
- **Related CLI command**: None

NAT Category

SESS_UCHKPT_CMD_GR_UPDATE_NAT_REALM_PORT_INFO1
This micro-checkpoint is sent when a port chunk is allocated or deallocated for a subscriber sharing a NAT IP address with other subscribers. The port chunk is allocated or deallocated while data is being received for that subscriber.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Triggered when a new NAT port chunk is allocated or deleted.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 105
- **Related CLI command**: None

SESS_UCHKPT_CMD_GR_UPDATE_NAT_REALMS

This micro-checkpoint is sent when a NAT IP address is allocated to or deallocated from a subscriber.

For an on-demand case, it is triggered when the first packet matching a particular NAT realm is received and the NAT IP address is allocated to the subscriber.

If this is not an on-demand case, the NAT IP address is allocated during call setup and this micro-checkpoint is sent.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Triggered when a NAT IP address is allocated to or deallocated from a subscriber.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 45
- **Related CLI command**: None

SESS_UCHKPT_CMD_NAT_SIP_ALG_CALL_INFO

This micro-checkpoint is sent when a new SIP flow is created or deleted for a subscriber (while SIP data is being passed via the subscriber).

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Triggered when a new SIP flow is created or deleted.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 98
- **Related CLI command**: None
SESS_UCHKPT_CMD_NAT_SIP_ALG_CONTACT_PH_INFO

This micro-checkpoint is sent when a received SIP packet is analyzed and pinholes are created in the NAT firewall.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Triggered when a SIP packet creates pinholes in the NAT firewall.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 97
- **Related CLI command:** None

SESS_UCHKPT_CMD_UPDATE_DSK_FLOW_CHKPT_INFO

This micro-checkpoint is sent when a new NAT flow is created or deleted for a subscriber (while data is being passed via the subscriber).

This checkpoint is sent from a timer but it is not timer based. The timer is used to pace (10 micro-checkpoints) whenever the timer fires (granularity = 2 sec). This only occurs if there are new flows that need to be micro-checkpointed. Otherwise, no micro-micro-checkpoints are sent.

- **Time based:** No
- **Frequency:** See explanation above.
- **Event based:** Yes
- **Events:** Triggered when a new NAT flow is created or deleted.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 96
- **Related CLI command:** None

SESS_UCHKPT_CMD_UPDATE_NAT_BYPASS_FLOW_INFO

This micro-checkpoint is sent when NAT is enabled for a subscriber but bypass-nat (no NATing) is configured for this flow (based on a rule-match), and a new bypass flow is created.

This checkpoint is sent when the flow is both added and deleted.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
• **Events:** Triggered when a new flow with bypass-nat enabled is created or deleted.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 60
• **Related CLI command:** None

P-GW Category

SESS_UCHKPT_CMD_PGW_DELETE_SUB_SESS

Reserved for future use.

SESS_UCHKPT_CMD_PGW_OVRCHRG_PRTCTN_INFO

This micro-checkpoint indicates that the S-GW has set the Overcharging Protection bit in the MBR.

• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Triggered when the S-GW sets the Over Charging Protection Bit.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 159
• **Related CLI command:** None

SESS_UCHKPT_CMD_PGW_SGWRESTORATION_INFO

This micro-checkpoint indicates the interval that a call will remain up when the S-GW is down.

• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Triggered when the S-GW goes into Restoration mode.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 158
• **Related CLI command:** None
SESS_UCHKPT_CMD_PGW_UBR_MBR_INFO

This micro-checkpoint is sent at the end of a UBR (Update Bearer Request) or MBR (Modify Bearer Request) except when the UBR/MBR procedure results in the following scenarios:

- TFT change
- Bearer update or modification for a collapsed call
- Pure P to collapsed or collapsed to Pure P change
- Inter-technology handoff, for example, WiFi to LTE

Parameters associated with this micro-checkpoint are shown below.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** yes
- **Events:** Occurs as a result of a UBR or MBR procedure.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 193
- **Related CLI command:** show srp checkpoint statistics active verbose and show session subsystem facility sessmgr instance <instance_number> debug-info.

SESS_UCHKPT_CMD_PGW_UPDATE_APN_AMBR

Reserved for future use.

SESS_UCHKPT_CMD_PGW_UPDATE_INFO

Reserved for future use.

SESS_UCHKPT_CMD_PGW_UPDATE_LI_PARAM

This micro-checkpoint indicates the state of Lawful Intercept (LI) for this call.

- **Time based:** No
- **Frequency:** N/A
- **Event based:** Yes
- **Events:** Triggered when there is a change in the LI state for this call.
- **Accounting:** No
- **Delta/Cumulative:** N/A
- **CMD-ID:** 151
• Related CLI command: None

SESS_UCHKPT_CMD_PGW_UPDATE_PDN_COMMON_PARAM
Reserved for future use.

SESS_UCHKPT_CMD_PGW_UPDATE_QOS
Reserved for future use.

SESS_UCHKPT_CMD_PGW_UPDATE_SGW_CHANGE
Reserved for future use.

SESS_UCHKPT_CMD_PGW_UPDATE_STATS
This micro-checkpoint periodically sends session statistics.
 • Time based: Yes
 • Frequency: Every five minutes
 • Event based: No
 • Events: N/A
 • Accounting: Yes
 • Delta/Cumulative: Cumulative
 • CMD-ID: 65
 • Related CLI command: None

Rf Interface Category

SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_QCI_RF
This micro-checkpoint indicates a change in the SDF+QCI-based Rf accounting buckets.
 • Time based: Yes
 • Frequency: 4 seconds for aamgr checkpoint and 18 seconds for GR checkpoint
 • Event based: No
 • Events: N/A
 • Accounting: Yes
 • Delta/Cumulative: Cumulative
SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_QCI_RF_WITH_FC

This micro-checkpoint indicates complete SDF+QCI-based Rf accounting buckets.

- **CMD-ID**: 126
- **Related CLI command**: None

- **Time based**: Yes
- **Frequency**: 4 seconds for aamgr checkpoint and 18 seconds for GR checkpoint
- **Event based**: No
- **Events**: Sent along with macro-checkpoint.
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative
- **CMD-ID**: 164
- **Related CLI command**: None

SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_RATING_GROUP_RF

This micro-checkpoint indicates a change in the SDF-based Rf accounting buckets.

- **CMD-ID**: 125
- **Related CLI command**: None

- **Time based**: Yes
- **Frequency**: 4 seconds for aamgr checkpoint and 18 seconds for GR checkpoint
- **Event based**: No
- **Events**: N/A
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative

SESS_UCHKPT_CMD_ACS_ACCOUNTING_TYPE_RATING_GROUP_RF_WITH_FC

This micro-checkpoint indicates complete SDF-based Rf accounting buckets.

- **CMD-ID**: 126
- **Related CLI command**: None

- **Time based**: Yes
- **Frequency**: 4 seconds for aamgr checkpoint and 18 seconds for GR checkpoint;
- **Event based**: No
- **Events**: Sent along with macro-checkpoint.
- **Accounting**: Yes
- **Delta/Cumulative**: Cumulative
S6b Interface Category

SESS_UCHKPT_CMD_S6B_INFO

This micro-checkpoint sends the Restoration Priority Indicator when reauthorization occurs over the S6b interface.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs when an Sb6 reauthorization results in a change in value of the Restoration Priority Indicator.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 163
- **Related CLI command**: None

SaMOG Category

SESS_UCHKPT_CMD_CGW_DELETE_BEARER

Reserved for future use.

SESS_UCHKPT_CMD_CGW_DELETE_PDN

This micro-checkpoint indicates a PDN connection has been deleted.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs whenever SaMOG sends a Delete-Session-Req or upon receiving a Delete-Bearer-Request.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 169
- **Related CLI command**: show subscriber samog-only full
SESS_UCHKPT_CMD_CGW_UPDATE_BEARER_QOS

This micro-checkpoint indicates a QoS update for the bearer.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs when a change in Bearer QoS is received from the P-GW due to a reauthorization (AAR Received from AAA Server) or Update-Bearer-Request.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 167
- **Related CLI command**: show subscriber samog-only full

SESS_UCHKPT_CMD_CGW_UPDATE_PDN

This micro-checkpoint indicates a PDN update for a change in APN-AMBR.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs when a change in APN-AMBR is received from the P-GW due to a reauthorization (AAR Received from AAA Server) or Update-Bearer-Request.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 168
- **Related CLI command**: show subscriber samog-only full

SESS_UCHKPT_CMD_CGW_UPDATE_STATS

Reserved for future use.

SESS_UCHKPT_CMD_CGW_UPDATE_UE_PARAM

Reserved for future use.

SESS_UCHKPT_CMD_SAMOG_ACCT_INTERIM_INFO

This micro-checkpoint is sent for a SaMOG session on receipt of an Accounting Req (INTERIM-UPDATE) from the WLC
• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Occurs on receipt of an Accounting Req (INTERIM-UPDATE) from the WLC.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 177
• **Related CLI command:** show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG_ACCT_START_INFO

This micro-checkpoint is sent for a SaMOG session on receipt of an Accounting Req (START) from the WLC (Wireless LAN Controller).

• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Occurs when a Account Req (START) request is received from the WLC.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 174
• **Related CLI command:** show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG_EOGRE_TUNNEL_INFO

This micro-checkpoint is sent for an Inter-RG handoff for EoGRE subscriber sessions. This checkpoint updates the VMAC Address and WLC EoGRE tunnel end-point address.

• **Time based:** No
• **Frequency:** N/A
• **Event based:** Yes
• **Events:** Occurs whenever a DHCP-Discover message is received over a different EoGRE tunnel.
• **Accounting:** No
• **Delta/Cumulative:** N/A
• **CMD-ID:** 201
• **Related CLI command:** show subscriber samog-only full
SESS_UCHKPT_CMD_SAMOG_GTPV1_UPDATE_PDN_INFO

This micro-checkpoint is sent for a SaMOG session upon receipt of an Update-PDP-Context-Req from the GGSN to update the PDN information.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs after successful SaMOG processing of an Update-PDP-Context-Req from the GGSN.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 191
- **Related CLI command**: `show subscriber samog-only full`

SESS_UCHKPT_CMD_SAMOG_HANDOFF_AUTHEN_INFO

This micro-checkpoint is sent for a SaMOG session that is Re-authenticating the subscriber while the subscriber session is in Handoff state.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs on completion of Re-Authentication for an existing SaMOG subscriber session currently in Handoff state.
- **Accounting**: No
- **Delta/Cumulative**: N/A
- **CMD-ID**: 176
- **Related CLI command**: `show subscriber samog-only full`

SESS_UCHKPT_CMD_SAMOG_HANDOFF_INIT_INFO

This micro-checkpoint is sent for a SaMOG session on receipt of an Accounting Req (STOP) from the WLC (Wireless LAN Controller).

SaMOG will delay handoff as it expects an Accounting Req (START) from the subscriber.

- **Time based**: No
- **Frequency**: N/A
- **Event based**: Yes
- **Events**: Occurs when a Account Req (STOP) request is received from the WLC.
• Accounting: No
• Delta/Cumulative: N/A
• CMD-ID: 175
• Related CLI command: show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG LI PROV_INFO
This micro-checkpoint is sent for a SaMOG session that is on lawful intercept (LI) Active-Camp-on mode.
• Time based: No
• Frequency: N/A
• Event based: Yes
• Events: Occurs after an LI trigger is received after SaMOG session has been created.
• Accounting: No
• Delta/Cumulative: N/A
• CMD-ID: 189
• Related CLI command: show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG_MIPV6 TIMER_INFO
This micro-checkpoint updates the Binding Cache Life timer and MIPv6 bidding status for a SaMOG session.
• Time based: No
• Frequency: N/A
• Event based: Yes
• Events: Occurs whenever a PMIPv6 PBU is received with a lifetime of zero from the WLC.
• Accounting: No
• Delta/Cumulative: N/A
• CMD-ID: 190
• Related CLI command: show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG MULTI_ROUND AUTHEN_INFO
This micro-checkpoint is sent for a SaMOG session when SaMOG is waiting on the UE after sending an Access-Challenge while Re-authenticating the subscriber session.
• Time based: No
• Frequency: N/A
• Event based: Yes
• **Events**: Occurs after SaMOG sends an Access-Challenge for an existing SaMOG subscriber session during Re-authentication.

• **Accounting**: No

• **Delta/Cumulative**: N/A

• **CMD-ID**: 184

• **Related CLI command**: show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG_REAUTHEN_INFO

This micro-checkpoint is sent for a SaMOG session when subscriber Re-authentication is completed.

• **Time based**: No

• **Frequency**: N/A

• **Event based**: Yes

• **Events**: Occurs on completion of Re-Authentication for an existing SaMOG subscriber session.

• **Accounting**: No

• **Delta/Cumulative**: N/A

• **CMD-ID**: 172

• **Related CLI command**: show subscriber samog-only full

SESS_UCHKPT_CMD_SAMOG_REAUTHOR_INFO

This micro-checkpoint is sent for a SaMOG session when subscriber Re-authorization is completed.

• **Time based**: No

• **Frequency**: N/A

• **Event based**: Yes

• **Events**: Occurs on receiving and successfully processing AAR from the AAA Server to re-authorize the subscriber

• **Accounting**: No

• **Delta/Cumulative**: N/A

• **CMD-ID**: 173

• **Related CLI command**: show subscriber samog-only full
ASR 5000 SDR CLI Strings

This appendix identifies the CLI command strings that can be entered for a record section via the `support record section` command in the Global Configuration Mode. The string must be entered within double quotation marks (" ") to be recognized.

For detailed command string information, refer to the `Command Line Interface Reference` or the online Help for the command.

The table below also indicates default and non-default strings. It reflects the output sequence of the `show support collection definitions` command.

Table 53: ASR 5000 SDR CLI Command Strings

<table>
<thead>
<tr>
<th>No.</th>
<th>Default SDR</th>
<th>Command String</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>"show version verbose"</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
<td>"show clock"</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>"show clock universal"</td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>"show configuration"</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>"show_profile"</td>
</tr>
<tr>
<td>5</td>
<td>Enabled</td>
<td>"show context"</td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>"show boot"</td>
</tr>
<tr>
<td>7</td>
<td>Enabled</td>
<td>"show boot initial-config"</td>
</tr>
<tr>
<td>8</td>
<td>Enabled</td>
<td>"show system uptime"</td>
</tr>
<tr>
<td>9</td>
<td>Disabled</td>
<td>"show license information"</td>
</tr>
<tr>
<td>10</td>
<td>Disabled</td>
<td>"show license history"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>11</td>
<td>Disabled</td>
<td>"show hardware inventory"</td>
</tr>
<tr>
<td>12</td>
<td>Disabled</td>
<td>"show hardware version"</td>
</tr>
<tr>
<td>13</td>
<td>Disabled</td>
<td>"show card hardware"</td>
</tr>
<tr>
<td>14</td>
<td>Disabled</td>
<td>"show card dhaccel hardware counters"</td>
</tr>
<tr>
<td>15</td>
<td>Enabled</td>
<td>"show hd raid verbose"</td>
</tr>
<tr>
<td>16</td>
<td>Enabled</td>
<td>"debug hdctrl mdstat"</td>
</tr>
<tr>
<td>17</td>
<td>Enabled</td>
<td>"debug hdctrl history"</td>
</tr>
<tr>
<td>18</td>
<td>Disabled</td>
<td>"debug hdctrl lssas"</td>
</tr>
<tr>
<td>19</td>
<td>Disabled</td>
<td>"debug hdctrl mapping"</td>
</tr>
<tr>
<td>20</td>
<td>Enabled</td>
<td>"show hd iocnt all"</td>
</tr>
<tr>
<td>21</td>
<td>Disabled</td>
<td>"show hd logs all"</td>
</tr>
<tr>
<td>22</td>
<td>Enabled</td>
<td>"show hd smart all"</td>
</tr>
<tr>
<td>23</td>
<td>Enabled</td>
<td>"debug hdctrl state"</td>
</tr>
<tr>
<td>24</td>
<td>Enabled</td>
<td>"debug hdctrl client list"</td>
</tr>
<tr>
<td>25</td>
<td>Disabled</td>
<td>"show card info"</td>
</tr>
<tr>
<td>26</td>
<td>Enabled</td>
<td>"show card diag"</td>
</tr>
<tr>
<td>27</td>
<td>Enabled</td>
<td>"show card table all"</td>
</tr>
<tr>
<td>28</td>
<td>Enabled</td>
<td>"show port table all"</td>
</tr>
<tr>
<td>29</td>
<td>Enabled</td>
<td>"show port info"</td>
</tr>
<tr>
<td>30</td>
<td>Enabled</td>
<td>"show port utilization table"</td>
</tr>
<tr>
<td>31</td>
<td>Enabled</td>
<td>"show data-path congestion"</td>
</tr>
<tr>
<td>32</td>
<td>Disabled</td>
<td>"show npu details"</td>
</tr>
<tr>
<td>33</td>
<td>Disabled</td>
<td>"show lagmgr details"</td>
</tr>
<tr>
<td>34</td>
<td>Enabled</td>
<td>"show fans"</td>
</tr>
<tr>
<td>35</td>
<td>Disabled</td>
<td>"show hardware version fans"</td>
</tr>
<tr>
<td>36</td>
<td>Enabled</td>
<td>"show power chassis"</td>
</tr>
<tr>
<td>37</td>
<td>Enabled</td>
<td>"show temperature"</td>
</tr>
<tr>
<td>38</td>
<td>Disabled</td>
<td>"show timing"</td>
</tr>
<tr>
<td>39</td>
<td>Disabled</td>
<td>"show alarm audible"</td>
</tr>
<tr>
<td>40</td>
<td>Disabled</td>
<td>"show alarm central-office"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>41</td>
<td>Disabled</td>
<td>"show alarm outstanding"</td>
</tr>
<tr>
<td>42</td>
<td>Disabled</td>
<td>"show alarm statistics"</td>
</tr>
<tr>
<td>43</td>
<td>Enabled</td>
<td>"show cpu table"</td>
</tr>
<tr>
<td>44</td>
<td>Disabled</td>
<td>"show cpu info verbose"</td>
</tr>
<tr>
<td>45</td>
<td>Enabled</td>
<td>"show cpu errors verbose"</td>
</tr>
<tr>
<td>46</td>
<td>Enabled</td>
<td>"show cpu performance verbose"</td>
</tr>
<tr>
<td>47</td>
<td>Disabled</td>
<td>"show resources"</td>
</tr>
<tr>
<td>48</td>
<td>Disabled</td>
<td>"show task table"</td>
</tr>
<tr>
<td>49</td>
<td>Disabled</td>
<td>"show task memory"</td>
</tr>
<tr>
<td>50</td>
<td>Disabled</td>
<td>"show task memory max"</td>
</tr>
<tr>
<td>51</td>
<td>Disabled</td>
<td>"show task resources"</td>
</tr>
<tr>
<td>52</td>
<td>Disabled</td>
<td>"show task resources max"</td>
</tr>
<tr>
<td>53</td>
<td>Enabled</td>
<td>"show crash list"</td>
</tr>
<tr>
<td>54</td>
<td>Enabled</td>
<td>"show crash all"</td>
</tr>
<tr>
<td>55</td>
<td>Disabled</td>
<td>"show persistdump list"</td>
</tr>
<tr>
<td>56</td>
<td>Disabled</td>
<td>"show persistdump display"</td>
</tr>
<tr>
<td>57</td>
<td>Enabled</td>
<td>"show snmp trap history verbose"</td>
</tr>
<tr>
<td>58</td>
<td>Disabled</td>
<td>"show snmp trap statistics verbose"</td>
</tr>
<tr>
<td>59</td>
<td>Enabled</td>
<td>"show logs"</td>
</tr>
<tr>
<td>60</td>
<td>Enabled</td>
<td>"show ge-switch counters"</td>
</tr>
<tr>
<td>61</td>
<td>Enabled</td>
<td>"ethtool -Scpeth"</td>
</tr>
<tr>
<td>62</td>
<td>Enabled</td>
<td>"Standby SMC Ophir Mac counters"</td>
</tr>
<tr>
<td>63</td>
<td>Disabled</td>
<td>"show messenger settings"</td>
</tr>
<tr>
<td>64</td>
<td>Enabled</td>
<td>"show messenger nameservice"</td>
</tr>
<tr>
<td>65</td>
<td>Enabled</td>
<td>"show messenger statistics"</td>
</tr>
<tr>
<td>66</td>
<td>Enabled</td>
<td>"show messenger bounces"</td>
</tr>
<tr>
<td>67</td>
<td>Disabled</td>
<td>"debug limits checkup detailed"</td>
</tr>
<tr>
<td>68</td>
<td>Disabled</td>
<td>"show plugin"</td>
</tr>
<tr>
<td>69</td>
<td>Disabled</td>
<td>"show module"</td>
</tr>
<tr>
<td>70</td>
<td>Disabled</td>
<td>"show ppp statistics"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>71</td>
<td>Disabled</td>
<td>"show rsvp statistics"</td>
</tr>
<tr>
<td>72</td>
<td>Enabled</td>
<td>"show session disconnect-reasons verbose"</td>
</tr>
<tr>
<td>73</td>
<td>Disabled</td>
<td>"show apn statistics all"</td>
</tr>
<tr>
<td>74</td>
<td>Disabled</td>
<td>"show ipsg statistics"</td>
</tr>
<tr>
<td>75</td>
<td>Disabled</td>
<td>"show pdsn-service all"</td>
</tr>
<tr>
<td>76</td>
<td>Disabled</td>
<td>"show hsgw-service all"</td>
</tr>
<tr>
<td>77</td>
<td>Disabled</td>
<td>"show hsgw-service statistics all"</td>
</tr>
<tr>
<td>78</td>
<td>Disabled</td>
<td>"show epdg-service all counters"</td>
</tr>
<tr>
<td>79</td>
<td>Disabled</td>
<td>"show epdg-service statistics"</td>
</tr>
<tr>
<td>80</td>
<td>Disabled</td>
<td>"show fa-service all"</td>
</tr>
<tr>
<td>81</td>
<td>Disabled</td>
<td>"show ha-service all"</td>
</tr>
<tr>
<td>82</td>
<td>Disabled</td>
<td>"show mag-service all"</td>
</tr>
<tr>
<td>83</td>
<td>Disabled</td>
<td>"show mipv6ha-service all"</td>
</tr>
<tr>
<td>84</td>
<td>Disabled</td>
<td>"show lma-service all"</td>
</tr>
<tr>
<td>85</td>
<td>Disabled</td>
<td>"show dhcp-service all"</td>
</tr>
<tr>
<td>86</td>
<td>Disabled</td>
<td>"show sgsn-service all"</td>
</tr>
<tr>
<td>87</td>
<td>Disabled</td>
<td>"show sgsn sessmgr all memory statistics"</td>
</tr>
<tr>
<td>88</td>
<td>Disabled</td>
<td>"show operator-policy all"</td>
</tr>
<tr>
<td>89</td>
<td>Disabled</td>
<td>"show call-control-profile all"</td>
</tr>
<tr>
<td>90</td>
<td>Disabled</td>
<td>"show apn-profile all"</td>
</tr>
<tr>
<td>91</td>
<td>Disabled</td>
<td>"show imei-profile all"</td>
</tr>
<tr>
<td>92</td>
<td>Disabled</td>
<td>"show gprs-service all"</td>
</tr>
<tr>
<td>93</td>
<td>Disabled</td>
<td>"show iups-service all"</td>
</tr>
<tr>
<td>94</td>
<td>Disabled</td>
<td>"show sgtp-service all"</td>
</tr>
<tr>
<td>95</td>
<td>Disabled</td>
<td>"show map-service all"</td>
</tr>
<tr>
<td>96</td>
<td>Disabled</td>
<td>"show gs-service all"</td>
</tr>
<tr>
<td>97</td>
<td>Disabled</td>
<td>"show ggsn-service all"</td>
</tr>
<tr>
<td>98</td>
<td>Disabled</td>
<td>"show ggsn-service sgsn-table"</td>
</tr>
<tr>
<td>99</td>
<td>Disabled</td>
<td>"show csf service all"</td>
</tr>
<tr>
<td>100</td>
<td>Disabled</td>
<td>"show csf service diameter policy-control statistics"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>101</td>
<td>Disabled</td>
<td>"show cscf service diameter location-info statistics"</td>
</tr>
<tr>
<td>102</td>
<td>Disabled</td>
<td>"show cscf service li-packet-cable statistics"</td>
</tr>
<tr>
<td>103</td>
<td>Disabled</td>
<td>"show cscf peer-servers full"</td>
</tr>
<tr>
<td>104</td>
<td>Disabled</td>
<td>"show demux-mgr statistics cscfmg all"</td>
</tr>
<tr>
<td>105</td>
<td>Disabled</td>
<td>"show lac-service all"</td>
</tr>
<tr>
<td>106</td>
<td>Disabled</td>
<td>"show ins-service all"</td>
</tr>
<tr>
<td>107</td>
<td>Disabled</td>
<td>"show pdnclosedrp-service all"</td>
</tr>
<tr>
<td>108</td>
<td>Enabled</td>
<td>"show subscriber summary"</td>
</tr>
<tr>
<td>109</td>
<td>Enabled</td>
<td>"show connproxy sockets all"</td>
</tr>
<tr>
<td>110</td>
<td>Disabled</td>
<td>"show session progress"</td>
</tr>
<tr>
<td>111</td>
<td>Disabled</td>
<td>"show session subsystem data-info verbose"</td>
</tr>
<tr>
<td>112</td>
<td>Disabled</td>
<td>"show session subsystem full data-info"</td>
</tr>
<tr>
<td>113</td>
<td>Disabled</td>
<td>"show session subsystem facility sessmgr all debug-info"</td>
</tr>
<tr>
<td>114</td>
<td>Disabled</td>
<td>"show sessctrl config-reconciliation statistics"</td>
</tr>
<tr>
<td>115</td>
<td>Disabled</td>
<td>"show rp statistics"</td>
</tr>
<tr>
<td>116</td>
<td>Disabled</td>
<td>"show mipfa statistics"</td>
</tr>
<tr>
<td>117</td>
<td>Disabled</td>
<td>"show mipha statistics"</td>
</tr>
<tr>
<td>118</td>
<td>Disabled</td>
<td>"show mipv6ha statistics"</td>
</tr>
<tr>
<td>119</td>
<td>Disabled</td>
<td>"show lma-service statistics"</td>
</tr>
<tr>
<td>120</td>
<td>Disabled</td>
<td>"show mag-service statistics"</td>
</tr>
<tr>
<td>121</td>
<td>Disabled</td>
<td>"show cli configuration-monitor"</td>
</tr>
<tr>
<td>122</td>
<td>Enabled</td>
<td>"show srp info"</td>
</tr>
<tr>
<td>123</td>
<td>Enabled</td>
<td>"show srp checkpoint statistics"</td>
</tr>
<tr>
<td>124</td>
<td>Disabled</td>
<td>"show srp checkpoint statistics verbose"</td>
</tr>
<tr>
<td>125</td>
<td>Disabled</td>
<td>"show srp checkpoint statistics sessmgr all"</td>
</tr>
<tr>
<td>126</td>
<td>Disabled</td>
<td>"show srp checkpoint statistics ipsecmgr all"</td>
</tr>
<tr>
<td>127</td>
<td>Enabled</td>
<td>"show srp checkpoint statistics sessmgr all write-list-stats"</td>
</tr>
<tr>
<td>128</td>
<td>Disabled</td>
<td>"show srp monitor"</td>
</tr>
<tr>
<td>129</td>
<td>Enabled</td>
<td>"show srp monitor all"</td>
</tr>
<tr>
<td>130</td>
<td>Disabled</td>
<td>"show srp monitor diameter debug"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>131</td>
<td>Enabled</td>
<td>"show srp statistics"</td>
</tr>
<tr>
<td>132</td>
<td>Disabled</td>
<td>"show srp call-loss statistics"</td>
</tr>
<tr>
<td>133</td>
<td>Disabled</td>
<td>"show srp audit-statistics"</td>
</tr>
<tr>
<td>134</td>
<td>Disabled</td>
<td>"show gtpc statistics verbose"</td>
</tr>
<tr>
<td>135</td>
<td>Enabled</td>
<td>"show gtpu statistics verbose"</td>
</tr>
<tr>
<td>136</td>
<td>Enabled</td>
<td>"show gtpu debug-info"</td>
</tr>
<tr>
<td>137</td>
<td>Enabled</td>
<td>"show gmm-sm statistics verbose"</td>
</tr>
<tr>
<td>138</td>
<td>Enabled</td>
<td>"show sgtpc statistics verbose"</td>
</tr>
<tr>
<td>139</td>
<td>Enabled</td>
<td>"show sgtpu statistics"</td>
</tr>
<tr>
<td>140</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all sctp asp all status peer-server all peer-server-process all verbose"</td>
</tr>
<tr>
<td>141</td>
<td>Enabled</td>
<td>"show ss7-routing-domain all sctp asp all statistics gen"</td>
</tr>
<tr>
<td>142</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all m3ua status peer-server all"</td>
</tr>
<tr>
<td>143</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all m3ua statistics peer-server all peer-server-process all"</td>
</tr>
<tr>
<td>144</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all qsaal statistics linkset all link all"</td>
</tr>
<tr>
<td>145</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all scf statistics linkset all link all"</td>
</tr>
<tr>
<td>146</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all mtp3 status linkset all link all"</td>
</tr>
<tr>
<td>147</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all mtp3 statistics gen"</td>
</tr>
<tr>
<td>148</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all mtp3 statistics linkset all link all"</td>
</tr>
<tr>
<td>149</td>
<td>Disabled</td>
<td>"show ss7-routing-domain all routes"</td>
</tr>
<tr>
<td>150</td>
<td>Disabled</td>
<td>"show sccp-network all status all"</td>
</tr>
<tr>
<td>151</td>
<td>Disabled</td>
<td>"show global-title-translation association"</td>
</tr>
<tr>
<td>152</td>
<td>Disabled</td>
<td>"show global-title-translation address-map"</td>
</tr>
<tr>
<td>153</td>
<td>Enabled</td>
<td>"show egtpc peers"</td>
</tr>
<tr>
<td>154</td>
<td>Disabled</td>
<td>"show egtpc statistics interface mme"</td>
</tr>
<tr>
<td>155</td>
<td>Enabled</td>
<td>"show egtpc statistics interface sgsn"</td>
</tr>
<tr>
<td>156</td>
<td>Enabled</td>
<td>"show egtpc statistics interface sgw-ingress"</td>
</tr>
<tr>
<td>157</td>
<td>Enabled</td>
<td>"show egtpc statistics interface sgw-egress"</td>
</tr>
<tr>
<td>158</td>
<td>Enabled</td>
<td>"show egtpc statistics interface pgw-ingress"</td>
</tr>
<tr>
<td>159</td>
<td>Enabled</td>
<td>"show egtpc statistics interface cgw-egress"</td>
</tr>
<tr>
<td>160</td>
<td>Enabled</td>
<td>"show egtpc statistics interface epdg-egress"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>161</td>
<td>Disabled</td>
<td>"show egtp-service all"</td>
</tr>
<tr>
<td>162</td>
<td>Disabled</td>
<td>"show gtpu-service all"</td>
</tr>
<tr>
<td>163</td>
<td>Disabled</td>
<td>"show pgw-service all"</td>
</tr>
<tr>
<td>164</td>
<td>Disabled</td>
<td>"show sgw-service all"</td>
</tr>
<tr>
<td>165</td>
<td>Disabled</td>
<td>"show saegw-service all"</td>
</tr>
<tr>
<td>166</td>
<td>Disabled</td>
<td>"show henbgw-access-service statistics"</td>
</tr>
<tr>
<td>167</td>
<td>Disabled</td>
<td>"show henbgw-network-service statistics"</td>
</tr>
<tr>
<td>168</td>
<td>Disabled</td>
<td>"show mme-service all"</td>
</tr>
<tr>
<td>169</td>
<td>Disabled</td>
<td>"show mme-service enodeb-association full all"</td>
</tr>
<tr>
<td>170</td>
<td>Disabled</td>
<td>"show mme-service statistics debug"</td>
</tr>
<tr>
<td>171</td>
<td>Disabled</td>
<td>"show mme-service db statistics"</td>
</tr>
<tr>
<td>172</td>
<td>Disabled</td>
<td>"show sgs-service all"</td>
</tr>
<tr>
<td>173</td>
<td>Disabled</td>
<td>"show sgs-service vlr-status full"</td>
</tr>
<tr>
<td>174</td>
<td>Disabled</td>
<td>"show sgs-service statistics all"</td>
</tr>
<tr>
<td>175</td>
<td>Enabled</td>
<td>"show sgw-service statistics all"</td>
</tr>
<tr>
<td>176</td>
<td>Disabled</td>
<td>"show saegw-service statistics all verbose"</td>
</tr>
<tr>
<td>177</td>
<td>Disabled</td>
<td>"show saegw-service statistics all function sgw verbose"</td>
</tr>
<tr>
<td>178</td>
<td>Disabled</td>
<td>"show saegw-service statistics all function pgw verbose"</td>
</tr>
<tr>
<td>179</td>
<td>Enabled</td>
<td>"show pgw-service statistics all"</td>
</tr>
<tr>
<td>180</td>
<td>Disabled</td>
<td>"show sccp statistics"</td>
</tr>
<tr>
<td>181</td>
<td>Disabled</td>
<td>"show tcap statistics"</td>
</tr>
<tr>
<td>182</td>
<td>Disabled</td>
<td>"show map statistics"</td>
</tr>
<tr>
<td>183</td>
<td>Disabled</td>
<td>"show sms statistics"</td>
</tr>
<tr>
<td>184</td>
<td>Disabled</td>
<td>"show pdg-service statistics"</td>
</tr>
<tr>
<td>185</td>
<td>Disabled</td>
<td>"show hnbgw sessmgr all memory statistics"</td>
</tr>
<tr>
<td>186</td>
<td>Disabled</td>
<td>"show hnbgw sessmgr all internal statistics"</td>
</tr>
<tr>
<td>187</td>
<td>Disabled</td>
<td>"show hnbgw disconnect-reasons"</td>
</tr>
<tr>
<td>188</td>
<td>Disabled</td>
<td>"show cs-network statistics"</td>
</tr>
<tr>
<td>189</td>
<td>Disabled</td>
<td>"show ps-network statistics"</td>
</tr>
<tr>
<td>190</td>
<td>Disabled</td>
<td>"show hnbgw statistics"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>191</td>
<td>Disabled</td>
<td>"show hnbgw counters"</td>
</tr>
<tr>
<td>192</td>
<td>Disabled</td>
<td>"show demux-mgr statistics hnbmgr full"</td>
</tr>
<tr>
<td>193</td>
<td>Disabled</td>
<td>"show demuxmgr statistics bngmgr all"</td>
</tr>
<tr>
<td>194</td>
<td>Disabled</td>
<td>"show alcap statistics"</td>
</tr>
<tr>
<td>195</td>
<td>Disabled</td>
<td>"show pdg-service statistics micro-tunnel"</td>
</tr>
<tr>
<td>196</td>
<td>Disabled</td>
<td>"show pdg-service statistics transport"</td>
</tr>
<tr>
<td>197</td>
<td>Disabled</td>
<td>"show demuxmgr statistics allmgr all"</td>
</tr>
<tr>
<td>198</td>
<td>Disabled</td>
<td>"show demuxmgr statistics famgr all"</td>
</tr>
<tr>
<td>199</td>
<td>Disabled</td>
<td>"show demuxmgr statistics hamgr all"</td>
</tr>
<tr>
<td>200</td>
<td>Disabled</td>
<td>"show demuxmgr statistics l2tpmgr all"</td>
</tr>
<tr>
<td>201</td>
<td>Disabled</td>
<td>"show demuxmgr statistics ipsgmgr all"</td>
</tr>
<tr>
<td>202</td>
<td>Enabled</td>
<td>"show demuxmgr statistics sgtpcmgr all"</td>
</tr>
<tr>
<td>203</td>
<td>Disabled</td>
<td>"show demuxmgr statistics imsimgr all"</td>
</tr>
<tr>
<td>204</td>
<td>Enabled</td>
<td>"show demuxmgr statistics gtpcmgr all"</td>
</tr>
<tr>
<td>205</td>
<td>Enabled</td>
<td>"show demuxmgr statistics egtpinmgr all"</td>
</tr>
<tr>
<td>206</td>
<td>Disabled</td>
<td>"show demuxmgr statistics egtpemgr all"</td>
</tr>
<tr>
<td>207</td>
<td>Disabled</td>
<td>"show demuxmgr statistics pdgdmgr all"</td>
</tr>
<tr>
<td>208</td>
<td>Enabled</td>
<td>"show demuxmgr statistics gtpumgr all"</td>
</tr>
<tr>
<td>209</td>
<td>Disabled</td>
<td>"show bcmcs statistics all"</td>
</tr>
<tr>
<td>210</td>
<td>Enabled</td>
<td>"show linkmgr all parser statistics all"</td>
</tr>
<tr>
<td>211</td>
<td>Disabled</td>
<td>"show gtp accounting servers"</td>
</tr>
<tr>
<td>212</td>
<td>Disabled</td>
<td>"show gtp statistics verbose"</td>
</tr>
<tr>
<td>213</td>
<td>Disabled</td>
<td>"show gtp counters all"</td>
</tr>
<tr>
<td>214</td>
<td>Disabled</td>
<td>"show gtp storage-server"</td>
</tr>
<tr>
<td>215</td>
<td>Disabled</td>
<td>"show gtp storage-server statistics verbose"</td>
</tr>
<tr>
<td>216</td>
<td>Disabled</td>
<td>"show gtp storage-server local file statistics verbose"</td>
</tr>
<tr>
<td>217</td>
<td>Disabled</td>
<td>"show gtp storage-server local file counters all"</td>
</tr>
<tr>
<td>218</td>
<td>Disabled</td>
<td>"show gtp storage-server streaming file statistics verbose"</td>
</tr>
<tr>
<td>219</td>
<td>Disabled</td>
<td>"show gtp storage-server streaming file counters all"</td>
</tr>
<tr>
<td>220</td>
<td>Disabled</td>
<td>"show gtp group all"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>221</td>
<td>Enabled</td>
<td>"show hd-storage-policy statistics all verbose"</td>
</tr>
<tr>
<td>222</td>
<td>Enabled</td>
<td>"show hd-storage-policy counters all verbose"</td>
</tr>
<tr>
<td>223</td>
<td>Disabled</td>
<td>"show dhcp statistics verbose"</td>
</tr>
<tr>
<td>224</td>
<td>Disabled</td>
<td>"show npu table"</td>
</tr>
<tr>
<td>225</td>
<td>Disabled</td>
<td>"show npu sf hw-info"</td>
</tr>
<tr>
<td>229</td>
<td>Disabled</td>
<td>"show l2tp statistics"</td>
</tr>
<tr>
<td>231</td>
<td>Enabled</td>
<td>"show vpn subsystem facility vpnmgr"</td>
</tr>
<tr>
<td>232</td>
<td>Enabled</td>
<td>"show session recovery status verbose"</td>
</tr>
<tr>
<td>233</td>
<td>Enabled</td>
<td>"show clock all"</td>
</tr>
<tr>
<td>234</td>
<td>Disabled</td>
<td>"show sntp statistics verbose"</td>
</tr>
<tr>
<td>235</td>
<td>Disabled</td>
<td>"show llc statistics verbose"</td>
</tr>
<tr>
<td>236</td>
<td>Disabled</td>
<td>"show bssgp statistics verbose"</td>
</tr>
<tr>
<td>237</td>
<td>Disabled</td>
<td>"show bssap+ statistics verbose"</td>
</tr>
<tr>
<td>238</td>
<td>Disabled</td>
<td>"show network-service-entity ip-config"</td>
</tr>
<tr>
<td>239</td>
<td>Disabled</td>
<td>"show network-service-entity fr-config"</td>
</tr>
<tr>
<td>240</td>
<td>Disabled</td>
<td>"show gprsns statistics sns-msg-stats"</td>
</tr>
<tr>
<td>241</td>
<td>Disabled</td>
<td>"show radius authentication servers detail"</td>
</tr>
<tr>
<td>242</td>
<td>Disabled</td>
<td>"show radius accounting servers detail"</td>
</tr>
<tr>
<td>243</td>
<td>Enabled</td>
<td>"show radius counters all"</td>
</tr>
<tr>
<td>244</td>
<td>Enabled</td>
<td>"debug console card cpu tail 4000 only"</td>
</tr>
<tr>
<td>245</td>
<td>Enabled</td>
<td>"show rct stats"</td>
</tr>
<tr>
<td>246</td>
<td>Enabled</td>
<td>"show heartbeat stats hatcpus"</td>
</tr>
<tr>
<td>247</td>
<td>Disabled</td>
<td>"show ntp associations all"</td>
</tr>
<tr>
<td>248</td>
<td>Disabled</td>
<td>"show npu details"</td>
</tr>
<tr>
<td>249</td>
<td>Disabled</td>
<td>"show active-charging service all"</td>
</tr>
<tr>
<td>250</td>
<td>Disabled</td>
<td>"show active-charging tcp-proxy statistics all verbose debug-info"</td>
</tr>
<tr>
<td>251</td>
<td>Disabled</td>
<td>"show active-charging edr-udr-file flow-control-counters verbose debug-only"</td>
</tr>
<tr>
<td>252</td>
<td>Disabled</td>
<td>"show active-charging service statistics"</td>
</tr>
<tr>
<td>253</td>
<td>Disabled</td>
<td>"show active-charging analyzer statistics"</td>
</tr>
<tr>
<td>254</td>
<td>Disabled</td>
<td>"show active-charging dns-learnt-ip-addresses statistics sessmgr all verbose"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>255</td>
<td>Disabled</td>
<td>"show active-charging analyzer statistics name ip verbose"</td>
</tr>
<tr>
<td>256</td>
<td>Disabled</td>
<td>"show active-charging analyzer statistics name ipv6 verbose"</td>
</tr>
<tr>
<td>257</td>
<td>Disabled</td>
<td>"show active-charging analyzer statistics name tcp verbose"</td>
</tr>
<tr>
<td>258</td>
<td>Disabled</td>
<td>"show active-charging analyzer statistics name http verbose"</td>
</tr>
<tr>
<td>259</td>
<td>Disabled</td>
<td>"show active-charging charging-action statistics"</td>
</tr>
<tr>
<td>260</td>
<td>Disabled</td>
<td>"show active-charging rulebase statistics"</td>
</tr>
<tr>
<td>261</td>
<td>Disabled</td>
<td>"show active-charging ruledef statistics all charging"</td>
</tr>
<tr>
<td>262</td>
<td>Enabled</td>
<td>"show active-charging ruledef statistics all firewall wide"</td>
</tr>
<tr>
<td>263</td>
<td>Disabled</td>
<td>"show active-charging regex status all"</td>
</tr>
<tr>
<td>264</td>
<td>Disabled</td>
<td>"show active-charging regex statistics memory summary"</td>
</tr>
<tr>
<td>265</td>
<td>Disabled</td>
<td>"show active-charging regex statistics ruledef summary"</td>
</tr>
<tr>
<td>266</td>
<td>Disabled</td>
<td>"show active-charging edr-format statistics"</td>
</tr>
<tr>
<td>267</td>
<td>Disabled</td>
<td>"show active-charging subsystem all debug-only"</td>
</tr>
<tr>
<td>268</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats cumulative all-flows"</td>
</tr>
<tr>
<td>269</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats cumulative http"</td>
</tr>
<tr>
<td>270</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats cumulative ip"</td>
</tr>
<tr>
<td>271</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats cumulative tcp"</td>
</tr>
<tr>
<td>272</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats cumulative udp"</td>
</tr>
<tr>
<td>273</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats max-simultaneous-flows all-flows"</td>
</tr>
<tr>
<td>274</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats max-simultaneous-flows http"</td>
</tr>
<tr>
<td>275</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats max-simultaneous-flows ip"</td>
</tr>
<tr>
<td>276</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats max-simultaneous-flows tcp"</td>
</tr>
<tr>
<td>277</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats max-simultaneous-flows udp"</td>
</tr>
<tr>
<td>278</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats duration-based all-flows"</td>
</tr>
<tr>
<td>279</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats duration-based tcp"</td>
</tr>
<tr>
<td>280</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats duration-based udp"</td>
</tr>
<tr>
<td>281</td>
<td>Disabled</td>
<td>"debug acsmgr show flow-stats lifetime-based all-flows"</td>
</tr>
<tr>
<td>282</td>
<td>Disabled</td>
<td>"debug acsmgr show p2p detection-params sct"</td>
</tr>
<tr>
<td>283</td>
<td>Disabled</td>
<td>"debug acsmgr show rule-optimization-information"</td>
</tr>
<tr>
<td>284</td>
<td>Disabled</td>
<td>"debug sessmgr charging-service show-stats all"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>285</td>
<td>Disabled</td>
<td>"debug acsmgr show memory usage"</td>
</tr>
<tr>
<td>286</td>
<td>Disabled</td>
<td>"debug aaamgr show memory usage"</td>
</tr>
<tr>
<td>287</td>
<td>Disabled</td>
<td>"show active-charging credit-control statistics debug-info"</td>
</tr>
<tr>
<td>288</td>
<td>Disabled</td>
<td>"show active-charging credit-control session-states"</td>
</tr>
<tr>
<td>289</td>
<td>Disabled</td>
<td>"show active-charging credit-control statistics"</td>
</tr>
<tr>
<td>290</td>
<td>Disabled</td>
<td>"show diameter endpoints all"</td>
</tr>
<tr>
<td>291</td>
<td>Disabled</td>
<td>"show diameter endpoints all debug-info"</td>
</tr>
<tr>
<td>292</td>
<td>Disabled</td>
<td>"show diameter route table debug-info"</td>
</tr>
<tr>
<td>293</td>
<td>Disabled</td>
<td>"show diameter peers full debug"</td>
</tr>
<tr>
<td>294</td>
<td>Disabled</td>
<td>"show diameter aaa-statistics"</td>
</tr>
<tr>
<td>295</td>
<td>Disabled</td>
<td>"show diameter aaa-statistics all"</td>
</tr>
<tr>
<td>296</td>
<td>Disabled</td>
<td>"show diameter aaa-statistics debug-info"</td>
</tr>
<tr>
<td>297</td>
<td>Disabled</td>
<td>"show diameter accounting servers debug-info"</td>
</tr>
<tr>
<td>298</td>
<td>Disabled</td>
<td>"show diameter authentication servers debug-info"</td>
</tr>
<tr>
<td>299</td>
<td>Disabled</td>
<td>"show diameter statistics"</td>
</tr>
<tr>
<td>300</td>
<td>Disabled</td>
<td>"show diameter statistics debug-info"</td>
</tr>
<tr>
<td>301</td>
<td>Disabled</td>
<td>"show diameter statistics proxy"</td>
</tr>
<tr>
<td>302</td>
<td>Disabled</td>
<td>"show diameter statistics proxy debug-info"</td>
</tr>
<tr>
<td>303</td>
<td>Disabled</td>
<td>"show diameter dynamic-dictionary all contents"</td>
</tr>
<tr>
<td>304</td>
<td>Disabled</td>
<td>"show active-charging edr-udr-file statistics"</td>
</tr>
<tr>
<td>305</td>
<td>Disabled</td>
<td>"show active-charging firewall statistics debug-info"</td>
</tr>
<tr>
<td>306</td>
<td>Disabled</td>
<td>"show active-charging nat statistics"</td>
</tr>
<tr>
<td>307</td>
<td>Disabled</td>
<td>"show demuxmgr statistics asngwmgr all"</td>
</tr>
<tr>
<td>308</td>
<td>Disabled</td>
<td>"show asngw-service all"</td>
</tr>
<tr>
<td>309</td>
<td>Disabled</td>
<td>"show asngw-service statistics verbose"</td>
</tr>
<tr>
<td>310</td>
<td>Disabled</td>
<td>"show demuxmgr statistics asnpcmgr all"</td>
</tr>
<tr>
<td>311</td>
<td>Disabled</td>
<td>"show asnpc-service all"</td>
</tr>
<tr>
<td>312</td>
<td>Disabled</td>
<td>"show asnpc-service statistics verbose"</td>
</tr>
<tr>
<td>313</td>
<td>Disabled</td>
<td>"show demuxmgr statistics phsgwmgr all"</td>
</tr>
<tr>
<td>314</td>
<td>Disabled</td>
<td>"show phsgw-service all"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>315</td>
<td>Disabled</td>
<td>"show phsgw-service statistics verbose"</td>
</tr>
<tr>
<td>316</td>
<td>Disabled</td>
<td>"show demuxmgr statistics phspcmgr all"</td>
</tr>
<tr>
<td>317</td>
<td>Disabled</td>
<td>"show phspc-service all"</td>
</tr>
<tr>
<td>318</td>
<td>Disabled</td>
<td>"show phspc-service statistics verbose"</td>
</tr>
<tr>
<td>319</td>
<td>Disabled</td>
<td>"show demuxmgr statistics magmgr all"</td>
</tr>
<tr>
<td>320</td>
<td>Disabled</td>
<td>"show active-charging content-filtering category policy-id all"</td>
</tr>
<tr>
<td>321</td>
<td>Disabled</td>
<td>"show content-filtering category database all verbose"</td>
</tr>
<tr>
<td>322</td>
<td>Disabled</td>
<td>"show content-filtering category database facility srdbmgr all verbose"</td>
</tr>
<tr>
<td>323</td>
<td>Disabled</td>
<td>"show content-filtering category statistics"</td>
</tr>
<tr>
<td>324</td>
<td>Disabled</td>
<td>"show content-filtering category statistics facility srdbmgr all"</td>
</tr>
<tr>
<td>325</td>
<td>Disabled</td>
<td>"show active-charging content-filtering category statistics"</td>
</tr>
<tr>
<td>326</td>
<td>Disabled</td>
<td>"show active-charging content-filtering server-group statistics verbose"</td>
</tr>
<tr>
<td>327</td>
<td>Disabled</td>
<td>"show active-charging url-blacklisting statistics"</td>
</tr>
<tr>
<td>328</td>
<td>Disabled</td>
<td>"show url-blacklisting database all"</td>
</tr>
<tr>
<td>329</td>
<td>Disabled</td>
<td>"show url-blacklisting database facility acsmgr all"</td>
</tr>
<tr>
<td>330</td>
<td>Disabled</td>
<td>"show active-charging tethering-detection database"</td>
</tr>
<tr>
<td>331</td>
<td>Disabled</td>
<td>"show active-charging tethering-detection database sessmgr all"</td>
</tr>
<tr>
<td>332</td>
<td>Disabled</td>
<td>"show active-charging tethering-detection statistics"</td>
</tr>
<tr>
<td>333</td>
<td>Disabled</td>
<td>"show ims-authorization service statistics"</td>
</tr>
<tr>
<td>334</td>
<td>Disabled</td>
<td>"show ims-authorization policy-control statistics"</td>
</tr>
<tr>
<td>335</td>
<td>Disabled</td>
<td>"show ims-authorization policy-control statistics debug-info"</td>
</tr>
<tr>
<td>336</td>
<td>Disabled</td>
<td>"show local-policy statistics summary"</td>
</tr>
<tr>
<td>337</td>
<td>Disabled</td>
<td>"show rohc statistics"</td>
</tr>
<tr>
<td>338</td>
<td>Disabled</td>
<td>"show dns client statistics"</td>
</tr>
<tr>
<td>339</td>
<td>Disabled</td>
<td>"show hss-peer-service service all"</td>
</tr>
<tr>
<td>340</td>
<td>Disabled</td>
<td>"show ipms status all"</td>
</tr>
<tr>
<td>341</td>
<td>Disabled</td>
<td>"show ipms status debug-info"</td>
</tr>
<tr>
<td>342</td>
<td>Disabled</td>
<td>"show kvstore"</td>
</tr>
<tr>
<td>343</td>
<td>Disabled</td>
<td>"show kvstore verbose"</td>
</tr>
<tr>
<td>344</td>
<td>Disabled</td>
<td>"show kvstore kvclient"</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>345</td>
<td>Disabled</td>
<td>"show kvstore kvmgr"</td>
</tr>
<tr>
<td>346</td>
<td>Disabled</td>
<td>"show pcc-service all"</td>
</tr>
<tr>
<td>347</td>
<td>Disabled</td>
<td>"show pcc-service statistics all"</td>
</tr>
<tr>
<td>348</td>
<td>Disabled</td>
<td>"show pcc-policy service all"</td>
</tr>
<tr>
<td>349</td>
<td>Disabled</td>
<td>"show pcc-policy service statistics all"</td>
</tr>
<tr>
<td>350</td>
<td>Disabled</td>
<td>"show pcc-quota service all"</td>
</tr>
<tr>
<td>351</td>
<td>Disabled</td>
<td>"show pcc-quota service statistics all"</td>
</tr>
<tr>
<td>352</td>
<td>Disabled</td>
<td>"show pcc-af service all"</td>
</tr>
<tr>
<td>353</td>
<td>Disabled</td>
<td>"show pcc-af service statistics all"</td>
</tr>
<tr>
<td>354</td>
<td>Disabled</td>
<td>"show pcc-sp-endpoint all"</td>
</tr>
<tr>
<td>355</td>
<td>Disabled</td>
<td>"show pcc-sp-endpoint statistics all"</td>
</tr>
<tr>
<td>356</td>
<td>Disabled</td>
<td>"show event-notif server all"</td>
</tr>
<tr>
<td>357</td>
<td>Disabled</td>
<td>"show event-notif statistics"</td>
</tr>
<tr>
<td>358</td>
<td>Disabled</td>
<td>"show demux-mgr statistics bindmux all"</td>
</tr>
<tr>
<td>359</td>
<td>Disabled</td>
<td>"show congestion-control configuration"</td>
</tr>
<tr>
<td>360</td>
<td>Disabled</td>
<td>"show congestion-control statistics mme full"</td>
</tr>
<tr>
<td>361</td>
<td>Disabled</td>
<td>"show congestion-control statistics imsimgr all full"</td>
</tr>
<tr>
<td>362</td>
<td>Enabled</td>
<td>"show ge-switch counters (second sample)"</td>
</tr>
<tr>
<td>363</td>
<td>Enabled</td>
<td>"ethtool -S cpeth"</td>
</tr>
<tr>
<td>364</td>
<td>Enabled</td>
<td>"Standby SMC Ophir Mac counters (second sample)" [ASR 5000 only]</td>
</tr>
<tr>
<td>365</td>
<td>Disabled</td>
<td>"show cli history"</td>
</tr>
<tr>
<td>366</td>
<td>Disabled</td>
<td>"card-cpu boxer summary"</td>
</tr>
<tr>
<td>367</td>
<td>Disabled</td>
<td>"show sls-service all"</td>
</tr>
<tr>
<td>368</td>
<td>Disabled</td>
<td>"show sls-service peers all"</td>
</tr>
<tr>
<td>369</td>
<td>Disabled</td>
<td>"show sls-service statistics all"</td>
</tr>
</tbody>
</table>

Notes:
- Enabled = Included in default record section
- Disabled = Not included in default record section