CONTENTS

About this Guide

Conventions Used ... xv
Supported Documents and Resources xvii
Related Common Documentation .. xvi
 Related Product Documentation .. xvi
 Obtaining Documentation ... xvi
Contacting Customer Support ... xviii

Mobility Management Entity Overview

Product Description ... 20
Qualified Platforms ... 22
Licenses .. 22
Network Deployment and Interfaces ... 23
 MME in the E-UTRAN/EPC Network 23
 Supported Logical Network Interfaces (Reference Points) 25
Features and Functionality - Base Software 33
 3GPP R8 Identity Support .. 34
 ANSI T1.276 Compliance ... 35
 APN Restriction Support ... 35
 Authentication and Key Agreement (AKA) 36
 Backup and Recovery of Key KPI Statistics 36
 Bulk Statistics Support ... 36
 Cell Broadcast Center - Sbc Interface 37
 Closed Subscriber Groups ... 37
 Congestion Control ... 37
 Define Same TAI in Multiple TAI Lists 38
 Emergency Call Release .. 38
 Emergency Session Support ... 39
 EPS Bearer Context Support ... 39
 EPS GTPv2 Support on S11 Interface 40
 HSS Support Over S6a Interface .. 40
 IMSI Manager Scaling .. 41
 Inter-MME Handover Support ... 42
 Interworking Support .. 42
 Interworking with SGSNs .. 43
 Handover Support for S4-SGSNs 43
 Unoptimized Non-3GPP Handover Support 44
 IPv6 Support ... 44
 MME Interfaces Supporting IPv6 Transport 45
 Load Balancing ... 45
 Load Re-balancing .. 46
 Local Cause Code Mapping .. 46
 Management System Overview .. 46
 MMEMgr Scaling to Support VPC-DI 48
 MME Pooling ... 48
 MME Selection .. 49
Mobile Equipment Identity Check ... 49
Mobility Restriction .. 49
 Handover Restriction .. 49
 Regional Zone Code Restriction .. 49
Multiple PDN Support .. 50
NAS Protocol Support .. 50
 EPS Mobility Management (EMM) .. 50
 EPS Session Management (ESM) ... 50
NAS Signalling Security ... 50
Network Sharing .. 51
Operator Policy Support ... 51
Overload Control .. 52
PDN Type Control ... 52
Packet Data Network Gateway (P-GW) Selection .. 52
Radio Resource Management Functions .. 53
RAN Information Management .. 53
Reachability Management .. 53
SCTP Multi-homing Support .. 53
Serving Gateway Pooling Support ... 54
Serving Gateway Selection .. 54
Session and Quality of Service Management ... 54
Session Tracing ... 55
State - Location Information Retrieval Flag .. 55
Target Access Restricted for the Subscriber Cause Code 55
Threshold Crossing Alerts (TCA) Support .. 55
Tracking Area List Management ... 56
UMTS to LTE ID Mapping .. 57
Features and Functionality - Licensed Enhanced Feature Software 58
Attach Rate Throttling ... 59
Cell Traffic Trace ... 59
CSFB and SMS over SGs Interface ... 59
CSFB and SRVCC for CDMA ... 59
Customized Inter-MME SGW S1-Handover and TAU Procedure for PS-LTE Support ... 60
DDN Throttling ... 60
Enhanced Congestion Control and Overload Control 60
HSS-based P-CSCF Restoration .. 61
Idle-mode Signaling Reduction ... 62
IP Security (IPSec) ... 62
IPNE Service Support .. 63
Lawful Intercept .. 64
Location Services .. 64
MME handling of PGW Restart .. 64
MME Message Rate Control ... 65
 S1 Paging Rate Limit .. 65
 Pacing UE Deactivation .. 66
MME Restoration - Standards Extension ... 66
 MME/VLR Restoration Procedure Via Alternate MME 66
 ULA for Periodic TAU when VLR Inaccessible .. 66
MTC Features ... 67
Network Provided Location Info for IMS ... 67
Optimized Paging Support .. 68
Overcharging Protection ... 68
Separate Configuration for GTPC Echo and GTPC Non-Echo Messages 68
Session Recovery Support .. 69
Mobility Management Entity Configuration .. 87

Configuring the System as a Standalone MME (base configuration) 88
Information Required .. 88
 Required MME Context Configuration Information 88
 Required MME Policy Configuration Information 91
How This Configuration Works .. 91
MME Configuration ... 93
 Creating and Configuring the MME Context and Service 93
 Creating and Configuring the eGTP Service and Interface Association 95
 Creating and Configuring the HSS Peer Service and Interface Associations 96
 Configuring Dynamic Destination Realm Construction for Foreign Subscribers 97
Configuring Optional Features on the MME 99
 Configuring Differentiation Between HeNB-GW and eNodeBs 99
 Configuring Dual Address Bearers .. 100
 Configuring Dynamic Peer Selection .. 100
 Configuring Emergency Session Support .. 101
 Configuring Gn/Gp Handover Capability .. 102
 Configuring Inter-MME Handover Support 103
 Configuring X.509 Certificate-based Peer Authentication 104
Configuring Dynamic Node-to-Node IP Security on the S1-MME Interface 105
 Creating and Configuring an IPSec Transform Set 106
 Creating and Configuring an IKEV2 Transform Set 106
 Creating and Configuring a Crypto Template 107
 Binding the S1-MME IP Address to the Crypto Template 108
Configuring ACL-based Node-to-Node IP Security on the S1-MME Interface 108
 Creating and Configuring a Crypto Access Control List 108
 Creating and Configuring an IPSec Transform Set 109
 Creating and Configuring an IKEV2 Transform Set 109
 Creating and Configuring a Crypto Map ... 110
Configuring Load Balancing on the MME .. 111
Configuring Mobility Restriction Support .. 112
 Configuring Inter-RAT Handover Restrictions on the MME 112
 Configuring Location Area Handover Restrictions on the MME 112
 Configuring Tracking Area Handover Restrictions on the MME 113
 Configuring S4-SGSN Handover Capability 113
Contents

Configuring SCTP Multi-homing Support ... 114
Configuring SCTP Multi-homing on the S1-MME Interface 114
Configuring SCTP Multi-homing on the S6a Interface .. 115
Configuring S6a SCTP and Application Timers for Multi-homing 116
Configuring SCTP Multi-homing on the SGS Interface ... 117
Configuring Static S-GW Pools ... 118
Creating and Configuring a TAI Management Database and Object 118
Associating a TAI Management Database with an MME Service 118
Associating a TAI Management Database with a Call Control Profile 119
Configuring UMTS to LTE ID Mapping .. 119
Configuring User Location Information Reporting Support 120

A-MSISDN Functionality ... 121
Feature Description ... 122
How It Works .. 123
Standards Compliance .. 123
Configuring A-MSISDN Functionality ... 124
Configuring A-MSISDN Support .. 124
Verifying the A-MSISDN Support Configuration .. 124
Configuring 3GPP Release 11 AVP Support ... 125
Monitoring and Troubleshooting the A-MSISDN Functionality 126
Show Command(s) and/or Outputs ... 126
show mme-service session full all ... 126

APN Override ... 127
Feature Description ... 128
How it Works .. 129
Network Identifier (NI) Overriding .. 129
Operator Identifier (OI) Overriding .. 129
Charging Characteristics Overriding ... 129
Configuring APN Override .. 130
Before You Begin ... 130
Configuring Network Identifier Override ... 131
Configuring Operator Identifier Override .. 131
Configuring Charging Characteristics Override .. 131
Verifying the APN Override Configuration .. 132

Backup and Recovery of Key KPI Statistics .. 133
Feature Description ... 134
How It Works .. 135
Architecture .. 135
Limitations .. 136
Configuring Backup Statistics Feature .. 137
Configuration ... 137
Verifying the Backup Statistics Feature Configuration ... 137
Managing Backed-up Statistics .. 139

Cell Broadcast Center - SBc Interface ... 141
Feature Description ... 142
How It Works .. 143
Warning Message Call Flows ... 143
Standards Compliance .. 143
Configuring SBc Interface .. 144
Creating and Configuring SBc Service .. 144
Associating the SBc Service with the MME Service ... 144
Contents

Enhanced Congestion Control and Overload Control

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruing Enhanced Congestion Control</td>
<td>182</td>
</tr>
<tr>
<td>Congruing Enhanced Congestion Control</td>
<td>184</td>
</tr>
<tr>
<td>Limited Thresholds and Tolerances</td>
<td>184</td>
</tr>
<tr>
<td>Configuring a Congestion Action Profile</td>
<td>187</td>
</tr>
<tr>
<td>Associating a Congestion Action Profile with Congestion Control Policies</td>
<td>187</td>
</tr>
<tr>
<td>Configuring Overload Control</td>
<td>188</td>
</tr>
<tr>
<td>Configuring Enhanced Congestion SNMP Traps</td>
<td>188</td>
</tr>
<tr>
<td>Verifying the Congestion Control Configuration</td>
<td>189</td>
</tr>
<tr>
<td>Verifying Congestion Action Profiles</td>
<td>191</td>
</tr>
<tr>
<td>Monitoring and Troubleshooting</td>
<td>192</td>
</tr>
<tr>
<td>Congestion Control Show Command(s) and/or Outputs</td>
<td>192</td>
</tr>
<tr>
<td>show congestion-control statistics mme</td>
<td>192</td>
</tr>
<tr>
<td>show congestion-control statistics mme</td>
<td>193</td>
</tr>
</tbody>
</table>

Foreign PLMN GUTI Management

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How it Works</td>
<td>196</td>
</tr>
<tr>
<td>Configuring Foreign PLMN GUTI Management</td>
<td>197</td>
</tr>
<tr>
<td>Creating a Foreign PLMN GUTI Management Database</td>
<td>198</td>
</tr>
<tr>
<td>Configuring Foreign PLMN GUTI Management Database Entries</td>
<td>198</td>
</tr>
<tr>
<td>Associating an MME Service with a Foreign PLMN GUTI Management Database</td>
<td>199</td>
</tr>
<tr>
<td>Verifying the Configuration</td>
<td>199</td>
</tr>
<tr>
<td>Monitoring Foreign PLMN GUTI Management</td>
<td>201</td>
</tr>
<tr>
<td>Show Command(s) and/or Outputs</td>
<td>204</td>
</tr>
<tr>
<td>show session disconnect-reasons</td>
<td>201</td>
</tr>
<tr>
<td>Bulk Statistics</td>
<td>201</td>
</tr>
</tbody>
</table>

Heuristic and Intelligent Paging

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How it Works</td>
<td>204</td>
</tr>
<tr>
<td>Heuristic Paging</td>
<td>205</td>
</tr>
<tr>
<td>Intelligent Paging</td>
<td>205</td>
</tr>
<tr>
<td>Configuring MME Paging Features</td>
<td>207</td>
</tr>
<tr>
<td>Configuring Heuristic Paging</td>
<td>207</td>
</tr>
<tr>
<td>Configuring Intelligent Paging</td>
<td>207</td>
</tr>
<tr>
<td>Creating and Configuring the Paging-Profile</td>
<td>207</td>
</tr>
<tr>
<td>Creating and Configuring the Paging-Map</td>
<td>208</td>
</tr>
<tr>
<td>Enable Heuristic Paging with Paging-Map (Intelligent Paging)</td>
<td>208</td>
</tr>
<tr>
<td>Verifying the Paging Configuration</td>
<td>209</td>
</tr>
<tr>
<td>Monitoring and Troubleshooting the MME Paging Features</td>
<td>210</td>
</tr>
<tr>
<td>Paging Bulk Statistics</td>
<td>210</td>
</tr>
<tr>
<td>Paging Show Command(s) and/or Outputs</td>
<td>213</td>
</tr>
</tbody>
</table>

Idle-mode Signaling Reduction

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How it Works</td>
<td>218</td>
</tr>
<tr>
<td>ISR Activation</td>
<td>219</td>
</tr>
<tr>
<td>ISR Deactivation</td>
<td>220</td>
</tr>
<tr>
<td>ISR Behavior with Circuit Switched Fallback</td>
<td>221</td>
</tr>
<tr>
<td>Standards Compliance</td>
<td>221</td>
</tr>
</tbody>
</table>
Supported Functionality .. 254
Limitations .. 255
Flows .. 256
Standards Compliance .. 258
Configuring Location Services (LCS) .. 259
Creating and Configuring a Location Service ... 259
Associate the MME Service with the Location Service ... 260
Associate the LTE Emergency Profile with the Location Service 260
Map the MSC ID .. 260
Verifying the LCS Configuration .. 261
Monitoring Location Services (LCS) ... 262
LCS Bulk Statistics ... 262
LCS Show Commands .. 262
Event Logging .. 262
Configuring the SLs Interface .. 263
Creating and Configuring the SLs Service .. 263
Associating the SLs Service with the Location Service .. 263
Configuring LCS QoS for Emergency Sessions .. 264
Verifying the SLs Service Configuration .. 264
Monitoring SLs Services .. 265
SMMP Traps .. 265
SLs Bulk Statistics .. 265
SLs Service Show Commands ... 265
Event Logging .. 266

Operator Policy .. 267
What Operator Policy Can Do ... 268
A Look at Operator Policy on an SGSN .. 268
A Look at Operator Policy on an S-GW ... 268
The Operator Policy Feature in Detail .. 269
Call Control Profile ... 269
APN Profile ... 270
IMEI-Profile (SGSN only) .. 271
APN Remap Table .. 271
Operator Policies ... 272
IMSI Ranges .. 272
How It Works ... 274
Operator Policy Configuration ... 275
Call Control Profile Configuration ... 276
 Configuring the Call Control Profile for an SGSN .. 276
 Configuring the Call Control Profile for an MME or S-GW .. 276
APN Profile Configuration .. 277
IMEI Profile Configuration - SGSN only ... 277
APN Remap Table Configuration ... 278
Operator Policy Configuration ... 278
IMSI Range Configuration .. 279
 Configuring IMSI Ranges on the MME or S-GW .. 279
 Configuring IMSI Ranges on the SGSN .. 279
Associating Operator Policy Components on the MME ... 280
Configuring Accounting Mode for S-GW .. 281
Verifying the Feature Configuration .. 282

Overcharging Protection ... 283
Feature Description .. 284
Relationships to Other Features ... 284
Session Tracing ... 289
 Feature Description ... 290
 Supported Functions .. 291
 Standards Compliance ... 292
How Session Tracing Works .. 293
 Operation .. 293
 Trace Session ... 293
 Trace Recording Session ... 293
 Network Element (NE) ... 293
 Activation ... 293
 Management Activation ... 294
 Signaling Activation ... 294
 Start Trigger .. 294
 Deactivation .. 294
 Stop Trigger .. 294
Data Collection and Reporting ... 294
 Trace Depth ... 295
 Trace Scope ... 295
Network Element Details ... 295
 MME ... 295
 S-GW ... 295
 P-GW ... 296
Session Trace Configuration ... 297
 Enabling Subscriber Session Trace on EPC Network Element 297
 Configuring a Session Trace Template for the MME 298
 Trace File Collection Configuration .. 299
 Verifying Your Configuration .. 300
Monitoring and Troubleshooting the Session Trace .. 302
 Session Trace Show Command(s) and/or Outputs 302
 show session trace statistics ... 302
 show session trace subscriber network-element trace-ref 302
 show session trace tce-summary ... 303
 show session trace tce-address .. 303
SGSN-MME Combo Optimization ... 305
 Feature Description .. 306
 Overview ... 306
How It Works ... 307
 Architecture .. 307
 Flows .. 308
 Limitations ... 309
Configuring the Combo Optimization .. 310
 Verifying Combo Optimization Configuration 310
 show lte-policy sgsn-mme summary .. 310
Monitoring and Troubleshooting Combo Optimization 311
 Monitoring Commands for the SGSN-MME Combo Node 311
 show hss-peer-service statistics all ... 311
 Monitoring Commands for the SGSN ... 311
show demux-mgr statistics imsigr all sgsn .. 311
show subscribers sgsn-only summary ... 311
show subscribers gprs-only summary .. 312
show subscribers gprs-only full all ... 312
show session subsystem facility aamgr instance <instance> 313
Monitoring Commands for the MME .. 313
show mme-service statistics handover ... 313
Bulk Statistics for Monitoring the MME in an SGSN-MME Combo Node 314

Single Radio Voice Call Continuity ... 315
Feature Description ... 316
Supported SRVCC Features ... 316
Relationships to Other Features ... 317
How It Works .. 319
Flows .. 319
Standards Compliance ... 319
Configuring Single Radio Voice Call Continuity .. 320
Configuring SRVCC ... 320
Configuring MSC Selection Using DNS ... 321
Configuring an MSC Pool Area ... 322
IMSI Hash MSC Pool .. 322
Round-Robin MSC Pool .. 323
MSC Offload ... 323
HSS Purge After SRVCC Handoff ... 324
Verifying the SRVCC Configuration .. 325
Monitoring and Troubleshooting SRVCC .. 326
SRVCC Show Command(s) and/or Outputs ... 326
show mme-service statistics ... 326
show egtpc statistics .. 326
SRVCC Bulk Statistics .. 328
eGTP-C Schema .. 328
MME Schema ... 328

State-Locatin Information Retrieval Flag ... 331
Feature Description ... 332
How It Works .. 333
MME Behavior for IDR-initiated Paging ... 333
Location Reporting Control ... 333
MME’s IDR-initiated Paging Process .. 333
Standards Compliance ... 334
Configuring Support for the State Location Information Retrieval Flag 335
Configuring Precedence for IDR Paging ... 335
Verifying the Precedence Configuration ... 336
Configuring the ISDA Guard Timer .. 336
isda-guard-timeout ... 336
Monitoring the MME’s Support for the State - Location Information Retrieval Flag .. 338
Bulk Statistics ... 338
show mme-service statistics ... 338
show hss-peer-service statistics .. 338

UE Relocation ... 339
Feature Description ... 340
How it Works ... 341
UE Relocation ... 341
Relocating UE to Specific MME ... 342
 Issuing the mme relocate-ue Command .. 342
Monitoring UE Relocation .. 343
 UE Relocation Bulk Statistics .. 343
 UE Relocation Show Commands .. 343
VLR Management ... 345
 Feature Description .. 346
 Passive VLR Offloading .. 346
 Active VLR Offloading .. 346
 UE Detach on VLR Recovery ... 346
 UE Detach on VLR Failure .. 346
Enabling Active and Passive VLR Offloading .. 347
 Passive VLR Offloading .. 347
 Active VLR Offloading .. 347
 Verifying VLR Offload Status and Configuration 347
Enabling UE Detach on VLR Failure or VLR Recovery 350
 UE Detach on VLR Recovery ... 350
 UE Detach on VLR Failure .. 350
 Configuring Automatic UE Detach on VLR Failure 351
 Manually Enabling UE Detach on VLR Failure 351
 Verifying UE Detach on VLR Failure/Recovery Status and Configuration 352
Monitoring and Troubleshooting VLR Offload ... 353
 SNMP Traps .. 353
 Bulk Statistics ... 353
 Show Command(s) and/or Outputs ... 353
 Active and Passive VLR Offload ... 353
 UE Detach on VLR Recovery and VLR Failure 353
Monitoring the MME Service .. 355
 Monitoring System Status and Performance .. 356
 Clearing Statistics and Counters ... 358
Troubleshooting the MME Service .. 359
 Test Commands ... 360
 Using the eGTPC Test Echo Command .. 360
Engineering Rules ... 361
 Service Engineering Rules .. 362
 Node Engineering Rules ... 363
 APN Engineering Rules .. 364
About this Guide

This preface describes the *MME Administration Guide*, how it is organized and its document conventions.

Mobility Management Entity (MME) is a StarOS™ application that runs on Cisco® ASR 5x00 and virtualized platforms.

This preface includes the following sections:

- **Conventions Used**
- **Supported Documents and Resources**
- **Contacting Customer Support**
Conventions Used

The following tables describe the conventions used throughout this documentation.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text represented as a screen display</td>
<td>This typeface represents displays that appear on your terminal screen, for example: Login:</td>
</tr>
</tbody>
</table>
| Text represented as commands | This typeface represents commands that you enter, for example: show ip access-list
This document always gives the full form of a command in lowercase letters. Commands are not case sensitive. |
| Text represented as a command variable | This typeface represents a variable that is part of a command, for example:
show card slot_number
slot_number is a variable representing the desired chassis slot number. |
| Text represented as menu or sub-menu names | This typeface represents menus and sub-menus that you access within a software application, for example:
Click the File menu, then click New |
Supported Documents and Resources

Related Common Documentation

The most up-to-date information for this product is available in the product Release Notes provided with each product release.

The following common documents are available:

- AAA Interface Administration Guide and Reference
- Command Line Interface Reference
- GTPP Interface Administration Guide and Reference
- Installation Guide (platform dependent)
- Release Change Reference
- SNMP MIB Reference
- Statistics and Counters Reference
- System Administration Guide (platform dependent)
- Thresholding Configuration Guide

Related Product Documentation

The following product documents are also available and work in conjunction with the MME:

- ePDG Administration Guide
- HeNB-GW Administration Guide
- IPSec Reference
- P-GW Administration Guide
- S-GW Administration Guide
- SAEGW Administration Guide
- SGSN Administration Guide

Obtaining Documentation

The most current Cisco documentation is available on the following website:
http://www.cisco.com/cisco/web/psa/default.html

Use the following path selections to access the MME documentation:
Products > Wireless > Mobile Internet> Network Functions > Cisco MME Mobility Management Entity
Contacting Customer Support

Use the information in this section to contact customer support.

Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
Chapter 1
Mobility Management Entity Overview

Cisco Mobility Management Entity (MME) is critical to the network function of the 4G mobile core network, known as the evolved packet core (EPC). The MME resides in the EPC control plane and manages session states, authentication, paging, mobility with 3GPP, 2G and 3G nodes, roaming, and other bearer management functions.

This overview provides general information about the MME including:

- Product Description
- Network Deployment and Interfaces
- Features and Functionality - Base Software
- Features and Functionality - Licensed Enhanced Feature Software
- How the MME Works
- Supported Standards
Product Description

This section describes the MME network function and its position in the LTE network.

The MME is the key control-node for the LTE access network. It works in conjunction with the evolved NodeB (eNodeB), Serving Gateway (S-GW) within the Evolved Packet Core (EPC), or LTE/SAE core network to perform the following functions:

- Involved in the bearer activation/deactivation process and is also responsible for choosing the S-GW and for a UE at the initial attach and at the time of intra-LTE handover involving Core Network (CN) node relocation.
- Provides P-GW selection for subscriber to connect to PDN.
- Provides idle mode UE tracking and paging procedure, including retransmissions.
- Chooses the appropriate S-GW for a UE.
- Responsible for authenticating the user (by interacting with the HSS).
- Works as termination point for Non-Access Stratum (NAS) signaling.
- Responsible for generation and allocation of temporary identities to UEs.
- Checks the authorization of the UE to camp on the service provider’s Public Land Mobile Network (PLMN) and enforces UE roaming restrictions.
- The MME is the termination point in the network for ciphering/integrity protection for NAS signaling and handles the security key management.
- Communicates with MMEs in same PLMN or on different PLMNs. The S10 interface is used for MME relocation and MME-to-MME information transfer or handoff.

Besides the above mentioned functions, the lawful interception of signaling is also supported by the MME.

The MME also provides the control plane function for mobility between LTE and 2G/3G access networks with the S3 interface terminating at the MME from the SGSN. In addition, the MME interfaces with SGSN for interconnecting to the legacy network.

The MME also terminates the S6a interface towards the home HSS for roaming UEs.
In accordance with 3GPP standard, the MME provides following functions and procedures in the LTE/SAE network:

- Non Access Stratum (NAS) signalling
- NAS signalling security
- Inter CN node signalling for mobility between 3GPP access networks (terminating S3)
- UE Reachability in ECM-IDLE state (including control and execution of paging retransmission)
- Tracking Area list management
- PDN GW and Serving GW selection
- MME selection for handover with MME change
- SGSN selection for handover to 2G or 3G 3GPP access networks
- Roaming (S6a towards home HSS)
- Authentication
• Bearer management functions including dedicated bearer establishment
• Lawful Interception of signalling traffic
• UE Reachability procedures
• Interfaces with MSC for Voice paging
• Interfaces with SGSN for interconnecting to legacy network

Qualified Platforms

MME is a StarOS application that runs on Cisco ASR 5x00 and virtualized platforms. For additional platform information, refer to the appropriate System Administration Guide and/or contact your Cisco account representative.

Licenses

The MME is a licensed Cisco product. Separate session and feature licenses may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.
Network Deployment and Interfaces

This section describes the supported interfaces and deployment scenario of MME in LTE/SAE network. The following information is provided in this section:

- MME in the E-UTRAN/EPC Network
- Supported Logical Network Interfaces (Reference Points)

MME in the E-UTRAN/EPC Network

The following figure displays the specific network interfaces supported by the MME. Refer to Supported Logical Network Interfaces (Reference Points) for detailed information about each interface.
The following figure displays a sample network deployment of an MME, including all of the interface connections with other 3GPP Evolved-UTRAN/Evolved Packet Core network devices.
Supported Logical Network Interfaces (Reference Points)

The MME supports the following logical network interfaces/reference points:

S1-MME Interface

This interface is the reference point for the control plane protocol between eNodeB and MME. S1-MME uses the S1 Application Protocol (S1-AP) over the Stream Control Transmission Protocol (SCTP) as the transport layer protocol for guaranteed delivery of signaling messages between MME and eNodeB (S1). This is the interface used by the MME to communicate with eNodeBs on the same LTE Public Land Mobile Network (PLMN). This interface serves as path for establishing and maintaining subscriber UE contexts. The S1-MME interface supports IPv4, IPv6, IPSec, and multi-homing. One or more S1-MME interfaces can be configured per system context.
Supported protocols:

- Application Layer: S1 Application Protocol (S1-AP)
- Transport Layer: SCTP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

S3 Interface

This is the interface used by the MME to communicate with S4-SGSNs on the same Public PLMN for interworking between GPRS/UMTS and LTE network access technologies. This interface serves as the signalling path for establishing and maintaining subscriber UE contexts.

The MME communicates with SGSNs on the PLMN using the GPRS Tunnelling Protocol (GTP). The signalling or control aspect of this protocol is referred to as the GTP Control Plane (GTPC) while the encapsulated user data traffic is referred to as the GTP User Plane (GTPU).

One or more S3 interfaces can be configured per system context.

Supported protocols:

- Transport Layer: UDP, TCP
- Tunneling: IPv4 or IPv6 GTPv2-C (signaling channel)
- Signalling Layer: UDP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet
S6a Interface

This is the interface used by the MME to communicate with the Home Subscriber Server (HSS). The HSS is responsible for transfer of subscription and authentication data for authenticating/authorizing user access and UE context authentication. The MME communicates with the HSSs on the PLMN using Diameter protocol.

One or more S6a interfaces can be configured per system context.

Supported protocols:

- Transport Layer: SCTP or TCP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

S10 Interface

This is the interface used by the MME to communicate with an MME in the same PLMN or on different PLMNs. This interface is also used for MME relocation and MME-to-MME information transfer or handoff. This interface uses the GTPv2 protocol.

One or more S10 interfaces can be configured per system context.

Supported protocols:

- Transport Layer: UDP, TCP
- Tunneling: IPv4 or IPv6 GTPv2-C (signaling channel)
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet
S11 Interface

This interface provides communication between the MME and Serving Gateways (S-GW) for information transfer. This interface uses the GTPv2 protocol.

One or more S11 interfaces can be configured per system context.

Supported protocols:

- Transport Layer: UDP, TCP
- Tunneling: IPv4 or IPv6 GTPv2-C (signaling channel)
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

S13 Interface

This interface provides communication between MME and Equipment Identity Register (EIR).

One or more S13 interfaces can be configured per system context.

Supported protocols:

- Transport Layer: SCTP or TCP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

SBc Interface
The SBc interface connects the MME to the Cell Broadcast Center (CBC) to support the Commercial Mobile Alert System (CMAS) to deliver public warning messages.

Supported protocols:
- Application: SBc-AP
- Transport Layer: SCTP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

SGs Interface

The SGs interface connects the MSC Server and the MME to support circuit switched fallback and SMS in an EPS scenario.

Supported protocols:
- Application: SGs-AP
- Transport Layer: SCTP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

SLs Interface
The SLs interface is used to convey LCS Application Protocol (LCS-AP) messages and parameters between the MME to the Evolved Serving Mobile Location Center (E-SMLC).

- Application: LCS-AP
- Transport Layer: SCTP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

Sv Interface

This interface connects the MME to a Mobile Switching Center to support the exchange of messages during a handover procedure for the Single Radio Voice Call Continuity (SRVCC) feature.

Supported protocols:
- Transport Layer: UDP, TCP
- Tunneling: IPv4 or IPv6 GTP-C (signaling channel)
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet
Gn Interface

Gn interfaces facilitate user mobility between 2G/3G 3GPP networks. The Gn interface is used for intra-PLMN handovers. The MME supports pre-Release-8 Gn interfaces to allow inter-operation between EPS networks and 2G/3G 3GPP networks.

Roaming and inter access mobility between 2G and/or 3G SGSNs and an MME/S-GW are enabled by:
- Gn functionality, as specified between two SGSNs, which is provided by the MME, and
- Gp functionality, as specified between SGSN and GGSN, that is provided by the P-GW.

Supported protocols:
- Transport Layer: UDP, TCP
- Tunneling: IPv4 or IPv6 GTP-C (signaling channel)
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet

SLg Interface

This interface is used by the MME to communicate with the Gateway Mobile Location Center (GMLC). This diameter-based interface is used for LoCation Services (LCS), which enables the system to determine and report location (geographical position) information for connected UEs in support of a variety of location services.

Supported protocols:
- Transport Layer: SCTP or TCP
- Network Layer: IPv4, IPv6
- Data Link Layer: ARP
- Physical Layer: Ethernet
Important: MME Software also supports additional interfaces. For more information on additional interfaces, refer to the *Features and Functionality - Licensed Enhanced Feature Software* section.
Features and Functionality - Base Software

This section describes the features and functions supported by default in the base software on the MME service and do not require any additional licenses.

Important: To configure the basic service and functionality on the system for MME service, refer configuration examples provide in MME Administration Guide.

This section describes following features:

- 3GPP R8 Identity Support
- ANSI T1.276 Compliance
- APN Restriction Support
- Authentication and Key Agreement (AKA)
- Backup and Recovery of Key KPI Statistics
- Bulk Statistics Support
- Cell Broadcast Center - SBc Interface
- Closed Subscriber Groups
- Congestion Control
- Define Same TAI in Multiple TAI Lists
- Emergency Call Release
- Emergency Session Support
- EPS Bearer Context Support
- EPS GTPv2 Support on S11 Interface
- HSS Support Over S6a Interface
- IMSI Manager Scaling
- Inter-MME Handover Support
- Interworking Support
- IPv6 Support
- Load Balancing
- Local Cause Code Mapping
- Management System Overview
- MMEMgr Scaling to Support VPCDI
- MME Pooling
- MME Selection
- Mobile Equipment Identity Check
- Mobility Restriction
- Multiple PDN Support
- NAS Protocol Support
- NAS Signalling Security
- Network Sharing
- Operator Policy Support
- Overload Control
- Packet Data Network Gateway (P-GW) Selection
- Radio Resource Management Functions
- RAN Information Management
- Reachability Management
- SCTP Multi-homing Support
- Serving Gateway Pooling Support
- Serving Gateway Selection
- Session and Quality of Service Management
- Session Tracing
- State Location Information Retrieval Flag
- Subscriber Level Session Trace
- Target Access Restricted for the Subscriber Cause Code
- Threshold Crossing Alerts (TCA) Support
- Tracking Area List Management
- UMTS to LTE ID Mapping

3GPP R8 Identity Support

Provides the identity allocation of following type:

- **EPS Bearer Identity**
- **Globally Unique Temporary UE Identity (GUTI)**
- **Tracking Area Identity (TAI)**
- **MME S1-AP UE Identity (MME S1-AP UE ID)**

EPS Bearer Identity: An EPS bearer identity uniquely identifies EPS bearers within a user session for attachment to the E-UTRAN access and EPC core networks. The EPS Bearer Identity is allocated by the MME. There is a one to one mapping between EPS Radio Bearers via the E-UTRAN radio access network and EPS Bearers via the S1-MME interface between the eNodeB and MME. There is also a one-to-one mapping between EPS Radio Bearer Identity via the S1 and X2 interfaces and the EPS Bearer Identity assigned by the MME.
- **Globally Unique Temporary UE Identity (GUTI):** The MME allocates a Globally Unique Temporary Identity (GUTI) to the UE. A GUTI has; 1) unique identity for MME which allocated the GUTI; and 2) the unique identity of the UE within the MME that allocated the GUTI.

 Within the MME, the mobile is identified by the M-TMSI.

 The Globally Unique MME Identifier (GUMMEI) is constructed from MCC, MNC and MME Identifier (MMEI). In turn the MMEI is constructed from an MME Group ID (MMEGI) and an MME Code (MMEC).

 The GUTI is constructed from the GUMMEI and the M-TMSI.

 For paging, the mobile is paged with the S-TMSI. The S-TMSI is constructed from the MMEC and the M-TMSI.

 The operator needs to ensure that the MMEC is unique within the MME pool area and, if overlapping pool areas are in use, unique within the area of overlapping MME pools.

 The GUTI is used to support subscriber identity confidentiality, and, in the shortened S-TMSI form, to enable more efficient radio signaling procedures (e.g. paging and Service Request).

- **Tracking Area Identity (TAI):** Provides the function to assign the TAI list to the mobile access device to limit the frequency of Tracking Area Updates in the network. The TAI is the identity used to identify the tracking area or group of cells in which the idle mode access terminal will be paged when a remote host attempts to reach that user. The TAI consists of the Mobile Country Code (MCC), Mobile Network Code (MNC) and Tracking Area Code (TAC).

- **MME S1-AP UE Identity (MME S1-AP UE ID):** This is the temporary identity used to identify a UE on the S1-MME reference point within the MME. It is unique within the MME per S1-MME reference point instance.

ANSI T1.276 Compliance

ANSI T1.276 specifies security measures for Network Elements (NE). In particular it specifies guidelines for password strength, storage, and maintenance security measures.

ANSI T1.276 specifies several measures for password security. These measures include:

- Password strength guidelines
- Password storage guidelines for network elements
- Password maintenance, e.g. periodic forced password changes

These measures are applicable to the system and an element management system since both require password authentication. A subset of these guidelines where applicable to each platform will be implemented. A known subset of guidelines, such as certificate authentication, are not applicable to either product. Furthermore, the platforms support a variety of authentication methods such as RADIUS and SSH which are dependent on external elements. ANSI T1.276 compliance in such cases will be the domain of the external element. ANSI T1.276 guidelines will only be implemented for locally configured operators.

APN Restriction Support

The APN-Restriction value may be configured for each APN in the P-GW and transferred to the MME. It is used to determine, on a per-MS basis, whether it is allowed to establish EPS bearers to other APNs.

The APN-Restriction value is defined in clause 15.4 of 3GPP TS 23.060. APN-Restriction affects multiple procedures, such as Initial Attach, TAU, PDN connectivity, and inter-MME handovers. The MME saves the APN-Restriction value received in create session response for an APN and uses the maximum of the values from the currently active PDNs in the next create session request. If a PDN is disconnected, then the maximum APN-Restriction is adjusted accordingly.
Authentication and Key Agreement (AKA)

The MME provides EPS Authentication and Key Agreement mechanism for user authentication procedure over the E-UTRAN. The Authentication and Key Agreement (AKA) mechanism performs authentication and session key distribution in networks. AKA is a challenge-response based mechanism that uses symmetric cryptography. AKA is typically run in a Services Identity Module.

AKA is the procedure that take between the user and network to authenticate themselves towards each other and to provide other security features such as integrity and confidentiality protection.

In a logical order this follows the following procedure:

1. Authentication: Performs authentication by identifying the user to the network and identifying the network to the user.
2. Key agreement: Performs key agreement by generating the cipher key and generating the integrity key.
3. Protection: When the AKA procedure is performed, it protects the integrity of messages, the confidentiality of the signalling data, and the confidentiality of the user data.

Backup and Recovery of Key KPI Statistics

This feature allows the back up of a small set of MME key KPI counters for recovery of the counter values after a session manager (SessMgr) crash.

KPI calculation involves taking a delta between counter values from two time intervals and then determines the percentage of successful processing of a particular procedure in that time interval. When a SessMgr crashes and then recovers, the MME loses the counter values as they are reset to zero. So, the KPI calculation in the next interval will result in negative values for that interval. With this feature, it is possible to perform reliable KPI calculations even if a SessMgr crash occurs.

For details about the feature, commands, and new MME-BK schema, refer to the Backup and Recovery of Key KPI Statistics feature in this guide.

Bulk Statistics Support

The system's support for bulk statistics allows operators to choose to view not only statistics that are of importance to them, but also to configure the format in which it is presented. This simplifies the post-processing of statistical data since it can be formatted to be parsed by external, back-end processors.

When used in conjunction with an element manager, the data can be parsed, archived, and graphed.

The system can be configured to collect bulk statistics (performance data) and send them to a collection server (called a receiver). Bulk statistics are statistics that are collected in a group. The individual statistics are grouped by schema.

Following is a partial list of supported schemas:

- **System**: Provides system-level statistics.
- **Card**: Provides card-level statistics.
- **Port**: Provides port-level statistics.
- **MME-BK**: Provides selected set of backed-up and (post-SessMgr crash) recovered statistics.
- **MME**: Provides MME service statistics.
- **HSS**: Provides HSS service statistics.
- LCS: Provides Location Services statistics.
- SBC: Provides SBC service statistics for associations to Cell Broadcast Centers.
- SGs: Provides statistics for SGs connections.
- SGS-VLR: Provides statistics for SGs connections on a per-VLR basis.
- SLs: Provides SLs service statistics for Location Services.
- TAI: Provides MME statistics at the TAI (MCC/MNC/TAC) level.

The system supports the configuration of up to 4 sets (primary/secondary) of receivers. Each set can be configured with to collect specific sets of statistics from the various schemas. Statistics can be pulled manually from the chassis or sent at configured intervals. The bulk statistics are stored on the receiver(s) in files.

The format of the bulk statistic data files can be configured by the user. Users can specify the format of the file name, file headers, and/or footers to include information such as the date, chassis host name, chassis uptime, the IP address of the system generating the statistics (available for only for headers and footers), and/or the time that the file was generated.

When an element manager is used as the receiver, it is capable of further processing the statistics data through XML parsing, archiving, and graphing.

The Bulk Statistics Server component of an element manager parses collected statistics and stores the information in the PostgreSQL database. If XML file generation and transfer is required, this element generates the XML output and can send it to a Northbound NMS or an alternate bulk statistics server for further processing.

Additionally, if archiving of the collected statistics is desired, the Bulk Statistics server writes the files to an alternative directory on the server. A specific directory can be configured by the administrative user or the default directory can be used. Regardless, the directory can be on a local file system or on an NFS-mounted file system on an element manager server.

Cell Broadcast Center - SBC Interface

The MME provides support for Commercial Mobile Alert System (CMAS): SBC interface and underlying protocols. Warning Messages can be received from a Cell Broadcast Center (CBC) over the SBC-AP interface and relayed to all relevant eNodeBs over the S1-AP interface.

Refer to the *Cell Broadcast Center - SBC Interface* chapter in the *MME Administration Guide* for more information.

Closed Subscriber Groups

Closed Subscriber Group identifies a group of subscribers who are permitted to access one or more CSG cells of the PLMN as a member of the CSG for a Home eNodeB.

Refer to the *Closed Subscriber Groups* chapter in the *MME Administration Guide* for more information.

Congestion Control

The congestion control feature allows you to set policies and thresholds and specify how the system reacts when faced with a heavy load condition.
Congestion control monitors the system for conditions that could potentially degrade performance when the system is under heavy load. Typically, these conditions are temporary (for example, high CPU or memory utilization) and are quickly resolved. However, continuous or large numbers of these conditions within a specific time interval may have an impact on the system’s ability to service subscriber sessions. Congestion control helps identify such conditions and invokes policies for addressing the situation.

Congestion control operation is based on configuring the following:

- **Congestion Condition Thresholds**: Thresholds dictate the conditions for which congestion control is enabled and establishes limits for defining the state of the system (congested or clear). These thresholds function in a way similar to operation thresholds that are configured for the system as described in the Thresholding Configuration Guide. The primary difference is that when congestion thresholds are reached, a service congestion policy and an SNMP trap, starCongestion, are generated.

A threshold tolerance dictates the percentage under the configured threshold that must be reached in order for the condition to be cleared. An SNMP trap, starCongestionClear, is then triggered.

The following system resources can be monitored:

- System CPU usage
- System service CPU usage (Demux-Card CPU usage)
- System Memory usage
- License usage
- Maximum Session per service

- **Service Congestion Policies**: Congestion policies are configurable for each service. These policies dictate how services respond when the system detects that a congestion condition threshold has been crossed.

Congestion control can be used in conjunction with the load balancing feature provided on the MME. For more information on MME load balancing, refer to the Load Balancing section in this chapter.

For more information or to configure Overload Control using the basic Congestion Control functionality, refer to the Congestion Control chapter in the Cisco ASR 5x00 Series System Administration Guide.

For more information about the Enhanced Congestion Control and Overload Control chapter in this guide.

Define Same TAI in Multiple TAI Lists

Prior to 17.0, the MME could have a tracking area in only one tracking area list (TAI List). Consequently, the tracking area list assigned to subscribers attaching from different TAI will be same, even if the adjacency of these tracking areas is not same. This results in MME getting TAU even as subscribers moved to the adjacent area.

With this enhancement, the MME will allow operators to configure adjacency lists as TAI Lists, thus reducing the Tracking Area Updates (TAU) received by MME. This feature enables the MME to send configured customized TAI List in ATTACH_ACCEPT/TAU_ACCEPT when a request is received from the custom or border TAI.

The reduced TAU results in less signaling load on the MME and better operational efficiency.

Emergency Call Release

Notifying the GMLC of the emergency call release event allows the GMLC to delete all information previously stored for the emergency call in accordance with regulations.
In compliance with 3GPP TS 29.172, the MME location services (LCS) feature supports sending the EMERGENCY_CALL_RELEASE event in a subscriber location report (SLR) request message to the gateway mobile location centre (GMLC) when an emergency call is released or when an emergency PDN is disconnected at the MME.

With this new functionality, the MME notifies the GMLC of Emergency Call Release. The call release event enables the GMLC to clear the cache for existing calls and to correctly log the duration of an emergency call. Without call release facilitating the clearing of the cache, the location platform could send the old (erroneous) location information in response to a new location request for an E-911 call.

Emergency Session Support

The MME supports the creation of emergency bearer services which, in turn, support IMS emergency sessions. Emergency bearer services are provided to normally attached UEs and to UEs that are in a limited service state (depending on local service regulations, policies, and restrictions).

The standard (refer to 3GPP TS 23.401) has identified four behaviors that are supported:

- Valid UEs only
- Authenticated UEs only
- IMSI required, authentication optional
- All UEs

To request emergency services, the UE has the following two options:

- UEs that are in a limited service state (due to attach reject from the network, or since no SIM is present), initiate an ATTACH indicating that the ATTACH is for receiving emergency bearer services. After a successful attach, the services that the network provides the UE is solely in the context of Emergency Bearer Services.

- UEs that camp normally on a cell initiates a normal ATTACH if it requires emergency services. Normal attached UEs initiated a UE Requested PDN Connectivity procedure to request Emergency Bearer Services.

EPS Bearer Context Support

Provides support for subscriber default and dedicated Evolved Packet System (EPS) bearer contexts in accordance with the following standards:

- **3GPP TS 36.413 V8.8.0 (2009-12):** 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP) (Release 8)
- **IETF RFC 4960, Stream Control Transmission Protocol, December 2007**

EPS bearer context processing is based on the APN that the subscriber is attempting to access. Templates for all of the possible APNs that subscribers will be accessing must be configured within the system. Up to 1024 APNs can be configured on the system.

Each APN template consists of parameters pertaining to how UE contexts are processed such as the following:

- PDN Type: IPv4, IPv6, or IPv4v6
- EPS Bearer Context timers
• Quality of Service

A total of 11 EPS bearer per subscriber are supported. These could be all dedicated, or 1 default and 10 dedicated or any combination of default and dedicated context. Note that there must be at least one default EPS Bearer context in order for dedicated context to come up.

EPS GTPv2 Support on S11 Interface

Support for the EPS GTPv2 on S11 interface in accordance with the following standards:

- **3GPP TS 29.274 V8.4.0 (2009-12):** 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3 (Release 8)

The system supports the use of GTPv2 for EPS signalling context processing.

When the GTPv2 protocol is used, accounting messages are sent to the charging gateways (CGs) over the Ga interface. The Ga interface and GTPv2 functionality are typically configured within the system's source context. As specified by the standards, a CDR is not generated when a session starts. CDRs are generated according to the interim triggers configured using the charging characteristics configured for the MME, and a CDR is generated when the session ends. For interim accounting, STOP/START pairs are sent based on configured triggers.

GTP version 2 is always used. However, if version 2 is not supported by the CGF, the system reverts to using GTP version 1. All subsequent CDRs are always fully-qualified partial CDRs. All CDR fields are R4.

Whether or not the MME accepts charging characteristics from the SGSN can be configured on a per-APN basis based on whether the subscriber is visiting, roaming or, home.

By default, the MME always accepts the charging characteristics from the SGSN. They must always be provided by the SGSN for GTPv1 requests for primary EPS Bearer contexts. If they are not provided for secondary EPS Bearer contexts, the MME re-uses those from the primary.

If the system is configured to reject the charging characteristics from the SGSN, the MME can be configured with its own that can be applied based on the subscriber type (visiting, roaming, or home) at the APN level. MME charging characteristics consist of a profile index and behavior settings. The profile indexes specify the criteria for closing accounting records based specific criteria.

Important: For more information on GTPv2 configuration, refer to the Creating and Configuring the eGTP Service and Interface Association section in the Mobility Management Entity Configuration chapter of the MME Service Administration Guide.

HSS Support Over S6a Interface

Provides a mechanism for performing Diameter-based authorization, authentication, and accounting (AAA) for subscriber bearer contexts based on the following standards:

- **3GPP TS 29.272 V8.1.1 (2009-01):** 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol (Release 8)
The S6a protocol is used to provide AAA functionality for subscriber EPS Bearer contexts through Home Subscriber Server (HSS).

During the initial attachment procedures the MME sends to the USIM on AT via the HSS the random challenge (RAND) and an authentication token AUTN for network authentication from the selected authentication vector. At receipt of this message, the USIM verifies that the authentication token can be accepted and if so, produces a response. The AT and HSS in turn compute the Cipher Key (CK) and Integrity Key (IK) that are bound to Serving Network ID. During the attachment procedure the MME requests a permanent user identity via the S1-MME NAS signaling interface to eNodeB and inserts the IMSI, Serving Network ID (MCC, MNC) and Serving Network ID it receives in an Authentication Data Request to the HSS. The HSS returns the Authentication Response with authentication vectors to MME. The MME uses the authentication vectors to compute the cipher keys for securing the NAS signaling traffic.

At EAP success, the MME also retrieves the subscription profile from the HSS which includes QoS information and other attributes such as default APN name and S-GW/P-GW fully qualified domain names.

Among the AAA parameters that can be configured are:

- Authentication of the subscriber with HSS
- Subscriber location update/location cancel
- Update subscriber profile from the HSS
- Priority to dictate the order in which the servers are used allowing for multiple servers to be configured in a single context
- Routing Algorithm to dictate the method for selecting among configured servers. The specified algorithm dictates how the system distributes AAA messages across the configured HSS servers for new sessions. Once a session is established and an HSS server has been selected, all subsequent AAA messages for the session will be delivered to the same server.

IMSI Manager Scaling

In Release 18.0, with support for the expanded capacities of the VPC-DI and ASR5500 platforms, the IMSIMgr has become a bottleneck. The IMSIMgr Scaling feature increases the number of IMSI managers that can be made available on the MME. - from 1 (ASR5000) to a maximum of 4. The number is configurable.

The IMSIMgr is the de-multiplexing process that selects the SessMgr instance to host a new session based on a demux algorithm logic to host a new session by handling new calls requests from the MMEgr, the EGTPC Mgr, and the (e)SGTPC Mgr (New MME handoffs). The new call requests or signaling procedures include Attach, Inter-MME TAU, PS Handover, and SGs, all of which go through the IMSIMgr. The IMSIMgr process also maintains the mapping of the UE identifier (e.g., IMSI/GUTI) to the SessMgr instance.

Important: IMSIMgr Scaling is only available on the ASR5500 and VPC-DI platforms.

By increasing the number of IMSIMgr instances, the new call handling capacity (primarily for for Attach and SGs procedures) of the MME is increased as the calls are distributed across multiple instances. The call distribution logic across IMSIMgrs utilizes a simple hash operation on IMSI/GUTI to select the IMSIMgr instance.

It is the MMEgr/EGTPC Mgr/SGTPC Mgr that selects an IMSIMgr instance to be contacted for session setup. Each subscriber session in a SessMgr will maintain the IMSIMgr instance number that ‘hosts’ the mapping for the IMSI. The
SessMgrs now remembers the IMSIMgr instance Ids per subscriber for the target IMSIMgr instance number (IMSIMgr instance Id calculated by hash on the IMSI).

As a result of IMSIMgr Scaling, a second behavior change has been implemented. Now all IMSIMgr instances will send the current count of sessions per MME service to the MMEMgr via existing response messaging. The MMEMgr shall send the same data received from multiple IMSIMgr instances back to the IMSIMgr in existing request messaging. As a result, each IMSIMgr shall know the session count per MME service for all IMSIMgr instances. Given this information, the per MME service session limits can now be enforced by each IMSIMgr instance.

Customers will notice the following changes when the number of IMSI managers is set for more than 1:

- It is possible to initiate an audit request for a single, specific IMSIMgr instance.
- Increased tolerance for configurable MME per service session limits. This can be visualized when configuring commands such as bind in the MME Service configuration mode.
- Increased tolerance for Attach rate control as the MME Attach rate control will be independently enforced by each IMSI Mgr instance.

Important: The Exec mode task facility insimgr max command sets the number of IMSI managers. This is a boot-time configuration and must be added in the configuration file to be implemented at startup and before any MME related configuration takes effect, that is before any IMSIMgr is started. The run-time configuration of this CLI does not have any effect.

This feature does not require a special license.

Inter-MME Handover Support

The S10 interface facilitates user mobility between two MMEs providing for the transfer of the UE context from one to the other. It is a GTPv2 control plane interface that supports the following handover types and features:

- E-UTRAN-to-UTRAN (MME-to-MME) handover through:
 - Tracking Area Update based inter-MME relocation
 - Attach at an eNodeB connected to a different MME
 - S1 handover based inter-MME relocation
- The MME supports handing over multiple bearers and multiple PDNs over to another MME
- Trace functionality, monitor protocol, and monitor subscriber
- DNS client configuration
- IPv4 and IPv6: for peer MME selection, the preference is given to IPv6 addresses. IPv4 addresses are ignored if IPv6 addresses are present.

Interworking Support

This section describes various interworking and handover scenarios supported by the MME. The following interworking types are provided:

- Interworking with SGSNs
- Handover Support for S4 SGSNs
• Unoptimized Non-3GPP Handover Support

Interworking with SGSNs

This feature enables an integrated EPC core network to anchor calls from multi-mode access terminals and supports seamless mobility on call hand-offs between an LTE or GERAN/UTRAN access network. This provides a valuable function to enable LTE operators to generate incremental revenue from inbound roaming agreements with 2G/3G roaming partners.

In order to support inter-RAT hand-offs for dual-mode access terminals between LTE and 2G/3G networks with 3GPP Pre-Release 8 SGSN's, the MME will support combined hard handover and SRNS relocation procedures via the GTPv1 Gn/Gp reference interface. In preparation for the handover, the MME sends a Forward Relocation Request to the SGSN and includes subscriber identity and context information including IMSI, Mobility Management context and PDP context. The PDP context includes the GGSN address for the user plane and the uplink Tunnel Endpoint ID. These addresses are equivalent to the PDN GW address. The MME maps the EPS bearer parameters to the PDP contexts.

After sending the forward relocation signaling to the target SGSN, the MME deletes the EPS bearer resources by sending a Delete Bearer Request to the S-GW with a Cause code that instructs the S-GW not to initiate delete procedures toward the P-GW.

When a mobile subscriber roams from an EUTRA to GERAN/UTRAN access network it must also send a Routing Area Update (RAU) to register its location with the target network. The target SGSN sends a Context Request to the MME with P-TMSI to get the Mobility Management contexts and PDP contexts for the subscriber session. The SGSN uses the Globally Unique Temporary ID (GUTI) from the MME to identify the P-TMSI/RAI.

Handover Support for S4-SGSNs

The S3 interface facilitates user mobility between an MME and an S4-SGSN providing for the transfer of the UE context between the two. It is a GTPv2 control plane interface that supports the following handover types:

• E-UTRAN-to-UTRAN and E-UTRAN-to-GERAN (MME-to-R8 SGSN) handover through:
 • Routing Area Update (RAU) based MME-R8 SGSN relocation where the RAU could be a result of UE movement.
 • Attach at an RNC connected to a R8 SGSN
 • S1 handover/SRNS relocation based MME-R8 SGSN relocation
• UTRAN-to-E-UTRAN and GERAN-to-E-UTRAN (R8 SGSN-to-MME) handover through:
 • Tracking Area Update (TAU) based R8 SGSN-MME relocation where the TAU could be a result of UE movement.
 • Attach at an eNodeB connected to an MME.
 • SRNS relocation/S1 handover based R8 SGSN-MME relocation.

All handover types support handing over multiple bearers and multiple PDNs from the MME to a R8 SGSN and vice versa.

The S3 interface also supports the following features:

• Monitor Protocol and Monitor Subscriber
• Subscriber Session Trace
• IPv4 and IPv6: for peer SGSN selection, the preference is given to IPv6 addresses. IPv4 addresses are ignored if IPv6 addresses are present.
• Operator Policy for SGSN selection
• Session Recovery: all MME sessions established using the S3 interface are capable of being recovered in case of a session manager task failure.

Unoptimized Non-3GPP Handover Support

The MME provides support for Non-3GPP to EUTRAN and EUTRAN to Non-3GPP un-optimized handovers. These include the LTE-eHRPD handover scenarios in sections 8.2.1.1 and 8.2.1.2, and 8.2.2 and 8.2.3 of 3GPP TS 23.402-910.

No configuration is required to enable this functionality on the MME.

Note:

• PDN Connectivity request should contain Request Type as HANDOVER.
• P-GW is selected only through HSS-provided P-GW address or FQDN (MIP6-Info), with P-GW allocation type as static always.
• In the case of multiple PDN connectivity during handover from non-3gpp access to EUTRAN, the ESM PDN connectivity message from UE is transported via S1AP Uplink NAS transport. All other such PDN connectivity requests shall be rejected.
• Handovers to other access (such as UTRAN, GERAN) are only supported after the S11 modify bearer procedures with S-GW have been completed for all PDNs.

Performance Indicators:

The following MME schema bulk statistics track the number of outbound and inbound non-3GPP handovers that were attempted, were successful, and which failed. Note: During an inbound relocation, both the handover statistics and relevant attach/PDN connectivity statistics will be incremented.

- out-non-3GPP-ho-attempted
- out-non-3GPP-ho-success
- out-non-3GPP-ho-failures
- in-non-3GPP-ho-attempted
- in-non-3GPP-ho-success
- in-non-3GPP-ho-failures

The `show mme-service statistics` command also displays the number of outbound and inbound non-3GPP handovers that were attempted, were successful, and which failed. Note that these counters increment on a per-PDN basis.

The system disconnect reason `disc-reason-484 - mme-reloc-to-non-3GPP` tracks the total number of session disconnects resulting from outbound non-3GPP handovers.

IPv6 Support

This feature allows IPv6 subscribers to connect via the LTE/SAE infrastructure in accordance with the following standards:

- RFC 2461: Neighbor Discovery for IPv6
- RFC 2462: IPv6 Stateless Address Autoconfiguration
The MME allows an APN to be configured for IPv6 EPS Bearer contexts. Also, an APN may be configured to simultaneously allow IPv4 EPS Bearer contexts.

The MME supports IPv6 stateless dynamic auto-configuration. The mobile station may select any value for the interface identifier portion of the address. The link-local address is assigned by the MME to avoid any conflict between the mobile station link-local address and the MME address. The mobile station uses the interface identifier assigned by the MME during the stateless address auto-configuration procedure. Once this has completed, the mobile can select any interface identifier for further communication as long as it does not conflict with the MME’s interface identifier that the mobile learned through router advertisement messages from the MME.

Control and configuration of the above is specified as part of the APN configuration on the MME, e.g., IPv6 address prefix and parameters for the IPv6 router advertisements. RADIUS VSAs may be used to override the APN configuration.

Following IPv6 EPS Bearer context establishment, the MME can perform either manual or automatic 6to4 tunneling, according to RFC 3056, Connection of IPv6 Domains Via IPv4 Clouds.

MME Interfaces Supporting IPv6 Transport

The following MME interfaces support IPv6 transport:

- S1-MME: runs S1-AP/SCTP over IPv6 and supports IPv6 addresses for S1-U endpoints.
- S3
- S6a
- S10
- S11
- S13
- S8c
- SGs
- SLg
- SLs
- Sv
- Gn

Load Balancing

Load balancing functionality permits UEs that are entering into an MME pool area to be directed to an appropriate MME in a more efficient manner, spreading the load across a number of MMEs.
Load balancing is achieved by setting a weight factor for each MME so that the probability of the eNodeB selecting an MME is proportional to its weight factor. The weight factor is typically set according to the capacity of an MME node relative to other MME nodes. The weight factor is sent from the MME to the eNodeB via S1-AP messages.

Refer to the Load Balancing and Rebalancing chapter for more information about this feature.

MME load balancing can be used in conjunction with congestion control. For more information on congestion control, refer to the Congestion Control section in this chapter.

Load Re-balancing

The MME load re-balancing functionality permits UEs that are registered on an MME (within an MME pool area) to be moved to another MME.

The rebalancing is triggered using an exec command on the mme-service from which UEs should be offloaded.

When initiated, the MME begins to offload a cross-section of its subscribers with minimal impact on the network and users. The MME avoids offloading only low activity users, and it offloads the UEs gradually (configurable from 1-1000 minutes). The load rebalancing can off-load part of or all the subscribers.

Refer to the Load Balancing and Rebalancing chapter in the MME Administration Guide for more information about this feature.

Local Cause Code Mapping

Local cause code mapping provides the operator with the flexibility to ignore the default EPS Mobility Management (EMM) cause code and to configure a preferred EMM cause code to be sent to a UE in response to a procedural failure. For example, the operator can instruct the MME to return one of six different EMM cause codes other than the default when the context received from a peer SGSN (during a TAU procedure) does not contain any active PDP contexts.

Local cause code mapping can be configured in either or both the MME-Service configuration or in the Call-Control Profile configuration. Refer to these two configuration modes in the Command Line Interface Reference to see the current list of local-cause-code-mapping commands.

Management System Overview

The system's management capabilities are designed around the Telecommunications Management Network (TMN) model for management - focusing on providing superior quality network element and element management system functions. The system provides element management applications that can easily be integrated, using standards-based protocols (CORBA and SNMPv1, v2), into higher-level management systems - giving wireless operators the ability to integrate the system into their overall network, service, and business management systems. In addition, all management is performed out-of-band for security and to maintain system performance.

The Operation and Maintenance module of the system offers comprehensive management capabilities to the operators and enables them to operate the system more efficiently. There are multiple ways to manage the system either locally or remotely using its out-of-band management interfaces.

These include:

- Using the command line interface (CLI)
- Remote login using Telnet, and Secure Shell (SSH) access to CLI through SPIO card's Ethernet management interfaces
- Local login through the Console port on SPIO card using an RS-232 serial connection
- Supports communications through 10 Base-T, 100 Base-TX, 1000 Base-TX, or 1000 Base-SX (optical gigabit Ethernet) Ethernet management interfaces on the SPIO
- Client-Server model supports any browser (i.e. Microsoft Internet Explorer v5.0 and above or Netscape v4.7 or above, and others)
- Supports Common Object Request Broker Architecture (CORBA) protocol and Simple Network Management Protocol version 1 (SNMPv1) for fault management
- Provides complete Fault, Configuration, Accounting, Performance, and Security (FCAPS) capabilities
- Can be easily integrated with higher-level network, service, and business layer applications using the Object Management Group’s (OMG’s) Interface Definition Language (IDL)

The following figure demonstrates these various element management options and how they can be utilized within the wireless carrier network.

Figure 4. Element Management Methods

Important: MME management functionality is enabled by default for console-based access. For more information on command line interface based management, refer to the *Command Line Interface Reference.*
MMEMgr Scaling to Support VPC-DI

MME has undergone architectural changes to allow enhanced operations on Cisco's Virtual Packet Core (VPC)-Distributed Instance (DI) platform. VPC (Cisco's brand name for StarOS VM instances) is StarOS running as a virtual machine (VM). Multiple VMs act as a single StarOS instance with shared interfaces, shared service addresses, load balancing, redundancy, and a single point of management.

For the MME to take advantage of next generation platforms, such as the VPC-DI, the MME architecture has been changed to allow:

- Linear capacity (memory) growth to support greater numbers of UEs and ENBs
- Signaling performance growth in term of CEPS
- Improved redundancy for RAN connections
- MMEMgr tasks are distributed across session PSC/DPC/SF-VM
- MMEDemux tasks are moved to demux PSC/DPC/SF-VM
- IMSIMgr scaling has increased the number of possible IMSIMgr tasks
- Increase in number of MMEMgrs
 - maximum of 12 MMEMgrs in an ASR5K platform
 - maximum of 24 MMEMgrs in either an ASR5500 and a VPC
- Two models of configuration, normal density and high density

For more information about the VPC platform, ask your Cisco Representative.

MME Pooling

Provides support to configure MME pool area consisting multiple MMEs within which a UE may be served without any need to change the serving MME.

The benefits of MME pooling are:

- Enables Geographical Redundancy, as a pool can be distributed across sites.
- Increases overall capacity, as load sharing across the MMEs in a pool is possible (see the Load Balancing feature in this chapter).
- Converts inter-MME Tracking Area Updates (TAUs) to intra-MME TAUs for moves between the MMEs of the same pool. This substantially reduces signaling load as well as data transfer delays.
- Eases introduction of new nodes and replacement of old nodes as subscribers can be moved in a planned manner to the new node.
- Eliminates single point of failure between an eNodeB and MME.
- Enables service downtime free maintenance scheduling.

An MME Pool Area is defined as an area within which a UE may be served without need to change the serving MME. An MME Pool Area is served by one or more MMEs in parallel. MME Pool Areas are a collection of complete Tracking Areas. MME Pool Areas may overlap each other.

The Cisco MME supports MME Pooling functionality as defined in 3GPP TS 23.401. MME pooling allows carriers to load balance sessions among pooled MMEs.

The Cisco MME supports configuration of up to a pool size of 32 nodes.
MME Selection

The MME selection function selects an available MME for serving a UE. This feature is needed for MME selection for handover with minimal MME changes.

MME selection chooses an available MME for serving a UE. Selection is based on network topology, i.e. the selected MME serves the UE’s location and in case of overlapping MME service areas, the selection function may prefer MME’s with service areas that reduce the probability of changing the MME.

Mobile Equipment Identity Check

The Mobile Equipment Identity Check Procedure permits the operator(s) of the MME and/or the HSS and/or the PDN-GW to check the Mobile Equipment's identity with EIR.

The mobile equipment (ME) identity is checked through the MME by passing it to an Equipment Identity Register (EIR) over the S13 interface and then the MME analyzes the response from the EIR in order to determine its subsequent actions; like rejecting or attaching a UE.

Mobility Restriction

The following types of mobility restriction are supported on the MME:

- Handover Restriction
- Regional Zone Code Restriction

Handover Restriction

Mobility Restriction comprises the functions for restrictions to mobility handling of a UE in E-UTRAN access. In ECM-CONNECTED state, the core network provides the radio network with a Handover Restriction List.

The MME performs mobility or handover restrictions through the use of handover restriction lists. Handover restriction lists are used by the MME operator policy to specify roaming, service area, and access restrictions. Mobility restrictions at the MME are defined in 3GPP TS 23.401.

Regional Zone Code Restriction

Regional Zone Code Restriction allows an operator to control the areas in which a UE can roam in to receive service. The code representing the zone in which a UE is to be offered service by the network can be configured in the HSS or using local provisioning in the MME.

Once provisioned, the following restriction types are supported on the MME:

- HSS subscription based zone code restriction - if the subscription data in the HSS contains zone codes, the UE is allowed to camp only on those zones.
 Support for Regional Zone Code restriction based on HSS subscription data allows operators to offer zone based EPC subscriptions to home subscribers.
- Local policy based zone code restrictions - using the operator policy on the MME, certain ranges of IMSI or specific PLMN(s) could be restricted from or allowed to camp on, zones within the MME service area. This policy could apply to any PLMN.
Local policy based zone code restriction allows operators to control access of EPC by roaming subscribers on a zone basis.

Multiple PDN Support

This feature provides multiple PDN connectivity support for UE initiated service requests.

The MME supports an UE-initiated connectivity establishment to separate P-GWs or a single P-GW in order to allow parallel access to multiple PDNs. Up to 11 PDNs are supported per subscriber.

Refer to *PDN Type Control* in this chapter for information about the ability to control the PDN type (IPv4, IPv6) to which a given UE can be connected.

NAS Protocol Support

MME provides this protocol support between the UE and the MME. The NAS protocol includes following elementary procedures for EPS Mobility Management (EMM) and EPS Session Management (ESM):

EPS Mobility Management (EMM)

This feature used to support the mobility of user equipment, such as informing the network of its present location and providing user identity confidentiality. It also provides connection management services to the session management (SM) sublayer.

An EMM context is established in the MME when an attach procedure is successfully completed. The EMM procedures are classified as follows:

- **EMM Common Procedures**: An EMM common procedure can always be initiated when a NAS signalling connection exists.

 Following are the common EMM procedure types:
 - Globally Unique Temporary Identity (GUTI) reallocation
 - Authentication and security mode
 - Identification
 - EMM information

- **EMM Specific Procedures**: This procedure provides Subscriber Detach or de-registration procedure.

- **EMM Connection Management Procedures**: This procedure provides connection management related function like Paging procedure.

EPS Session Management (ESM)

This feature is used to provide the subscriber session management for bearer context activation, deactivation, modification, and update procedures.

NAS Signalling Security

It provides integrity protection and encryption of NAS signalling. The NAS security association is between the UE and the MME.
The MME uses the NAS security mode command procedure to establish a NAS security association between the UE and MME, in order to protect the further NAS signalling messages.

The MME implements AES algorithm (128-EEA1 and 128-EEA2) for NAS signalling ciphering and SNOW 3G algorithm (128-EIA1 and 128-EIA2) for NAS signalling integrity protection.

- 128-EIA1 = SNOW 3G
- 128-EIA2 = AES

Network Sharing

The LTE architecture enables service providers to reduce the cost of owning and operating the network by allowing the service providers to have separate Core Network (CN) elements (MME, SGW, PDN GW) while the E-UTRAN (eNBs) is jointly shared by them. This is enabled by the S1-f lex mechanism by enabling each eNodeB to be connected to multiple CN entities. When a UE attaches to the network, it is connected to the appropriate CN entities based on the identity of the service provider sent by the UE.

In such a network sharing configuration, complete radio (access) network and partial core network is shared among different operators. Each operator has its own network node for S-GW/P-GW, etc., while sharing a MME and the rest of the radio network.

To support this network sharing configuration, the MME service can be configured with multiple local PLMNs per service. This means that each mme-service will handle multiple PLMNs and will indicate this to the eNodeb during S1 SETUP procedure (as well using the S1 MME CONFIGURATION UPDATE message).

The configuration of these additional PLMNs is implemented using the network-sharing command within the mme-service config mode. Refer to the Command Line Reference for detailed information on using this command.

When a UE attaches to the MME, the GUTI assignment will use the mme id corresponding to the PLMN configuration.

Operator Policy Support

The operator policy provides mechanisms to fine tune the behavior of subsets of subscribers above and beyond the behaviors described in the user profile. It also can be used to control the behavior of visiting subscribers in roaming scenarios, enforcing roaming agreements and providing a measure of local protection against foreign subscribers.

An operator policy associates APNs, APN profiles, an APN remap table, and a call-control profile to ranges of IMSIs. These profiles and tables are created and defined within their own configuration modes to generate sets of rules and instructions that can be reused and assigned to multiple policies. In this manner, an operator policy manages the application of rules governing the services, facilities, and privileges available to subscribers. These policies can override standard behaviors and provide mechanisms for an operator to get around the limitations of other infrastructure elements, such as DNS servers and HSSs.

The operator policy configuration to be applied to a subscriber is selected on the basis of the selection criteria in the subscriber mapping at attach time. A maximum of 1,024 operator policies can be configured. If a UE was associated with a specific operator policy and that policy is deleted, the next time the UE attempts to access the policy, it will attempt to find another policy with which to be associated.

A default operator policy can be configured and applied to all subscribers that do not match any of the per-PLMN or IMSI range policies.

Changes to the operator policy take effect when the subscriber re-attaches and subsequent EPS Bearer activations.

Refer to the Operator Policy chapter in this guide for more information.
Overload Control

Using the Congestion Control functionality or the Enhanced Congestion Control functionality, the MME can signal to the eNodeBs to which it is connected to redirect traffic to other MMEs in the MME pool. This is accomplished using the S1 interface Overload Procedure (3GPP TS 36.300 and 3GPP TS 36.413).

When overload control is configured and a congestion threshold is reached, the MME can be configured to send an S1AP Overload Start message to a percentage of the eNodeBs to which the MME is connected. To reflect the amount of load that the MME wishes to reduce, this percentage configurable. In the Overload Response IE sent to the eNodeBs, the MME can request the eNodeB to reject or permit specific types of sessions, including:

- reject non-emergency sessions
- reject new sessions
- permit emergency sessions
- permit high-priority sessions and mobile-terminated services
- reject delay-tolerant access.

For more information or to configure Overload Control using the basic Congestion Control functionality, refer to the Congestion Control chapter in the System Administration Guide.

For more information or to configure Overload Control using the Enhanced Congestion Control functionality, refer to the Enhanced Congestion Control and Overload Control chapter in this guide.

PDN Type Control

PDN Type Control enables the MME to override the requested Packet Data Network (PDN) type based on the inbound roamer PLMN, and assign the UE to an IPv4 only or IPv6 only PDN.

If a UE requests an IPv4v6 PDN, it can be downgraded to an IPv4- or IPv6-only address. The MME signals the appropriate cause to the UE to account for the PDN type change.

This functionality enables operators to control resource usage for roaming and home subscribers differently, and ensures that IP network continuity works for inbound roamers.

PDN Type Control is configured in a call control profile that is applied via an operator policy. Refer to the Call Control Profile Configuration Mode chapter of the Command Line Reference for more information.

Packet Data Network Gateway (P-GW) Selection

Provides a straightforward method based on a default APN provided during user attachment and authentication to assign the P-GW address in the VPLMN or HPLMN. The MME also has the capacity to use a DNS transaction to resolve an APN name provided by a UE to retrieve the PDN GW address.

P-GW selection allocates a P-GW that provides the PDN connectivity for the 3GPP access. The function uses subscriber information provided by the HSS and possibly additional criteria. For each of the subscribed PDNs, the HSS provides:

- an IP address of a P-GW and an APN, or
- an APN and an indication for this APN whether the allocation of a P-GW from the visited PLMN is allowed or whether a P-GW from the home PLMN shall be allocated.

The HSS also indicates the default APN for the UE. To establish connectivity with a PDN when the UE is already connected to one or more PDNs, the UE provides the requested APN for the PDN GW selection function.
If the HSS provides an APN of a PDN and the subscription allows for allocation of a PDN GW from the visited PLMN for this APN, the PDN GW selection function derives a PDN GW address from the visited PLMN. If a visited PDN GW address cannot be derived, or if the subscription does not allow for allocation of a PDN GW from the visited PLMN, then the APN is used to derive a PDN GW address from the HPLMN.

Radio Resource Management Functions

Radio resource management functions are concerned with the allocation and maintenance of radio communication paths, and are performed by the radio access network.

To support radio resource management in E-UTRAN, the MME provides the RAT/Frequency Selection Priority (RFSP) parameter to an eNodeB across S1. The RFSP is a "per UE" parameter that is used by the E-UTRAN to derive UE specific cell reselection priorities to control idle mode camping. The RFSP can also be used by the E-UTRAN to decide on redirecting active mode UEs to different frequency layers or RATs.

The MME receives the RFSP from the HSS during the attach procedure. For non-roaming subscribers, the MME transparently forwards the RFSP to the eNodeB across S1. For roaming subscribers, the MME may alternatively send an RFSP value to the eNodeB across S1 that is based on the visited network policy, such as an RFSP pre-configured per Home-PLMN or a single RFSP’s values to be used for all roamers independent of the Home-PLMN.

RAN Information Management

The MME supports RAN Information Management (RIM) procedures as defined in 3GPP TS 23.401 on the S1-MME, S3, Gn, and S10 interfaces.

RIM procedures allow the MME to exchange information between applications belonging to the RAN nodes. The MME provides addressing, routing and relaying support for the RAN information exchange.

Reachability Management

It provides a mechanism to track a UE which is in idle state for EPS connection management.

To reach a UE in idle state the MME initiates paging to all eNodeBs in all tracking areas in the TA list assigned to the UE. The EPS session manager have knowledge about all the eNodeB associations to the MME and generates a list of eNodeBs that needs to be paged to reach a particular UE.

The location of a UE in ECM-IDLE state is known by the network on a Tracking Area List granularity. A UE in ECM-IDLE state is paged in all cells of the Tracking Areas in which it is currently registered. The UE may be registered in multiple Tracking Areas. A UE performs periodic Tracking Area Updates to ensure its reachability from the network.

SCTP Multi-homing Support

This sections describes multi-homing support for specific interfaces on the MME.

- **S1-MME** – support for up to two SCTP bind end point IPv4 or IPv6 addresses.
- **S6a** – support for up to four SCTP bind end point IPv4 or IPv6 addresses.
- **SBc** – support for up to two SCTP bind end point IPv4 or IPv6 addresses.
- **SGs** – support for up to two SCTP bind end point IPv4 or IPv6 addresses.
• SLs – support for up to two SCTP bind end point IPv4 or IPv6 addresses.

Serving Gateway Pooling Support

The S-GW supports independent service areas from MME pooling areas. Each cell is associated to a pool of MMEs and a pool of Serving Gateways. Once a cell selects an MME, that MME is able to select an S-GW which is in an S-GW pool supported by the cell.

Static S-GW pools can be configurable on the MME. Each pool is organized as a set of S-GWs and the Tracking Area Identities (TAIs) supported by them, known as a service area (SA). The incoming TAI is used to select an SA. Then, based on protocol and statistical weight factors, an S-GW is selected from the pool serving that SA. The same list of S-GWs may serve multiple TAIs. Static S-GW pools are used if there is no DNS configured or as a fallback if DNS discovery fails.

For additional Information on TAI lists, refer to the Tracking Area List Management section in this overview.

Serving Gateway Selection

The Serving Gateway (S-GW) selection function selects an available S-GW to serve a UE. This feature reduces the probability of changing the S-GW and a load balancing between S-GWs. The MME uses DNS procedures for S-GW selection.

The selection is based on network topology; the selected S-GW serves the UE’s location, and in the case of overlapping S-GW service areas, the selection may prefer S-GWs with service areas that reduce the probability of changing the S-GW. If a subscriber of a GTP-only network roams into a PMIP network, the PDN GWs (P-GWs) selected for local breakout supports the PMIP protocol, while P-GWs for home routed traffic use GTP. This means the S-GW selected for such subscribers may need to support both GTP and PMIP, so that it is possible to set up both local breakout and home routed sessions for these subscribers.

Session and Quality of Service Management

This support provides a foundation for contributing towards improved Quality of User Experience (QoE) by enabling deterministic end-to-end forwarding and scheduling treatments for different services or classes of applications pursuant to their requirements for committed bandwidth resources, jitter and delay. In this way, each application receives the service treatment that users expect.

The MME Operator Policy configuration allows the specification of QoS for each traffic class that can either be used as a default or as an over ride to the HSS settings.

In LTE-EPC 4G architectures, QoS management is network controlled via dynamic policy interactions between the PCRF and PDN GW. EPS bearer management is used to establish, modify or remove dedicated EPC bearers in order to provide service treatments tied to the needs of specific applications/service data flows. The service priority is provisioned based on QoS Class Identifiers (QCI) in the Gx policy signaling. PCRF signaling interaction may also be used to establish or modify the APN-AMBR attribute assigned to the default EPS bearer.

When it is necessary to set-up a dedicated bearer, the PDN GW initiates the Create Dedicated Bearer Request which includes the IMSI (permanent identity of mobile access terminal), Traffic Flow Template (TFT - 5-tuple packet filters) and S5 Tunnel Endpoint ID (TEID) information that is propagated downstream via the S-GW over the S11 interface to the MME. The Dedicated Bearer signaling includes requested QoS information such as QCI, Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR - guaranteed minimum sending rate) and Maximum Bit Rate (MBR-maximum burst size).
The MME allocates a unique EPS bearer identity for every dedicated bearer and encodes this information in a Session Management Request that includes Protocol Transaction ID (PTI), TFT’s and EPS bearer QoS parameters. The MME signals the Bearer Setup Request in the S1-MME message toward the neighboring eNodeB.

Session Tracing

The subscriber-level Session Tracing provides a 3GPP standards-based session-level trace function for call debugging and testing new functions and access terminals in an LTE environment. In general, the Session Tracing capability records and forwards all control activity for the monitored subscriber on the monitored interfaces. This is typically all the signaling and authentication/subscriber services messages that flow when a UE connects to the access network.

For more information about this functionality, see the **Session Tracing** chapter in this guide.

State - Location Information Retrieval Flag

In compliance with 3GPP TS 29.272 v11.9.0, the MME sends the “State/Location-Information-Retrieval” flag set in the Feature-List AVP of the Update Location Request (ULR) message over the S6a interface to the HSS at the time the UE attaches. With the “State/Location-Information-Retrieval” flag set, the HSS knows to set the “EPS User State Request”, “EPS Location Information Request” and “Current Location Request” bits in the IDR-Flags AVP in IDR messages towards the MME. This subscriber data provides the UE’s current location information needed in multiple service scenarios, such as VoLTE services on the IMS side.

For more information about this functionality, see the **State - Location Information-Retrieval Flag** section in this guide.

Target Access Restricted for the Subscriber Cause Code

This enhancement is a 3GPP TS (29.274 and 29.060) release compliance enhancement. As per 3GPP TS 29.274 and TS 29.060, the source-serving node (MME/SGSN) is allowed to reject SGSN Context Request (GTPv1) and Context Request (GTPv2) mobility management messages with “Target Access Restricted for the subscriber” cause if target access is restricted for the subscriber based on the Access-Restriction-Data in the subscription profile. The target node (MME/SGSN) is allowed to reject RAU/TAU with anyone one of the following NAS Causes:

- #15 "No suitable cells in tracking area", or
- #13 "Roaming not allowed in this tracking area", or
- #12 "Tracking area not allowed"

New statistics have been introduced under "show egtpc statistics verbose" and "show sgtpc statistics verbose" to reflect the context response sent and received with the new reject cause "Target Access Restricted for the subscriber".

Rejecting RAU/TAU much early in call cycle results in reduced signaling.

For more information refer to the 3GPP TS 29.274 (section 7.3.6), TS 29.060 (section 7.5.4), TS 29.060 Annex B (Table B.5: Mapping from Gn/Gp to NAS Cause values – Rejection indication from SGSN) and TS 29.274 Annex C (Table C.5: Mapping from S3/S16 to NAS Cause values – Rejection indication from MME/S4- SGSN)

Threshold Crossing Alerts (TCA) Support

Thresholding on the system is used to monitor the system for conditions that could potentially cause errors or outage. Typically, these conditions are temporary (i.e high CPU utilization, or packet collisions on a network) and are quickly
resolved. However, continuous or large numbers of these error conditions within a specific time interval may be indicative of larger, more severe issues. The purpose of thresholding is to help identify potentially severe conditions so that immediate action can be taken to minimize and/or avoid system downtime.

The system supports Threshold Crossing Alerts for certain key resources such as CPU, memory, number of sessions etc. With this capability, the operator can configure threshold on these resources whereby, should the resource depletion cross the configured threshold, a SNMP Trap would be sent.

The following thresholding models are supported by the system:

- **Alert**: A value is monitored and an alert condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

- **Alarm**: Both high and low threshold are defined for a value. An alarm condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

Thresholding reports conditions using one of the following mechanisms:

- **SNMP traps**: SNMP traps have been created that indicate the condition (high threshold crossing and/or clear) of each of the monitored values.

 Generation of specific traps can be enabled or disabled on the chassis. Ensuring that only important faults get displayed. SNMP traps are supported in both Alert and Alarm modes.

- **Logs**: The system provides a facility called threshold for which active and event logs can be generated. As with other system facilities, logs are generated Log messages pertaining to the condition of a monitored value are generated with a severity level of WARNING.

 Logs are supported in both the Alert and the Alarm models.

- **Alarm System**: High threshold alarms generated within the specified polling interval are considered “outstanding” until the condition no longer exists or a condition clear alarm is generated. “Outstanding” alarms are reported to the system's alarm subsystem and are viewable through the Alarm Management functionality of an element manager.

 The Alarm System is used only in conjunction with the Alarm model.

Important: For more information on threshold crossing alert configuration, refer to the *Thresholding Configuration Guide*.

Tracking Area List Management

Provides the functions to allocate and reallocate a Tracking Area Identity (TAI) list to the UE to minimize Tracking Area Updates (TAUs).

The MME assigns the TAI list to a UE so as to minimize the TAUs that are sent by the UE. The TAI list should be kept to a minimum in order to maintain a lower paging load.

The MME allows up to 16 tracking areas configured locally to be included and sent to the mobile station in Tracking Area List IE as part of Attach/TAU Accept message.
UMTS to LTE ID Mapping

The MME allows seamless inter-RAT interworking when the operator’s networks are configured with LACs allocated from the reserved space of 32K to 64K. 3GPP Specifications have reserved this space for LTE MME Group IDs. The MME and SGSN can distinguish between UMTS IDs (P-TMSI/RAI) and LTE IDs (GUTI) by configuring an MME group ID to PLMN ID mapping.

Use Case 1: When a UE moves from 3G to LTE, the UE maps the P-TMSI and RAI to GUTI and uses this mapped GUTI in the TAU Attach Request that it sends to the MME. At the MME, this mapped GUTI gets reverse mapped to P-TMSI and RAI, which are used to fetch the UE’s Context from the old SGSN.

Use Case 1: When a UE moves from LTE to 3G, the UE maps the GUTI to P-TMSI and RAI, and performs a RAU Attach to the SGSN. A Pre-Rel8 SGSN would attempt to fetch the UE’s context over the Gn/Gp interface using the mapped P-TMSI and RAI. At the MME, the P-TMSI and RAI are reverse mapped to GUTI to fetch the locally stored UE’s context. An S3-SGSN also behaves similar to Pre-Rel8 SGSN except for the way it discovers the source MME. S3-SGSN identifies the P-TMSI & RAI received in RAU Request as a mapped one and performs LTE specific DNS query using MME ID, to discover the source MME.

For the two use cases above, the MME/S3-SGSN would need to identify whether a given UMTS or LTE ID is a native one or a mapped one. MME GroupID or LAC is used to make this distinction. If the Most Significant Bit(MSB) in LAC is set then the UMTS ID is mapped from LTE. Similarly, if the MSB of MME Group ID is zero then the LTE ID is mapped from UMTS. If the standard defined ranges are not complied, the target MME/S3-SGSN may incorrectly conclude the source node as S3-SGSN/MME. This misinterpretation would lead to unsuccessful attempt to resolve the source node since the DNS query is formulated with the assumption that the source node is either MME or S3-SGSN.

In order to address networks where the 1/0 MSB logic does not apply, the MME and SGSN can rely on a global database of MME Group IDs (configured via CLI) instead of the standards specified MSB, to distinguish between mapped and native UMTS and LTE IDs.

The MME consults this database of MME Group IDs when the below two conditions apply:

1. The MME is not aware of the received GUTI Type, such as when either the UE or the network are not Release 10 compliant.
2. MME-Service is associated with the MME Group ID database.

Refer to Configuring UMTS to LTE ID Mapping in Chapter 2 of this document for steps to create and configure this database and to associate the MME service to this database.
Features and Functionality - Licensed Enhanced Feature Software

This section describes the optional enhanced features and functions for MME service.

Important: The following features require the purchase of an additional feature license to implement the functionality with the MME service.

This section describes following enhanced features:

- Attach Rate Throttling
- Cell Traffic Trace
- CSFB and SMS over SGs Interface
- CSFB and SRVCC for CDMA
- Customized Inter-MME SGW S1-Handover and TAU Procedure for PS-LTE Support
- DDN Throttling
- Enhanced Congestion Control and Overload Control
- HSS-based P-CSCF Restoration
- Idle-mode Signaling Reduction
- IP Security (IPSec)
- IPNE Service Support
- Lawful Intercept
- Location Services
- MME handling of PGW Restart
- MME Message Rate Control
- MME Restoration - Standards Extension
- Network Provided Location Info for IMS
- Optimized Paging Support
- Overcharging Protection
- Separate Configuration for GTPC Echo and GTPC Non-Echo Messages
- Session Recovery Support
- Single Radio Voice Call Continuity Support
- SGSN-MME Combo Optimization
- Subscribed Periodic TAU Timer
- Support for Reject Causes with MM and SM Back Off Timers
- User Location Information Reporting
- VLR Management

Attach Rate Throttling

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

This feature enables operators to limit the rate at which the MME processes new connections (attaches, TAU requests, and forward relocation requests) which in turn reduces the signaling on the external nodes.

See the `network-overload-protection mme-new-connections-per-second` command in the *Global Configuration Mode Commands* chapter of the *Command Line Reference* for more information.

Cell Traffic Trace

The Cell Traffic Trace feature provides a 3GPP standard-based cell trace function for tracing all calls in a single cell or multiple cells. Cell Tracing provides the capability to log on to data on any interface at a call level for a specific user or mobile type or a service initiated by a user. In addition, Cell Tracing provides instantaneous values for a specific event.

The Cell Traffic Trace feature is license controlled. Contact your Cisco Account or Support representative for information on how to obtain a license.

For more information on Cell Traffic Trace refer to the *Cell Traffic Trace* feature chapter.

CSFB and SMS over SGs Interface

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Circuit Switched Fallback (CSFB) enables the UE to camp on an EUTRAN cell and originate or terminate voice calls through a forced switchover to the circuit switched (CS) domain or other CS-domain services (e.g., Location Services (LCS) or supplementary services). Additionally, SMS delivery via the CS core network is realized without CSFB. Since LTE EPC networks were not meant to directly anchor CS connections, when any CS voice services are initiated, any PS based data activities on the E-UTRAN network will be temporarily suspended (either the data transfer is suspended or the packet switched connection is handed over to the 2G/3G network).

For additional information, refer to the *CSFB and SMS over SGs Interface* section in this guide.

CSFB and SRVCC for CDMA

This functionality requires valid license keys be installed. Contact your Cisco Account or Support Representative for information required licenses.

Important: In Release 18, this functionality is available as Trial Quality and should only be used in a test environment. In Release 19, this functionality is available as Deploy Quality.
The MME already supports circuit switched fallback (CSFB) and single radio voice call continuity (SRVCC) for E-UTRAN. With release 19.0, the MME has expanded support to normal and enhanced CSFB and SRVCC for CDMA 1xRTT (single-carrier radio transmission technology) networks.

The primary purpose of either CSFB or SRVCC for CDMA is to enable a UE from an LTE network to move seamlessly to a CDMA network and ensure that CDMA2000 messages are received from the UE and then relayed to the MSC (or vice-versa) through S1-APP and S102 interfaces. The MME will use the S102 interface to tunnel the 1xRTT messages between the MME and IWF/MSC.

For details on these functions and their configuration, refer to the CSFB for 1xRTT and SRVCC for 1xRTT feature chapters in this administration guide.

Customized Inter-MME SGW S1-Handover and TAU Procedure for PS-LTE Support

In the Public Safety LTE (PS-LTE) network, every MME is co-located with an S-GW and at least one P-GW, and the MME must always use the co-located S-GW and a co-located P-GW for all calls that it handles. This requires configuring the IP addresses of the S11 interface of the S-GW as part of the MME service configuration, and the S5/S8 interface of the P-GW as part of an APN profile configuration. An MME configured for PS-LTE network operation will not send any DNS queries for S-GW or P-GW lookups; it will only use the S-GW configured for PS-LTE operation and the P-GW configured in the matching APN profile, regardless of any other configuration present.

All intra-MME S1 and X2 handovers and all TAU Requests with a local GUTI will be serviced by the same S-GW that is configured for PS-LTE network operation with the P-GW(s) used at the time of the initial Attach or relocation to the MME. S-GW relocation is neither necessary nor supported for intra-MME handovers or intra-MME TAU Requests.

This feature allows the co-location of the MME, P-GW and S-GW nodes for Public Safety deployments.

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

DDN Throttling

The DDN Throttling feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

In this feature, MME is provisioned to reject non-priority (traffic based on ARP and LAPI) Downlink Data Notification (DDN) requests when the UE is in idle mode. Additionally, MME dynamically requests S-GW to reduce the number of DDN requests based on a throttling factor and a throttling delay specified in the DDN Ack message.

For more information on configuring this functionality, refer to DDN Throttling chapter of the MME Administration Guide.

Enhanced Congestion Control and Overload Control

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

This feature builds on the functionality provided by Congestion Control and Overload Control.

To allow greater control during overload conditions, the MME supports the configuration of three separate levels (critical, major, minor) of congestion thresholds for the following system resources:
- System CPU usage
- System service CPU usage (Demux-Card CPU usage)
- System Memory usage
- License usage
- Maximum Session per service

The MME can, in turn, be configured to take specific actions when any of these thresholds are crossed, such as:

- Drop or reject the following S1-AP/NAS messages: S1 Setup, Handover events, TAU request, Service request, PS-Attach request, Combined-attach request, Additional PDN request, or UE initiated bearer resource allocation.
- Allow voice or emergency calls/events.
- Initiate S1AP overload start to a percentage of eNodeBs with options to signal any of the following in the Overload Response IE:
 - reject non-emergency sessions
 - reject new sessions
 - permit emergency sessions
 - permit high-priority sessions and mobile-terminated services
 - reject delay-tolerant access.

For more information on configuring this functionality, refer to Enhanced Congestion Control and Overload Control chapter of the MME Administration Guide.

HSS-based P-CSCF Restoration

The HSS-based P-CSCF Restoration feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

PCSCF Restoration aids in successful establishment of MT VoLTE calls when the serving P-CSCF has failed or unreachable.

The HSS-based P-CSCF Restoration mechanism is executed when a terminating request cannot be serviced due to a P-CSCF failure. The execution is possible if there are no other registration flows available for the terminating UE using an available P-CSCF.

The HSS-based P-CSCF restoration consists of a basic mechanism that makes usage of a path through HSS and MME/SGSN to request the release of the IMS PDN connection to the corresponding UE and an optional extension that avoids the IMS PDN deactivation and re-activation.

The HSS-based P-CSCF Restoration complies with the following standard: 3gpp TS 23.380 section 5.4 HSS-based P-CSCF Restoration.

For more information on configuring this functionality, refer to HSS-based P-CSCF Restoration chapter of the MME Administration Guide.
Idle-mode Signaling Reduction

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Idle-mode Signaling Reduction (ISR) allows a UE to be registered on (and roam between) E-UTRAN and UTRAN/GERAN networks while reducing the frequency of TAU and RAU procedures and overall signaling.

Refer to the Idle-mode Signaling Reduction chapter in the MME Administration Guide for more information.

IP Security (IPSec)

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

IP Security provides a mechanism for establishing secure tunnels from mobile subscribers to pre-defined endpoints (i.e. enterprise or home networks) in accordance with the following standards:

- RFC 2401, Security Architecture for the Internet Protocol
- RFC 2402, IP Authentication Header (AH)
- RFC 2406, IP Encapsulating Security Payload (ESP)
- RFC 2409, The Internet Key Exchange (IKE)
- RFC 3193, Securing L2TP using IPSEC, November 2001

IP Security (IPSec) is a suite of protocols that interact with one another to provide secure private communications across IP networks. These protocols allow the system to establish and maintain secure tunnels with peer security gateways. IPSec can be implemented on the system for the following applications:

- **PDN Access**: Subscriber IP traffic is routed over an IPSec tunnel from the system to a secure gateway on the packet data network (PDN) as determined by access control list (ACL) criteria.
- **Mobile IP**: Mobile IP control signals and subscriber data is encapsulated in IPSec tunnels that are established between foreign agents (FAs) and home agents (HAs) over the Pi interfaces.

Important: Once an IPSec tunnel is established between an FA and HA for a particular subscriber, all new Mobile IP sessions using the same FA and HA are passed over the tunnel regardless of whether or not IPSec is supported for the new subscriber sessions. Data for existing Mobile IP sessions is unaffected.

- **L2TP**: L2TP-encapsulated packets are routed from the system to an LNS/secure gateway over an IPSec tunnel.

The following figure shows IPSec configurations.
IPNE Service Support

The MME supports the IP Network Enabler (IPNE), a Mobile and IP Network Enabler (MINE) client component that collects and distributes session and network information to MINE servers.

Important: This feature, with its CLI commands, counters, and statistics, are all under development for future use and are not yet fully qualified.

The MINE cloud service provides a central portal for wireless operators and partners to share and exchange session and network information to realize intelligent services.

Implementation of this feature requires configuration of an IPNE Service that is then associated with the MME Service; refer to the **IPNE Service Configuration Mode Commands** and **MME Service Configuration Mode Commands** in the **Command Line Interface Reference** manual.

IPNE and MINE clients are each licensed Cisco features. Contact your Cisco account representative for information on licensing requirements. For additional information about this feature and how to configure it, refer to the section on **IPNE Service** in this guide.

Important: For more information on IPSec support, refer to the *Cisco StarOS IP Security (IPSec) Reference*.
Lawful Intercept

The Lawful Intercept feature-use license is included in the MME session-use license.

The Cisco Lawful Intercept feature is supported on the MME. Lawful Intercept is a license-enabled, standards-based feature that provides telecommunications service providers with a mechanism to assist law enforcement agencies in monitoring suspicious individuals for potential illegal activity. For additional information and documentation on the Lawful Intercept feature, contact your Cisco account representative.

Location Services

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

LoCation Services (LCS) on the MME and SGSN is a 3GPP standards-compliant feature that enables the system (MME or SGSN) to collect and use or share location (geographical position) information for connected UEs in support of a variety of location services.

The SLs interface is used to convey LCS Application Protocol (LCS-AP) messages and parameters between the MME to the Evolved Serving Mobile Location Center (E-SMLC). It is also used for tunnelling LTE Positioning Protocols (LPP between the E-SMLC and the target UE, LPPa between the E-SMLC and the eNodeB), which are transparent to the MME.

Refer to the Location Services chapter in the MME Administration Guide for more information.

MME handling of PGW Restart

This feature requires that a valid MME Resiliency license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

P-GW Restart Notification Procedure is a standards-based procedure supported on the S-GW to notify detection of P-GW failure to the MME/S4-SGSN. P-GW failure detection is performed by the S-GW when it detects that the P-GW has restarted (based on restart counter received from the restarted P-GW) or when it detects that P-GW has failed but not restarted (based on path failure detection). When an S-GW detects that a peer P-GW has restarted, it deletes all PDN connection table data and bearer contexts associated with the failed P-GW and notifies the MME via P-GW Restart Notification. The S-GW indicates in the echo request/response on S11/S4 interface that the P-GW Restart Notification procedure is supported.

P-GW Restart Notification Procedure is an optional procedure and is invoked only if both the peers, MME/S4-SGSN and S-GW, support it.

In the absence of this procedure, the S-GW will initiate the Delete procedure to clear all the PDNs anchored at that failed P-GW, which can lead to flooding of GTP messages on S11/S4 interface if there are multiple PDNs using that S-GW and P-GW.

In this release, the MME adds support for the P-GW restart handling procedures as specified in 3GPP TS 23.007 v11.6.0. An S-GW will send the “PGW Restart Notification” message only to the SGSNs / MMEs that indicated their support of this feature through the Echo Request -> Node Features IE -> PRN bit.

This feature reduces the S11 signaling load between the S-GW and MME in case of a P-GW restart.

PDN Deactivation Behavior

If a PDN is impacted and needs to be restored:
- If all PDNs of a UE are impacted, a UE in ECM-Connected state will be explicitly detached with cause “reattach required” and a UE in ECM-IDLE state will be paged. If Paging is successful, then the UE will be explicitly detached with cause “reattach required”. Otherwise, the UE will be implicitly detached.

- If some PDNs of a UE are impacted, a UE in ECM-Connected will be sent NAS Deactivate Bearer Request with cause “reactivation required” and a UE in ECM-IDLE state will be paged. If Paging is successful, then the UE will be sent a NAS Deactivate Bearer Request with cause “reactivation requested”. Otherwise, the PDN will be locally deactivated.

If a PDN is impacted but does not need to be restored:

- If all PDNs of a UE are impacted, a UE in ECM-Connected state will be explicitly detached with cause “reattach required” and a UE in ECM-IDLE state will be paged. If Paging is successful, then the UE will be explicitly detached with cause “reattach required”. Otherwise, the UE will be implicitly detached.

- If some PDNs of a UE are impacted, a UE in ECM-Connected will be sent NAS Deactivate Bearer Request with cause “regular deactivation”, and a UE in ECM-IDLE will not be paged and will be locally deactivated in a paced manner.

PDN Deactivation Rate

By default, the MME will perform deactivations at the rate of 100 PDNs (50 Idle + 50 Connected) per session manager per second. This rate will be applied to MME specific pacing queues (Idle & Connected).

This default pacing rate can be altered using the MME Messaging Rate Control feature.

Refer to the MME Administration Guide and to the network-overload-protection mme-tx-msg-rate command in the Global Configuration Mode Commands chapter of the Command Line Interface Reference for more information about this feature.

Note: Configuration of this deactivation rate should be based on appropriate dimensioning exercise to arrive at the appropriate rate.

PDN Reactivation Behavior

After the affected subscribers have been deactivated, the MME will prioritize the re-activation of impacted PDN connections based on subscribed APN restoration priority, if received from the HSS. If an APN restoration priority is not received from the HSS, then this locally configured value is used. If there is no local configuration then by default such PDNs will be assigned the lowest restoration priority.

Limitations

In this release, the MME will not deactivate a PDN connection upon receiving P-GW Restart Notification when the P-GW serving the PDN is dual IP stack.

The PGW Restart Notification is received with cause PGW-NOT-RESPONDING, however the MME is not able to find the matching P-GW entry as the MME stores either IPv4 or IPv6 PGW address.

This occurs when the PGW Restart Notification does not contain the P-GW IP address stored by MME.

MME Message Rate Control

This feature requires that a valid MME Resiliency license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Customer Impact: This feature provides controls to mitigate the undesirable effects of congestion due to excessive S1 Paging load or upon failure of an EGTPC path.

See the network-overload-protection mme-tx-msg-rate-control command in the Global Configuration Mode Commands chapter of the Command Line Reference for more information.
S1 Paging Rate Limit

The MME provides a configuration to limit the rate of S1 paging requests sent per eNodeB. S1 Paging requests exceeding the configured rate threshold are dropped. All S1 Paging requests are treated uniformly without any special considerations for the type of paging request (CS/PS).

Pacing UE Deactivation

During an EGTPC (S11/S10/S3) path failure, the MME detects the failure and begins the process of deactivating all UE sessions affected. The MME supports two separate configurable internal pacing queues for deactivating UEs: one for active UEs and a second for idle mode UEs. This enables the path failure processing and deactivation pacing rate to be different for each of these queues.

Upon detecting an EGTPC path failure, the impacted EGTPC tunnels are added to separate queues based on ECM-State and deactivations are scheduled based on the respective configured rates.

MME Restoration - Standards Extension

The feature implements the Network Triggered Service Restoration (NTSR) procedures defined in 3GPP TS 23.007 Release 11 (DDN with IMSI) on the MME.

By implementing the extensions to the standard MME restoration, the robustness of the network is greatly enhanced and potential issues due to the MME downtime are mitigated.

The solution to recover from MME node failures proposed in the 3GPP standards rely on the deployment of MME pools where each pool services a coverage area. Following a MME failure, the S-GW and MSC/VLR nodes may select the same MME that used to service a UE, if it has restarted, or an alternate MME in the same pool to process Network-initiated signaling that it received in accordance with the NTSR procedures defined in 3GPP TS 23.007 Release 11.

Upon receipt of a DDN without any TAI list or other previously sent information from the S-GW after a MME failure or restart, the MME shall proceed with regular IMSI-based paging.

The MME can be configured to throttle IMSI-based DDN requests as needed to maintain adequate service performance for normal procedure processing. Refer to the network-overload-protection mme-new-connections-per-second below for more information.

MME/VLR Restoration Procedure Via Alternate MME

The MME now supports the Mobile Terminated CS service delivery via an alternate MME in MME pool feature described in 3GPP TS 23.007 Section 14.1.3 & 26 and 29.118 Release 11.

Upon receipt of a SGs Paging request from a VLR with CS restoration bit set, the MME will perform a regular IMSI-based paging procedure, in the absence of any additional context information. If the CS Restoration Indicator is set, the MME shall page the UE regardless of the value of MME-Reset indicator. The location information shall be set in accordance with the existing procedures for unknown UE with the MME-Reset indicator set to TRUE.

No special configuration is needed to enable this functionality.

ULA for Periodic TAU when VLR Inaccessible

When processing a periodic TAU request from a UE, if the MME detects that the VLR serving the UE is inaccessible, the MME now selects an alternative VLR that is in service for the UE and performs a location update for non-EPS services procedure towards the selected VLR.
The MME previously supported this functionality in case of non-periodic TAU.

MTC Features

The MTC feature set allows the operator to handle the signaling storm MTC devices can bring to the network thus ensuring a more robust network and more efficient resource utilization. The MME supports several of the 3GPP TS23.401 R10 machine type communications (MTC) overload control mechanisms to be used in the handling of signaling bursts from machine-to-machine (M2M) devices.

Some of the features in the set include:

- Configurable congestion control for LAPI subscribers.
- Configurable congestion control based on specific APN.
- Support for reject causes with MM and SM back off timers: EMM T3346 timer, ESM T3346 timer, and ESM T3396 timer.
- Support for subscribed periodic TAU timer - extended-t3412 timer.

The MTC feature set requires that a valid license key be installed. Beginning with Release 17.4, this license will be enforced for usage of related commands. Contact your Cisco Account or Support representative for information on how to obtain a license.

Network Provided Location Info for IMS

Network provided Location Info (NPLI) enables the MME to send user location information (ULI) to the P-GW/S-GW (and consequently PCRF) in a number of Session Management messages. This information is required for Lawful Intercept (LI), VoLTE, aids in charging in the IMS domain.

In this release, the MME supports the PCC-EPC based framework is defined in 3GPP TR 23.842 section 6.4, which allows the P-CSCF to request the user location through PCRF when it needs it (for example at voice call establishment).

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

No special configuration is required to enable this functionality.

The MME can now report the Location of a UE through the GTPv2 messages using the NPLI IEs (ULI Info, ULI-Timestamp and the UE-Timezone). The ULI Info is now included in the following GTPv2 messages:

- Create Session Request
- Create Bearer Response
- Delete Session Request
- Delete Bearer Response
- Update Bearer Response
- Delete Bearer Command

This feature also includes:

- Support for Retrieve Location Indication in the Update Bearer Request message. For this feature, the MME does not retrieve specific location information of UE but instead uses the last stored location information.
• Support for ULI timestamp in Delete Bearer Response, Delete Session Request and Delete Bearer Command messages. (Added newly in 3GPP TS 29.274 V11.8.0)

• Support for UE Time Zone in Delete Bearer Command messages.

Note: NPLI related IEs in CSReq and DSReq messages will be sent only in case of PDN establishment, but not in case of SGW relocation.

Optimized Paging Support

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Also known as heuristic or idle-mode paging, this feature reduces network operations cost through more efficient utilization of paging resources and reduced paging load in the EUTRAN access network.

Idle mode paging over EUTRAN access networks is an expensive operation that causes volumes of signaling traffic between the S-GW and MME/SGSN. This problem is acute in the radio access network, where paging is a shared resource with finite capacity. When a request for an idle mode access terminal is received by the S-GW, the MME floods the paging notification message to all eNodeBs in the Tracking Area List (TAI). To appreciate the magnitude of the problem, consider a network with three million subscribers and a total of 800 eNodeBs in the TAI. If each subscriber was to receive one page during the busy hour, the total number of paging messages would exceed one million messages per second.

To limit the volume of unnecessary paging related signaling, the Cisco MME provides intelligent paging heuristics. Each MME maintains a list of “n” last heard from eNodeBs inside the TAI for the UE. The intent is to keep track of the eNodeBs that the AT commonly attaches to such as the cells located near a person's residence and place of work. During the average day, the typical worker spends the most time attaching to one of these two locations. When an incoming page arrives for the idle mode user, the MME attempts to page the user at the last heard from eNodeB. The MME uses Tracking Area Updates to build this local table. If no response is received within a configurable period, the MME attempts to page the user at the last “n” heard from eNodeBs. If the MME has still not received acknowledgement from the idle mode UE, only then does it flood the paging messages to all eNodeBs in the TAI.

In the majority of instances with this procedure, the UE will be paged in a small set of eNodeBs where it is most likely to be attached.

Overcharging Protection

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Overcharging Protection helps in avoiding charging subscribers for dropped downlink packets while the UE is in idle mode. This feature helps ensure subscribers are not overcharged while the subscriber is in idle mode.

Refer to the Overcharging Protection chapter in the MME Administration Guide for more information.

Separate Configuration for GTPC Echo and GTPC Non-Echo Messages

Previously, the GTP echo and GTP message retry timer could be configured separately, but the number of GTPC echo requests could not. The maximum retry number now can be configured separately along similar lines as the timer configuration.
In egtp-service, the `echo-max-retransmissions` keyword is added to allow the separate configuration of GTPC echo retransmissions.

Previous Behavior: The maximum number of retransmissions for Echo Requests was configured by `max-retransmissions` configuration option.

New Behavior: `echo-max-retransmissions` is introduced explicitly for the configuration of echo max retransmissions in both GTPC Service Configuration Mode.

Session Recovery Support

The feature use license for Session Recovery on the MME is included in the MME session use license.

The Session Recovery feature provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault within the system preventing a fully connected user session from being disconnected.

Session recovery is performed by mirroring key software processes (e.g. session manager and AAA manager) within the system. These mirrored processes remain in an idle state (in standby-mode), wherein they perform no processing, until they may be needed in the case of a software failure (e.g. a session manager task aborts). The system spawns new instances of “standby mode” session and AAA managers for each active control processor (CP) being used.

Additionally, other key system-level software tasks, such as VPN manager, are performed on a physically separate packet processing card to ensure that a double software fault (e.g. session manager and VPN manager fail at same time on same card) cannot occur. The packet processing card used to host the VPN manager process is in active mode and is reserved by the operating system for this sole use when session recovery is enabled.

The additional hardware resources required for session recovery include a standby system processor card (SPC) and a standby packet processing card.

There are two modes for Session Recovery.

- **Task recovery mode**: Wherein one or more session manager failures occur and are recovered without the need to use resources on a standby packet processing card. In this mode, recovery is performed by using the mirrored “standby-mode” session manager task(s) running on active packet processing cards. The “standby-mode” task is renamed, made active, and is then populated using information from other tasks such as AAA manager.

- **Full packet processing card recovery mode**: Used when a PSC or PSC2 hardware failure occurs, or when a packet processing card migration failure happens. In this mode, the standby packet processing card is made active and the “standby-mode” session manager and AAA manager tasks on the newly activated packet processing card perform session recovery.

Session/Call state information is saved in the peer AAA manager task because each AAA manager and session manager task is paired together. These pairs are started on physically different packet processing cards to ensure task recovery.

Important: For more information on session recovery support, refer to the Session Recovery chapter in the System Administration Guide.

SGSN-MME Combo Optimization

The SGSN-MME Combo Optimization feature enables the co-located SGSN and MME to co-operate with each other in order to achieve lower memory utilization, lower CPU utilization, and reduced signaling towards other nodes in the network.
The SGSN and MME can be enabled simultaneously in the same chassis and, though co-located, they each behave as independent nodes. When functioning as mutually-aware co-located nodes, the SGSN and MME can share UE Subscription data.

This SGSN-MME Combo Optimization feature is enabled with a new CLI command:

- If the operator intends the MME to use DNS to dynamically discover the Target SGSN, then the DNS Server must be configured with an entry for the co-located SGSN.
- If the operator intends the MME to use location configuration to select the Target SGSN, then the MME Service configuration is required to have a `peer-sgsn` entry for the co-located SGSN.

For detailed Combo Optimization feature and implementation description see the *SGSN-MME Combo Optimization* section in the *MME Administration Guide, StarOS Release 18*.

Combo Optimization functionality for both the SGSN and the MME is a licensed Cisco feature. Contact your Cisco account representative for information on acquiring this separate feature license or for any other licensing requirements. For information on installing and verifying licenses, refer to the *Managing License Keys* section in the *System Administration Guide*.

Single Radio Voice Call Continuity Support

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Voice over IP (VoIP) subscribers anchored in the IP Multimedia Subsystem (IMS) network can move out of an LTE coverage area and continue the call over the circuit-switched (CS) network through the use of the Single Radio Voice Call Continuity (SRVCC) feature. The smooth handover of the VoIP call does not require dual-mode radio.

For more information about SRVCC, refer to the *Single Radio Voice Call Continuity* chapter in this document.

Subscribed Periodic TAU Timer

This feature helps the MME to reduce network load from periodic TAU signaling and to increase the time until the UE detects a potential need for changing the RAT or PLMN.

The feature enables the Operator to configure longer values for the periodic TAU timer and Mobile Reachable timer using new commands on the MME.

A new configuration is supported under the MME Service to define an EMM extended-3412 timer value. Refer to the *Command Changes* section below for more information.

The UE must include the “MS network feature support” IE in the Attach Request/TAU Request. This IE indicates to the MME that the UE supports the extended periodic timer T3412, in which case the MME sends the extended-3412 IE in the attach/TAU response. The MME will not forward the extended-T3412 timer value to any UE which has not indicated that it supports this extended-t3412 timer.

The MME supports storing the Subscribed-Periodic-RAU-TAU-Timer value if received as part of subscription data, and deleting this stored value if the corresponding withdrawal flag is received in the DSR command.

For homers, the MME will send the extended-3412 IE value as received in Subscribed-Periodic-RAU-TAU-Timer IE in subscription data.

For roamers, the MME takes the presence of Subscribed-Periodic-RAU-TAU-Timer IE in subscription data as an indication and shall send the extended-3412 IE with the value from the local configuration.
The MME adjusts the configured mobile reachability timer value if the subscribed extended-3412 timer value received from HSS is greater than the sum of the mobile reachability timer + implicit detach timer such that the extended-3412 timer value becomes 10% less than the mobile reachability timer + implicit detach timer.

Refer to 3GPP TS 23.401 Section 4.3.17.3 (Version 10.4.0) & 29.272 for more details.

Support for Reject Causes with MM and SM Back Off Timers

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Under congestion, the MME can now assign EMM or ESM back-off timer to the UEs and request the UEs not to access the network for a given period of time.

Refer to 3GPP TS 23.401 Section 4.3.7.4.2.4 (Version 10.4.0) for more details.

EMM T3346 Timer

The MME now allows configuration of the T3346 back-off timer value. EMM timer value. The default value of this timer will be set to 25 minutes.

With this feature, when any EMM request rejected by MME because of congestion, the reject will have EMM cause of “congestion” (#22) and will include the back-off timer (T3346) IE. This back-off timer is chosen randomly and will be 10% below or above the configured T3346 timer value.

While storing the back-off timer expiry time, MME shall adjust the mobile reachability timer and/or implicit detach timer. This is to make sure that the sum of the mobile reachability timer + implicit detach timer is greater than the back-off timer duration.

The MME will store the DB for at least the EMM back-off timer duration even if the attach is rejected because of congestion. The MME will not start any timer for EMM back-off. Instead, back-off timer expiry time will be stored in the DB as the DB is stored for at least back-off timer duration.

If an EMM call is rejected due to congestion control for EMM, the DB created during ULA will not be cleared and the purge timer will be started for a time period 10% greater than the back-off timer duration. This is done to make sure that DB is available during back-off timer duration to reject any requests during this period and also to avoid the HSS signaling again if the UE comes back immediately after the back-off timer duration.

The MME will not reject any TAU received in EMM-CONNECTED state.

The MME will not reject any requests related to handovers as part of this feature even if EMM back-off timer is running.

The MME will drop attach requests received during congestion while EMM back-off timer is running based on configuration in congestion-action-profile. For example, if configuration is enabled to reject new call only when low priority indication is set and the UE comes without low priority indication while back off timer is running, the MME will accept the new call attempt from the UE.

The MME will not reject/drop attach requests received even if EMM back-off timer is running if the congestion gets cleared.

The MME will forward SGS paging requests received from MSC for a UE attached in MME even if back-off timer is running.

ESM T3396 Timer

The MME now allows configuration of the T3396 back-off timer value.
With this feature, when any ESM request is rejected because of congestion, the reject will have ESM cause “Insufficient resources” and will include a back-off timer IE (T3396). This back-off timer is chosen randomly and will be 10% below or above the configured T3396 timer value.

The MME will not start any timer for SM back-off, nor store the SM back-off timer expiry time. If an SM request is received and if congestion exists, the request would be rejected based and a new random value will be sent as the ESM back-off timer value.

The MME will reject any subsequent requests from the UE targeting to the same APN based on the presence of congestion at that time and not based on the SM back-off time previously sent to the UE.

If the ESM cause value is #26 “insufficient resources” or #27 “missing or unknown APN”, the MME will include a value for timer T3396 in the reject message. If the ESM cause value is #26 “insufficient resources” and the request message was sent by a UE accessing the network with access class 11 - 15 or if the request type in the PDN CONNECTIVITY REQUEST message was set to “emergency”, the MME will not include a value for timer T3396.

User Location Information Reporting

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

User Location Information (ULI) Reporting allows the eNodeB to report the location of a UE to the MME, when requested by a P-GW.

The following procedures are used over the S1-MME interface to initiate and stop location reporting between the MME and eNodeB:

- **Location Reporting Control**: The purpose of Location Reporting Control procedure is to allow the MME to request that the eNodeB report where the UE is currently located. This procedure uses UE-associated signaling.

- **Location Report Failure Indication**: The Location Report Failure Indication procedure is initiated by an eNodeB in order to inform the MME that a Location Reporting Control procedure has failed. This procedure uses UE-associated signaling.

- **Location Report**: The purpose of Location Report procedure is to provide the UE’s current location to the MME. This procedure uses UE-associated signalling.

The start/stop trigger for location reporting for a UE is reported to the MME by the S-GW over the S11 interface. The Change Reporting Action (CRA) Information Element (IE) is used for this purpose. The MME updates the location to the S-GW using the User Location Information (ULI) IE.

The following S11 messages are used to transfer CRA and ULI information between the MME and S-GW:

- **Create Session Request**: The ULI IE is included for E-UTRAN Initial Attach and UE-requested PDN Connectivity procedures. It includes ECGI and TAI. The MME includes the ULI IE for TAU/ X2-Handover procedure if the P-GW has requested location information change reporting and the MME support location information change reporting. The S-GW includes the ULI IE on S5/S8 exchanges if it receives the ULI from the MME. If the MME supports change reporting, it sets the corresponding indication flag in the Create Session Request message.

- **Create Session Response**: The CRA IE in the Create Session Response message can be populated by the S-GW to indicate the type of reporting required.

- **Create Bearer Request**: The CRA IE is included with the appropriate Action field if the Location Change Reporting mechanism is to be started or stopped for the subscriber in the MME.

- **Modify Bearer Request**: The MME includes the ULI IE for TAU/Handover procedures and UE-initiated Service Request procedures if the P-GW has requested location information change reporting and the MME
supports location information change reporting. The S-GW includes this IE on S5/S8 exchanges if it receives the ULI from the MME.

- **Modify Bearer Response**: The CRA IE is included with the appropriate Action field if the Location Change Reporting mechanism is to be started or stopped for the subscriber in the MME.

- **Delete Session Request**: The MME includes the ULI IE for the Detach procedure if the P-GW has requested location information change reporting and MME supports location information change reporting. The S-GW includes this IE on S5/S8 exchanges if it receives the ULI from the MME.

- **Update Bearer Request**: The CRA IE is included with the appropriate Action field if the Location Change Reporting mechanism is to be started or stopped for the subscriber in the MME.

- **Change Notification Request**: If no existing procedure is running for a UE, a Change Notification Request is sent upon receipt of an S1-AP location report message. If an existing procedure is running, one of the following messages reports the ULI:
 - Create Session Request
 - Create Bearer Response
 - Modify Bearer Request
 - Update Bearer Response
 - Delete Bearer Response
 - Delete Session Request

If an existing Change Notification Request is pending, it is aborted and a new one is sent.

Important: Information on configuring User Location Information Reporting support is located in the Configuring Optional Features on the MME section of the Mobility Management Entity Configuration chapter in this guide.

VLR Management

These features require that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

The following features provide for additional resiliency of the Circuit Switched Fallback (CSFB) service.

- **Passive VLR Offloading and Active VLR Offloading**: The MME supports the capability to passively offload UEs for a specific VLR. This capability enables operators to preemptively move subscribers away from an SGs interface associated with a VLR which is planned for maintenance mode.

 Active VLR Offloading provides all of the functionality of Passive VLR Offloading, but also actively detaches UEs associated with the VLR during an operator-specified time period. This expedites the process of offloading UEs prior to a planned VLR maintenance event.

 Both passive and active offload functionality is available only for VLRs within a LAC pool area.

- **UE Detach on VLR Failure**: The MME supports the ability to perform a controlled release of UEs when a VLR connection becomes unavailable.

- **UE Detach on VLR Recovery**: The MME also has the ability to perform a controlled release of CSFB (SMS-only) UEs when a failed VLR becomes responsive again (thereby returning the UE to a combined attached state on a different VLR).

Refer to the VLR Management chapter in the MME Administration Guide for more information about these features.
How the MME Works

This section provides information on the function and procedures of the MME in an EPC network and presents message flows for different stages of session setup.

The following procedures are supported in this release:

- EPS Bearer Context Processing
- Purge Procedure
- Paging Procedure
- Subscriber-initiated Initial Attach Procedure
- Subscriber-initiated Detach Procedure
- Service Request Procedures
 - UE-initiated Service Request Procedure
 - Network-initiated Service Request Procedure

EPS Bearer Context Processing

EPS Bearer context processing is based on the APN that the subscriber is attempting to access. Templates for all of the possible APNs that subscribers will be accessing must be configured within the P-GW system.

Each APN template consists of parameters pertaining to how EPS Bearer contexts are processed such as the following:

- **PDN Type**: The system supports IPv4, IPv6, or IPv4v6.
- **Timeout**: Absolute and idle session timeout values specify the amount of time that an MS can remain connected.
- **Quality of Service**: Parameters pertaining to QoS feature support such as for Traffic Policing and traffic class.

A total of 11 EPS bearer contexts are supported per subscriber. These could be all dedicated, or 1 default and 10 dedicated or any combination of default and dedicated context. Note that there must be at least one default EPS bearer context in order for dedicated context to come up.

Purge Procedure

The purge procedure is employed by the Cisco MME to inform the concerned node that the MME has removed the EPS bearer contexts of a detached UE. This is usually invoked when the number of records exceeds the maximum capacity of the system.

Paging Procedure

Paging is initiated when there is data to be sent to an idle UE to trigger a service request from the UE. Once the UE reaches connected state, the data is forwarded to it.

Paging retransmission can be controlled by configuring a paging-timer and retransmission attempts on system.
Subscriber-initiated Initial Attach Procedure

The following figure and the text that follows describe the message flow for a successful user-initiated subscriber attach procedure.

Figure 6. Subscriber-initiated Attach (initial) Call Flow

Table 1. Subscriber-initiated Attach (initial) Call Flow Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attach Req</td>
</tr>
<tr>
<td>2</td>
<td>Attach Req</td>
</tr>
<tr>
<td>3</td>
<td>Identity Req</td>
</tr>
<tr>
<td>4</td>
<td>Identity Rsp</td>
</tr>
<tr>
<td>5</td>
<td>Authentication/Security/ME Identity</td>
</tr>
<tr>
<td>6</td>
<td>Update Location</td>
</tr>
<tr>
<td>7</td>
<td>Update Location Ack</td>
</tr>
<tr>
<td>8</td>
<td>Create Default Bearer Req</td>
</tr>
<tr>
<td>9</td>
<td>Create Default Bearer Req</td>
</tr>
<tr>
<td>10</td>
<td>Create Default Bearer Rsp</td>
</tr>
<tr>
<td>11</td>
<td>Update Location Req</td>
</tr>
<tr>
<td>12</td>
<td>Update Location Rsp</td>
</tr>
<tr>
<td>13</td>
<td>Attach Accept</td>
</tr>
<tr>
<td>14</td>
<td>Radio Bearer Est Req</td>
</tr>
<tr>
<td>15</td>
<td>Radio Bearer Est Rsp</td>
</tr>
<tr>
<td>16</td>
<td>Attach Complete</td>
</tr>
<tr>
<td>17</td>
<td>Uplink Data</td>
</tr>
<tr>
<td>18</td>
<td>1st Downlink Data</td>
</tr>
<tr>
<td>19</td>
<td>1st Downlink Data</td>
</tr>
<tr>
<td>20</td>
<td>Update Bearer Req</td>
</tr>
<tr>
<td>21</td>
<td>Update Bearer Rsp</td>
</tr>
<tr>
<td>22</td>
<td>Data</td>
</tr>
<tr>
<td>23</td>
<td>Data</td>
</tr>
<tr>
<td>24</td>
<td>Data</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>The UE initiates the Attach procedure by the transmission of an Attach Request (IMSI or old GUTI, last visited TAI (if available), UE Network Capability, PDN Address Allocation, Protocol Configuration Options, Attach Type) message together with an indication of the Selected Network to the eNodeB. IMSI is included if the UE does not have a valid GUTI available. If the UE has a valid GUTI, it is included.</td>
</tr>
<tr>
<td>2</td>
<td>The eNodeB derives the MME from the GUTI and from the indicated Selected Network. If that MME is not associated with the eNodeB, the eNodeB selects an MME using an “MME selection function”. The eNodeB forwards the Attach Request message to the new MME contained in a 51-MME control message (Initial UE message) together with the Selected Network and an indication of the E-UTRAN Area identity, a globally unique E-UTRAN ID of the cell from where it received the message to the new MME.</td>
</tr>
<tr>
<td>3</td>
<td>If the UE is unknown in the MME, the MME sends an Identity Request to the UE to request the IMSI.</td>
</tr>
<tr>
<td>4</td>
<td>The UE responds with Identity Response (IMSI).</td>
</tr>
<tr>
<td>5</td>
<td>If no UE context for the UE exists anywhere in the network, authentication is mandatory. Otherwise this step is optional. However, at least integrity checking is started and the ME Identity is retrieved from the UE at Initial Attach. The authentication functions, if performed this step, involves AKA authentication and establishment of a NAS level security association with the UE in order to protect further NAS protocol messages.</td>
</tr>
<tr>
<td>6</td>
<td>The MME sends an Update Location Request (MME Identity, IMSI, ME Identity) to the HSS.</td>
</tr>
<tr>
<td>7</td>
<td>The HSS acknowledges the Update Location message by sending an Update Location Ack to the MME. This message also contains the Insert Subscriber Data (IMSI, Subscription Data) Request. The Subscription Data contains the list of all APNs that the UE is permitted to access, an indication about which of those APNs is the Default APN, and the 'EPS subscribed QoS profile' for each permitted APN. If the Update Location is rejected by the HSS, the MME rejects the Attach Request from the UE with an appropriate cause.</td>
</tr>
<tr>
<td>8</td>
<td>The MME selects an S-GW using “Serving GW selection function” and allocates an EPS Bearer Identity for the Default Bearer associated with the UE. If the PDN subscription context contains no P-GW address the MME selects a P-GW as described in clause “PDN GW selection function”. Then it sends a Create Default Bearer Request (IMSI, MME Context ID, APN, RAT type, Default Bearer QoS, PDN Address Allocation, AMBR, EPS Bearer Identity, Protocol Configuration Options, ME Identity, User Location Information) message to the selected S-GW.</td>
</tr>
<tr>
<td>9</td>
<td>The S-GW creates a new entry in its EPS Bearer table and sends a Create Default Bearer Request (IMSI, APN, S-GW Address for the user plane, S-GW TEID of the user plane, S-GW TEID of the control plane, RAT type, Default Bearer QoS, PDN Address Allocation, AMBR, EPS Bearer Identity, Protocol Configuration Options, ME Identity, User Location Information) message to the P-GW.</td>
</tr>
<tr>
<td>10</td>
<td>If dynamic PCC is deployed, the P-GW interacts with the PCRF to get the default PCC rules for the UE. The IMSI, UE IP address, User Location Information, RAT type, AMBR are provided to the PCRF by the P-GW if received by the previous message.</td>
</tr>
<tr>
<td>11</td>
<td>The P-GW returns a Create Default Bearer Response (P-GW Address for the user plane, P-GW TEID of the user plane, P-GW TEID of the control plane, PDN Address Information, EPS Bearer Identity, Protocol Configuration Options) message to the S-GW. PDN Address Information is included if the P-GW allocated a PDN address. Based on PDN Address Allocation received in the Create Default Bearer Request. PDN Address Information contains an IPv4 address for IPv4 and/or an IPv6 prefix and an Interface Identifier for IPv6. The P-GW takes into account the UE IP version capability indicated in the PDN Address Allocation and the policies of operator when the P-GW allocates the PDN Address Information. Whether the IP address is negotiated by the UE after completion of the Attach procedure, this is indicated in the Create Default Bearer Response.</td>
</tr>
<tr>
<td>12</td>
<td>The Downlink (DL) Data can start flowing towards S-GW. The S-GW buffers the data.</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>The S-GW returns a Create Default Bearer Response (PDN Address Information, S-GW address for User Plane, S-GW TEID for User Plane, S-GW Context ID, EPS Bearer Identity, Protocol Configuration Options) message to the new MME. PDN Address Information is included if it was provided by the P-GW.</td>
</tr>
<tr>
<td>14</td>
<td>The new MME sends an Attach Accept (APN, GUTI, PDN Address Information, TAI List, EPS Bearer Identity, Session Management Configuration IE, Protocol Configuration Options) message to the eNodeB.</td>
</tr>
<tr>
<td>15</td>
<td>The eNodeB sends Radio Bearer Establishment Request including the EPS Radio Bearer Identity to the UE. The Attach Accept message is also sent along to the UE.</td>
</tr>
<tr>
<td>16</td>
<td>The UE sends the Radio Bearer Establishment Response to the eNodeB. In this message, the Attach Complete message (EPS Bearer Identity) is included.</td>
</tr>
<tr>
<td>17</td>
<td>The eNodeB forwards the Attach Complete (EPS Bearer Identity) message to the MME.</td>
</tr>
<tr>
<td>18</td>
<td>The Attach is complete and UE sends data over the default bearer. At this time the UE can send uplink packets towards the eNodeB which are then tunneled to the S-GW and P-GW.</td>
</tr>
<tr>
<td>19</td>
<td>The MME sends an Update Bearer Request (eNodeB address, eNodeB TEID) message to the S-GW.</td>
</tr>
<tr>
<td>20</td>
<td>The S-GW acknowledges by sending Update Bearer Response (EPS Bearer Identity) message to the MME.</td>
</tr>
<tr>
<td>21</td>
<td>The S-GW sends its buffered downlink packets.</td>
</tr>
<tr>
<td>22</td>
<td>After the MME receives Update Bearer Response (EPS Bearer Identity) message, if an EPS bearer was established and the subscription data indicates that the user is allowed to perform handover to non-3GPP accesses, and if the MME selected a P-GW that is different from the P-GW address which was indicated by the HSS in the PDN subscription context, the MME sends an Update Location Request including the APN and P-GW address to the HSS for mobility with non-3GPP accesses.</td>
</tr>
<tr>
<td>23</td>
<td>The HSS stores the APN and P-GW address pair and sends an Update Location Response to the MME.</td>
</tr>
<tr>
<td>24</td>
<td>Bidirectional data is passed between the UE and PDN.</td>
</tr>
</tbody>
</table>

Subscriber-initiated Detach Procedure

The following figure and the text that follows describe the message flow for a user-initiated subscriber de-registration procedure.
Figure 7. Subscriber-initiated Detach Call Flow

Table 2. Subscriber-initiated Detach Call Flow Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The UE sends NAS message Detach Request (GUTI, Switch Off) to the MME. Switch Off indicates whether detach is due to a switch off situation or not.</td>
</tr>
<tr>
<td>2</td>
<td>The active EPS Bearers in the S-GW regarding this particular UE are deactivated by the MME sending a Delete Bearer Request (TEID) message to the S-GW.</td>
</tr>
<tr>
<td>3</td>
<td>The S-GW sends a Delete Bearer Request (TEID) message to the P-GW.</td>
</tr>
<tr>
<td>4</td>
<td>The P-GW acknowledges with a Delete Bearer Response (TEID) message.</td>
</tr>
<tr>
<td>5</td>
<td>The P-GW may interact with the PCRF to indicate to the PCRF that EPS Bearer is released if PCRF is applied in the network.</td>
</tr>
<tr>
<td>6</td>
<td>The S-GW acknowledges with a Delete Bearer Response (TEID) message.</td>
</tr>
<tr>
<td>7</td>
<td>If Switch Off indicates that the detach is not due to a switch off situation, the MME sends a Detach Accept message to the UE.</td>
</tr>
<tr>
<td>8</td>
<td>The MME releases the S1-MME signalling connection for the UE by sending an S1 Release command to the eNodeB with Cause = Detach.</td>
</tr>
</tbody>
</table>

Service Request Procedures

Service Request procedures are used to establish a secure connection to the MME as well as request resource reservation for active contexts. The MME allows configuration of the following service request procedures:

- **UE-initiated Service Request Procedure**
- **Network-initiated Service Request Procedure**
UE-initiated Service Request Procedure

The call flow in this section describes the process for re-connecting an idle UE. The following figure and the text that follows describe the message flow for a successful UE-initiated service request procedure.

Figure 8. UE-initiated Service Request Message Flow

Table 3. UE-initiated Service Request Message Flow Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(NAS) The UE sends a Network Access Signaling (NAS) message Service Request (S-TMSI) towards the MME encapsulated in an RRC message to the eNodeB.</td>
</tr>
<tr>
<td>2</td>
<td>The eNodeB forwards NAS message to the MME. The NAS message is encapsulated in an S1-AP: Initial UE message (NAS message, TAI+ECGI of the serving cell).</td>
</tr>
<tr>
<td>3</td>
<td>NAS authentication procedures may be performed.</td>
</tr>
<tr>
<td>4</td>
<td>The MME sends an S1-AP Initial Context Setup Request (S-GW address, S1-TEID(s) (UL), EPS Bearer QoS(s), Security Context, MME Signalling Connection Id, Handover Restriction List) message to the eNodeB. This step activates the radio and S1 bearers for all the active EPS Bearers. The eNodeB stores the Security Context, MME Signalling Connection Id, EPS Bearer QoS(s) and S1-TEID(s) in the UE RAN context.</td>
</tr>
</tbody>
</table>
How the MME Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The eNodeB performs the radio bearer establishment procedure.</td>
</tr>
<tr>
<td>6</td>
<td>The uplink data from the UE can now be forwarded by eNodeB to the S-GW. The eNodeB sends the uplink data to the S-GW address and TEID provided in step 4.</td>
</tr>
<tr>
<td>7</td>
<td>The eNodeB sends an S1-AP message Initial Context Setup Complete message (eNodeB address, List of accepted EPS bearers, List of rejected EPS bearers, S1 TEID(s) (DL)) to the MME.</td>
</tr>
<tr>
<td>8</td>
<td>The MME sends a Modify Bearer Request message (eNodeB address, S1 TEID(s) (DL) for the accepted EPS bearers, RAT Type) to the S-GW. The S-GW is now able to transmit downlink data towards the UE.</td>
</tr>
<tr>
<td>9</td>
<td>The S-GW sends a Modify Bearer Response message to the MME.</td>
</tr>
</tbody>
</table>

Network-initiated Service Request Procedure

The call flow in this section describes the process for re-connecting an idle UE when a downlink data packet is received from the PDN.

The following figure and the text that follows describe the message flow for a successful network-initiated service request procedure:

Figure 9. Network-initiated Service Request Message Flow
Table 4. Network-initiated Service Request Message Flow Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A downlink data packet is received on the S-GW from PDN for the targeted UE. The S-GW checks to see if the UE is user-plane connected (the S-GW context data indicates that there is no downlink user plane (TEID)). The downlink data is buffered and the S-GW identifies which MME is serving the intended UE.</td>
</tr>
<tr>
<td>2</td>
<td>The S-GW sends a Downlink Data Notification message to the MME for the targeted UE.</td>
</tr>
<tr>
<td>3</td>
<td>The MME responds with a Downlink Data Notification Acknowledgement message to the S-GW.</td>
</tr>
<tr>
<td>4</td>
<td>The MME send a Paging Request to the eNodeB for the targeted UE. The Paging Request contains the NAS ID for paging, TAi(s), the UE identity based DRX index, and the Paging DRX length. The Paging Request is sent to each eNodeB belonging to the tracking area(s) where the UE is registered.</td>
</tr>
<tr>
<td>5</td>
<td>The eNodeB broadcasts the Paging Request in its coverage area for the UE.</td>
</tr>
<tr>
<td></td>
<td>Important: Steps 4 and 5 are skipped if the MME has a signalling connection over the S1-MME towards the UE.</td>
</tr>
<tr>
<td>6</td>
<td>Upon receipt of the Paging indication in the E-UTRAN access network, the UE initiates the UE-triggered Service Request procedure and the eNodeB starts messaging through the UE Paging Response. The MME supervises the paging procedure with a timer. If the MME receives no Paging Response from the UE, it retransmits the Paging Request. If the MME receives no response from the UE after the retransmission, it uses the Downlink Data Notification Reject message to notify the S-GW about the paging failure.</td>
</tr>
<tr>
<td>7</td>
<td>The S-GW sends a Stop Paging message to MME.</td>
</tr>
<tr>
<td>8</td>
<td>The buffered downlink data is sent to the identified UE.</td>
</tr>
</tbody>
</table>
Supported Standards

The MME complies with the following standards for 3GPP LTE/EPS wireless networks.

3GPP References

- 3GPP TS 23.041 V10.6.0: Technical realization of Cell Broadcast Service (CBS)
- 3GPP TS 24.080, V12.8.0: Mobile radio interface layer 3 supplementary services specification; Formats and coding
- 3GPP TS 29.272 V12.7.0: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 3GPP Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol
- 3GPP TS 29.280 V10.4.0 (2012-06): 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 3GPP Evolved Packet System (EPS); 3GPP Sv interface (MME to MSC, and SGSN to MSC) for SRVCC

IETF References

- RFC-768, User Datagram Protocol (UDP), August 1980
- RFC-791, Internet Protocol (IP), September 1982
- RFC-793, Transmission Control Protocol (TCP), September 1981
- RFC-894, A Standard for the Transmission of IP Datagrams over Ethernet Networks, April 1984
- RFC-1089, SNMP over Ethernet, February 1989
- RFC-1144, Compressing TCP/IP headers for low-speed serial links, February 1990
- RFC-1212, Concise MIB Definitions, March 1991
- RFC-1215, A Convention for Defining Traps for use with the SNMP, March 1991
- RFC-1224, Techniques for managing asynchronously generated alerts, May 1991
- RFC-1256, ICMP Router Discovery Messages, September 1991
- RFC-1398, Definitions of Managed Objects for the Ethernet-Like Interface Types, January 1993
- RFC-1418, SNMP over OSI, March 1993
- RFC-1570, PPP LCP Extensions, January 1994
- RFC-1643, Definitions of Managed Objects for the Ethernet-like Interface Types, July 1994
- RFC-1701, Generic Routing Encapsulation (GRE), October 1994
- RFC-1850, OSPF Version 2 Management Information Base, November 1995
- RFC-1901, Introduction to Community-based SNMPv2, January 1996
- RFC-1918, Address Allocation for Private Internets, February 1996
- RFC-1919, Classical versus Transparent IP Proxies, March 1996
- RFC-2003, IP Encapsulation within IP, October 1996
- RFC-2004, Minimal Encapsulation within IP, October 1996
- RFC-2005, Applicability Statement for IP Mobility Support, October 1996
- RFC-2118, Microsoft Point-to-Point Compression (MPPC) Protocol, March 1997
- RFC 2131, Dynamic Host Configuration Protocol
- RFC-2136, Dynamic Updates in the Domain Name System (DNS UPDATE)
- RFC-2211, Specification of the Controlled-Load Network Element Service
- RFC-2328, OSPF Version 2, April 1998
- RFC-2344, Reverse Tunneling for Mobile IP, May 1998
- RFC-2394, IP Payload Compression Using DEFLATE, December 1998
- RFC 2401, Security Architecture for the Internet Protocol
- RFC 2402, IP Authentication Header (AH)
- RFC 2406, IP Encapsulating Security Payload (ESP)
- RFC 2409, The Internet Key Exchange (IKE)
- RFC-2460, Internet Protocol Version 6 (IPv6)
- RFC-2461, Neighbor Discovery for IPv6
- RFC-2462, IPv6 Stateless Address Autoconfiguration
- RFC-2486, The Network Access Identifier (NAI), January 1999
- RFC-2571, An Architecture for Describing SNMP Management Frameworks, April 1999
- RFC-2572, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP), April 1999
- RFC-2573, SNMP Applications, April 1999
- RFC-2597, Assured Forwarding PHB Group, June 1999
- RFC-2598, Expedited Forwarding PHB, June 1999
- RFC-2618, RADIUS Authentication Client MIB, June 1999
- RFC-2620, RADIUS Accounting Client MIB, June 1999
- RFC-2661, Layer Two Tunneling Protocol “L2TP”, August 1999
- RFC-2697, A Single Rate Three Color Marker, September 1999
- RFC-2698, A Two Rate Three Color Marker, September 1999
- RFC-2784, Generic Routing Encapsulation (GRE) - March 2000, IETF
- RFC-2809, Implementation of L2TP Compulsory Tunneling via RADIUS, April 2000
- RFC-2845, Secret Key Transaction Authentication for DNS (TSIG), May 2000
- RFC-2865, Remote Authentication Dial In User Service (RADIUS), June 2000
- RFC-2866, RADIUS Accounting, June 2000
- RFC-2867, RADIUS Accounting Modifications for Tunnel Protocol Support, June 2000
- RFC-2868, RADIUS Attributes for Tunnel Protocol Support, June 2000
- RFC-2869, RADIUS Extensions, June 2000
- RFC-3007, Secure Domain Name System (DNS) Dynamic Update, November 2000
- RFC-3012, Mobile IPv4 Challenge/Response Extensions, November 2000
- RFC-3056, Connection of IPv6 Domains via IPv4 Clouds, February 2001
- RFC-3101 OSPF-NSSA Option, January 2003
- RFC-3143, Known HTTP Proxy/Caching Problems, June 2001
- RFC-3193, Securing L2TP using IPSEC, November 2001
- RFC-3706, A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers, February 2004
- RFC-3543, Registration Revocation in Mobile IPv4, August 2003
- RFC 3588, Diameter Base Protocol, September 2003
- RFC 4006, Diameter Credit-Control Application, August 2005
- Draft, Route Optimization in Mobile IP
- Draft, Generalized Key Distribution Extensions for Mobile IP
- Draft, AAA Keys for Mobile IP
Object Management Group (OMG) Standards

- CORBA 2.6 Specification 01-09-35, Object Management Group
Chapter 2
Mobility Management Entity Configuration

This chapter provides configuration information for the Mobility Management Entity (MME).

Because each wireless network is unique, the system is designed with a variety of parameters allowing it to perform in various wireless network environments. In this chapter, only the minimum set of parameters are provided to make the system operational. Optional configuration commands specific to the MME product are located in the Command Line Interface Reference.

The following procedures are located in this chapter:

- Configuring the System as a Standalone MME (base configuration)
- Configuring Optional Features on the MME

Important: At least one Packet Services Card (PSC/PSC2) must be made active prior to service configuration. Information and instructions for configuring PSCs/PSC2s to be active can be found in the System Settings chapter of the System Administration Guide.

Important: Before you plan or modify your MME’s configuration, we recommend that you review Appendix A: Engineering Rules for the engineering rules and configuration limits hardcoded into the system.

Caution: While configuring any base-service or enhanced feature, it is highly recommended to avoid conflicting or blocked IP addresses and port numbers when binding or assigning these to your configuration. In association with some service steering or access control features, the use of inappropriate port numbers may result in communication loss. Refer to the respective feature configuration document carefully before assigning any port number or IP address for communication with internal or external networks.

Important: Information about all commands in this chapter can be found in the Command Line Interface Reference.
Configuring the System as a Standalone MME (base configuration)

This section provides a high-level series of steps and associated configuration file examples for configuring the system to perform as an MME in a test environment.

The configuration in this section assumes the following:

- A single context for all interfaces and services (excepting the Local context)
- static S-GW/P-GW selection (MME Policy configuration)

Information provided in this section includes the following:

- Information Required
- MME Configuration

Information Required

The following sections describe the minimum amount of information required to configure and make the MME operational on the network. To make the process more efficient, it is recommended that this information be available prior to configuring the system.

There are additional configuration parameters that are not described in this section. These parameters deal mostly with fine-tuning the operation of the S-GW in the network. Information on these parameters can be found in the appropriate sections of the Command Line Interface Reference.

Required MME Context Configuration Information

The following table lists the information that is required to configure the MME context.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MME context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the MME context is recognized by the system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1-MME Interface Configuration (To/from eNodeB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
</tr>
<tr>
<td>IP address and subnet</td>
</tr>
<tr>
<td>Required Information</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Physical port number</td>
</tr>
</tbody>
</table>

S11 Interface Configuration (To/from S-GW)

<table>
<thead>
<tr>
<th>Interface name</th>
<th>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet</td>
<td>IPv4 address assigned to the S11 interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
</tbody>
</table>

S6a Interface Configuration (To/from HSS)

<table>
<thead>
<tr>
<th>Interface name</th>
<th>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet</td>
<td>IPv4 or IPv6 addresses assigned to the S6a interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
</tbody>
</table>

S6a Diameter Endpoint Configuration

<table>
<thead>
<tr>
<th>End point name</th>
<th>An identification string from 1 to 63 characters (alpha and/or numeric) by which the S6a Diameter endpoint configuration is recognized by the system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin realm name</td>
<td>An identification string between 1 through 127 characters. The realm is the Diameter identity. The originator’s realm is present in all Diameter messages and is typically the company or service name.</td>
</tr>
<tr>
<td>Origin host name</td>
<td>An identification string from 1 to 255 characters (alpha and/or numeric) by which the S6a origin host is recognized by the system.</td>
</tr>
<tr>
<td>Origin host address</td>
<td>The IP address of the S6a interface.</td>
</tr>
<tr>
<td>Peer name</td>
<td>The S6a endpoint name described above.</td>
</tr>
<tr>
<td>Peer realm name</td>
<td>The S6a origin realm name described above.</td>
</tr>
<tr>
<td>Peer address and port number</td>
<td>The IP address and port number of the HSS.</td>
</tr>
<tr>
<td>Route-entry peer</td>
<td>The S6a endpoint name described above.</td>
</tr>
</tbody>
</table>

S13 Interface Configuration (To/from EIR)
Configuring the System as a Standalone MME (base configuration)

Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>IP address and subnet</td>
<td>IPv4 or IPv6 addresses assigned to the S13 interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
</tbody>
</table>

S13 Diameter Endpoint Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>End point name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the S13 Diameter endpoint configuration is recognized by the system.</td>
</tr>
<tr>
<td>Origin realm name</td>
<td>An identification string between 1 through 127 characters. The realm is the Diameter identity. The originator’s realm is present in all Diameter messages and is typically the company or service name.</td>
</tr>
<tr>
<td>Origin host name</td>
<td>An identification string from 1 to 255 characters (alpha and/or numeric) by which the S13 origin host is recognized by the system.</td>
</tr>
<tr>
<td>Origin host address</td>
<td>The IP address of the S13 interface.</td>
</tr>
<tr>
<td>Peer name</td>
<td>The S13 endpoint name described above.</td>
</tr>
<tr>
<td>Peer realm name</td>
<td>The S13 origin realm name described above.</td>
</tr>
<tr>
<td>Peer address and port number</td>
<td>The IP address and port number of the EIR.</td>
</tr>
<tr>
<td>Route-entry peer</td>
<td>The S13 endpoint name described above.</td>
</tr>
</tbody>
</table>

MME Service Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MME service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the MME service can be identified on the system. Multiple names are needed if multiple MME services will be configured.</td>
</tr>
<tr>
<td>PLMN identifier</td>
<td>The identifier of Public Land Mobile Network (PLMN) of which MME belongs to. PLMN identifier is consisting of MCC and MNC.</td>
</tr>
<tr>
<td>MME identifier</td>
<td>The identifier of MME node. The MME Id is consisting of MME group and MME code.</td>
</tr>
<tr>
<td>TAI management database name</td>
<td>An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management database service can be associated with the MME service. This is required for static S-GW selection. Refer to the Required MME Policy Configuration Information section below.</td>
</tr>
<tr>
<td>P-GW IP address</td>
<td>IPv4 or IPv6 address of a PDN Gateway (P-GW). This is required for static S-GW/P-GW selection.</td>
</tr>
</tbody>
</table>

eGTP Service Configuration
Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGTP service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the eGTP service can be associated with the MME system. Multiple names are needed if multiple eGTP services will be used.</td>
</tr>
<tr>
<td>Interface type</td>
<td>Identifies the type of interface to which the eGTP service is bound. This interface type is “interface-mme”.</td>
</tr>
<tr>
<td>GTP-C binding IP address</td>
<td>The IPv4 address of the S11 interface.</td>
</tr>
</tbody>
</table>

HSS Peer Service Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS peer service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the HSS peer service is recognized by the system. Multiple names are needed if multiple HSS peer services will be used.</td>
</tr>
<tr>
<td>Diameter HSS peer</td>
<td>The name for a pre-configured Diameter endpoint, configured on the system to associate with this MME service to access an HSS and an EIR. This is the S6a Diameter endpoint name.</td>
</tr>
</tbody>
</table>

Required MME Policy Configuration Information

The following table lists the information that is required to configure the MME Policy on an MME.

Table 6. Required Information for MME Policy Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Area Identifier (TAI) management database name</td>
<td>An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management database is recognized by the system.</td>
</tr>
<tr>
<td>Tracking Area Identifier (TAI) management object name</td>
<td>An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management object is recognized by the system.</td>
</tr>
<tr>
<td>S-GW IP address</td>
<td>The IPv4 or IPv6 address of the S-GW this management object represents.</td>
</tr>
</tbody>
</table>

How This Configuration Works

The following figure and supporting text describe how this configuration with a single context is used by the system to process a subscriber call originating from the GTP LTE network.
1. The eNodeB forwards an Attach Request message from the UE to the MME containing the IMSI, last visited TAI (if available), the UE’s core network capability, the PDN Type, and the Attach Type.

2. The MME service receives the Attach Request message and references the HSS peer service for authentication and location resolution.

3. The HSS peer service configuration specifies the Diameter configuration and S6a interface to use to communicate with the HSS and the Diameter configuration and S13 interface to use to communicate with the Equipment Identity Register (EIR).

4. Assuming that the MME has no previous security context, it sends an S6a Authentication Request to the HSS and uses the authentication vectors received in the response to complete the authentication procedure with UE.

5. After authentication, the MME proceeds to do a security setup with the UE. During this procedure, the ME identity is transferred to the MME which then queries the EIR.

6. The MME then sends an Update Location Request to the HSS and obtains relevant subscription data for the IMSI in the response.

7. The MME policy is accessed to determine the S-GW and P-GW to which the UE should be attached.

8. The MME uses the S11 interface bound to the eGTP service to communicate with the S-GW specified by the MME policy configuration.

9. The MME then sends a Create Session Request to S-GW which is also forwarded to the specified P-GW (assuming GTP-S5/S8) P-GW establishes the S5/S8 GTPU bearers and then responds with a Create-Session-response which is forwarded to the MME by the S-GW. The S-GW includes the relevant S1-U bearer information.
10. The MME then sends a NAS Attach Accept embedded in the S1 Init Ctxt Setup request to the eNodeB. The Attach Accept contains the IP address allocated to the PDN and the temporary identifier (GUTI) assigned to the UE. The MME waits for positive acknowledgement from both the eNodeB (Init Ctxt Setup response) and UE (Attach Complete). The Init Ctxt Setup Response contains the S1-U bearer endpoint information. The MME then uses the S11 Modify Bearer Request to update the eNodeB endpoints with the S-GW. The receipt of the S11 Modify Bearer Response completes the end-to-end bearer setup.

11. The MME then uses the S6a Notify Request to update the HSS with the APN and P-GW identity.

MME Configuration

To configure the system to perform as a standalone eGTP S-GW, review the following graphic and subsequent steps.

Step 1
Set system configuration parameters such as activating PSCs by applying the example configurations found in the System Administration Guide.

Step 2
Create the MME context, service, and all interfaces, and bind the S1-MME interface to an IP address by applying the example configuration in the Creating and Configuring the MME Context and Service section.

Step 3
Create the eGTP service and associate it with the S11 interface by applying the example configuration in the Creating and Configuring the eGTP Service and Interface Association section.

Step 4
Create the HSS peer service and associate it with the S6a interface and S13 interface by applying the example configuration in the Creating and Configuring the HSS Peer Service and Interface Associations section.

Step 5
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Creating and Configuring the MME Context and Service

Use the following example to configure the MME context and all supported interfaces:

```bash
configure
```
context <mme_context_name> -noconfirm

interface <s1-mme_intf_name>
 ip address <ipv4_address>
 exit

interface <s11_intf_name>
 ip address <ipv4_address>
 exit

interface <s6a_intf_name>
 ip address <ipv4_address>
 exit

interface <s13_intf_name>
 ip address <ipv4_address>
 exit

mme-service <mme_svc_name> -noconfirm
 mme-id group-id <grp_id> mme-code <mme_code>
 plmn-id mcc <mcc_value> mnc <mnc_value>

 network-sharing plmnid mcc <mcc_value> mnc <mnc_value> mme-id group-id <id> mme-code <code>

 associate egtp-service <egtp-service_name> context <mme_context_name>

 associate hss-peer-service <hss_peer_service_name> context <mme_context_name>

 policy attach imei-query-type imei-sv verify-equipment-identity

 pgw-address <pgw_ip_address>

 bind s1-mme ipv4-address <ip_address>
 exit

 exit

port ethernet <slot_number/port_number>
 no shutdown
 bind interface <s1-mme_intf_name> <mme_context_name>
end
Notes:

- All interfaces in this configuration can also be specified as IPv6 addresses using the `ipv6 address` command.
- Multi-homing is supported on the S1-MME and S6a interfaces. Refer to the Configuring SCTP Multi-homing Support section in this chapter for more information on configuring multi-homing for the S1-MME and/or S6a interface(s).
- A maximum of 256 services (regardless of type) can be configured per system.
- The `bind s1-mme` command can also be specified as an IPv6 address using the `ipv6-address` keyword.
- The network-sharing command is used to configure an additional PLMN ID for this MME service.
- The eGTP service is configured in the following section.
- The HSS peer service is configured in the Creating and Configuring the HSS Peer Service and Interface Associations section.
- In the above example, the mobile equipment identity (IMEI) is checked during the attach procedure. This is configured in the policy attach command. Another option is to check IMEI during the tracking area update (TAU). This can be accomplished instead of, or, in addition to, the EIR query during the attach procedure. To check during the TAU, use the policy tau command.
- The `pgw-address` command is used to statically configure P-GW discovery.

Creating and Configuring the eGTP Service and Interface Association

Use the following example to create an eGTP service and associate it with the S11 interface.

```
configure
    context <mme_context_name>
        egtp-service <egtp_service_name>
            interface-type interface-mme
            gtpc bind ipv4-address <s11_infc_ip_address>
        exit
    exit
port ethernet <slot_number/port_number>
    no shutdown
    bind interface <s11_interface_name> <mme_context_name>
end
```

Notes:

- The `gtpc bind` command can be specified as an IPv6 address using the `ipv6-address` keyword. The interface specified for S11 communication must also be the same IPv6 address.
Creating and Configuring the HSS Peer Service and Interface Associations

Use the following example to create and configure the HSS peer service:

```
configure
  context <mme_context_name>
    hss-peer-service hss_peer_service_name
      diameter hss-endpoint <hss_endpoint_name> eir-endpoint <eir-endpoint_name>
    exit
  exit

  diameter endpoint <hss-endpoint_name>
    origin realm <realm_name>
    origin host <name> address <S6a_interface_address>
    peer <peer_name> realm <realm_name> address <hss_ip_address>
    route-entry realm <realm_name> peer <peer_name>
    exit

  diameter endpoint <eir-endpoint_name>
    origin realm <realm_name>
    origin host <name> address <S13_interface_address>
    peer <peer_name> realm <realm_name> address <eir_ip_address>
    route-entry realm <realm_name> peer <peer_name>
    exit

  port ethernet <slot_number/port_number>
    no shutdown
    bind interface <s6a_interface_name> <mme_context_name>
    exit
  port ethernet <slot_number/port_number>
    no shutdown
    bind interface <s13_interface_name> <mme_context_name>
end
```
Notes:

- The `origin host` and `peer` commands can accept multiple IP addresses supporting multi-homing on each endpoint. Refer to the Configuring SCTP Multi-homing Support section for information on configuring SCTP multi-homing for the S6a interface.

Configuring Dynamic Destination Realm Construction for Foreign Subscribers

For a foreign subscriber, the MME does not know the HSS nodes in all the foreign PLMNs. In this case the MME routes S6a/S6d requests directed to foreign PLMNs via a Diameter Routing Agent (DRA) using only the destination realm. The DRA in turn routes the request to the correct HSS based on the destination realm. In order to accomplish this, the MME needs to dynamically construct requests to the DRA/HSS with a Destination Realm representing the foreign PLMN of the UE.

The MME can be configured to derive the EPC Home Network Realm/Domain based on the user's IMSI (MNC and MCC values) and use it as the Destination Realm in all diameter messages.

For home subscribers, the MME will always use the configured peer realm as destination-realm, regardless if dynamic-destination-realm is enabled.

Because MNCs can be 2 or 3 digits long, to provide the ability for an operator to configure the MCC and MNC of foreign PLMNs, the operator policy of the subscriber map is used to determine the MNC value and the length of the MNC. The following steps outline how this configuration can be implemented.

First, enable the dynamic destination realm functionality for the HSS Peer Service:

```
configure

context ctxt_name

hss-peer-service HSS1

dynamic-destination-realm
```

Then configure the foreign PLMNs in the LTE subscriber map. For example:

```
configure

lte-policy

subscriber map SM1

precedence 10 match-criteria imsi mcc 232 mnc 11 operator-policy-name OP.HOME

precedence 20 match-criteria imsi mcc 374 mnc 130 msin first 700000000 last 800000000 operator-policy-name OP.ROAMING
```

Then associate the subscriber map to the MME Service. For example:

```
configure

context ingress

mme-service mmesvc

associate subscriber-map SM1
```
A static route entry must also be added in the diameter endpoint configuration for each foreign realm. For example:

```
configure
  context ingress
    diameter endpoint s6a1
      peer HSS1 realm HSS-Realm1 address <ip-address> sctp
      route-entry realm epc.mnc045.mcc123.3gppnetwork.org peer HSS1
```

With this sample configuration, an MNC of length 2 and value of 11 is matched with first operator policy (OP.HOME), and an MNC length of 3 and value of 130 is matched with the second operator policy (OP.ROAMING). With this configuration, the MME will find the MNC based on the operator policy for the foreign subscriber.

If there is no matching entry present in the operator policy, the MME will use the global static table to decide the MNC length and pass that information to Diameter layer to construct the dynamic realm. The following list of MCCs are all considered as 3 digit MNCs. All other MCCs are considered 2 digit MNCs.

<table>
<thead>
<tr>
<th>MCC</th>
<th>302</th>
<th>310</th>
<th>311</th>
<th>312</th>
<th>316</th>
<th>342</th>
<th>344</th>
<th>346</th>
<th>348</th>
<th>354</th>
<th>356</th>
<th>358</th>
<th>360</th>
<th>365</th>
<th>376</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The `show hss-peer-service service name` command displays this configuration in the Destination Realm field, either Configured Peer Realm (default), or Dynamic Realm.

Request Auth-vectors : 1

Notify Request Message : Enable

Destination Realm : Dynamic Realm
Configuring Optional Features on the MME

The configuration examples in this section are optional and provided to cover the most common uses of the MME in a live network. The intent of these examples is to provide a base configuration for testing.

The following optional configurations are provided in this section:

- Configuring Differentiation Between HeNB-GW and eNodeBs
- Configuring Dual Address Bearer
- Configuring Dynamic Peer Selection
- Configuring Emergency Session Support
- Configuring Gn/Gp Handover Capability
- Configuring Inter-MME Handover Support
- Configuring X.509 Certificate-based Peer Authentication
- Configuring Dynamic Node-to-Node IP Security on the S1-MME Interface
- Configuring ACL-based Node-to-Node IP Security on the S1-MME Interface
- Configuring Load Balancing on the MME
- Configuring Mobility Restriction Support
- Configuring S4-SGSN Handover Capability
- Configuring SCTP Multi-homing Support
- Configuring Static S-GW Pools
- Configuring UMTS to LTE ID Mapping
- Configuring User Location Information Reporting Support

Configuring Differentiation Between HeNB-GW and eNodeBs

The MME can be configured to distinguish the Home eNodeB Gateway (HeNB-GW) from other eNodeBs. This is required to support S1 HANDOVERs to Home eNodeBs connected via a HeNB-GW.

As per 3GPP TS 36.300, section 4.6.2, the TAI used in a HeNB-GW should not be reused in another HeNB-GW. The global eNodeB id of the HeNB-GW can now be configured within the lte-policy configuration mode.

In case of S1-based handovers to Home eNodeBs served by a HeNB-GW, the lookup at MME for the target eNodeB based on global ENB id will fail, as MME is aware of only the HeNB-GW. In those cases additional lookup needs to be done based on TAI to find the HeNB-GW serving the Home eNodeB.

This feature allows operators to configure the global eNodeB ids of HeNB-GWs in the MME service. The MME uses this information to perform HeNB-GW related functions.

The following steps create an HeNB-GW management database, configures a single Global eNodeB ID and TAI within the management database, and associates the HeNB-GW management database with the MME service:

```bash
configure
lte-policy
```
Configuring Optional Features on the MME

mme henbgw mgmt-db db_name
 henbgw-global-enbid mcc mcc_value mnc mnc_value enbid enbid_value
end

configure
 context ctxt_name
 mme-service svc_name
 associate henbgw-mgmt-db db_name
 end

Notes:
- A maximum of 8 HeNB-GWs can be configured within the HeNB-GW management database.
- The show lte-policy henbgw-mgmt-db name db_name command displays configuration information about the specified HeNB-GW management database.
- The show mme-service enodeb-association full command displays whether the eNodeB is an HeNB-GW by including “(HeNB-GW)” in the output of the eNodeB Type field.

Configuring Dual Address Bearers

This example configures support for IPv4/v6 PDNs.

Use the following configuration example to enable support on the MME for dual-address bearers:

configure
 context <mme_context_name> -noconfirm
 mme-service <mme_svc_name>
 policy network dual-addressing-support
 end

Configuring Dynamic Peer Selection

The configuration in this section replaces static configurations on the MME for the following peer components: MME, P-GW, S-GW, SGSN.

Use the following example to configure dynamic P-GW, S-GW, and peer MME selection through a DNS interface:

configure
 context <mme_context_name> -noconfirm
 interface <dns_intf_name>
Configuring Optional Features on the MME

```
ip address <ipv4_address>
exit
ip domain-lookup
ip name-servers <dns_ip_address>
dns-client <name>
    bind address <dns_intf_ip_address>
exit
mme-service <mme_svc_name>
dns pgw
dns sgw
dns peer-mme
dns peer-sgsn
end
```

Notes:
- For the `dns pgw`, `dns sgw`, `dns peer-mme`, and `dns peer-sgsn` commands, the DNS client service must exist in the same context as the MME service. If the DNS client resides in a different context, the `context <ctx_name>` command/variable must be added to the command(s).
- If you have associated a tai-mgmt-db with a call-control-profile, and DNS is to be used for S-GW lookups, the DNS configuration must be configured within the same call-control-profile using the `dns-sgw` command present within the call-control-profile configuration mode.

Configuring Emergency Session Support

The configuration example in this section enables emergency bearer session support on the MME.

Use the following configuration example to enable emergency bearer services on the MME:

```
configure
lte-policy
lte-emergency-profile <profile_name>
ambr max-ul <bitrate> max-dl <bitrate>
apn <apn_name> pdn-type <type>
pgw ip-address <address> protocol <type> weight <value>
qos qci <qci> arp <arp_value> preemption-capability <capability> vulnerability <type>
```
ue-validation-level <type>
exit
mme-service <mme_svc_name>
associate lte-emergency-profile <profile_name>
end

Notes:

- A maximum of four LTE emergency profiles can be configured on the system.
- In the apn command, the valid PDN types are: ipv4, ipv4v6, and ipv6.
- In the pgw command, the valid protocol types are: both, gtp, and pmip. A maximum of four P-GW IP addresses can be configured per profile. An FQDN can also be configured in place of the IP addresses but only one P-GW FQDN can be configured per profile.
- In the qos command, the valid preemption capabilities are: may and shall not. The valid vulnerability types are: not-preemptable and preemptable.
- The ue-validation-level types are: auth-only, full, imsi, and none.
- To configure the MME to ignore the IMEI validation of the equipment during the attach procedure in emergency cases, use the following command in the mme-service configuration mode:

```
policy attach imei-query-type <imei | imei-sv | none> verify-equipment-identity verify-emergency
```

- To configure the MME to ignore the IMEI validation of the equipment during TAU procedures in emergency cases, use the following command in the mme-service configuration mode:

```
policy tau imei-query-type <imei | imei-sv | none> verify-equipment-identity verify-emergency
```

Configuring Gn/Gp Handover Capability

The example configuration in this section provides 3G to 4G handover capabilities between the MME and a Gn/Gp SGSN. The configuration creates the Gn interface used for control signalling during the handover.

Use the following configuration example to create a Gn interface and configure the control interface on the MME for Gn/Gp handovers:

```
configure
context <mme_context_name> -noconfirm
interface <Gn_intf_name>
ip address <ipv4_address>
exit
sgtp-service <sgtp_svc_name>
```
Mobility Management Entity Configuration

Configuring Optional Features on the MME

```
gtpc bind address <Gn_intf_ip_address>
exit
mme-service <mme_svc_name>
associate sgtpc-service <sgtp_svc_name>
peer-sgsn rai mcc <mcc_value> mnc <mnc_value> rac <value> lac <value> address <ip_address> capability gn
  nri length <length> plmn-id mcc <mcc_value> mnc <mnc_value>
end
```

Notes:
- The `peer-sgsn` command is used to statically configure a peer SGSN. SGSN selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the Configuring Dynamic Peer Selection section in this chapter.
- If dynamic peer-SGSN selection is configured, an additional gtpc command must be added to the SGTP service: `gtpc dns-sgsn context <cntxt_name>`
- In the absence of an NRI length configuration, the MME treats the NRI as invalid. The MME will use a plain RAI-based FQDN (and not an NRI-based FQDN) for DNS queries made to resolve the source SGSN.

Configuring Inter-MME Handover Support

Use the following example to configure inter-MME handover support:

```
configure
  context <mme_context_name> -noconfirm
    interface <s10_intf_name>
      ip address <ipv4_address>
    exit
  egtp-service <egtp_service_name>
    interface-type interface-mme
    gtpc bind ipv4-address <s10_infc_ip_address>
  exit
  exit
  mme-service <mme_svc_name>
```
Configuring Optional Features on the MME

```plaintext
peer-mme gummei mcc <number> mnc <number> group-id <id> mme-code <code> address <ipv4_address>
exit
exit

port ethernet <slot_number/port_number>
no shutdown
bind interface <s10_interface_name> <mme_context_name>
end
```

Notes:
- The S10 IP address can also be specified as an IPv6 address. To support this, the **ip address** command can be changed to the **ipv6 address** command.
- The **peer-mme** command can also be configured to acquire a peer MME through the use of a TAI match as shown in this command example:
  ```plaintext
  peer-mme tai-match priority <value> mcc <number> mnc <number> tac any
  address <ipv4_address>
  ``
- The **peer-mme** command is used to statically configure a peer MME. MME selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the **Configuring Dynamic Peer Selection** section in this chapter.
- The peer MME IP address can also be specified as an IPv6 address.

Configuring X.509 Certificate-based Peer Authentication

The configuration example in this section enables X.509 certificate-based peer authentication, which can be used as the authentication method for IP Security on the MME.

> **Important:** Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

The following configuration example enables X.509 certificate-based peer authentication on the MME.

In Global Configuration Mode, specify the name of the X.509 certificate and CA certificate, as follows:

```plaintext
configure

certificate name <cert_name> pem url <cert_pem_url> private-key pem url <private_key_url>
ca-certificate name <ca_cert_name> pem url <ca_cert_url>
end
```

Notes:
The certificate name and ca-certificate list ca-cert-name commands specify the X.509 certificate and CA certificate to be used.

- The PEM-formatted data for the certificate and CA certificate can be specified, or the information can be read from a file via a specified URL as shown in this example.

When creating the crypto template for IPSec in the Context Configuration Mode, bind the X.509 certificate and CA certificate to the crypto template and enable X.509 certificate-based peer authentication for the local and remote nodes, as follows:

```plaintext
configure

context <mme_context_name>

crypto template <crypto_template_name> ikev2-dynamic

certificate name <cert_name>

cia-certificate list ca-cert-name <ca_cert_name>

authentication local certificate

authentication remote certificate

end
```

Notes:
- A maximum of sixteen certificates and sixteen CA certificates are supported per system. One certificate is supported per service, and a maximum of four CA certificates can be bound to one crypto template.
- The certificate name and ca-certificate list ca-cert-name commands bind the certificate and CA certificate to the crypto template.
- The authentication local certificate and authentication remote certificate commands enable X.509 certificate-based peer authentication for the local and remote nodes.

### Configuring Dynamic Node-to-Node IP Security on the S1-MME Interface

The configuration example in this section creates an IKEv2/IPSec dynamic node-to-node tunnel endpoint on the S1-MME interface.

**Important:** Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

The following configuration examples are included in this section:

- Creating and Configuring an IPSec Transform Set
- Creating and Configuring an IKEv2 Transform Set
- Creating and Configuring a Crypto Template
- Binding the S1-MME IP Address to the Crypto Template
Creating and Configuring an IPSec Transform Set

The following example configures an IPSec transform set which is used to define the security association that determines the protocols used to protect the data on the interface:

```
configure
 context <mme_context_name>
 ipsec transform-set <ipsec_transform-set_name>
 encryption aes-cbc-128
 group none
 hmac sha1-96
 mode tunnel
 end
```

Notes:
- The encryption algorithm, **aes-cbc-128**, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IPSec transform sets configured on the system.
- The **group none** command specifies that no crypto strength is included and that Perfect Forward Secrecy is disabled. This is the default setting for IPSec transform sets configured on the system.
- The **hmac** command configures the Encapsulating Security Payload (ESP) integrity algorithm. The **sha1-96** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IPSec transform sets configured on the system.
- The **mode tunnel** command specifies that the entire packet is to be encapsulated by the IPSec header including the IP header. This is the default setting for IPSec transform sets configured on the system.

Creating and Configuring an IKEv2 Transform Set

The following example configures an IKEv2 transform set:

```
configure
 context <mme_context_name>
 ikev2-ikesa transform-set <ikev2_transform-set_name>
 encryption aes-cbc-128
 group 2
 hmac sha1-96
 lifetime <sec>
```
Mobility Management Entity Configuration

Configuring Optional Features on the MME

prf sha1
end

Notes:

- The encryption algorithm, **aes-cbc-128**, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IKEv2 transform sets configured on the system.

- The **group 2** command specifies the Diffie-Hellman algorithm as Group 2, indicating medium security. The Diffie-Hellman algorithm controls the strength of the crypto exponentials. This is the default setting for IKEv2 transform sets configured on the system.

- The **hmac** command configures the Encapsulating Security Payload (ESP) integrity algorithm. The **sha1-96** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

- The **lifetime** command configures the time the security key is allowed to exist, in seconds.

- The **prf** command configures the IKE Pseudo-random Function, which produces a string of bits that cannot be distinguished from a random bit string without knowledge of the secret key. The **sha1** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

Creating and Configuring a Crypto Template

The following example configures an IKEv2 crypto template:

```
configure
 context <mme_context_name>
 crypto template <crypto_template_name> ikev2-dynamic
 authentication local pre-shared-key key <text>
 authentication remote pre-shared-key key <text>
 ikev2-ikesa transform-set list <name1> . . . <name6>
 ikevs-ikesa rekey
 payload <name> match childsa match ipv4
 ipsec transform-set list <name1> . . . <name4>
 rekey
 end
```

Notes:

- The **ikev2-ikesa transform-set list** command specifies up to six IKEv2 transform sets.

- The **ipsec transform-set list** command specifies up to four IPSec transform sets.
Binding the S1-MME IP Address to the Crypto Template

The following example configures the binding of the S1-MME interface to the crypto template:

```plaintext
configure
 context <mme_context_name>
 mme-service <mme_svc_name>
 bind s1-mme ipv4-address <address> ipv4-address <address> crypto-template <enodeb_crypto_template>
 end
end
```

Notes:
- The `bind` command in the MME service configuration can also be specified as an IPv6 address using the `ipv6-address` command.
- This example shows the `bind` command using multi-homed addresses. The multi-homing feature also supports the use of IPv6 addresses.

Configuring ACL-based Node-to-Node IP Security on the S1-MME Interface

The configuration example in this section creates an IKEv2/IPSec ACL-based node-to-node tunnel endpoint on the S1-MME interface.

**Important:** Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

The following configuration examples are included in this section:
- Creating and Configuring a Crypto Access Control List
- Creating and Configuring an IPSec Transform Set
- Creating and Configuring an IKEv2 Transform Set
- Creating and Configuring a Crypto Map

Creating and Configuring a Crypto Access Control List

The following example configures a crypto ACL (Access Control List), which defines the matching criteria used for routing subscriber data packets over an IPSec tunnel:

```plaintext
configure
 context <mme_context_name>
 ip access-list <acl_name>
```
permit tcp host <source_host_address> host <dest_host_address>
end

Notes:
- The permit command in this example routes IPv4 traffic from the server with the specified source host IPv4 address to the server with the specified destination host IPv4 address.

Creating and Configuring an IPSec Transform Set

The following example configures an IPSec transform set which is used to define the security association that determines the protocols used to protect the data on the interface:

configure

context <mme_context_name>

ipsec transform-set <ipsec_transform-set_name>

encryption aes-cbc-128

group none

hmac sha1-96

mode tunnel
end

Notes:
- The encryption algorithm, aes-cbc-128, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IPSec transform sets configured on the system.

- The group none command specifies that no crypto strength is included and that Perfect Forward Secrecy is disabled. This is the default setting for IPSec transform sets configured on the system.

- The hmac command configures the Encapsulating Security Payload (ESP) integrity algorithm. The sha1-96 keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IPSec transform sets configured on the system.

- The mode tunnel command specifies that the entire packet is to be encapsulated by the IPSec header including the IP header. This is the default setting for IPSec transform sets configured on the system.

Creating and Configuring an IKEv2 Transform Set

The following example configures an IKEv2 transform set:

configure

context <mme_context_name>
ikev2-ikesa transform-set <ikev2_transform-set_name>

encryption aes-cbc-128

group 2

hmac sha1-96

lifetime <sec>

prf sha1

end

Notes:

- The encryption algorithm, aes-cbc-128, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IKEv2 transform sets configured on the system.

- The `group 2` command specifies the Diffie-Hellman algorithm as Group 2, indicating medium security. The Diffie-Hellman algorithm controls the strength of the crypto exponentials. This is the default setting for IKEv2 transform sets configured on the system.

- The `hmac` command configures the Encapsulating Security Payload (ESP) integrity algorithm. The `sha1-96` keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

- The `lifetime` command configures the time the security key is allowed to exist, in seconds.

- The `prf` command configures the IKE Pseudo-random Function which produces a string of bits that cannot be distinguished from a random bit string without knowledge of the secret key. The `sha1` keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

Creating and Configuring a Crypto Map

The following example configures an IKEv2 crypto map:

```bash
configure

crypto map <crypto_map_name> ikev2-ipv4

match address <acl_name>

peer <ipv4_address>

authentication local pre-shared-key key <text>

authentication remote pre-shared-key key <text>

ikev2-ikesa transform-set list <name1> . . . <name6>

payload <name> match ipv4
```
lifetime <seconds>
ipsec transform-set list <name1> ... <name4>
exit
exit
interface <s1-mme_intf_name>
ip address <ipv4_address>
crypto-map <crypto_map_name>
exit
exit
port ethernet <slot_number/port_number>
no shutdown
bind interface <s1-mme_intf_name> <mme_context_name>
end

Notes:
- The type of crypto map used in this example is IKEv2-IPv4 for IPv4 addressing. An IKEv2-IPv6 crypto map can also be used for IPv6 addressing.
- The `ipsec transform-set list` command specifies up to four IPSec transform sets.

### Configuring Load Balancing on the MME

In networks that contain multiple MMEs configured as a pool, load balancing is a necessary feature allowing UE attachments to be spread across the pool instead of a small number of MMEs.

The following example configures load balancing on an MME:

```bash
configure
context <mme_context_name>
mme-service <mme_svc_name>
relative-capacity <number>
end
```

Notes:
- The `relative-capacity` command specifies a weight factor, such that the probability of the eNodeB selecting this MME is proportional to this value in relation to other MMEs in a pool.
- The relative capacity is defined as an integer from 0 through 255. The default value is 255.
• The weight factor of the MME is sent from the MME to the eNodeB via S1-AP messages using the Relative MME Capacity S1AP IE in the S1AP S1 Setup Response. If the relative MME capacity is changed after the S1 interface is already initialized, then the MME Configuration Update message is used to update this information to the eNodeB.

Configuring Mobility Restriction Support

Mobility or handover restriction is performed by handover restriction lists configured on the MME. These lists restrict inter-RAT, 3G location area, and/or 4G tracking area handovers based on the configuration in the Handover Restriction List Configuration Mode.

**Important:** Mobility restriction support is only available through the operator policy configuration. For more information on operator policy, refer to the Operator Policy chapter in this guide.

Configuring Inter-RAT Handover Restrictions on the MME

Inter-RAT handover restriction configurations on the MME restrict subscribers from participating in handovers to defined radio access network types.

Use the following example to configure this feature:

```
configure
lte-policy
 ho-restrict-list <name>
 forbidden inter-rat cdma2000
 end
```

Notes:

• Other forbidden inter-RAT choices are: all, GERAN, and UNTRAN.
• This configuration will only become operational when it is associated with a call control profile. Only one handover restriction list can be associated with a call control profile.

Configuring Location Area Handover Restrictions on the MME

Location area handover restriction lists on the MME restrict subscribers from participating in handovers to specific 3G location area codes.

Use the following example to configure this feature:

```
configure
lte-policy
 ho-restrict-list <name>
 forbidden location-area plmnid <id>
```
Mobility Management Entity Configuration

Configuring Optional Features on the MME

```text
lac <area_code> <area_code> <area_code> +
end
```

Notes:

- Up to 16 forbidden location areas can be configured per handover restriction list.
- Up to 128 location area codes can be entered in a single `lac` command line.
- This configuration will only become operational when it is associated with a call control profile. Only one handover restriction list can be associated with a call control profile.

Configuring Tracking Area Handover Restrictions on the MME

Tracking area handover restriction lists on the MME restrict subscribers from participating in handovers to specific 4G tracking area codes.

Use the following example to configure this feature:

```text
configure
lte-policy
ho-restrict-list <name>
 forbidden tracking-area plmnid <id>
 tac <area_code> <area_code> <area_code> +
end
```

Notes:

- Up to 16 forbidden tracking areas can be configured per handover restriction list.
- Up to 128 tracking area codes can be entered in a single `tac` command line.
- This configuration will only become operational when it is associated with a call control profile. Only one handover restriction list can be associated with a call control profile.

Configuring S4-SGSN Handover Capability

This configuration example configures an S3 interface supporting inter-RAT handovers between the MME and an S4-SGSN.

Use the following example to configure this feature:

```text
configure
context <mme_context_name> -noconfirm
 interface <s3_interface_name>
 ip address <ipv4_address>
exit
```
mme-service <mme_svc_name>

    peer-sgsn rai mcc <mcc_value> mnc <mnc_value> rac <value> lac <value> address <ip_address> capability s3

    nri length <length> plmn-id mcc <mcc_value> mnc <mnc_value>

    exit

    exit

port ethernet <slot_number/port_number>

    no shutdown

bind interface <s3_interface_name> <mme_context_name>

end

Notes:

• The S3 IP address can also be specified as an IPv6 address. To support this, the ip address command can be changed to the ipv6 address command.

• The peer-sgsn command is used to statically configure a peer SGSN. SGSN selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the Configuring Dynamic Peer Selection section in this chapter.

• In the absence of an NRI length configuration, the MME treats the NRI as invalid. The MME will use a plain RAI-based FQDN (and not an NRI-based FQDN) for DNS queries made to resolve the source SGSN.

Configuring SCTP Multi-homing Support

SCTP multi-homing can be configured on the S1-MME interface (to/from eNodeB), the S6a interface (to/from HLR/HSS), and the SGs interface (to/from the MSC/VLR).

Configuring SCTP Multi-homing on the S1-MME Interface

Up to two IPv4 or IPv6 addresses for the S1-MME interface can be entered to allow for SCTP multi-homing.

The configuration example in this section is intended as a replacement for the S1-MME interface configuration located in the Creating and Configuring the MME Context and Service section. Use the following example to configure S1-MME multi-homing between the MME and the eNodeB:

configure

    context <mme_context_name> -noconfirm

    interface <s1-mme_intf_name>

    ip address <ipv4_address>

    ip address <secondary_ipv4_address>

    exit
Mobility Management Entity Configuration

Configuring Optional Features on the MME

mme-service <mme_svc_name>

   bind sl-mme ipv4-address <ipv4_address> ipv4-address <secondary_ipv4_address>

   exit

exit

port ethernet <slot_number/port_number>

   no shutdown

   bind interface <sl-mme_intf_name> <mme_context_name>

end

Notes:

- The S1-MME IP addresses can also be specified as IPv6 addresses using the ipv6 address keyword.
- The IP addresses in the bind sl-mme ipv4-address command can also be specified as IPv6 addresses using the ipv6-address keyword.

Configuring SCTP Multi-homing on the S6a Interface

Up to four IPv4 or IPv6 addresses for the S6a interface can be configured to allow for SCTP multi-homing.

The configuration example in this section is intended as a replacement for the S6a interface configuration located in the Creating and Configuring the MME Context and Service section and the Diameter configuration for the S6a interface located in the Creating and Configuring the HSS Peer Service and Interface Associations section. Use the following example to configure S6a multi-homing between the MME and the HLR/HSS:

configure

   context <mme_context_name>

   interface <s6a_intf_name>

      ip address <s6a_intf_primary_ip_addr> <ip_mask>

      ip address <s6a_intf_secondary_ip_addr2> <ip_mask> secondary

      ip address <s6a_intf_secondary_ip_addr3> <ip_mask> secondary

      exit

   exit

   diameter endpoint <hss-endpoint_name>

      origin realm <realm_name>

      origin host <name> address <s6a_intf_primary_ip_addr> port <number> address <s6a_intf_secondary_ip_addr2> port <number> address <s6a_intf_secondary_ip_addr3> port <number>
Configuring Optional Features on the MME

```bash
peer <peer_name> realm <realm_name> address <hss_ip_addr1> port <number> address <hss_ip_addr2> port <number> sctp
 route-entry realm <realm_name> peer <peer_name>
 exit
 port ethernet <slot_number/port_number>
 no shutdown
 bind interface <s6a_intf_name> <mme_context_name>
 exit
```

Notes:
- The S6a IP addresses can also be specified as IPv6 addresses using the `ipv6 address` keyword.

Configuring S6a SCTP and Application Timers for Multi-homing

In the event of a path failure, the SCTP multi-homing feature requires time to activate the alternate path. Timers associated with the SCTP heartbeat and the application; in this instance, a Diameter watchdog request, must be tuned properly to ensure that the application does not timeout before the redundant SCTP path can be activated. The required calculation is based on the two paths configured between the MME and the HSS, the maximum retransmission configuration for the SCTP paths, and the SCTP heartbeat timeout configuration. The configuration of the timers must be identical on both peers.

The recommended SCTP timer values are provided below in the first row for the Diameter application default values that follow the typical case of two paths between the MME and HSS SCTP peers. SCTP HB interval can be in the range of 1 to 10 seconds, since (10 sec x 1 retx x 2 paths = 20 seconds) < (30 sec watchdog timeout x 1 retry).

The second row displays the recommended configuration using the same Diameter defaults but providing a SCTP heartbeat timer that reduces heartbeat traffic.

<table>
<thead>
<tr>
<th>SCTP Heartbeat Timeout</th>
<th>SCTP Path Max Retransmissions</th>
<th>Diameter Device Watchdog Timeout</th>
<th>Diameter Watchdog Request Max Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 range</td>
<td>1</td>
<td>30 (default)</td>
<td>1 (default)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>30 (default)</td>
<td>1 (default)</td>
</tr>
</tbody>
</table>

The following example configures the SCTP and application timers for the S6a SCTP interface supporting multi-homing:

```bash
configure
 sctp-param-template <name>
 sctp-max-path-retx <value>
 timeout sctp-heart-beat <value>
```
exit

context <name>

diameter endpoint <endpoint_name>

associate sctp-parameter-template <template_name>

device-watchdog-request max-retries <retry_count>

watchdog-timeout <timeout>

end

Notes:
- When no SCTP parameter template is associated with the Diameter endpoint, the following default values are used:
  - sctp-max-path-retx 10 (default in the parameter template is 5)
  - timeout sctp-heart-beat 30 (default for the parameter template as well)

Configuring SCTP Multi-homing on the SGs Interface

Up to two IPv4 or IPv6 addresses for the SGs interface can be entered to allow for SCTP multi-homing.

Use the following example to configure SGs multi-homing between the MME and the MSC/VLR:

configure

    context <mme_context_name> -noconfirm

    interface <s1-mme_intf_name>

        ip address <ipv4_address>

        ip address <secondary_ipv4_address>

    exit

    sgs-service <mme_svc_name>

        bind ipv4-address <ipv4_address> ipv4-address <secondary_ipv4_address>

    exit

    exit

    port ethernet <slot_number/port_number>

        no shutdown

        bind interface <sgs_intf_name> <mme_context_name>

end
Notes:

- The SGs IP addresses can also be specified as IPv6 addresses using the `ipv6 address` keyword.
- The IP addresses in the `bind ipv4-address` command can also be specified as IPv6 addresses using the `ipv6-address` keyword.

## Configuring Static S-GW Pools

The MME supports static TAI list configuration which allows for the mapping of TAIs, TACs, and S-GWs to facilitate S-GW pooling for UEs moving between TAIs in their TAI lists.

### Creating and Configuring a TAI Management Database and Object

This section provides configuration examples for creating and configuring the TAI/S-GW associations for S-GW pooling.

Use the following example to configure this feature on the MME:

```bash
configure
lte-policy
 lte-mgmt-db <db_name>
 lte-mgmt-obj <object_name>
 tai mcc <number> mnc <number> tac <value>
 sgw-address <ipv4_address> s5-s8-protocol gtp weight <number>
 end
end
```

Notes:

- Up to four databases can be configured on the system.
- Up to 500 management objects can be configured per database.
- Up to 16 TAIs can be configured per management object.
- Up to 16 TACs can be configured per TAI.
- The `sgw-address` variable can also be specified as an IPv6 address.
- Up to 32 S-GW IP addresses can be configured per management object.
- Weights for IPv4 addresses are ignored if IPv6 addresses are present meaning only IPv6 addresses are load-balanced if present.
- The s5-s8-protocol can also be specified as `pmip` or `both` (GTP and PMIP).

### Associating a TAI Management Database with an MME Service

In order for an MME service to use a statically configured S-GW pool, it must be associated with the TAI Management Database.

Use the following example to configure the TAI Management Database-to-MME service association:
configure
context <mme_context_name>
  mme-service <mme_svc_name>
    associate tai-mgmt-db <database_name>
end

Notes:
- Only one TAI Management Database can be configured per MME service.
- This association can also be performed in the Call Control Profile Configuration Mode supporting Operator Policy. If both associations are configured, the Operator Policy association is preferred by the system.

Associating a TAI Management Database with a Call Control Profile

MME service can access a statically configured S-GW pool through an Operator Policy instance, specifically through the Call Control Profile.

Use the following example to configure the TAI Management Database-to-MME service association:

configure
  call-control-profile <name>
    associate tai-mgmt-db <database_name>
end

Notes:
- Only one TAI Management Database can be configured per Call Control Profile.
- This association can also be performed in the MME Service Configuration Mode. If both associations are configured, the Operator Policy association is preferred by the system.
- If the tai-mgmt-db is associated with a call-control-profile, and DNS is to be used for S-GW lookups, the DNS configuration must be configured within the same call-control-profile using the `dns-sgw` command within the call-control-profile configuration mode.

Configuring UMTS to LTE ID Mapping

UMTS networks are configured with LACs allocated from the reserved space of 32K to 64K. In LTE networks, this space is typically reserved for MME group IDs. To overcome this issue during inter-RAT handovers, the MME can be configured with mappings between LACs and MME group IDs.

Use the following configuration example to map PLMN IDs to MME group IDs:

configure
  lte-policy
    network-global-mme-id-mgmt-db
Mobility Management Entity Configuration

Configuring Optional Features on the MME

```
plmn mcc <mcc_value> mnc <mnc_value> mme-group-id-range first <id> last <id>
exit
exit
context <mme_service_context>
mme-service <service_name>
 associate network-global-mme-id-mgmt-db
end
```

Notes:
- Up to 32 mappings can be configured on the system.
- Overlapping ranges can be identified in the output of the `show configuration errors` command.

## Configuring User Location Information Reporting Support

This feature allows the MME to query and receive UE location reports from an eNodeB.

**Important:** User Location Information Reporting is a licensed feature and requires the purchase of the ULI Reporting feature license to enable it.

Use the following example to configure User Location Information (ULI) reporting support on the MME:

```
configure

 context <mme_context_name>

 mme-service <mme_svc_name>
 location-reporting

end
```
Chapter 3
A-MSISDN Functionality

It is possible to configure the MME to support the Additional Mobile Subscriber ISDN (A-MSISDN) flag in the Features List AVP of the Update Location Request (ULR) messages.

This chapter looks at the MME’s A-MSISDN functionality and provides the following information:

- Feature Description
- How It Works
- Configuring AMSISDN Functionality
- Monitoring and Troubleshooting the AMSISDN Functionality
Feature Description

The MME includes the Additional Mobile Subscriber ISDN (A-MSISDN) flag in the Features List AVP of the Update Location Request (ULR) messages that are sent over the S6a interface to the Home Subscriber Server (HSS) at the time a UE Attaches. In response, if an A-MSISDN is available then the HSS sends a provisioned A-MSISDN and an MSISDN in the Subscription Data AVP in Update Location Answer (ULA) and IDR messages.
How It Works

When A-MSISDN is configured to enable this functionality, then the MME will advertise support for A-MSISDN in S6a ULR messages by setting bit 31 in the Feature List Id 1 AVP. Upon receiving s6a ULA/IDR messages from the HSS, the MME will

- store received A-MSISDN value from the Subscription Data AVP in the UE context.
- use A-MSISDN as C-MSISDN in "SRVCC PS to CS Request" and "Forward Relocation Request" messages.
- store received C-MSISDN as A-MSISDN in the UE context.

Support for A-MSISDN functionality enables the MME to use the A-MSISDN as a Correlation MSISDN (C-MSISDN) during SRVCC PS-to-CS handovers. For information on the purpose of the C-MSISDN, refer to 3GPP TS 23.003.

If the MME sends an A-MSISDN flag in the ULR, then the MME

- can receive only one or both MSISDN and A-MSISDN in ULA/IDR messages.
- can send MSISDN or A-MSISDN as C-MSISDN.

The MME’s A-MSISDN functionality is applicable for ULR/ULA, IDR/IDA, and DSR/DSA command pairs sent over S6a interface.

The MME also supports the A-MSISDN withdrawal bit received in DSR Flags AVP. Receipt of this bit triggers the MME to delete an A-MSISDN from the UE context.

Limitations

A-MSISDN support is not present for the S6d interface. This means that A-MSISDN will not be available to the MME when SGSN/MME-combo optimization is enabled and subscription data received by the SGSN is re-used by the MME.

Location services using A-MSISDN are not supported (PLR/LRR).

Lawful Intercept (LI) and Monitor Subscriber functions based on A-MSISDN as the identifier are not supported.

Standards Compliance

The MME’s support of A-MSISDN complies with 3GPP 29.274 v11.10.0.
Configuring A-MSISDN Functionality

Enabling A-MSISDN is a two step process:

- First, configure A-MSISDN support on the MME.
- Second, configure the MME to support 3GPP Release 11 AVPs.

Both configuration steps are described below and both must be completed to fully enable A-MSISDN functionality.

Configuring A-MSISDN Support

By default, A-MSISDN is not supported. Use the following configuration sequence to enable the MME to support A-MSISDN functionality and to advertise that support to the HSS.

```
configure
 call-control-profile profile_name
 a-msisdn
 remove a-msisdn
end
```

Notes:

- `remove` Disables support for A-MSISDN functionality and returns the MME to default state.
- `a-msisdn` Enables the MME to notify the HSS of support for Additional-MSISDN for the PLMN associated with this call-control profile.
- Configure the 3GPP R11 support with the `diameter update-dictionary-avps` command in the HSS Peer Service configuration mode to complete the configuration required to support A-MSISDN.

Verifying the A-MSISDN Support Configuration

Use the output generated by the `show call-control-profile full all` command to verify the configuration status of the A-MSISDN functionality:

```
Call Control Profile Name = cp1

SAMOG Web-Authorization Mutiple Device Support : NO

Super Charger : Disabled
P-CSCF Restoration : Enabled
A-MSISDN : Enabled
```
Configuring 3GPP Release 11 AVP Support

The following configuration sequence enables the MME to support AVPs available in Release 11 3GPP 29.272.

```
configure
 context context_name
 hss-peer-service service_name
 diameter update-dictionary-avps { 3gpp-r10 | 3gpp-r11 | 3gpp-r9 }
 no diameter update-dictionary-avps
 end
```

Notes:

- **no** Sets the command to the default value where Release 8 (‘standard’) dictionary is used for backward compatibility of previous releases.

- **3gpp-r11** Configures the MME to support signaling additional AVPs to an HSS in support of Release 11 of 3GPP 29.272. Using this keyword is necessary to enable the MME to fully support inclusion of the Additional Mobile Station ISDN (A-MSISDN) flag of the Feature List AVP in Update Location Request (ULR) messages sent over the S6a interface to the HSS at the time a UE attaches.
Monitoring and Troubleshooting the A-MSISDN Functionality

Show Command(s) and/or Outputs

The show commands in this section are available in support of the MME’s A-MSISDN functionality.

show mme-service session full all

The A-MSISDN field in the generated output indicates an A-MSISDN value if the A-MSISDN is received from the HSS. If no value is received from the HSS, then the value displayed will be n/a.

[local]asr5000# show mme-service session full all
SessMgr Instance: 1       ImsiMgr Instance: 1
MSID: 123456789012345      Callid: 00004e21
MME Service: mmesvc
MME HSS Service: mmel
SGTPC Service: sgtpl
EGTP S11 Service: egtp_mme
MME S1 Address: 192.80.80.2
EGTP S11 Address: 192.80.80.16
ME Identity: n/a  GUTI: 123:456:32777:2:3221225473
MSISDN: 888012345679001

A-MSISDN : 988012345679002

The following show commands will also generate output that display the A-MSISDN value if has been received from the HSS. If nothing is received then the value will be n/a:

- show mme-service db record call-id call-id
- show mme-service db record imsi imsi
- show mme-service db record guti plmn plmn group-id group-id code code m-tmsi m-tmsi
Chapter 4
APN Override

Access Point Name (APN) Override is a set of features which enable the operator to override the APN requested by the UE. The functionality to provide configurable remapping provides the operator flexible options with APN handling locally rather than requiring changes in the external systems.

- Feature Description
- How it Works
- Configuring APN Override
Feature Description

In many situations the APN provided in the Activation Request is unacceptable. Either it does not match any of the subscribed APNs or could be misspelled, resulting in the SGSN rejecting the Activation Request. The APN Override feature enables the operator to override an incoming APN specified by a subscriber or provided during the APN selection procedure.

There are three methods of performing apn-overriding.

- Network Identifier (NI) based overriding
- Operator Identifier (OI) based overriding
- Charging-characteristic based overriding

A valid license key is required to enable APN Override. Contact your Cisco Account or Support representative for information on how to obtain a license.
How it Works

The following sections describe the three methods for overriding a UE requested APN. These options enable the operator to overwrite incorrect APNs or apply an APN when not provisioned for the subscriber in the HLR.

Network Identifier (NI) Overriding

Network Identifier (NI) Overriding is done before validating the UE requested APN with HSS subscriber data.

Operator Identifier (OI) Overriding

Operator Identifier (OI) Overriding is done after Network Identifier is validated against HSS subscriber data. After the FQDN is constructed for DNS query, OI overriding is applied on the constructed FQDN to form a new FQDN based on OI remapping.

Charging Characteristics Overriding

Charging characteristics based overriding is performed if the apn-charging-characteristic/subscriber-charging-characteristic from the HSS matches the configured APN and charging-characteristic in the remap entry.
Configuring APN Override

Configuration for all of the functions of the APN Override feature is accomplished in the APN Remap Table configuration mode of the Operator Policy Feature. In order to enable apn-overriding, an apn-remap-table must be configured and associated to the mme-service through the operator-policy.

Before You Begin

APN Override is configured with the commands in the APN Remap Table configuration mode. This mode generates a table that is a key component of the Operator Policy feature and the table is not valid unless it is associated with an operator policy.

Before entering the APN Remap Table configuration mode to configure specific APN override settings, you must first create and associate the various related objects as follows:

Step 1  Create an APN Remap Table instance from the Global configuration mode.

Step 2  Associate the APN Remap Table with an operator policy in the Operator Policy configuration mode.

Step 3  Define which subscribers should have this operator policy applied.

Refer to the following example to complete these steps.

```
configure

 apn-remap-table <table_name> -noconfirm
 exit

 operator-policy name policy_name -noconfirm
 associate apn-remap-table table_name
 exit

 lte-policy
 subscriber-map map_name -noconfirm
 precedence 1 match-criteria all operator-policy-name policy_name
 exit
 exit

 context ingress -noconfirm
 mme-service srvc_name -noconfirm
 associate subscriber-map map_name
 end
```
Configuring Network Identifier Override

Network Identifier (NI) Overriding is done before validating the UE requested APN with HSS subscriber data.

configure

    apn-remap-table table_name

    apn-remap network-identifier company.com new-ni internet1.com

end

Notes:

- The `apn-remap` command above remaps the UE requested APN “company.com” to “internet.com”.
- Wildcards characters (*) can be used in the existing network identifier.

Configuring Operator Identifier Override

Operator Identifier (OI) Overriding is done after Network Identifier is validated against HSS subscriber data. After the FQDN is constructed for the DNS query, Operator Identifier overriding is applied on the constructed FQDN to construct the new FQDN based on OI remapping.

configure

    apn-remap-table table_name

    apn-remap operator-identifier mnc456.mcc123.gprs new-oi mnc987.mcc654.gprs

    apn-remap operator-identifier mnc456.mcc123.gprs value-for-oi-mcc 543 value-for-oi-mnc 234

end

Notes:

- The first `apn-remap` command above remaps “company.com.apn.epc.mnc456.mcc123.3gppnetwork.org” to “starent.com.apn.epc.mnc987.mcc654.3gppnetwork.org”.
- The second `apn-remap` command above remaps “starent.com.apn.epc.mnc456.mcc123.3gppnetwork.org” to “starent.com.apn.epc.mnc234.mcc543.3gppnetwork.org”.
- Wildcards characters (*) can be used in the existing operator identifier.

Configuring Charging Characteristics Override

If the UE-requested APN and apn-charging-characteristic /subscriber-charging-characteristic from HSS matches the configured APN and charging-characteristic in the remap entry, then it is overridden with the target-ni configured.

configure

    apn-remap-table table_name
Configuring APN Override

```
cc behavior 0x785 profile 6 apn-remap network-identifier company.com new-ni internet.com
end
```

Notes:
- The above command remaps “company.com” to “internet.com” if the configured charging-characteristic matches the apn-charging-characteristic/subscriber-charging-characteristic in the HSS. Pdn-type also must match.

Verifying the APN Override Configuration

The following command shows the override settings configured for the specified apn-remap-table.

```
show apn-remap-table full name <table_name>
```

[local]asr5x00# show apn-remap-table full name table1

Charging Characteristic APN Override Entry1
- Match Charging Characteristics Behavior : 0x785
- Match Charging Characteristics Profile-Index : 6
- Match Requested APN : company.com
- APN to use for Overriding : internet.com

APN remap Entry1 :
- Match Input OI wildcard :mnc456.mcc123.gprs
- Remap Input OI to :mnc987.mcc654.gprs

APN remap Entry2 :
- Match Input NI wildcard :company.com
- Remap Input NI to :internet1.com
Chapter 5
Backup and Recovery of Key KPI Statistics

This feature allows the back up of a small set of MME key KPI counters for recovery of the counter values after a session manager (SessMgr) crash.

This section includes the following information:

- Feature Description
- How It Works
- Configuring Backup Statistics Feature
- Managing Backedup Statistics
Feature Description

Before the Backup and Recovery of Key KPI Statistics feature was implemented, statistics were not backed up and could not be recovered after a SessMgr task restart. Due to this limitation, monitoring the KPI was a problem as the MME would lose statistical information whenever task restarts occurred.

KPI calculation involves taking a delta between counter values from two time intervals and then determines the percentage of successful processing of a particular procedure in that time interval. When a SessMgr crashes and then recovers, the MME loses the counter values - they are reset to zero. So, the KPI calculation in the next interval will result in negative values for that interval. This results in a dip in the graphs plotted using the KPI values, making it difficult for operations team to get a consistent view of the network performance to determine if there is a genuine issue or not.

This feature makes it possible to perform reliable KPI calculations even if a SessMgr crash occurs.
How It Works

A key set of counters, used in KPI computation will be backed up for recovery if a SessMgr task restarts. The counters that will be backed up are determined by the KPIs typically used in several operator networks.

The backup of counters is enabled or disabled via configuration. The configuration specifies the product for which counters will be backed up and also a time interval for the back up of the counters.

The backed up counters can be identified via CLI generated displays or via display of the MME-specific backup statistics schema: mme-bk. The operator can use this schema to compute the KPI as statistics will have the recovered counters. During the display and the backup processes, both the normal counters and backed-up counters are cumulatively displayed or backed up.

- **mme-bk schema** - This schema comprises a superset of key MME counters maintained by the SessMgr and are backed up. The counters in this schema are pegged per MME service. Each line of output is per MME service. Additionally, there will be one set of consolidated counters for all MME services which is displayed with the MME service name.

Architecture

When this feature is enabled (see Configuring Backup Statistics Feature below), the MME only backs up the counters maintained at the SessMgr. The recovery function does not need to be configured or ‘started’ as it occurs automatically as needed when the feature is enabled.

The counters are backed up to the AAAMgr that is paired with the SessMgr. They are recovered from the AAAMgr if a SessMgr task is killed and after the SessMgr task recovers. This feature makes use of the session recovery framework to backup and retrieve the counters.

The following diagram depicts how backed-up statistics are maintained separately at the SessMgr and how the cumulative values are backed up and recovered from the AAAMgr after SessMgr task recovery completes.

![Figure 10. Back Up and Recovery of Statistics for MME](image-url)
Limitations

- A backup interval is optionally specified; default is every 5 minutes. We recommend care should be taken when defining an interval as too small an interval could mean too frequent checkpoints. For example, if the backup interval is specified as 5 minutes, then counters are backed up every 5 minutes. Suppose backup happened at Nth minute and the configured backup interval is for every 5 minutes, then if a task crash happens at N+4 minutes, the MME recovers only the values backed up at Nth minute and the data for the past 4 minutes is lost.

- Only service level statistics are backed up and recovered. Any KPI that is monitored per other granularity, such as per TAC or per eNodeB, is not supported.

- Only statistics maintained at the SessMgr are backed up. Statistics at other managers are not backed up.
Configuring Backup Statistics Feature

For the Backup and Recovery of Key KPI Statistics feature to work, it must be enabled by configuring the backup of statistics for the MME.

Configuration

The following CLI commands are used to manage the functionality for the backing up of the key KPI statistics feature.

Enabling

The following configures the backup of statistics for the MME and enables the Backup and Recovery of Key KPI Statistics feature.

```
configure
 statistics-backup mme
end
```

Setting the Backup Interval

The following command configures the number of minutes (0 to 60) between each backup of the statistics. When the backup interval is not specified a default value of 5 minutes is used as the backup interval.

```
configure
 statistics-backup-interval minutes
end
```

Disabling

The following configures the MME to disable the backing up of statistics for the MME.

```
configure
 no statistics-backup mme
end
```

Verifying the Backup Statistics Feature Configuration

Use either the `show configuration` command or the `show configuration verbose` command to display the feature configuration.
If the feature was enabled in the configuration, two lines similar to the following will appear in the output of a `show configuration [ verbose ]` command:

```
statistics-backup mme
statistics-backup-interval 5
```

Notes:

- The interval displayed is 5 minutes. 5 is the default. If the `statistics-backup-interval` command is included in the configuration, then the 5 would be replaced by the configured interval number of minutes.

- If the command to disable the feature is entered, then `no statistics-backup` line is displayed in the output generated by a `show configuration [ verbose ]` command.
Managing Backed-up Statistics

A new keyword, `recovered-values`, is used with existing show and clear commands to either generate a display of the backed-up statistics or to clear the backed-up statistics.

Displaying Backed-up Statistics

Use one of the following commands to generate a display of the backed up statistics:

- `show mme-service statistics [ recovered-values ] [ verbose ]`
- `show mme-service statistics emm-only [ recovered-values ] [ verbose ]`
- `show mme-service statistics esm-only [ recovered-values ] [ verbose ]`

Notes:

- When the `recovered-values` keyword is used, output includes both current + recovered backed-up statistical values.
- If no SessMmgr crash has occurred, then the recovered values in the output of the above commands will be 0 (zero).

Clearing Backed-up Statistics

Use one of the following commands to clear (delete) the backed-up statistics. Note that the order entry for the service name identification varies in some of the commands. As well, the verbose keyword is not used with the `clear` commands.

- `clear mme-service statistics [ recovered-values ]`
- `clear mme-service statistics emm-only [ recovered-values ]`
- `clear mme-service statistics esm-only [ recovered-values ]`

Notes:

- When the `recovered-values` keyword is used, only the `recovered` values will be cleared.
Chapter 6
Cell Broadcast Center - SBc Interface

This chapter provides an overview of the MME’s support for the SBc interface between the MME and Cell Broadcast Center (CBC) for warning message delivery and control functions.

- Feature Description
- How it Works
- Configuring SBc Interface
- Monitoring SBc Services
Feature Description

The MME provides support for Commercial Mobile Alert System (CMAS): SBc interface and underlying protocols. Warning Messages can be received from a Cell Broadcast Center (CBC) over the SBc-AP interface and relayed to all relevant eNodeBs over the S1-AP interface.

Customers can now enable CMAS functionality in their networks to provide warning notifications to subscribers.

**Important:** Beginning with Release 18.4, a valid license key is required to enable the SBc interface. Contact your Cisco Account or Support representative for information on how to obtain a license.
How It Works

The MME accepts incoming SBc associations coming from multiple CBCs.

The MME is responsible for the delivery of the Warning Messages received from CBC to all relevant eNodeBs serving the given TAI list. In the absence of TAI list in the received Warning Message, MME sends the Warning Message to all connected eNodeBs.

The MME acknowledges to CBC when it has started distributing the Warning Message to all relevant eNodeBs. If a response is not received from any eNodeB, it shall not result in any exclusive error messaging to CBC.

Even if the MME node is experiencing congestion, Warning Messages are forwarded and not dropped.

When connected to multiple CBCs, the uniqueness of Warning Messages as identified by Message Type, Message Identifier and Serial Number, must be ensured across these CBCs.

Warning Message Call Flows

In compliance with 3GPP TS 29.168 v10.2.0, the MME supports the following procedures:

- Write-Replace Warning Procedure
- Stop Warning Procedure
- Error Indication Procedure

Standards Compliance

The MME’s implementation of this feature complies with the following standards:

- 3GPP TS 23.041 v10.6.0 – Technical realization of Cell Broadcast Service (CBS)
- 3GPP TS 29.168 v10.2.0 – Cell Broadcast Centre Interfaces with the Evolved Packet Core
- 3GPP TS 22.268 v10.4.0 – Public Warning System
- 3GPP TS 36.413 v10.6.0 – S1-AP Interface
Configuring SBc Interface

Creating and Configuring SBc Service

An SBc service must be created within a context to configure the SBc-AP interface to accept connections from one or more CBCs.

**Important:** Beginning with Release 18.4, a valid license key is required to access the commands used to configure and manage the SBc interface. Contact your Cisco Account or Support representative for license information.

```plaintext
configure

cntxt_name

context ctxt_name

sbc-service sbc_svc_name

associate sctp-param-template sctp_param_template_name

bind ipv4-address ipv4_address_value1 ipv4-address ipv4_address_value2

cbc-associations maximum number

sbc-mme sctp port port_num
:end
```

Notes:

- Up to 8 SGs + MME + SBc + SLs Services can be configured on the system. The SBc service name must be unique across all contexts.
- Associating the SBc service to the SCTP parameter template is not required for the SBc service to be operational. However, if a template is associated, the template must exist before the SBc service is associated to it.
- The SBc service must be bound to at least 1 IP address. Up to 2 IPv4 or 2 IPv6 addresses can be specified for multi homing purposes.
- The `cbc-associations` command is used to define the maximum number of CBC connections allowed for this SBc service. The default setting is 1. Up to 2 connections are allowed per SBc service.
- The default SCTP port used is 29168. The MME listens for incoming SBc-AP connections from an CBC on this port.

Associating the SBc Service with the MME Service

Use the following sample configuration to associate the SBc service to an MME service.

```plaintext
configure
```
context ctxt_name

mme-service mme_svc_name

   associate sbc-service sbc_svc_name [ context ctxt_name ]

end

Notes:

- Each MME service can be associated with one unique SBc service.
- The SBc service is not a critical parameter for the MME service. Removing this configuration will not restart the MME service.
- The MME will always check for a valid SBc service that is up and connected to a CBC before performing any meaningful operations on the Warning Messages received on the S1-AP interface (like attempting to forward the messages).
- Use the optional context keyword if the SBc service and MME service are configured in separate contexts.
- The SBc service is not operationally STARTED unless the MME service to which it is associated is in a STARTED state.

Verifying the SBc Service Configuration

The following command displays configuration information for all SBc services, for the specified for the specified SBc service, or for the specified Cell Broadcast Center.

show sbc-service { all | cbc-associations { all | sbc-service-name sbc_svc_name [ path-info | summary ] } | sbc-service-name sbc_svc_name }

The following command displays the SBc Service name and SBc Service Context which has been associated with each MME service.

show mme-service all

The following command displays configuration errors and warnings related to all SBc services on the MME:

show configuration errors section sbc-service verbose
Monitoring SBc Services

This section lists the SNMP traps, bulk statistics and show commands that display operational statistics relating to SBc services.

SNMP Traps

The following traps are available to track status and conditions relating to the SBc service.

- **starSBCServiceStart**: An SBc Service has started.
- **starSBCServiceStop**: An SBc Service has stopped.

The following traps are generated to track status and conditions of individual CBC associations.

- **starCBCAssocDown**: A CBC Association is down.
- **starCBCAssocUp**: A CBC Association is up.

SBc Bulk Statistics

SBc service related bulk statistics are provided within the SBc schema.

Use the following command to display a list of all variables available within this schema:

```
show bulkstats variables sbc
```

For more information about these statistics, refer to the SBc Schema chapter of the Statistics and Counters Reference.

SBc Service Show Commands and Outputs

The following command displays all statistics related to the SBc service. These statistics can be filtered based on CBC association (peer-id) or SBc service name.

```
show sbc statistics { all | peer-id peer_id | sbc-service-name sbc_svc_name }
```

The following command displays S1-AP statistics relating to the SBc interface. Refer to the related fields highlighted in the sample output below.

```
show mme-service statistics s1ap
```

S1AP Statistics:

```
Transmitted S1AP Data:
...

Kill Request: 0 Write-Replace Warning Request: 0
```

Received S1AP Data:
Event Logging

Event logging for the SBc interface can be enabled using the following command:

`logging filter active facility sbc level severity_level`

Refer to the System Logs chapter of the System Administration Guide for more information about event logging.
Chapter 7
Cell Traffic Trace

The Cell Traffic Trace feature for subscriber and equipment tracing provides detailed information at the call level on one or more UEs and serves as an additional source of information (along with Performance Measurements) for monitoring and optimization operations.

This section describes MME support for Cell Traffic Trace and includes the following topics:

- Feature Description
- How it Works
- Configuring Cell Traffic Trace
- Monitoring and Troubleshooting the Cell Traffic Trace

The system and platform administration guides provide examples and procedures for configuration of basic services on the system. Before using the procedures in this chapter, you can select the configuration example that best meets your service model and configure the required elements for that model.
Feature Description

The Cell Traffic Trace feature provides a 3GPP standard-based cell trace function for tracing all calls in a single cell or multiple cells. Cell Tracing provides the capability to log on to data on any interface at a call level for a specific user or mobile type or a service initiated by a user. In addition, Cell Tracing provides instantaneous values for a specific event.

Trace activation/deactivation is administered by an entity called an Element Manager (EM) on the Network Elements (NE) that comprise the network. The NE generate the trace data or results and transfers the information to a Trace Collection entity (TCE). Trace activation/deactivation can be of two types:

- Management Activation/Deactivation - Trace activated/deactivated in different NEs directly by using the management EM.
- Signaling based Activation/Deactivation - Trace activated/deactivated in different NEs using signaling interfaces between them. The NEs forward the activation/deactivation originating from EM.

In an EPS network, trace is enabled on the following NE: eNodeB, MME, SGW, PGW, HSS, EIR and so on. Cell Traffic Trace enables tracing of all active at one or more Cells in eNodeBs.

A valid license key is required to enable Cell Traffic Trace. Contact your Cisco Account or Support representative for information on how to obtain a license.
How It Works

When Cell Traffic Trace is activated in the monitored cell(s) of E-UTRAN, the eNodeB starts a Trace Recording Session for new calls/session and also for existing active calls/session. A Trace Recording Session Reference (TRSR) is allocated by eNodeB for each of the monitored call/session. The TRSR includes the TRSR reference along with the Trace Reference and TCE address in the CELL TRAFFIC TRACE message to the MME over S1 connection.

Cell Traffic Trace Procedures are used at the MME to assist the TCE Server in correlating the Trace Reference (generated by EM) and Trace Recording Session Reference (generated by the eNodeB) with the IMSI, IMEI (SV) corresponding to the traced session as the eNodeBs only have access to temporary UE identities and not permanent identities (IMSI, IMEI (SV)).

Cell Traffic Trace involves the following nodes:

- Network Element (NE): Network elements are the functional component to facilitate subscriber session trace in mobile network. The term network element refers to a functional component that has standard interfaces in and out of it. It is typically shown as a stand-alone AGW. Examples of NEs are the MME, S-GW, and P-GW.
- Element Manager (EM): The Element Manager (EM) forwards the globally unique Trace Reference to each eNodeB.
- eNodeB
- MME and
- Trace Collection Entity (TCE) server

The Cell Traffic Trace feature operates sequentially and is classified into two stages:

- Trace Files management - Creation of Trace files, renaming and moving trace files to respective directories, compression and archiving of trace files. The configuration for this process is discussed in the Configuring Cell Traffic Trace section.
- Decompression - This process is executed to extract compressed and archived files. The files are named by a .gz extension. It is highly recommended to use tar for the decompression process. The command syntax to decompress the trace files is as follows: Syntax: tar -zxf <file_name>.gz

Architecture

MME supports the following in Cell Traffic Trace:

- When MME receives a Cell Traffic Trace message from eNodeB, it extracts the Trace Reference and Trace Recording Session Reference, and checks for the IMSI and IMEI if present, from the S1 AP ID.
- The MME send the IMSI, IMEI if present, and the Trace References received in a Cell Traffic Trace to the TCE. The TCE address is received in the Cell Traffic Trace signal from eNodeB.
- The MME complies with data formats of Trace Reference, Trace recording Session Reference and TCE Address.

The Cell Traffic Trace operation takes place in the following stages:

Creation of trace files on expiry of Collection Timer

- A list is initialized at the session manager to store relevant information of all the incoming cell trace messages.
- Once the collection timer expires, the session manager gathers all the cell traces into a file, which has a temporary name, and writes it to the hard-disk.
Renaming and moving the files to archive directories by session trace

- The session trace renames these temporary filenames to C Type filenames. The C Type file name is a modified version of the 3gpp specification. A suffix is added to every C type file. Thus starting from 1 the suffix ends at 4294967295. After reaching the maximum limit, then the suffix restarts from 1. The files are then moved to the directories.

For example, refer to the file name given below: C20150520.0137-0400-MME.RTPBNGASR5KCH78.21436500008D-1C20150529.0231-0400-MME.RTPBNGASR5KCH78.3143650000FF-4294967295

- The C Type file format is modified to provide additional trace information with a trace extension, which has three additional fields such as – eNodeB ID, UE S1 AP identity and the MME UE S1 AP identity.

- A new archive directory is created by the session trace when the previous directory is full. The syntax for the new directory is as follows: Syntax: <nodename>.<time-stamp in seconds>.<tce_index>.<file-counter>. For example: RTPBNGASR5KCH78.555ac613.1.1

- If the cell trace messages are meant to be for two different TCE’s, then a second directory would be created and the files are moved to their directories respectively.

Compression and Archiving files to directories by session trace

- Session trace waits for a configured file count or timer expiry or directory size to be reached before archiving the directories.

- Once the archive directories are full, the session trace archives or compresses these directories and moves them to the final directories.

The above mentioned files and are monitored and processed to their final directories based on the following timers:

- **Collection timer:** This timer is configurable, and the timer ranges from 0 - 255 seconds. The collection timer is triggered by the session manager. Once the timer expires, the session manager writes the files to the staging location in the hard disk. After all files are written, a messenger call is sent from session manager to session trace indicating the details of the new file.

- **Archive trigger timer:** This timer is configurable, and the timer ranges from 1 to 3600 seconds. The Archive timer is triggered by the session trace. This timer is a safety mechanism to make sure archive directories are closed and sent for compression and archiving.

Limitations

Decompression of the trace files using gzip or gunzip may cause file corruption depending on the system platform used, for example: Linux. Mac and so on

Standards Compliance

The Cell Traffic Trace feature complies with the following standards:

- 3GPP TS 36.413 Release 10, S1 Application Protocol (S1AP)
- 3GPP TS 32.422 Release 10, Trace control and configuration management
- 3GPP TS 32.423 Release 10, Trace data definition and management
Configuring Cell Traffic Trace

This section documents configuration of Cell Traffic Trace and its related functionality.

Configuring Trace Files Storage

The configuration provided in the below section is used to store the cell traffic trace files locally or on a TCE server.

The commands illustrated below configure the Cell Traffic Trace. In support of the Cell Trace feature, the \texttt{enb} keyword has been added, which monitors the traffic from the eNodeB network element. The configuration also includes archiving and compression parameters to archive and compress trace files into their directories.

Local Storage
To store the trace files locally, use the following configuration:

```plaintext
configure
 session trace network-element enb tce-mode none collection-timer timer_value
 [no] session trace network-element enb
end
```

Notes:
All parameters are new to the Cell Traffic Trace feature. For information on these parameters refer to the \texttt{session trace} command in the \textit{Command Line Interface Reference}.

TCE Server Storage
To store the trace file on a TCE server, use the following configuration:

```plaintext
configure
 session trace network-element enb tce-mode push transport sftp path server_path_name
 username user_name [encrypted] password user_password collection-timer timer_value
 [no] session trace network-element enb
end
```

Notes:
All parameters are new to the Cell Traffic Trace feature. For information on these parameters refer to the \texttt{session trace} command in the \textit{Command Line Interface Reference}.

Configuring Cell Traffic Trace Template - Archiving and Compressing Trace Files

The configuration provided in this section is used to archive and compress trace files into their directories.
Configuring Cell Traffic Trace

This command creates a template with parameters that configure archiving and/or compression for the files generated by Cell Traffic Trace. Defining this template and archiving and/or compression of files is optional when setting up Cell Traffic Trace. The `enb` keyword processes Cell Traffic Trace in the MME.

```bash
configure
 template-session-trace network-element enb template-name cell-trace
 [no] disk-limit disk_size
 [no] archive files number_of_files size size timer timer_value
 [no] trace-extension enb-id ue-slap-id
 end
```

Notes:

- **cell-trace** indicates the template name 'cell-trace' for storage of the eNodeB cell trace storage parameters. Note that you cannot define a template name - there is only one template and its name is 'cell-trace'.
- **disk-limit** `disk_size` is measured in megabytes (MB). This keyword defines the total space to be reserved on the hard disk. If disk-limit alone is configured then compression is not considered. The disk-limit size ranges from 1 MB to 20480 MB. If disk-limit is not configured, a default size of 200 MB is allocated in the hard disk for storing Cell Trace files.
- **archive** allows you to define the archive directory and the archive parameters.
  - **files** `number_of_files` defines the maximum number of files that can be archived in the directory. When the limit is reached, the archive closes. The range is an integer from 1 to 10000.
  - **size** `size` defines the directory limit in MB. The range is an integer from 1 to 10
  - **timer** `timer_value` defines the total time in seconds before the pending directories are archived. The range is an integer from 1 through 3600.
- The **trace-extension** keyword defines the UE or eNodeB identity extension parameters for the C Type files.
  - The **enb-id** keyword is an additional field in the C Type file that identifies the global eNodeB entry.
  - The **ue-slap-id** keyword is an additional field in the C Type file that identifies the eNodeB ID, UE S1 AP identity and the MME UE S1 AP identity.

Verifying the Cell Traffic Trace Configuration

The following command is used to display/verify the parameters for Cell Traffic Trace from the eNodeB network element.

```bash
show session trace template network-element enb template-name cell-trace
```

On running the above mentioned show command the following statistics are displayed:

Template name: cell-trace

NE Type: ENB

Cell Trace file Extension entries: GLOBAL-ENB-ID ENB-UE-S1AP-ID MME-UE-S1AP-ID
Storage Parameters for Archiving Cell trace files:

Disk Storage Limit: 200 MB

Files per Archive Directory: 4000

Total size per Archive directory: 3 MB

Archive directory timeout: 300 seconds
Monitoring and Troubleshooting the Cell Traffic Trace

The following section describes commands available to monitor Cell Traffic Trace on the MME.

Cell Traffic Trace Show Command(s) and/or Outputs

show session trace statistics

On running the above mentioned show command, statistics similar to the following are displayed:

Interface not traced: 0
Total number of file generated: 25541
Number of Cell Traffic Trace files generated: 25541
Total archive files: 7
Avg Time in secs, for archiving one directory: 2.247592
Avg Time in secs, for Moving one C type file: 0.0200471
Avg files per archive directory: 3648
Frequency of Archiving Triggers:
   Files: 5
   Size: 1
   Time-out: 1
Chapter 8
Closed Subscriber Groups

This chapter describes the implementation of Closed Subscriber Groups (CSG) on the MME.

- Feature Description
- How it Works
- Configuring Closed Subscriber Groups
- Monitoring and Troubleshooting Closed Subscriber Groups
Feature Description

The MME provides support for Closed Subscriber Groups (CSG). This enables the MME to provide access control and mobility management for subscribers who are permitted to access one or more CSG cells of the PLMN as a member of the CSG for a Home eNodeB (HeNB).

A CSG ID is a unique identifier within the scope of the PLMN which identifies a Closed Subscriber Group in the PLMN associated with a CSG cell or group of CSG cells.

The MME performs access control for CSG; a UE will not be permitted to access the network through a CSG cell unless either the UE's subscription data includes the same CSG ID as the CSG cell, or if the CSG cell is operating in hybrid mode. The MME also optionally reports the UE's CSG information to the S-GW/P-GW, based on the MME's CLI mme-service configuration. The S-GW/P-GW, in turn, informs the MME when it should report user CSG information.
How It Works

Closed Subscriber Group functionality on the MME is described in the following sections:

- Access Control
- CSG Notification to S-GW/P-GW
- CSG Status Communication to Peer MME/SGSN

Refer to Message Flows for a simplified Closed Subscriber Groups message flow.

Access Control

The MME performs CSG-based access control by examining the CSG cell information provided by the eNodeB through the S1AP interface for a UE connection or handover attempt, and comparing that to the CSG subscription data for that UE provided by the HSS through the S6a interface. CSG-based access control affects the following S1AP and S6a messages and messaging:

S1AP Messaging

- **S1 Setup Request** – If the eNB sending the S1 Setup Request supports one or more CSG cells, the S1 Setup Request will contain the CSG IDs of the supported CSGs. The MME will store the CSG IDs as part of the data pertaining to the eNB.

- **eNB Configuration Update** – If the eNB sending the eNB Configuration Update supports one or more CSG cells, the eNB Configuration Update will contain the CSG IDs of the supported CSGs, which may or may not have changed from those sent in the S1 Setup Request. The MME will overwrite the stored CSG IDs for that eNB with the list contained in the eNB Configuration Update.

- **Initial UE Message** – If the establishment of the UE-associated logical S1-connection is performed due to a connection originating from a CSG cell, the CSG ID is included in the Initial UE Message. If the establishment of the UE-associated logical S1-connection is performed due to a connection originating from a Hybrid cell, the CSG ID and the Cell Access Mode IE are included in the Initial UE Message. The MME stores the CSG ID and Cell Access Mode in the UE context. If the UE context already exists, the MME overwrites the existing CSG ID and Cell Access Mode with the new data, or clears the CSG ID and Cell Access Mode if the CSG ID is not present in the message. The CSG ID is checked against the subscription data from the HSS to determine if the UE is a member of the CSG. If the UE is not a member, and the cell is not a hybrid cell, access is denied.

- **Initial Context Setup Request** – If the cell is a hybrid cell, the Initial Context Setup Request from the MME contains a CSG Membership Status IE indicating whether the UE is a member of the cell's CSG.

- **UE Context Modification Request** – A UE Context Modification Request from the MME contains a CSG Membership Status IE if the cell has a CSG ID (if the cell is either a CSG cell or a hybrid cell). The MME sends a UE Context Modification Request indicating CSG Membership Status is Non-member if the HSS sends a Delete Subscriber Data Request with DSR Flags indicating that CSG subscription data is being deleted. The MME also sends a UE Context Modification Request indicating CSG Membership Status is Non-member if the CSG subscription data for the CSG in question includes an Expiration Date AVP and the time indicated by the AVP has been reached.

- **Paging** – The Paging message may contain a list of one or more CSG IDs. If the MME includes this list, the eNodeB avoids paging the UE at CSG cells whose CSG ID does not appear in the list. If the UE has CSG IDs
in its subscription data, the MME includes the intersection of the eNodeB’s CSG ID list and the subscriber’s CSG ID list in the Paging message whenever that UE is being paged.

- **Handover Required** – The Handover Required message may contain a CSG ID; if it does, there may also be a Cell Access Mode IE which indicates the target cell is a hybrid cell. When the MME receives a Handover Required message with a CSG ID, it uses the UE’s subscription data to determine if the UE is a member of the CSG in question. If the UE is not a member and the cell is not a hybrid cell, the MME refuses the handover attempt. Otherwise, the MME conveys the CSG information to the target system.

- **Handover Request** – If the MME is sending a Handover Request message, a CSG ID is included in the message if the target has been specified as either a CSG cell or hybrid cell with the CSG ID in question. If the cell has been specified as a hybrid cell, the MME also includes a CSG Membership Status IE in the Handover Request as well.

- **Handover Request Ack** – If the Handover Request contains both a CSG ID and a CSG Membership Status IE, but the target cell in question is a hybrid cell that broadcasts a different CSG ID, the actual CSG ID of the cell shall be included in the Handover Request Ack. Upon receipt of such a message, the MME changes the CSG ID of the UE, marks the target cell as being a hybrid cell, and considers the UE to be a non-member of the CSG. Note that the MME may later discover via subscription data from the HSS that the UE is actually a member of the CSG in question; if so, it sends a UE Context Modification Request indicating that the UE is a member of the CSG. Note also that if the Handover Request contains a CSG ID and the target cell broadcasts a different CSG ID and is not a hybrid cell, the eNB sends a Handover Failure message, not a Handover Request Ack.

**S6a Messaging**

- **Update Location Ack** – Messages from the HSS contain the UE’s subscription data, which may include CSG subscription data. CSG subscription data consists of one or more CSG IDs, each of which may also have an associated expiration date. The CSG IDs are interpreted within the context of the PLMN ID sent to the HSS in the Visited-PLMN-ID AVP in the Update Location Request message. The CSG subscription data is stored in the UE’s database entry along with the rest of the UE subscription data. The MME stores up to eight CSG IDs per UE. The MME uses the CSG subscription data to determine membership in a given CSG by comparing the CSG ID of the current cell against the CSG IDs in the subscription data.

- **Delete Subscriber Data Request** – The HSS can indicate to the MME to delete the stored CSG subscription data by sending a Delete Subscriber Data Request message with the CSG Deleted bit set in the DSR flags. If this happens, and the UE is currently connected to a cell where it was a CSG member, the MME sends a UE Context Modification Request indicating that the UE is no longer a CSG member. The MME is responsible for enforcing the expiration date (if any) for a given CSG as indicated in the CSG subscription data. If the CSG subscription expires, the MME must send a UE Context Modification Request indicating that the UE is no longer a CSG member.

**CSG Notification to S-GW/P-GW**

The MME informs the P-GW whether it supports CSG change notification by setting the CSG Change Reporting Support Indication (CCRSI) flag. MME support for CSG change notification can be enabled or disabled. If it is enabled, the P-GW, based on input from the PCRF, determines if CSG change notification is required by sending the CSG Information Reporting Action IE to the MME.

CSG notification to the S-GW/P-GW affects the following S11 messages and messaging:

- **Create Session Request** – The Indication IE in the Create Session Request contains a CSG Change Reporting Support Indication (CCRSI) flag, which is set when the MME is configured to support CSG information change reporting to the S-GW/P-GW. If the UE is attached through a CSG or hybrid cell, the User CSG
Information (UCI) IE is be included in the Create Session Request. The User CSG Information IE contains the PLMN and CSG ID of the CSG or hybrid cell in question, the access mode (closed or hybrid), and if the access mode is hybrid, the membership status of the UE in the CSG.

- **Create Session Response** – The P-GW/S-GW will send the CSG Reporting Information IE in the Create Session Response if CSG information reporting is to be started or stopped. This IE includes three bits that indicate whether the MME should report when the UE enters or leaves a CSG (non-hybrid) cell, a subscribed hybrid cell, or an unsubscribed hybrid cell. If all three bits are set to zero, all CSG information reporting to the S-GW/P-GW is stopped. The MME stores the CSG reporting information as part of the PDN context, since the reporting requirements may be different on different P-GWs.

- **Create Bearer Request** – The Create Bearer Request message from the P-GW/S-GW may include a CSG Reporting Information IE if CSG reporting from the MME is to change. The MME stores the CSG reporting information as part of the PDN context in question.

- **Modify Bearer Request** – The CCRSI flag in the Indication IE is set in a Modify Bearer Request when the MME is configured to support CSG information change reporting to the S-GW/P-GW. If the P-GW/S-GW has requested CSG information reporting and a TAU, Handover, or UE-initiated Service Request is taking place, the MME includes the User CSG Information IE in the Modify Bearer Request message.

- **Update Bearer Request** – The Update Bearer Request message from the P-GW/S-GW may include a CSG Reporting Information IE if CSG reporting from the MME is to change. The MME stores the CSG reporting information as part of the PDN context in question.

- **Change Notification Request** – The MME sends a Change Notification Request to the S-GW/P-GW for each PDN where it is requested, if a change to the CSG connection information changes without requiring either a Create Bearer Request or Modify Bearer Request. The Change Notification Request contains a User CSG Information IE. Since Location Reporting also uses the Change Notification Request message, the MME minimizes the number of Change Notification Request messages sent by bundling the reporting of a location change with a CSG change into the same message whenever possible.

- **Change Notification Response** – The Change Notification Response message from the P-GW/S-GW may include a CSG Reporting Information IE if CSG reporting from the MME is to change. The MME stores the CSG reporting information as part of the PDN context in question.

### CSG Status Communication to Peer MME/SGSN

The MME indicates its ability to report location information using the “CSG Change Reporting Support Indication” which is a part of the indication flags parameter.

CSG status communication to a peer MME or SGSN affects the following S10 and S3 messages and messaging:

- **Forward Relocation Request** – If the source MME or SGSN supports CSG information change reporting, the CCRSI flag is set in the Indication IE in a Forward Relocation Request message from that MME or SGSN. If the source eNB or RNC included a target CSG ID as part of the Handover Required message, the source MME or SGSN include that CSG ID in a CSG ID IE in the Forward Relocation Request. If the source eNB or RNC indicated that the target cell is a hybrid cell, the source MME or SGSN determine whether the UE is a member of the CSG and include the CSG Membership Indication IE in the Forward Relocation Request. (A Forward Relocation Request that contains a CSG ID IE but no CSG Membership Indication IE indicates that the target cell is a closed CSG cell.) The PDN Connection IE(s) in the Forward Relocation Request will contain a CSG Information Reporting Action IE if the P-GW/S-GW had previously sent it to the source MME or SGSN for the PDN in question.

- **Context Response** – If the old MME or SGSN in a Context Request/Response/Ack exchange supports CSG information change reporting, the CCRSI flag is set in the Indication IE to be set in the Context Response from that MME or SGSN. The PDN Connection IE(s) in the Context Response contains a CSG Information
Reporting Action IE if the P-GW/S-GW had previously sent it to the old MME or SGSN for the PDN in question.

**Message Flows**

The following diagram shows the messaging between the EPC elements in a Closed Subscriber Group implementation.

**Figure 11. Closed Subscriber Groups Message Flow**

![Diagram of Closed Subscriber Groups Message Flow](image)

**Table 8. Closed Subscriber Groups Message Flow**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The eNodeB broadcasts the CSG Information to UEs.</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>When an Attach Request event happens, the eNodeB sends its own CSG-related Information in Initial UE message to the MME.</td>
</tr>
<tr>
<td>3</td>
<td>The MME sends an Update Location Request (ULR) to the HSS to get subscriber's profile.</td>
</tr>
<tr>
<td>4</td>
<td>The HSS responds with an Update Location Answer (ULA) including Subscription-Data which includes CSG-Subscription-Data. If the ULA does not include a CSG_ID: 1) The Attach attempt will be rejected if the Access mode is set to Closed; 2) The call will proceed on a non-CSG-member basis if the Access mode is set to Hybrid.</td>
</tr>
<tr>
<td>5</td>
<td>The MME proceeds with the call according to the user profile from the HSS. The MME sets the CSG membership Indication and passes it to the S-GW including Access Mode and CSG-ID. The S-GW transparently passes the information to the P-GW.</td>
</tr>
<tr>
<td>6</td>
<td>The P-GW requests policy and charging rule from the PCRF.</td>
</tr>
<tr>
<td>7</td>
<td>The PCRF sends Event-Trigger:=USER_CSG_INFO_CHG and USER-CSG-INFO AVP based on user subscription profile.</td>
</tr>
<tr>
<td>8</td>
<td>The P-GW sets CSG-Information-Reporting-Action in Create Session Response when the P-GW receives Event-Trigger:=USER_CSG_INFO_CHG.</td>
</tr>
<tr>
<td>9</td>
<td>The MME sends CSG-Membership-Status to eNodeB. This is only occurs when the Access mode is set to Hybrid.</td>
</tr>
<tr>
<td>10</td>
<td>When a CSG change event happens, the eNodeB/MME reports the event. The MME updates CSG change event using a Change Notification Request or Modify Bearer Request.</td>
</tr>
<tr>
<td>11</td>
<td>The P-GW reports CSG change event using Event-Reporting-Indication AVP to the PCRF.</td>
</tr>
<tr>
<td>12</td>
<td>The PCRF updates the policy and charging rule with Charging-Rule-Base-Name or install new Charging-Rule-Base-Name.</td>
</tr>
<tr>
<td>13</td>
<td>The P-GW sends a CSG Information Reporting Action IE as part of the Modify Bearer Response, a Change Notification Response, or it can initiate a change through an Update Bearer Request.</td>
</tr>
</tbody>
</table>
Configuring Closed Subscriber Groups

CSG access control and status communication to peer MMEs/SGSNs is mandatory and enabled by default. CSG notification to the S-GW/P-GW is optional and may be enabled using the `csg-change-notification` CLI command within the scope of the mme-service configuration.

Use the following example to enable CSG change notification to the S-GW/P-GW.

```plaintext
configure
 context context_name
 mme-service mme_svc_name -noconfirm
 csg-change-notification
 end

Notes:

- By default `csg-change-notification` is disabled; the MME does not send CSG notification to the S-GW/P-GW.

Verifying the Closed Subscriber Groups Configuration

Use either of the following Exec mode commands to verify if CSG notification to the S-GW/P-GW is enabled.

```plaintext
show mme-service all
show mme-service name mme_svc_name
```

The output of this command displays the entire configuration for the MME service specified.

```
[local]asr5x00# show mme-service name mmesvc1
CSG Change Notification : Enabled
```
Monitoring and Troubleshooting Closed Subscriber Groups

CSG information and per-PDN CSG reporting information is included the following Exec mode command.

```
show mme-service session full all
```

The sample output below shows only the information relating to CSG.

```
[local]asr5x00# show mme-service session full all

CSG Cell Change Notification: Enabled
   CSG Subscribed Hybrid Cell Change Notification: Enabled
   CSG Unsubscribed Hybrid Cell Change Notification: Enabled

CSG Information:
   CSG ID at last connection: 15625 (0x3d09)
   CSG cell type: Hybrid
   CSG membership status: Non-Member

If the CSG cell is not a hybrid cell, the CSG Information section will be displayed as follows:

```
CSG Information:
 CSG ID at last connection: 15625 (0x3d09)
 CSG cell type: Closed
 CSG membership status: Member
```

If the last (or current) cell is not a CSG cell, the CSG Information section will be displayed as follows:

```
CSG Information:
 CSG ID at last connection: None
 CSG cell type: n/a
 CSG membership status: n/a
```

The following command shows CSG IDs from the subscription data:

```
show mme-service db record imsi imsi_id
```

```
[local]asr5x00# show mme-service db record imsi 123456789012345

CSG IDs : 10
 25
 625
```
If no CSG IDs are present in the subscription data, that state will be displayed as follows:

```
CSG IDs : None
```

The following command shows statistics for the number of times the MME sent a NAS message with the cause value “Not authorized for this CSG”. These statistics are tracked for Attach Reject, Detach Request, Service Reject, and TAU Reject.

The sample output that follows shows only the statistics relating to CSG.

```
show mme-service statistics

[local]asr5x00# show mme-service statistics
Attach Reject: 0 ... CSG Not Subscribed: 0
Detach Request: 0 ... CSG Not Subscribed: 0
Service Reject: 0 ... CSG Not Subscribed: 0
TAU Reject: 0 ... CSG Not Subscribed: 0
```
Chapter 9
CSFB and SMS over SGs Interface

Circuit Switched Fallback (CSFB) provides an interim solution for enabling telephony and short message service (SMS) for LTE operators that do not plan to deploy IMS packet switched services at initial service launch.

This chapter provides information on the functionality supported, and the configuration needed for this feature, in the following sections:

- Feature Description
- How It Works
- Configuring CSFB over SGs
Feature Description

Circuit Switched Fallback (CSFB) enables the UE to camp on an EUTRAN cell and originate or terminate voice calls through a forced switchover to the circuit switched (CS) domain or other CS-domain services (e.g., Location Services (LCS) or supplementary services). Additionally, SMS delivery via the CS core network is realized without CSFB. Since LTE EPC networks were not meant to directly anchor CS connections, when any CS voice services are initiated, any PS based data activities on the E-UTRAN network will be temporarily suspended (either the data transfer is suspended or the packet switched connection is handed over to the 2G/3G network).

CSFB provides an interim solution for enabling telephony and SMS services for LTE operators that do not plan to deploy IMS packet switched services at initial service launch.

CSFB function is realized by reusing Gs interface mechanisms, as defined in 3GPP TS 29.018, on the interface between the MME in the EPS and the VLR. This interface is called the SGs interface. The SGs interface connects the databases in the VLR and the MME.

Important: This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Supported Features

The following CSFB features are supported:

- Release 8 and Release 9 Specification Support
- SGs-AP Encode/Decode of all messages
- SGs-AP Procedure Support
  - Paging
  - Location Update
  - Non-EPS Alert
  - Explicit IMSI Detach
  - Implicit IMSI Detach
  - VLR Failure
  - HSS Failure
  - MM Information
  - NAS Message Tunneling
  - Service Request
  - MME Failure
- SMS
- Mobile Originating Voice Call
- Mobile Terminating Voice Call
- Gn/Gp Handover
- S3 Handover
- Basic and Enhanced TAI to LAI Mapping
- Basic LAI to VLR Mapping
- VLR association distribution among multiple MMEGRs
- IMSI Paging Procedure
- SCTP Multi-homing for SGs interface
- IPv6 Transport for SGs interface
- SNMP Trap Support (Service/VLR association)

Operator Policy Support
  - SMS-only
  - Disallow CSFB
  - Reject EPS if IMSI attach fails
  - Reject EPS if VoIMS and no CSFB
  - CSFB Not Preferred
  - Configurable RFSP based on UE Usage and and Voice Domain Preference

- PS Suspend/Resume over S11 (Release 8)
- PS Suspend/Resume over S3/S11 (Release 9)
- Support for SGs AP Timers: TS6-1, ts8, ts9, ts10, ts12-1, ts12-2, ts-13
- Idle mode Signaling Reduction (ISR)

Multiple Association Support

SNMP Trap Support
  - VLRAssocDown - sent when an SCTP association to a VLR is down.
  - VLRDown - sent when all SCTP associations to a VLR are down.
  - VlrAllAssocDown - sent when all associations to all VLRs are down.

- Support for Passive VLR Offload: See VLR Management.
- Support for Active VLR Offload: See VLR Management.
- UE Detach on VLR Failure: See VLR Management.
- UE Detach on VLR Recovery: See VLR Management.
How It Works

EPC core networks are designed for all IP services and as such lack intrinsic support for circuit switched voice and telephony applications. This presents challenges for those operators that do not plan to launch packet switched IMS core networks at initial service deployment. CSFB represents an interim solution to address this problem by enabling dual radio mobile devices (LTE/GSM/UMTS or CDMA1xRTT) to fallback to GSM/UMTS or CDMA1x access networks to receive incoming or place outgoing voice calls. The next section presents highlights of the CSFB procedure.

Preparation Phase

- When the GSM/UMTS/LTE access terminal attaches to the EUTRAN access network, it uses combined attachment procedures to request assistance from the MME to register its presence in the 2G/3G network.
- The MME uses SGs signaling to the MSC/VLR to register on behalf of the AT to the 2G/3G network. The MME represents itself as an SGSN to the MSC and the MSC performs a location update to the SGSN in the target 2G/3G network.
- The MME uses the Tracking Area Identity provided by UE to compute the Location Area Identity it provides to the MSC.

Execution Phase: Mobile Terminated Calls

- When a call comes in at the MSC for the user, the MSC signals the incoming call via the SGs interface to MME.
- If the AT is an active state, the MME forwards the request directly to the mobile. If the user wishes to receive the call the UE instructs the MME to hand over the call to the 2G/3G network. The MME then informs the eNodeB to initiate the handoff.
- If the AT is in dormant state, the MME attempts to page it at every eNodeB within the Tracking Area list to reestablish the radio connection. As no data transfer is in progress, there are no IP data sessions to handover and the mobile switches to its 2G/3G radio to establish the connection with the target access network.
- If the mobile is active and an IP data transfer is in progress at the time of the handover, the data transfer can either be suspended or the packet switched connection can be handed over if the target network supports Dual Transfer Mode. Note that this is typically only supported on UMTS networks.
- Once the access terminal attaches to the 2G/3G cell, it answers the initial paging via the target cell.

Execution Phase: Mobile Originated Calls

- This is very similar to the procedure for Mobile Terminated Calls, except there is no requirement for idle mode paging for incoming calls and the AT has no need to send a paging response to the MSC after it attaches to the target 2G/3G network.
Configuring CSFB over SGs

The configuration example in this section creates an SGs interface and an SGs service for communicating with a Mobile Switching Center/Visitor Location Register (MSC/VLR) for Circuit- Switched Fallback capability.

**Important**: Circuit-Switched Fallback (CSFB) is a licensed feature and requires the purchase of the Circuit Switched Fallback feature license to enable it.

Use the following configuration example to enable CSFB capability on the MME:

```
configure

lte-policy

tai-mgmt-db db_name

tai-mgmt-obj object_name

lai mcc number mnc number lac area_code

tai mcc number mnc number tac area_code

exit

exit

exit

context mme_context_name -noconfirm

interface sgs_intf_name

ip address ipv4_address

exit

sgs-service name -noconfirm

sctp port port_number

tac-to-lac-mapping tac value map-to lac value +

vlr vlr_name ipv4-address ip_address port port_number

pool-area pool_name

lac area_code +

hash-value non-configured-value use-vlr vlr_name>

hash-value range value to value use-vlr vlr_name

exit
```
Configuring CSFB over SGs Interface

```
bind ipv4-address sgs-intf_ipv4_address
exit
mme-service service_name
associate tai-mgmt-db db_name
associate sgs-service sgs_svc_name
end
```

Notes:

- The MME will attempt to map a TAI to LAI in the following order:
  - If a TAI Management Database is configured, the MME will first use any TAI to LAI mapping defined within the database.
  - If no TAI Management Database is configured or if no suitable mapping is found within the TAI Management Database, the MME will next attempt to map a specific TAC to a specific LAC as defined in the SGs service according to the `tac-to-lac-mapping` command.
  - Lastly, the MME will attempt to use the default LAC value. This is defined using the `tac-to-lac-mapping` command with the `any-tac` keyword option.

- For the SGs interface, the `tac-to-lac-mapping` command supports the configuration of multiple TAC-to-LAC values in the same configuration line.

- The SGs IP address can also be specified as an IPv6 address. To support this, the `ip address` command can be changed to the `ipv6 address` command and the `bind ipv4-address` command can be changed to `bind ipv6-address` command.

  This command also allows for the configuration of a secondary IP address in support of SCTP multi-homing.

- The VLR interface (`vlr` command) also supports IPv6 addressing and SCTP multi-homing.
Chapter 10
Default APN for DNS Failure

With Release 18.2, it is possible for the operator to configure the MME to use a default APN in some situations where the DNS resolution fails due to a problem with the subscriber-requested APN. As a result, the Attach could proceed or the PDP context activation could complete.

This section provides the following information for this feature:

- Feature Description
- How It Works
- Configuring Default APN for DNS Failure
Feature Description

The Default APN for DNS Failure feature makes it possible for the operator to ensure that calls and PDP context activation are not rejected because of possible UE errors, such as, the UE requested a misspelled APN name. This feature allows the operator to promote activation success if

- the DNS query would fail

when

- the subscriber-requested APN is not present in the subscription record,

and if

- the wildcard subscription is present in the subscription record.

This functionality is configured with the use of the require-dns-fail-wildcard keyword.

By default, this new functionality is not enabled. If not enabled, then the MME sends a PDN connectivity reject to the eNodeB if the DNS resolution fails for the reasons indicated above.

Relationships to Other Features

- **Operator Policy** - Default APN for DNS Failure is configured with the commands in the APN Remap Table configuration mode which is a key component of the Operator Policy feature.
How It Works

With the Default APN for DNS Failure enabled by configuring the 'required-dns-fail-wildcard', if DNS resolution fails because the UE-requested APN name is not present in the subscription record but the wildcard subscription is present, then MME overrides the requested APN with a configured default APN. The MME proceeds with the DNS resolution of the configured default APN and then proceeds with the Attach or PDP context activation.

The MME checks the subscription record with the configured default APN. If subscription record of the configured default APN is available, then the MME takes the QoS profile and the ARP values from that record. If the subscription record is not available, then the MME checks the QoS profile and ARP values included in the wildcard subscription record.

**Important:** Note that DNS query will be retried with default APN only once. If DNS resolution fails again, even after applying the configured default APN, then the Activation Request will be rejected.

Architecture

The graphic below illustrates the internal procedure the MME follows to determine if a default APN should be used.

![Decision Tree for MME Using Default APN](image-url)

Figure 12. Decision Tree for MME Using Default APN
Standards Compliance

The Default APN for DNS Failure feature complies with the following standards:

- 3GPP TS 23.060
- 3GPP TS 36.413
- 3GPP TS 24.301
- 3GPP TS 29.274
- 3GPP TS 23.401
Configuring Default APN for DNS Failure

Enabling Default APN for DNS Failure is configured in the APN Remap Table configuration mode. This mode generates a remap table that is a key component of the Operator Policy feature. The operator policy must be assigned subscribers in the LTE Policy, the LTE policy’s subscriber map must be associated with the MME service.

Check the MME’s current configuration for names of already created APN remap tables, operator policies, subscriber maps and mme-service instances. If desired, these names can be used to create associations with pre-configured tables, policies and services.

Important: We recommend that all table, policy, and service names be unique - not only within a context but across the MME’s configuration. Do not use preconfigured names unless the association is desired.

This configuration procedure will take you through all of the following:

1. creating an APN remap table and enabling ‘require-dns-fail-wildcard’,
2. creating an operator policy and associating the remap table with the operator policy,
3. associating the remap table with the operator policy,
4. assigning subscribers to the operator policy in the LTE policy,
5. associating the LTE policy’s subscriber map to the MME service configuration.

All commands, keywords, and variables are defined in the Command Line Interface Reference for this release.

All components must be completed for the feature to be enabled. Begin this procedure in the Local context in the Exec mode.

Enabling ‘require-dns-fail-wildcard’

The following configuration components deals with creating an APN Remap Table and configuring the special keyword specific to enabling the Default APN for DNS Failure feature.

```
config

apn-remap-table <table_name> -noconfirm

 apn-selection-default network-identifier net_id require-dns-fail-wildcard

end
```

Notes:

- `net_id` - Specifies the network identifier to be used as the default APN name. Must be a string of 1 to 62 characters, including digits, letters, dots (.) and dashes (-).
- `require-dns-fail-wildcard` - The keyword that enables the use of the default APN when DNS resolution fails.
- `no` prepended to the command will remove the ‘require-dns-fail-wildcard’ configuration from the remap table.
Associating the APN Remap Table with the Operator Policy

The following configuration components deals with creating an operator policy or accessing the operator policy configuration to associate the APN remap table identified in the configuration procedure above.

```
config

operator-policy name <policy_name> -noconfirm
associate apn-remap-table <table_name>
end
```

Assigning Subscribers to the Operator Policy

The following configuration components deals with assigning subscribers to the operator policy in the LTE policy.

```
config

lte-policy
subscriber-map <map_name> -noconfirm
 precedence precedence match-criteria all operator-policy-name <policy_name>
end
```

Associating the Subscriber’s Map with the MME Service

The following configuration components deals with associating the LTE policy’s subscriber map to the MME service configuration

```
config

context context_name -noconfirm
mme-service <srvc_name> -noconfirm
 associate subscriber-map <map_name>
end
```

Verifying the Feature’s Configuration

The `show apn-remap-table full all` command generates a display that indicates if the Default APN for DNS Failure feature has been enabled. The following is a sample display with ‘star.com’ configured as the default APN name.

```
[local]asr5000# show apn-remap-table full all
APN Remap Table Name = test-table
```
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default APN</td>
<td>star.com</td>
</tr>
<tr>
<td>Require Subscription APN</td>
<td>Not Configured</td>
</tr>
<tr>
<td>Use Default APN when no APN is requested</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Use Default APN when DNS Query fails</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Fallback APN to use when Default APN not present in subscription</td>
<td>Not Configured</td>
</tr>
</tbody>
</table>
Chapter 11
Enhanced Congestion Control and Overload Control

This chapter describes the license-enabled congestion control and overload control features on the MME.

- Feature Description
- Configuring Enhanced Congestion Control
- Monitoring and Troubleshooting
Feature Description

Enhanced Congestion Control and Overload Control

This feature requires that a valid license key (MME Resiliency) be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

This feature builds on the base congestion control functionality provided on the MME.

Refer to the Congestion Control and Overload Control sections in the MME Overview chapter for more information about the basic functionality.

To allow greater control during overload conditions, the MME supports the configuration of three separate levels (critical, major, minor) of congestion thresholds for the following system resources:

- System CPU usage
- System service CPU usage (Demux-Card CPU usage)
- System Memory usage
- License usage
- Maximum Session per service

The MME can, in turn, be configured to take specific actions when any of these thresholds are crossed, such as:

- Drop or reject the following S1-AP/NAS messages: S1 Setup, Handover events, TAU request, Service request, PS-Attach request, Combined-attach request, Additional PDN request, or UE initiated bearer resource allocation.
- Allow voice or emergency calls/events.
- Initiate S1AP overload start to a percentage of eNodeBs with options to signal any of the following in the Overload Response IE:
  - reject non-emergency sessions
  - reject new sessions
  - permit emergency sessions
  - permit high-priority sessions and mobile-terminated services
  - reject delay-tolerant access.

Relationships to Other Features

This license-enabled feature builds on the base congestion control functionality provided on the MME.

Refer to the Congestion Control and Overload Control sections in the MME Overview chapter for more information about the basic functionality.

Additional information is also provided in the Congestion Control chapter in the System Administration Guide.
Limitations

The base congestion control functionality also can monitor congestion of the following resources:

- Port-specific RX and TX utilization
- Port RX and TX utilization
- Message queue utilization
- Message queue wait time

The license-enabled Enhanced Congestion Control functionality on the MME does not support the monitoring of these resources using three different threshold levels (critical, major and minor). Only a single threshold level (critical) can be monitored for these resources.
Configuring Enhanced Congestion Control

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Configuring Enhanced Congestion Control

Configuring Thresholds and Tolerances

License Utilization Thresholds
Maximum Session Per Service Thresholds
Service Control CPU Thresholds
System CPU Thresholds
System Memory Thresholds
Configuring a Congestion Action Profile

Associating a Congestion Action Profile with Congestion Control Policies
Configuring Overload Control
Configuring Congestion SNMP Traps

Configuring Thresholds and Tolerances

Congestion threshold values must be defined to establish when a congestion condition is reached. Congestion threshold tolerances must also be configured to establish when a congestion condition is cleared. Individual thresholds values and tolerances can be defined for critical, major and minor thresholds.

The default tolerance window for critical thresholds is 10%. The default for major and minor thresholds is 0%.

If the tolerance is configured greater than threshold, then the tolerance will be treated as zero.

When configuring thresholds and tolerances for critical, major and minor congestion levels, the threshold levels and tolerances should never overlap. Consider the following example configuration, where the following threshold levels do not overlap:

- Critical congestion will trigger at 80% and will clear at 70%
- Major congestion will trigger at 70% and will clear at 60%
- Minor congestion will trigger at 60% and will clear at 50%.

```sh
configure
congestion-control threshold tolerance critical 10
congestion-control threshold max-sessions-per-service-utilization major 70
congestion-control threshold tolerance major 10
congestion-control threshold max-sessions-per-service-utilization minor 60
```
congestion-control threshold tolerance minor 10
congestion-control threshold max-sessions-per-service-utilization critical 80
end

For information about all of the congestion control commands available, refer to the *Global Configuration Mode Commands* chapter of the *ASR 5x00 Command Line Interface Reference*.

**License Utilization Thresholds**

The license-utilization threshold is calculated based on the configured license values for the chassis.

In this example configuration, the minor threshold will be triggered at 4000 calls, major threshold will be triggered at 6000 calls, and critical threshold will be triggered at 8000 calls.

congestion-control threshold license-utilization critical 80
congestion-control threshold license-utilization major 60
congestion-control threshold license-utilization minor 40

**Maximum Session Per Service Thresholds**

This threshold is configured across all MME services.

config

    congestion-control threshold max-sessions-per-service-utilization critical 80

When there are multiple MME services configured with different max-subscribers parameters, chassis congestion will be calculated using the minimum of max-subscribers configured in each of the different MME services.

However, congestion actions will be applied to each individual service based on its corresponding max-session-per-service parameters.

For example:

configure

    context ingress
    
    mme-service mmesvc1
    
    bind s1-mme ipv4-address 10.10.10.2 max-subscribers 10000
    
    exit

    exit

    mme-service mmesvc2
    
    bind s1-mme ipv4-address 10.10.10.3 max-subscribers 1000
    
    exit

    exit
Configuring Enhanced Congestion Control

mme-service mmesvc3

    bind sl-mme ipv4-address 192.80.80.3 max-subscribers 20000

end

In the above example, chassis level critical congestion will get triggered when the number of subscribers in mmesvc2 is at 800. Corresponding SNMP traps will be generated. However, congestion policies will not be applied for mmesvc1 and mmesvc3. When the number of subscribers in mmesvc1 and mmesvc3 reaches 8000 and 16000 respectively, then congestion policies will be applied for mmesvc1 and mmesvc3.

Chassis congestion will be cleared only when the congestion is cleared in all MME services.

Similarly, when minor, major and critical threshold are configured for max-session-per-service for many MME services, the maximum value of the threshold will be considered for chassis level congestion.

For example, if mmesvc1 reaches the major threshold, mmesvc2 reaches the critical threshold and mmesvc3 reaches the minor threshold, then chassis congestion state will be critical.

Service Control CPU Thresholds

This threshold is calculated from the system’s demux CPU. The threshold is calculated based on a five minute average CPU usage.

The highest CPU usage value of two CPU cores of the demux CPU is considered. For example, if CPU core 0 has a five minute CPU usage of 40% and CPU core 1 has a five minute CPU usage of 80%, then CPU core 1 will be considered for threshold calculation.

The following example configuration shows threshold levels of 80, 60, and 40% usage:

    congestion-control threshold service-control-cpu-utilization critical 80
    congestion-control threshold service-control-cpu-utilization major 60
    congestion-control threshold service-control-cpu-utilization minor 40

System CPU Thresholds

This threshold is calculated using the five minute CPU usage average of all CPUs (except standby CPU and SMC CPU).

The highest CPU usage value of two CPU core of all CPU will be considered.

The following example configuration shows threshold levels of 80, 60, and 40% usage:

    congestion-control threshold system-cpu-utilization critical 80
    congestion-control threshold system-cpu-utilization major 60
    congestion-control threshold system-cpu-utilization minor 40

System Memory Thresholds

This threshold is calculated using the five minute memory usage average of all CPUs (except standby CPU and SMC CPU).

The following example configuration shows threshold levels of 80, 60, and 40% usage:
Configuring Enhanced Congestion Control and Overload Control

Configuring Enhanced Congestion Control

Enhanced congestion control and overload control features are configured using the congestion-control threshold system-memory-utilization. The thresholds are used to trigger actions when the system memory utilization crosses the specified thresholds.

- congestion-control threshold system-memory-utilization critical 80
- congestion-control threshold system-memory-utilization major 60
- congestion-control threshold system-memory-utilization minor 40

Configuring a Congestion Action Profile

Congestion Action Profiles define a set of actions which can be executed after the corresponding threshold is crossed. Use the following example configuration which creates a congestion action profile named critical_action_profile and defines several actions for this profile:

```
configure
lte-policy

 congestion-action-profile critical_action_profile
 reject s1-setups time-to-wait 60
 drop handovers
 reject combined-attaches
 report-overload permit-emergency-sessions enodeb-percentage 50

end
```

See the Congestion Action Profile Configuration Commands chapter in the Command Line Reference for details about all the congestion action profile commands available.

Refer to Configuring Overload Control in this chapter for more information about the report-overload keyword and associated functionality.

Associating a Congestion Action Profile with Congestion Control Policies

Each congestion control policy (critical, major, minor) must be associated with a congestion control profile. The following example configuration to associate the congestion action profile named critical_action_profile with the critical congestion control policy:

```
configure

 congestion-control policy critical mme-service action-profile critical_action_profile
```

Separate congestion action profiles can be associated with major and minor congestion control policies, for example:

```
congestion-control policy major mme-service action-profile major_action_profile
congestion-control policy minor mme-service action-profile minor_action_profile
```
Configuring Overload Control

When an overload condition is detected on an MME, the system can be configured to report the condition to a specified percentage of eNodeBs and take the configured action on incoming sessions.

To create a congestion control policy with overload reporting, apply the following example configuration:

```
configure
lte-policy
 congestion-action-profile <profile_name>
 congestion-action-profile <profile_name>
end

configure
 congestion-control policy critical mme-service action report-overload reject-new-sessions enodeb-percentage <percentage>
end
```

Notes:
- The following overload actions are also available (in addition to `reject-new-sessions`):
  - `permit-emergency-sessions-and-mobile-terminated-services`
  - `permit-high-priority-sessions-and-mobile-terminated-services`
  - `reject-delay-tolerant-access`
  - `reject-non-emergency-sessions`

See the *Congestion Action Profile Configuration Mode Commands* chapter in the *Command Line Reference* for details about all the congestion action profile commands available.

Configuring Enhanced Congestion SNMP Traps

When an enhanced congestion condition is detected, an SNMP trap (notification) is automatically generated by the system.

To disable (suppress) this trap:

```
configure
 snmp trap suppress EnhancedCongestion
end
```

To re-enable generation of the EnhancedCongestion trap:

```
configure
```
Verifying the Congestion Control Configuration

Use the following Exec mode command to display the configuration of the congestion control functionality.

```bash
show congestion-control configuration
```

The following output is a concise listing of all threshold and policy configurations showing multi-level Critical, Major and Minor threshold parameters and congestion control policies:

```
Congestion-control: enabled

Congestion-control Critical threshold parameters
system cpu utilization: 80%
service control cpu utilization: 80%
system memory utilization: 80%
message queue utilization: 80%
message queue wait time: 10 seconds
port rx utilization: 80%
port tx utilization: 80%
license utilization: 100%
max-session-per-service utilization: 100%
tolerance limit: 10%
```

```
Congestion-control Critical threshold parameters
system cpu utilization: 80%
service control cpu utilization: 80%
system memory utilization: 80%
message queue utilization: 80%
message queue wait time: 10 seconds
port rx utilization: 80%
port tx utilization: 80%
```
license utilization: 100%
max-session-per-service utilization: 100%
tolerance limit: 10%

Congestion-control Major threshold parameters
system cpu utilization: 0%
service control cpu utilization: 0%
system memory utilization: 0%
message queue utilization: 0%
message queue wait time: 0 seconds
port rx utilization: 0%
port tx utilization: 0%
license utilization: 0%
max-session-per-service utilization: 0%
tolerance limit: 0%

Congestion-control Minor threshold parameters
system cpu utilization: 0%
service control cpu utilization: 0%
system memory utilization: 0%
message queue utilization: 0%
message queue wait time: 0 seconds
port rx utilization: 0%
port tx utilization: 0%
license utilization: 0%
max-session-per-service utilization: 0%
tolerance limit: 0%

Overload-disconnect: disabled

Overload-disconnect threshold parameters
license utilization: 80%
max-session-per-service utilization: 80%
tolerance: 10%
session disconnect percent: 5%
iterations-per-stage: 8

Congestion-control Policy
mme-service:
  Critical Action-profile : ap3
  Major Action-profile : ap2
  Minor Action-profile : ap1

Verifying Congestion Action Profiles

To verify the configuration of a congestion action profile, use the following Exec mode command:

```plaintext
show lte-policy congestion-action-profile { name <profile_name> | summary }
```
Monitoring and Troubleshooting

This section provides information on how to monitor congestion control.

Congestion Control Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs in support of enhanced congestion control.

show congestion-control statistics mme

The following command shows an overview of all congestion control statistics for the MME.

show congestion-control statistics mme [ full | critical | major | minor ]

The following output is a concise listing of congestion control statistics. In this example output, only the Critical information is shown.

Critical Congestion Policy Action

Congestion Policy Applied : 0 times

PS attaches

Rejected : 0 times
Dropped : 0 times

PS attaches

Rejected : 0 times
Dropped : 0 times

Combined attaches

Rejected : 0 times
Dropped : 0 times

S1-Setup

Rejected : 0 times
Dropped : 0 times

Handover

Rejected : 0 times
Dropped : 0 times
Addn-pdn-connect
Rejected : 0 times
Dropped  : 0 times

Addn-brr-connect
Rejected : 0 times
Dropped  : 0 times

Service-Request
Rejected : 0 times
Dropped  : 0 times

TAU-Request
Rejected : 0 times
Dropped  : 0 times

S1AP Overload Start Sent : 2 times
S1AP Overload Stop Sent  : 2 times
Excluded Emergency Events : 0 times
Excluded Voice Events    : 0 times

**show congestion-control statistics mme**

The following command shows SNMP event statistics for the EnhancedCongestion trap and EnhancedCongestionClear trap.

```
show snmp trap statistics verbose | grep EnhancedCongestion
```
Chapter 12
Foreign PLMN GUTI Management

This feature allows operators to gain some savings on signaling by avoiding DNS request attempts to foreign PLMNs if a foreign PLMN GUTI is not allowed.

- Feature Description
- How it Works
- Configuring Foreign PLMN GUTI Management
- Monitoring Foreign PLMN GUTI Management
Feature Description

In releases prior to 15.0, all Attach and TAU Requests containing a foreign GUTI would result in a DNS lookup for the peer MME or SGSN, followed by an S10, S3 or Gn/Gp Identification or Context Request. This could result in significant delay when the GUTI is from a foreign PLMN, which the local MME cannot access.

In Release 15.0, a Foreign PLMN GUTI Management Database can now be configured to allow or immediately reject Attach Requests or TAU Requests containing a GUTI from a foreign PLMN. This Foreign PLMN GUTI Management Database contains as many as 16 entries, where each entry consists of a PLMN (MCC and MNC) and an action, which can either be Allow or Reject. If the action is Reject, the MME will not perform any DNS requests to locate a peer MME or SGSN to which any foreign GUTI from that foreign PLMN maps.
How it Works

When an Attach Request or TAU Request containing a foreign GUTI is received, the MME must first determine if the GUTI's PLMN matches either the MME's own PLMN or one of the MME's shared PLMNs. If such a match is found, the foreign GUTI belongs to a local PLMN, no foreign PLMN check is made, and a DNS request for a peer MME or SGSN may be made as the request is processed normally. If the GUTI's PLMN does not match either the MME's own PLMN or one of the MME's shared PLMNs, the foreign GUTI belongs to a foreign PLMN and the MME Service is checked for an association to a Foreign PLMN GUTI Management Database. If there is no such association, all Attach Requests and TAU Requests containing foreign GUTIs from foreign PLMNs are allowed to be processed, and a DNS request for a peer MME or SGSN may be made.

If an association to a Foreign PLMN GUTI Management Database is present, the database is checked for a matching foreign PLMN. If no match is found, the MME continues processing the Attach Request or TAU Request, and a DNS request may be made. If a match is found, the action specified for the foreign PLMN (either Allow or Reject) is applied. If the action is Reject, and the request is a TAU Request, a TAU Reject message is sent immediately with cause code 9 (UE Identity cannot be derived by the network), and no DNS lookup is performed to find a peer MME or SGSN. If the action is Reject, and the request is an Attach Request, the MME sends a NAS Identity Request to the UE to determine its IMSI, and no DNS lookup is performed to find a peer MME or SGSN. If the action is Allow, the MME continues processing the Attach Request or TAU Request, and a DNS request may be made.

If a TAU Request containing a foreign GUTI is rejected due to its PLMN being present in the Foreign PLMN GUTI Management Database, the mme-foreign-plmn-guti-rejected session disconnect reason will be incremented.

Similarly, the emmdisc-foreignplmnreject bulk statistic counter, which tracks the number of times this disconnect reason, is incremented.
Configuring Foreign PLMN GUTI Management

- Creating a Foreign PLMN GUTI Management Database
- Configuring Foreign PLMN GUTI Management Database Entries
- Associating an MME Service with a Foreign PLMN GUTI Management Database
- Verifying the Configuration

Creating a Foreign PLMN GUTI Management Database

A Foreign PLMN GUTI Management Database is configured as part of the lte-policy configuration mode.

```config
lte-policy
foreign-plmn-guti-mgmt-db fguti_db_name
end
```

Up to four Foreign PLMN GUTI Management Databases may be configured.

To delete an existing database, use the `no` keyword followed by the database specifier and name in lte-policy configuration mode.

```no foreign-plmn-guti-mgmt-db fguti_db1```

Configuring Foreign PLMN GUTI Management Database Entries

A Foreign PLMN GUTI Management Database entry consists of an MCC, an MNC, and an action (either Allow or Reject). The following example creates two entries:

```configure
lte-policy
foreign-plmn-guti-mgmt-db dbdb_name
plmn mcc 123 mnc 456 allow
plmn mcc 321 mnc 654 reject
```

The `any` keyword may be used as a wildcard in place of both the MCC and MNC values, or in place of an MNC value with a specific MCC value. In other words, the following commands are allowed:

plmn mcc 123 mnc any allow
plmn mcc any mnc any reject
However, a wildcard MCC is not allowed with a specific MNC value. For example, the following command is not allowed:

```
plmn mcc any mnc 456 allow
```

It is strongly recommended that a Foreign PLMN GUTI Management Database contain an `mcc any mnc any` entry in order to define the default behavior when a GUTI with an unknown MCC / MNC combination is received. If such an entry is absent, the default behavior will be to allow Attach Requests and TAU Requests with unknown MCC / MNC combinations, which may result in DNS lookups for peer MMEs and SGSNs. This default behavior would be the same as if there were no Foreign PLMN GUTI Management Database defined.

Up to 16 foreign PLMN entries may be added to a database.

The `no` keyword followed by a PLMN removes the specific entry from the database. Refer to the following example:

```
no plmn mcc 123 mnc 456
```

Associating an MME Service with a Foreign PLMN GUTI Management Database

An MME Service can be associated with a database using the `associate foreign-plmn-guti-mgmt-db` command in MME Service Configuration mode.

```
configure
   context ctxt_name
      mme-service mme_svc
         associate foreign-plmn-guti-mgmt-db db_name
   end
```

Multiple MME Services may be associated with a single Foreign PLMN GUTI Management Database. Because of this, it is not possible to cross-check the PLMNs in the database against an MME Service's own PLMN or its shared PLMNs. However, the MME Service's own PLMN or shared PLMNs will never be checked against the Foreign PLMN GUTI Management Database, regardless of whether those PLMNs are configured in the database or not. In other words, any Attach Request or TAU Request containing a GUTI from the MME Service's own PLMN or one of its shared PLMNs will always be processed, and may result in a DNS lookup for a peer MME or SGSN.

The association can be removed using the following command:

```
no associate foreign-plmn-guti-mgmt-db
```

Verifying the Configuration

Use the following command to display the list of Foreign PLMN GUTI Management databases configured on the system:

```
show lte-policy foreign-plmn-guti-mgmt-db summary
```

Use the following command to display the entries configured within a specific Foreign PLMN GUTI Management Database:
show lte-policy foreign-plmn-guti-mgmt-db name fguti-db1

Foreign PLMN GUTI Mgmt DB fguti-db1

 PLMN mcc 123 mnc 456 allow
 PLMN mcc 321 mnc 654 reject
 PLMN mcc any mnc any reject
 PLMN mcc 123 mnc any allow

Use the following command to display the Foreign PLMN GUTI Management database to which an MME Service has been associated:

show mme-service name mme_svc_name

Refer to the Foreign-PLMN-GUTI-Mgmt-DB field in the output, as shown here:

Foreign-PLMN-GUTI-Mgmt-DB : fguti-db1
Monitoring Foreign PLMN GUTI Management

This section provides information on how to monitor the Foreign PLMN GUTI Management feature.

Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs relating to this feature.

show session disconnect-reasons

If a TAU Request containing a foreign GUTI is rejected due to its PLMN being present in the Foreign PLMN GUTI Management Database, the following session disconnect reason is incremented.

- mme-foreign-plmn-guti-rejected(534)

Bulk Statistics

The following statistic is included in the MME Schema in support of the Foreign PLMN GUTI feature:

emmdisc-foreignplmnreject

This statistic increments when an Attach or TAU request containing a foreign GUTI is rejected due to restrictions set in the Foreign PLMN GUTI Management Database.

The following statistic is also included in the System Schema in support of the Foreign PLMN GUTI feature:

disc-reason-534: mme-foreign-plmn-guti-rejected(534)

This statistic increments when a session is disconnected due to the restrictions set in the Foreign PLMN GUTI Management Database.
Chapter 13
Heuristic and Intelligent Paging

This chapter describes the advanced paging features of the MME.

- Feature Description
- How it Works
- Configuring MME Paging Features
- Monitoring and Troubleshooting the MME Paging Features
Feature Description

A valid license key is required to enable heuristic and intelligent paging. Contact your Cisco Account or Support representative for information on how to obtain a license.

The MME supports two levels of paging optimization to minimize the paging load in the EUTRAN access network:

- **Heuristic Paging**

 Also known as idle-mode paging, this feature reduces network operations cost through more efficient utilization of paging resources and reduced paging load in the EUTRAN access network. This problem is acute in the radio access network, where paging is a shared resource with finite capacity. When a request for an idle mode access terminal is received by the S-GW, the MME floods the paging notification message to all eNodeBs in the Tracking Area List (TAI). To appreciate the magnitude of the problem, consider a network with three million subscribers and a total of 800 eNodeBs in the TAI. If each subscriber was to receive one page during the busy hour, the total number of paging messages would exceed one million messages per second.

- **Intelligent Paging**

 Intelligent Paging further optimizes heuristic paging to allow operators to specify different paging profiles for different streams of traffic (CS or PS traffic types). Each paging profile provides the flexibility to control the pace, volume and type of paging requests sent to eNBs.
How it Works

Heuristic Paging

Each MME maintains a list of “n” last heard from eNodeBs for the UE. The intent is to keep track of the eNodeBs that the AT commonly attaches to such as the cells located near a person's residence and place of work. During the average day, the typical worker spends the most time attaching to one of these two locations.

Using Heuristic Paging, the MME attempts to page the user in stages as described in the “Heuristic Paging Behavior” section that follows.

Default (Non-Heuristic) Paging Behavior

If no license is in place, or if the heuristic paging is not turned on, the MME by default pages all eNodeBs in all TAIs present in the TAI list assigned to the UE.

The number of paging retries attempted for Packet Switch (PS) calls is dictated by the max-paging-attempts command under the mme-service configuration. If no configuration exists then by default 3 retries are attempted.

The timeout duration for each retry is dictated by the t3413-timeout command under mme-service configuration. If no configuration exists, the default value of 6 seconds is used.

For Circuit Switch (CS) calls, the MME sends only one paging attempt, regardless of the configuration of the max-paging-attempts command.

Heuristics Paging Behavior

If heuristics paging is turned on for the mme-service the following heuristics paging behavior is used:

1. Page the last eNodeB from which the UE contacted the MME in the last TAI from which the UE contacted the MME.
2. Page all eNodeBs in the last TAI from which the UE contacted the MME.
3. Page all eNodeBs in all TAIs present in the TAI list assigned to the UE.

When heuristic paging is enabled, the MME tracks the last TAI from which the UE contacted the MME and the last eNodeB from which the UE contacted the MME.

Paging to the last eNodeB (1) and the TAI from which UE was last heard (2) is done only once. max-paging-attempts configured in the mme-service is used only to control the number paging attempts to all eNodeBs in all TAIs (3).

Important: For paging requests for Circuit Switch (CS) calls, the MME does not follow this staged paging behavior. Instead, it follows the standards-defined paging mechanism of paging all eNodeBs in all TAIs present in the TAI list assigned to the UE (all-enb-all-tai). Only one attempt is made with no retries.

Intelligent Paging

With Intelligent Paging, the MME can be configured with paging profiles which define different stages of paging (paging maps). These controls determine whether the MME sends a paging-request to either the last TAI or all TAIs. In addition, these controls determine whether the MME sends the paging request to just one eNodeB, a specific number of eNodeBs, or to all eNBs. This enables the MME to control the span and reach of each paging request.

Two new modules, configurable under the lte-policy configuration mode, are introduced to support intelligent paging:
- **Paging-profile** – This module allows operator to configure different stages of paging in the order of desired execution with parameters that control the pace, volume and behavior of a given paging stage.

- **Paging-map** – This module allows operator to apply different 'paging-profiles' to different traffic types. When MME service is associated with an instance of this module, MME checks this map object to figure the type of paging-profile to adopt for a given paging trigger.

Important: If the MME is associated with a paging-map object that either does not exist or does not have an entry matching the paging-trigger, the MME performs paging as described in *Default Heuristics Paging Behavior.*
Configuring MME Paging Features

Important: Use of these Paging features require that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

Configuring Heuristic Paging

The example configuration in this section allows the MME to perform heuristic (optimized), idle-mode paging, reducing the number of messages carried over the E-UTRAN access network.

The following configuration example enables heuristic (optimized) paging on the MME:

```
configure
    context <mme_context_name>
        mme-service <mme_svc_name>
            heuristic-paging
        end
```

Configuring Intelligent Paging

The following sections provide configuration examples to enable intelligent paging on the MME:

Step 1 Create and configure a **paging-profile**. Refer to Creating and Configuring the Paging-Profile.

Step 2 Create and configure a **paging-map**. Refer to Creating and Configuring the Paging-Map.

Step 3 Enable heuristic paging and assign a paging-map to a specific mme-service. Refer to Enable Heuristic Paging with Paging-Map (Intelligent Paging).

Creating and Configuring the Paging-Profile

A paging-profile enables operators to configure different stages of paging in the order of desired execution with parameters that control the pace, volume and behavior of a given paging stage.

The following configuration example creates two paging-profiles in the lte-policy configuration mode:

```
configure
    lte-policy
        paging-profile <paging_profile_name1 > -noconfirm
            paging-stage 1 match-criteria all action all-enb-all-tai t3413-timeout 5 max-paging-attempts 4
```
Heuristic and Intelligent Paging

Configuring MME Paging Features

Creating and Configuring the Paging-Map

A paging-map enables operators to apply different paging-profiles to different traffic types. When an MME service is associated with an instance of this module, the MME checks this map object to figure the type of paging-profile to adopt for a given paging trigger.

The following configuration example creates a paging-profile in the lte-policy configuration mode:

```bash
configure
lte-policy
paging-map <paging_map_name> -noconfirm
   precedence 1 traffic-type { cs | ps } paging-profile paging_profile_name1
end
```

In Release 16.0, the paging-map configuration includes additional configuration options for selecting a paging-profile in order to control the pace, volume and behavior of a given paging state. Within a paging map, precedence can be defined for paging requests based on the following traffic types:

- **CS traffic** (Mobile Terminated CSFB) types can be defined according to specific subtypes of **voice**, **sms**, and **other**.
- **PS traffic** (all data and control messaging that involve packet services as well as IMS Voice) types can be defined according to the QoS **QCI value** from the EPS Bearer ID (EBI) in the Downlink Data Notification (DDN) received on S11 from the S-GW.
- **Signaling** (UE-level signaling requests) traffic types can also be defined. This option can be further qualified with the **Detach** and **LCS** (Location Services) traffic subtype options.

These Release 16.0 enhancements are shown in the following `precedence` command syntax:

```bash
precedence precedence traffic-type { cs [ voice | sms | other ] | ps [ qci qci_value ] | signaling [ detach | lcs ] } paging-profile paging_profile_name
```

Refer to the **LTE Paging Map Configuration Commands** chapter of the **Command Line Interface Reference** for more information about this command.

Enable Heuristic Paging with Paging-Map (Intelligent Paging)

The following example enables heuristic-paging and associates a paging-map to the specified mme-service.

```bash
configure
```
Verifying the Paging Configuration

The following command displays the paging configuration on the mme-service.

```
show mme-service all
```

The output of this command displays the entire configuration for the MME service specified.

```
[local]asr5x00# show mme-service name mmesvc1
Heuristic Paging : Enabled
Heuristic Paging Map : pgmap1
```
Monitoring and Troubleshooting the MME Paging Features

For more information regarding bulk statistics and output fields and counters in this section, refer to the *Statistics and Counters Reference*.

Paging Bulk Statistics

The following bulk statistics are included in the MME Schema to track paging events:

- ps-qci-1-paging-init-events-attempted
- ps-qci-1-paging-init-events-success
- ps-qci-1-paging-init-events-failures
- ps-qci-1-paging-last-enb-success
- ps-qci-1-paging-last-tai-success
- ps-qci-1-paging-tai-list-success
- ps-qci-2-paging-init-events-attempted
- ps-qci-2-paging-init-events-success
- ps-qci-2-paging-init-events-failures
- ps-qci-2-paging-last-enb-success
- ps-qci-2-paging-last-tai-success
- ps-qci-2-paging-tai-list-success
- ps-qci-3-paging-init-events-attempted
- ps-qci-3-paging-init-events-success
- ps-qci-3-paging-init-events-failures
- ps-qci-3-paging-last-enb-success
- ps-qci-3-paging-last-tai-success
- ps-qci-3-paging-tai-list-success
- ps-qci-4-paging-init-events-attempted
- ps-qci-4-paging-init-events-success
- ps-qci-4-paging-init-events-failures
- ps-qci-4-paging-last-enb-success
- ps-qci-4-paging-last-tai-success
- ps-qci-4-paging-tai-list-success
- ps-qci-5-paging-init-events-attempted
- ps-qci-5-paging-init-events-success
- ps-qci-5-paging-init-events-failures
- ps-qci-5-paging-last-enb-success
- ps-qci-5-paging-last-tai-success
- ps-qci-5-paging-tai-list-success
- ps-qci-6-paging-init-events-attempted
- ps-qci-6-paging-init-events-success
- ps-qci-6-paging-init-events-failures
- ps-qci-6-paging-last-enb-success
- ps-qci-6-paging-last-tai-success
- ps-qci-6-paging-tai-list-success
- ps-qci-7-paging-init-events-attempted
- ps-qci-7-paging-init-events-success
- ps-qci-7-paging-init-events-failures
- ps-qci-7-paging-last-enb-success
- ps-qci-7-paging-last-tai-success
- ps-qci-7-paging-tai-list-success
- ps-qci-8-paging-init-events-attempted
- ps-qci-8-paging-init-events-success
- ps-qci-8-paging-init-events-failures
- ps-qci-8-paging-last-enb-success
- ps-qci-8-paging-last-tai-success
- ps-qci-8-paging-tai-list-success
- ps-qci-9-paging-init-events-attempted
- ps-qci-9-paging-init-events-success
- ps-qci-9-paging-init-events-failures
- ps-qci-9-paging-last-enb-success
- ps-qci-9-paging-last-tai-success
- ps-qci-9-paging-tai-list-success
- cs-voice-paging-init-events-attempted
- cs-voice-paging-init-events-success
- cs-voice-paging-init-events-failures
- cs-voice-paging-last-enb-success
- cs-voice-paging-last-tai-success
- cs-voice-paging-tai-list-success
- cs-sms-paging-init-events-attempted
• cs-sms-paging-init-events-success
• cs-sms-paging-init-events-failures
• cs-sms-paging-last-enb-success
• cs-sms-paging-last-tai-success
• cs-sms-paging-tai-list-success
• cs-other-paging-init-events-attempted
• cs-other-paging-init-events-success
• cs-other-paging-init-events-failures
• cs-other-paging-last-enb-success
• cs-other-paging-last-tai-success
• cs-other-paging-tai-list-success
• signaling-detach-paging-init-events-attempted
• signaling-detach-paging-init-events-success
• signaling-detach-paging-init-events-failures
• signaling-detach-paging-last-enb-success
• signaling-detach-paging-last-tai-success
• signaling-detach-paging-tai-list-success
• signaling-lcs-paging-init-events-attempted
• signaling_lcs-paging-init-events-success
• signaling-lcs-paging-init-events-failures
• signaling-lcs-paging-last-enb-success
• signaling-lcs-paging-last-tai-success
• signaling-lcs-paging-tai-list-success

Release 15.0: The following bulk statistics are included in the MME Schema to track paging events. Note that these bulk statistics have been replaced by the bulk statistics above.

• ps-paging-init-events-attempted
• ps-paging-init-events-success
• ps-paging-init-events-failures
• ps-paging-last-enb-success
• ps-paging-last-tai-success
• ps-paging-tai-list-success
Paging Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs in support of the MME Paging features.

Only those counters which relate to paging are shown.

The following command shows a list of all paging-profiles in order of paging-stage.

```
show lte-policy paging-profile summary
```

The following command shows information for the specified paging-profile.

```
show lte-policy paging-profile name <name>
```

```
[local]asr5x00# show lte-policy paging-profile name pg-aggressive

Paging Profile : pg-aggressive
  Paging Stage 1 :
    Paging Action - Page all TAIs in all ENBs.
    Match Criteria - No conditions. Always apply this stage.
    T3414-Timeout - 5 sec
    Max Paging Retries - 4
```

The following command shows a list of all paging-maps configured.

```
show lte-policy paging-map summary
```

The following command shows information for the specified paging-map.

```
show lte-policy paging-map name <name>
```

```
[llocal]asr5x00# show lte-policy paging-map name pg-map2

Paging Map : pg-map2
  Precedence 1 : Circuit-Switched (CS); Paging is performed as per paging-profile pg2
  Precedence 2 : Packet-Switched (PS); Paging is performed as per paging-profile pg4
```

The following command shows the UE Tracking Information for the Last Reported 5 eNodeBs and Last Reported 7 ECGLs for the specified IMSI.

```
show mme-service db record imsi <imsi>
```

The following command shows information about the Paging Initiation Events.

```
show mme-service statistics
```

The following groups of PS paging initiation event counters track individual events for each QCI level (1-7). The following sample shows only the fields for QCI-1. Additional groups of fields are provided for QCI-2 through QCI-7.
Paging Initiation for PS QCI-1 Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0

The following groups of CS traffic paging event counters events based on sub-traffic type: (CS Voice Events, CS SMS Events, and CS Other Events).

Paging Initiation for CS Voice Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0

Paging Initiation for CS SMS Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0

Paging Initiation for CS Other Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0

The following groups of Signaling event counters track individual Detach and LCS (Location Services) paging events.

Paging Initiation for SIGNALING DETACH Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0

Paging Initiation for SIGNALING LCS Events:
Attempted: 0 Success: 0
Failures: 0
Success at Last n eNB: 0 Success at Last TAI: 0
Success at TAI List: 0
Chapter 14
Idle-mode Signaling Reduction

Idle-mode Signaling Reduction (ISR) allows a UE to be registered on (and roam between) E-UTRAN and UTRAN/GERAN networks while reducing the frequency of TAU and RAU procedures and overall signaling.

- Feature Description
- How it Works
- Configuring ISR
- Monitoring and Troubleshooting ISR
Feature Description

Idle mode Signaling Reduction (ISR) allows the UE to be registered in UTRAN/GERAN at the same time it is registered in E-UTRAN. ISR requires functionality in both the UE and the network (i.e. in the SGSN, MME, S-GW and HSS) to activate ISR for a UE. The network can decide for ISR activation individually for each UE.

ISR allows the UE to roam between LTE & 2G/3G while reducing the frequency of TAU and RAU procedures caused by UEs reselecting between E-UTRAN and GERAN/UTRAN, when operated together. It not only reduces the signaling between UE and network, but also reduces the signaling between E-UTRAN & UTRAN/GERAN.

When ISR is activated, the UE is registered with both the MME and S4 SGSN. Both the S4 SGSN and the MME have a control connection with the S-GW. The MME and S4 SGSN are both registered at the HSS. The UE stores MM parameters from S4 SGSN (e.g. P-TMSI and RA) and from MME (e.g. GUTI and TA(s)) and the UE stores session management (bearer) contexts that are common for E-UTRAN and GERAN/UTRAN accesses. In an idle state the UE can reselect between E-UTRAN and GERAN/UTRAN (within the registered RA and TAs) without any need to perform TAU or RAU procedures with the network. SGSN and MME store each other's address when ISR is activated.
How it Works

ISR Activation

ISR does not entail any changes to the initial attach procedure at the MME or S4 SGSN. ISR is only activated when the UE is registered with both the MME and S4 SGSN. This happens for the first time when the UE has a previous state at either the MME or S4 SGSN and relocates to the other node. This is achieved via TAU/RAU procedures or via inter-RAT procedures. Both the S4 SGSN and the MME then have a control connection with the Serving GW. The MME and S4 SGSN are both registered at the HSS.

The UE stores Mobility Management (MM) parameters from the SGSN (P-TMSI and RA) and from MME (GUTI and TA(s)) and the UE stores session management (bearer) contexts that are common for E-UTRAN and GERAN/UTRAN accesses. In the idle state, the UE can reselect between E-UTRAN and GERAN/UTRAN (within the registered RA and TAs) without any need to perform TAU or RAU procedures with the network. The SGSN and MME store each other’s address when ISR is activated.

Figure 13. ISR Activation During MME to SGSN Relocation

Notes:
- S3 Fwd relocation request/context response would indicate ISR support at MME via indication flag (ISRSI).
• If the SGSN also supports ISR, it activates and indicates so using ISRAI flag to the S-GW in an S4 modify bearer request message.

• The SGSN uses Context Ack/Fwd Relocation Complete response to indicate to MME that ISR has been activated. This ensures that the MME does not delete UE context.

• The MME also expects the HSS to not send a Cancel-Location-request to the MME.

Figure 14. ISR Activation During SGSN to MME Relocation

Notes:
• S3 Fwd relocation request/context response indicates ISR support at SGSN via indication flag (ISRSI).

• If the MME also supports ISR, it activates and indicates so using ISRAI flag to the S-GW in a S11 Modify Bearer Request message.

• The MME uses the Context Ack/Fwd Relocation Complete notification to indicate to the SGSN that ISR has been activated. This ensures that the SGSN does not delete the UE context.

• The MME sends a t3423 timer and sends the appropriate EPS Update result IE to UE in a TAU accept.

ISR Deactivation

The UE and the network run independent periodic update timers for GERAN/UTRAN and for E-UTRAN. When the MME or SGSN do not receive periodic updates, the MME and SGSN may decide independently for implicit detach, which removes session management (bearer) contexts from the CN node performing the implicit detach and it also removes the related control connection from the S-GW. Implicit detach by one CN node (either SGSN or MME) deactivates ISR in the network. It is deactivated in the UE when the UE cannot perform periodic updates in time. When
ISR is activated and a periodic updating timer expires, the UE starts a Deactivate ISR timer. When this timer expires and the UE was not able to perform the required update procedure, the UE deactivates ISR. All special situations that cause context in the UE, MME and SGSN to become asynchronous are handled by ISR deactivation. The normal RAU/TAU procedures synchronize contexts in MME and SGSN and activate ISR again when wanted by the network.

ISR Behavior with Circuit Switched Fallback

ISR capability impacts some MME messaging when Circuit Switched Fallback (CSFB) is also implemented.

- When receiving a Paging Request from the MSC/VLR, the MME must initiate paging in both the E-UTRAN and the UTRAN/GERAN domains (as a UE in idle mode may be in either cell coverage).
- When the MSC/VLR initiates a Non-EPS Alert Procedure, the MME must inform the peer SGSN of the request. If there is signaling activity in the UTRAN/GERAN domain, the SGSN can inform the MME (via the S3 interface) to allow the MME to indicate activity to the MSC/VLR.
- IMSI-detach is allowed from the SGSN.

Standards Compliance

The ISR capability complies with the following standards for 3GPP LTE/EPS wireless networks:

- 3GPP TS 23401-970
- 3GPP TS 29274-940
- 3GPP TS 23272-990
- 3GPP TS 24301-950
Configuring ISR

This feature requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

Use the following example to enable the ISR feature on the specified MME service:

```
config
  mme-service <mme_svc_name> -noconfirm
  isr-capability
  exit
```

Verifying ISR Configuration

Use either of the following commands to verify if ISR is enabled.

```
show mme-service all
show mme-service name <mme_svc_name>
```

The output of this command displays the entire configuration for the MME service specified.

```
[local]asr5x00# show mme-service name mmesvc1

ISR Capability : Enabled
```
Monitoring and Troubleshooting ISR

ISR Bulk Statistics

The following MME Schema bulk statistics have been introduced for the Idle-mode Signaling Reduction feature:

- isr-activated

The following eGTP-C Schema bulk statistics have been introduced for the Idle-mode Signaling Reduction feature:

- mobility-sent-cspagingind
- mobility-recv-cspagingind
- mobility-sent-alertmmenotf
- mobility-sent-retransalertmmenotf
- mobility-recv-alertmmenotf
- mobility-recv-retransalertmmenotf
- mobility-sent-alertmmeack
- mobility-sent-retransalertmmeack
- mobility-recv-alertmmeack
- mobility-recv-retransalertmmeack
- mobility-sent-alertmmeackaccept
- mobility-sent-alertmmeackdenied
- mobility-recv-alertmmeackaccept
- mobility-recv-alertmmeackdenied
- mobility-sent-ueactivitynotf
- mobility-sent-ueactivitynotf
- mobility-sent-retransueactivitynotf
- mobility-recv-ueactivitynotf
- mobility-recv-retransueactivitynotf
- mobility-sent-ueactivityack
- mobility-sent-retransueactivityack
- mobility-recv-ueactivityack
- mobility-sent-ueactivityack
- mobility-sent-ueactivityackaccept
- mobility-sent-ueactivityackdenied
- mobility-recv-ueactivityackaccept
- mobility-recv-ueactivityackdenied
- mobility-sent-detachnotf
- mobility-sent-retransdetachnotf
- mobility-recv-detachnotf
- mobility-recv-retransdetachnotf
- mobility-sent-detachack
- mobility-recv-detachack
- mobility-sent-detachackaccept
- mobility-sent-detachackdenied
- mobility-recv-detachackaccept
- mobility-recv-detachackdenied

ISR Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs in support of ISR. Only those counters which relate to ISR are shown.

```bash
show mme-service statistics
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISR Deactivation Statistics</td>
<td></td>
</tr>
<tr>
<td>S3 path failure</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to failure in the S3 interface.</td>
</tr>
<tr>
<td>SGSN local detach</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to SGSN detach notification.</td>
</tr>
<tr>
<td>SGW relocation</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to S-GW relocation of the session to an MME/SGSN which does not support ISR.</td>
</tr>
<tr>
<td>CN Node relocation</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to CN Node relocation of the session to an MME/SGSN which does not support ISR.</td>
</tr>
<tr>
<td>Implicit detach</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to an idle timeout (implicit detach) initiated by either the MME or Peer SGSN.</td>
</tr>
<tr>
<td>Other detach procedures</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to an idle timeout (implicit detach) initiated by either the MME or Peer SGSN.</td>
</tr>
<tr>
<td>Other reasons</td>
<td>The total number of Idle mode Signaling Reduction (ISR) deactivations due to a reason not otherwise classified by one of the other ISR Deactivation Statistics categories.</td>
</tr>
</tbody>
</table>

```bash
show mme-service session full
```
Table 10. ISR Session Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISR Status</td>
<td>Displays if the session is using Idle mode Signaling Reduction (ISR). Possible configurations are Activated or Deactivated.</td>
</tr>
<tr>
<td>Peer SGSN</td>
<td>Displays the IP address of the SGSN which has a context for this UE in support of Idle mode Signaling Reduction (ISR). A Peer SGSN address is only shown when ISR is activated for this session.</td>
</tr>
</tbody>
</table>

show mme-service session summary

Table 11. ISR Session Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ISR-activated sessions</td>
<td>The current total number of MME sessions which are activated for ISR.</td>
</tr>
</tbody>
</table>

show egtpc sessions

Typically this command shows only one EGTP session (S11) per UE. When an ISR-activated UE is present, this command displays 2 EGTP sessions per UE.
Simply put, IMSI Manager Scaling is enabling multiple IMSI Managers per MME. To facilitate MME operations on Cisco's higher capacity platforms, such as ASR 5500 and Cisco’s Virtual Packet Core (VPC)- Distributed Instance (DI) platform, the MME enables scaling up the number of IMSI Managers supported on ASR 5500 and a QvPC-DI platforms. Scaling the number of IMSI Managers means the MME’s IMSI Manager is not a bottleneck on enhanced platforms.

This section provides detailed information on the following:

- Feature Description
- How It Works
- Configuring IMSI Manager Scaling
- Monitoring and Troubleshooting the IMSIMgr Scaling
Feature Description

Overview

The IMSI Manager (IMSIMgr) is the de-multiplexing process that selects the Session Manager (SessMgr) instance to host a new session. The IMSIMgr selects the SessMgr instance based on a demux algorithm logic to host a new session by handling new calls requests from the MME Manager (MMEMgr), EGTPC Mgr, and the (e)SGTPCMgr (handles new MME handoffs). The new call requests or signaling procedures include Attach, Inter-MME TAU, PS Handover, and SGs, all of which go through the IMSIMgr. The IMSIMgr process also maintains the mapping of the UE identifier (e.g., IMSI/GUTI) to the SessMgr instance.

With the addition of support for the expanded capacities of the VPC-DI and ASR5500 platforms, the MME’s IMSIMgr had become a bottleneck. With Release 18.0, the **IMSI Manager Scaling** feature increases the number of IMSIMgrs that can be made available on the MME - scaling from 1 to a maximum of 4. The number is configurable (see Configuration section below).

Important: IMSIMgr Scaling is only available on the ASR 5500 and the VPC-DI platforms. The maximum number of IMSIMgrs supported on ASR 5000 and SSI platforms remains at “1”.

Customers will notice the following when the configured number of IMSIMgrs setting is changed for more than 1:

- It is possible to initiate an audit request for a single, specific IMSIMgr instance.
- Increased tolerance for configurable MME per service session limits. This can be visualized when configuring commands such as bind in the MME Service configuration mode.
- Increased tolerance for Attach rate control as the MME Attach rate control will be independently enforced by each IMSI Mgr instance.

Relationships to Other Features

The MME’s use of the following features has been changed when multiple IMSIMgrs are configured:

- Attach Rate Throttling
- MME per service session limits
- Monitor Subscriber ‘next call’
- Congestion Control
- MME traps generated by IMSI Manager

For details about the changes, refer to the How It Works section.
How It Works

Workings of IMSIMgr Scaling

It is the MMEMgr/EGTPC Mgr/SGTPC Mgr that selects an IMSIMgr instance to be contacted for session setup. Each subscriber session in the SessMgr maintains the IMSIMgr instance ID that 'hosts' the mapping for this IMSI. This information is required when communicating during audit and session recovery scenarios.

With a single IMSIMgr instance present, there is only one centralized entry point for new calls into the system. By increasing the number of IMSIMgr instances, the new call handling (primarily for Attach and SGs procedures) capacity of the MME is increased as the calls are distributed across multiple instances. The call distribution logic across IMSIMgrs utilizes a simple hash operation on IMSI/GUTI to select the IMSIMgr instance.

The IMSIMgr and SessMgr interactions are the same as those employed when IMSIMgr scaling is not implemented. Once the IMSI is found, the SessMgr performs hash on the IMSI to acquire the “target” IMSIMgr instance ID. Once the IMSI is known, the NOTIFY-IMSI Request will be sent from the SessMgr to the "target" IMSIMgr instance. The "target" IMSIMgr instance updates the mapping table with this "IMSIMgr ID” mapping. This ensures that any further IMSI-based requests from this subscriber will land on the correct SessMgr.

Attach Rate Throttling

With multiple IMSIMgrs, the configured number of allowed Attaches is divided between the configured number of IMSIMgrs. As throttling is now distributed, 100% accuracy cannot be achieved as with a single IMSIMgr, so a minor impact in accuracy based on the incoming rate in every IMSIMgr will result in a limited number of calls being dropped/rejected.

MME Service Session Limits

As a result of IMSIMgr Scaling, a behavior change has been implemented with regard to MME service session limits. Now all IMSIMgr instances will send the current count of sessions per MME service to the MMEMgr via existing response messaging. The MMEMgr shall send the same data received from multiple IMSIMgr instances back to the IMSIMgr in existing request messaging. As a result, each IMSIMgr shall know the session count per MME service for all IMSIMgr instances.

Given this information, the per MME service session limits can now be enforced by each IMSIMgr instance. The per service session limit is configured by the command `bind sl-mme max-subscribers number` (refer to the Command Line Interface Reference for command details).

Monitor Subscriber 'next-call'Option

The monitor subscriber next-call option is used to trace the next incoming call into the system. With multiple IMSIMgr instances, the session controller now sends the next-call details to IMSIMgr instance 1. So, the next incoming call through IMSIMgr instance 1 is monitored.

Congestion Control

All IMSIMgrs will be involved in congestion control and traps will be generated by all IMSIMgrs. The IMSIMgrs are updated with information on critical parameters that lead to congestion control and each IMSIMgr instance sends traps indicating congestion status.

IMSIMgr ID in Traps

Each IMSIMgr instance independently generates traps for each new allowed or disallowed call. The trap information includes the IMSIMgr instance ID.
SessMgr Instance Mapping

From Release 18 and forward, the Diameter Proxy Server queries the MME’s IMSIMgr instances to obtain IMSI information in support of SessMgr instance mapping.
Configuring IMSI Manager Scaling

This section documents configuration of IMSI Manager Scaling and configuration for related functionality.

Configuring Support for Multiple IMSIMgrs

The commands illustrated below configure the IMSI Managers parameters. In support of the IMSI Manager Scaling feature, the max keyword has been added to set the maximum number of IMSIMgrs that can be spawned on the MME.

Important: The max keyword is only visible when the MME is running on an ASR 5500 or a VPC platform.

```
config

    task facility imsimgr { avoid-sessmgr-broadcast | max <number_imsimgrs> | sessmgr-
        sessions-threshold high-watermark <high_value> low-watermark <low_value> }

end
```

Notes:

- `max number_imsimgrs` must be an integer from 1 to 4. The original setting, or default, is 4 on ASR 5500 and VPC-DI platforms.
- For further information on the other command keywords and the use of the command prefixes, refer to the Command Line Interface Reference for release 18.0 or higher.

Important: `max` is a boot-time configuration setting. It should be added in the configuration file before any MME related configuration is created or any IMSI Manager is started. Run-time (dynamic) configuration of this parameter is stored but not effective until after the next reboot. Any attempt at dynamic configuration of this parameter results in a display of the following error message:

```
IMSImgrs already started. So modify the config file and reboot the system with updated config.
```

Verifying the IMSI Mgr Scaling Configuration

Either of the following commands can be used to display/verify the number of IMSIMgrs configured per chassis.

```
show task resources facility imsimgr all

show configuration
```

Note:

The task facility imsimgr max field has been added to the output of the show configuration command.
Configuring IMSIMgr Audit

With the ability to configure the MME to support more than one IMSIMgr instance, it becomes important to be able to selectively monitor each IMSIMgr instance. With the following command issued from the Exec mode, the operator can initiate an audit request for just one IMSIMgr instance at a time:

```
mme imsimgr instance instance_id audit-with sessmgr { all | instance instance_id }
```

Notes:

- **imsimgr instance instance_id**: Enter an integer from 1 to 4 to identify the specific IMSIMgr instance for which the audit is to be performed.
- **all | instance instance_id**: Select all to initiate an audit for all SessMgr instances or select instance and for `instance_id` enter an integer from 1 to 1152 to identify a specific SessMgr for the audit.
Monitoring and Troubleshooting the IMSIMgr Scaling

Displaying IMSIMgr Instance Information

The following commands generate output that displays information about IMSIMgr Instances:

- `show subscribers mme-only full all` - This command displays IMSIMgr instance information for subscriber session(s).
- `show mme-service session full all` - This command displays IMSIMgr instance information for MME service session(s).
- `show mme-service db record call-id` - This command displays IMSIMgr instance information based on call-id records.

Displaying IMSIMgr Selection Counter Information

The following commands generate output that displays selection counter information for an IMSIMgr instance:

- `show demux-mgr statistics sgtpcmgr instance instance` - This command updates to display IMSI Mgr selection counter information.
- `show demux-mgr statistics egtpegmgr all` - This command updates to display IMSI Mgr selection counter information.
- `show session subsystem facility mmemgr instance instance` - This command updates to display IMSIMgr selection counter information.

Displaying IMSIMgr Instance Information in the SNMP Trap

Use the following command to display IMSIMgr instance specific fields in the SNMP trap:

- `show snmp trap history` - SNMP trap now includes the IMSIMgr instance information
 - Internal trap notification 1249 Imsimgr instance: 1 (MMENewConnectionsDisallowed) - MME new connections disallowed, initial reason test
 - Internal trap notification 1249 Imsimgr instance: 1 (MMENewConnectionsDisallowed) - MME new connections allowed

Bulk Statistics

Currently, there are no bulk statistics used to track IMSIMgr instance-specific information.
Chapter 16
IPNE Service

With Release 18, the MME supports IP Network Enabler (IPNE).

Important: This feature, with its CLI commands, counters, and statistics, are all under development for future use and the information listed here is recommended for testing and lab use only. At the time, the feature is ready for deployment, additional information will be added to this chapter.

- Feature Description
- How It Works
- Configuring MME Use of IPNE
- Monitoring and Troubleshooting the IPNE Service
Feature Description

IP Network Enabler (IPNE) is a Mobile and IP Network Enabler (MINE) client component that collects and distributes session and network information to MINE servers. The MINE cloud service provides a central portal for wireless operators and partners to share and exchange session and network information to realize intelligent services.

The information is shared between the MINE server and IPNE service in the form of XML data. The core object in the IPNE service is the XMPP protocol engine. There is one XMPP protocol engine instance for each configured MINE server peer. The engine implements the XMPP protocol using FSM.

All information that is shared is derived from the context at that instance in time. An IPNE service level scheduler is also implemented to rate-control the feed and notification activities on all the handles to avoid overload which would affect call processing and data path performance.

With support of the IPNE interface and IPNE Service, the MME is able to export the following information to the CSB (Cisco Service Bus):

- UE Location Information
- UE Mobility Information

The ability to export to the CSB makes it possible for operators to design and/or implement solutions and services for network optimization, congestion, troubleshooting and monetization with the information exported from the MME.

IPNE is a licensed Cisco feature. Contact your Cisco account representative for information on licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section in the System Administration Guide.
How It Works

IPNE

When the MME service is associated with an IPNE service, then the MME service communicates with the IPNE service through the Session Manager over a SINE interface. The IPNE service communicates with CSB over XMPP protocol. Information is exchanged between the modules in the form of clp handles. For each session one IPNE handle is created.
Configuring MME Use of IPNE

There are multiple components that need to be configured to enable the MME to utilize the IPNE service:

- IPNE service
- IPNE endpoint
- association with MME service

Configuring IPNE Service

The IPNE service is a separate service configuration.

Important: We recommend that you configure the IPNE service in the same context in which the MME service has been configured.

```
config
  context context_name
    ipne-service ipne_svce_name
  end
```

Notes:

- `ipne_service` - Enter 1 to 63 alphanumeric characters to create a unique IPNE service name within the context and to enter the IPNE Service configuration mode. Entering the mode provides access to the commands, such as `ipne-endpoint`, needed to configure the IPNE service parameters.
- `no` - As a prefix of the command disables the feature when it has been enabled with this command and removes the IPNE service definition from the MME’s configuration. If an IPNE service is to be removed and the service has active handles, then the handles are deleted using a timer-based approach and then the IPNE service is removed.

Configuring the IPNE Endpoint

After the IPNE service is created, the IPNE endpoint definition should be added to the configuration. An IPNE endpoint is a combination of a local IP address, a peer address and, optionally, a port. Entering the `ipne-endpoint` command also provides access to the commands in the IPNE Endpoint configuration mode that are used to define the operational parameters required by the endpoint.

```
config
  context context_name
    ipne-service ipne_svce_name
    ipne-endpoint
```
bind \{ ipv4-address | ipv6 address \} ip_address
peer \{ ipv4-address | ipv6 address \} ip_address
end
no \{ bind | peer \}

Notes:
- \{ ipv4-address | ipv6-address \} ip_address: Identify the type of IP address - either IPv4 or IPv6 - and then enter either an IPv4 dotted-decimal or an IPv6 colon-separated hexadecimal notation.
- As part of the \texttt{bind} command, the IP address identifies the IPNE client socket as the local address.
- As part of the \texttt{peer} command, the IP address identifies the MNE server as the peer address.
- \texttt{no} - Include as a prefix of either the \texttt{bind} or \texttt{peer} command to remove the bind address or the peer address from the IPNE endpoint configuration.

Configuring the Association with MME Service

A special \texttt{ipne-service} keyword has been added to the \texttt{associate} CLI to associate the created IPNE service with the MME service:

```
configure
context context_name
mme-service mme_srvc_name
associate ipne-service ipne_srvc_name
no associate ipne-service
end
```

Notes:
- \texttt{ipne_srvc_name} - Enter 1 to 63 alphanumeric characters to identify the \textit{unique} IPNE service name that is within the same context as the MME service configuration.
- \texttt{no} - Include as a prefix of the command to disassociate the IPNE service definition from the MME\textprime;s service configuration.
Monitoring and Troubleshooting the IPNE Service

Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs in support of using the IPNE service on the MME.

show ipne peers { all | service | summary }

This command generates a display of information for the IPNE service(s) and the TCP connection status for associated Session Manager(s). The following are sample displays:

```
[local]asr5000# show ipne peers all
SESSMGR : 1
Service Name: ipne-service Contex id: 3
Version : n/a
Local Address : 192.168.120.1:45161
Peer Address : 192.168.120.7:5222 State : [OPEN 0/1] [TCP]
[local]asr5000# show ipne peers summary
Service Name: ipne-service Contex id: 3
Version : n/a
Local Address : 192.168.120.1:45161
Peer Address : 192.168.120.7:5222 State : [OPEN 144/144] [TCP]
```

Notes:

- **all** - Lists all of the peers of each IPNE service and the state of the TCP connections for every SessMgr. This command with **all** option is part of the support details (SSD) procedure.
- **service** - Requires the inclusion of an IPNE service name and displays information only for that service.
- **summary** - Generates a display similar to the **all** display but provides only summary TCP connection information for the SessMgrs.

show ipne statistics { all | service | summary }

This command generates a display of information regarding the number of IPNE handes of each IPNE service and count information for query/response/subscription/feed messages for the SessMgrs. The command generates a display similar to the following:

```
[local]asr5000# show ipne statistics all
```
SESSMGR : 1

Service Name: ipne-service Context id: 3
Total handles: 0
Local Address : 192.168.120.1:0
Peer Address : 192.168.120.7:5222
Total query : 0
Total query response : 0 Success : 0 Failure : 0
Total update : 0
Total update response: 0 Success : 0 Failure : 0
Total subscription : 0 Add : 0 Delete : 0
Total feed : 0 Add : 0 Delete : 0
Total notification : 0
Total XML parser error: 0

IPNE messages discarded on tx queue:
Total discards : 0
Total Feed : 0 Notify : 0 Response :0

[local]asr5000# show ipne statistics summary
Service Name: ipne-service Context id: 3
Total handles: 0
Local Address : 192.168.120.1:0
Peer Address : 192.168.120.7:5222
Total query : 0
Total query response : 0 Success : 0 Failure : 0
Total update : 0
Total update response: 0 Success : 0 Failure : 0
Total subscription : 0 Add : 0 Delete : 0
Total feed : 0 Add : 0 Delete : 0
Total notification : 0
Total XML parser error: 0
IPNE messages discarded on tx queue:

Total discards : 0
Total Feed : 0 Notify : 0 Response : 0

Notes:
- **all** - Lists all of the peers of each IPNE service and the state of the TCP connections for every SessMgr. This command with the **all** option is part of support details (SSD) procedure.
- **service** - Requires the inclusion of an IPNE service name and displays information only for that service.
- **summary** - Generates a display similar to the **all** display but provides only summary TCP connection information for the SessMgrs.

show bulkstats variables mme

Entering this command causes the system to display all of the bulk statistic variables in the MME schema. The 6 bulk statistic variables listed below have been added to the MME schema to enable the operator to track message related to IPNE-paging. For descriptions of the bulk statistic variables, refer to the *Statistics and Counters Reference* for StarOS Release 18 or higher.

- signaling-ipne-paging-init-events-attempted
- signaling-ipne-paging-init-events-success
- signaling-ipne-paging-init-events-failures
- signaling-ipne-paging-last-enb-success
- signaling-ipne-paging-last-tai-success
- signaling-ipne-paging-tai-list-success
Chapter 17
Load Balancing and Rebalancing

The following sections describe the load balancing features available on the MME.

- Feature Description
- How it Works
- Configuring Load Balancing and Rebalancing
- Monitoring Load Rebalancing
Feature Description

The following sections describe the load balancing and rebalancing functionality available on the MME.

Load Balancing

Load balancing on the MME permits UEs that are entering into an MME pool area to be directed to an appropriate MME in a more efficient manner, spreading the load across a number of MMEs.

Load Rebalancing

The MME load rebalancing functionality permits UEs that are registered on an MME (within an MME pool area) to be moved to another MME in the pool. The rebalancing is triggered using an exec command on the mme-service from which UEs should be offloaded.

When initiated, the MME begins to offload a cross-section of its subscribers with minimal impact on the network and users. The MME avoids offloading only low activity users, and it offloads the UEs gradually (configurable from 1-1000 minutes). The load rebalancing can off-load part of or all the subscribers.

The eNodeBs may have their load balancing parameters adjusted beforehand (e.g., the weight factor is set to zero if all subscribers are to be removed from the MME, which will route new entrants to the pool area into other MMEs).

Relationships to Other Features

MME load balancing can be used in conjunction with congestion control. For more information on congestion control, refer to the Congestion Control section in Chapter 1 of the MME Administration Guide.
How it Works

Load Balancing

Load balancing is achieved by setting a weight factor for each MME so that the probability of the eNodeB selecting an MME is proportional to its weight factor. The weight factor is set by the operator according to the capacity of an MME node relative to other MME nodes. The relative-capacity mme-service level command is used to specify this relative weighting factor.

Once set, the Relative MME Capacity IE is included in the S1AP S1 SETUP RESPONSE message from MME to relay this weight factor. If the relative MME capacity is changed after the S1 interface is already initialized, then the MME CONFIGURATION UPDATE message is used to update this information to the eNodeB.

Load Rebalancing

The MME uses the mme offload mme-service exec level command to enable the operator to offload UEs for a particular mme-service for load rebalancing among MMEs in a MME pool area. The command enables the operator to specify a percentage of UEs to offload, and the desired time duration in which to complete the offload.

The operator can also include the keyword option disable-implicit-detach. By default, if the UE context is not transferred to another MME within 5 minutes, the UE will be implicitly detached. This option disables this implicit detach timer.

To offload ECM-CONNECTED mode UEs, the MME initiates the S1 Release procedure with release cause “load balancing TAU required”.

To offload UEs which perform TA Updates or Attaches initiated in ECM-IDLE mode, the MME completes that procedure and the procedure ends with the MME releasing S1 with release cause “load balancing TAU required”.

To offload UEs in ECM-IDLE state without waiting for the UE to perform a TAU or perform Service request and become ECM CONNECTED, the MME first pages the UE to bring it to ECM-CONNECTED state.

Call Handling and Other Messaging Considerations

New calls are processed normally (as per the new call policy configuration). The offloading process does not reject INIT UE messages for new subscribers. To prevent new calls from entering this MME, set the relative-capacity on this mme-service to 0.

When Init UE messages are received for an existing offloaded subscriber, the ue-offloading state is set as MARKED and the offload procedure continues until the UE is offloaded.

Once a UE is offloaded, messages such as EGTP events, Create bearer, Update bearer, Idle mode exit, and Paging trigger are be rejected. HSS initiated events also will be rejected for offloaded UEs.

Detach events are processed as usual.

Important: Emergency attached UEs in Connected or Idle mode are not considered for offloading.
Configuring Load Balancing and Rebalancing

Configuring Load Balancing

Set the relative capacity of an mme-service to enable load balancing across a group of mme-services within an MME pool.

Use the following example to set the relative capacity of this mme-service. The higher the value, the more likely the corresponding MME is to be selected.

```
config
  mme-service mme_svc -noconfirm
    relative-capacity <0-255>
  exit
```

Notes:
- The default relative capacity for an mme-service is 255.

Verifying Load Balancing

```
show mme-service all

[local]asr5000# show mme-service all

Relative Capacity:
  50
```

Performing Load Rebalancing (UE Offloading)

The following example command rebalances (offloads) 30 percent of all UEs from the specified mme-service (to other mme-services in the MME pool) over the course of 10 minutes.

```
mme offload mme-service mme_svc time-duration 10 offload-percentage 30 -noconfirm
```

This command can also be entered with the `disable-implicit-detach` option. By default, if the UE context is not transferred to another MME within 5 minutes, the UE will be implicitly detached. This option disables this implicit detach timer.

```
mme offload mme-service mme_svc time-duration 10 offload-percentage 30 disable-implicit-detach -noconfirm
```

To stop the offloading process, issue the command with the `stop` keyword option.

```
mme offload mme-service mme_svc stop -noconfirm
```
Verifying Load Rebalancing (UE Offloading)

The following command shows the offload configuration as well as the status of the rebalancing.

```
show mme-service name svc_name offload statistics
```

[local]asr5000# show mme-service name mme1 offload statistics

Current Offload Status: In Progress

Implicit Detach Status: Enabled

Time Duration Requested: 600 secs

Percentage of Subscribers Requested: 30

Total Number of Subscribers: 0

Total Number of Subscribers to be Offloaded: 0

Total Number of Subscribers Offloaded: 0

Total Number of Subscribers Received Context Transfer: 0

Remaining Time: 0 secs

Where the Current Offload Status field will report one of the following:

- **None** – No UEs marked for offloading and no UEs currently being offloaded.
- **Marked** – MME has marked UEs for offloading, but is waiting for offload trigger on timer expiry.
- **In Progress** – MME is currently offloading marked UEs.
- **Done** – Offload procedure is completed or has been terminated by operator using `stop` keyword.

These counters are reset each time an offload procedure is initiated, or when the following command is entered:

```
clear mme-service statistics offload
```
Monitoring Load Rebalancing

The following sections describe commands available to monitor load rebalancing on the MME.

Load Rebalancing Show Command(s) and/or Outputs

This section provides information regarding show commands and their outputs in support of load rebalancing (UE offload).

The following show command displays current statistics for the Load Rebalancing feature.

`show mme-service name mme_svc offload statistics`

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Offload Status</td>
<td>Current offload status of the specified mme-service. Possible values are Not Started, In Progress and Completed.</td>
</tr>
<tr>
<td>Implicit Detach Status</td>
<td>The Implicit Detach Status specified in the <code>mme offload</code> command. When enabled, if the UE context is not transferred to another MME within 5 minutes then it will be implicitly detached.</td>
</tr>
<tr>
<td>Time Duration Requested</td>
<td>The time-duration value specified in the <code>mme offload</code> command (in seconds). This is the maximum allowed time for the offload procedure to complete.</td>
</tr>
<tr>
<td>Percentage of Subscribers Requested</td>
<td>The offload-percentage specified in the <code>mme offload</code> command (specified as a percentage of all UEs on this mme-service).</td>
</tr>
<tr>
<td>Total Number of Subscribers</td>
<td>The total number of UEs on the specified mme-service.</td>
</tr>
<tr>
<td>Total Number of Subscribers to be Offloaded</td>
<td>Total number of UEs on the specified mme-service selected for offloading.</td>
</tr>
<tr>
<td>Total Number of Subscribers Offloaded</td>
<td>The total number of UEs which have been successfully offloaded from this mme-service (UE offloading State/Event = Done).</td>
</tr>
<tr>
<td>Total Number of Subscribers Received Context Transfer</td>
<td>Total number of UEs which has been successfully context transferred to another MME.</td>
</tr>
<tr>
<td>Remaining Time</td>
<td>The number of seconds remaining to complete the offload procedure.</td>
</tr>
</tbody>
</table>

The following command also provides information relating to load balancing:

`show mme-service session full all`

Only the output field which relate to load rebalancing is shown.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>UE Offloading</td>
<td>Displays the UE offload state. Possible values are None, Marked, In-Progress and Done.</td>
</tr>
</tbody>
</table>
Chapter 18
Location Services

LoCation Services (LCS) on the MME and SGSN is a 3GPP standards-compliant feature that enables the system (MME or SGSN) to collect and use or share location (geographical position) information for connected UEs in support of a variety of location services.

- Location Services - Feature Description
- How Location Services Works
- Configuring Location Services (LCS)
- Monitoring Location Services (LCS)
- Configuring the SLs Interface
- Monitoring SLs Services
Location Services - Feature Description

The Location Services (LCS) feature enables the EPC MME and the GPRS/UMTS SGSN to use the SLg (MME) or Lg (SGSN) interface which provides the mechanisms to support specialized mobile location services for operators, subscribers, and third party service providers. Use of this feature and the SLg/Lg interface is license controlled.

The location information is reported in standard geographical co-ordinates (longitude and latitude) together with the time-of-day and the estimated errors (uncertainty) of the location of the UE. For external use, the location information may be requested by and reported to a client application associated with the UE, or a client within or attached to the core network. For internal use, the location information can be utilized by the SGSN for functions such as location assisted handover or to support other features.

Location information is intended to be used for

- location-based charging (e.g., home-location billing, roaming-location billing),
- location-based services (e.g., lawful interception, emergency calls),
- positioning services offered to the subscribers (e.g., mobile yellow pages, navigation applications on mobiles), and
- by the operator for service provider services such as network planning and enhanced call routing.
How Location Services Works

The MME LCS responsibilities are to manage LCS positioning requests. The LCS functions of the MME are related to LCS co-ordination, location requests, and operation of the LCS services.

The operation begins with a LCS Client requesting location information for a UE from the LCS server. The LCS server will pass the request to the MME in the core network. The MME in the core network then:

1. verifies that the LCS Client is authorized to request the location of the UE or subscriber;
2. verifies that location services are supported by the UE;
3. establishes whether it (the MME) is allowed to locate the UE or subscriber, for privacy or other reasons;
4. requests the access network (via S1 interface) to provide location information for an identified UE, with indicated QoS;
5. receives information about the location of the UE from the Access Network and forward it to the Client;

Architecture

The MME is accessible to the Gateway Mobile Location Center (GMLC) via the SLg interface.
The MME is accessible to the Evolved Serving Mobile Location Center (E-SMLC) via the SLs interface.
The SGSN is accessible to the GMLC via the Lg interface.
The MME informs the HLR/HSS about a UE’s location services capabilities for an EPC network.

Supported Functionality

Development of MME support for LCS functions continues. The following lists the LCF functions that have been added, in the order they have been added:

- Immediate Mobile-Terminating Location Requests (MT-LI) [TS 3GPP 23.271].
- MT-LR procedures from the GMLC with client types of: Emergency Services, Value Added Services, PLMN Operator Services, and Lawful Intercept Services.
- Network Induced (NI-LR) procedures for Emergency PDN Connect and Emergency Attach, and Inbound relocation with emergency PDN (through TAU or SRNS).
- Circuit Switch Fallback (CSFB): When a UE is combined attached to the MME, and the CSFB registration is not for SMS-only services, the MME shall page UE on receipt of an SGs page with LCS Client identity.
- From Release 16.1 onwards, MME supports SLs interface: This interface is used to convey LCS Application Protocol (LCS-AP) messages and parameters between the MME to the Evolved Serving Mobile Location Center (E-SMLC). It is also used for tunnelling LTE Positioning Protocols (LPP between the E-SMLC and the target UE, LPPa between the E-SMLC and the eNodeB), which are transparent to the MME. Refer to 3GPP TS 29.171 for more information.
- Supports UE signaling procedures for LCS. Refer to 3GPP TS 23.271 for more details.
- Supports UE and eNodeB signaling for LTE Positioning Protocol (LPP) and LTE Positioning Protocol A (LPPa). Refer to 3GPP TS 36.355 and 36.455 for more details.
- From Release 17.3.2 onwards, the MME supports sending the EMERGENCY_CALL_RELEASE event in a subscriber location report (SLR) request message, to the GMLC to notify the GMLC of the call release, when an emergency call is released or when an emergency PDN is disconnected at the MME. The call release event enables the GMLC to clear the cache for existing calls and to correctly log the duration of an emergency call. Without call release facilitating the clearing of the cache, the location platform could send the old (erroneous) location information in response to a new location request for an E-911 call. Refer to 3GPP TS 29.172 for more information.
- From Release 17.4 onwards, the MME supports sending the EMERGENCY_CALL_HANDOVER event, in a Subscriber Location Report (SLR) request message, to the configured GMLC, to notify the GMLC of the handover when an emergency call does an outbound handover from the MME. The SLR, sent when the outbound handover procedure completes, includes the UE Identity (UE's MSISDN, IMSI, and IMEI), the target service node ID (either MSC ID for SRVCC HO or SGSN ID for GnGp HO) if available, and the event type as handover. This ensures that the GMLC is aware that the subscriber has moved from the source MME and ensures location continuity for IMS emergency calls during SRVCC (PS to CS) handovers. For location continuity during SRVCC handover, the MME supports including the MSC ID in the target service node ID. However, since the MME does not have the expected target service node ID (MSC ID), the MSC ID must be mapped to the serving MSC IP-address information (part of the MME Service configuration) to derive the needed ISDN number (see Map the MSC ID in the Configuration section). The MME also includes the MSC identity in the target service node IE (per TS 29.172) as part of the Provide Subscriber Location Response (PSL), if an MT-LR procedure was in progress during SRVCC handover of an emergency call.

Limitations

Currently, MME support is limited to:

- A single location request at a time for the target UE. Concurrent location requests are not supported.
- Location reporting granularity is at the E-UTRAN Cell Global Identifier (EGCI) level only. Note: With SLs interface support, location estimate in universal co-ordinates is supported (Refer to 3GPP TS 29.172).
- The MME does not bind all the call events for an emergency call to a specific GMLC peer. As a result, if multiple GMLC peers are configured, the call events for a single emergency call can be sent to any of the configured GMLC peers.
Flows

Mobile Terminated Location Requests

1. The MME receives a Provide Location Request from the GMLC. The UE is in Connected mode.
2. The MME sends Location Report Control message with request-type as 'Direct'.
3. The eNodeB (ENB) sends the current location of the UE (ECGI) in the Location report message.
4. The MME sends Provide Location Answer to GMLC with ECGI received in the location Report Message
1. The MME receives a Provide Location Request from the GMLC. The UE is in idle mode.
2. The MME pages the UE.
3. If the UE does not respond to the page, the MME responds with the last known location and sets the age of location report accordingly if the Location Type requested by the GMLC was “current or last known location”.
4. If paging is successful, the UE responds with Service request/TAU request.
5. The MME uses the ECGI in the S1 message and sends Provide Location Answer message to the GMLC.

Network Induced Location Requests

Figure 18. 4G LCS - NI-LR Call Flow

1. The UE establishes Emergency bearers with MME. This could be a Emergency Attach or establishment of an Emergency PDN. Handover of an Emergency call from one MME to the other is also possible.
2. If the MME is configured to support Location service for emergency calls, the latest ECGI is sent in the Subscriber Location Report message to the configured GMLC.
3. The GMLC, on processing the Subscriber location report, sends the Subscriber location ACK. Note: A Negative ACK will not have any effect.

EPC Mobile Terminating Location Request (EPC-MT-LR)
Refer to 3GPP TS 23.271 v10.4.0, Section 9.1.15

EPC Network Induced Location Request (EPC-NI-LR)
Refer to 3GPP TS 23.271 v10.4.0, Section 9.1.17

EPC Post Positioning Notification and Verification Procedure
Refer to 3GPP TS 23.271 v10.4.0, Section 9.1.18

Mobile Originating Location Request, EPC (EPC-MO-LR)
Refer to 3GPP TS 23.271 v10.4.0, Section 9.2.6

UE Assisted and UE Based Positioning and Assistance Delivery
Refer to 3GPP TS 23.271 v10.4.0, Section 9.3a.1
How Location Services Works

Network Assisted and Network Based Positioning Procedure
Refer to 3GPP TS 23.271 v10.4.0, Section 9.3a.2

Obtaining Non-UE Associated Network Assistance Data
Refer to 3GPP TS 23.271 v10.4.0, Section 9.3a.3

Handover of an IMS Emergency Call
Refer to 3GPP TS 23.271 v10.4.0, Section 9.4.5.4 with the following provision: The MSC ID (expected target serving node ID) is not known to the MME so the MSC ID must be mapped (using CLI configuration, see Map the MSC ID in the Configuration section) to derive the ISDN number that is sent to the GMLC to support location continuity of SRVCC handover. This support added in 17.4.

Standards Compliance

The Location Services feature complies with the following standards:

- TS 3GPP 23.271, v10.4.0
- TS 3GPP 23.272, v10.9.0
- TS 3GPP 24.080, v10.0.0
- TS 3GPP 24.171, v9.0.0
- TS 3GPP 29.172, v10.1.0
Configuring Location Services (LCS)

This section provides a high-level series of steps and the associated configuration examples to configure Location Services on the MME.

The commands could be issued in a different order, but we recommend that you follow the outlined order for an initial LCS configuration. All listed configuration steps are mandatory unless otherwise indicated.

Important: For all the required configuration commands to be available and to implement the configuration, the MME must have loaded the license for the Lg interface.

Step 1 Create a location service configuration on the MME.

Step 2 Associate the location service with the appropriate Diameter endpoint (origin host - MME and destination host - GMLC) for SLg interface.

Step 3 Associate the MME service with this location service.

Step 4 Associate the LTE Emergency Policy with this location service.

Step 5 Map the MSC ID and the MSC’s IP-address.

Step 6 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide.

Step 7 Verify the configuration for each component by following the instructions provided in the Verifying the Feature Configuration section.

Creating and Configuring a Location Service

In this section, configure the endpoints for the origin (the MME) and the destination host (the GMLC). A location service must be created within a context. Up to 16 separate location services can be created.

Important: The origin host (the MME) configured in the endpoint for SLg interface must match the origin host configured in the endpoint for S6a interface.

```
config

context <context_name> -noconfirm

    location-service <location_svc_name> -noconfirm

    associate diameter endpoint <endpoint>

end
```

Notes:
This series of commands creates a Location Service and associates the service with a diameter endpoint for the SLg interface.

If multiple GMLC peers are configured, the call events for a single emergency call can be sent to any of the configured GMLC peers. If there are concerns about sending reports to different GMLCs, then configure only one peer GMLC as the SLg endpoint.

Associate the MME Service with the Location Service

Once the location service is created and configured, the MME service must be associated with it. The steps below assume the MME service has already been created.

```
config
  context <context_name> -noconfirm
  mme-service <mme_svc_name>
  associate location-service <location_svc_name>
end
```

Notes:
- This series of commands associates an MME service with the new location service.

Associate the LTE Emergency Profile with the Location Service

Once the location service is created and configured, the LTE Emergency Profile must be associated with it. The steps below assume the LTE Emergency Profile has already been created.

This procedure enables the MME to provide location information of an emergency call to the GMLC.

```
config
  lte-policy
  lte-emergency-profile <profile_name>
  associate location-service <location_svc_name>
end
```

Notes:
- This series of commands associates the LTE Emergency Profile with the new location service.

Map the MSC ID

This configuration creates a mapping between the MSC ISDN number and the MSC’s IP-address (either IPv4 or IPv6) to ensure location continuity for SRVCC handover. This mapping is required to include the MSV ID in the target service node IE for the Emergency_Call_Handover event.
configure

context context_name

mme-service service_name

 msc-mapping ip-address { IPv4_address | IPv6_address } isdn isdn_number

 no msc-mapping ip-address { IPv4_address | IPv6_address }

end

Notes:
- The MSC IP address, key part of the mapping definition, is used to identify a specific mapping definition.
- isdn_number: Enter a numeric string upto 15 digits long.
- no msc-mapping ip-address: Identifies a specific MSC IP address mapping definition to remove from the MME Service configuration.
- MME Service supports a maximum of 24 MSC mappings.
- Use the show mme-service command to view configured mapping. the following is a sample of what the MSC mapping information would look like:

 MSC IP-Address and ISDN Mapping
 192.168.61.2 : 123456789012345
 192.168.61.3 : 123456789012346

Verifying the LCS Configuration

The following command displays configuration information for all Location services configured on the MME.

show location-service service all

The following command displays the location service to which each MME service is associated.

show mme-service all

The following command displays the location service to which the specified LTE Emergency Profile is associated.

show lte-policy lte-emergency-profile profile_name

The following command displays a list of all services configured on the system, including location services (listed as Type: lcs).

show services all
Monitoring Location Services (LCS)

This section lists the bulk statistics and show commands that display operational statistics relating to Location services.

LCS Bulk Statistics

LCS service related bulk statistics are provided within the LCS schema.

Use the following command to display a list of all variables available within this schema:

```
show bulkstats variables lcs
```

For more information about these statistics, refer to the LCS Schema chapter of the Statistics and Counters Reference.

LCS Show Commands

The following command displays statistics for all LCS activity on the MME.

```
show location-service statistics all
```

Use the following command to clear the LCS statistics for a specific Location service.

```
clear location-service statistics service location_svc_name
```

The following command displays LCS statistics for a specific MME service.

```
show mme-service statistics service mme-service mme_svc_name
```

Use the following command to clear MME service statistics for a specific MME service.

```
clear mme-service statistics mme-service mme_svc_name
```

Event Logging

Event logging for the LCS (SLg interface) can be enabled using the following command:

```
logging filter active facility location-service level severity_level
```

Refer to the System Logs chapter of the System Administration Guide for more information about event logging.
Configuring the SLs Interface

Creating and Configuring the SLs Service

An SLs service must be created within a context. This service provides an interface from the MME to one or more E-SMLCs.

```
config
  context <context_name> -noconfirm
  sls-service <sls_svc_name> -noconfirm
    bind ipv4-address <ipv4_address_value1> ipv4-address <ipv4_address_value2> port <sctp_port_num> sctp-template <sctp_param_template_name>
    esmlc esmlc-id <esmlc_id_value> ipv4-address <ipv4_address_value1> port <sctp_port_num> weight <1-5>
      t-3x01 low-delay <seconds> delay-tolerant <seconds>
      t-3x02 <seconds>
    max-retransmissions reset <retries>
end
```

Notes:

- Up to 4 separate SLs services can be created on the system. The SLs service name must be unique across all contexts.
- The SLs service must be bound to at least 1 IP address. Up to 2 IPv4 or 2 IPv6 addresses can be specified for multi homing purposes. A valid SCTP Parameter Template must be defined in order for the SLs service to start. The default SCTP port is 9082.
- Up to 8 E-SMLC entries can be configured per SLs service. Up to 2 IPv4 or 2 IPv6 addresses can be specified for each E-SMLC for multi homing purposes. The MME performs a weighted round robin selection of E-SMLC based on the defined weight factor of 1 through 5, where 1 represents the least available relative capacity of the E-SMLC and 5 represents the greatest. The default SCTP port is 9082. A given E-SMLC can serve multiple SLs services on the same MME or even SLs services across separate MMEs.
- The `t-3x01` timer, `t-3x02` timer and `max-retransmission reset` command are all optional configurations.

Associating the SLs Service with the Location Service

The SLs service provides an interface to the E-SMLC for the location service. The SLs service is not a critical parameter for location services. If this association is removed, there is no impact to existing transactions and future transactions will not use the SLs service.

```
config
```
Configuring the SLs Interface

Location Services

Configuring LCS QoS for Emergency Sessions

This new command defines the location service QoS settings to be used for this emergency profile.

```
context <context_name> -noconfirm
location-service <loc_svc_name> -noconfirm
associate sls-service <sls_svc_name>
end
```

Verifying the SLs Service Configuration

The following command displays configuration information for all SLs services on the MME:

```
show sls-service service all
```

The following command displays configuration errors and warnings related to all SLs services on the MME:

```
show configuration errors section sls-service verbose
```

The following command displays to which SLs service the location service is associated:

```
show location-service service all
```

The following command displays the configured Location Service (LCS) Quality of Service (QoS) for the specified LTE emergency profile:

```
show lte-policy lte-emergency-profile name
```
Monitoring SLs Services

This section lists the SNMP traps, bulk statistics and show commands that display operational statistics relating to SLs services.

SNMP Traps

The following traps are available to track status and conditions relating to the SLs service.

- `starSLSServiceStart`: An SLS Service has started.
- `starSLSServiceStop`: An SLS Service has stopped.

The following traps are available to track status and conditions of individual E-SMLC associations.

- `starESMLCAssocDown`: An ESMLC Association is down.
- `starESMLCAssocUp`: An ESMLC Association is up. This notification is only generated for an Association which has previously been declared down.

The following traps are available to track status and conditions of all E-SMLC associations.

- `starESMLCAllAssocDown`: All the ESMLC Associations are down.
- `starESMLCAllAssocDownClear`: At least one ESMLC associations is up. This notification is only generated for all the Association which have previously been declared down.

SLs Bulk Statistics

SLs service related bulk statistics are provided within the SLs schema.

Use the following command to display a list of all variables available within this schema:

```
show bulkstats variables sls
```

For more information about these statistics, refer to the SLs Schema chapter of the Statistics and Counters Reference.

SLs Service Show Commands

The following command displays SLs service statistics and/or related SCTP statistics. These statistics can be filtered based on SLs service name or E-SMLC id.

```
show sls-service statistics [ name svc_name ] [ sls | sctp ] [ esmlc-id esmlc-id ]
```

The following commands show the last known location of the UE that was derived using the E-SMLC.

```
show mme-service db record imsi
show mme-service db record guti
```
Event Logging

Event logging for the SLs interface can be enabled using the following command:

```
logging filter active facility sls level severity_level
```

Refer to the System Logs chapter of the System Administration Guide for more information about event logging.
Chapter 19
Operator Policy

The proprietary concept of an operator policy, originally architected for the exclusive use of an SGSN, is non-standard and currently unique to the ASR 5x00. This optional feature empowers the carrier with flexible control to manage functions that are not typically used in all applications and to determine the granularity of the implementation of any operator policy: to groups of incoming calls or to simply one single incoming call.

The following products support the use of the operator policy feature:

- MME (Mobility Management Entity - LTE)
- SGSN (Serving GPRS Support Node - 2G/3G/LTE)
- S-GW (Serving Gateway - LTE)

This document includes the following information:

- What Operator Policy Can Do
- The Operator Policy Feature in Detail
 - Call Control Profile
 - APN Profile
 - IMEI-Profile (SGSN only)
 - APN Remap Table
 - Operator Policies
 - IMSI Ranges
- How It Works
- Operator Policy Configuration
- Verifying the Feature Configuration
What Operator Policy Can Do

Operator policy enables the operator to specify a policy with rules governing the services, facilities and privileges available to subscribers.

A Look at Operator Policy on an SGSN

The following is only a sampling of what working operator policies can control on an SGSN:

- APN information included in call activation messages are sometimes damaged, misspelled, missing. In such cases, the calls are rejected. The operator can ensure calls aren't rejected and configure a range of methods for handling APNs, including converting incoming APNs to preferred APNs and this control can be used in a focused fashion or defined to cover ranges of subscribers.

- In another example, it is not unusual for a blanket configuration to be implemented for all subscriber profiles stored in the HLR. This results in a waste of resources, such as the allocation of the default highest QoS setting for all subscribers. An operator policy provides the opportunity to address such issues by allowing fine-tuning of certain aspects of profiles fetched from HLRs and, if desired, overwrite QoS settings received from HLR.

A Look at Operator Policy on an S-GW

The S-GW operator policy provides mechanisms to fine tune the behavior for subsets of subscribers. It also can be used to control the behavior of visiting subscribers in roaming scenarios by enforcing roaming agreements and providing a measure of local protection against foreign subscribers.

The S-GW uses operator policy in the SGW service configuration to control the accounting mode. The default accounting mode is GTPP, but RADIUS/Diameter and none are options. The accounting mode value from the call control profile overrides the value configured in SGW service. If the accounting context is not configured in the call control profile, it is taken from SGW service. If the SGW service does not have the relevant configuration, the current context or default GTPP group is assumed.
The Operator Policy Feature in Detail

This flexible feature provides the operator with a range of control to manage the services, facilities and privileges available to subscribers.

Operator policy definitions can depend on factors such as (but not limited to):

- roaming agreements between operators,
- subscription restrictions for visiting or roaming subscribers,
- provisioning of defaults to override standard behavior.

These policies can override standard behaviors and provide mechanisms for an operator to circumvent the limitations of other infrastructure elements such as DNS servers and HLRs in 2G/3G networks.

By configuring the various components of an operator policy, the operator fine-tunes any desired restrictions or limitations needed to control call handling and this can be done for a group of callers within a defined IMSI range or per subscriber.

Re-Usable Components - Besides enhancing operator control via configuration, the operator policy feature minimizes configuration by drastically reducing the number of configuration lines needed. Operator policy maximizes configurations by breaking them into the following reusable components that can be shared across IMSI ranges or subscribers:

- call control profiles
- IMEI profiles (SGSN only)
- APN profiles
- APN remap tables
- operator policies
- IMSI ranges

Each of these components is configured via a separate configuration mode accessed through the Global Configuration mode.

Call Control Profile

A call control profile can be used by the operator to fine-tune desired functions, restrictions, requirements, and/or limitations needed for call management on a per-subscriber basis or for groups of callers across IMSI ranges. For example:

- setting access restriction cause codes for rejection messages
- enabling/disabling authentication for various functions such as attach and service requests
- enabling/disabling ciphering, encryption, and/or integrity algorithms
- enabling/disabling of packet temporary mobile subscriber identity (P-TMSI) signature allocation (SGSN only)
- enabling/disabling of zone code checking
- allocation/retention priority override behavior (SGSN only)
The Operator Policy Feature in Detail

- enabling/disabling inter-RAT, 3G location area, and 4G tracking area handover restriction lists (MME and S-GW only)
- setting maximum bearers and PDNs per subscriber (MME and S-GW only)

Call control profiles are configured with commands in the Call Control Profile configuration mode. A single call control profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet services cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following call control profile configuration rules should be considered:

- 1 (only one) - call control profile can be associated with an operator policy
- 1000 - maximum number of call control profiles per system (e.g., an SGSN).
- 15 - maximum number of equivalent PLMNs for 2G and 3G per call control profile
 - 15 - maximum number of equivalent PLMNs for 2G per ccprofile.
 - 15 - maximum number of supported equivalent PLMNs for 3G per ccprofile.
- 256 - maximum number of static SGSN addresses supported per PLMN
- 5 - maximum number of location area code lists supported per call control profile.
- 100 - maximum number of LACs per location area code list supported per call control profile.
- unlimited number of zone code lists can be configured per call control profile.
- 100 - maximum number of LACs allowed per zone code list per call control profile.
- 2 - maximum number of integrity algorithms for 3G per call control profile.
- 3 - maximum number of encryption algorithms for 3G per call control profile.

APN Profile

An APN profile groups a set of access point name (APN)-specific parameters that may be applicable to one or more APNs. When a subscriber requests an APN that has been identified in a selected operator policy, the parameter values configured in the associated APN profile will be applied.

For example:

- enable/disable a direct tunnel (DT) per APN. (SGSN)
- define charging characters for calls associated with a specific APN.
- identify a specific GGSN to be used for calls associated with a specific APN (SGSN).
- define various quality of service (QoS) parameters to be applied to calls associated with a specific APN.
- restrict or allow PDP context activation on the basis of access type for calls associated with a specific APN.

APN profiles are configured with commands in the APN Profile configuration mode. A single APN profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet processing cards and 2G, 3G, 4G, and/or dual access, the following APN profile configuration rules should be considered:

- 50 - maximum number of APN profiles that can be associated with an operator policy.
- 1000 - maximum number of APN profiles per system (e.g., an SGSN).
- 116 - maximum gateway addresses (GGSN addresses) that can be defined in a single APN profile.

IMEI-Profile (SGSN only)

The IMEI is a unique international mobile equipment identity number assigned by the manufacturer that is used by the network to identify valid devices. The IMEI has no relationship to the subscriber.

An IMEI profile group is a set of device-specific parameters that control SGSN behavior when one of various types of Requests is received from a UE within a specified IMEI range. These parameters control:

- Blacklisting devices
- Identifying a particular GGSN to be used for connections for specified devices
- Enabling/disabling direct tunnels to be used by devices

IMEI profiles are configured with commands in the IMEI Profile configuration mode. A single IMEI profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following IMEI profile configuration rules should be considered:

- 10 - maximum number of IMEI ranges that can be associated with an operator policy.
- 1000 - maximum number of IMEI profiles per system (such as an SGSN).

APN Remap Table

APN remap tables allow an operator to override an APN specified by a user, or the APN selected during the normal APN selection procedure, as specified by 3GPP TS 23.060. This atypical level of control enables operators to deal with situations such as:

- An APN is provided in the Activation Request that does not match with any of the subscribed APNs; either a different APN was entered or the APN could have been misspelled. In such situations, the SGSN would reject the Activation Request. It is possible to correct the APN, creating a valid name so that the Activation Request is not rejected.

- In some cases, an operator might want to force certain devices/users to use a specific APN. For example, all iPhone4 users may need to be directed to a specific APN. In such situations, the operator needs to be able to override the selected APN.

An APN remap table group is a set of APN-handling configurations that may be applicable to one or more subscribers. When a subscriber requests an APN that has been identified in a selected operator policy, the parameter values configured in the associated APN remap table will be applied. For example, an APN remap table allows configuration of the following:

- APN aliasing - maps incoming APN to a different APN based on partial string match (MME and SGSN) or matching charging characteristic (MME and SGSN).
- Wildcard APN - allows APN to be provided by the SGSN when wildcard subscription is present and the user has not requested an APN.
- Default APN - allows a configured default APN to be used when the requested APN cannot be used – for example, the APN is not part of the HLR subscription.
APN remap tables are configured with commands in the APN Remap Table configuration mode. A single APN remap table can be associated with multiple operator policies, but an operator policy can only be associated with a single APN remap table.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following APN remap table configuration rules should be considered:

- 1 – maximum number of APN remap tables that can be associated with an operator policy.
- 1000 – maximum number of APN remap tables per system (such as an SGSN).
- 100 – maximum remap entries per APN remap table.

Operator Policies

The profiles and tables are created and defined within their own configuration modes to generate sets of rules and instructions that can be reused and assigned to multiple policies. An operator policy binds the various configuration components together. It associates APNs, with APN profiles, with an APN remap table, with a call control profile, and/or an IMEI profile (SGSN only) and associates all the components with filtering ranges of IMSIs.

In this manner, an operator policy manages the application of rules governing the services, facilities, and privileges available to subscribers.

Operator policies are configured and the associations are defined via the commands in the Operator Policy configuration mode.

The IMSI ranges are configured with the command in the SGSN-Global configuration mode.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following operator policy configuration rules should be considered:

- 1 – maximum number of call control profiles associated with a single operator policy.
- 1 – maximum number of APN remap tables associated with a single operator policy.
- 10 – maximum number of IMEI profiles associated with a single operator policy (SGSN only)
- 50 – maximum number of APN profiles associated with a single operator policy.
- 1000 – maximum number of operator policies per system (e.g., an SGSN); this number includes the single default operator policy.
- 1000 – maximum number of IMSI ranges defined per system (e.g., an SGSN).

Important: SGSN operator policy configurations created with software releases prior to Release 11.0 are not forward compatible. Such configurations can be converted to enable them to work with an SGSN running Release 11.0 or higher. Your Cisco Account Representative can accomplish this conversion for you.

IMSI Ranges

Ranges of international mobile subscriber identity (IMSI) numbers, the unique number identifying a subscriber, are associated with the operator policies and used as the initial filter to determine whether or not any operator policy would be applied to a call. The range configurations are defined by the MNC, MCC, a range of MSINs, and optionally the PLMN ID. The IMSI ranges must be associated with a specific operator policy.
IMSI ranges are defined differently for each product supporting the operator policy feature.
How It Works

The specific operator policy is selected on the basis of the subscriber’s IMSI at attach time, and optionally the PLMN ID selected by the subscriber or the RAN node's PLMN ID. Unique, non-overlapping, IMSI + PLMN-ID ranges create call filters that distinguish among the configured operator policies.

The following flowchart maps out the logic applied for the selection of an operator policy:

Figure 19. Operator Policy Selection Logic
Operator Policy Configuration

This section provides a high-level series of steps and the associated configuration examples to configure an operator policy. By configuring an operator policy, the operator fine-tunes any desired restrictions or limitations needed to control call handling per subscriber or for a group of callers within a defined IMSI range.

Most of the operator policy configuration components are common across the range of products supporting operator policy. Differences will be noted as they are encountered below.

Important: This section provides a minimum instruction set to implement operator policy. For this feature to be operational, you must first have completed the system-level configuration as described in the System Administration Guide and the service configuration described in your product’s administration guide.

The components can be configured in any order. This example begins with the call control profile:

Step 1 Create and configure a call control profile, by applying the example configuration presented in the Call Control Profile Configuration section.

Step 2 Create and configure an APN profile, by applying the example configuration presented in the APN Profile Configuration section.

Important: It is not necessary to configure both an APN profile and an IMEI profile. You can associate either type of profile with a policy. It is also possible to associate one or more APN profiles with an IMEI profile for an operator policy (SGSN only).

Step 3 Create and configure an IMEI profile by applying the example configuration presented in the IMEI Profile Configuration section (SGSN only).

Step 4 Create and configure an APN remap table by applying the example configuration presented in the APN Remap Table Configuration section.

Step 5 Create and configure an operator policy by applying the example configuration presented in the Operator Policy Configuration section.

Step 6 Configure an IMSI range by selecting and applying the appropriate product-specific example configuration presented in the IMSI Range Configuration sections below.

Step 7 Associate the configured operator policy components with each other and a network service by applying the example configuration in the Operator Policy Component Associations section.

Step 8 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide.

Step 9 Verify the configuration for each component separately by following the instructions provided in the Verifying the Feature Configuration section of this chapter.
Call Control Profile Configuration

This section provides the configuration example to create a call control profile and enter the configuration mode. Use the call control profile commands to define call handling rules that will be applied via an operator policy. Only one call control profile can be associated with an operator policy, so it is necessary to use (and repeat as necessary) the range of commands in this mode to ensure call-handling is sufficiently managed.

Configuring the Call Control Profile for an SGSN

The example below includes some of the more commonly configured call control profile parameters with sample variables that you will replace with your own values.

```configure
call-control-profile <profile_name>>
  attach allow access-type umts location-area-list instance <list_id>
  authenticate attach
  location-area-list instance <instance> area-code <area_code>
  sgsn-number <E164_number>
end
```

Notes:
- Refer to the Call Control Profile Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

Configuring the Call Control Profile for an MME or S-GW

The example below includes some of the more commonly configured call control profile parameters with sample variables that you will replace with your own values.

```configure
call-control-profile <profile_name>>
  associate hss-peer-service <service_name> s6a-interface
  attach imei-query-type imei verify-equipment-identity
  authenticate attach
  dns-pgw context <mme_context_name>
dns-sgw context <mme_context_name>
end```
Notes:
- Refer to the Call Control Profile Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

APN Profile Configuration

This section provides the configuration example to create an APN profile and enter the apn-profile configuration mode. Use the apn-profile commands to define how calls are to be handled when the requests include an APN. More than one APN profile can be associated with an operator policy.

The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```plaintext
configure

apn-profile <profile_name>

gateway-address 123.123.123.1 priority <1> (SGSN only)
direct-tunnel not-permitted-by-ggsn (SGSN only)
idle-mode-acl ipv4 access-group station7 (S-GW only)

end
```

Notes:
- All of the parameter defining commands in this mode are product-specific. Refer to the APN Profile Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

IMEI Profile Configuration - SGSN only

This section provides the configuration example to create an IMEI profile and enter the imei-profile configuration mode. Use the imei-profile commands to define how calls are to be handled when the requests include an IMEI in the defined IMEI range. More than one IMEI profile can be associated with an operator policy.

The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```plaintext
configure

imei-profile <profile_name>

ggsn-address 211.211.123.3
direct-tunnel not-permitted-by-ggsn (SGSN only)
associate apn-remap-table remap1
```
Notes:

- It is optional to configure an IMEI profile. An operator policy can include IMEI profiles and/or APN profiles.
- This profile will only become valid when it is associated with an operator policy.

**APN Remap Table Configuration**

This section provides the configuration example to create an APN remap table and enter the apn-remap-table configuration mode.

Use the `apn-remap-table` commands to define how APNs are to be handled when the requests either do or do not include an APN.

The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```plaintext
configure

apn-remap-table <table_name>

 apn-selection-default first-in-subscription

 wildcard-apn pdp-type ipv4 network-identifier <apn_net_id>

 blank-apn network-identifier <apn_net_id> {SGSN only}

end
```

Notes:

- The `apn-selection-default first-in-subscription` command is used for APN redirection to provide “guaranteed connection” in instances where the UE-requested APN does not match the default APN or is missing completely. In this example, the first APN matching the PDP type in the subscription is used. The first-in-selection keyword is an MME feature only.

- Some of the commands represented in the example above are common and some are product-specific. Refer to the **APN-Remap-Table Configuration Mode** chapter in the *Command Line Interface Reference* for command details and variable options.

- This profile will only become valid when it is associated with an operator policy.

**Operator Policy Configuration**

This section provides the configuration example to create an operator policy and enter the operator policy configuration mode.

Use the commands in this mode to associate profiles with the policy, to define and associate APNs with the policy, and to define and associate IMEI ranges. Note: IMEI ranges are supported for SGSN only.

The example below includes sample variable that you will replace with your own values.

```plaintext
configure
```
operator-policy <policy_name>
associate call-control-profile <profile_name>
apn network-identifier <apn-net-id_1> apn-profile <apn_profile_name_1>
apn network-identifier <apn-net-id_2> apn-profile <apn_profile_name_1>
imei range <imei_number> to <imei_number> imei-profile name <profile_name>
associate apn-remap-table <table_name>
end

Notes:
- Refer to the Operator-Policy Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This policy will only become valid when it is associated with one or more IMSI ranges (SGSN) or subscriber maps (MME and S-GW).

IMSI Range Configuration

This section provides IMSI range configuration examples for each of the products that support operator policy functionality.

Configuring IMSI Ranges on the MME or S-GW

IMSI ranges on an MME or S-GW are configured in the Subscriber Map Configuration Mode. Use the following example to configure IMSI ranges on an MME or S-GW:

```bash
configure
subscriber-map <name>
lte-policy
 precedence <number> match-criteria imsi mcc <mcc_number> mnc <mnc_number> msin first <start_range> last <end_range> operator-policy-name <policy_name>
end
```

Notes:
- The precedence number specifies the order in which the subscriber map is used. 1 has the highest precedence.
- The operator policy name identifies the operator policy that will be used for subscribers that match the IMSI criteria and fall into the MSIN range.

Configuring IMSI Ranges on the SGSN

The example below is specific to the SGSN and includes sample variables that you will replace with your own values.
configure

sgsn-global
  imsi-range mcc 311 mnc 411 operator-policy oppolicy1
  imsi-range mcc 312 mnc 412 operator-policy oppolicy2
  imsi-range mcc 313 mnc 413 operator-policy oppolicy3
  imsi-range mcc 314 mnc 414 operator-policy oppolicy4
  imsi-range mcc 315 mnc 415 operator-policy oppolicy5
end

Notes:
  * Operator policies are not valid until IMSI ranges are associated with them.

### Associating Operator Policy Components on the MME

After configuring the various components of an operator policy, each component must be associated with the other components and, ultimately, with a network service.

The MME service associates itself with a subscriber map. From the subscriber map, which also contains the IMSI ranges, operator policies are accessed. From the operator policy, APN remap tables and call control profiles are accessed.

Use the following example to configure operator policy component associations:

configure

  operator-policy <name>
    associate apn-remap-table <table_name>
    associate call-control-profile <profile_name>
  exit

lte-policy
  subscriber-map <name>
    precedence match-criteria all operator-policy-name <policy_name>
  exit
  exit

context <mme_context_name>
  mme-service <mme_svc_name>
    associate subscriber-map <name>
Notes:

- The `precedence` command in the subscriber map mode has other `match-criteria` types. The `all` type is used in this example.

### Configuring Accounting Mode for S-GW

The `accounting_mode` command configures the mode to be used for the S-GW service for accounting, either GTPP (default), RADIUS/Diameter, or None.

Use the following example to change the S-GW accounting mode from GTPP (the default) to RADIUS/Diameter:

```plaintext
configure
c
context <sgw_context_name>
 sgw-service <sgw_srv_name>
 accounting mode radius-diameter
cn
```

Notes:

- An accounting mode configured for the call control profile will override this setting.
Verifying the Feature Configuration

This section explains how to display the configurations after saving them in a .cfg file as described in the System Administration Guide.

Important: All commands listed here are under Exec mode. Not all commands are available on all platforms.

Step 1 Verify that the operator policy has been created and that required profiles have been associated and configured properly by entering the following command in Exec Mode:

```
show operator-policy full name oppolicy1
```

The output of this command displays the entire configuration for the operator policy configuration.

```
[local]asr5x00# show operator-policy full name oppolicy1
Operator Policy Name = oppolicy1
Call Control Profile Name : ccprofile1
 Validity : Valid
APN Remap Table Name : remap1
 Validity : Valid
IMEI Range 711919739 to 711919777
 IMEI Profile Name : imeiprof1
 Include/Exclude : Include
 Validity : Valid
APN NI homers1
 APN Profile Name : apn-profile1
 Validity : Valid
```

Notes:
- If the profile name is shown as “Valid”, the profile has actually been created and associated with the policy. If the Profile name is shown as “Invalid”, the profile has not been created/configured.
- If there is a valid call control profile, a valid APN profile and/or valid IMEI profile, and a valid APN remap table, the operator policy is valid and complete if the IMSI range has been defined and associated.
Overcharging Protection helps in avoiding charging subscribers for dropped downlink packets while the UE is in idle mode. This feature helps ensure subscriber are not overcharged while the subscriber is in idle mode.

- **Feature Description**
- **How it Works**
- **Configuring Overcharge Protection**
Feature Description

**Important:** A valid license key is required to enable Overcharge Protection on the MME. Contact your Cisco Account or Support representative for information on how to obtain a license.

For Non-GBR (Guaranteed Bit Rate) 4G bearers, the P-GW is not aware when the UE loses radio coverage, and will continue to forward and charge downlink packets, which can result in overcharging of subscribers. 3GPP does not specify a standard solution to deal with such scenarios.

A typical example is when a subscriber drives into a tunnel while having an active download session. Downlink packets will be counted in P-GW before discarded later in S-GW due to the UE not responding to paging.

The subscriber may lose coverage while connected to a particular MME/S-GW and later regain coverage in the same or different MME/S-GW.

The subscriber may lose coverage in 4G and regain coverage in 2G/3G, or vice versa.

Gn and S3/S4 based network architecture may be used in the case of Loss of Radio Coverage.

Relationships to Other Features

Overcharging protection on the MME requires separate overcharging protection licenses on the S-GW and P-GW.
How it Works

Call Flows

The following diagram depicts the call flow when a UE loses radio access, and then later regains access, as it relates to overcharging protection.

Overcharging protection in MME is triggered by a UE Context Release Request from the eNodeB. This request can come to MME when UE is in EMM connected/connecting mode.

On receiving the UE Context Release Request, the MME checks the radio cause in the received message against the configured overcharging protection cause code.
If the configured cause code matches the received cause code, the MME sends Loss of Radio Contact using ARRL (Abnormal Release of Radio Link) bit in the Release Access Bearer Request (GTPv2 message) to the S-GW. The ARRL (Abnormal Release of Radio Link) is bit 7 in the 8th Octet of Indication IE of Release Access Bearer Req message.

On Receiving ARRL indication in Release Access Bearer Request, the S-GW will inform the P-GW to stop charging. When the radio contact is resumed in the 4G network, the Modify Bearer Req will enable the P-GW to start charging again.

The ARRL bit is supported only in Release Access Bearer Request message by MME.
Configuring Overcharge Protection

Enabling Overcharging Protection

To enable overcharging protection for a specific MME service, issue the following commands:

```
configure
 context <context_name>
 mme-service <svc_name>
 policy overcharge-protection slap-cause-code-group <group_name>
 end
end
```

To disable overcharging protection:

```
no policy overcharge-protection
```

Configuring S1AP Cause Code Group and Cause Code

To configure the S1AP Cause Code Group and S1AP cause code “Radio Connection With UE Lost (21)”:

```
configure
 lte-policy
 cause-code-group <group_name> protocol slap
 class radio cause <radio_cause_code>
 end
```

Notes:

- For example, to define a cause code group for the code “Radio Connection With UE Lost”, enter: `class radio cause 21`

Verifying the Overcharge Protection Configuration

The Overcharge Protection field has been added to the output of `show mme-service name <service_name>` to display the configuration of this feature, either “Not configured” or showing the configured S1-AP cause code group name:

Policy Inter-RAT Indirect Fwd Tunnels : Never
Policy Inter-RAT Ignore SGSN ContextID : Disabled
Policy S1-Reset : Idle-Mode-Entry

Overcharge Protection : Cause Code Group grpl
Chapter 21
Session Tracing

This chapter provides information on subscriber Session Tracing functionality in the MME. Session Tracing allows an operator to trace subscriber activity at various points in the network and at various levels of detail in an EPS network. This chapter discusses following topics for feature support of subscriber Session Tracing in LTE service:

- Feature Description
- How Session Tracing Works
- Subscriber Session Trace Configuration
- Monitoring and Troubleshooting the Session Trace
Feature Description

The Session Tracing feature provides a 3GPP standards-based subscriber session-level trace function for call debugging and testing new functions and access terminals in an LTE environment.

In general, the Session Trace capability records and forwards all control activity for the monitored subscriber on the monitored interfaces. This is typically all the signaling and authentication/subscriber services messages that flow when a UE connects to the access network.

The EPC network entities like MME, S-GW, P-GW support 3GPP standards based session-level trace capabilities to monitor all call control events on the respective monitored interfaces including S6a, S1-MME and S11 on MME, S5, S8, S11 at S-GW and S5 and S8 on P-GW. The trace can be initiated using multiple methods:

- Management initiation via direct CLI configuration
- Management initiation at HSS with trace activation via authentication response messages over S6a reference interface
- Signaling-based activation through signaling from subscriber access terminal

**Important:** Once the trace is provisioned it can be provisioned through the access cloud via various signaling interfaces.

The session level trace function consists of trace activation followed by triggers. The time between the two events is where the EPC network element buffers the trace activation instructions for the provisioned subscriber in memory using camp-on monitoring. Trace files for active calls are buffered as XML files using non-volatile memory on the local dual redundant hard drives on the chassis. The trace depth defines the granularity of data to be traced. Six levels are defined including maximum, minimum and medium with ability to configure additional levels based on vendor extensions.

**Important:** Only maximum trace depth is supported in the current release.

The following figure shows a high-level overview of the session-trace functionality and deployment scenario:
All call control activity for active and recorded sessions is sent to an off-line Trace Collection Entity (TCE) using a standards-based XML format over a FTP or secure FTP (SFTP) connection.

Note: In the current release the IPv4 interfaces are used to provide connectivity to the TCE. trace activation is based on IMSI or IMEI.

**Supported Functions**

This section provides the list of supported functionality of this feature support:

- Support to trace the control flow through the access network.
  - Trace of specific subscriber identified by IMSI
  - Trace of UE identified by IMEI(SV)
- Ability to specify specific functional entities and interfaces where tracing should occur.
- Scalability and capacity
  - Support up to 32 simultaneous session traces per NE
  - Capacity to activate/deactivate TBD trace sessions per second
  - Each NE can buffer TBD bytes of trace data locally
- Statistics and State Support
- Session Trace Details
- Management and Signaling-based activation models
- Trace Parameter Propagation
- Trace Scope (EPS Only)
Session Tracing

- MME: S10, S11, S13, S1-MME, S3, S6A
- S-GW: S4, S5, S8, S11, Gxc
- PDN-GW: S2a, S2b, S2c, S5, S6b, Gx, S8, SGi
- Trace Depth: Maximum, Minimum, Medium (with or without vendor extension)
- XML Encoding of Data as per 3GPP standard 3GPP TS 32.422 V8.6.0 (2009-09)
- Trace Collection Entity (TCE) Support
  - Active pushing of files to the TCE
  - Passive pulling of files by the TCE
- 1 TCE support per context
- Trace Session Recovery after Failure of Session Manager

Standards Compliance

Support for the following standards and requests for comments (RFCs) have been added with this interface support:

- 3GPP TS 32.421 V10.5.0: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Subscriber and equipment trace: Trace concepts and requirements (Release 10)
- 3GPP TS 32.422 V10.5.0: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Subscriber and equipment trace; Trace control and configuration management (Release 10)
- 3GPP TS 32.423 V10.5.0: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Subscriber and equipment trace: Trace data definition and management (Release 10)
How Session Tracing Works

This section describes the various functionality involved in tracing of subscriber session on EPC nodes:

Operation

The session trace functionality is separated into two steps - activation and trigger.

Before tracing can begin, it must be activated. Activation is done either via management request or when a UE initiates a signaled connection. After activation, tracing actually begins when it is triggered (defined by a set of trigger events).

Trace Session

A trace session is the time between trace activation and trace de-activation. It defines the state of a trace session, including all user profile configuration, monitoring points, and start/stop triggers. It is uniquely identified by a Trace Reference.

The Trace Reference id is composed of the MCC (3 digits) + the MNC (3 digits) + the trace Id (3 byte octet string).

Important: On a session manager failure, the control activity that have been traced and not written to file will be lost. However, the trace sessions will continue to persist and future signals will be captured as expected.

Trace Recording Session

A trace recording session is a time period in which activity is actually being recorded and traceable data is being forwarded to the TCE. A trace recording session is initiated when a start trigger event occurs and continues until the stop trigger event occurs and is uniquely identified by a Trace Recording Session Reference.

Network Element (NE)

Network elements are the functional component to facilitate subscriber session trace in mobile network.

The term network element refers to a functional component that has standard interfaces in and out of it. It is typically shown as a stand-alone AGW. Examples of NEs are the MME, S-GW, and P-GW.

Currently, subscriber session trace is not supported for co-located network elements in the EPC network.

Activation

Activation of a trace is similar whether it be via the management interface or via a signaling interface. In both cases, a trace session state block is allocated which stores all configuration and state information for the trace session. In addition, a (S)FTP connection to the TCE is established if one does not already exist (if this is the first trace session established, odds are there will not be a (S)FTP connection already established to the TCE).

If the session to be traced is already active, tracing may begin immediately. Otherwise, tracing activity concludes until the start trigger occurs (typically when the subscriber or UE under trace initiates a connection). A failure to activate a
trace (due to max exceeded or some other failure reason) results in a notification being sent to the TCE indicating the failure.

Management Activation

The Operator can activate a trace session by directly logging in to the NE and enabling the session trace (for command information, see Enabling Subscriber Session Trace on EPC Network Element section below). The NE establishes the trace session and waits for a triggering event to start actively tracing. Depending upon the configuration of the trace session, the trace activation may be propagated to other NEs.

Signaling Activation

With a signaling based activation, the trace session is indicated to the NE across a signaling interface via a trace invocation message. This message can either be piggybacked with an existing bearer setup message (in order to trace all control messages) or by sending a separate trace invocation message (if the user is already active).

Start Trigger

A trace recording session starts upon reception of one of the configured start triggers. Once the start trigger is received, the NE generates a Trace Recording Session Reference (unique to the NE) and begins to collect and forward trace information on the session to the TCE.

List of trigger events are listed in 3GPP standard 3GPP TS 32.422 V8.6.0 (2009-09).

Deactivation

Deactivation of a Trace Session is similar whether it was management or signaling activated. In either case, a deactivation request is received by the NE that contains a valid trace reference results in the de-allocation of the trace session state block and a flushing of any pending trace data. In addition, if this is the last trace session to a particular TCE, the (S)FTP connection to the TCE is released after the last trace file is successfully transferred to the TCE.

Stop Trigger

A trace recording session ends upon the reception of one of the configured stop triggers. Once the stop trigger is received, the NE will terminate the active recording session and attempt to send any pending trace data to the TCE. The list of triggering events can be found in 3GPP standard 3GPP TS 32.422 V8.6.0 (2009-09).

Data Collection and Reporting

Subscriber session trace functionality supprots data collection and reporting system to provide historical usage adn event analysis.

All data collected by the NE is formatted into standard XML file format and forwarded to the TCE via (S)FTP. The specific format of the data is defined in 3GPP standard 3GPP TS 32.423 V8.2.0 (2009-09)
Trace Depth

The Trace Depth defines what data is to be traced. There are six depths defined: Maximum, Minimum, and Medium all having with and without vendor extension flavors. The maximum level of detail results in the entire control message getting traced and forwarded to the TCE. The medium and minimum define varying subsets of the control messages (specific decoded IEs) to be traced and forwarded. The contents and definition of the medium and minimum trace can be found in 3GPP standard 3GPP TS 32.423 V8.2.0 (2009-09).

**Important:** Only Maximum Trace Depth is supported in the current release.

Trace Scope

The Trace Scope defines what NEs and what interfaces have the tracing capabilities enabled on them. This is actually a specific list of NE types and interfaces provided in the trace session configuration by the operator (either directly via a management interface or indirectly via a signaling interface).

Network Element Details

Trace functionality for each of the specific network elements supported by this functionality are described in this section.

This section includes the trace monitoring points applicable to them as well as the interfaces over which they can send and/or receive trace configuration.

**MME**

The MME supports tracing of the following interfaces with the following trace capabilities:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Remote Device</th>
<th>Trace Signaling (De)Activation RX</th>
<th>Trace Signaling (De)Activation TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1a</td>
<td>eNodeB</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>S3</td>
<td>SGSN</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>S6a</td>
<td>HSS</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>S10</td>
<td>MME</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>S11</td>
<td>S-GW</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>S13</td>
<td>EIR</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

**S-GW**

The S-GW supports tracing of the following interfaces with the following trace capabilities:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Remote Device</th>
<th>Trace Signaling (De)Activation RX</th>
<th>Trace Signaling (De)Activation TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-U</td>
<td>eNodeB</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>
## How Session Tracing Works

### MME Administration Guide, StarOS Release 18

### Interface Name	Remote Device	Trace Signaling (De)Activation RX	Trace Signaling (De)Activation TX
S4 | SGSN | N | N
S5 | P-GW (Intra-PLMN) | Y | N
S8 | P-GW (Inter-PLMN) | N | N
S11 | MME | Y | N
S12 | RNC | Y | N
Gxe | Policy Server | Y | N

### P-GW

The P-GW supports tracing of the following interfaces with the following trace capabilities:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Remote Device</th>
<th>Trace Signaling (De)Activation RX</th>
<th>Trace Signaling (De)Activation TX</th>
</tr>
</thead>
</table>
| S2abc | Various NEs | N | N
| S5 | S-GW (Intra-PLMN) | Y | N
| S6b | AAA Server/Proxy | Y | N
| S8 | S-GW (Inter-PLMN) | N | N
| Gx | Policy Server | Y | N
| SGi | IMS | Y | N
Session Trace Configuration

This section provides a high-level series of steps and the associated configuration examples for configuring the system to enable the Subscriber Session Trace collection and monitoring function on network elements in LTE/EPC networks.

**Important:** This section provides the minimum instruction set to enable the Subscriber Session Trace functionality to collect session traces on network elements on EPC networks. Commands that configure additional function for this feature are provided in the Command Line Interface Reference.

These instructions assume that you have already configured the system level configuration as described in the System Administration Guide and specific product Administration Guide.

To configure the system to support subscriber session trace collection and trace file transport on a system:

**Step 1** Enable the subscriber session trace functionality with NE interface and TCE address at the Exec Mode level on an EPC network element by applying the example configurations presented in the Enabling Subscriber Session Trace on EPC Network Element section.

**Step 2** Configure the network and trace file transportation parameters by applying the example configurations presented in the Trace File Collection Configuration section.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

**Step 4** Verify the configuration of Subscriber Session Trace related parameters by applying the commands provided in the Verifying Your Configuration section of this chapter.

**Enabling Subscriber Session Trace on EPC Network Element**

This section provides the configuration example to enable the subscriber session trace on a system at the Exec mode:

```
session trace subscriber network-element mme template-name template_name { imei imei_id | imsi imsi_id } trace-ref trace_ref_id collection-entity ip_address
```

**Notes:**

- `template_name` specifies the name of the session trace template. This template must be configured by using the `template-session-trace` command in the Global Configuration mode.
- `imei imei_id` specifies the International Mobile Equipment Identification Number for the subscriber.
- `trace-ref trace_ref_id` is the configured Trace Id to be used for the present trace collection instance. It is composed of MCC (3 digit)+MNC (3 digit)+Trace Id (3 byte octet string).
- `collection-entity ip_address` specifies the IP address of the Trace Collection Entity (TCE) to which the trace file generated will be sent. The IP address must be in IPv4 format.
Configuring a Session Trace Template for the MME

Operators have the option of creating a template for a management trace in configuration mode for the MME. Session traces executed in the Exec mode will use this template. Once created, the template can be associated with different subscribers to trace the interfaces configured in the template.

**Important:** To activate subscriber session traces for specific IMSI/IMEI, the operator must use the Exec mode `session trace subscriber` command specifying a pre-configured template and the IMSI/IMEI, trace reference and TCE address.

To configure a template-session-trace, use the following configuration:

```
configure

 template-session-trace network-element mme template-name template_name
 [no] { interface interface_name | target-ne { all | { enb | pgw | sgw } [target-interface interface_name] } }

end
```

Notes:
- **target-ne** initiates session tracing towards the assigned Network Elements and Interfaces.
- **target-interface** specifies the interface for the selected Network Element for tracing.
- Available **interface interface_name** options for **mme** are as follows:
  - **all**
  - **s10**: Specifies that the interface where the trace will be performed is the S10 interface between the MME and another MME.
  - **s11**: Specifies that the interface where the trace will be performed is the S11 interface between the MME and the S-GW.
  - **s13**: Specifies that the interface where the trace will be performed is the S13 interface between the MME and the EIR.
  - **s1mme**: Specifies that the interface where the trace will be performed is the S1-MME interface between the MME and the eNodeB.
  - **s3**: Specifies that the interface where the trace will be performed is the S3 interface between the MME and an SGSN.
  - **s6a**: Specifies that the interface where the trace will be performed is the S6a interface between the MME and the HSS.
- Available **target-interface** options for **enb** are as follows:
  - **all**
  - **s1mme**: Specifies that the interface where the trace will be performed is the S1-MME interface between the MME and the eNodeB.
  - **uu**: Specifies that the interface where the trace will be performed is the UU interface between the MME and the eNodeB.
• **x2**: Specifies that the interface where the trace will be performed is the X2 interface between the MME and the eNodeB.

• Available **target-interface** options for **pgw** are as follows:
  - all
  - gx: Specifies that the interface where the trace will be performed is the Gx interface between the P-GW and the PCRF.
  - s2a: Specifies that the interface where the trace will be performed is the S2a interface between the PGW and the HSGW.
  - s2b: Specifies that the interface where the trace will be performed is the S2b interface between the PGW and an ePDG.
  - s2c: Specifies that the interface where the trace will be performed is the S2c interface between the PGW and a trusted, non-3GPP access device.
  - s5: Specifies that the interface where the trace will be performed is the S5 interface between the P-GW and the S-GW.
  - s6b: Specifies that the interface where the trace will be performed is the S6b interface between the PGW and the 3GPP AAA server.
  - s8: Specifies that the interface where the trace will be performed is the S8b interface between the PGW and the S-GW.
  - sgi: Specifies that the interface where the trace will be performed is the SGi interface between the PGW and the PDN.

• Available **target-interface** options for **sgw** are as follows:
  - all
  - gx: Specifies that the interface where the trace will be performed is the Gx interface between the PGW and the PCRF.
  - s11: Specifies that the interface where the trace will be performed is the S11 interface between the MME and the S-GW.
  - s4: Specifies that the interface where the trace will be performed is the S4 interface between the S-GW and the SGSN.
  - s5: Specifies that the interface where the trace will be performed is the S5 interface between the P-GW and the S-GW.
  - s8: Specifies that the interface where the trace will be performed is the S8b interface between the PGW and the S-GW.

---

**Trace File Collection Configuration**

This section provides the configuration example to configure the trace file collection parameters and protocols to be used to store trace files on TCE through FTP/S-FTP:

```bash
configure

 session trace subscriber network-element { all | ggsn | mme | pgw | sgw } [collection-timer <dur>] [tce-mode { none | push transport { ftp | sftp } path
```
<string> username <name> { encrypted password <enc_pw> } | password <password> }
}

end

Notes:

- `<string>` is the location/path on the trace collection entity (TCE) where trace files will be stored on TCE. For more information, refer to the `session trace` command in the *Command Line Interface Reference*.

### Verifying Your Configuration

This section explains how to display and review the configurations after saving them in a .cfg file as described in the *System Administration Guide* and also to retrieve errors and warnings within an active configuration for a service.

**Important:** All commands listed here are under Exec mode. Not all commands are available on all platforms.

These instructions are used to verify the Subscriber Session Trace configuration.

**Step 1** Verify that your subscriber session support is configured properly by entering the following command in Exec Mode:

```sh
show session trace statistics
```

The output of this command displays the statistics of the session trace instance:

- Num current trace sessions: 5
- Total trace sessions activated: 15
- Total Number of trace session activation failures: 2
- Total Number of trace recording sessions triggered: 15
- Total Number of messages traced: 123

**Step 2** View the session trace references active for various network elements in an EPC network by entering the following command in Exec Mode:

```sh
show session trace trace-summary
```

The output of this command displays the summary of trace references for all network elements:

- **MME**
  - Trace Reference: 310012012345
  - Trace Reference: 310012012346
SGW
Trace Reference: 310012012345
Trace Reference: 310012012346

PGW
Trace Reference: 310012012347
Monitoring and Troubleshooting the Session Trace

The following section describes commands available to monitor Session Trace functionality on the MME.

Session Trace Show Command(s) and/or Outputs

**show session trace statistics**

On running the above mentioned show command, statistics similar to the following are displayed:

- Number of current trace sessions
- Number of total trace sessions
- Total sessions activated
- Number of activation failures
- Number of sessions triggered
- Total messages traced
- Number of current TCE connections
- Total number of TCE connections
- Total number of files uploaded to all TCEs

**show session trace subscriber network-element trace-ref**

This command shows detailed information about a specific trace, based on the trace-ref value of the session and network element type. It includes activation time, IMSI, start time, number of trace messages, and total number of files created. It also lists the interfaces that this session trace is configured to track.

The following example displays the summary of a Session Trace for a particular Reference Id

**show session trace subscriber network-element mme trace-ref 310012012345**

<table>
<thead>
<tr>
<th>Trace Reference: 310012012345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation time: Fri Jul 10 16:19:10 2009</td>
</tr>
<tr>
<td>IMSI: 0000012345</td>
</tr>
<tr>
<td>Actively Tracing: yes</td>
</tr>
<tr>
<td>Trace Recording Session Reference: 1</td>
</tr>
<tr>
<td>Recording start time: Fri Jul 10 16:19:10 2009</td>
</tr>
<tr>
<td>Total number of trace recording sessions triggered: 1</td>
</tr>
<tr>
<td>Total number of messages traced: 32</td>
</tr>
<tr>
<td>Total number of files created: 5</td>
</tr>
</tbody>
</table>
Traced Interfaces:
   S1mme
   S6a
   S11

Trace Triggers:
   service-request
   initial-attach
   ue-disconnect
   bearer-activation
   handover

Target Network Elements:
   SGW

Target Interfaces
   S8b
   S11

**show session trace tce-summary**

This command provides the IP address and index information for all configured TCEs. The following fields are displayed on executing the above command:

<table>
<thead>
<tr>
<th>TCE IP Address:</th>
<th>Index 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCE IP Address:</td>
<td>Index 5</td>
</tr>
</tbody>
</table>

**show session trace tce-address**

This command provides detailed information about a specific TCE, including IP address, start time, and total number of files uploaded.

The following example displays the summary of a Session Trace for a particular Reference Id

**show session trace tce-address 10.172.1.5 tce-index 5**

<table>
<thead>
<tr>
<th>TCE IP Address: 10.172.1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start time: Fri Jul 10 16:19:10 2009</td>
</tr>
</tbody>
</table>
Total number of files uploaded: 12
Chapter 22
SGSN-MME Combo Optimization

This section describes Combo Optimization available for a co-located SGSN-MME node. It also provides detailed information on the following:

- Feature Description
- How It Works
- Configuring the Combo Optimization
- Monitoring and Troubleshooting Combo Optimization
Feature Description

The SGSN and MME can be enabled simultaneously in the same chassis and, though co-located, they each behave as independent nodes. This Combo Optimization feature enables the co-located SGSN and MME to co-operate with each other in order to achieve lower memory and CPU utilizations and to reduce signaling towards other nodes in the network. When functioning as mutually-aware co-located nodes, the SGSN and the MME can share UE subscription data between them.

**Important:** This feature is supported by both the S4-SGSN and the Gn-SGSN. For the feature to apply to a Gn-SGSN, the Gn-SGSN must be configured to connect to an HSS. Combo Optimization for an SGSN-MME node is a licensed Cisco feature. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.

Overview

The load on S6d/S6a interfaces towards an HSS is reduced effectively by utilizing the resources in a co-located SGSN-MME node scenario. Requests for subscription data in Update Location Request (ULR) are skipped by setting the 'skip-subscriber-data' bit in the ULR flags; this, in turn, reduces the load on the HSS. The Skip Subscriber Data AVP is used and the subscriber data is shared across the SGSN and the MME services.

As per 3GPP TS 29.272, setting the 'skip-subscriber-data' bit in the ULR indicates that the HSS may skip sending subscription data in Update Location Answer (ULA) to reduce signaling. If the subscription data has changed in the HSS after the last successful update of the MME/SGSN, the HSS ignores this bit and sends the updated subscription data. If the HSS skips sending the subscription data, then the GPRS-Subscription-Data-Indicator flag can be ignored.

**Important:** The SGSN supported the Skip-Subscription-Data-bit prior to Release 18.0. Support for this functionality was added to the MME in Release 18.0.

Ensuring that packets are routed internally reduces network latency for S3/Gn interface messages. This is achieved by configuring the SGTP and EGTP services in the same context for the SGSN and the MME configurations.

For outbound Inter-RAT SRNS Relocations, the MME gives preference to the co-located SGSN, irrespective of the order/priority or preference/weight configured for the SGSN entry in DNS Server. When Inter-RAT handovers take place between the co-located MME and the SGSN, the new call arrives at the same Session Manager that hosted the call in the previous RAT. If the subscription data is available for a given UE at the co-located SGSN, then the MME does not need to request this data from the HSS and provides UE subscription data obtained from the SGSN. This optional function can be turned on or off through the MME Service configuration.

Combo Optimization is available for subscribers with an EPC-enabled UE and an EPC subscription configured at the HSS. During handoff from 4G to 3G or 4G to 2G, the EPC subscription will be copied from the MME. Combo Optimization is also applicable for Non-EPC subscribers if core-network-interface is selected as S4 for the EPS-subscription.
How It Works

Subscriber Movement from MME to SGSN: Subscription information is first fetched by the MME. On subscriber movement to a co-located SGSN, the SGSN sends a ULR with "skip-subscriber-data" flag set and the HSS sends a ULA (with or without subscription data depending on time of MME update).

Subscriber Movement from SGSN to MME: Subscription information is first fetched by the SGSN. On subscriber movement to a co-located MME, the MME sends a ULR with "skip-subscriber-data" flag set and the HSS sends a ULA (with or without subscription data depending on time of SGSN update).

Architecture

The above diagram displays the interworking of various modules when the Combo Optimization feature is enabled in a co-located SGSN-MME setup.

When the subscriber does RAU from MME to SGSN, or vice versa, a DNS query is initiated to fetch the address of the peer node. Based on the IP address obtained, the peer MME or SGSN is selected. When a DNS response is received with a list of peer SGSN addresses, the MME matches the configured EGTP/SGTP SGSN service address in the system and uses it for the S3/Gn UE Context Transfer procedures. If a DNS response is not received and a locally configured EGTP/SGTP SGSN service is present as a peer-SGSN, the peer-SGSN will be selected. Context transfer and copying of subscription information happens internally between the SGSN and the MME nodes. The SGSN maintains the S6d interface towards the HSS and the MME maintains the S6a interface towards the HSS. All network-initiated messages are sent separately towards the SGSN and the MME nodes respectively.
Flows

This section includes various diagrams that illustrate the session manager (SessMgr) selection logic during RAU, SRNS, and Attach procedures:

**Figure 23. Selection of SessMgr Instance during RAU from MME to SGSN**

Listed below is the SessMgr instance selection logic during a RAU procedure from the MME to SGSN:

1. A RAU request from UE is forwarded to the LinkMgr or GbMgr.
2. The LinkMgr identifies if the RAU is local and extracts the SessMgr instance from the PTMSI and forwards the request to IMSImgr.
3. The IMSImgr tries to select the SessMgr instance extracted from the PTMSI and forwards the request to the selected SessMgr.

**Figure 24. Selection of SessMgr Instance during SRNS**

Listed below is the SessMgr instance selection logic during an SRNS procedure:

1. During an SRNS procedure, the MME service sends a Forward Relocation Request to the EGTPCMgr.
2. The EGTPCMgr forwards the request to the IMSImgr.
3. The IMSIMgr uses the IMSI received in the request message to identify the SessMgr instance and forwards the request to the appropriate SessMgr instance.

Figure 25. Selection of SessMgr Instance during Attach

Listed below is the SessMgr instance selection logic during an Attach procedure:

1. During Attach procedure, the LinkMgr/GbMgr forwards the request to the IMSIMgr.
2. The IMSIMgr first verifies if the IMSI is present in the SGSN’s IMSI table. If it is not present, the MME’s IMSI table is verified. Once the entry is found the request is forwarded to the appropriate SessMgr.
3. If the entry is not found in either table, then an alternate SessMgr instance is used to process the call.

Limitations

Subscription information is shared between MME and SGSN only when both are connected to an HSS. Combo Optimization is not be applicable if either the MME or the SGSN is connected to an HLR. Though the subscription information is shared between the SGSN and MME services, a separate HSS service and diameter endpoint will be maintained for both the SGSN and the MME. All network-initiated messages are received separately for both the MME and the SGSN. Subscription data is copied based on time-stamp validation.

A small impact on the performance is observed during Inter-RAT handoffs as subscription data is exchanged between the SGSN and the MME. This impact is a limited increase in the number of instructions per handoff per UE depending on the number of APNs configured for the UE in the HSS.

It is necessary that the HSS honors the request from the MME/SGSN and not send subscription data when 'Skip-Subscriber-Data' flag is set in the ULR. However, there are some known and valid cases where the HSS ignores this flag; for example, if the UE’s subscription data changed since the last time the UE attached in 4G. (Typically, UE subscription data does not change frequently, therefore, HSS overrides are less frequent.)
Configuring the Combo Optimization

This section describes how to configure the Combo Optimization for an SGSN-MME combo node.

By default, Combo Optimization is not enabled. This command both enables or disables Combo Optimization on an SGSN-MME combo node.

```
config
 lte-policy
 [no] sgsn-mme subscriber-data-optimization
 end
```

Note:
- `no` as a command prefix disables Combo Optimization.

The following CLI (applicable only to the SGSN in the combo node), under the call-control profile configuration mode, controls requests for GPRS subscription information from the HSS:

```
config
 call-control-profile<profile_name>
 hss message update-location-request gprs-subscription-indicator [never | non-epc-ue]
 end
```

Verifying Combo Optimization Configuration

Execute the following command to verify the configuration of this feature:

```
show lte-policy sgsn-mme summary
```

The following field value indicates if data optimization on the SGSN-MME combo node is "Enabled" or "Disabled":
- `subscriber-data-optimization`
Monitoring and Troubleshooting Combo Optimization

This section provides information on the show commands and bulk statistics available to monitor and troubleshoot Combo Optimization for the SGSN-MME combo node, and for each element separately.

Monitoring Commands for the SGSN-MME Combo Node

This section provides information regarding show commands and/or their outputs in support of the Combo Optimization feature on the SGSN-MME Combo Node:

**show hss-peer-service statistics all**

The following new fields are added to the show output to display the subscription data statistics:

- Subscription-Data Stats
- Skip Subscription Data
- Subscription-Data Not Received

The Skip Subscription Data statistic is incremented when the ULR is sent with the skip-subscription-data flag set. The Subscription-Data Not Received statistic is incremented if the HSS does not send the subscription data in the ULA when skip-subscription-data flag is set in ULR. The difference between the Skip Subscription Data and Subscription-Data Not Received gives us the number of times HSS does not honour the skip-subscription-data flag.

Monitoring Commands for the SGSN

This section provides information regarding show commands and/or their outputs in support of the Combo Optimization feature on the SGSN:

**show demux-mgr statistics imsimgr all sgsn**

The following new fields are added in the show output to display the number of RAU, Attach, PTIMSI attach and Forward relocation requests arriving from a subscriber attached with co-located MME:

- IMSI attach with context in co-located MME
- P-TMSI attach with mapped P-TMSI of co-located MME
- RAU with mapped P-TMSI of co-located MME
- Fwd reloc request from co-located MME

**show subscribers sgsn-only summary**

The following new field is added in the show output to display the number of subscribers currently sharing subscription information with MME:

- Total HSS subscribers sharing subscription-info
**show subscribers gprs-only summary**

The following new field is added in the show output to display the number of subscribers currently sharing subscription information with MME:

- Total HSS subscribers sharing subscription-info

**show subscribers sgsn-only full all**

The STN-SR, ICS-indicator, Trace-Data and CSG subscription information is now displayed under the `show subscribers sgsn-only full all` output. These AVPs are currently used by MME only. Values are displayed as received from HSS without any format changes.

- Trace Data
- Trace Reference
- Trace Depth
- Trace NE Type List
- Trace Interface List
- Trace Event List
- OMC Id
- Trace Collection Entity
- STN-SR
- ICS-Indicator
- CSG Subscription
- CSG ID
- Expiration Date

**show subscribers gprs-only full all**

The STN-SR, ICS-indicator, Trace-Data and CSG subscription information is now displayed under the `show subscribers gprs-only full all` output. These AVPs are currently used by MME only. Values are displayed as received from HSS without any format changes.

- Trace Data
- Trace Reference
- Trace Depth
- Trace NE Type List
- Trace Interface List
- Trace Event List
- OMC Id
- Trace Collection Entity
- STN-SR
• ICS-Indicator
• CSG Subscription
• CSG ID
• Expiration Date

**show session subsystem facility aaamgr instance <instance>**

The following new fields are added in the show output to display the total number of CSG subscription records and Trace data records:

• SGSN: Total Trace data records
• SGSN: Total CSG data records

**Monitoring Commands for the MME**

This section provides information regarding show commands and/or their outputs in support of the Combo Optimization feature on the MME:

**show mme-service statistics handover**

The following new statistics are added to the show output to display the information about Inter-RAT Optimized Handoffs between the co-located SGSN and MME:

• Inter-RAT Optimized Handoffs Between Co-located MME and SGSN
• Outbound MME to SGSN RAU procedure
• Attempted
• Success
• Failures
• Inbound SGSN to MME TAU procedure
• Attempted
• Success
• Failures
• Outbound MME to SGSN Connected Mode Handover
• Attempted
• Success
• Failures
• Inbound SGSN to MME Connected Mode Handover
• Attempted
• Success
• Failures
Bulk Statistics for Monitoring the MME in an SGSN-MME Combo Node

The following bulk statistics in the MME schema facilitate tracking MME optimization functionality for the SGSN-MME nodes when co-located in the same chassis with the Combo Optimization functionality enabled:

- optimized-out-rau-ho-4gto2g3g-attempted
- optimized-out-rau-ho-4gto2g3g-success
- optimized-out-rau-ho-4gto2g3g-failures
- optimized-in-tau-ho-2g3gto4g-attempted
- optimized-in-tau-ho-2g3gto4g-success
- optimized-in-tau-ho-2g3gto4g-failures
- optimized-out-s1-ho-4gto2g3g-attempted
- optimized-out-s1-ho-4gto2g3g-success
- optimized-out-s1-ho-4gto2g3g-failures
- optimized-in-s1-ho-2g3gto4g-attempted
- optimized-in-s1-ho-2g3gto4g-success
- optimized-in-s1-ho-2g3gto4g-failures
Chapter 23
Single Radio Voice Call Continuity

Voice over IP (VoIP) subscribers anchored in the IP Multimedia Subsystem (IMS) network can move out of an LTE coverage area and continue the voice call over the circuit-switched (CS) network through the use of the Single Radio Voice Call Continuity (SRVCC) feature. Unlike other methods like CSFB, it does not require a dual-mode radio.

- Feature Description
- How It Works
- Configuring Single Radio Voice Call Continuity
- Monitoring and Troubleshooting SRVCC
Feature Description

SRVCC requires that a valid license key be installed. Contact your Cisco Account or Support representative for information on how to obtain a license.

To support SRVCC functionality on the MME, an Sv interface is created to the Mobile Switching Center (MSC) server responsible for communicating with the MME during the handover process.

Figure 26. SRVCC Architecture

Supported SRVCC Features

The MME supports the following SRVCC features:

**SRVCC CS-PS Handover Continuity on PS Handover Failure**: During S1-based CS-PS SRVCC handover, if one of the following types of failures occurs
Single Radio Voice Call Continuity

Feature Description

- Peer SGSN DNS query failed
- Fwd Relocation Response timeout
- Fwd Relocation Response was received with a failure cause

then the handover will continue for CS calls if CS handover on the Sv interface succeeds. This means that the S1 SRVCC handover will continue as partially successful and the handover command message will not carry any bearer related information.

**MSC Selection using DNS:** As defined in 3GPP TS 29.303 V10.4.0, the MME supports DNS-based MSC selection. In the NAPTR query response, the MME will analyze the “Service Parameter” of “x-3gpp-msc:x-sv”, and select a specific MSC from a pool list provided in the DNS response. The provisioned weights and priorities on the DNS server are used to load share proportionally between the MSC servers.

If DNS lookup fails, the MSC will be selected from local configuration. If an MSC pool area has been configured, the selection logic for the pool area will be used.

**MSC Pool Areas:** MSC pool areas can be configured for load balancing and intelligent selection of MSC servers based on PLMN and/or IMSI hash values. Up to 24 MSC servers can be defined per MME service. Each pool-area can optionally be associated with a PLMN, which is the target PLMN as specified in the SRVCC Handover request.

The MME attempts to select an MSC using the following selection order: 1) Pool-area that matches the PLMN and of type hash 2) Pool-area that matches the PLMN and of type round-robin 3) Pool-area that does not have PLMN and of type hash 4) Pool-area that does not have PLMN and of type round-robin.

**MSC Offload:** The MME allows an administrator to place one or more MSC server in maintenance mode. This action removes the MSC server as a possible selection target.

**MSC Fallback on Failure:** The MME automatically attempts to resend the Sv PS to CS Request to a different MSC if: 1) no response is received (timeout) from the MSC to a Sv PS to CS Request, or 2) any failure response is received from the MSC to a Sv PS to CS Request.

If no alternate MSC is configured, or if the second MSC fails as well, the SRVCC handover fails. A new MSC is attempted only for the initial PS to CS Request. No additional configuration is needed to enable this functionality.

When an MSC is selected by DNS, and multiple results are returned, the second MSC result will be used for fallback. In case DNS selection returns just one MSC, the second MSC for fallback will be from local configuration if it exists. If DNS lookup fails, the MSC for fallback will be selected from local configuration.

The MME implementation of SRVCC also supports:

- IMS Centralized Service call handling as specified in 3GPP TS 29.280, enabling call flow handling for advanced scenarios.
- Emergency Calls as defined in 3GPP TS 29.280.
- GTP echo path management messages as defined in 3GPP TS 29.280.
- GTP-C DSCP marking.

**Relationships to Other Features**

If the UE supports circuit-switch fallback (CSFB) and/or IMS voice, or both, the UE shall include the information element "Voice domain preference and UE's usage setting" in Attach Request and Tracking Area Update Request messages. The UE's usage setting indicates whether the UE behaves in a voice centric or data centric way. The voice domain preference for E-UTRAN indicates whether the UE is configured as CS Voice only, CS Voice preferred and IMS PS Voice as secondary, IMS PS Voice preferred and CS Voice as secondary, or IMS PS Voice only. The purpose
of this information element is to signal to the network the UE's usage setting and voice domain preference for E-UTRAN.

The UE also includes the SRVCC capability indication as part of the "MS Network Capability" in the Attach Request message and in Tracking Area Updates. This capability needs to be accessed and stored on the MME.

If the UE reflects SRVCC along with IMS voice in the "Voice domain preference" in a Combined Attach, the MME will treat it as a EPS Attach with SRVCC capability.
How It Works

The existing eGTP-C service is enhanced to support the Sv reference point. A new instance of the eGTP-C service must be configured for Sv messages.

SRVCC requires the following elements:

- SRVCC requires the STN-SR to be sent to the MSC for all non-emergency calls. If the STN-SR is not present in the HSS during the Attach procedure, SRVCC handover will not be allowed for non-emergency calls. In case of situations like STN-SR not being configured for non-emergency calls, the MME will send a HANDOVER PREPARATION FAILURE message back with the cause code set to Handover Failure in Target System.
- MSC Server that has been enhanced for SRVCC.
- UE that has ICS (IMS Service Continuity) capabilities with single radio access. The UE includes the ICS Capability indication as part of the UE network capability in the Attach Request message. The MME stores this information for SRVCC operation.
- IMS network and SCC-AS in which the call is anchored. The MME signals to the UE the presence of VoIMS in the Attach Response.

SRVCC is agnostic as to the whether S3 or GnGP is used for the SGSN interface.

Flows

The following SRVCC call flows are supported:

- SRVCC from E-UTRAN to GERAN without DTM support (TS 23.216 V10.5.0; Section 6.2.2.1).
- SRVCC from E-UTRAN to GERAN with DTM but without DTM HO support and from E-UTRAN to UTRAN without PS HO (TS 23.216 V9.6.0; Section 6.2.2.1A).
- SRVCC from E-UTRAN to UTRAN with PS HO or GERAN with DTM HO support (TS 23.216 V9.6.0; Section 6.2.2.1A).
- Emergency calls for all of the above three SRVCC scenarios

Standards Compliance

The MME implementation of SRVCC complies with the following standards:

- 3GPP TS 23.216 Single Radio Voice Call Continuity (SRVCC) V10.5.0
- 3GPP TS 29.280 Sv Interface (MME to MSC and SGSN to MSC) for SRVCC V10.4.0
- 3GPP TS 36.413 S1 Application Protocol (S1AP) V10.5.0
- 3GPP TS 29.303 Domain Name System Procedures; Stage 3 V10.4.0
Configuring Single Radio Voice Call Continuity

- Configuring SRVCC
- Configuring MSC Selection Using DNS
- Configuring an MSC Pool Area
- MSC Offload
- Verifying the SRVCC Configuration

Configuring SRVCC

Use the following example to configure basic SRVCC support on the MME, including:

- Creating the eGTP-C Sv service and binding it to an IPv4/v6 address.
- Associating the eGTP-C service to the MME service.
- Configuring one or more MSC servers within the MME service.

```bash
configure
 context <mme_context_name>
 interface <sv_intf_name>
 ip address <ipv4_address>
 exit
 egtp-service <egtpc_sv_service_name>
 interface-type interface-mme
 gtpc bind ipv4-address <sv_infc_ip_address>
 exit
 mme-service <mme_service_name>
 associate egtpc-sv-service <egtpc_sv_service_name>
 msc name <msc_name> ip-address <ip_address>
 exit
exit
port ethernet <slot_number/port_number>
 no shutdown
 bind interface <sv_intf_name> <mme_context_name>
```
Configuring Single Radio Voice Call Continuity

Notes:
- The `gtpc bind` command can be specified as an IPv6 address using the `ipv6-address` keyword. The `interface` specified for Sv communication must also be the same IP address type.

Configuring MSC Selection Using DNS

DNS based MSC selection can be defined for an MME service, or for a Call Control Profile. Both configuration options specify the context in which a DNS client configuration has been defined.

Refer to Configuring Dynamic Peer Selection in the MME Configuration chapter of this document for details on configuring the DNS client.

Configuration via Call Control Profile takes precedence in cases where both options are configured.

MSC selection using DNS take precedence over MSC pool-areas and locally configured MSCs.

To configure DNS selection of an MSC for a specific MME service, refer to the following example:

```
configure
 context <ctxt_name>
 mme-service <service_name>
 dns msc context <ctxt_name>
 exit
```

To configure DNS selection of an MSC based on a Call Control Profile, refer to the following example.

```
configure
 call-control-profile <profile_name>
 dns-msc context <ctxt_name>
 exit
```

Notes:
- Configuration via Call Control Profile takes precedence if DNS is configured via both mme-service and call control profile.

To define an MSC server that should be selected by DNS, the `msc` command must be used without the `ip-address` keyword, as follows

```
configure
 context <ctxt_name>
 mme-service <mme_service_name>
 msc name <msc_name>
```
Configuring an MSC Pool Area

In order to support pooling, multiple MSC servers and pool-areas for Sv interface are allowed to be configured within the MME service. A maximum of 24 MSC servers can be configured for a given MME Service. Each MME Service can also have a maximum of 24 pool areas. Each pool-area can have a maximum of 24 MSC's.

The pool can be either based on IMSI hash or a round-robin scheme. In the IMSI hash scheme, an MSC is chosen based on the result of the IMSI [(IMSI div 10) modulo 1000]. In case of round-robin, the MME selects the next MSC based on the round-robin scheme.

Each pool-area is associated with a unique name. Within a pool-area of type hash, up to 24 hash-values can be defined. Pool-area of type round-robin can have up to 24 entries.

Each pool-area can be associated with a PLMN which is the target PLMN as specified in the SRVCC Handover request.

MME attempts to select a MSC using the following selection order: 1) Pool-area that matches the PLMN and of type hash 2) Pool-area that matches the PLMN and of type round-robin 3) Pool-area that does not have PLMN and of type hash 4) Pool-area that does not have PLMN and of type round-robin

IMSI Hash MSC Pool

Use the following example to configure an MSC server pool with a selection scheme based on the IMSI hash value.

```configure
context <ctxt_name>
 mme-service <service_name>
 pool-area <pool_area_name> type hash-value
 hash-value { <hash_value> | range <start_value> to <end_value> } use-msc
 msc_id
 plmnid mcc <code> mnc <code>
 exit
```

Notes:

- The **pool-area** command creates a Mobile Switching Center (MSC) server pool area and defines that the MSC servers be selected from within the pool using the result of the IMSI (using the **hash-value** keyword).
- The optional **plmnid** command associates a Public Land Mobile Network (PLMN) identifier with this Mobile Switching Center (MSC) pool area. This is used to select an MSC based on the target PLMN as specified in the SRVCC handover request. If a pool does not have any PLMN id associated with it, the pool area is assumed to be able to serve any PLMN.

  If this command is used, the PLMN id values specified must be unique within a given MSC pool area type. For example, multiple pool areas of type hash cannot use the same PLMN. However, you can configure one pool area of type hash and another of type round-robin and have both use the same PLMN id.
- The **hash-value** command configures the selection of a Mobile Switching Center (MSC) server in a MSC pool area based on the hash value derived from the IMSI [(IMSI div 10) modulo 1000].
The use-msc keyword associates an MSC to use for this hash value, where msc_name is the name of the MSC as previously configured in the MME service using the msc command. A maximum of 24 MSCs can be defined per pool area.

- See the MME MSC Server Pool Area Configuration Mode chapter of the Command Line Interface Reference for more information.

**Round-Robin MSC Pool**

Use the following example to configure an MSC server pool with a round-robin selection scheme.

```
configure
 context <ctxt_name>
 mme-service <service_name>
 pool-area <pool-area-name> type round-robin
 plmnid mcc <code> mnc <code>
 use-msc msc_id
 exit
```

Notes:

- The pool-area command creates a Mobile Switching Center (MSC) server pool area and defines that the MSC servers be selected from within the pool using a round-robin scheme (using the round-robin keyword).
- The optional plmnid command associates a Public Land Mobile Network (PLMN) identifier with this Mobile Switching Center (MSC) pool area. This is used to select an MSC based on the target PLMN as specified in the SRVCC handover request. If a pool does not have any PLMN id associated with it, the pool area is assumed to be able to serve any PLMN.
  
  If this command is used, the PLMN id values specified must be unique within a given MSC pool area type. For example, multiple pool areas of type hash cannot use the same PLMN. However, you can configure one pool area of type hash and another of type round-robin and have both use the same PLMN id.
- The use-msc command associates an MSC with this pool area, where msc_name is the name of the MSC as previously configured in the MME service using the msc command. A maximum of 24 MSCs can be defined per pool area.
- See the MME MSC Server Pool Area Configuration Mode chapter of the Command Line Interface Reference for more information.

**MSC Offload**

The MME allows an administrator to place one or more MSC server in maintenance mode. This action removes the MSC server as a possible selection target.

To offload and MSC, use the offline keyword at the end of the msc configuration command.

When the configuration is changed back to online, the MSC will be added back as a selection target and normal operation is returned.
configure

context <ctxt_name>

mme-service <service_name>

  msc <name> [ ip-address <address> ] [ offline | online ]

exit

Notes:

- No actual GTPv2 messages are generated when the configuration is changed to offline. The MSC is only removed as a selection target for future load sharing.

HSS Purge After SRVCC Handoff

The MME supports an optional configuration capability to perform the Purge UE procedure to the HSS for UEs which support Dual Transfer Mode (DTM). This feature is configurable via the CLI and is disabled by default. If configured, the MME initiates an HSS Purge after the following two SRVCC HO scenarios:

- For SRVCC Handoff with PS Handoff support, the Purge S6a message is sent immediately after successful completion of the Handoff. For this scenario, the configurable purge timer is not used.
- For SRVCC Handoff without PS Handoff support, a configurable timer is initiated and the Purge S6a message is sent if a SGSN Context Request is received prior to timer expiry. If a Context Failure occurs, no HSS Purge S6a message is sent.

This feature ensures the HSS has a reliable UE status on whether it is currently operating on the LTE network. The following commands configure the MME to initiate an HSS Purge after the SRVCC HO where the UE supports DTM. It also allows configuration of a purge timeout value in seconds.

configure

context ctxt_name

mme-service service_name

  policy srvcc purge-timer seconds

[ no ] policy srvcc purge-timer

end

Notes:

- **purge-timer seconds**: defines how long in seconds the Purge Timer will run. This is applicable only for SRVCC Handoff without PS Handoff support scenarios.
- For example, if **purge-timer** is set to 20 seconds:
  - If the Context Transfer happens 10 seconds after SRVCC HO, the MME initiates an HSS Purge.
  - If the Context Transfer happens 30 seconds after SRVCC HO, the MME will NOT initiate an HSS Purge because the Purge Timer has expired.
Verifying the SRVCC Configuration

The following command displays the MSC servers configured in the specified MME service:

```
show mme-service name service_name
```

In the following example output:

- `msc1`, `msc2`, and `msc3` are configured with an IPv4 address.
- `msc3` is currently configured for MSC offload (offline).

```
SCTP Alternate Accept Flag : Enabled
MSC : msc1 10.10.1.1
MSC : msc2 10.10.1.2
MSC : msc3 10.10.1.3 Offline
```

The same command displays the context in which the DNS client configuration has been defined for the specified MME Service for DNS based MSC selection.

```
SGW DNS Context : Not defined
MSC DNS Context : ingress
```

The following command displays the context in which the DNS client configuration has been defined for the specified Call Control Profile for DNS based MSC selection:

```
show call-control-profile full name profile_name
```

```
DNS MSC Context : ingress
```
Monitoring and Troubleshooting SRVCC

SRVCC Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs in support of SRVCC.

**show mme-service statistics**

This command displays SRVCC statistics for CS handovers with no Dual Transfer Mode (DTM), CS-only transfers, and CS and PS transfers.

EUTRAN—> UTRAN/GERAN using Sv Interface:
- **CS only handover with no DTM support:**
  - Attempted: 0 Success: 0
  - Failures: 0
- **CS only handover:**
  - Attempted: 0 Success: 0
  - Failures: 0
- **CS and PS handover:**
  - Attempted: 0 Success: 0
  - Failures: 0

**show egtpc statistics**

This command displays EGTPC Sv interface statistics for CS handovers with no Dual Transfer Mode (DTM), CS-only transfers, and CS and PS transfers.

**SRVCC Messages:**
- **PS to CS Request:**
  - Total TX: 0
  - Initial TX: 0
  - Retrans TX: 0
  - Discarded: 0
  - No Rsp Rcvd: 0
- **PS to CS Response:**
Total RX: 0
Initial RX: 0
Accepted: 0
Denied: 0
Discarded: 0

PS to CS Complete Notification:
Total RX: 0
Initial RX: 0
Retrans RX: 0
Discarded: 0

PS to CS Complete Acknowledge:
Total TX: 0
Initial TX: 0
Accepted: 0
Denied: 0
Retrans TX: 0
Discarded: 0

PS to CS Cancel Notification:
Total TX: 0
Initial TX: 0
Retrans TX: 0
Discarded: 0
No Rsp Rcvd: 0

PS to CS Cancel Acknowledge:
Total RX: 0
Initial RX: 0
Accepted: 0
Denied: 0
Discarded: 0
SRVCC Bulk Statistics

eGTP-C Schema

The following statistics are included in the eGTP-C Schema in support of SRVCC:
For descriptions of these variables, see “eGTP-C Schema Statistics” in the Statistics and Counters Reference.

- srvcc-sent-pstocsreq
- srvcc-sent-retranspstocsreq
- srvcc-recv-pstocrsrsp
- srvcc-recv-pstocrsrsrspDiscard
- srvcc-recv-pstocrsrspacceopt
- srvcc-recv-pstocrsrspdenied
- srvcc-rerecv-pstocrsrspnotf
- srvcc-recv-pstocrsrspnotfDiscard
- srvcc-recv-retranspstocrsrspnotf
- srvcc-sent-pstocsmpack
- srvcc-sent-retranspstocsmpack
- srvcc-sent-pstocsmpackaccept
- srvcc-sent-pstocsmpackdenied
- srvcc-sent-pstocsmpacknotf
- srvcc-sent-retranspstocsmpacknotf
- srvcc-recv-pstocsmscancelack
- srvcc-recv-pstocsmscancelackDiscard
- srvcc-recv-pstocsmscancelackaccept
- srvcc-recv-pstocsmscancelackdenied

MME Schema

The following statistics are included in the MME Schema in support of SRVCC:
For descriptions of these variables, see “MME Schema Statistics” in the Statistics and Counters Reference.

- s1-ho-4gto3g-cs-nodtm-sv-attempted
- s1-ho-4gto3g-cs-nodtm-sv-success
- s1-ho-4gto3g-cs-nodtm-sv-failures
- s1-ho-4gto3g-cs-sv-attempted
- s1-ho-4gto3g-cs-sv-success
- s1-ho-4gto3g-cs-sv-failures
- s1-ho-4gto3g-cspsv-attempted
- s1-ho-4gto3g-cspsv-success
- s1-ho-4gto3g-cspsv-failures
Chapter 24
State-Location Information Retrieval Flag

The MME indicates in the ULR command that it supports State/Location Information Retrieval so the HSS sets the "EPS User State Request", "EPS Location Information Request" and "Current Location Request" bits in IDR-Flags AVP in IDR commands towards that MME. This chapter explains how the MME supports this flag.

- Feature Description
- How It Works
- Configuring Support for the StateLocationInformationRetrieval Flag
- Monitoring the MMEs Support for the State Location Information Retrieval Flag
Feature Description

The MME sends the “State/Location-Information-Retrieval” flag set in the Feature-List AVP of the Update Location Request (ULR) message over the S6a interface to the HSS at the time the UE attaches. With the “State/Location-Information-Retrieval” flag set, the HSS knows to set the “EPS User State Request”, “EPS Location Information Request” and “Current Location Request” bits in the IDR-Flags AVP in IDR messages towards the MME. This subscriber data provides the UE’s current location information needed in multiple service scenarios, such as VoLTE services on the IMS side.
How It Works

MME Behavior for IDR-initiated Paging

Upon receipt of an IDR message with the “Current Location Request” bit set in the IDR-Flags AVP, the MME behavior complies with Feature-List AVP, IDR-Flags AVP, and EPS-Location-Information AVP sections as specified in 3GPP TS 29.272 v11.9.0. So when the IDR messages are received with “EPS Location Information Request” and “Current Location Request” bits set in IDR-Flags AVP, the MME sends the UE’s current location information or the UE’s last known location information in the “EPS-Location-Information” AVP of the IDA message.

If IDR is received with “EPS Location Information Request” and “Current Location Request” flags set in IDR-Flags AVP, the MME’s IDA response depends on whether:

- the UE is in connected mode with Location Reporting active making location information available, then the MME sends the IDA message without “Current-Location-Retrieved” AVP in “EPS-Location-Information” AVP.
- the UE is in connected mode without Location Reporting active so location information is not available, then the MME sends a Location-Reporting-Control message to the eNB to get the ECGI and the TAI.
  - If the MME receives a Location-Report message, then the MME sends an IDA message without “Current-Location-Retrieved” AVP and the “Age-Of-Location-Information” is set to zero in the “EPS-Location-Information” AVP sent to the HSS.
  - If the MME does not receive a Location-Report message, then the MME sends IDA message with last known location information with “Age-Of-Location-Information” AVP and without “Current-Location-Retrieved” AVP.
- the UE is in idle mode, then the MME pages the UE to bring the UE to connected mode.
  - If paging is successful, then the MME sends an IDA message with "Age-Of-Location-Information" and "Current-Location-Retrieved" both set to zero in the "EPS-Location-Information" AVP to the HSS.
  - If paging is not successful, then the MME sends IDA messages with last known location information with "Age-Of-Location-Information" AVP and without "Current-Location-Retrieved" AVP to the HSS.

Location Reporting Control

The Location Report Control messages allow the MME to request the eNB to report where the UE is currently located.

MME’s IDR-initiated Paging Process

If the UE is in ECM-IDLE and the MME receives IDR with "EPS Location Information Request" and "Current Location Request" flags set in IDR-Flags AVP, then the MME starts the ISDA guard timer (configurable for 1-100 seconds**) and also triggers the paging procedure. If the MME receives a response from the eNB before the timer expires, then MME sends an IDA message with the UE’s current location information in the "EPS-Location-Information" AVP. Otherwise the MME sends an IDA message with the last known location information in "EPS-Location-Information" AVP when the ISDA timer expires. (**Configuration as of Release 17.4.)
Paging initiation is similar to paging for signaling events. However, a separate event shall be used in this case and be processed. If the paging procedure is already running for that UE, then when IDR is received with both flags set the MME shall not trigger paging again. MME behavior depends on the precedence configuration under paging-map:

- If the paging procedure already running for the UE has a higher precedence than for IDR, then when IDR is received with both flags set and if the other paging is not successful, then the MME does not trigger IDR paging again.
- If the paging procedure already running for the UE has a lower precedence than for IDR, and if IDR is received with both flags set, then the MME stops the ongoing paging procedure and triggers an IDR paging procedure.

If the paging procedure completes before the ISDA guard timer expires and a paging response is not received from the eNB, then the MME sends an asynchronous IDA response immediately without waiting for ISDA timeout.

Standards Compliance

The MME’s support of the State/Location Information Retrieval flag complies with the following standards:

- Feature-List AVP, IDR-Flags AVP, and EPS-Location-Information AVP sections as specified in 3GPP TS 29.272 v11.9.0
Configuring Support for the State Location Information Retrieval Flag

There is no configuration to enable or disable the MME’s support of the State/Location-Information-Retrieval Flag. But, we highly recommend that you set precedences for IDR paging appropriate to your network. The significance of precedence is explained above in the MME’s IDR-initiated Paging Process section.

> **Important:** If precedence is not configured, then the lowest precedence is automatically assigned.

Configuring Precedence for IDR Paging

Precedence for IDR paging is set using the existing `precedence` command with a special `idr` added as a paging trigger option to the signaling filter of the `traffic-type` keyword. The `precedence` command enables the operator to apply a priority for different paging-profiles based on traffic type. When a defined MME service is associated with a configured paging map, the system checks the configured profile map to determine which paging-profile to adopt for a given paging trigger, such as an IDR.

```plaintext
configure
lte-policy
 paging-map paging_map_name
 precedence precedence traffic-type signaling idr paging-profile paging_profile_name
 no precedence precedence
 end
```

Notes:

- `paging_map_name` must be an alphanumeric string of upto 64 characters to identify a unique paging map associated with the LTE Policy.
- `precedence` must be an integer from 1 (lowest precedence) to 4 (highest precedence) to specify the handling precedence for this particular configuration definition.
- `idr` option selects IDR as the signaling traffic sub-type that triggers paging. (There are several other signaling traffic-type options.)
- `paging_profile_name` must be an alphanumeric string of upto 64 characters to identify a unique paging profile associated with the paging map and the LTE Policy.
- `no precedence precedence` removes the precedence configuration associated with the paging-map.
Verifying the Precedence Configuration

The `show lte-policy paging-map name map_name` command allows you to see the precedence information configured, for example:

```
asr5000# show lte-policy paging-map name pm1
===
Paging Map : pm1
--
Precedence 1 : Signaling-IDR ; Paging is performed as per paging-profile ppl
```  

Configuring the ISDA Guard Timer

`isda-guard-timeout`

This new command in the MME Service configuration mode enables the operator to set the number of seconds the MME waits for current location information for the UE. If the current location is not learned before expiry, because there is no paging response or location reporting control from the eNB, then the MME sends the ISDA with the last-known location upon expiry of this timer.

```
configure

 context context_name

 mme-service service_name

 [no] isda-guard-timeout seconds

end
```

Notes:

- `no` prepended to the command disables any configuration for this timer and resets the wait time to the default of 25 seconds.
- Only when the ISDR is received with both location flags (current and last-known locations) set is the ISDA guard timer started. Upon expiry of this wait timer, the MME sends the ISDA with the last-known location of the UE.
- In situations where the MME receives the ISDR with only the last-known location flag set, then the MME immediately sends the ISDA with location information - no delay and this timer is not started even if configured.
- When the ISDA guard timer expires, the paging procedure does not stop until the page timer expires but the MME ignores the paging timer and sends the ISDA with the last-known location if the ISDR was received with both location flags set and the UE is in EMM-idle mode.
- While the MME is serving the ISDR (where both location flags are set) from the HSS, if the HSS tries to send another similar request then the MME responds to the HSS with DIAMETER_UNABLE_TO_COMPLY.
Monitoring the MME’s Support for the State - Location Information Retrieval Flag

Bulk Statistics

Functional descriptions, triggers and statistic type are defined for each of the bulk statistics listed below in the Statistics and Counters Reference.

The following bulk statistics have been added to the MME schema to track paging initiated in response to IDR:

- signaling-idr-paging-init-events-attempted
- signaling-idr-paging-init-events-success
- signaling-idr-paging-init-events-failures
- signaling-idr-paging-last-enb-success
- signaling-idr-paging-last-tai-success
- signaling-idr-paging-tai-list-success

show mme-service statistics

Counters have been added, to the output generated by this command, to display quantitative data for successes and failures of paging initiated in response to IDR:

Paging Initiation for SIGNALING IDR Events:

Attempted: 0  Success: 0
Failures: 0
Success at Last n eNB: 0  Success at Last TAI: 0
Success at TAI List: 0

show hss-peer-service statistics

In support of the new 'State/Location Information Retrieval' flag functionality, counters have been added to the output generated by the show hss-peer-service statistics command:

- Asynchronous Message Stats:
- Asynchronous ISDR Req
- Asynchronous ISDA
- Aynchronous ISDA Dropped
Chapter 25
UE Relocation

This chapter describes how to relocate UEs to a specific MME in an MME pool.

- Feature Description
- How it Works
- Relocating UE to Specific MME
- Monitoring UE Relocation
Feature Description

This feature enables operators to move a UE between different MME nodes within a MME pool area. This functionality can be useful for maintenance of equipment, to allow testing on all components, verifying functionality on new nodes that are not in service yet (when expanding the pool), and for establishing a particular call scenario for troubleshooting.
How it Works

UE Relocation

Using this command, the MME can release a UE (based on the UE’s IMSI), and cause it to attach to another particular MME within an MME Pool Area.

The UE must be in the EMM-REGISTERED or ECM-CONNECTED state in order to be relocated. If the UE is not in either of these states, the command will be rejected.

If the UE is in ECM-CONNECTED state, the MME uses the GUTI relocation command with a GUTI constructed from the parameters of the `mme relocate-ue` command. Once confirmation is received from the UE, the UE is detached with detach type “re-attach required”. If the GUTI relocation procedure fails, the UE is still detached from the network.
Relocating UE to Specific MME

Issuing the mme relocate-ue Command

Use this exec mode command to trigger the specified UE (IMSI) to detach from the current MME and to reattach to the target MME.

You must know the mme-group-id and mme-code of the target MME. You must also know the IMSI of the UE to be relocated and provide a new GUTI MME-TMSI for this UE.

This is a one-time executable command. The MME does not retain a record of UEs which have been targeted for relocation. There is no restriction on the number of UEs that can be relocated.

mme relocate-ue imsi <imsi> new-guti mme-group-id <32768-65535> mme-code <0-255> m-tmsi <0-4294967295>

Notes:

- If the UE is not in EMM-REGISTERED or ECM-CONNECTED mode, the command is rejected.
- If the mme-group-id and mme-code corresponds to the MME where the UE is currently registered, the command is rejected.
Monitoring UE Relocation

This section lists the bulk statistics and show commands that display UE relocation statistics for a given MME.

UE Relocation Bulk Statistics

The following statistics are included in the MME Schema to track UE Relocations:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>emm-msgtx-guti-reloc</td>
<td>The total number of EMM control messages sent - GUTI relocations.</td>
<td>Int32</td>
</tr>
<tr>
<td>Type: Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>emm-msgtx-guti-reloc-retx</td>
<td>The total number of EMM control messages sent - retransmitted GUTI relocations.</td>
<td>Int32</td>
</tr>
<tr>
<td>Type: Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>emm-msgrx-guti-reloc-complete</td>
<td>The total number of EMM control messages received - GUTI relocation complete.</td>
<td>Int32</td>
</tr>
<tr>
<td>Type: Counter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UE Relocation Show Commands

The following counters are included in the show mme-service statistics output in support of the UE Relocation feature:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total EMM Control Messages</td>
<td></td>
</tr>
<tr>
<td>GUTI Relocation</td>
<td>The total number of EMM GUTI Relocation messages sent for a specific ECM event associated with all MME services on the system.</td>
</tr>
<tr>
<td>Retransmissions</td>
<td>The total number of retransmitted EMM GUTI Relocation messages sent for a specific ECM event associated with all MME services on the system.</td>
</tr>
<tr>
<td>GUTI Reloc Complete</td>
<td>The total number of EMM GUTI Reloc Complete messages received for a specific ECM event associated with all MME services on the system.</td>
</tr>
</tbody>
</table>

EMM (Evolved Mobility Management) Statistics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUTI Relocation</td>
<td>This sub-group displays all GUTI relocation event attempts/successes/failures associated with all MME services on the system.</td>
</tr>
</tbody>
</table>
Chapter 26
VLR Management

This chapter describes various MME features that provide additional resiliency of the Circuit Switched Fallback (CSFB) service, relating to the management of Visitor Location Registers (VLRs).

- Feature Description
- Enabling Active and Passive VLR Offloading
- Enabling UE Detach on VLR Failure or VLR Recover
- Monitoring and Troubleshooting VLR Offload
Feature Description

These features require a valid license key to be installed. Contact your Cisco Account or Support Representative for information on how to obtain a license.

Passive VLR Offloading

The MME provides the ability for an operator to enable or disable 'offload' mode for a specified VLR. This capability enables operators to preemptively move subscribers away from an SGs interface associated with a VLR which is planned for maintenance mode. When this offload command is set on the MME, all sessions matching this VLR are marked with a ‘VLR offload’ flag. During the next UE activity, the MME requires each UE to perform a combined TAU/LAU. This feature is available to all VLRs, both non-pooled VLRs as well as those configured within an MME LAC pool area.

The VLR offload functionality and MME offload functionality cannot be performed at the same time; activation of one prevents activation of the other (and vice versa).

Active VLR Offloading

Active VLR Offloading provides all of the functionality of Passive VLR Offloading, but also actively detaches UEs associated with the VLR during an operator-specified time period. This expedites the process of offloading UEs prior to a planned VLR maintenance event. This feature is available to all VLRs, both non-pooled VLRs as well as those configured within an MME LAC pool area.

The VLR offload functionality and MME offload functionality cannot be performed at the same time; activation of one prevents activation of the other (and vice versa).

UE Detach on VLR Recovery

The MME supports the ability to perform a controlled release of UEs when a failed VLR becomes active again. This feature is available to all VLRs, both non-pooled VLRs as well as those configured within an MME LAC pool area.

This applies to SMS-only capable UEs (UEs that are capable of SMS, but not Circuit Switched Fall Back voice calls) that are currently registered as EPS-Only. This enables the UE to return to a combined attached state to restore SMS services.

UE Detach on VLR Failure

The MME supports the ability to perform a controlled release of UEs when an active VLR connection fails. This applies to CSFB UEs that are currently registered to the VLR that failed. This feature is available to all VLRs, both non-pooled VLRs as well as those configured within an MME LAC pool area.

This enables the UE to return to a combined attached state on a different VLR.
Enabling Active and Passive VLR Offloading

Passive VLR Offloading

The following Exec mode command instructs the MME to mark UEs associated with the specified VLR with a “VLR offload” flag. This enables the MME to preemptively move subscribers away from an VLR which is scheduled to be put in maintenance mode.

```bash
sgs offload sgs-service service-name vlr vlr-name start time-duration 0 [-noconfirm]
```

The following command stops the marking of subscribers associated with the specified VLR to an offload state.

```bash
sgs offload sgs-service service-name vlr vlr-name stop [-noconfirm]
```

Notes:
- A `time-duration` value of 0 enables Passive VLR Offloading only.
- More than one VLR may be offloaded at the same time.
- VLR Offloading and MME offloading cannot be performed at the same time.

Active VLR Offloading

The following Exec mode command instructs the MME to mark UEs associated with the specified VLR with a “VLR offload” flag, and begin detaching these UEs according to the time-duration specified in the command. Affected UEs are detached and required to reattach to another VLR.

```bash
sgs offload sgs-service service-name vlr vlr-name start time-duration <1-3000 minutes> [-noconfirm]
```

The following command stops active VLR offloading for UEs associated with the specified VLR.

```bash
sgs offload sgs-service service-name vlr vlr-name stop [-noconfirm]
```

Notes:
- A `time-duration` value of 1-3000 enables Active VLR Offloading and Passive VLR Offloading. The MME splits this time duration into \( n \) intervals, 5 seconds apart. A maximum of 50 subscribers will be actively detached per interval. For example, a setting of 120 minutes with 60000 subscribers would process all subscribers in 100 minutes. Any subscribers remaining at the expiry of the time-duration will not be detached, but will be marked with the “VLR offload” flag.
- VLR Offloading and MME offloading cannot be performed at the same time.

Verifying VLR Offload Status and Configuration

The following command displays VLR offload statistics for the specified SGs service.

```bash
show sgs-service offload-status service-name <sgs_svc_name>
```
The following sample output shows VLR Offload related statistics.

[local]asr5x00# show sgs-service offload-status service-name sgssvc

<table>
<thead>
<tr>
<th>VLR Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VLR Offload</td>
<td>Yes</td>
</tr>
<tr>
<td>Offloaded Count</td>
<td>31678</td>
</tr>
<tr>
<td>Total Count</td>
<td>43051</td>
</tr>
</tbody>
</table>

VLR Name : vlr1
VLR Offload : Yes
Offloaded Count : 31678
Total Count : 43051
VLR Name : vlr2
VLR Offload : No
Offloaded Count : 0
Total Count : 45789

To clear the counters displayed by the previous command, issue the following command.

clear sgs-service offload-status service-name sgssvc

When Passive or Active VLR Offload is enabled, the following command displays the “VLR Offload” flag for the specified VLR.

show mme-service session vlr-name <vlr_name>

The following output shows the VLR Offload flag enabled.

[local]asr5x00# show mme-service session vlr-name vlr1

CSFB Information:

SGS Assoc State: SGs-ASSOCIATED
SGS Service: sgssvc
VLR: vlr1
LAI: 123:456:200
Pool Area: pooll
Non-Pool Area: N/A
P-TMSI: 0x1

Flags:

VLR Reliable Indicator

VLR Offload

The following command shows the offload state of all VLRs on the system.
show sgs-service vlr-status full

[local]asr5x00# show sgs-service vlr-status full
MMEMGR : Instance 6
MME Reset : Yes
Service ID : 2
Peer ID : 100794369
VLR Name : vlr1
SGS Service Name : test
SGS Service Address : 192.60.60.25
SGS Service Port : 29118
VLR IP Address : 192.60.60.6
VLR Psqsort : 29118
Assoc State : DOWN
Assoc State Up Count : 2

VLR Offload : No

To clear the counters displayed by the previous command, issue either of the following commands. The first command clears statistics for all VLRs, while the second command clears statistics for the specified VLR only.

clear sgs-service vlr-status service-name sgs_svc_name
clear sgs-service vlr-status vlr-name vlr_name
Enabling UE Detach on VLR Failure or VLR Recover

UE Detach on VLR Recovery

The following Exec mode command instructs the MME to automatically perform active recovery of SMS-only capable UEs (UEs that are capable of SMS, but not Circuit Switched Fall Back voice calls) when a failed VLR becomes responsive again.

```
sgs vlr-recover sgs-service sgs_svc_name duration <1-3000 minutes> backoff-timer <1-3000 seconds> [-noconfirm]
```

The following command disables the sgs vlr-recover functionality.

```
no sgs vlr-recover sgs-service sgs_svc_name [-noconfirm]
```

Notes:

- When this command is issued, the MME monitors the availability of all VLRs. If a failed VLRs become available again, the MME attempts to recover (SMS-Only) UEs that failed while the VLR was unavailable with an EPS Detach.
- When a VLR is down, and a UE needs to associate with the VLR that went down, the UE will be downgraded to EPS-Only-Attach when initially attaching. This command should be issued after the VLR recovers. This command detaches UEs that are SMS-Only so that they can reattach and avail of the SMS functionality.
- UEs which required CSFB (voice) and were downgraded as a result of the VLR being down will not be affected by this command. This command is for UEs which have a SMS-Only requirement. This command remains active until it is disabled with the `no sgs vlr-recover` command.
- `duration` – Specifies the amount of time in minutes over which all qualifying UEs will be recovered. The MME splits this duration into \( n \) intervals, 5 seconds apart. A maximum of 50 subscribers are processed per interval. For example, a setting of 2 minutes with 100 subscribers would result in the MME processing all subscribers in the first 2 intervals (10) seconds. Any subscribers remaining at the expiry of the duration will not be processed.
- `backoff-timer` – Specifies the period of time the MME will wait following the detection of a recovered VLR before starting the VLR recovery actions.
- Refer to the `sgs vlr-recover` command in the Exec Mode chapter of the Command Line Interface Reference for more information.

UE Detach on VLR Failure

This functionality can be enabled manually, on an as-needed basis, using an Exec mode command, or it can be made a persistent configuration via an SGS Service Configuration Mode command. The following two sections describe how to configure each method (automatic and manual).

---

**Important:** The MME will report a command line interface error (Invalid operation: VLR already set for failure.) if an attempt is made to configure/enable both methods simultaneously.
Configuring Automatic UE Detach on VLR Failure

The following commands configure the MME to automatically detect a VLR failure and initiate the controlled release of CSFB UEs. The configuration of this feature also allows a UE detach rate (UEs per second) to be defined.

```
configure
 context context_name
 sgs-service sgs_svc_name
 vlr-failure duration minutes backoff-timer seconds detach-rate number [-noconfirm]
 end
end
```

The following commands remove this configuration:

```
configure
 context context_name
 sgs-service sgs_svc_name
 no vlr-failure [-noconfirm]
 end
end
```

Refer to the `vlr-failure` command in the MME SGs Service Configuration Mode Commands chapter of the Command Line Interface Reference for more information.

Manually Enabling UE Detach on VLR Failure

The following Exec mode command instructs the MME to perform controlled release of CSFB UEs connected to a VLR when a VLR becomes unavailable.

```
sgs vlr-failure sgs-service sgs_svc_name duration <1-3000 minutes> backoff-timer <1-3000 seconds> [-noconfirm]
```

This command remains active until it is disabled with the following command:

```
no sgs vlr-failure sgs-service sgs_svc_name [-noconfirm]
```

Refer to the `sgs vlr-failure` command in the Exec Mode (D-S) chapter of the Command Line Interface Reference for more information.

Notes:

- When enabled, the MME monitors the availability of all VLRs. If one or more VLRs become unavailable, the MME performs a controlled release (EPS IMSI detach) for all UEs associated with that VLR. If another VLR is available, the MME sends a combined TA/LA Update with IMSI attach.

- **duration** – Specifies the amount of time in minutes during which all qualifying UEs will be detached.
  The MME splits this duration into $n$ intervals, 5 seconds apart. A maximum of 50 subscribers are processed per interval. For example, a setting of 2 minutes with 100 subscribers would result in the MME processing all
Enabling UE Detach on VLR Failure or VLR Recover

subscribers in the first 2 intervals (10) seconds. Any subscribers remaining at the expiry of the duration will not be processed.

- **backoff-timer** – Specifies the period of time in seconds the MME will wait following the detection of a VLR condition before starting the controlled release of affected UEs.

- **detach-rate** – This optional keyword specifies a maximum number of detaches to perform per 5 second cycle.  
  *Note:* This keyword is available only for the `vlr-failure` command in the SGs Configuration Mode.

  For example, if 12,000 subscribers are to be detached during a 5 minute window (duration = 5 minutes), the MME calculates 60 cycles (5 minutes / 5-second cycles) which results in 200 UEs to detach per cycle.

  If the detach-rate is configured to 100, the MME will only detach 100 per 5 second cycle, resulting in a total of 6000 detaches. Any remaining UEs will remain attached until detached by other means (UE/network detach, etc).

Verifying UE Detach on VLR Failure/Recovery Status and Configuration

Use the following command to display the offload status of all VLRs on the system.

```plaintext
show sgs-service vlr-status full
```

This sample output shows the fields relating to UE Detach on VLR Failure and UE Detach on VLR Recover. Not all fields shown below may be displayed, based on your configuration:

```
[local]asr5x00# show sgs-service vlr-status full

Exec Configured VLR Failure Detach : No Detached Count : 0 Total : 0
SGs Service Configured VLR Failure Detach : Yes Detached Count : 10 Total : 800
VLR Recover Detach : Yes Detached Count : 11 Total : 102
```

To clear the counters displayed by the previous command, issue either of the following commands. The first command clears statistics for all VLRs for the specified SG, while the second command clears statistics for the specified VLR only.

```plaintext
clear sgs-service vlr-status service-name sgs_svc_name
clear sgs-service vlr-status vlr-name vlr_name
```
Monitoring and Troubleshooting VLR Offload

SNMP Traps

The following traps are generated to track conditions relating to VLR associations:

The VLR down trap is raised only after the VLR goes to the DOWN state after being UP. When all VLR’s are down after at least one has been UP, the all VLR’s DOWN trap is raised.

- **starVLRAssocDown / starVLRAssocUp** - indicates a condition when an association of a VLR is down (VLRAssocDown), and when a down association comes back up (VLRAssocUp).
- **starVLRDown / starVLRUp** - indicates a condition where all SCTP associations to a specific VLR are down (VLRDown), and when a down VLR comes back up (VLRUp).
- **starVLRAllAssocDown / starVLRAllAssocDownClear** - indicates a condition when all SCTP associations of all VLRs are down (VLRAllAssocDown), and when a down association comes back up (VLRAllAssocDownClear).

Bulk Statistics

This SGs schema provides operational statistics that can be used for monitoring and troubleshooting the SGs connections on a per-VLR basis.

Refer to the SGs Schema Statistics chapter of the Statistics and Counters Reference for detailed explanations of all bulk statistics provided in this schema.

Show Command(s) and/or Outputs

This section provides information regarding show commands and/or their outputs.

Active and Passive VLR Offload

The following command shows the status of the VLR offload process for the specified SGs service.

```
show sgs-service offload-status service-name sgs_svc_name
```

The following command shows the status and configuration information of all VLRs on the system.

```
show sgs-service vlr-status full
```

UE Detach on VLR Recovery and VLR Failure

The following command shows the statistics for the `sgs vlr-recover` and `sgs vlr-failure` commands.

```
show sgs-service vlr-status full
```

Refer to the `show sgs-service` chapter of the Statistics and Counters Reference for detailed explanations of all information displayed by this command.
Chapter 27
Monitoring the MME Service

This chapter provides information for monitoring service status and performance using the show commands found in the Command Line Interface (CLI). These commands have many related keywords that allow them to provide useful information on all aspects of the system ranging from current software configuration through call activity and status.

The selection of keywords described in this chapter is intended to provide the most useful and in-depth information for monitoring the system. For additional information on these and other show command keywords, refer to the Command Line Interface Reference.

In addition to the CLI, the system supports the sending of Simple Network Management Protocol (SNMP) traps that indicate status and alarm conditions. Refer to the SNMP MIB Reference Guide for a detailed listing of these traps.
Monitoring System Status and Performance

This section contains commands used to monitor the status of tasks, managers, applications and other software components in the system. Output descriptions for most of the commands are located in the Counters and Statistics Reference.

Table 14. System Status and Performance Monitoring Commands

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Session Statistics and Information</td>
<td></td>
</tr>
<tr>
<td>Display Session Resource Status</td>
<td></td>
</tr>
<tr>
<td>View session resource status</td>
<td>show resources session</td>
</tr>
<tr>
<td>Display Historical Session Counter Information</td>
<td></td>
</tr>
<tr>
<td>View all historical information for all sample intervals</td>
<td>show session counters historical</td>
</tr>
<tr>
<td>Display Session Duration Statistics</td>
<td></td>
</tr>
<tr>
<td>View session duration statistics</td>
<td>show session duration</td>
</tr>
<tr>
<td>Display Session State Statistics</td>
<td></td>
</tr>
<tr>
<td>View session state statistics</td>
<td>show session progress</td>
</tr>
<tr>
<td>Display Session Subsystem and Task Statistics</td>
<td></td>
</tr>
<tr>
<td>Refer to the System Software Tasks appendix of the System Administration Guide for additional information on the Session subsystem and its various manager tasks.</td>
<td></td>
</tr>
<tr>
<td>View AAA Manager statistics</td>
<td>show session subsystem facility aaamgr all</td>
</tr>
<tr>
<td>View MME Manager statistics</td>
<td>show session subsystem facility mmemgr all</td>
</tr>
<tr>
<td>View Session Manager statistics</td>
<td>show session subsystem facility sessmgr all</td>
</tr>
<tr>
<td>View MME Application statistics</td>
<td>show logs facility mme-app</td>
</tr>
<tr>
<td>View MME HSS Service facility statistics</td>
<td>show logs facility mme-hss</td>
</tr>
<tr>
<td>View MME miscellaneous logging facility statistics</td>
<td>show logs facility mme-misc</td>
</tr>
<tr>
<td>View MME Demux Manager logging facility statistics</td>
<td>show logs facility mmedemux</td>
</tr>
<tr>
<td>Display Session Disconnect Reasons</td>
<td></td>
</tr>
<tr>
<td>View session disconnect reasons with verbose output</td>
<td>show session disconnect-reasons</td>
</tr>
<tr>
<td>View MME Service Statistics</td>
<td></td>
</tr>
<tr>
<td>Display MME Service Session Statistics</td>
<td></td>
</tr>
<tr>
<td>View MME service session state</td>
<td>show mme-service session full</td>
</tr>
<tr>
<td>View MME service session statistics</td>
<td>show mme-service counters</td>
</tr>
<tr>
<td>To do this:</td>
<td>Enter this command:</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>View MME database statistics for all instances of DB</td>
<td><code>show mme-service db statistics</code></td>
</tr>
<tr>
<td>View individual MME service statistics in concise mode</td>
<td><code>show mme-service statistics mme-service mme_svc_name</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>View HSS Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>View HSS session summary</td>
<td><code>show hss-peer-service session summary all</code></td>
</tr>
<tr>
<td>View HSS session statistics</td>
<td><code>show hss-peer-service statistics all</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>View eGTPC Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>View eGTPC peer information</td>
<td><code>show egtpc peers interface sgw-egress address ip_address</code></td>
</tr>
<tr>
<td>View eGTPC session information</td>
<td><code>show egtpc sessions</code></td>
</tr>
<tr>
<td>View eGTPC session statistics</td>
<td><code>show egtpc statistics</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>View Subscriber Session Trace Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>View session trace statistics for subscriber with specific trace reference id on an MME</td>
<td><code>show session trace subscriber reference-id trace_ref_id network-element mme</code></td>
</tr>
<tr>
<td>View Trace Collection Entity connections and statistics for all network elements</td>
<td><code>show session trace tce-summary</code></td>
</tr>
</tbody>
</table>
Clearing Statistics and Counters

It may be necessary to periodically clear statistics and counters in order to gather new information. The system provides the ability to clear statistics and counters based on their grouping (MME, MME-HSS, MME DB, etc.).

Statistics and counters can be cleared using the CLI `clear` command. Refer to the Command Line Reference for detailed information on using this command.
Chapter 28
Troubleshooting the MME Service

This chapter provides information and instructions for using the system command line interface (CLI) for troubleshooting issues that may arise during service operation.
Test Commands

In the event that an issue was discovered with an installed application or line card, depending on the severity, it may be necessary to take corrective action.

The system provides several redundancy and fail-over mechanisms to address issues with application and line cards in order to minimize system downtime and data loss. These mechanisms are described in the sections that follow.

Using the eGTPC Test Echo Command

This command tests the eGTP service’s ability to exchange eGTPC packets with the specified peer which can be useful for troubleshooting and/or monitoring.

The test is performed by the system sending eGTP-C echo request messages to the specified peer(s) and waiting for a response.

**Important:** This command must be executed from within the context in which at least one eGTP service is configured.

The command has the following syntax:

```
egtpc test echo peer-address peer_ip_address src-address egtp_svc_ip_address
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>peer-address</td>
<td>Specifies that eGTP-C echo requests will be sent to a specific peer (HSS).</td>
</tr>
<tr>
<td>peer_ip_address</td>
<td><em>ip_address</em> is the address of the HSS receiving the requests.</td>
</tr>
<tr>
<td>src-address</td>
<td>Specifies the IP address of a S6a interface configured on the system in eGTP</td>
</tr>
<tr>
<td>egtp_svc_ip_address</td>
<td>service. <strong>NOTE:</strong> The IP address of the system’s S6a interface must be bound</td>
</tr>
<tr>
<td></td>
<td>to a configured eGTP service prior to executing this command.</td>
</tr>
</tbody>
</table>

The following example displays a sample of this command’s output showing a successful eGTPC echo-test from an eGTP service bound to address 192.168.157.32 to an HSS with an address of 192.168.157.2.

```
EGTPC test echo

Peer: 172.10.10.2 Tx/Rx: 1/1 RTT(ms): 2 (COMPLETE) Recovery: 10 (0x0A)
```
Appendix A
Engineering Rules

This section provides engineering rules or guidelines that must be considered prior to configuring the system for your network deployment.

This appendix describes following engineering rules for MME services:

- Service Engineering Rules
- Node Engineering Rules
- APN Engineering Rules
Service Engineering Rules

The following engineering rules apply to the services configurations for the MME system:

- A maximum combined total of 256 services (regardless of type) can be configured per system.

⚠️ **Caution:** Maintaining a large number of services increases the complexity of management and may impact overall system performance (i.e., resulting from such things as system handoffs). Therefore, we recommend that you limit the number of services that you configure and that you talk to your Cisco Service Representative for optimization suggestions and additional information on service limits.

- The total number of entries per table and per chassis is limited to 256.

- Of the 256 possible services, the MME supports a maximum total combination of eight (8) MME-specific services, of the types SGs + MME + SBc + SLs -service, be configured per chassis.

- The maximum number of HSS Peer Services that can be created and configured is 64 HSS Peer Services per MME chassis.

(UI Important: In some cases, two diameter endpoints (S6a and S13) can be configured for a single HSS Peer Service. To ensure peak system performance, we recommend that the total of all Diameter endpoints should be taken into consideration and limited to 64 endpoints.

- **We strongly recommend that service names be unique across the chassis/system configuration.** Even though service names can be identical to those configured in different contexts on the same system, this is not a good practice. Having services with the same name can lead to confusion, difficulty troubleshooting problems, and make it difficult to understand the outputs of show commands.
Node Engineering Rules

The following engineering rules apply regarding the number of nodes supported on the system:

**eNodeBs:**

- **Release 17.0 and higher:** The MME supports a maximum of 64,000 eNodeB connections on the ASR 5500 platform with a fully loaded system (chassis). The maximum number of MME Managers has been increased to 16 in order to support this increase in eNodeB connections.

  On the ASR 5000 platform the number of supported eNodeBs and MME Managers has not changed (32,000 and 8 respectively).

- **Previous Releases:** The MME supports a maximum of 32,000 eNodeB connections.
APN Engineering Rules

The following engineering rules apply to APNs:

- APNs must be configured within the context used for authentication.
- A maximum of 1,024 APNs per system can be configured.
- A maximum of 300 entries can be defined for an APN Remap Table.