CONTENTS

About this Guide
- Conventions Used .. xvii
- Supported Documents and Resources xviii
- Related Documentation ... xviii
- Contacting Customer Support xviii

System Operation and Configuration
- Terminology .. 20
 - Contexts ... 20
 - Ports .. 20
 - Logical Interface .. 20
 - Management Interface .. 21
 - Bindings ... 21
 - Services .. 21
 - AAA Servers .. 22
 - Subscribers .. 22
- How the System Selects Contexts 23
 - Context Selection for Context-level Administrative User Sessions ... 23
 - Context Selection for Subscriber Sessions 25
- Understanding the ASR 5500 Boot Process 26
- Understanding Configuration Files 28
- IP Address Notation .. 30
 - IPv4 Dotted-Decimal Notation 30
 - IPv6 Colon-Separated-Hexadecimal Notation 30
 - CIDR Notation ... 30
- Alphanumeric Strings .. 32
- Character Set ... 32
- Quoted Strings .. 33

Getting Started
- ASR 5500 Configuration .. 36
- Using the ASR 5500 Quick Setup Wizard 36
- Using the CLI for Initial Configuration 42
- Configuring the System for Remote Access 44
- Configuring the Management Interface with a Second IP Address ... 46

System Settings
- Configuring a Second Management Interface 48
- Verifying and Saving Your Interface and Port Configuration ... 49
- Configuring System Timing .. 50
 - Setting the System Clock and Time Zone 50
 - Verifying and Saving Your Clock and Time Zone Configuration ... 50
 - Configuring Network Time Protocol Support 51
 - Configuring NTP Servers with Local Sources 52
 - Using a Load Balancer ... 52
 - Verifying the NTP Configuration 52
- Enabling CLI Timestamping ... 54
- Configuring System Administrative Users 54
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Context-level Administrative Users</td>
<td>54</td>
</tr>
<tr>
<td>Configuring Context-level Security Administrators</td>
<td>54</td>
</tr>
<tr>
<td>Configuring Context-level Administrators</td>
<td>55</td>
</tr>
<tr>
<td>Configuring Context-level Operators</td>
<td>55</td>
</tr>
<tr>
<td>Configuring Context-level Inspectors</td>
<td>56</td>
</tr>
<tr>
<td>Verifying Context-level Administrative User Configuration</td>
<td>56</td>
</tr>
<tr>
<td>Configuring Local-User Administrative Users</td>
<td>57</td>
</tr>
<tr>
<td>Verifying Local-User Configuration</td>
<td>57</td>
</tr>
<tr>
<td>Updating Local User Database</td>
<td>57</td>
</tr>
<tr>
<td>Restricting User Access to a Specified Root Directory</td>
<td>58</td>
</tr>
<tr>
<td>Configuring an SFTP root Directory</td>
<td>58</td>
</tr>
<tr>
<td>Associating an SFTP root Directory with a Local User</td>
<td>58</td>
</tr>
<tr>
<td>Associating an SFTP root directory with an Administrator</td>
<td>59</td>
</tr>
<tr>
<td>Associating an SFTP root directory with a Config Administrator</td>
<td>59</td>
</tr>
<tr>
<td>Configuring TACACS+ for System Administrative Users</td>
<td>60</td>
</tr>
<tr>
<td>Operation</td>
<td>60</td>
</tr>
<tr>
<td>User Account Requirements</td>
<td>60</td>
</tr>
<tr>
<td>TACACS+ User Account Requirements</td>
<td>60</td>
</tr>
<tr>
<td>User Account Requirements</td>
<td>61</td>
</tr>
<tr>
<td>Configuring TACACS+ AAA Services</td>
<td>62</td>
</tr>
<tr>
<td>Verifying the TACACS+ Configuration</td>
<td>63</td>
</tr>
<tr>
<td>Configuring a Chassis Key</td>
<td>64</td>
</tr>
<tr>
<td>Configuring MIO/UMIO Port Redundancy</td>
<td>65</td>
</tr>
<tr>
<td>Configuring MIO/UMIO Port Redundancy Auto-Recovery</td>
<td>67</td>
</tr>
<tr>
<td>Verifying Port Redundancy Auto-Recovery</td>
<td>67</td>
</tr>
<tr>
<td>Configuring Data Processing Card (DPC) Availability</td>
<td>69</td>
</tr>
<tr>
<td>Verifying Card Configurations</td>
<td>69</td>
</tr>
<tr>
<td>Configuring ASR 5500 Link Aggregation</td>
<td>70</td>
</tr>
<tr>
<td>LAG and Master Port</td>
<td>70</td>
</tr>
<tr>
<td>LAG and Port Redundancy</td>
<td>70</td>
</tr>
<tr>
<td>LAG and Multiple Switches</td>
<td>70</td>
</tr>
<tr>
<td>Multiple Switches with L2 Redundancy</td>
<td>71</td>
</tr>
<tr>
<td>Port States for Auto-Switch</td>
<td>71</td>
</tr>
<tr>
<td>Hold Time</td>
<td>71</td>
</tr>
<tr>
<td>Preferred Slot</td>
<td>72</td>
</tr>
<tr>
<td>Auto-Switch Criteria</td>
<td>72</td>
</tr>
<tr>
<td>Link Aggregation Control</td>
<td>72</td>
</tr>
<tr>
<td>Redundancy Options</td>
<td>73</td>
</tr>
<tr>
<td>Horizontal Link Aggregation with Two Ethernet Switches</td>
<td>74</td>
</tr>
<tr>
<td>Link Aggregation Status</td>
<td>74</td>
</tr>
<tr>
<td>Configuring a Demux Card</td>
<td>75</td>
</tr>
<tr>
<td>Overview</td>
<td>75</td>
</tr>
<tr>
<td>MIO/UMIO Demux Restrictions</td>
<td>75</td>
</tr>
<tr>
<td>Configuration</td>
<td>76</td>
</tr>
<tr>
<td>Management Settings</td>
<td>77</td>
</tr>
<tr>
<td>ORBEM and the Web Element Manager</td>
<td>78</td>
</tr>
<tr>
<td>Configuring ORBEM Client and Port Parameters</td>
<td>78</td>
</tr>
<tr>
<td>Configuring IIOP Transport Parameters</td>
<td>79</td>
</tr>
<tr>
<td>Verifying ORBEM Parameters</td>
<td>80</td>
</tr>
<tr>
<td>SNMP Support</td>
<td>81</td>
</tr>
<tr>
<td>Configuring SNMP and Alarm Server Parameters</td>
<td>81</td>
</tr>
<tr>
<td>Verifying SNMP Parameters</td>
<td>82</td>
</tr>
<tr>
<td>Controlling SNMP Trap Generation</td>
<td>83</td>
</tr>
</tbody>
</table>
Monitoring the System .. 129

SNMP Notifications ... 130
Monitoring System Status and Performance 130
Clearing Statistics and Counters .. 131
Monitoring ASR 5500 Hardware Status 132
Bulk Statistics ... 135
 Configuring Communication with the Collection Server ... 136
 Configuring Standard Settings .. 136
 Configuring Optional Settings ... 136
 Configuring Bulk Statistic Schemas ... 137
 Verifying Your Configuration .. 137
 Saving Your Configuration .. 138
 Viewing Collected Bulk Statistics Data .. 139
 Manually Gathering and Transferring Bulk Statistics .. 140
 Clearing Bulk Statistics Counters and Information ... 140
 Bulk Statistics Event Log Messages ... 140

System Logs ... 141
 System Log Types .. 142
 Configuring Event Logging Parameters .. 143
 Configuring Event Log Filters ... 143
 Configuring syslog Servers .. 144
 Configuring Active Logs .. 145
 Specifying Facilities .. 146
 Configuring Trace Logging .. 154
 Configuring Monitor Logs .. 155
 Enabling Monitor Logs .. 155
 Disabling Monitor Logs ... 155
 Viewing Logging Configuration and Statistics .. 156
 Viewing Event Logs Using the CLI .. 157
 Configuring and Viewing Crash Logs ... 158
 Crash Logging Architecture .. 158
 Configuring Software Crash Log Destinations ... 159
 Viewing Abridged Crash Log Information Using the CLI ... 160
 Saving Log Files .. 161
 Event ID Overview ... 162
 Event Severities ... 170
 Understanding Event ID Information in Logged Output .. 171

Troubleshooting ... 173
 Detecting Faulty Hardware ... 174
 Licensing Issues ... 174
 Using the CLI To View Status LEDs ... 174
 Checking the LEDs on the PFU ... 175
 Checking the LEDs on the MIO and UMIO ... 176
 MIO/UMIO Run/Fail LED States ... 176
 MIO/UMIO Active LED States ... 177
 MIO/UMIO Redundancy LED States ... 178
 MIO/UMIO Master LED States .. 178
 MIO/UMIO Busy LED States .. 179
 MIO/UMIO – Interface Link LED States ... 179
 MIO/UMIO – Interface Activity LED States .. 179
 Checking the LEDs on the DPC and UDPC .. 180
 DPC/UDPC Run/Fail LED States .. 180
 DPC/UDPC Active LED States ... 181
 DPC/UDPC Redundancy LED States ... 182
 Checking the LEDs on the FSC ... 182
 FSC Run/Fail LED States ... 183
 FSC Active LED States .. 184
FSC Redundancy LED States ... 184
FSC Drive n Activity LED States ... 185
Checking the LEDs on the SSC ... 186
SSC Run/Fail LED States ... 186
SSC Active LED States ... 187
SSC Redundancy LED States ... 188
SSC System Status LED States ... 188
SSC System Service LED States ... 189
Testing System Alarm Outputs ... 189
Taking Corrective Action ... 190
Switching MIO/UMIOs ... 190
Busying Out a DPC/UDPC ... 190
Migrating a DPC/UDPC ... 191
Halting Cards ... 191
 Initiate a Card Halt ... 192
 Restore a Previously Halted Card .. 192
Verifying Network Connectivity ... 193
 Using the ping or ping6 Command ... 193
 Syntax .. 193
 Troubleshooting .. 194
 Using the traceroute or traceroute6 Command 194
 traceroute – IPv4 .. 194
 traceroute6 – IPv6 ... 194
 Viewing IP Routes ... 195
 Viewing the Address Resolution Protocol Table 195
Using the System Diagnostic Utilities ... 197
 Using the Monitor Utility .. 197
 Using the Protocol Monitor .. 197
 Using the Protocol Monitor for a Specific Subscriber 198
 Using the DHCP Testing Tool ... 200
System Recovery .. 201
 Prerequisites .. 202
 Console Access .. 202
 Boot Image .. 202
 Accessing the boot CLI .. 203
 Initiate a Reboot ... 203
 Interrupt the Boot Sequence .. 203
 Enter CLI Mode .. 203
 boot Command Syntax .. 204
 Booting from a Selected Image ... 205
 Boot Using No Configuration File ... 205
 Boot Using A Specified Configuration File 205
Access Control Lists .. 207
 Overview .. 208
 Understanding ACLs ... 209
 Rule(s) ... 209
 Actions .. 209
 Criteria .. 209
 Rule Order .. 210
 Configuring ACLs on the System ... 211
 Creating ACLs ... 211
 Configuring Action and Criteria for Subscriber Traffic 212
 Configuring an Undefined ACL ... 212
Contents

Subscriber Rules .. 347
Service Rules .. 347
Access Control List (ACL) Engineering Rules .. 348
ASR 5500 SDR CLI Command Strings ... 349
About this Guide

This preface describes the System Administration Guide, how it is organized and its document conventions.

The System Administration Guide describes how to generally configure and maintain StarOS running on an ASR 5500 platform. It also includes information on monitoring system performance and troubleshooting.
Conventions Used

The following tables describe the conventions used throughout this documentation.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![info]</td>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td>![caution]</td>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td>![warning]</td>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text represented as a screen display</td>
<td>This typeface represents displays that appear on your terminal screen, for example: Login:</td>
</tr>
<tr>
<td>Text represented as commands</td>
<td>This typeface represents commands that you enter, for example: show ip access-list This document always gives the full form of a command in lowercase letters. Commands are not case sensitive.</td>
</tr>
<tr>
<td>Text represented as a command variable</td>
<td>This typeface represents a variable that is part of a command, for example: show card slot_number slot_number is a variable representing the desired chassis slot number.</td>
</tr>
<tr>
<td>Text represented as menu or sub-menu names</td>
<td>This typeface represents menus and sub-menus that you access within a software application, for example: Click the File menu, then click New</td>
</tr>
</tbody>
</table>
Supported Documents and Resources

Related Documentation

The most up-to-date information for this product is available in the product *Release Notes* provided with each software release.

The following user documents are available on www.cisco.com:

- ASR 5500 Installation Guide
- AAA Interface Administration and Reference
- Command Line Interface Reference
- GTPP Interface Administration and Reference
- IPSec Reference
- Release Change Reference
- SNMP MIB Reference
- Statistics and Counters Reference
- Thresholding Configuration Guide
- Web Element Manager Installation and Administration Guide
- Product-specific and feature-specific Administration guides

Contacting Customer Support

Use the information in this section to contact customer support.

Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
The ASR 5500 is designed to provide subscriber management services for high-capacity 4G wireless networks.

Before you connect to the command line interface (CLI) and begin system configuration, you must understand how the system supports these services. This chapter provides terminology and background information to consider before you configure the system. The following sections are included:

- Terminology
- How the System Selects Contexts
- Understanding the ASR 5500 Boot Process
- Understanding Configuration Files
- IP Address Notation
- Alphanumeric Strings
Terminology

This section defines important terms used throughout this guide.

Contexts

A context is a logical grouping or mapping of configuration parameters that pertain to various physical ports, logical IP interfaces, and services. A context can be thought of as a virtual private network (VPN).

The system supports the configuration of multiple contexts. Each context is configured and operates independently of the others. Once a context has been created, administrative users can configure services, logical IP interfaces, and subscribers for that context and then bind the logical interfaces to physical ports.

You can also assign a domain alias to a context; if a subscriber’s domain name matches one of the configured alias names for a context, that context is used.

Ports

Ports are the physical connectors on line cards that support remote access and subscriber traffic. Port configuration includes traffic profiles, data encapsulation methods, media type, and other information for physical connectivity between the system and the rest of the network.

Ports are identified by the chassis slot number for the Management Input/Output (MIO) or Management I/O Universal Card (UMIO) card, followed by the physical connector number. For example, Port 5/10 identifies connector number 10 on the MIO/UMIO card in slot 5.

Associate ports with contexts through bindings. For additional information on bindings, refer to the Bindings section below. You can configure each physical port to support multiple logical IP interfaces, each with up to 17 IP addresses (one primary and up to 16 secondaries).

For complete information on line cards and port assignments, refer to the ASR 5500 Installation Guide.

Important: UMIO cards and UDPCs are direct replacements for MIO cards and DPCs. However, a special Universal PID license must be purchased and installed on the chassis for each installed UMIO and UDPC. Contact your Cisco account representative for additional licensing information.

Important: Throughout this guide, any reference to an MIO card or DPC is assumed to also refer to the UMIO and UDPC respectively.

Logical Interface

You must associate a port with a virtual circuit or tunnel called a logical interface before the port can allow the flow of user data. A logical interface within the system is the assignment of a virtual router instance that provides higher-layer protocol transport, such as Layer 3 IP addressing. Interfaces are configured as part of the VPN context and are independent from the physical port that will be used to bridge the virtual interfaces to the network.

There are several types of logical interfaces to configure to support Simple and Mobile IP data applications.
Management Interface

This interface provides the point of attachment to the management network. The interface supports remote access to the command line interface (CLI). It also supports Common Object Request Broker Architecture (CORBA)-based management via the Web Element Manager application, and event notification via the Simple Network Management Protocol (SNMP).

Define management interfaces in the local context and bind them to the ports on the Management Input/Output (MIO) cards.

Bindings

A binding is an association between elements within the system. There are two types of bindings: static and dynamic. Static binding is accomplished through system configuration. Static bindings associate:

- A specific logical interface (configured within a particular context) to a physical port. Once the interface is bound, traffic can flow through the context as if it were any physically-defined circuit. Static bindings support any encapsulation method over any interface and port type.
- A service to an IP address assigned to a logical interface within the same context. This allows the interface to take on the characteristics (that is, support the protocols) required by the service.

Dynamic binding associates a subscriber to a specific egress context based on the configuration of their profile or system parameters. This provides a higher degree of deployment flexibility, as it allows a wireless carrier to support multiple services and facilitates seamless connections to multiple networks.

Management ports can only be bound in the local context. Traffic or subscriber ports can only be bound in a non-local context.

Services

Configure services within a context to enable certain functionality. The following are examples of services you can configure on the system, subject to licensing availability and platform type:

- Gateway GPRS Support Node (GGSN) services
- Serving GPRS Support Node (SGSN) Services
- Packet Data Serving Node (PDSN) services
- Home Agent (HA) services
- Layer 2 Tunneling Protocol Access Concentrator (LAC) services
- Dynamic Host Control Protocol (DHCP) services
- PDN Gateway (P-GW) Services
- Serving Gateway (S-GW) Services
- Intelligent Policy Control Function (IPCF) Services (PCC-Service, PCC-Policy, PCC-AF)
AAA Servers

Authentication, Authorization and Accounting (AAA) servers store profiles, perform authentication, and maintain accounting records for each mobile data subscriber. The AAA servers communicate with the system over an AAA interface. The system supports the configuration of up to 128 interfaces to AAA servers.

It is important to note that for Mobile IP, there can be Foreign AAA (FAAA) and Home AAA (HAAA) servers. FAAA servers typically reside in the carrier’s network. HAAA servers could be owned and controlled by either the carrier or the home network. If the HAAA server is owned and controlled by the home network, accounting data is transferred to the carrier via an AAA proxy server.

Important: Mobile IP support depends on the availability and purchase of a standalone license or a license bundle that includes Home Agent (HA).

Subscribers

Subscribers are the end-users of the service; they gain access to the Internet, their home network, or a public network through the system.

There are three primary types of subscribers:

- **RADIUS-based Subscribers:** The most common type of subscriber, these users are identified by their International Mobile Subscriber Identity (IMSI) number, an Electronic Serial Number (ESN), or by their domain name or user name. They are configured on and authenticated by a RADIUS AAA server.

 Upon successful authentication, various attributes that are contained in the subscriber profile are returned. The attributes dictate such things as session parameter settings (for example, protocol settings and IP address assignment method), and what privileges the subscriber has.

 Important: Attribute settings received by the system from a RADIUS AAA server take precedence over local-subscriber attributes and parameters configured on the system.

- **Local Subscribers:** These are subscribers, primarily used for testing purposes, that are configured and authenticated within a specific context. Unlike RADIUS-based subscribers, the local subscriber’s user profile (containing attributes like those used by RADIUS-based subscribers) is configured within the context where they are created.

 When local subscriber profiles are first created, attributes for that subscriber are set to the system’s default settings. The same default settings are applied to all subscriber profiles, including the subscriber named `default` which is created automatically by the system for each system context. When configuring local profile attributes, the changes are made on a subscriber-by-subscriber basis.

 Important: Attributes configured for local subscribers take precedence over context-level parameters. However, they could be over-ridden by attributes returned from a RADIUS AAA server.

- **Management Subscribers:** A management user is an authorized user who can monitor, control, and configure the system through the CLI or Web Element Manager application. Management is performed either locally, through the system Console port, or remotely through the use of the Telnet or secure shell (SSH) protocols. Management users are typically configured as a local subscriber within the Local context, which is used exclusively for system management and administration. As with a local subscriber, a management subscriber’s...
user profile is configured within the context where the subscriber was created (in this case, the Local context). However, management subscribers may also be authenticated remotely via RADIUS, if an AAA configuration exists within the local context, or TACACS+.

How the System Selects Contexts

This section describes the process that determines which context to use for context-level administrative users or subscriber sessions. Understanding this process allows you to better plan your configuration in terms of how many contexts and interfaces you need to configure.

Context Selection for Context-level Administrative User Sessions

The system comes configured with a context called local that you use specifically for management purposes. The context selection process for context-level administrative users (those configured within a context) is simplified because the management ports on the MIO are associated only with the Local context. Therefore, the source and destination contexts for a context-level administrative user responsible for managing the entire system should always be the local context.

A context-level administrative user can also connect through other interfaces on the system and still have full system management privileges.

A context-level administrative user can be created in a non-local context. These management accounts have privileges only in the context in which they are created. This type of management account can connect directly to a port in the context in which they belong, if local connectivity is enabled (SSHD, for example) in that context.

For all FTP or SFTP connections, you must connect through an MIO management interface. If you SFTP or FTP as a non-local context account, you must use the username syntax of username@contextname.

The context selection process becomes more involved if you are configuring the system to provide local authentication or work with a AAA server to authenticate the context-level administrative user.

The system gives you the flexibility to configure context-level administrative users locally (meaning that their profile will be configured and stored in its own memory), or remotely on an AAA server. If a locally-configured user attempts to log onto the system, the system performs the authentication. If you have configured the user profile on an AAA server, the system must determine how to contact the AAA server to perform authentication. It does this by determining the AAA context for the session.

The following table and flowchart describe the process that the system uses to select an AAA context for a context-level administrative user. Items in the table correspond to the circled numbers in the flowchart.
How the System Selects Contexts

Figure 1. Context-level Administrative User AAA Context

1. Local Authentication enabled in local context?
 - Yes
 - No

2. Domain part of username?
 - Yes
 - No

3. Default Domain context configured for admin?
 - Yes
 - No

4. Last Resort context configured for admin?
 - Yes
 - No

5. Does domain match a configured context or domain?
 - Yes
 - No

6. Use AAA policies defined within that context.

7. Does Last Resort context match a configured context or domain?
 - Yes
 - No

8. Use AAA policies defined within the Last Resort context.

Use AAA policies defined within the local context.
Table 1. Context-level Administrative User AAA Context Selection

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>During authentication, the system determines whether local authentication is enabled in the local context. If it is, the system attempts to authenticate the administrative user in the local context. If it is not, proceed to item 2 in this table. If the administrative user’s username is configured, authentication is performed by using the AAA configuration within the local context. If not, proceed to item 2 in this table.</td>
</tr>
<tr>
<td>2</td>
<td>If local authentication is disabled on the system or if the administrative user’s username is not configured in the local context, the system determines if a domain was received as part of the username. If there is a domain and it matches the name of a configured context or domain, the systems uses the AAA configuration within that context. If there is a domain and it does not match the name of a configured context or domain, Go to item 4 in this table. If there is no domain as part of the username, go to item 3 in this table.</td>
</tr>
<tr>
<td>3</td>
<td>If there was no domain specified in the username or the domain is not recognized, the system determines whether an AAA Administrator Default Domain is configured. If the default domain is configured and it matches a configured context, the AAA configuration within the AAA Administrator Default Domain context is used. If the default domain is not configured or does not match a configured context or domain, go to item 4 item below.</td>
</tr>
<tr>
<td>4</td>
<td>If a domain was specified as part of the username but it did not match a configured context, or if a domain was not specified as part of the username, the system determines if the AAA Administrator Last Resort context parameter is configured. If a last resort, context is configured and it matches a configured context, the AAA configuration within that context is used. If a last resort context is not configured or does not match a configured context or domain, the AAA configuration within the local context is used.</td>
</tr>
</tbody>
</table>

Context Selection for Subscriber Sessions

The context selection process for a subscriber session is more involved than that for the administrative users. Subscriber session context selection information for specific products is located in the Administration Guide for the individual product.
Understanding the ASR 5500 Boot Process

Part of the configuration process requires that you allocate hardware resources for processing and redundancy. Therefore, before you configure the system, it is important to understand the boot process which determines how the hardware components are brought on line.

The following flowchart shows each step in the startup process. For additional information about system configuration files, refer to the Understanding Configuration Files section.

The following steps describe the system’s boot process:

Step 1 When power is first applied to the chassis, or after a reboot, only the MIO/UMIOs in slot 5 and slot 6 receive power.

Step 2 During the startup process, the MIO/UMIO performs a series of power-on self tests (POSTs) to ensure that its hardware is operational.

Step 3 If the MIO/UMIO in slot 5 successfully executes all POSTs, it becomes the active MIO. The MIO in slot 6 becomes the standby card. If there is a problem with the MIO in slot 5, the MIO in slot 6 becomes the active MIO.

Step 4 The active MIO/UMIO begins loading the operating system software image designated in the boot stack. The boot stack entries are contained in the boot.sys file that resides on flash memory on the MIO/UMIO. The standby MIO/UMIO observes the active card startup. If the file on the active MIO/UMIO is loads normally, the standby MIO/UMIO boots from the active card image. If the active MIO/UMIO experiences problems during this phase, the standby MIO/UMIO...
loads its software image designated by its own boot stack entry in its boot.sys file and takes over control of the system as the active MIO/UMIO.

Step 5 After the software image is loaded into its memory, the active MIO/UMIO determines whether other cards are installed in the chassis by applying power to the other chassis slots and signalling them. If the chassis slot contains a card, power is left on to that slot. All empty slots are powered off.

Important: If no MIOs are installed or if both fail to boot successfully, no other card installed in the system will boot.

Step 6 When power is applied to the DPC/UDPCs installed in the system, they each perform their own series of POSTs.

Step 7 After successful POST, each DPC/UDPC enters standby mode.

Step 8 After entering the standby mode, each of the control processors (CPs) on the DPC/UDPC communicate with the active MIO/UMIO to receive the appropriate code.

Step 9 Upon successful loading of the software image, the system loads a configuration file designated in the boot stack (boot.sys file). If this is the first time the system is powered on and there is no configuration file, the active MIO/UMIO invokes the system's Quick Setup wizard. Use the Quick Setup wizard to configure basic system parameters for communication across the management network.

The wizard creates a configuration file (system.cfg) that you can use as a starting point for subsequent configurations. This allows you to configure the system automatically by applying the configuration file during any subsequent boot. For additional information about system configuration files, refer to the *Understanding Configuration Files* section.
Understanding Configuration Files

The system supports the use of a file or script to modify configurable parameters. Using a file for offline system configuration reduces the time it takes to configure parameters on multiple systems.

A system configuration file is an ASCII text file that contains commands and configuration parameters. When you apply the configuration file, the system parses through the file line-by-line, testing the syntax and executing the command. If the syntax is incorrect, a message is displayed to the CLI and the system proceeds to the next command. Lines that begin with # are considered remarks and are ignored.

Important: Pipes (|), used with the `grep` and `more` keywords, can potentially cause errors in configuration file processing. Therefore, the system automatically ignores keywords with pipes during processing.

Important: Always save configuration files in UNIX format. Failure to do so can result in errors that prevent configuration file processing.

The commands and configuration data within the file are organized and formatted just as they would be if they were being entered at the CLI prompt. For example, if you wanted to create a context called `source` in the CLI, you would enter the following commands at their respective prompts:

```
[local] host_name# config
[local] host_name(config)# context source
[source] host_name(config-ctx)# end
```

To create a context called `source` using a configuration file, you would use a text editor to create a new file that consists of the following:

```
config

    context source

end
```

There are several important things to consider when using configuration files:

- The system automatically applies a configuration file at the end of the boot process. After the system boots up for the first time, a configuration file that you have created and that is tailored to your network needs, can be applied. To make the system use your configuration file, modify the system’s boot parameters according to the instructions located in Software Management Operations.

- In addition to being applied during the boot process, you can also apply configuration files manually at any time by executing the appropriate commands at the CLI prompt. Refer to the instructions in Software Management Operations.

Important: When you apply a configuration file after the boot process, the file does not delete the configuration loaded as part of the boot process. Only those commands that are duplicated are overwritten.
• Configuration files can be stored in any of the following locations:
 • **USB Memory Stick**: Supported via a USB port on the active MIO (/usb1).
 • **Network Server**: Any workstation or server on the network that the system can access using the Secure File Transfer Protocol (SFTP). This is recommended for large network deployments in which multiple systems require the same configuration.
 • `/flash`: a solid-state device with limited storage.
 • `/hd-raid`: internal RAID storage.
• Each time you save configuration changes you made during a CLI session, you can save those settings to a file which you can use as a configuration file.
IP Address Notation

When configuring a port interface via the CLI you must enter an IP address. The CLI always accepts an IPv4 address, and in some cases accepts an IPv6 address as an alternative.

For some configuration commands, the CLI also accepts CIDR notation. Always view the online Help for the CLI command to verify acceptable forms of IP address notation.

IPv4 Dotted-Decimal Notation

An Internet Protocol Version 4 (IPv4) address consists of 32 bits divided into four octets. These four octets are written in decimal numbers, ranging from 0 to 255, and are concatenated as a character string with full stop delimiters (dots) between each number.

For example, the address of the loopback interface, usually assigned the host name localhost, is 127.0.0.1. It consists of the four binary octets 01111111, 00000000, 00000000, and 00000001, forming the full 32-bit address.

IPv4 allows 32 bits for an Internet Protocol address and can, therefore, support $2^{32} (4,294,967,296)$ addresses.

IPv6 Colon-Separated-Hexadecimal Notation

An Internet Protocol Version 6 (IPv6) address has two logical parts: a 64-bit network prefix, and a 64-bit host address part. An IPv6 address is represented by eight groups of 16-bit hexadecimal values separated by colons (:).

A typical example of a full IPv6 address is 2001:0db8:85a3:0000:0000:8a2e:0370:7334

The hexadecimal digits are case-insensitive.

The 128-bit IPv6 address can be abbreviated with the following rules:

- Leading zeroes within a 16-bit value may be omitted. For example, the address fe80:0000:0000:0000:0202:b3ff:fe1e:8329 may be written as fe80:0:0:0:202:b3ff:fe1e:8329
- One group of consecutive zeroes within an address may be replaced by a double colon. For example, fe80:0:0:0:202:b3ff:fe1e:8329 becomes fe80::202:b3ff:fe1e:8329

IPv6 allows 128 bits for an Internet Protocol address and can support $2^{128} (340,282,366,920,938,000,000,000,000,000,000,000,000,000,000,000)$ internet addresses.

CIDR Notation

Classless Inter-Domain Routing (CIDR) notation is a compact specification of an Internet Protocol address and its associated routing prefix. It is used for both IPv4 and IPv6 addressing in networking architectures.

CIDR is a bitwise, prefix-based standard for the interpretation of IP addresses. It facilitates routing by allowing blocks of addresses to be grouped into single routing table entries. These groups (CIDR blocks) share an initial sequence of bits in the binary representation of their IP addresses.

CIDR notation is constructed from the IP address and the prefix size, the latter being the number of leading 1 bits of the routing prefix. The IP address is expressed according to the standards of IPv4 or IPv6. It is followed by a separator character, the slash (/) character, and the prefix size expressed as a decimal number.
The address may denote a single, distinct, interface address or the beginning address of an entire network. In the latter case the CIDR notation specifies the address block allocation of the network. The maximum size of the network is given by the number of addresses that are possible with the remaining, least-significant bits below the prefix. This is often called the host identifier.

For example:
- the address specification 192.168.100.1/24 represents the given IPv4 address and its associated routing prefix 192.168.100.0, or equivalently, its subnet mask 255.255.255.0.
- the IPv4 block 192.168.0.0/22 represents the 1024 IPv4 addresses from 192.168.0.0 to 192.168.3.255.
- the IPv6 block 2001:DB8::/48 represents the IPv6 addresses from 2001:DB8:0:0:0:0:0:0 to 2001:DB8:0:FFFF:FFFF:FFFF:FFFF.
- ::1/128 represents the IPv6 loopback address. Its prefix size is 128, the size of the address itself, indicating that this facility consists of only this one address.

The number of addresses of a subnet defined by the mask or prefix can be calculated as 2, in which the address size for IPv4 is 32 and for IPv6 is 128. For example, in IPv4, a mask of /29 gives 8 addresses.
Alphanumeric Strings

Some CLI commands require the entry of an alphanumeric string to define a value. The string is a contiguous collection of alphanumeric characters with a defined minimum and maximum length (number of characters).

Character Set

The alphanumeric character set is a combination of alphabetic (Latin letters) and/or numeric (Arabic digits) characters. The set consists of the numbers 0 to 9, letters A to Z (uppercase) and a to z (lowercase). The underscore character (_) and dash/hyphen (-) are also considered to be members of the alphanumeric set of characters.

Blank spaces (whitespaces or SPACE characters) should mostly be avoided in alphanumeric strings, except in certain ruledef formats, such as time/date stamps.

Do not use any of the following “special” characters in an alphanumeric string except as noted below:

- & (ampersand)
- ’ (apostrophe)
- < > (arrow brackets) [see exception below]
- * (asterisk) [see wildcard exception below]
- { } (braces)
- [] (brackets)
- $ (dollar sign) [see wildcard exception below]
- ! (exclamation point) [see exception below]
- () [parentheses]
- % (percent) [see exception below]
- # (pound sign) [see exception below]
- ? (question mark)
- ' (quotation mark – single)
- " (quotation mark – double)
- ; (semicolon)
- \ (slash – backward) [see exception below]
- / (slash – forward) [see exception below]
- ~ (tilde)
- | (vertical bar) [see exception below]

The following characters may appear in strings entered in ruledefs, APNs, license keys and other configuration/display parameters:

- < > (arrow brackets) [less than or greater than]
- * (asterisk) [wildcard]
- : (colon)
- $ (dollar sign) [wildcard]
Alphanumeric Strings

- . (dot)
- = (equals sign)
- ! (exclamation point)
- % (percent)
- / (slash – forward)
- | (vertical bar)

The following characters may be used to delimit the domain from the user name for global AAA functions:
- @ (at sign)
- - (dash or hyphen)
- # (hash or pound sign)
- % [percent]
- \ (slash – backward) [must be entered as double slash “\\”]
- / (slash – forward)

Quoted Strings

If descriptive text requires the use of spaces between words, the string must be entered within double quotation marks (“ “). For example:

 interface “Rack 3 Chassis 1 port 5/2”
Chapter 2
Getting Started

Following successful installation of the system hardware, you must configure a set of software parameters. You then save these settings in a system configuration file that is launched whenever the system is reloaded.

This segment provides instructions for connecting to the console port and creating the initial local context management configuration. It includes the following sections:

- ASR 5500 Configuration
- Using the ASR 5500 Quick Setup Wizard
- Using the CLI for Initial Configuration
- Configuring the System for Remote Access
- Configuring the Management Interface with a Second IP Address
ASR 5500 Configuration

The first time power is applied to the system, the active Management Input/Output (MIO) card (typically the one installed in chassis slot 5) automatically launches a Quick Setup Wizard on its console port. This wizard guides you through the initial configuration of the system.

The serial console port (logical port 3) is located on the front panel of the MIO card.

You can choose not to use the wizard and perform the initial configuration by issuing commands via the command line interface (CLI). You can manually launch the wizard by running the `setup` command in the Exec mode. Refer to the Command Line Interface Reference for details.

The following sections describe how to configure the system.

Using the ASR 5500 Quick Setup Wizard

The Quick Setup Wizard consists of three parts:

- Configuring a context-level security administrator and hostname
- Configuring the Ethernet interface for out-of-band (OOB) management
- Configuring the system for remote CLI access via Telnet, Secure Shell (SSH), or File Transfer Protocol (FTP)

The following figure and table provides a flow diagram that shows the run logic of the wizard along with additional information and notes.
Figure 3. ASR 5500 Quick Setup Wizard Logic Diagram

Start

1. Continue Quick Setup Wizard?
 - Yes: Enable Basic Config?
 - Yes: Config Basic Settings
 - No: Change Chassis Key?
 - Yes: Config New Chassis Key
 - No: Enable MIO/UMIO Interface Config

2. Enable Basic Config?
 - Yes: Config Basic Settings
 - No: Continue Quick Setup Wizard?

3. Change Chassis Key?
 - Yes: Config New Chassis Key
 - No: Enable MIO/UMIO Interface Config

4. Enable MIO/UMIO Interface Config
 - Yes: Enable Remote Access Config?
 - Yes: Enable Remote Access Protocols
 - No: Review Selections?
 - Yes: Review/Modify Settings
 - No: View Config Script?
 - Yes: Review Config Script
 - No: Apply Config Script?
 - Yes: Script Applied
 - No: Continue Quick Setup Wizard?
Table 2. Quick Setup Wizard Logic Diagram Callout Descriptions

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enter or exit the wizard.</td>
<td>Enter no at the prompt to automatically be directed to the command line interface (CLI). Proceed to Using the CLI for Initial Configuration for instructions on performing an initial system configuration with the CLI. Enter setup at the command prompt to re-invoke the wizard.</td>
</tr>
<tr>
<td>2</td>
<td>Configure an administrative username/password and the a hostname for the system.</td>
<td>The name of the default administrative user configured through the wizard is admin. Administrative user name is an alphanumeric string of 1 through 32 characters that is case sensitive. Administrative user password is an alphanumeric string of 1 through 63 characters that is case sensitive. Configure a valid, non-null hostname. The hostname is an alphanumeric string of 1 through 63 characters that is case sensitive.</td>
</tr>
<tr>
<td>3</td>
<td>Change chassis key value.</td>
<td>A unique chassis key is configured at the factory for each system. This key is used to decrypt encrypted passwords found in generated configuration files. The system administrator can create a unique chassis key that will be used to encrypt passwords stored in configuration files. Enter yes to set a new chassis key. Refer to the instructions in System Settings. Additional information can be found in System Security.</td>
</tr>
<tr>
<td>4</td>
<td>Configure a single Management Input/Output (MIO) out-of-band management interface for out-of-band system management.</td>
<td>Traffic on the management LAN is not transferred over the same media as user data and control signaling. For security reasons, it is recommended that management functions be maintained on a separate network from user data and control signaling. MIO port 1 (mio1) is the 1000Base-T default management port. MIO port 2 (mio2) is available as a secondary management port. Use the RJ-45 interfaces to connect the system to the management network with CAT5 Ethernet cable. Configure an IP address, subnet mask, and gateway for the interface. Instructions for configuring the second management interface on the MIO can be found in System Settings.</td>
</tr>
<tr>
<td>5</td>
<td>Enable various remote access protocols for accessing the system.</td>
<td>Secure Shell (SSH) uses TCP port number 22 by default, if enabled. SSH V1 and/or V2 are supported. If SSH is enabled, you can also enable SSH File Transfer Protocol (SFTP) server functionality. Telnet uses TCP port number 23 by default, if enabled. The File Transfer Protocol (FTP) uses TCP port number 21 by default, if enabled. For maximum security, use only SSH v2.</td>
</tr>
</tbody>
</table>
Getting Started

Using the ASR 5500 Quick Setup Wizard

ASR 5500 System Administration Guide, StarOS Release 17

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Description/Notes</th>
</tr>
</thead>
</table>
| 6 | Review and/or modify the configuration of previous prompts. | 1. Enter the number of the prompt to be modified.
2. Configure the parameter.
3. *Optional.* Repeat step 1 and step 2 to modify additional settings.
4. Enter “done” when you have completed all changes. |
| 7 | Review the configure script created by the wizard based on your inputs. | An example of a created script is displayed in the example below. Variables are displayed in italics (*variable*). |
| 8 | Apply the configuration file to the system. | Once applied, the parameter configuration is automatically saved to the system.cfg file stored in MIO flash memory. |
Figure 4. MIO Interfaces

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Console port</td>
</tr>
<tr>
<td>2</td>
<td>USB port</td>
</tr>
<tr>
<td>3</td>
<td>10 GbE ports, DC-1</td>
</tr>
<tr>
<td>4</td>
<td>10 GbE ports, DC-2</td>
</tr>
<tr>
<td>5</td>
<td>1 GbE ports (1000Base-T)</td>
</tr>
</tbody>
</table>
config
 system hostname hostname
 context local
 administrator admin_name password passwd
 interface mio1
 ip address ip_address subnet
 ip route 0.0.0.0 0.0.0.0 gw_address mio1
 ssh key v1_key
 ssh key v2_rsa_key
 ssh key v2_dsa_key
 server sshd
 subsystem sftp
 #exit
 no server telnetd
 server ftph
da server telnetd
 #exit
 port ethernet 5/1
 bind interface mio1 local
 no shutdown
 #exit
end

Important: Once configuration using the wizard is complete, proceed to instructions on configuring other system parameters.
Using the CLI for Initial Configuration

The initial configuration consists of the following:

- Configuring a context-level security administrator and hostname
- Configuring the Ethernet interface on the MIO
- Configuring the system for remote CLI access via Telnet, SSH, or FTP (secured or unsecured)

This section provides instructions for performing these tasks using the CLI.

Step 1
At the CLI prompt, enter:

```
[local]host_name# configure
[local]host_name(config)#
```

Step 2
Enter the context configuration mode by entering the following command:

```
[local]host_name(config)# context local
[local]host_name(config-ctx)#
```

The `local` context is the system’s management context. Contexts allow you to logically group services or interfaces. A single context can consist of multiple services and can be bound to multiple interfaces.

Step 3
Enter the following command to configure a context-level security administrator for the system:

```
administrator user_name [ encrypted ] password password [ [ ecs ] [ expiry-date date_time ] [ ftp ] [ li-administration ] [ nocli ] [ noecs ] [ timeout-absolute timeout_absolute ] [ timeout-min-absolute timeout_min_absolute ] [ timeout-idle timeout_idle ] [ timeout-min-idle timeout_min_idle ]
```

Important: You must configure a context-level security administrator during the initial configuration. After you complete the initial configuration process and end the CLI session, if you have not configured a security administrator, CLI access will be locked. For complete information about the commands in this section, see the `Context Configuration Mode Commands` chapter of the Command Line Interface Reference.

Step 4
Enter the following command at the prompt to exit the context configuration mode:

```
[local]host_name(config-ctx)# exit
[local]host_name(config)#
```

Step 5
Enter the following command to configure a hostname by which the system will be recognized on the network:

```
[local]host_name(config)# system hostname host_name
```

`host_name` is the name by which the system will be recognized on the network. The hostname is an alphanumeric string of 1 through 63 characters that is case sensitive.

Step 6
Configure the network interfaces on the MIO using the following instructions:

Step a
Enter the context configuration mode by entering the following commands:

```
[local]host_name(config)# context local
[local]host_name(config-ctx)#
```
Step b Enter the following command to specify a name for the interface:

[local]host_name(config-ctx)# interface interface_name

interface_name is the name of the interface expressed as an alphanumeric string of 1 through 79 characters that is case sensitive. The following prompt appears as the system enters the Ethernet Interface Configuration mode:

[local]host_name(config-if-eth)#

Step c Configure an IP address for the interface configured in the previous step by entering the following command:

{ ip address | ipv6 address } ipaddress subnetmask

Important: If you are executing this command to correct an address or subnet that was mis-configured with the Quick Setup Wizard, you must verify the default route and port binding configuration. Use *step 11* and *step 6* of this procedure. If there are issues, perform steps 7e through 7k to reconfigure the information.

Step d Enter the following command to exit the Ethernet interface configuration mode:

[local]host_name(config-if-eth)# exit
[local]host_name(config-ctx)#

Step e Configure a static route, if required, to point the system to a default gateway. Entering the following command:

{ ip | ipv6 } route gw_address interface_name

Step f Enter the following to exit from the context configuration mode:

[local]host_name(config-ctx)# exit
[local]host_name(config)#

Step g Enter the Ethernet Port Configuration mode:

port ethernet slot#/port#

Step h Bind the port to the interface that you created in step 7b. Binding associates the port and all of its settings to the interface. Enter the following command:

[local]host_name(config-port-<slot#/port#>)# bind interface interface_name local
[local]host_name(config-port-<slot#/port#>)# no shutdown

interface_name is the name of the interface that you configured in *step 7b*.

Step i Exit the Ethernet Interface Configuration mode by entering the command:

[local]host_name(config-port-<slot#/port#>)# exit
[local]host_name(config)#

Important: Refer below for instructions on configuring the MIO management interface with a second IP address.
Configuring the System for Remote Access

Configure the system for remote access. An administrative user may access the system from a remote location over a local area network (LAN) or wide area network (WAN):

- Telnet
- Secure Shell (SSH)
- File Transfer Protocol (FTP) (secured or unsecured)
- Trivial File Transfer Protocol (TFTP)

Important: If there are two simultaneous telnet sessions, and one administrator deletes the context into which the other administrator is logged, the administrator in the deleted context will not be automatically kicked into the local context. Although the deleted context will still appear in the CLI prompt, context specific commands will generate errors.

Important: For maximum security, use SSH v2.

Step 1 Enter the context configuration mode by entering the following command:

```
[local] host_name(config)# context local
```

Step 2 Configure the system to allow Telnet access, if desired:

```
[local] host_name(config-ctx)# server telnetd
```

Step 3 Configure the system to allow SSH access, if desired:

```
[local] host_name(config-ctx)# ssh generate key [ type { v1-rsa | v2-rsa | v2-dsa } ]
```

Important: v2-rsa is the recommended key type.

```
[local] host_name(config-ctx)# server sshd
[local] host_name(config-sshd)# subsystem sftp
[local] host_name(config-sshd)# exit
```

Step 4 Configure the system to allow FTP access, if desired, by entering the following command:

```
[local] host_name(config-ctx)# server ftpd
```

Step 5 Exit the configuration mode by entering the following command:

```
[local] host_name(config-ctx)# end
[local] host_name#
```
Step 6 Verify the configuration by entering the following command:

[local]host_name# show configuration

The CLI output should be similar to the sample output:

```
context local
  interface interface_name
    ip address ipaddress subnetmask
    exit
  subscriber default
    exit
  administrator admin_name password admin_password
  server telnetd
  server ftpd
  ssh generate key
  server sshd
  subsystem sftp
  exit
  port ethernet 5/1
    bind interface interface_name local
    exit
  port ethernet 5/1
    no shutdown
    exit
  snmp engine-id local 800007e580ed826c191ded2d3d
end
```

Step 7 Verify the configuration of the IP routes by entering the following command:

[local]host_name# show ip route

The CLI output should be similar to the sample output:

```
* 0.0.0.0/0 is the Best or Used route.
Destination    Nexthop    Protocol Prec  Cost  Interface
*0.0.0.0/0  ipaddress  static    1  0    mio1
* network  0.0.0.0  connected 0  0    mio1
```

Step 8 Verify the interface binding by entering the following command:

[local]host_name# show ip interface name interface_name

`interface_name>` is the name of the interface that was configured in step 7b. The CLI output should be similar to the sample output:

```
Intf Name: mio1
Description: Broadcast
IP State: UP (Bound to 5/1 untagged, ifIndex 83951617)
IP Address: ipaddress Subnet Mask: subnetmask
Bcast Address: bcastaddress MTU: 1500
Resoln Type: ARP ARP timeout: 3600 secs
Number of Secondary Addresses: 0
```

Step 9 Save your configuration as described in Verifying and Saving Your Configuration.
Configuring the Management Interface with a Second IP Address

If necessary, you can configure a second IP address on the MIO management interface.

Step 1 Enter the configuration mode by entering the following command at the prompt:

```
[local]host_name# configure
[local]host_name(config)#
```

Step 2 Enter the following to enter the context configuration mode:

```
[local]host_name(config)# context local
[local]host_name(config-ctx)#
```

Step 3 Enter the interface slot number and port number by entering the following command:

```
[local]host_name(config-ctx)# 5/1
[local]host_name(config-if-eth)#
```

Step 4 Enter the secondary IP address and subnet mask by entering the following command:

```
[local]host_name(config-if-eth)# { ip | ipv } address ipaddress subnet_mask secondary
```

Step 5 Exit the configuration mode by entering the following command:

```
[local]host_name(config-if-eth)# end
```

Step 6 Confirm the interface ip addresses by entering the following command:

```
[local]host_name# show config context local
```

The CLI output should look similar to this example:

```
config
  context local
  interface interface_name
    ip address ipaddress subnetmask
    ip address ipaddress subnetmask secondary
#exit
```

Step 7 Save your configuration as described in *Verifying and Saving Your Configuration*.
Chapter 3
System Settings

This chapter provides instructions for configuring the following system options:

- Configuring a Second Management Interface
- Configuring System Timing
- Verifying and Saving Your Interface and Port Configuration
- Enabling CLI Timestamping
- Configuring System Administrative Users
- Configuring TACACS+ for System Administrative Users
- Configuring a Chassis Key
- Configuring MIO/UMIO Port Redundancy
- Configuring Data Processing Card (DPC) Availability
- Configuring ASR 5500 Link Aggregation
- Configuring a Demux Card

It is assumed that the procedures to initially configure the system as described in *Getting Started* have been completed.

Important: The commands used in the configuration examples in this section are the most likely-used commands and/or keyword options. In many cases, other optional commands and/or keyword options are available. Refer to the *Command Line Interface Reference* for complete information.
Configuring a Second Management Interface

Refer to Getting Started for instructions on configuring a system management interface on the Management Input/Output (MIO) or Management Input/Output Universal (UMIO) card. This section provides described how to configure a second management interface.

Use the following example to configure a second management interface:

```plaintext
configure

context local

interface interface_name

  ip address ipaddress subnetmask

  exit

ip route 0.0.0.0 0.0.0.0 gw_address interface_name

exit

port ethernet slot#/port#

  bind interface interface_name local

  no shutdown

  media [ rj45 | sfp ]

end
```

Notes:

- For **port ethernet slot#**, use the actual chassis slot in which the active MIO/UMIO is installed (slot number 5 or 6).
- Enter IP addresses using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- For **port ethernet port#**, use the physical port on the MIO/UMIO card that will be used. This is either port 1 or 2. Port 1 represents the top-most port (either RJ-45 or SFP).
- The MIO/UMIO is equipped with RJ-45 (1000Base-T copper) interfaces. The RJ-45 interfaces connect the system to the management network with CAT3 or CAT5 Ethernet cable.
- **Option:** In the Ethernet Port configuration mode, configure the port speed, if needed, by entering the `medium` command. Refer to the Command Line Interface Reference for a complete explanation of this command.
- In the `{ ip | ipv6 } route` command, other keyword options, instead of the gateway IP address, are available and include: `next-hop` IP address, `point-to-point`, and `tunnel`.
Verifying and Saving Your Interface and Port Configuration

Verify that your interface configuration settings are correct by entering the following command:

```
show ip interface
```

The output from this command should be similar to that shown below. In this example an interface named `mgmt2` was configured in the local context.

<table>
<thead>
<tr>
<th>Intf Name:</th>
<th>mgmt2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intf Type:</td>
<td>Broadcast</td>
</tr>
<tr>
<td>Description:</td>
<td>management2</td>
</tr>
<tr>
<td>VRF:</td>
<td>None</td>
</tr>
<tr>
<td>IP State:</td>
<td>UP (Bound to 5/2)</td>
</tr>
<tr>
<td>IP Address:</td>
<td>192.168.100.3</td>
</tr>
<tr>
<td>Bcast Address:</td>
<td>192.168.100.255</td>
</tr>
<tr>
<td>Subnet Mask:</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>MTU:</td>
<td>1500</td>
</tr>
<tr>
<td>Resoln Type:</td>
<td>ARP</td>
</tr>
<tr>
<td>ARP timeout:</td>
<td>60 secs</td>
</tr>
<tr>
<td>L3 monitor LC-port switchover: Disabled</td>
<td></td>
</tr>
<tr>
<td>Number of Secondary Addresses: 0</td>
<td></td>
</tr>
</tbody>
</table>

Verify that the port configuration settings are correct by entering the following command:

```
show configuration port slot#/port#
```

`slot#` is the chassis slot number of the line card where the physical port resides. `slot#` is either 5 or 6. `port#` is the number of the port (either 1 or 2).

This following command produces an output similar to the one shown below. It displays the configuration of port 2 of the MIO/UMIO installed in chassis slot 5. In this example, the port is bound to an interface called `mgmt2`.

```
config
port ethernet 5/2
    description management2
    no shutdown
    bind interface mgmt2 local
end
```

Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Configuring System Timing

The system is equipped with a clock that supplies the timestamp for statistical counters, accounting records, logging, and event notification. After the initial configuration of the system clock, you can configure the system to communicate with one or more Network Time Protocol (NTP) server(s) to ensure that the clock is always accurate.

In the event of a power outage, the clock is maintained with an accuracy of +/- one minute per month for up to 10 years. This ensures that when power is restored, the system is ready to process sessions and generate accounting, log, and event data with accurate timestamps.

In addition to configuring the timing source, you must configure the system’s time zone.

Setting the System Clock and Time Zone

Use the following command example to configure the system clock and time zone:

```
clock set date:time
configure
    clock timezone timezone [ local ]
end
```

Notes:
- Enter the date and time in the format YYYY:MM:DD:HH:mm or YYYY:MM:DD:HH:mm:ss.
- Refer to the online Help for the `clock timezone` command for a complete list of supported time zones.
- The optional `local` keyword indicates that the time zone specified is the local timezone.
- Daylight Savings Time is automatically adjusted for time zones supporting it.

Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying and Saving Your Clock and Time Zone Configuration

Enter the following command to verify that you configured the time and time zone correctly:

```
show clock
```

The output displays the date, time, and time zone that you configured.
Configuring Network Time Protocol Support

This section provides information and instructions for configuring the system to enable the use of the Network Time Protocol (NTP).

Important: Configure the system clock and time zone prior to implementing NTP support. This greatly reduces the time period that must be corrected by the NTP server.

Many of the services offered by the ASR 5x00 platform require accurate timekeeping derived through NTP. If the time reference(s) used by StarOS are not accurate, the services may be unreliable. For this reason it should be assumed that normal system operation requires that NTP be configured.

The system uses NTP to synchronize internal clocks on the chassis to external time sources (typically GPS NTP sources, or other Stratum 2 or 3 servers, switches or routers).

By default, NTP is not enabled externally and should be configured when the system is initially installed. When enabled, the active MIO/UMIO will synchronize with external sources. If not enabled, the active MIO/UMIO will use its local clock as a time source. In the event of an NTP server or network outage, an already running MIO/UMIO will continue to use NTP to maintain time accuracy, but in a holdover mode.

All cards with CPUs synchronize to the active MIO/UMIO internally. This occurs even if an external NTP server is not configured. In the event of a MIO/UMIO switchover, all other cards will start synchronizing with the newly active MIO/UMIO automatically.

The system should have:

- NTP enabled.
- NTP configured for use in the local context only. Use of other contexts (which can be specified in the enable configurable) will cause issues.
- NTP configured for at least three external NTP servers. With three or more servers, outlyers and broken or misconfigured servers can be detected and excluded. Generally, the more servers the better (within reason).

Important: Do not configure any external NTP servers using the prefer keyword. The NTP clock selection algorithms already have the built-in ability to pick the best server. Use of prefer usually results in a poorer choice than NTP can determine for itself.

Important: Do not change the maxpoll, minpoll, or version keyword settings unless instructed to do so by Cisco TAC.

Use the following example to configure the necessary NTP association parameters:

```
configure

ntp

    enable

    server ip_address1

    server ip_address2
```
server ip_address3
end

Notes:

- By default context_name is set to local. This is the recommended configuration.
- A number of options exist for the server command. Refer to the NTP Configuration Mode Commands chapter in the Command Line Interface Reference for more information.
- Enter the IP address of NTP servers using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

Important: Configure the system with at least three (preferably four) NTP servers.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring NTP Servers with Local Sources

NTP can use network peers, local external clocks (such as GPS devices), or a local clock with no external source.

A local clock with no external source is usually a last-resort clock when no better clock is available. It is typically configured on a site's intermediate NTP server so that when a WAN network outage occurs, hosts within the site can continue to synchronize amongst themselves.

You can configure this in ntpd or on many commercially available NTP devices. This local clock should always have a high stratum number (8+) so that under normal conditions (when real sources are available) this local clock will not be used.

Using a Load Balancer

The NTP daemon and protocol assume that each configured server is running NTP. If a NTP client is configured to synchronize to a load balancer that relays and distributes packets to a set of real NTP servers, the load balancer may distribute those packets dynamically and confuse the NTP client. NTP packets are latency and jitter sensitive. Relaying them through a load balancer can confuse the NTP client and is not a supported practice.

Verifying the NTP Configuration

Verify the NTP configuration is correct. Enter the following command at the Exec mode prompt:

```
show ntp associations
```

The output displays information about all NTP servers. See the output below for an example deploying two NTP servers.
Peer Selection:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>Rejected / No Response</td>
</tr>
<tr>
<td>(x)</td>
<td>False Tick</td>
</tr>
<tr>
<td>(.)</td>
<td>Excess</td>
</tr>
<tr>
<td>(-)</td>
<td>Outlyer</td>
</tr>
<tr>
<td>(+)</td>
<td>Candidate</td>
</tr>
<tr>
<td>(#)</td>
<td>Selected</td>
</tr>
<tr>
<td>(*)</td>
<td>System Peer</td>
</tr>
<tr>
<td>(o)</td>
<td>PPS Peer</td>
</tr>
</tbody>
</table>

Parameters Output by the `show ntp associations` Command

<table>
<thead>
<tr>
<th>Column Title</th>
<th>Description</th>
</tr>
</thead>
</table>
| remote | List of the current NTP servers. One of these characters precedes each IP address to show the server’s current condition:
 - () Rejected/No response
 - X False tick
 - . Excess
 - - Outlyer
 - + Candidate
 - # Selected
 - * System peer
 - (o) PPS peer |
| refid | Last reported NTP reference to which the server is synchronizing. |
| st | NTP server stratum level. |
| t | Communication type: broadcast, multicast, etc. |
| when | Number of seconds since the last contact. |
| poll | Polling interval between the system and the NTP server. |
| reach | Octal value of the reachability shift register indicating which responses were received for the previous eight polls to this NTP server. |
| delay | Round-trip delay (in milliseconds) for messages exchanged between the system and the NTP server. |
| offset | Number of milliseconds by which the system clock must be adjusted to synchronize it with the NTP server. |
| jitter | Jitter in milliseconds between the system and the NTP server. |
Enabling CLI Timestamping

To display a timestamp (date and time) for every command that is executed on the CLI, enter the following command at the root prompt for the Exec mode:

```
  timestamps
```

The date and time appear immediately after you execute the command.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring System Administrative Users

Getting Started describes how to configure a context-level security administrator for the system.

This section provides instructions for configuring additional administrative users having the following privileges:

- **Security Administrators**: have read-write privileges and can execute all CLI commands, including those available to Administrators, Operators, and Inspectors.

- **Administrators**: have read-write privileges and can execute any command in the CLI except for a few security-related commands that can only be configured by Security Administrators. Administrators can configure or modify system settings and execute all system commands, including those available to the Operators and Inspectors.

- **Operators**: have read-only privileges to a larger subset of the Exec Mode commands. They can execute all commands that are part of the inspector mode, plus some system monitoring, statistic, and fault management functions. Operators do not have the ability to enter the Config Mode.

- **Inspectors**: are limited to a few read-only Exec Mode commands. The bulk of these are *show* commands for viewing a variety of statistics and conditions. An Inspector cannot execute *show configuration* commands and does not have the privilege to enter the Config Mode.

Configuration instructions are categorized according to the type of administrative user: context-level or local-user.

Important: For information on the differences between these user privileges and types, refer to *Getting Started*.

Configuring Context-level Administrative Users

This section contains information and instructions for configuring context-level administrative user types.

Configuring Context-level Security Administrators

Use the example below to configure additional security administrators:

```
  configure

  context local

  administrator user_name { [ encrypted ] [ nopassword ] password password }

  end
```
Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the administrator command.

- The nopassword option allows you to create an administrator without an associated password. Enable this option when using ssh public keys (authorized key command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an administrator password to gain access to the user account.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring Context-level Administrators

Use the example below to configure context-level configuration administrators:

```
configure
  context local
    config-administrator user_name { [ encrypted ] [ nopassword ] password password }
  end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the config-administrator command.

- The nopassword option allows you to create a config-administrator without an associated password. Enable this option when using ssh public keys (authorized key command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using a config-administrator password to gain access to the user account.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring Context-level Operators

Use the example below to configure context-level operators:

```
configure
  context local
    operator user_name { [ encrypted ] [ nopassword ] password password }
  end
```

Notes:

- Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the operator command.
• The **nopassword** option allows you to create an operator without an associated password. Enable this option when using ssh public keys (**authorized key** command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an operator password to gain access to the user account.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configuring Context-level Inspectors

Use the example below to configure context-level inspectors:

```
configure
  context local
    inspector user_name { [ encrypted ] [ nopassword ] password password }
  end
```

Notes:

• Additional keyword options are available that identify active administrators or place time thresholds on the administrator. Refer to the *Command Line Interface Reference* for more information about the **inspector** command.

• The **nopassword** option allows you to create an inspector without an associated password. Enable this option when using ssh public keys (**authorized key** command in SSH Configuration mode) as a sole means of authentication. When enabled this option prevents someone from using an inspector password to gain access to the user account.

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Verifying Context-level Administrative User Configuration

Verify that the configuration was successful by entering the following command:

```
show configuration context local
```

This command displays all of the configuration parameters you modified within the Local context during this session. The following displays sample output for this command. In this example, a security administrator named **testadmin** was configured.

```
config
  context local
    interface mgmt1
      ip address 192.168.1.10 255.255.255.0
    #exit
    subscriber default
    #exit
    administrator testadmin encrypted password fd01268373c5da85
    inspector testinspector encrypted password 148661a0bb12cd59
  exit
    port ethernet 5/1
    bind interface mgmt1 local
    #exit
```
Configuring Local-User Administrative Users

Use the example below to configure local-user administrative users:

```
configure

local-user username name

end
```

Notes:
- Additional keyword options are available identify active administrators or place time thresholds on the administrator. Refer to the Command Line Interface Reference for more information about the `local-user username` command.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying Local-User Configuration

Verify that the configuration was successful by entering the following command:

```
show local-user verbose
```

This command displays information on configured local-user administrative users. A sample output for this command appears below. In this example, a local-user named SAUser was configured.

```
Username: SAUser
Auth Level: secadmin
Last Login: Never
Login Failures: 0
Password Expired: Yes
Locked: No
Suspended: No
Lockout on Pw Aging: Yes
Lockout on Login Fail: Yes
```

Updating Local User Database

Update the local user (administrative) configuration by running the following Exec mode command. This command should be run immediately after creating, removing or editing administrative users.

```
update local-user database
```
Restricting User Access to a Specified Root Directory

By default an admin user who has FTP/SFTP access can access and modify any files under the /mnt/user/ directory. Access is granted on an “all-or-nothing” basis to the following directories: /flash, /cdrom, /hd-raid, /records, /usb1 and /usb2.

An administrator or configuration administrator can create a list of SFTP subsystems with a file directory and access privilege. When a local user is created, the administrator assigns an SFTP subsystem. If the user's authorization level is not security admin or admin, the user can only access the subsystem with read-only privilege. This directory is used as the user's root directory. The information is set as environmental variables passed to the openssh sftp-server.

You must create the SFTP root directory before associating it with local users, administrators and config administrators. You can create multiple SFTP directories; each directory can be assigned to one or more users.

Configuring an SFTP root Directory

The subsystem sftp command allows the assignment of an SFTP root directory and associated access privilege level.

```
configure
   context local
       server sshd
           subsystem sftp [ name sftp_name root-dir pathname mode { read-only | readwrite } ]
```

Notes:

- `sftp_name` is an alphanumeric string that uniquely identifies this subsystem.
- `pathname` specifies the root directory to which SFTP files can be transferred. Options include:
 - `/hd-raid/records/cdr`
 - `/flash`

Associating an SFTP root Directory with a Local User

The `local-user username` command allows an administrator to associate an SFTP root directory with a specified username.

```
configure
   local-user username user_name authorization-level level ftp sftp-server sftp_name password password
   exit
```
Associating an SFTP root directory with an Administrator

The `administrator` command allows an administrator to associate an SFTP root directory for a specified administrator.

```
configure
  context local
    administrator user_name password password ftp sftp-server sftp_name
  exit
```

Associating an SFTP root directory with a Config Administrator

The `config-administrator` command allows an administrator to associate an SFTP root directory with a specified configuration administrator.

```
configure
  context local
    config-administrator user_name password password ftp sftp-server sftp_name
  exit
```
Configuring TACACS+ for System Administrative Users

This section describes TACACS+ (Terminal Access Controller Access Control System+) AAA (Authentication Authorization and Accounting) service functionality and configuration on the ASR 5x00.

Operation

TACACS+ is a secure, encrypted protocol. By remotely accessing TACACS+ servers that are provisioned with the administrative user account database, the ASR 5x00 can provide TACACS+ AAA services for system administrative users. TACACS+ is an enhanced version of the TACACS protocol that uses TCP instead of UDP.

The ASR 5x00 system serves as the TACACS+ Network Access Server (NAS). As the NAS the system requests TACACS+ AAA services on behalf of authorized system administrative users. For the authentication to succeed, the TACACS+ server must be in the same local context and network accessed by the system.

The system supports TACACS+ multiple-connection mode. In multiple-connection mode, a separate and private TCP connection to the TACACS+ server is opened and maintained for each session. When the TACACS+ session ends, the connection to the server is terminated.

TACACS+ is a system-wide function on the ASR 5x00. TACACS+ AAA service configuration is performed in TACACS Configuration Mode. Enabling the TACACS+ function is performed in the Global Configuration Mode. The system supports the configuration of up to three TACACS+ servers.

Once configured and enabled on the system, TACACS+ authentication is attempted first. By default, if TACACS+ authentication fails, the system then attempts to authenticate the user using non-TACACS+ AAA services, such as RADIUS.

User Account Requirements

Before configuring TACACS+ AAA services on the ASR 5x00, note the following TACACS+ server and system user account provisioning requirements.

TACACS+ User Account Requirements

The TACACS+ server must be provisioned with the following TACACS+ user account information:

- A list of known administrative users.
- The plain-text or encrypted password for each user.
- The name of the group to which each user belongs.
- A list of user groups.
- TACACS+ privilege levels and commands that are allowed/denied for each group.

Important: TACACS+ privilege levels are stored as Attribute Value Pairs (AVPs) in the network’s TACACS+ server database. Users are restricted to the set of commands associated with their privilege level. A mapping of TACACS+ privilege levels to ASR 5x00 CLI administrative roles and responsibilities is provided in the table below.
Table 3. Mapping of TACACS+ Privilege Levels to CLI Administrative Roles

<table>
<thead>
<tr>
<th>TACACS+ Privilege Level</th>
<th>CLI Administrative Access Privileges</th>
<th>Lawful Intercept</th>
<th>CLI Role</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLI FTP ECSEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Yes No No</td>
<td>No</td>
<td>Inspector</td>
</tr>
<tr>
<td>1</td>
<td>Yes No Yes</td>
<td>No</td>
<td>Inspector</td>
</tr>
<tr>
<td>2</td>
<td>No Yes No</td>
<td>No</td>
<td>Inspector</td>
</tr>
<tr>
<td>3</td>
<td>Yes Yes No</td>
<td>No</td>
<td>Inspector</td>
</tr>
<tr>
<td>4</td>
<td>Yes Yes Yes</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>5</td>
<td>Yes No No</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>6</td>
<td>Yes No Yes</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>7</td>
<td>No Yes No</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>8</td>
<td>Yes Yes No</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>9</td>
<td>Yes Yes Yes</td>
<td>No</td>
<td>Operator</td>
</tr>
<tr>
<td>10</td>
<td>Yes No No</td>
<td>No</td>
<td>Administrator</td>
</tr>
<tr>
<td>11</td>
<td>Yes No Yes</td>
<td>No</td>
<td>Administrator</td>
</tr>
<tr>
<td>12</td>
<td>No Yes No</td>
<td>No</td>
<td>Administrator</td>
</tr>
<tr>
<td>13</td>
<td>Yes Yes No</td>
<td>Yes</td>
<td>Administrator</td>
</tr>
<tr>
<td>14</td>
<td>Yes Yes Yes</td>
<td>No</td>
<td>Administrator</td>
</tr>
<tr>
<td>15</td>
<td>Yes Yes Yes</td>
<td>Yes</td>
<td>Administrator</td>
</tr>
</tbody>
</table>

User Account Requirements

TACACS+ users who are allowed administrative access to the system must have the following user account information defined on the ASR 5x00:

- username
- password
- administrative role and privileges

Important: For instructions on defining users and administrative privileges on the system, refer to *Configuring System Administrative Users*.

ASR 5500 System Administration Guide, StarOS Release 17
Configuring TACACS+ AAA Services

This section provides an example of how to configure TACACS+ AAA services for administrative users on the system.

⚠️ **Caution:** When configuring TACACS+ AAA services for the first time, the administrative user must use non-TACACS+ services to log into the ASR 5x00. Failure to do so will result in the TACACS+ user being denied access to the system.

Log in to the system using non-TACACS+ services.

Use the example below to configure TACACS+ AAA services on the system:

```
configure
  tacacs mode
  server priority priority_number ip-address tacacs+srvr_ip_address
end
```

Note:

- **server priority priority_number:** Must be a number from 1 to 3, that specifies the order in which this TACACS+ server will be tried for TACACS+ authentication. 1 is the highest priority, and 3 is the lowest.
- **ip-address:** Must be the IPv4 address of a valid TACACS+ server that will be used for authenticating administrative users accessing this system via TACACS+ AAA services.
- By default, the TACACS+ configuration will provide authentication, authorization, and accounting services.

Enable TACACS+ on the ASR 5x00:

```
configure
  aaa tacacs+
end
```

Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

ℹ️ **Important:** For complete information on all TACACS+ Configuration Mode commands and options, refer to the *TACACS Configuration Mode Commands* chapter in the *Command Line Reference*.
Verifying the TACACS+ Configuration

This section describes how to verify the TACACS+ configuration.
Log out of the system CLI, then log back in using TACACS+ services.

Important: Once TACACS+ AAA services are configured and enabled on the ASR 5x00, the system first will try to authenticate the administrative user via TACACS+ AAA services. By default, if TACACS+ authentication fails, the system then continues with authentication using non-TACACS+ AAA services.

At the Exec Mode prompt, enter the following command:

```
show tacacs
```

The command output provides summary information for each active TACACS+ session such as username, login time, login status, current session state and privilege level.
An example of this command’s output is provided below. In this example, a system administrative user named asradmin has successfully logged in to the system via TACACS+ AAA services.

```
active session #1:
  login username : asradmin
  login tty      : /dev/pts/1
  login server priority : 1
  current login status : pass
  current session state : user login complete
  current privilege level : 15
  remote client application : ssh
  remote client ip address : 111.11.11.11
  last server reply status : -1
  total TACACS+ sessions : 1
```

Important: For details on all TACACS+ maintenance commands, refer to the Command Line Interface Reference.
Configuring a Chassis Key

A unique chassis key is configured at the factory for each system. This key is used to decrypt encrypted passwords found in generated configuration files. The system administrator can create a unique chassis key that will be used to encrypt passwords stored in configuration files.

Important: The Quick Setup Wizard also prompts the user to enter a chassis key value.

The Exec mode `chassis key value key_string` command identifies the chassis which can encrypt and decrypt encrypted passwords in the configuration file. If two or more chassis are configured with the same chassis key value, the encrypted passwords can be decrypted by any of the chassis sharing the same chassis key value. As a corollary to this, a given chassis key value will not be able to decrypt passwords that were encrypted with a different chassis key value.

The `key_string` is an alphanumeric string of 1 through 16 characters. The chassis key is stored as a one-way encrypted value, much like a password. For this reason, the chassis key value is never displayed in plain-text form.

The Exec mode `chassis keycheck key_string` command generates a one-way encrypted key value based on the entered `key_string`. The generated encrypted key value is compared against the encrypted key value of the previously entered chassis key value. If the encrypted values match, the command succeeds and keycheck passes. If the comparison fails, a message is displayed indicating that the key check has failed. If the default chassis key (no chassis key) is currently being used, this key check will always fail since there will be no chassis key value to compare against.

Use the `chassis keycheck` command to verify whether multiple chassis share the same chassis key value.

Important: Only a user with Security Administrator or Administrator privilege can execute the `chassis key value` and `chassis keycheck` commands.

For additional information, refer to the `Exec Mode Commands` chapter in the `Command Line Interface Reference`.

Beginning with Release 15.0, the chassis ID will be generated from an input chassis key using the SHA2-256 algorithm followed by base36 encoding. The resulting 44-character chassis ID will be stored in the same chassisid file in flash.

Release 14 and Release 15 chassis IDs will be in different formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis key is reset in Release 15 through the setup wizard or `chassis-key` CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.
Configuring MIO/UMIO Port Redundancy

Port redundancy for MIOs provides an added level of redundancy that minimizes the impact of network failures that occur external to the system. Examples include switch or router port failures, disconnected or cut cables, or other external faults that cause a link down error.

Caution: To ensure that system card and port-level redundancy mechanisms function properly, disable the Spanning Tree protocol on devices connected directly to any system port. Failure to turn off the Spanning Tree protocol may result in failures in the redundancy mechanisms or service outage.

By default, the system provides port-level redundancy when a failure occurs, or you issue the `port switch to` command. In this mode, the ports on active and standby MIO/UMIO cards have the same MAC address, but since only one of these ports may be active at any one time there are no conflicts. This eliminates the need to transfer MAC addresses and send gratuitous ARPs in port failover situations. Instead, for Ethernet ports, three Ethernet broadcast packets containing the source MAC address are sent so that the external network equipment (switch, bridge, or other device) can re-learn the information after the topology change. However, if card removal is detected, the system sends out gratuitous ARPs to the network because of the MAC address change that occurred on the specific port.

With port redundancy, if a failover occurs, only the specific port(s) become active. For example; if port 5/1 fails, then port 6/1 becomes active, while all other active ports on the line card in slot 5 remain in the same active state. In port failover situations, use the `show port table` command to check that ports are active on both cards and that both cards are active.

Take care when administratively disabling a port that is one of a redundant pair. A redundant pair comprises both the active and standby ports—for example 5/1 and 6/1. If 5/1 is active, administratively disabling 5/1 through the CLI does not make 6/1 active. It disables both 5/1 and 6/1 because an action on one port has the same effect on both. Refer to Creating and Configuring Ethernet Interfaces and Ports in System Interface and Port Configuration Procedures.

With automatic card-level redundancy, there is no port-level redundancy in an MIO/UMIO failover. The standby MIO/UMIO becomes active and all ports on that card become active. The system automatically copies all the MAC addresses and configuration parameters used by the failed MIO/UMIO to its redundant counterpart. The ports on MIOs keep their original MAC addresses, and the system automatically copies the failed MIO/UMIO’s configuration parameters to its redundant counterpart.

Port redundancy can be configured to be revertive or non-revertive. With revertive redundancy service is returned to the original port when service is restored.

This feature requires specific network topologies to work properly. The network must have redundant switching components or other devices that the system is connected to. The following diagrams show examples of a redundant switching topologies and how the system reacts to various external network device scenarios.
In the example above, an Ethernet cable is cut or unplugged, causing the link to go down. When this event occurs, the system, with port-mode redundancy enabled, recognizes the link down state and makes port 6/1 the active port. The switching device, using some port redundancy scheme, recognizes the failure and enables the port on the secondary switch to which the MIO/UMIO in slot 6 is connected, allowing it to redirect and transport data.
In the example above, a switch failure causes a link down state on all ports connected to that switch. This failure causes all redundant ports on the line card in slot 6 to move into the active state and utilize the redundant switch.

Configuring MIO/UMIO Port Redundancy Auto-Recovery

You can configure a port auto-recovery feature. When a port failure occurs and the preferred port is returned to service (link is up), control is automatically returned to that port. By default, ports are in a non-revertive state, meaning that no ports are preferred; a manual port switch is required to return use to the original port.

Important: This feature is applied on a per port basis (via the preferred slot keyword), allowing you to configure specific ports to be used on individual MIOs. For example, you could configure ports 10 through 19 as preferred on the MIO/UMIO in slot 5, and configure ports 20 through 29 as the preferred ports on the MIO/UMIO in slot 6.

Use the following example to configure a preferred port for revertive, automatic return to service when a problem has cleared:

```plaintext
configure

port ethernet slot#/port#

preferred slot slot#

end
```

Notes

- If you do specify a preference, redundancy is revertive to the specified card. If you do not specify a preference, redundancy is non-revertive.
- Repeat for each additional port that you want to make preferred.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying Port Redundancy Auto-Recovery

Verify port information by entering the following command

```plaintext
show port info slot#/port#
```

slot# is the chassis slot number of the MIO/UMIO card on which the physical port resides.

port# is the physical port on the MIO/UMIO.

The following shows a sample output of this command for port 1 on the MIO/UMIO in slot 5:

```
[local]host_name# show port info 5/1
Port: 5/1
  Port Type: 1000 Ethernet
  Role: Management Port
  Description: (None Set)
  Redundancy Mode: Port Mode
  Redundant With: 6/1
  Preferred Port: Non-Revertive
```
Physical ifIndex : 83951616
Administrative State : Enabled
Configured Duplex : Auto
Configured Speed : Auto
Configured Flow Control : Enabled
Interface MAC Address : 02-05-47-B8-2F-41
Fixed MAC Address : 02-05-47-B8-2F-41
Link State : Up
Link Duplex : Full
Link Speed : 1000 Mb
Flow Control : Disabled
Link Aggregation Group : None
Logical ifIndex : 83951617
Operational State : Up, Active
Configuring Data Processing Card (DPC) Availability

As discussed in the Understanding the System Boot Process section of Understanding System Operation and Configuration, when the system initially boots up, all installed DPCs and or UDPCs are placed into standby mode. You must activate some of these cards in order to configure and use them for session processing. One DPC/UDPC may remain in standby mode for redundancy.

This section describes how to activate DPCs and specify their redundancy.

Important: Refer to the ASR 5500 Installation Guide for information about system hardware configurations and redundancy.

Enter the following command to check the operational status of all DPCs:

```
show card table
```

This command lists the DPCs installed in the system by their slot number, their operational status, and whether or not the card is a single point of failure (SPOF).

Use the following example to configure DPC/UDPC availability:

```
configure
card slot#
mode { active | standby }
end
```

Notes:
- When activating cards, remember to keep at least one DPC/UDPC in standby mode for redundancy.
- Repeat for every other DPC/UDPC in the chassis that you wish to activate.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.

Verifying Card Configurations

Verify that the configuration was successful. Enter the following command:

```
show card table
```

Any DPC/UDPC that you made active should now have an operational status of *Active*.
Configuring ASR 5500 Link Aggregation

A Link Aggregation Group (LAG) works by exchanging control packets via Link Aggregation Control Protocol (LACP) over configured physical ports with peers to reach agreement on an aggregation of links as defined in IEEE 802.3ad. The LAG sends and receives the control packets directly on physical ports.

Link aggregation (also called trunking or bonding) provides higher total bandwidth, auto-negotiation, and recovery by combining parallel network links between devices as a single link. A large file is guaranteed to be sent over one of the links, which removes the need to address out-of-order packets.

LAG and Master Port

Logical port configurations (VLAN and binding) are defined in the master port of the LAG. If the master port is removed because of a card removal/failure, another member port becomes the master port (resulting in VPN binding change and outage), unless there is a redundant master port available.

Important: The master port on which VLAN can be created for VPN binding must always be configured on the active/master MIO/UMIO. The redundancy between MIO/UMIO 5 and MIO/UMIO 6 automatically causes both ports to be the master with the same VLANs configured and active.

LAG and Port Redundancy

ASR 5500 LAG implementation assumes that:

- LAG ports on MIO/UMIO 5 and MIO/UMIO 6 are connected to two Ethernet switches.
- LAG ports on MIO/UMIO 5 and MIO/UMIO 6 are both active at the same time.
- Ports on MIO/UMIO 5 and MIO/UMIO 6 are redundant with each other.

All ports in a LAG can be auto-switched to another MIO/UMIO when certain active port counts or bandwidth thresholds are crossed.

LAG and Multiple Switches

This feature connects subscriber traffic ports on MIOs to ports on Ethernet switches. A port failure/switch forces all ports in a LAG to switch to the other MIO/UMIO when a specified threshold is crossed. This works in a way similar to the auto-switch feature for port redundancy. LACP runs between the ASR 5500 and the Ethernet switch, exchanging relevant pieces of information, such as health status.

The following table summarizes typical LAG functionality on an MIO/UMIO card.

<table>
<thead>
<tr>
<th>MIO/UMIO Port</th>
<th>LAGID</th>
<th>Ethernet Switch A</th>
<th>Ethernet Switch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIO/UMIO Port 11</td>
<td>1</td>
<td>Port 1</td>
<td>----</td>
</tr>
<tr>
<td>MIO/UMIO Port 12</td>
<td>1</td>
<td>Port 2</td>
<td>----</td>
</tr>
<tr>
<td>MIO/UMIO Port 13</td>
<td>1</td>
<td>----</td>
<td>Port 1</td>
</tr>
</tbody>
</table>
Multiple Switches with L2 Redundancy

To handle the implementation of LACP without requiring standby ports to pass LACP packets, two separate instances of LACP are started on redundant cards. The two LACP instances and port link state are monitored to determine whether to initiate an auto-switch (including automatic L2 port switch).

The figure below shows an LAG established across two MIO/UMIO daughter card ports with L2 redundancy.

![Figure 8. LAG with L2 Redundancy, Two Ethernet Switches](image)

An LACP implementation with L2 redundancy cannot pass traffic even though standby ports have link up. For example, with two MIO/UMIO cards connected to two different Ethernet switches and all ports in the same LAG, failure of ports would not trigger a LAG switch until the active port number ratio flipped (more ports down than up).

Port States for Auto-Switch

Ports are classified in one of four states to determine whether to start auto-switching. See the table below.

For counters, State(x) represents the number of ports on a card in that state.

<table>
<thead>
<tr>
<th>State</th>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>L(x)</td>
<td>Physical link up</td>
</tr>
<tr>
<td>Standby</td>
<td>S(x)</td>
<td>Link up but in standby mode</td>
</tr>
<tr>
<td>Waiting</td>
<td>W(x)</td>
<td>Waiting for Link Aggregation Control Protocol negotiation</td>
</tr>
<tr>
<td>Aggregated</td>
<td>A(x)</td>
<td>Aggregation formed</td>
</tr>
</tbody>
</table>

Hold Time

Once the LAG manager switches to another LACP instance, it does not consider another change for a short period to let link and LACP negotiation settle down. This “hold time” is configurable.

The LAG manager also enters/extends the hold period when an administrator manually switches ports to trigger a card switch.
Preferred Slot

You can define which card is preferred per LAG group as a preferred slot. When a preferred MIO/UMIO slot is specified, it is selected for the initial timeout period to make the selection of a switch less random.

Port preference is not allowed in this mode.

Auto-Switch Criteria

The following criteria determine the switching of card x to card y to provide better bandwidth while allowing manual intervention. The evaluation of the criteria occurs outside of the hold period.

Ports are automatically switched from card x to card y when A(y) ? = 1, at least one port is in aggregated state on card y, and one of the following conditions is true (in order of precedence):

- L(x) L(y) Less ports with link Up on card x than card y
- S(x) S(y) More ports in Standby state on card x than card y
- W(x) W(y) More ports in Waiting state on card x than card y
- A(x) A(y) Fewer ports in Aggregated state on card x than card y
- Card y is preferred
- Card y is selected.

Link Aggregation Control

One port in an aggregation group is configured as a master so that all traffic (except control traffic) in the aggregation group logically passes through this port. It is recommended that you configure link-aggregation on the master port first when enabling LAG, and unconfigure the master port last when disabling LAG.

The following command creates link aggregation group N with port slot#/port# as master. Only one master port is allowed for a group. N must be in the range of [1...255].

```
configure

port ethernet slot#/port#
  link-aggregation master group N

exit
```

Important: Link Aggregation Control Protocol (LACP) starts running only when the master port is enabled.

Use the following command to add a port as member of link aggregation group number N only if the master port is assigned. Otherwise, it is added to the group when the master port is assigned:

```
port ethernet slot#/port#
  link-aggregation member group N

exit
```
Important: The VPN can only bind the master port, and a VLAN can only be created on the master port. A failure message is generated if you attempt to bind to a link aggregation member port.

Each system that participates in link aggregation has a unique system ID that consists of a two-byte priority (where the lowest number [0] has the highest priority) and a six-byte MAC address derived from the first port’s MAC address. The following command sets the system priority used to form the system ID. \(P \) is a hex in the range \([0x0000..0xFFFF]\). The default is 0x8000.

```
card slot#

link-aggregation system-priority P
```

Ports in a system are assigned keys. The group number maps directly to the key, whereupon only ports with the same key can be aggregated. Ports on each side of the link use a different aggregation key.

The system ID, port key and port ID of two peers form the Link Aggregation Group Identifier (LAGID). You can aggregate links having the same LAGID. Systems are often configured initially with each port in its own aggregation (requiring a separate key per port), or with all ports in the same aggregation (a single key for all ports). Negotiation via LACP would qualify the actual aggregation.

Systems exchange information about system ID, port key and port ID with peers across the physical links using LACP. LACP packets are defined with the Slow Protocol format. Each system sends out its own (“actor”) information and its last received information about its peer (“partner”) over the physical link.

Use the following commands to set the LACP parameters. LACP can run in active mode to send LACP packets periodically, or in passive mode, in which it only responds to LACP packets it receives.

LACP can send packets at either a auto (30s) or fast (1s) rate. The defaults for this release are **Active** and **Auto**; see the sample configuration below:

```
config

port ethernet slot#/port#

    link-aggregation lacp { active | passive } [ rate { auto | fast } | timeout { long | short } ]
```

Peers send out LACP packets when the state changes or if a difference is found from a received LACP packet about its own state.

Corresponding ports on an MIO/UMIO redundant pair cannot be active at the same time. Redundant ports share the same MAC address, so after a failover is resolved, the original port rejoins the link aggregation group.

Redundancy Options

For L2 redundancy set the following option on the master port for use with the whole group:

```
link-aggregation redundancy standard [hold-time sec ] [ preferred slot { card_number | none } ]
```

Standard redundancy treats all cards in the group as one group.
Horizontal Link Aggregation with Two Ethernet Switches

When a LAG contains two sets of ports each connecting to a different switch, the operator has the ability to specify the slot/port (connected to the destination switch) when switching ports.

The Exec mode `link-aggregation port switch to slot/port` command configures this option. The `slot/port` is any valid port connected to the destination switch. The following criteria apply to the setting of this option:

- `slot/port` must support LAG.
- `slot/port` must be configured with LAG.
- `slot/port` must not be already actively distributing
- `slot/port` must have negotiated a link aggregation partner in standard mode.
- `slot/port's` partner must have an equal or higher in standard mode.
- `slot/port's` partner bundle must have equal or higher bandwidth in standard mode.
- Switching to `slot/port` must not violate preference within hold-time in standard mode.

Link Aggregation Status

To check the status of link aggregation, use the following commands:

- `show port table`
- `show port info slot/port`

A single character is used to display LAG physical port status in the output of the `show port table` command. See the table below.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA+</td>
<td>Port is actively used for distributing.</td>
</tr>
<tr>
<td>LA-</td>
<td>Port failed to negotiate LACP.</td>
</tr>
<tr>
<td>LA~ (tilde)</td>
<td>Port negotiated LACP but another peer was selected.</td>
</tr>
<tr>
<td>LA*</td>
<td>Port is (re)negotiating LACP.</td>
</tr>
</tbody>
</table>
Configuring a Demux Card

You can dedicate a DPC/UDPC or MIO/UMIO to function as a demux card. Demux is a generic term for signal demultiplexing tasks. These are the tasks responsible for parsing call setup (signaling packets) and distributing the calls internally. For this reason there almost as many tasks running on a demux card as there are services.

The vpnmgr tasks responsible for each context also run on the demux card. The number of vpnmgr tasks correspond to the number of contexts. A vpnmgr is responsible for IP address assignment to mobile equipment, IP routing (such as BGP, OSPF), as well as a variety of associated tasks.

Overview

Designating a DPC/UDPC or MIO/UMIO as a demux card frees up resources for session handling, which has the potential to increase system throughput. However, there is no increased support in total subscriber capacity due to other system resource restrictions.

This feature is disabled by default and can be enabled via the Global Configuration mode require demux command. It is only supported for a limited number of products. Refer to the product Administration Guide for additional information.

To support this feature session recovery must also be enabled via the Global Configuration mode require session recovery command.

Important: After enabling demux card and session recovery, you must save the configuration and reboot the ASR 5500 to enable this feature.

Caution: Enabling the Demux on MIO/UMIO feature changes resource allocations within the system. This directly impacts an upgrade or downgrade between StarOS versions in ICSR configurations. Contact Cisco TAC for procedural assistance prior to upgrading or downgrading your ICSR deployment.

MIO/UMIO Demux Restrictions

The following restrictions apply when enabling an MIO/UMIO as a demux card:

- The *require demux management-card* command must be configured before any service or contexts have been created on the system. The command will not execute after a mode of operation has been selected for the chassis.

- Only the following services currently support the designation of an MIO/UMIO card for demux functions: GGSN, SGW, PGW, HA, SAE-GW and L2TP LNS. These services are supported only when they are deployed as consumer gateways.

- SGSN, MME, HNBGW, HeNBGW, SaMOG, PDG, PDIF, ePDG, IPSG, PDSN, HSGW, L2TP LAC, NEMO, CSCF, FA, and WSG are not supported. Enterprise or corporate gateways (GGSN, HA, PGW, etc.) are also not supported.

- You should not enable demux functionality on MIO for configurations that require a large number of tunnels.
- After the ASR 5500 has booted with demux functions running on an MIO/UMIO, you cannot configure non-supported services. A maximum of eight Demux Managers are supported. Any attempt to add more than eight Demux Managers will be blocked.
- Service/products requiring a large number of VPN Managers, VRFs and/or Demux Managers must not enable demux functions on an MIO.
- With demux functions running on an MIO, the ASR 5500 supports a maximum of 10 contexts, 64 interfaces per context, and 250 VRFs per system.
- ICSR upgrades require compatible configurations and Methods of Procedure (MOPs).

Implementation of this feature assumes that CEPS (Call Events Per Second) and the number of subscribers will remain constant, and only the data rate will increase. This ensures that the CPU demand will not increase on the MIO/UMIO.

Important: Contact Cisco TAC for additional assistance when assessing the impact to system configurations when enabling the Demux on MIO/UMIO feature.

Configuration

For releases prior to 15.0, to configure a DPC/UDPC as a demux card enter the following CLI commands:

```
configure
require demux card
end
```

For release 15.0+, to configure a DPC/UDPC as a demux card enter the following CLI commands:

```
configure
require demux processing-card
end
```

To configure an MIO/UMIO as a demux card enter the following CLI commands:

```
configure
require demux management-card
end
```
Chapter 4
Management Settings

This chapter provides instructions for configuring Object Request Broker Element Management (ORBEM) and Simple Network Management Protocol (SNMP) options.

This chapter includes the following sections:

- ORBEM and the Web Element Manager
- SNMP Support
ORBEM and the Web Element Manager

The system can be managed by a Common Object Broker Request Architecture (CORBA)-based, element management system application called the Cisco® Web Element Manager (WEM).

You must configure the ORBEM settings on the ASR 5x00 that allow the system to communicate with the server running the WEM application.

Important: Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the Command Line Interface Reference for detailed information about all commands.

To configure the system to communicate with the Web Element Manager:

Step 1 Set client ID parameters and configure the STOP/TCP port settings by applying the example configuration in Configuring Client and Port Parameters.

Step 2 Configure Internet Inter-ORB Protocol (IIOP) transport parameters by applying the example configuration in Configuring Internet Inter-ORB Protocol (IIOP) Transport Parameters.

Step 3 View your new ORBEM configuration by following the steps in Verifying ORBEM Parameters.

Step 4 Save the configuration as described in Verifying and Saving Your Configuration.

Configuring ORBEM Client and Port Parameters

Use the following example to set client ID parameters and configure the SIOP/TCP port settings:

```
configure
    orbem
        client id encrypted password password
        max-attempt number
        session-timeout time
        siop-port port_number
        event-notif-siop-port siopnotif_port
        event-notif-service
        end
```

Notes:

- You can issue the client id command multiple times to configure multiple clients.
- If a client ID is de-activated due to reaching the configured maximum number of attempts, use the activate client id command to reactivate it.
- If a firewall exists between the system and the Web Element Manager, open the SIOP port number and the TCP port number 15011.
- If the ORB Notification Service is enabled via the `event-notif-service` command, you can set filters to determine which events are to be sent. By default, the Service sends all error and higher level events, “info” level events for the ORBS facility, CLI command logs, and license change logs. Optionally, configure a filter by including the `event-notif-service filter` command. Enter this command for each filter you need to configure.

Configuring IIOP Transport Parameters

Use the following example to configure Internet Inter-ORB Protocol (IIOP) transport parameters that enable ORB-based management to be performed over the network:

```bash
configure
orbem
  iiop-transport
  iiop-port iiop_port_number
  event-notif-iiop-port iiop_notif_port
end
```

Notes:
- If you are using the Secure Sockets Layer (SSL) option, do not enable the IIOP transport parameter. The WEM default process enforces SSL.
- You configure the ORBEM interface to use SSL by specifying a certificate and private key.
Verifying ORBEM Parameters

Step 1 Run the `show orbem client table` command to verify that the client was configured properly. This command lists the configured ORBEM clients and displays their state and privileges.

Step 2 Run the `show orbem status` command to verify the ORBEM parameter configuration. The following displays a sample of this command’s output.

```
Service State : On
Management Functions : FCAPS
IOP Address : 192.168.1.150
SSL Port : 14131
TCP Port : 14132
Notification SSL Port : 7777
Notification TCP Port : 7778
Session Timeout : 86400 secs
Max Login Attempts : 5
IIOP Transport : On
Notification : On
Debug Level : Off
IDL Version Check : On
Number of Current Sessions : 1
Number of Event Channels Open : 0
Number of Operations Completed : 2895
Number of Events Processed : 0
Avg Operation Processing time : 87214 usecs
   (last 1000) : 87950 usecs
```
SNMP Support

The system uses the SNMP to send traps or events to the Web Element Manager server or an alarm server on the network. You must configure SNMP settings to communicate with those devices.

Important: Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the *Command Line Interface Reference* for complete information.

The *SNMP MIB Reference* describes the MIBs and SNMP traps supported by the ASR 5x00 platform.

To configure the system to communicate with the WEM server or an alarm server:

Step 1 Set SNMP parameters such as UDP port, and alarm server target by applying the example configuration in Configuring SNMP and Alarm Server Parameters.

Step 2 To view your new SNMP configuration, follow the steps in Verifying SNMP Parameters.

Step 3 Save the configuration as described in Verifying and Saving Your Configuration.

Configuring SNMP and Alarm Server Parameters

Use the following example to set SNMP and alarm server parameters:

```
configure
    system contact contact_name
    system location location_name
    snmp authentication-failure-trap
    snmp community community_string
    snmp server port port_number
    snmp target name ip_address
    snmp engine-id local id_string
    snmp notif-threshold value low low_value period time_period
    snmp user user_name
    snmp mib mib_name
end
```
Notes:

- The **system contact** is the name of the person to contact when traps are generated that indicate an error condition.
- An **snmp community** string is a password that allows access to system management information bases (MIBs).
- The system can send SNMPv1, SNMPv2c, or SNMPv3 traps to numerous target devices. However, WEM can only process SNMP version 1 (SNMPv1) and SNMP version 2c (SNMPv2c) traps. If the SNMP target you are configuring is the WEM application, use the **snmp target** command to configure use of version 1 or version 2c. Issue this command as many times as you need to configure multiple targets. If you configure multiple targets, generated alarms are sent to every configured target.
- The **snmp notif-threshold** command configures the number of SNMP notifications that need to be generated for a given event and the number of seconds in the monitoring window size (default = 300), before the notification is propagated to the SNMP users (default = 100).
- The **snmp engine-id local** command is optional. It is only required if your network requires SNMP v3 support. The engine ID uniquely identifies the SNMP engine and associated SNMP entities, thus providing a security association between the two for the sending and receiving of data.
- The **snmp user** name is for SNMP v3 and is optional. There are numerous keyword options associated with this command.
- Use the **snmp mib** command to enable other industry standard and Cisco MIBs. By default only the STARENT-MIB is enabled.

Important: SNMPv3 traps are **not** supported by the WEM application.

Verifying SNMP Parameters

Step 1

Run the **show snmp server** command to verify that the SNMP server information is correctly configured. The following displays a sample output of this command.

```
SNMP Server Configuration:
  Server State : enabled
  SNMP Port : 161
  sysLocation : chicago
  sysContact : admin
  authenticationFail traps : Enabled
  EngineID : 123456789
  Alert Threshold : 100 alerts in 300 seconds
  Alert Low Threshold : 20 alerts in 300 seconds

SNMP Agent Mib Configuration:
  STARENT-MIB : Enabled
  IF-MIB : Disabled
  ENTITY-MIB : Disabled
  ENTITY-STATE-MIB : Disabled
  ENTITY-SENSORE-MIB : Disabled
  HOST-RESOURCES-MIB : Disabled
  CISCO-MOBILE-WIRELESS-SERVICE-MIB : Disabled
  CISCO-ENTITY-DISPLAY-MIB : Disabled
  CISCO-PROCESS-MIB : Disabled
  CISCO-ENTITY-FRU-CONTROL-MIB : Disabled
```
Step 2 Verify that the SNMP community(ies) were configured properly by entering the following command:

\[\text{show snmp communities} \]

The output of this command lists the configured SNMP communities and their corresponding access levels.

Step 3 Verify that the SNMP transports are configured properly by entering the following command:

\[\text{show snmp transports} \]

The following displays a sample output:

- Target Name: rms1
- IP Address: 192.168.1.200
- Port: 162
- Default: Default
- Security Name: public
- Version: 1
- Security:
- View:
- Notif Type: traps

Controlling SNMP Trap Generation

The system uses SNMP traps (notifications) to indicate that certain events have occurred. By default, the system enables the generation of all traps. However, you can disable individual traps to allow only traps of a certain type or alarm level to be generated. This section provides instructions for disabling/enabling SNMP traps.

Important: Commands used in the configuration samples in this section provide base functionality. The most common commands and keyword options are presented. In many cases, other optional commands and keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands.

To configure SNMP trap generation:

Step 1 Set parameters by applying the following example configuration:

\[\text{configure} \]

\[\text{snmp trap suppress} \]

\[\text{snmp trap suppress trap_name1 trap_name2 ... trap_nameN} \]

Important: If at a later time you wish to re-enable a trap that was previously suppressed, use the \text{snmp trap enable} command.

\[\text{snmp trap enable trap_name1 trap_name2 ... trap_nameN target target-name} \]

Step 2 Save the configuration as described in Verifying and Saving Your Configuration.
Chapter 5
Verifying and Saving Your Configuration

This chapter describes how to save your system configuration and includes the following sections:

- Verifying the Configuration
- Saving the Configuration
Verifying the Configuration

You can use a number of commands to verify the configuration of your feature, service, or system. Many are hierarchical in their implementation and some are specific to portions of or specific lines in the configuration file.

Feature Configuration

In many configurations, you have to set and verify specific features. An example includes IP address pool configuration. Using the example below, enter the listed commands to verify proper feature configuration.

Enter the `show ip pool` command to display the IP address pool configuration. The output from this command should look similar to the sample shown below. In this example, all IP pools were configured in the `isp1` context.

```
context : isp1:
+-----Type: (P) - Public (R) - Private
| (S) - Static (E) - Resource
|++++-State: (G) - Good (D) - Pending Delete (R)-Resizing
||||++-Priority: 0..10 (Highest (0) .. Lowest (10))
|||||+.Busyout: (B) - Busyout configured
vvvvv
Pool Name    Start Address     Mask/End Address  Used  Avail
PG00  ipsec  12.12.12.0       255.255.255.0  0    254
PG00  pool1  10.10.0.0        255.255.0.0   0    65534
SG00  vpnpool  192.168.1.250   192.168.1.254 0     5
```

Total Pool Count: 5

Important: To configure features on the system, use the `show` commands specifically for these features. Refer to the Exec Mode show Commands chapter in the Command Line Interface Reference for complete information.

Service Configuration

Verify that your service was created and configured properly by entering the following command:

```
show service_type service_name
```

The output is a concise listing of the service parameter settings similar to the sample displayed below. In this example, a P-GW service called `pgw` is configured.
Context Configuration

Verify that your context was created and configured properly by entering the `show context name name` command.

The output shows the active context. Its ID is similar to the sample displayed below. In this example, a context named `test1` is configured.

<table>
<thead>
<tr>
<th>Context Name</th>
<th>ContextID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>test1</td>
<td>2</td>
<td>Active</td>
</tr>
</tbody>
</table>

System Configuration

Verify that your entire configuration file was created and configured properly by entering the `show configuration` command.

This command displays the entire configuration including the context and service configurations defined above.

Finding Configuration Errors

Identify errors in your configuration file by entering the `show configuration errors` command.

This command displays errors it finds within the configuration. For example, if you have created a service named “service1”, but entered it as “srv1” in another part of the configuration, the system displays this error.

You must refine this command to specify particular sections of the configuration. Add the `section` keyword and choose a section from the help menu as shown in the examples below.

```
show configuration errors section ggsn-service
```

or

```
show configuration errors section aaa-config
```

If the configuration contains no errors, an output similar to the following is displayed:

```
##############################################################################
Displaying Global
AAA-configuration errors
##############################################################################
Total 0 error(s) in this section !
```
Saving the Configuration

These instructions assume that you are at the root prompt for the Exec mode:

```
[local]host_name#
```

To save your current configuration, enter the following command:

```
save configuration url [ obsolete-encryption | showsecrets | verbose ] [ -redundant ] [ -noconfirm ]
```

`url` specifies the location in which to store the configuration file. It may refer to a local or a remote file.

For complete information about the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

Important: Do not use the “/” (forward slash), “:” (colon) or “@” (at sign) characters when entering a string for the following URL fields: directory, filename, username, password, host or port#.

To save a configuration file called `system.cfg` to a directory that was previously created called `cfgfiles` to the flash memory on the active MIO/UMIO, enter the following command:

```
save configuration /flash/cfgfiles/system.cfg
```

To save a configuration file called `simple_ip.cfg` to a directory called `host_name_configs`, using an FTP server with an IP address of 192.168.34.156, on which you have an account with a username of `administrator` and a password of `secure`, use the following command:

```
save configuration sftp://administrator:secure@192.168.34.156/host_name_configs/simple_ip.cfg
```

To save a configuration file called `init_config.cfg` to the root directory of a TFTP server with a hostname of `config_server`, enter the following command:

```
save configuration tftp://config_server/init_config.cfg
```
Chapter 6
System Interfaces and Ports

This chapter describes how to create a context and configure system interfaces and ports within the context. Before beginning these procedures, refer to your product-specific administration guide for configuration information for your product.

This chapter includes the following:

- Contexts
- Ethernet Interfaces and Ports

Important: Make sure at least one Data Processing Card (DPC) or Data Processing Card Universal (UDPC) is active before you configure system interfaces and ports. Refer to System Settings in this guide for information and instructions on activating DPCs.
Contexts

Even though multiple contexts can be configured to perform specific functions, they are all created using the same procedure.

Creating Contexts

Important: Commands used in the configuration examples in this section represent the most common or likely commands and/or keyword options. In many cases, other commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands.

To create a context, apply the following example configuration:

```plaintext
configure

context name

end
```

Repeat to configure additional contexts.

Viewing and Verifying Contexts

Step 1 Verify that your contexts were successfully created by entering the following command:

```plaintext
show context all
```

The output is a two-column table similar to the example below. This example shows that two contexts were created: one named `source` and one named `destination`.

<table>
<thead>
<tr>
<th>Context Name</th>
<th>ContextID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1</td>
<td>Active</td>
</tr>
<tr>
<td>source</td>
<td>2</td>
<td>Active</td>
</tr>
<tr>
<td>destination</td>
<td>3</td>
<td>Active</td>
</tr>
</tbody>
</table>

The left column lists the contexts that are currently configured. The center column lists the corresponding context ID for each of the configured contexts. The third column lists the current state of the context.

Step 2 Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Step 3 Now that the context has been created, interfaces and specific functionality can be configured within the context. Proceed to other sections for instructions on configuring specific services and options.
Ethernet Interfaces and Ports

Regardless of the type of application interface, the procedure to create and configure it consists of the following:

Step 1 Create an interface and assign an IP address and subnet mask to it by applying the example configuration in [Creating an Interface](#).

Step 2 Assign a physical port for use by the interface and bind the port to the interface by applying the example configuration in [Configuring a Port and Binding It to an Interface](#).

Step 3 Optionally configure a static route for the interface by applying the example configuration in [Configuring a Static Route for an Interface](#).

Step 4 Repeat the above steps for each interface to be configured.

Important: This section provides the minimum instructions for configuring interfaces and ports to allow the system to communicate on the network. Commands that configure additional interface or port properties are described in the [Ethernet Port Configuration Mode Commands](#) and [Ethernet Interface Configuration Mode Commands](#) chapters of the Command Line Interface Reference.

Caution: To ensure that system line card and port-level redundancy mechanisms function properly, the Spanning Tree protocol must be disabled on devices connected directly to any system port. Failure to turn off the Spanning Tree protocol may result in failures in the redundancy mechanisms or service outage.

Creating an Interface

Use the following example to create a new interface in a context:

```
configure
  context name
  interface name { ip | ipv6 } address address subnetmask [ secondary ]
end
```

Notes:

- **Optional:** Add the `loopback` keyword option to the `interface name` command, to set the interface type as “loopback” which is always UP and not bound to any physical port.

- **Optional:** Add the `secondary` keyword to the `{ ip | ipv6 } address` command, to assign multiple IP addresses to the interface. IP addresses can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

- **Optional:** In the interface config mode, add the `port-switch-on-L3-fail address` command, to configure the interface for switchover to the port on the redundant line card if connectivity to a specified IP address is lost. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
Configuring a Port and Binding It to an Interface

Use the following example configuration to configure and assign a port to an interface:

```
configure

port ethernet slot#/port#

description description

no shutdown

bind interface interface_name  context_name

end
```

Notes:
- For **port ethernet slot#**, use the actual chassis slot in which the MIO/UMIO card is installed; this could be 5 or 6.
- For **port ethernet port#**, use ports 10 to 19 (DC1) or 20 to 29 (DC2).
- Optional: In the Ethernet Port configuration mode, add the preferred **slot slot#** command if you want to specify a port preference.
- Binding associates the port and all of its settings to the named interface.

Configuring a Static Route for an Interface

Use the following example to configure a static route for an interface:

```
configure

context name

{ ip | ipv6 } route ip_address netmask next-hop gw_address interface_name

end
```

Notes:
- **ip_address** and **netmask** are the IP address and subnet mask of the target network. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- **gw_address** is the IP address of the default gateway or next-hop route. This IP address can be entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- To configure a route to the gateway router, use 0.0.0.0 for the network and mask variables.
- Repeat as needed. Multiple static routes can be configured to the same destination to provide an alternative means of communication in case the preferred route fails.
Viewing and Verifying Port Configuration

Step 1 Verify that your interface configuration settings are correct by entering the following commands:

```
context context_name
show { ip | ipv6 } interface
```

`context_name` represents the name of the context in which the interface was created. The output from these commands should be similar to the following example.

In this example an interface named `mgmt1` was configured in the local context.

```
Intf Name: mgmt1
Intf Type: Broadcast
IP State: UP (Bound to 5/11 untagged, ifIndex 285278209)
IP Address: 192.168.100.3  Subnet Mask: 255.255.255.0
Bcast Address: 192.168.100.255  MTU: 1500
Resoln Type: ARP  ARP timeout: 3600 secs
Number of Secondary Addresses: 0
Total interface count: 1
```

Step 2 Verify that your port configuration settings are correct by entering the following command:

```
show configuration port slot#/port#
```

`slot#` is the chassis slot number of the MIO/UMIO on which the physical port resides. `slot#` can be 5 or 6.

This command produces an output similar to that displayed in the following example that shows the configuration for port 11 on the MIO/UMIO installed in chassis slot 5.

In this example, the port is bound to an interface called `rp1` configured in a context called `source`.

```
config
    port ethernet 5/11
    description MIO5/11_RP1
    no shutdown
    bind interface rp1 source
#end
```

Step 3 Verify that your static route(s) was configured properly by entering the following command:

```
show ip static-route
```

This command produces an output similar to that displayed in the following example that shows a static route to a gateway with an IP address of 192.168.250.1.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>192.168.250.1</td>
<td>Static</td>
<td>0</td>
<td>0</td>
<td>MI01</td>
</tr>
<tr>
<td>0.0.0.0/0</td>
<td>192.168.250.1</td>
<td>Static</td>
<td>0</td>
<td>0</td>
<td>rp1 source</td>
</tr>
</tbody>
</table>

Step 4 Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.
Chapter 7
System Security

This chapter describes the security features supported on the ASR 5500 platform.

This chapter explores the following topics:

- Per-Chassis Key Identifier
- Encrypted SNMP Community Strings
- Lawful Intercept Restrictions
- Adding, Modifying and Removing Users
- Hidden Commands
Per-Chassis Key Identifier

A user can set a unique chassis key which will work only for a chassis or for any set of chassis that will share the same configuration information.

The chassis key consists of 1 to 16 alphanumeric ASCII characters. The chassis key plain-text value is never displayed to the user; it is entered interactively and not echoed to the user.

On the ASR5500 the encrypted chassis key is stored in the midplane EEPROM and shared by both MIO/UMIOs.

If the chassis key identifier stored in the header comment line of the configuration file does not match the chassis key, an error message is displayed to the user. The user can change the chassis key value simply by entering the chassis key again. The previous chassis key is replaced by a new chassis key. The user is not required to enter a chassis key.

If the user does not configure a chassis key, the system generates a unique value for that chassis.

Important: Changing a chassis key may invalidate previously generated configurations. This is because any secret portions of the earlier generated configuration will have used a different encryption key. For this reason the configuration needs to be recreated and restored.

Important: To make password configuration easier for administrators, the chassis key should be set during the initial chassis set-up.

The configuration file contains a one-way encrypted value of the chassis key (the chassis key identifier) and the version number in a comment header line. These two pieces of data determine if the encrypted passwords stored within the configuration will be properly decrypted.

While a configuration file is being loaded, the chassis key used to generate the configuration is compared with the stored chassis key. If they do not match the configuration is not loaded.

The user can remove the chassis key identifier value and the version number header from the configuration file. Also, the user may elect to create a configuration file manually. In both of these cases, the system will assume that the same chassis key will be used to encrypt the encrypted passwords. If this is not the case, the passwords will not be decrypted due to resulting non-printable characters or memory size checks. This situation is only recoverable by setting the chassis key back to the previous value, editing the configuration to have the encrypted values which match the current chassis key, or by moving the configuration header line lower in the configuration file.

Beginning with Release 15.0, the chassis ID will be generated from an input chassis key using the SHA2-256 algorithm followed by base36 encoding. The resulting 44-character chassis ID will be stored in the same chassisid file in flash.

Release 14 and Release 15 chassis IDs will be in different formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis-key is reset in Release 15 through the setup wizard or chassis-key CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.
MIO/UMIO Synchronization

On boot up both MIO/UMIOs automatically read the chassis key configured on the ASR 5500 midplane.

Protection of Passwords

Users with privilege levels of Inspector and Operator cannot display decrypted passwords in the configuration file via the ASR 5500 command line interface (CLI).

Secure Configuration Password Encryption

The system encrypts passwords using an MD5-based cipher. These passwords also have a random 64-bit (8-byte) salt added to the password. The chassis key is used as the encryption key.

Using the chassis key allows for an encryption method where the decryption requires the knowledge of a “shared secret”. Only a chassis with knowledge of this shared secret can access the passwords. To decipher passwords, a hacker who knew the chassis key would still need to identify the location of the 64-bit random salt value within the encryption. The encrypted password is displayed with a prefixed of “+A” in the configuration file to identify the methodology used for encrypting.

Support for Non-Current Encryptions and Decryptions

The system supports previously formatted encrypted passwords. The syntax of the encrypted passwords indicates to the ASR 5500 which methodology was used for encryption. If the system does not see a prefix before the encrypted password, the earlier encryption method using a fixed key will be used. If the encrypted password includes the “+A” prefix, the decryption method uses the chassis key and random salt.

If the user saves a new configuration, the generated file will always contain passwords encrypted by the most recent method. The user cannot generate the earlier DES-based encryption values. However, all future StarOS releases will continue to support plain-text password entry for all two-way encryptable passwords.

The recommended process for changing the chassis key without causing a “lock-out” state is as follows:

- Load the configuration file of the last good configuration using the previous chassis key.
- Change the chassis key to the new desired value.
- Save the configuration with this new chassis key.

Refer to Configuring a Chassis Key in System Settings for additional information.

Selectable Password/Secrets Encryption Algorithm

An administrator can specify the type of encryption algorithm to be used for passwords and secrets. The default algorithm will be the MD5-based cipher (algorithm “A”) described above. Another option specifies the use of AES-CBC-128 for encryption and HMAC-SHA1 for authentication (algorithm “B”).

Use the Global Configuration mode cli-encrypt-algorithm command to specify the desired encryption algorithm – A (default) or B. For additional information, refer to the Command Line Interface Reference.
Support for ICSR Configurations

Inter-Chassis Session Recovery (ICSR) is a redundancy configuration that employs two identically configured ASR 5500 chassis as a redundant pair.

ICSR chassis share the same chassis key. If the ISCR detects that the two chassis have incompatible chassis keys, an error message is logged but the ICSR system will continue to run. Without the matching chassis key, the standby ICSR chassis can recover services if the active chassis goes out of service; the standby chassis will still have access to the passwords in their decrypted form.

ICSR chassis use Service Redundancy Protocol (SRP) to periodically check to see if the redundancy configuration matches with either decrypted passwords or DES-based two-way encryption strings. Since the configuration is generated internally to the software, users are not able to access the configuration used to check ICSR compatibility.
Encrypted SNMP Community Strings

Simple Network Management Protocol (SNMP) uses community strings as passwords for network elements. Although these community strings are sent in clear-text in the SNMP PDUs, the values can be encrypted in the configuration file. The `snmp community encrypted name` command enables the encryption of SNMP community strings. For additional information, see the Global Configuration Mode Commands chapter in the Command Line Interface Reference.

Lawful Intercept Restrictions

This section describes some of the security features associated with the provisioning of Lawful Intercept (LI). For additional information, refer to the Lawful Intercept Configuration Guide.

LI Server Addresses

An external authenticating agent (such as RADIUS or Diameter) sends a list of LI server addresses as part of access-accept. For any intercept that was already installed or will be installed for that subscriber, a security check is performed to match the LI server address with any of the LI-addresses that were received from the authenticating agent. Only those addresses that pass this criteria will get the intercepted information for that subscriber.

While configuring a campon trigger, the user will not be required to enter the destination LI server addresses. When a matching call for that campon trigger is detected, a security check is done with the list received from the authentication agent. The LI-related information is only forwarded if a matching address is found.

When an active-only intercept is configured, if a matching call is found, a security check is made for the LI address received from the authentication agent and the intercept configuration will be rejected.

If no information related to LI server addresses is received for that subscriber, LI server addresses will not be restricted.

Important: A maximum of five LI server addresses are supported via an authenticating agent.

Modifying Intercepts

One LI administrator can access and/or modify the intercepts created by another LI administrator. Whenever an intercept is added, removed or modified, an event log is displayed across LI administrators about the change. An SNMP trap is also generated.
Adding, Modifying and Removing Users

It is considered uncommon for a user to be added or removed from the ASR 5500. Likewise, it is considered uncommon for a user's privileges to modified. However, if the system is compromised, it is common for attackers to add or remove a privileged user, raise their privileges or lower the privileges of others.

As a general rule, lower privileged users should not be allowed to increase their privileges or gain access to sensitive data, such as passwords, which were entered by higher privileged users.

Important: The ASR 5500 can only detect changes in users and user attributes, such as privilege level, when these users are configured through the ASR 5500.

Notification of Users Being Added or Deleted

Users with low level authorization should not be able to create users with high level authorization. However, if a malicious actor were to be able to create a high level authorized user, they could then delete the other high level authorized users, thereby locking them out of the system.

The following SNMP traps notify an administrator when users are added or removed:

- **starLocalUserAdded** – indicates that a new local user account has been added to the system.
- **starLocalUserRemoved** – indicates that a local user account has been removed from the system.

Notification of Changes in Privilege Levels

Whenever a user's privilege level is increased or decreased, an SNMP notification will be sent out. A malicious actor may gain access to more privileged commands by somehow promoting” their privileges. Once this is done, they could then “demote” the privileges of all the other users, thereby locking the proper administrators out of the system.

The **starLocalUserPrivilegeChanged** trap indicates that a local user's privilege level has been changed.

User Access to Operating System Shell

The **starOsShellAccessed** trap indicates that a user has accessed the operating system shell.
Hidden Commands

Users with Security Administrator privilege can enable the display of previously hidden commands. The CLI test-commands mode displays new command keywords for existing commands, as well as new commands.

⚠️ Caution: CLI test-commands are intended for diagnostic use only. Access to these commands is not required during normal system operation. These commands are intended for use by Cisco TAC personnel only. Some of these commands can slow system performance, drop subscribers, and/or render the system inoperable.

Enabling cli test-commands Mode

To display hidden commands, the user must log into the CLI as a Security Administrator and go to the Global Configuration mode.

Enter cli hidden to enable the use of hidden commands.

This command sequence is shown below.

```
[local]asr5500# config
[local]asr5500(config)# cli hidden
[local]asr5500(config)#
```

⚠️ Important: Low-level diagnostic and test commands/keywords will now be visible to a user with Administrator or higher privilege. There is no visual indication on the CLI that the test-commands mode has been enabled.

Enabling Password for Access to CLI-test commands

A Security Administrator can set a plain-text or encrypted password for access to CLI test commands. The password value is stored in /flash along with the boot configuration information. The show configuration and save configuration commands will never output this value.

The Global Configuration mode command tech-support test-commands [encrypted] password password sets an encrypted or plain-text password for access to CLI test-commands.

This command sequence is shown below.

```
[local]asr5500# config
[local]asr5500(config)# tech-support test-commands password password
[local]asr5500(config)#
```

When a test-commands password is enabled, the Global Configuration mode command cli test-commands [encrypted] password password requires the entry of the password keyword. If the encrypted keyword is specified, the password argument is interpreted as an encrypted string containing the password value. If the encrypted keyword is not specified, the password argument is interpreted as the actual plain text value

⚠️ Important: If tech-support test-commands password is never configured, cli-test commands will always fail. If the password keyword is not entered for cli test-commands, the user is prompted (no-echo) to enter the password. Also, cli hidden must be enabled by a Security Administrator to access the CLI test-commands.
Exec Mode cli test-commands

Exec mode commands are available to a privileged user who enters the command `cli test-commands` from Exec mode.

```
[local]asr5500# cli test-commands [encrypted] password password
```

Warning: Test commands enables internal testing and debugging commands
USE OF THIS MODE MAY CAUSE SIGNIFICANT SERVICE INTERRUPTION

Important: An SNMP trap (`starTestModeEntered`) is generated whenever a user enters CLI test-commands mode.

Configuration mode cli test-commands

Configuration commands which provided access to low-level software parameters are accessible only after a privileged user enters the command `cli test-commands` from Global Configuration mode.

```
[local]asr5500# config
[local]asr5500(config)# cli test-commands [encrypted] password password
```

Warning: Test commands enables internal testing and debugging commands
USE OF THIS MODE MAY CAUSE SIGNIFICANT SERVICE INTERRUPTION

Important: An SNMP trap (`starTestModeEntered`) is generated whenever a user enters CLI test-commands mode.
Chapter 8
Software Management Operations

This chapter provides information about software management operations on the system. Software management sections include:

- Understanding the Local File System
- Maintaining the Local File System
- Configuring the Boot Stack
- Upgrading the Operating System Software
- Performing Dynamic Software Updates
- Managing License Keys
- Managing Local-User Administrative Accounts
Understanding the Local File System

The Management Input/Output (MIO) or Management Input/Output Universal (UMIO) card provides control and management for the system.

The local file system is made up of files that are stored on one or more of the following:

- **/flash**: Flash memory located on the circuit board of the MIO/UMIO, is the default storage media for the operating system software image, CLI configuration, and crash log files used by the system.
- **/usb1**: This device is available when a USB memory stick is inserted on the front panel of the active MIO/UMIO.
- **/hd-raid**: This is the solid state hard disk array supported by the Fabric and Storage Cards (FSCs) and accessed via the active MIO/UMIO.

File Types Used by the Local File System

The following file types can be located in the local file system:

- **Operating System Software Image File**: This binary file type is identified by its .bin extension. The file is the operating system that is loaded by the system upon startup or reloading. This is an executable, read-only file that cannot be modified by end users.
- **CLI Configuration File**: This file type is identified by its .cfg extension. These are text files that contain CLI commands that work in conjunction with the operating system software image. These files determine services to be provided, hardware and software configurations, and other functions performed by the system. The files are typically created by the end user. You can modify the files both on and off-line and use descriptive long filenames.
- **System File**: Only one file identified by a .sys extension is used by the system. The boot.sys file contains system-specific information, which describes how the system locates, and in what priority it loads, file groups (paired .bin and .cfg files) from its boot stack.
- **Abridged Crash Log**: The abridged crash log, identified by its crashlog filename, contains summary information about software or hardware failures that occur on the system. This file is located in the /flash/crsh2/ directory on the device. You can view the contents of this file through the CLI, but you cannot modify the file.

Understanding the boot.sys File

The system uses the boot.sys file to store the prioritized boot stack parameters and file groups the system uses during startup. Modify this file only through system CLI commands and not through external means. Boot parameters contain information the system needs to locate the operating system image file, including:

- **bootmode**: This setting is typically configured to normal, and identifies how the system starts.
- **network interface configuration**: Use these optional boot method settings when you configure the system to obtain its operating system image from an external network server that is using one of the management LAN interfaces on the MIO/UMIO card.
- **boot stack information**: The boot stack is made up of prioritized file group entries that designate the operating system image file and the CLI configuration file to load.
When a system is unpacked and started for the first time, the boot.sys file is configured to use the normal boot mode and load the operating system software image from the /flash directory.

There is no CLI configuration file contained on the local file system. This causes the system to automatically start its CLI-based Quick Setup Wizard upon the first successful boot. Refer to *Getting Started* for more information on using the Quick Setup Wizard.
Maintaining the Local File System

Use CLI commands to manage and maintain the devices that make up the local file system. Execute all the commands described in this section in the Exec Mode. Unless otherwise specified, you must have security administrator or administrator privileges to execute these commands.

File System Management Commands

Use the commands in this section to manage and organize the local file system.

Important: For complete information on the commands listed below, see the Exec Mode Commands chapter of the Command Line Interface Reference

Synchronizing the File System

Commands are supported for mirroring the local file systems from the active MIO/UMIO to the standby MIO/UMIO in systems containing two cards. Use these commands to synchronize any or all of the local devices.

Important: Crash log files are not synchronized when these commands are executed.

The following Exec mode command synchronizes the file systems between two MIO/UMIOs:

```
filesystem synchronize [ /flash | /usb1 | all ] [ checkonly ] [ from card_num | to card_num ] [-noconfirm]
```

Only filesystems on matching local devices are synchronized. For example, if the active MIO/UMIO contains two local devices (/flash and /usb1) and the standby MIO/UMIO contains only one local device (/flash), then synchronization only occurs on the matching local device (/flash).

The following command synchronizes the file systems on two MIO/UMIO /flash devices.

```
filesystem synchronize /flash
```

Creating Directories

Use the `mkdir` command to create a new directory on the specific local device. This directory can then be incorporated as part of the path name for any file located in the local file system.

```
mkdir { /flash | /usb1 | /hd-raid } /dir_name
```

Use the following command to create a directory named `configs`:

```
mkdir /flash/configs
```
Renaming Files and Directories

Use the `rename` command to change the name of a file from its original name to a different name. Remember to use the same file extension, if applicable, to ensure that the file type remains unchanged.

```
rename { /flash | /usb1 | /hd-raid } /src_filename { /flash | /usb1 | /hd-raid } /dst_filename [-noconfirm]
```

Use the following command to rename a file named `iot_test.cfg` to `iot_accept.cfg` on the `/flash` local device.

```
rename /flash/iot_test.cfg /flash/iot_accept.cfg -noconfirm
```

Important: Use the `rename` command only within the same local device. You cannot rename a file and place it onto another local device at the same time. To move a renamed file, you must use the `copy` command.

Copying Files on the ASR 5500 Chassis

These instructions assume that you are at the root prompt for the Exec mode:

```
[local]host_name#
```

To save your current configuration, enter the following command:

```
copy from_url to_url [-noconfirm]
```

To copy a configuration file called `system.cfg` from a directory that was called `cfgfiles` to a directory named `configs_old` on the flash memory in the MIO/UMIO, enter the following command:

```
copy /flash/cfgfiles/system.cfg /flash/configs_old/system_2011.cfg
```

To copy a configuration file called `simple_ip.cfg` from a directory called `host_name_configs` to an FTP server with an IP address of `192.168.34.156`, on which you have an account with a username of `administrator` and a password of `secure`, use the following command:

```
copy /flash/host_name_configs/simple_ip.cfg ftp://administrator:secure@192.168.34.156/host_name_configs/ simple_ip.cfg
```

To copy a configuration file called `init_config.cfg` to the root directory of a TFTP server with a hostname of `config_server`, enter the following command:

```
copy /flash/cfgfiles/init_config.cfg tftp://config_server/init_config.cfg
```
Deleting Files

The `delete` command removes a designated file from its specified location on the local file system.

Important: This command does not support wildcard entries; each filename must be specified in its entirety.

Caution: Do not delete the `boot.sys` file. If deleted, the system will not reboot on command and will be rendered inoperable.

```
delete { /flash | /usb1 | /hd-raid }/filename [-noconfirm]
```

The following command deletes a file named `test.cfg` from the `/flash` directory.

```
delete /flash/test.cfg
```

Removing Directories

The `rmdir` command deletes a current directory on the specific local device. This directory can then be incorporated as part of the path name for any file located in the local file system.

Important: The directory you want to remove (delete) must be empty before executing the `rmdir` command. If the directory is not empty, the CLI displays a “Directory not empty” message and will not execute.

```
rmdir url /dir_name
```

The following command deletes an empty directory named `configs` in the `/flash` directory.

```
rmdir /flash/configs
```

Formatting Local Devices

The `format` command performs a low-level format of a local device. This operation formats the device to use the FAT16 formatting method, which is required for proper read/write functionality with the operating system.

Important: Local devices that have been formatted using other methods such as NTFS or FAT32 may be used to store various operating system, CLI configuration, and crash log files. However, when placing a new local device into the MIO/UMIO for regular use, you should format the device via the system prior to use. This ensures that the proper file allocation table format is used, preventing any possible discrepancies between other formats used with other operating systems.

Caution: The `format` command removes all files and information stored on the device.

To format a local device for use by the local file system, enter the following command:

```
format { /flash | /usb1 | /hd-raid }
```
Applying Pre-existing CLI Configuration Files

A pre-existing CLI configuration file is any .cfg file created to provide utility functions (such as clearing all statistics during testing) or created off-line using a text editor. There may be pre-existing configuration files stored on the local file system that can be applied to a running system at any time.

⚠️ **Caution:** If a configuration file is applied to a system currently running another CLI configuration, any like contexts, services, logical interfaces, physical ports, IP address pools, or other configured items will be overwritten if the same command exists in the configuration file being applied. Take caution to ensure that you are knowledgeable of the contents of the file being applied and understand what the service ramifications are if a currently running command is overwritten. Also note that changes will not be saved automatically.

A CLI configuration file, or script containing CLI commands, can be applied to a running system by entering the following command at the Exec mode prompt:

```
configure url [ verbose ]
```

`url` specifies the location of the CLI configuration file to be applied. It may refer to a local or a remote file.

The following command applies a pre-existing CLI configuration file named `clearcmds.cfg` in the `/flash` directory.

```
configure /flash/clearcmds.cfg
```

Viewing Files on the Local File System

This section describes how to view a variety of files.

Viewing the Contents of a Local Device

The contents, usage information, and file system directory structure of any local device can be viewed by entering the following command at the Exec mode prompt:

```
directory { /flash | /usb1 | /hd-raid }
```

Viewing CLI Configuration and boot.sys Files

The contents of CLI configuration and boot.sys files, contained on the local file system, can be viewed off-line (without loading them into the OS) by entering the following command at the Exec mode prompt:

```
show file url { /flash | /usb1 | /hd-raid } /filename
```

Where: `url` is the path name for the location of the file and `filename` is the name of the file, including any extension.

⚠️ **Important:** Operator and inspector-level users can execute the `show file` command but cannot execute the `directory` command.
Validating an Operating System File

The operating system software image file, identified by its .bin extension, is a non-readable, non-editable file that executes on the system, creating its runtime operating system (OS).

It is important to verify a new operating system image file before attempting to load it. To accomplish this, a proprietary checksum algorithm is used to create checksum values for each portion of the application stored within the .bin file during program compilation.

This information can be used to validate the actual file against the checksum values stored within the file during its compilation. If any portion of the image file has become corrupted (for example, the file was truncated or was transferred using ASCII mode instead of binary mode), then this information is reported and the file is deemed unusable.

To validate an operating system software image file, enter the following command at the Exec mode prompt:

```
show version { /flash | /usb1 | /hd-raid } /directory/filename [all]
```

The output of this command displays the following information:

- Version number
- Description
- Date
- Boot Image
- Size
- Flags
- Platform – ASR5500

If an invalid file is found, the system displays a failure message similar to these:

```
Failure: Image /flash/image_version.bin CRC check failed!
Failure: /flash/image_version.bin, has a bad magic number
```
Configuring the Boot Stack

The boot stack consists of a prioritized listing of operating system software image-to-CLI configuration file associations. These associations determine the software image and configuration file that gets loaded during system startup or upon a reload/reboot. Though multiple associations can be configured, the system uses the association with the highest priority. In the event that there is an error processing this association (for example, one of the files cannot be located), the system attempts to use the association with the next highest priority. Priorities range from 1 to 100, with 1 being the highest priority. The maximum number of boot stack entries that may be configured in the boot.sys file is 10.

Boot stack information is contained in the boot.sys file, described in Understanding the boot.sys File. In addition to boot stack entries, the boot.sys file contains any configuration commands required to define the system boot method as explained in the section that follows.

System Boot Methods

The local-boot method uses software image and configuration files stored locally on the system. Upon system startup or reboot, the system looks on one of its local devices or /hd-raid located on the active MIO/UMIO for the specific software image and accompanying configuration text file. When using the local-booting method, you only need to configure boot stack parameters.

The system can also be configured to obtain its software image from a specific external network server while it is paired with a configuration text file that resides on the system. When using network booting, you need to configure the following:

- Boot stack parameters, which define the files to use and in what priority to use them
- Boot interface and network parameters defining the MIO/UMIO remote management LAN interface and the methods to use to reach the external network server
- Network booting delay time and optional name server parameters defining the delay period (in seconds) to allow for network communications to be established, and the IP address of any Domain Name Service (DNS) name server that may be used

Detailed information on how to configure the system to use the network booting method appears in Network Booting Configuration Requirements.

Viewing the Current Boot Stack

To view the boot stack entries contained in the boot.sys file run the Exec mode show boot command.

Important: Operator and inspector-level users can execute the show boot command.

The examples below shows the command output for a local booting configuration. Notice that in these examples both the image file (operating system software) and configuration file (CLI commands) are located on the /flash device.

Important: The StarOS image filename scheme changed with release 16.1. Pre-16.1, format = “production.image.bin”. For 16.1 onwards, format = “asr5500-image_number.bin”. This change is reflected in the examples provided below.
Example 1 – StarOS releases prior to 16.1:

```plaintext
boot system priority 18 \
   image /flash/15-0-builds/production.45666.bin \
   config /flash/general_config.cfg

boot system priority 19 \
   image /flash/15-0-builds/production.45717.bin \
   config /flash/general_config_3819.cfg

boot system priority 20 \
   image /flash/15-0-builds/production.45069.bin \
   config /flash/general_config_3665.cfg
```

Example 2 – StarOS release 16.1 onwards:

```plaintext
boot system priority 18 \
   image /flash/16-1-builds/asr5500-16.1.3.bin \
   config /flash/general_config.cfg

boot system priority 19 \
   image /flash/16-1-builds/asr5500-16.1.1.bin \
   config /flash/general_config_3819.cfg

boot system priority 20 \
   image /flash/16-1-builds/asr5500-16.1.0.bin \
   config /flash/general_config_3665.cfg
```

The example below shows the output for a combination network booting and local booting configuration. Notice in this example that the first two boot stack entries (Priorities 18 and 19) load the image file (operating system software) from an external network server using the Trivial File Transfer Protocol (TFTP), while all configuration files are located on the flash device.

Also notice the boot network interface and boot network configuration commands located at the top of the boot stack. These commands define what MIO/UMIO remote management LAN interface(s) to use and information about communicating with the external network server that hosts the operating system software image file.

```plaintext
boot networkconfig static ip address mio1 192.168.1.150 netmask 255.255.255.0
boot delay 15
boot system priority 18 image tftp://192.168.1.161/tftpboot/image_version.bin \config /flash/general_config.cfg
boot system priority 19 image tftp://192.168.1.161/tftpboot/image_version.bin \config /flash/general_config.cfg
boot system priority 20 image /flash/image_version.bin \config /flash/general_config.cfg
```

To identify the boot image priority that was loaded at the initial boot time enter:

```plaintext
show boot initial-config
```
The example below displays the output:

```
[local]host# show boot initial-config
Initial (boot time) configuration:
  image tftp://192.168.1.161/tftpboot/image_version.bin \
  config /flash/config_name.cfg
  priority 1
```

Adding a New Boot Stack Entry

Important: Before performing this procedure, verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (i.e. that minimally there is no priority 1 entry in the boot stack). Refer to *Viewing the Current Boot Stack* for more information.

If priority 1 is in use, then you must renumber the existing entry(ies) to ensure that at least that priority is available. The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Refer to *Deleting a Boot Stack Entry* for more information.

This procedure details how to add new boot stack entries to the boot.sys file. Make sure you are at the Exec mode prompt and enter the following commands:

```
configure

    boot system priority number image image_url config cfg_url
```

The following command creates a new boot stack entry, using a boot priority of 3.

```
boot system priority 3 image /flash/image_filename.bin config /flash/config_name.cfg
```

Important: Boot stack changes saved to the boot.sys file are not executed until the system is rebooted.

Synchronize the local file systems on the MIO/UMIOs with the following command:

```
fielsystem synchronize all
```

Deleting a Boot Stack Entry

This procedure details how to remove an individual boot stack entry from the boot.sys file. Make sure you are at the Exec mode prompt and enter the following commands:

```
configure

    no boot system priority number
```

Where *number* specifies the boot priority used for the boot stack entry. This command removes that specific entry from the boot stack, causing the boot.sys file to be overwritten.
Network Booting Configuration Requirements

Configuring the Boot Interface

Boot interface parameters define the MIO/UMIO management LAN interface that the system will use to communicate with the management network when using the network booting method.

This procedure details how to configure the boot interface for reliable communications with your network server. Make sure you are at the Exec mode prompt:

```
[local]host_name#
```

Step 1 Enter the Global Configuration mode by entering the following command:

```
configure
```

The following prompt appears:

```
[local]host_name(config)#
```

Step 2 Enter the following command:

```
boot interface { local-eth1 | local-eth2 } medium { auto | speed { 10 | 100 | 1000 } duplex { full | half } } media { rj45 | sfp }
```

Important: For complete information about the above command, see the *Global Configuration Mode Commands* chapter in the *Command Line Interface Reference*.

Use port 1 for network booting.

If the speed is manually configured, you must also configure the duplex mode. In addition, you must ensure that the network server configuration supports the speed and duplex configuration.

Network speed for MIO/UMIO is fixed at 1000.

Ethernet networking rules dictate that if a device’s interface is configured for auto-negotiation is communicating with a device that is manually configured to support full duplex, the first device will negotiate to the manually configured speed of the second device, but will only communicate in half duplex mode.

The media for MIO/UMIO port 1 is fixed at rj45.

Step 3 Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configuring the Boot Network

Boot network parameters define the protocols and IP address information for MIO/UMIO interfaces used to reach the external network server that hosts the operating system software image file. To configure boot network parameters, make sure you are at the Exec mode prompt:

```
[local]host_name#
```

Step 1 Enter the Global Configuration mode by entering the following command:

```
configure
```
The following prompt appears:

```
[local]host_name(config)#
```

Step 2 Enter the following command:

```
boot networkconfig { dhcp | { { dhcp-static-fallback|static } ip address mio5
ip_address5 [ mio6 ip_address6 ] netmask subnet_mask [ gateway gw_ip_address ] } }
```

Important: For complete information about the above command, see the *Global Configuration Mode Commands* chapter in the *Command Line Interface Reference*.

The following command configures the boot network to communicate using DHCP, with a static-fallback IP address for MIO/UMIO in slot 5 of 192.168.206.101 and a Class C netmask.

```
boot networkconfig dhcp-static-fallback ip address mio5 192.168.206.101 netmask
255.255.255.0
```

The next example uses static IP addresses for MIO/UMIO in slot 5, which can access the external network server through a gateway whose IP address is 135.212.10.2.

```
boot networkconfig static ip address mio5 192.168.206.101 netmask 255.255.255.0
gateway 135.212.10.2
```

Step 3 Save the configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configuring Boot Network Delay Time

An optional delay period, in seconds, can be configured for systems booting from a network. The purpose of this parameter is to allow time for external devices, such as switches, that use the Spanning Tree Protocol (STP) to determine the network route to a specified IP address.

To configure a boot network delay, enter the following command from the Global Configuration mode prompt.

```
boot delay time
```

Where *time* is an integer from 1 to 300 seconds before attempting to contact the external network server. If your network uses STP, a typical delay time of 30 seconds should suffice.

Important: Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Configuring a Boot Nameserver

To enter the hostname of the network server that hosts the operating system software image, first configure the IP address of the Domain Name Service (DNS) server, referred to as a name server, that can resolve the host name for the machine.

To configure a boot nameserver address, enter the following command from the Global Configuration mode prompt.

```
boot nameserver ip_address
```

Where *ip_address* is the IP address of the DNS server entered in IPv4 dotted-decimal notation.
Upgrading the Operating System Software

The following information is required prior to performing a software upgrade:

- Current operating system version
- New operating system version
- Upgrade method

Identifying OS Release Version and Build Number

The operating system can be configured to provide services and perform pre-defined functions through commands issued from the CLI or through the Web Element Manager application.

The operating system software is delivered as a single binary file (.bin file extension) and is loaded as a single instance for the entire system.

- For StarOS releases prior to 16.1, the image filename is identified by its release version and corresponding build number. For example: `production.build_number.asr5500.bin`.
- For StarOS release 16.1 onwards, the image filename is identified by its platform type and release number. For example, `asr5500-release_number.bin`.

The software version information can be viewed from the CLI in the Exec mode by entering the `show version` command.

```
[local]host_name# show version
```

Verify Free Space on the /flash Device

Verify that there is enough free space on the /flash device to accommodate the new StarOS image file by entering the following Exec mode command:

```
[local]host_name# directory /flash
```

The following is an example of the type of directory information displayed:

```
-rwxrwxr-x 1 root root 7334 May 5 17:29 asr-config.cfg
-rwxrwxr-x 1 root root 399 Jun 7 18:32 system.cfg
-rwxrwxr-x 1 root root 10667 May 14 16:24 testconfig.cfg
-rwxrwxr-x 1 root root 10667 Jun 1 11:21 testconfig_4.cfg
-rwxrwxr-x 1 root root 5926 Apr 7 16:27 tworpcontext.cfg
-rwxrwxr-x 1 root root 15534 Aug 4 13:31 test_vlan.cfg
-rwxrwxr-x 1 root root 2482 Nov 18 11:09 gateway2.cfg
-rwxrwxr-x 1 root root 159106048 Dec 31 2011 image_filename
1136352 /flash
```

Filesystem 1k-blocks Used Available Use% Mounted on
/var/run/storage/flash/part1 3115468 1136352 30018336 4%
/mnt/user/.auto/onboard/flash
Note the “Available” blocks in the last line of the display. After displaying the directory information, the CLI returns to root and the following prompt appears:

[local]host_name#

Download the Software Image from the Support Site

Access to the Cisco support site and download facility is username and password controlled. You must have an active customer account to access the site and download the StarOS image.

Download the software image to a network location or physical device (USB stick) from which it can be uploaded to the /flash device.

Contact your Cisco representative or Cisco TAC for additional information.

Transfer StarOS Image to /flash on the Chassis

Transfer the new operating system image file to the /flash device on the MIO/UMIO using one of the following methods:

- Copy the file from a network location or local device plugged in into the MIO/UMIO by entering the following command:

 [local]host_name# copy from_url to_url [-noconfirm]

- Transfer the file to the /flash device using an FTP client with access to the system.

 Important: Whenever transferring a operating system software image file using the file transfer protocol (FTP), the FTP client must be configured to transfer the file using binary mode. Failure to use binary transfer mode will make the transferred operating system image file unusable.

- Transfer the file to the /flash device using an SFTP client with access to the system.

Verify that the image file was successfully transferred to the /flash device by running the following Exec mode command:

[local]host_name# directory /flash

The image filename should appear in the displayed output.

Run the `show version /flash/image_filename` command to verify the build information.

[local]host_name# show version /flash/image_filename.bin

Saving a Copy of the Current Configuration File

Prior to upgrading to a new software release, you should copy and rename the current configuration file to the /flash device and to an off-chassis location (external memory device or network URL). This renamed copy assures that you will have a fallback, loadable configuration file should a problem be encountered during the upgrade.
Downgrading from Release 15.0 to 14.0

Release 14 and Release 15 chassis IDs use different encryption formats. Release 15 will recognize a Release 14 chassis ID and consider it as valid. Upgrading from 14.x to 15.0 will not require changing the chassis ID or configuration file.

However, if the chassis key is reset in Release 15 through the setup wizard or `chassis-key` CLI command, a new chassis ID will be generated in Release 15 format (44 instead of 16 characters). Release14 builds will not recognize the 44-character chassis ID. If the chassis is subsequently downgraded to Release 14, a new 16-character chassis ID will be generated. To accommodate the old key format, you must save the configuration file in pre-v12.2 format before the downgrade. If you attempt to load a v15 configuration file on the downgraded chassis, StarOS will not be able to decrypt the password/secrets stored in the configuration file.

Off-line Software Upgrade

An off-line software upgrade can be performed for any system, upgrading from any version of operating system software to any version, regardless of version number. This process is considered off-line because while many of the steps can be performed while the system is currently supporting sessions, the last step of this process requires a reboot to actually apply the software upgrade.

This procedure assumes that you have a CLI session established and are placing the new operating system image file onto the local file system. To begin, make sure you are at the Exec mode prompt:

```
[local]host_name#
```

Configure a Newcall Policy

Configure a newcall policy from the Exec mode to meet your service requirements. When enabled the policy redirects or rejects new calls in anticipation of the chassis reload that completes the upgrade process. This reduces the amount of service disruption to subscribers caused by the system reload that completes the upgrade.

Important: Newcall policies are created on a per-service basis. If you have multiple services running on the chassis, you can configure multiple newcall policies.

The syntax for newcall policies is described below:

```
newcall policy { asngw-service | asnpc-service | sgsn-service } { all | name service_name } reject
newcall policy cscf-service { all | name service_name } { redirect target_ip_address [ weight weight_num ] [ target_ipadress2 [ weight weight_num ] ... target_ip_address16 [ weight weight_num ] | reject }
newcall policy { fa-service | lns-service | mipv6ha-service } { all | name service_name } reject
newcall policy { ha-service | pdsn-service} { all | name service_name } { redirect target_ip_address [ weight weight_num ] [ target_ipadress2 [ weight weight_num ] ... target_ip_address16 [ weight weight_num ] | reject
newcall policy ggsn-service {apn name apn_name | all | name service_name} reject
```
newcall policy hnbw-service {all | name service_name} reject
newcall policy {pcc-af-service | pcc-policy-service} {all | name service_name} reject
newcall policy {pcc-af-service | pcc-policy-service} {all | name service_name} reject
newcall policy mme-service {all | name service_name } reject

For complete information about the above commands, see the *Exec Mode Commands* chapter of the *Command Line Interface Reference*.

Configure a Message of the Day Banner

Optional: Configure a “Message of the Day” banner informing other management users that the system will be rebooted by entering the following command from the Global Configuration mode prompt.

```
banner motd "banner_text"
```

banner_text is the message that you would like to be displayed and can be up to 2048 alphanumeric characters. Note that *banner_text* must begin with and end in quotation marks (“ ”). For more information in entering CLI banner information, see the *CLI Reference*. The banner is displayed when an administrative user logs onto the CLI.

Back up the Current CLI Configuration File

Back up the current CLI configuration file by entering the following command:

```
[local]host_name# copy from_url to_url [-noconfirm]
```

This creates a mirror-image of the CLI configuration file linked to the operating system defined in the current boot stack entry.

The following command example creates a backup copy of a file called *general.cfg* located on the /flash device to a file called *general_3652.cfg*:

```
[local]host_name# copy /flash/general.cfg /flash/general_3652.cfg
```

Create a New Boot Stack Entry

Create a new boot stack entry for the new file group, consisting of the new operating system image file and the currently used CLI configuration file by entering the following Global Configuration command:

```
[local]host_name(config)# boot system priority number image image_url /flash filename config cfg_url /flash/filename
```

Assign the next highest priority to this entry, by using the <N-1> method, wherein you assign a priority number that is one number less than your current highest priority.

Important: Run the Exec mode *show boot* command to verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (minimally there is no priority 1 entry in the boot stack).
If priority 1 is in use, you must renumber the existing entries to ensure that at least that priority is available.

The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Use the no boot system priority command to delete a boot stack entry.

```
[local]host_name# configure
[local]host_name(config)# no boot system priority number
```

To add new boot stack entries to the boot.sys file enter the following commands:

```
[local]host_name# configure
[local]host_name(config)# boot system priority number image image_url config cfg_url
```

For information on using the `boot system priority` command, refer to the Adding a New Boot Stack Entry section.

Synchronize File Systems

Synchronize the local file systems on the management cards by entering the following command:

```
filesystem synchronize all
```

Reboot the Chassis

Reboot the chassis by entering the following command:

```
[local]host_name# reload [-noconfirm]
```

As the system reboots, it loads the new operating system software image and its corresponding CLI configuration file using the new boot stack entry configured earlier.

After the system reboots, establish a CLI session and enter the `show version` command to verify that the active software version is correct.

Optional for PDSN: If you are using the IP Pool Sharing Protocol during your upgrade, refer to Configuring IPSP Before the Software Upgrade in the PDSN Administration Guide.

Verify the Running Software Version

After the system has successfully booted, verify that the new StarOS version is running by executing the Exec mode `show version` command.

```
[localhost_name# show version
```
Restoring the Previous Software Image

If for some reason you need to undo the upgrade, perform the upgrade again except:

- Specify the locations of the upgrade software image and configuration files.
- then
- Specify the locations of the original software image and configuration files.

Upgrading ICSR Chassis

The procedure for upgrading primary and backup ICSR chassis is described in *Interchassis Session Recovery*. Essentially the procedure requires upgrading the primary and standby chassis using the off-line method while each is in standby mode.

Performing Dynamic Software Updates

StarOS allows the runtime loading of plugins. All StarOS builds include a “default” baseline plugin.

This feature is currently used to dynamically update the detection logic used to filter P2P applications via the Application Detection and Control (ADC) feature.

Patching is the process used to install a plugin as an incremental update to a StarOS release. One plugin can be provided to multiple, compatible, concurrent product releases. A plugin is distributed in the form of a compressed distribution kit via the internet or by other means (USB stick, CD, etc.).

A plugin is a functional software entity that provides incremental updates to a pre-existing StarOS software component. Plugins have the characteristic of being dynamically loadable at runtime and do not require a system restart. A plugin has a name and one or more versions. All plugin names are known to the system at product release.

For complete information on the Dynamic Software Update process, refer to the *ADC Administration Guide*.
Managing License Keys

License keys define capacity limits (number of allowed subscriber sessions) and available features on your system. Adding new license keys allows you to increase capacity and add new features as your subscriber base grows.

New System License Keys

New systems are delivered with no license keys installed. In most cases, you receive the license key in electronic format (usually through e-mail).

When a system boots with no license key installed a default set of restricted session use and feature licenses is installed. The following Exec Mode command lists the license information:

```
show license information
```

Important: With no license key installed, the session use licenses for PDSN, HA, GGSN, and L2TP LNS are limited to 10,000 sessions.

The license keys on the ASR 5500 are stored in EEPROM on the chassis midplane. Both MIO/UMIOs access this EEPROM when booting.

Session Use and Feature Use Licenses

Session use and feature use licenses are software mechanisms that provide session limit controls and enable special features within the system. These electronic licenses are stored in the system's configuration file that is loaded as part of the system software each time the system is powered on or restarted.

- Session use licenses limit the number of concurrent sessions that a system is capable of supporting per service type and are acquired on an as-needed basis. This allows carriers to pay only for what they are using and easily increase capacity as their subscriber base grows.

- Feature use licenses enable specific features/functionality within the system and are distributed based on the total number of sessions supported by the system.
Installing New License Keys

Use the instructions below to install a new license key.

Cutting and Pasting the Key

If you have a copy of the license, use the following configuration to cut and paste just the license key part:

Step 1 From the Exec mode, enter the following:

```
configure

license key license

exit
```

license is the license key string. The license can be an alphanumeric string of 1 through 1023 characters that is case sensitive. Copy the license key as shown in the example below, including the "\" (double-quote slash). Please note: this is not a functional license.

```
"\VER=1|C1M=000-00000-00|C1S=03290231803|C2M=11-1111-11-1|C2S="/STCB21M82003R80411A4|DOI=0000000000|DOE=0000000000|ISS=1|NUM=13459|0000000000
0000|LSP=000000|LSH=000000|LSG=500000|LSL=500000|FIS=Y|FR4=Y|FPP=Y|FCS=Y|FTC=Y|FMG=Y|FCR=Y|FSR=Y|FPY=Y|FID=Y|SIG=MCwCF\Esnq6B4sX/dyfLe7rHcD4sVP2bzAhQ3IeHDoBf388jHsHD999s\365G267gshssja77
end
```

Step 2 Verify that the license key just entered was accepted by entering the following command at the Exec mode prompt:

```
show license key
```

The new license key should be displayed. If it is not, return to the Global configuration mode and re-enter the key using the *license key* command.

Step 3 Verify that the license key enabled the correct functionality by entering the following command:

```
show license information
```

All license keys and the new session capacity or functionality enabled should be listed. If the functionality or session capacity enabled by the new key is incorrect, please contact your service representative.

Step 4 Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Caution: Failure to save the new license key configuration in the current CLI configuration file will result in the loss of any of the new features enabled by the license key once the system is reloaded.
Adding License Keys to Configuration Files

License keys can be added to a new or existing configuration file.

Important: License key information is maintained as part of the CLI configuration. Each time a key is installed or updated, you must re-save the configuration file.

Step 1 Open the configuration file to which the new license key commands are to be copied.

Step 2 Copy the license as shown in the example, including the “\ (double-quote slash). Please note: this is not a functional license.

```
"\VER=1|C1M=000-0000-00|C1S=03290231803|C2M=11-1111-11-
1|C2S=\STCB21M82003R80411A4|DOI=0000000000|DOE=000000000
ISS=1|NUM=13459|000000000
0000|LSH=000000|LSG=500000|LSL=500000|FIS=Y|FR4=Y|FPF=Y|FC1=Y|FC2=Y|F
MG=Y|FCR=Y|FSP=Y|FPM=Y|FID=Y|SIG=MCwCF\Esnq6Bs/XdmyfLe7rHcD4sVP2bzAhQ3IeHDoyyd638
8jHsHD99sg36SG267gshssja77
end```

**Step 3** Paste the license key into the configuration

**Important:** Paste the license key information at the beginning of the configuration file to ensure the system has the expected capacity and features before it configures contexts.

**Step 4** Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

License Expiration Behavior

When a license expires, there is a built-in grace period of 30 days that allows normal use of the licensed session use and feature use licenses. This allows you to obtain a new license without any interruption of service.

The following Exec mode command lists the license information including the date the grace period is set to expire:

```
show license information```

Requesting License Keys

License keys for the system can be obtained through your Cisco account representative. Specific information is required before a license key may be generated:

- Sales Order or Purchase Order information
- Desired session capacity
- Desired functionality
- Midplane (chassis) serial number

To obtain the ASR 5500 chassis serial number, at the Exec mode prompt enter the `show card hardware 5` command. Look under the “MEC” heading for the “UDI Serial Number” as shown in the example below:
MEC:
Description : MEC
Cisco Part Number : 73-14501-01 A0
UDI Serial Number : FLM154300D8
UDI Product ID : ASR55-MEC
UDI Version ID : V01

Viewing License Information
To see the license detail, enter the following command from the Exec mode:

```
show license information [ full | key [ full ] ]
```

Deleting a License Key
Use the procedure below to delete the session and feature use license key from a configuration. You must be a security administrator or administrator.

```
configure
no license key
exit
show license key
```
The output of this command should display: “No license key installed”.

Management Card Replacement and License Keys
License keys are stored on a midplane EEPROM in the ASR 5500 chassis. The MIO/UMIOs share these license keys. There is no need to swap memory cards into replacement MIO/UMIOs.
Managing Local-User Administrative Accounts

Unlike context-level administrative accounts which are configured via a configuration file, information for local-user administrative accounts is maintained in a separate file in flash memory and managed through the software’s Shared Configuration Task (SCT). Because local-user accounts were designed to be compliant with ANSI T1.276-2003, the system provides a number of mechanisms for managing these types of administrative user accounts.

Configuring Local-User Password Properties

Local-user account password properties are configured globally and apply to all local-user accounts. The system supports the configuration of the following password properties:

- **Complexity**: Password complexity can be forced to be compliant with ANSI T1.276-2003.
- **History length**: How many previous password versions should be tracked by the system.
- **Maximum age**: How long a user can use the same password.
- **Minimum number of characters to change**: How many characters must be changed in the password during a reset.
- **Minimum change interval**: How often a user can change their password.
- **Minimum length**: The minimum number of characters a valid password must contain.

Refer to the `local-user password` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details on each of the above parameters.

Configuring Local-User Account Management Properties

Local-user account management includes configuring account lockouts and user suspensions.

Local-User Account Lockouts

Local-user accounts can be administratively locked for the following reasons:

- **Login failures**: The configured maximum login failure threshold has been reached. Refer to the `local-user max-failed-logins` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.

- **Password Aging**: The configured maximum password age has been reached. Refer to the `local-user password` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.

Accounts that are locked out are inaccessible to the user until either the configured lockout time is reached (refer to the `local-user lockout-time` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference*) or a security administrator clears the lockout (refer to the `clear local-user` command in the *Exec Mode Commands* chapter of the *Command Line Interface Reference*).

Important: Local-user administrative user accounts could be configured to enforce or reject lockouts. Refer to the `local-user username` command in the *Global Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details.
Local-User Account Suspensions

Local-user accounts can be suspended as follows:

```
configure
suspend local-user name
```

A suspension can be removed by entering:

```
configure
no suspend local-user name
```

Changing Local-User Passwords

Local-user administrative users can change their passwords using the `password change` command in the Exec mode. Users are prompted to enter their current and new passwords.

Security administrators can reset passwords for local-users by entering the following command from the root prompt in the Exec mode:

```
password change username name
```

`name` is the name of the local-user account for which the password is to be changed. When a security administrator resets a local-user’s password, the system prompts the user to change their password the next time they login.

All new passwords must adhere to the password properties configured for the system.
Chapter 9
Monitoring the System

This chapter provides information for monitoring system status and performance using the show commands found in the Command Line Interface (CLI). These commands have many related keywords that allow them to provide useful information on all aspects of the system ranging from current software configuration through call activity and status.

The selection of keywords described in this chapter is intended to provide the most useful and in-depth information for monitoring the system. For additional information on these and other show command keywords, refer to the Exec Mode show Commands chapter of the Command Line Interface Reference.

This chapter includes the following sections:

- SNMP Notifications
- Monitoring System Status and Performance
- Clearing Statistics and Counters
- Monitoring ASR 5500 Hardware Status
SNMP Notifications

In addition to the CLI, the system supports Simple Network Management Protocol (SNMP) notifications that indicate status and alarm conditions. Refer to the SNMP MIB Reference for a detailed listing of these notifications.

Monitoring System Status and Performance

This section contains commands used to monitor the status of tasks, managers, applications and other software components in the system. Output descriptions for most of the commands are located in the Statistics and Counters Reference.

Table 7. System Status and Performance Monitoring Commands

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Administrative Information</td>
<td></td>
</tr>
<tr>
<td>Display Current Administrative User Access</td>
<td></td>
</tr>
<tr>
<td>View a list of all administrative users currently logged on the system</td>
<td>show administrators</td>
</tr>
<tr>
<td>View the context in which the administrative user is working, the IP address from which the administrative user is accessing the CLI, and a system generated ID number</td>
<td>show administrators session id</td>
</tr>
<tr>
<td>View information pertaining to local-user administrative accounts configured for the system</td>
<td>show local-user verbose</td>
</tr>
<tr>
<td>View statistics for local-user administrative accounts</td>
<td>show local-user statistics verbose</td>
</tr>
<tr>
<td>View information pertaining to your CLI session</td>
<td>show cli</td>
</tr>
</tbody>
</table>

Determining System Uptime

| View system uptime (time since last reboot) | show system uptime |

View NTP Server Status

| View NTP servers status | show ntp status |

View System Resources

| View all system resources such as CPU resources and number of managers created | show resources [cpu] |

View System Alarms

| View information about all currently outstanding alarms | show alarm outstanding all verbose |
| View system alarm statistics | show alarm statistics |

View Congestion-Control Statistics

| View Congestion-Control Statistics | show congestion-control statistics |

View Remote Management Statistics
<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display SNMP Notification Statistics</td>
<td>show snmp notifies</td>
</tr>
<tr>
<td>View SNMP notification statistics</td>
<td>show snmp notifies</td>
</tr>
<tr>
<td>Display SNMP Access Statistics</td>
<td>show snmp accesses</td>
</tr>
<tr>
<td>View SNMP access statistics</td>
<td>show snmp accesses</td>
</tr>
<tr>
<td>Display SNMP Trap History</td>
<td>show snmp trap history</td>
</tr>
<tr>
<td>View SNMP trap history</td>
<td>show snmp trap history</td>
</tr>
<tr>
<td>Display SNMP Trap Statistics</td>
<td>show snmp trap statistics</td>
</tr>
<tr>
<td>View SNMP Trap Statistics</td>
<td>show snmp trap statistics</td>
</tr>
<tr>
<td>Display ORBEM Information</td>
<td>show orbem client id</td>
</tr>
<tr>
<td>View ORBEM client status</td>
<td>show orbem client id</td>
</tr>
<tr>
<td>View ORBEM session information</td>
<td>show orbem session table</td>
</tr>
<tr>
<td>View individual ORBEM sessions</td>
<td>show orbem session id</td>
</tr>
<tr>
<td>View ORBEM status information</td>
<td>show orbem status</td>
</tr>
<tr>
<td>View Port Counters</td>
<td></td>
</tr>
<tr>
<td>Display Port Datalink Counters</td>
<td>show port datalink counters slot#port#</td>
</tr>
<tr>
<td>View datalink counters for a specific port</td>
<td>show port datalink counters slot#port#</td>
</tr>
<tr>
<td>Display Port Network Processor Unit (NPU) Counters</td>
<td>show port npu counters slot#port#</td>
</tr>
</tbody>
</table>

Important: The commands or keywords/variables that are available are dependent on platform type, product version, and installed license(s).

Important: Some commands have different outputs depending on the platform type.

Clearing Statistics and Counters

It may be necessary to periodically clear statistics and counters in order to gather new information. The system provides the ability to clear statistics and counters based on their grouping (PPP, MIPHA, MIPFA, etc.).

Statistics and counters can be cleared using the CLI **clear** command. Refer to the *Exec Mode Commands* chapter of the *Command Line Interface Reference* for detailed information on using this command.
Monitoring ASR 5500 Hardware Status

Use the commands contained in this section to monitor the status of the hardware components in the chassis. For output descriptions for most of the commands, refer to the Statistics and Counters Reference.

Important: The commands or keywords and variables are dependent on platform type, product version, and installed license(s). Some commands produce different outputs, depending on the platform type.

Table 8. Hardware Monitoring Commands

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the Status of the Power System</td>
<td></td>
</tr>
<tr>
<td>View the status of the PFUs</td>
<td>show power chassis</td>
</tr>
<tr>
<td>View the power status of the individual chassis slots</td>
<td>show power all</td>
</tr>
<tr>
<td>View the Status of the Fan Trays</td>
<td></td>
</tr>
<tr>
<td>View the status of the fan trays, including current relative speeds and temperatures.</td>
<td>show fans</td>
</tr>
<tr>
<td>Determine the Status of Installed Cards</td>
<td></td>
</tr>
<tr>
<td>View a listing of installed application cards</td>
<td>show card table</td>
</tr>
<tr>
<td>Perform a Hardware Inventory</td>
<td></td>
</tr>
<tr>
<td>View all cards installed in the chassis and their hardware revision, part, serial, assembly, and fabrication numbers</td>
<td>show hardware inventory</td>
</tr>
<tr>
<td>View details of a specific card. Output contains same information as output of both show hardware inventory and show hardware version board</td>
<td>show hardware card slot_number</td>
</tr>
<tr>
<td>View Card Diagnostics</td>
<td></td>
</tr>
<tr>
<td>View boot, power and temperature diagnostics</td>
<td>show card diag slot_number</td>
</tr>
<tr>
<td>View runtime, or real time, information</td>
<td>show card info slot_number</td>
</tr>
<tr>
<td>View the LED Status of All Installed Cards</td>
<td></td>
</tr>
<tr>
<td>View the LED status for all installed cards</td>
<td>show leds all</td>
</tr>
<tr>
<td>View Available Physical Ports</td>
<td></td>
</tr>
<tr>
<td>View ports that are available to the system</td>
<td>show port table</td>
</tr>
<tr>
<td>View detailed information for a specific port</td>
<td>show port info slot_number/port_number</td>
</tr>
<tr>
<td>View CPU Resource Information</td>
<td></td>
</tr>
<tr>
<td>View CPU resource information</td>
<td>show resource cpu</td>
</tr>
<tr>
<td>View CPU resources</td>
<td>show resources { cpu</td>
</tr>
<tr>
<td>To do this:</td>
<td>Enter this command:</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>View CPU usage information</td>
<td>show cpu table; show cpu info</td>
</tr>
<tr>
<td>View Component Temperature Information</td>
<td></td>
</tr>
<tr>
<td>View current component temperatures</td>
<td>show temperature</td>
</tr>
<tr>
<td>View maximum temperatures reached since last timestamp.</td>
<td>show maximum-temperatures</td>
</tr>
</tbody>
</table>
Chapter 10
Bulk Statistics

This chapter provides configuration information for:

- Configuring Communication with the Collection Server
- Viewing Collected Bulk Statistics Data
- Manually Gathering and Transferring Bulk Statistics
- Clearing Bulk Statistics Counters and Information
- Bulk Statistics Event Log Messages
Configuring Communication with the Collection Server

Two configuration methods are available for defining how bulk statistics are collected and managed. A “standard” configuration allows the system to automatically assign a number to the bulk statistics file. Optionally, a number can be specified by an administrator in the optional configuration method. Command details and descriptions of keywords and variables for commands in this chapter are located in the Bulk Statistics Configuration Mode Commands and Bulk Statistics File Configuration Mode Commands chapters in the Command Line Interface Reference.

Configuring Standard Settings

The configuration example in this section defines basic operation of the bulk statistics feature. Use the following example configuration to set up the system to communicate with the statistic collection server:

```
configure
  bulkstats mode
    schema name format format_string
    sample-interval time_interval
    transfer-interval xmit_time_interval
    limit mem_limit
  exit
  bulkstats collection
end
```

Configuring Optional Settings

This section describes optional commands that can be used within the Bulk Statistics Configuration mode. Specifically, bulk statistic “files” under which to group the bulk statistic configuration are configured using commands in this section. “Files” are used to group bulk statistic schema, delivery options, and receiver configuration. Because multiple “files” can be configured, this functionality provides greater flexibility in that it allows you to configure different schemas to go to different receivers.

```
configure
  bulkstats mode
    file number
      receiver ip_address { primary | secondary } [ mechanism { { ftp | sftp }]
      login user_name [ encrypted ] password pwd } | tftp } ]
      receiver mode { redundant | secondary-on-failure }
```
Configuring Bulk Statistic Schemas

In each configuration example described in Configuring Standard Settings and Configuring Optional Settings, the following is the primary command used to configure the type of schema and the statistics collected:

```
name schema format format_string
sample-interval time_interval
transfer-interval xmit_time_interval
limit mem_limit
exit
bulkstats collection
end
```

Refer to the Bulk Statistics Configuration Mode Commands and Bulk Statistics File Configuration Mode Commands chapters in the Command Line Interface Reference for more information regarding supported schemas, available statistics, and proper command syntax.

Verifying Your Configuration

After configuring support for bulk statistics on the system, you can check your settings prior to saving them. Follow the instructions in this section to verify your bulk statistic settings. These instructions assume that you are at the root prompt for the Exec mode.

Check your collection server communication and schema settings by entering the following command:

```
show bulkstats schemas
```

The following is an example command output:
Bulk Statistics Server Configuration:
Server State: Enabled
File Limit: 6000 KB
Sample Interval: 15 minutes (0D 0H 15M)
Transfer Interval: 480 minutes (0D 0H 15M)
Collection Mode: Cumulative
Receiver Mode: Secondary-on-failure
Local File Storage: None

Bulk Statistics Server Statistics:
Records awaiting transmission: 114
Bytes awaiting transmission: 8092
Total records collected: 59926
Total bytes collected: 4190178
Total records transmitted: 59812
Total bytes transmitted: 4188512
Total records discarded: 0
Total bytes discarded: 0
Last collection time required: 2 second(s)
Last transfer time required: 0 second(s)
Last successful transfer: Wednesday December 7 12:14:30 EDT 2011
Last successful tx recs: 190
Last successful tx bytes: 13507
Last attempted transfer: Wednesday December 7 12:14:30 EDT 2011

File 1
Remote File Format: /users/ems/server/data/chicago/bulkstat%date%%time%.txt
File Header: "CHI_test %time"
File Footer: ""

Bulkstats Receivers:
Primary: 192.168.0.100 using FTP with username administrator
Records awaiting transmission: 0
Bytes awaiting transmission: 0
Total records collected: 0
Total bytes collected: 0
Total records transmitted: 0
Total bytes transmitted: 0
Total records discarded: 0
Total bytes discarded: 0
Last transfer time required: 0 second(s)
No successful data transfers
No attempted data transfers

File 2 not configured

File 3 not configured

File 4 not configured

Saving Your Configuration

Save the configuration as described in the Verifying and Saving Your Configuration chapter.
Viewing Collected Bulk Statistics Data

The system provides a mechanism for viewing data that has been collected but has not been transferred. This data is referred to as “pending data”.

View pending bulk statistics data per schema by entering the following:

```
show bulkstats data
```

The above command also shows the statistics of remote files, if configured as described in Configuring Optional Settings.

The following is a sample output:

```
Bulk Statistics Server Statistics:
  Records awaiting transmission: 1800
  Bytes awaiting transmission: 163687
  Total records collected: 1800
  Total bytes collected: 163687
  Total records transmitted: 0
  Total bytes transmitted: 0
  Total records discarded: 0
  Total bytes discarded: 0
  Last collection time required: 2 second(s)
  Last transfer time required: 0 second(s)
  No successful data transfers
  Last attempted transfer: Monday February 14 15:12:30 EST 2011

File 1
  Remote File Format: %date%%time%
  File Header: "Format 4.5.3.0"
  File Footer: ""
  Bulkstats Receivers:
    Primary: 192.168.1.200 using FTP with username root
  File Statistics:
    Records awaiting transmission: 1800
    Bytes awaiting transmission: 163687
    Total records collected: 1800
    Total bytes collected: 163687
    Total records transmitted: 0
    Total bytes transmitted: 0
    Total records discarded: 0
    Total bytes discarded: 0
    Last transfer time required: 0 second(s)
    No successful data transfers
    Last attempted transfer: Monday February 14 15:12:30 EST 2011

File 2 not configured

File 3 not configured

File 4 not configured
```
Manually Gathering and Transferring Bulk Statistics

There may be times where it is necessary to gather and transfer bulk statistics outside of the scheduled intervals. The system provides commands that allow you to manually initiate the gathering and transferring of bulk statistics.

These commands are issued from the Exec mode.

To manually initiate the gathering of bulk statistics outside of the configured sampling interval, enter the following command:

\[\texttt{bulkstats force gather} \]

To manually initiate the transferring of bulk statistics prior to reaching the of the maximum configured storage limit, enter the following command:

\[\texttt{bulkstats force transfer} \]

Clearing Bulk Statistics Counters and Information

It may be necessary to periodically clear counters pertaining to bulk statistics in order to gather new information or to remove bulk statistics information that has already been collected. The following command can be used to perform either of these functions:

\[\texttt{clear bulkstats \{ counters | data \}} \]

The \texttt{clear bulkstats data} command clears any accumulated data that has not been transferred. This includes any "completed" files that have not been successfully transferred.

Bulk Statistics Event Log Messages

The stat logging facility captures several events that can be useful for diagnosing errors that could occur with either the creation or writing of a bulk statistic data set to a particular location.

The following table displays information pertaining to these events.

<table>
<thead>
<tr>
<th>Event</th>
<th>Event ID</th>
<th>Severity</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local File Open Error</td>
<td>31002</td>
<td>Warning</td>
<td>"Unable to open local file \texttt{filename} for storing bulkstats data"</td>
</tr>
<tr>
<td>Receiver Open Error</td>
<td>31018</td>
<td>Warning</td>
<td>"Unable to open url \texttt{filename} for storing bulkstats data"</td>
</tr>
<tr>
<td>Receiver Write Error</td>
<td>31019</td>
<td>Warning</td>
<td>"Unable to write to url \texttt{filename} while storing bulkstats data"</td>
</tr>
<tr>
<td>Receiver Close Error</td>
<td>31020</td>
<td>Warning</td>
<td>"Unable to close url \texttt{filename} while storing bulkstats data"</td>
</tr>
</tbody>
</table>
Chapter 11
System Logs

This chapter describes how to configure parameters related to the various types of logging and how to viewing their content. It includes the following sections:

- Configuring Event Logging Parameters
- Configuring Active Logs
- Specifying Facilities
- Configuring Trace Logging
- Configuring Monitor Logs
- Viewing Logging Configuration and Statistics
- Viewing Event Logs Using the CLI
- Configuring and Viewing Crash Logs
- Saving Log Files
- Event ID Overview
System Log Types

There are five types of logs that can be configured and viewed on the system:

- **Event**: Event logging can be used to determine system status and capture important information pertaining to protocols and tasks in use by the system. This is a global function that will be applied to all contexts, sessions, and processes.

- **Active**: Active logs are operator configurable on a CLI instance-by-CLI instance basis. Active logs configured by an administrative user in one CLI instance cannot be viewed by an administrative user in a different CLI instance. Each active log can be configured with filter and display properties that are independent of those configured globally for the system. Active logs are displayed in real time as events are generated.

- **Trace**: Trace logging can be used to quickly isolate issues that may arise for a particular connected subscriber session. Traces can be taken for a specific call identification (callid) number, IP address, mobile station identification (MSID) number, or username.

- **Monitor**: Monitor logging records all activity associated with a particular session. This functionality is available in order to comply with law enforcement agency requirements for monitoring capabilities of particular subscribers. Monitors can be performed based on a subscriber’s MSID or username.

- **Crash**: Crash logging stores useful information pertaining to system software crashes. This information is useful in determining the cause of the crash.

[Important: Not all Event Logs can be configured on all products. Configurability depends on the hardware platform and licenses in use.]
Configuring Event Logging Parameters

The system can be configured to generate logs based on user-defined filters. The filters specify the facilities (system tasks or protocols) that the system is to monitor and severity levels at which to trigger the generation of the event entries.

Event logs are stored in system memory and can be viewed via the CLI. There are two memory buffers that store event logging information. The first buffer stores the active log information. The second buffer stores inactive logging information. The inactive buffer is used as a temporary repository to allow you to view logs without having data be overwritten. Logs are copied to the inactive buffer only through manual intervention.

Each buffer can store up to 50,000 events. Once these buffers reach their capacity, the oldest information is removed to make room for the newest.

To prevent the loss of log data, the system can be configured to transmit logs to a syslog server over a network interface.

Configuring Event Log Filters

Follow the example below to configure run time event logging parameters for the system:

```config
configure

logging filter runtime facility facility level report_level

logging display { event-verbosity | pdu-data | pdu-verbosity }

end
```

Notes:

- Configure the logging filter that determines which system facilities should be logged and at what levels. For detailed information, see **Specifying Facilities** and **Event Severities**.
- Repeat for every facility that you would like to log.
- Optional: Configure event ID restrictions by adding the **logging disable eventid** command. The system provides the ability to restrict the sending of a specific event ID or a range of event IDs to minimize the amount of data logged to that which is most useful. Repeat to disable logging for additional event IDs or event ID ranges.

Save the configuration as described in the **Verifying and Saving Your Configuration** chapter.
Configuring syslog Servers

Information generated by the run time event logging filters can be transmitted to a syslog server for permanent storage.

Important: The data transmitted to the syslog server is meant to be used for informational purposes. Functions such as billing and performance monitoring should not be based on syslogs.

Important: Although the system provides the flexibility to configure syslog servers on a context-by-context basis, it is recommended that all servers be configured in the local context in order to isolate the log traffic from the network traffic.

Use the following example to configure syslog servers:

```
configure
  context local
    logging syslog ip_address
  end
```

Notes:

- `ip_address` specifies the IP address of a system log server on the network in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

- A number of keyword options/variables are available for the `logging syslog` command. Refer to the Context Configuration Mode Commands chapter in the Command Line Interface Reference for more information.

- Repeat as needed to configure additional syslog servers. There is no limit to the number of syslog servers that can be configured.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.
Configuring Active Logs

Active logs are event logs that are operator configurable on a CLI instance-by-CLI instance basis. Active logs configured by an administrative user in one CLI instance are not displayed to an administrative user in a different CLI instance. Each active log can be configured with filter and display properties that are independent of those configured globally for the system. Active logs are displayed in real time as they are generated.

Active logs are not written to the active memory buffer by default. To write active logs to the active memory buffer execute the following command in the Global Configuration mode:

```
[local]host_name(config)# logging runtime buffer store all-events
```

When active logs are written to the active memory buffer, they are available to all users in all CLI instances.

Use the following example to configure active logging in Global Configuration mode:

```
[local]host_name(config)# logging filter runtime facility facility level report_level
```

Notes:

- Configure the logging filter that determines which system facilities should be logged and at what levels. For detailed information, see Specifying Facilities and Event Severities.
- Repeat for every facility that you would like to log.
- Optional: Configure event ID restrictions by adding the logging disable eventid command. The system provides the ability to restrict the sending of a specific event ID or a range of event IDs to minimize the amount of data logged to that which is most useful. Repeat to disable logging for additional event IDs or event ID ranges.
- A number of keyword options/variables are available for the Exec mode logging active command. Refer to the Exec Mode Commands chapter in the Command Line Interface Reference for more information.

Once all of the necessary information has been gathered, the Active log display can be stopped by entering the following command in the Exec mode:

```
no logging active
```
Specifying Facilities

Important: The actual facilities available for logging vary by platform type, StarOS version and installed product licenses.

The following facilities can be configured for logging event data:

- **a10**: A10 interface facility
- **a11**: A11 interface facility
- **a11mgr**: A11 Manager facility
- **aaa-client**: Authentication, Authorization and Accounting (AAA) client facility
- **aaamgr**: AAA manager logging facility
- **aaaproxy**: AAA Proxy facility
- **aal2**: ATM Adaptation Layer 2 (AAL2) protocol logging facility
- **acl-log**: Access Control List (ACL) logging facility
- **acctrl**: Active Charging Service (ACS) Controller facility
- **acsmgr**: ACS Manager facility
- **acftrl**: Fabric Controller facility [ASR 5500 only]
- **afmgr**: Fabric Manager logging facility [ASR 5500 only]
- **alarmctrl**: Alarm Controller facility
- **alcap**: Access Link Control Application Part (ALCAP) protocol logging facility
- **alcapmgr**: ALCAP manager logging facility
- **all**: All facilities
- **asngwmgr**: Access Service Network (ASN) Gateway Manager facility
- **asnpctrm**: ASN Paging Controller Manager facility
- **bfd**: Bidirectional Forwarding Detection (BFD) protocol logging facility
- **bgp**: Border Gateway Protocol (BGP) facility
- **bindmux**: IPCF BindMux-Demux Manager logging facility
- **bngmgr**: Broadband Network Gateway (BNG) Demux Manager logging facility
- **bssap+**: Base Station Sub-system Application Part+ protocol facility for the login interface between the SGSN and the MSC/VLR (2.5G and 3G)
- **bssgp**: Base Station Sub-system GPRS Protocol logging facility handles exchange information between the SGSN and the BSS (2.5G only)
- **callhome**: Call Home application logging facility
- **cap**: CAMEL Application Part (CAP) logging facility for protocol used in prepaid applications (2.5G and 3G)
- **cbsmgr**: Cell Broadcasting Service (CBS) logging facility [HNDBGW]
- **cdf**: Charging Data Function (CDF) logging facility
- **cgw**: Converged Access Gateway (CGW) logging facility
- **cli**: Command Line Interface (CLI) logging facility
- **cmp**: Certificate Management Protocol (IPSec) logging facility
- **connectedapps**: SecGW ASR 9000 oneP communication protocol
- **connproxy**: Controller Proxy logging facility
- **credit-control**: Credit Control (CC) facility
- **cscf**: IMS/MMD Call Session Control Function (CSCF)
- **cscfcpmgr**: CSCFCPMGR logging facility
- **cscfmgr**: SIP CSCF Manager facility
- **cscfnpdb**: CSCF Number Portability Database (NPDB) logging facility
- **cscfrtcp**: IMS/MMD CSCF RTCP log facility
- **cscfrtp**: IMS/MMD CSCF RTP log facility
- **cscfttmgr**: SIP CSCF Tunnel and Transport Manager facility
- **csp**: Card/Slot/Port controller facility
- **css**: Content Service Selection (CSS) facility
- **css-sig**: CSS RADIUS Signaling facility
- **cx-diameter**: Cx Diameter Messages facility
- **data-mngr**: Data Manager Framework logging facility
- **dcardctrl**: IPSec Daughter Card Controller logging facility
- **dcardmgr**: IPSec Daughter Card Manager logging facility
- **demuxmgr**: Demux Manager API facility
- **dgmbmgr**: Diameter Gmb Application Manager logging facility
- **dhcp**: Dynamic Host Configuration Protocol (DHCP) logging facility
- **dhcpv6**: DHCPv6
- **dhost**: Distributed Host logging facility
- **diabase**: Diabase messages facility
- **diameter**: Diameter endpoint logging facility
- **diameter-acct**: Diameter Accounting
- **diameter-auth**: Diameter Authentication
- **diameter-dns**: Diameter DNS subsystem
- **diameter-ecs**: ACS Diameter signaling facility
- **diameter-hdd**: Diameter Horizontal Directional Drilling (HDD) Interface facility
- **diameter-svc**: Diameter Service
- **diamproxy**: DiamProxy logging facility
- **dpath**: IPSec Data Path facility
- **drvctrl**: Driver Controller facility
- **dpath**: IPSec Data Path logging facility
- **drvctrl**: Driver Controller logging facility
- **doulosuemgr**: Doulos (IMS-IPSec-Tool) user equipment manager
- **eap-diameter**: Extensible Authentication Protocol (EAP) IP Security facility
- **eap-ipsec**: Extensible Authentication Protocol (EAP) IPsec facility
- **eap-sta-s6a-s13-s6b-diameter**: EAP/STA/S6A/S13/S6B Diameter messages facility
- **ecs-css**: ACSMGR <-> Session Manager Signalling Interface facility
- **egtpc**: eGTP-C logging facility
- **egtpmgr**: enhanced GPRS Tunneling Protocol (eGTP) manager logging facility
- **egtpu**: eGTP-U logging facility
- **embms**: evolved Multimedia Broadcast Multicast Services Gateway facility
- **embms**: eMBMS Gateway Demux facility
- **epdg**: evolved Packet Data (ePDG) gateway logging facility
- **event-notif**: Event Notification Interface logging facility
- **evlog**: Event log facility
- **famgr**: Foreign Agent manager logging facility
- **firewall**: Firewall logging facility
- **fng**: Femto Network Gateway (FNG) logging facility
- **gbmgr**: SGSN Gb Interface Manager facility
- **gmm**:
 - For 2.5G: Logs the GPRS Mobility Management (GMM) layer (above LLC layer)
 - For 3G: Logs the access application layer (above the RANAP layer)
- **gprs-app**: GPRS Application logging facility
- **gprs-ns**: GPRS Network Service Protocol (layer between SGSN and the BSS) logging facility
- **gq-rx-tx-diameter**: Gq/Rx/Tx Diameter messages facility
- **gss-gcdr**: GTPP Storage Server GCDR facility
- **gtpc**: GTP-C protocol logging facility
- **gtcpmgr**: GTP-C protocol manager logging facility
- **gtp**: GTP-prime protocol logging facility
- **gtpu**: GTP-U protocol logging facility
- **gtpumgr**: GTP-U Demux manager
- **gx-ty-diameter**: Gx/Ty Diameter messages facility
- **gy-diameter**: Gy Diameter messages facility
- **h248prt**: H.248 port manager facility
- **hamgr**: Home Agent manager logging facility
- **hat**: High Availability Task (HAT) process facility
- **hdctrl**: HD Controller logging facility
- **henbapp**: Home Evolved NodeB (HENB) App facility
- **henbgw**: HENB-Gateway facility
- **henbgw-setp-acs**: HENBGW access Stream Control Transmission Protocol (SCTP) facility
- **henbgw-setp-nw**: HENBGW network SCTP facility
- **henbgwdemux**: HENB-GW Demux facility
- **henbgwmgr**: HENB-GW Manager facility
- **hnb-gw**: HNB-GW (3G Femto GW) logging facility
- **hnbmgr**: HNB-GW Demux Manager logging facility
- **hss-peer-service**: Home Subscriber Server (HSS) Peer Service facility
- **igmp**: Internet Group Management Protocol (IGMP)
- **ikev2**: Internet Key Exchange version 2 (IKEv2)
- **ims-authoriztn**: IP Multimedia Subsystem (IMS) Authorization Service facility
- **ims-sh**: HSS Diameter Sh Interface Service facility
- **imsimgr**: SGSN IMSI Manager facility
- **imsue**: IMS User Equipment (IMSUE) facility
- **ip-arp**: IP Address Resolution Protocol facility
- **ip-interface**: IP interface facility
- **ip-route**: IP route facility
- **ipms**: Intelligent Packet Monitoring System (IPMS) logging facility
- **ipne**: IP Network Enabler (IPNE) facility
- **ipsec**: IP Security logging facility
- **ipsecdemux**: IPSec demux logging facility
- **ipsg**: IP Service Gateway interface logging facility
- **ipsgmgr**: IP Services Gateway facility
- **ipsp**: IP Pool Sharing Protocol logging facility
- **kvstore**: Key/Value Store (KVSTORE) Store facility
- **l2tp-control**: Layer 2 Tunneling Precool (L2TP) control logging facility
- **l2tp-data**: L2TP data logging facility
- **l2tpdemux**: L2TP Demux Manager logging facility
- **l2tpmgr**: L2TP Manager logging facility
- **lagmgr**: Link Aggregation Group (LAG) manager logging facility
- **lcs**: Location Services (LCS) logging facility
- **ldap**: Lightweight Directory Access Protocol (LDAP) messages logging facility
- **li**: Refer to the *Lawful Intercept Interface Reference* for a description of this command.
- **linkmgr**: SGSN/BSS SS7 Link Manager logging facility (2.5G only)
- **llc**: Logical Link Control (LLC) Protocol logging facility; for SGSN: logs the LLC layer between the GMM and the BSSGP layers for logical links between the MS and the SGSN
- **local-policy**: Local Policy Service facility
- **location-service**: Location Services facility
• m3ua: M3UA Protocol logging facility
• magmgr: Mobile Access Gateway manager logging facility
• map: Mobile Application Part (MAP) protocol logging facility
• megad iammgmgr: MegaDiameter Manager (SLF Service) logging facility
• mme-app: Mobility Management Entity (MME) Application logging facility
• mme-misc: MME miscellaneous logging facility
• mmedemux: MME Demux Manager logging facility
• mmemgr: MME Manager facility
• mmgr: Master Manager logging facility
• mobile-ip: Mobile IP processes
• mobile-ip-data: Mobile IP data facility
• mobile-ipv6: Mobile IPv6 logging facility
• mpls: Multiprotocol Label Switching (MPLS) protocol logging facility
• mrme: Multi Radio Mobility Entity (MRME) logging facility
• mseg-app: Mobile Services Edge Gateway (MSEG) application logging facility (This option is not supported in this release.)
• mseg-gtpc: MSEG GTP-C application logging facility (This option is not supported in this release.)
• mseg-gtpu: MSEG GTP-U application logging facility (This option is not supported in this release.)
• msegmgr: MSEG Demux Manager logging facility (This option is not supported in this release.)
• mtp2: Message Transfer Part 2 (MTP2) Service logging facility
• mtp3: Message Transfer Part 3 (MTP3) Protocol logging facility
• multicast-proxy: Multicast Proxy logging facility
• nas: Non-Access Stratum (NAS) protocol logging facility [MME 4G]
• netwstrg: Network Storage facility
• npuctrl: Network Processor Unit Control facility
• npudrv: Network Processor Unit Driver facility [ASR 5500 only]
• npumgr: Network Processor Unit Manager facility
• npumgr-acl: NPUMGR ACL logging facility
• npumgr-driv: NPUMGR DRV logging facility
• npumgr-flow: NPUMGR FLOW logging facility
• npumgr-fwd: NPUMGR FWD logging facility
• npumgr-init: NPUMGR INIT logging facility
• npumgr-lc: NPUMGR LC logging facility
• npumgr-port: NPUMGR PORT logging facility
• npumgr-recovery: NPUMGR RECOVERY logging facility
• npumgr-rr: NPUMGR RRI (Reverse Route Injection) logging facility
• npumgr-vpn: NPUMGR VPN logging facility
• **npusim**: NPUSIM logging facility [ASR 5500 only]
• **ntfy-intf**: Notification Interface logging facility [Release 12.0 and earlier versions only]
• **ocs**: Online Certificate Status Protocol logging facility
• **orbs**: Object Request Broker System logging facility
• **osp**: OSPF protocol logging facility
• **ospfv3**: OSPFv3 protocol logging facility
• **p2p**: Peer-to-Peer Detection logging facility
• **pagingmgr**: PAGINGMGR logging facility
• **pccmgr**: Intelligent Policy Control Function (IPCF) Policy Charging and Control (PCC) Manager library
• **pdg**: Packet Data Gateway (PDG) logging facility
• **pdgdmg**: PDG Demux Manager logging facility
• **pdif**: Packet Data Interworking Function (PDIF) logging facility
• **pgw**: Packet Data Network Gateway (PGW) logging facility
• **phs**: Payload Header Suppression (PHS)
• **phs-control**: PHS X1/X5 and X2/X6 Interface logging facility
• **phs-data**: PHS Data logging facility
• **phs-eapol**: PHS EAP over LAN (EAPOL) logging facility
• **phsgwmg**: PHS Gateway Manager facility
• **phspcmg**: PHS Paging Controller Manager facility
• **pmm-app**: Packet Mobility Management (PMM) application logging facility
• **pp**: Point-To-Point Protocol (PPP) link and packet facilities
• **ppoe**: PPP over Ethernet logging facility
• **push**: VPNMGR CDR push logging facility
• **radius-acct**: RADIUS accounting logging facility
• **radius-auth**: RADIUS authentication logging facility
• **radius-coa**: RADIUS change of authorization and radius disconnect
• **ranap**: Radio Access Network Application Part (RANAP) Protocol facility logging info flow between SGSN and RNS (3G)
• **rct**: Recovery Control Task logging facility
• **rdt**: Redirect Task logging facility
• **resmgr**: Resource Manager logging facility
• **rf-diameter**: Diameter Rf interface messages facility
• **rip**: Routing Information Protocol (RIP) logging facility [RIP is not supported at this time.]
• **rlf**: Rate Limiting Function (RLF) logging facility
• **rohc**: Robust Header Compression (RoHC) facility
• **rsvp**: Reservation Protocol logging facility
• **rua**: RANAP User Adaptation (RUA) [3G Femto GW - RUA messages] logging facility
- **s1ap**: S1 Application Protocol (S1AP) Protocol logging facility
- **sabp**: Service Area Broadcast Protocol (SABP) logging facility
- **saegw**: System Architecture Evolution (SAE) Gateway facility
- **sbe**: SBe protocol logging facility
- **sccp**: Signalling Connection Control Part (SCCP) Protocol logging (connection-oriented messages between RANAP and TCAP layers).
- **sct**: Shared Configuration Task logging facility
- **sctp**: Stream Control Transmission Protocol (SCTP) Protocol logging facility
- **sef ecs**: Severely Errored Frames (SEF) APIs printing facility
- **sess-gr**: SM GR facility
- **sessctrl**: Session Controller logging facility
- **sessmgr**: Session Manager logging facility
- **sesstr**: session trace logging facility
- **sft**: Switch Fabric Task logging facility
- **sgs**: SGs interface protocol logging facility
- **sgsn-app**: SGSN-APP logging various SGSN “glue” interfaces (for example, between PMM, MAP, GPRS-FSM, SMS).
- **sgsn-failures**: SGSN call failures (attach/activate rejects) logging facility (2.5G)
- **sgsn-gtpc**: SGSN GTP-C Protocol logging control messages between the SGSN and the GGSN
- **sgsn-gtpu**: SGSN GTP-U Protocol logging user data messages between the SGSN and GGSN
- **sgsn-mbms-bearer**: SGSN Multimedia Broadcast/Multicast Service (MBMS) Bearer app (SMGR) logging facility
- **sgsn-misc**: Used by stack manager to log binding and removing between layers
- **sgsn-system**: SGSN System Components logging facility (used infrequently)
- **sgsn-test**: SGSN Tests logging facility; used infrequently
- **sgtpcmgr**: SGSN GTP-C Manager logging information exchange through SGTPC and the GGSN
- **sgw**: Serving Gateway facility
- **sh-diameter**: Sh Diameter messages facility
- **sitmain**: System Initialization Task main logging facility
- **sls**: Service Level Specification (SLS) protocol logging facility
- **sm-app**: SM Protocol logging facility
- **sms**: Short Message Service (SMS) logging messages between the MS and the SMSC
- **sndcp**: Sub Network Dependent Convergence Protocol (SNDCP) logging facility
- **snmp**: SNMP logging facility
- **sprmgr**: IPCF Subscriber Policy Register (SPR) manager logging facility
- **srdb**: Static Rating Database
- **srp**: Service Redundancy Protocol (SRP) logging facility
- **sscfnni**: Service-Specific Coordination Function for Signaling at the Network Node Interface (SSCF-NNI) logging facility
- **sscop**: Service-Specific Connection-Oriented Protocol (SSCOP) logging facility
- **ssh-ipse**: Secure Shell (SSH) IP Security logging facility
- **ssl**: Secure Socket Layer (SSL) message logging facility
- **stat**: Statistics logging facility
- **supserv**: Supplementary Services logging facility [H.323]
- **system**: System logging facility
- **tacacplus**: TACACS+ Protocol logging facility
- **tcap**: TCAP Protocol logging facility
- **testctrl**: Test Controller logging facility
- **testmgr**: Test Manager logging facility
- **threshold**: threshold logging facility
- **ttg**: Tunnel Termination Gateway (TTG) logging facility
- **tucl**: TCP/UDP Convergence Layer (TUCL) logging facility
- **udr**: User Data Record (UDR) facility (used with the Charging Service)
- **user-data**: User data logging facility
- **user-l3tunnel**: User Layer 3 tunnel logging facility
- **usertcp-stack**: User TCP Stack
- **vim**: Voice Instant Messaging (VIM) logging facility
- **vinfo**: VINFO logging facility
- **vmgctrl**: Virtual Media Gateway (VMG) controller facility
- **vmsgctrl**: VMG Content Manager facility
- **vpn**: Virtual Private Network logging facility
- **wimax-data**: WiMAX DATA
- **wimax-r6**: WiMAX R6
- **wsg**: Wireless Security Gateway (ASR 9000 Security Gateway)
Configuring Trace Logging

Trace logging is useful for quickly resolving issues for specific sessions that are currently active. They are temporary filters that are generated based on a qualifier that is independent of the global event log filter configured using the `logging filter` command in the Exec mode. Like event logs, however, the information generated by the logs is stored in the active memory buffer.

All debug level events associated with the selected call are stored.

Important: Trace logs impact session processing. They should be implemented for debug purposes only.

Use the following example to configure trace logs in the Exec mode:

```
[local] host_name#logging trace { callid call_id | ipaddr ip_address | msid ms_id | username username }
```

Once all of the necessary information has been gathered, the trace log can be deleted by entering the following command:

```
[local] host_name#no logging trace { callid call_id | ipaddr ip_address | msid ms_id | username username }
```
Configuring Monitor Logs

Monitor logging records all activity associated with all of a particular subscriber’s sessions. This functionality is available in compliance with law enforcement agency requirements for monitoring capabilities of particular subscribers.

Monitors can be performed based on a subscriber’s MSID or username, and are only intended to be used for finite periods of time as dictated by the law enforcement agency. Therefore, they should be terminated immediately after the required monitoring period.

This section provides instructions for enabling and disabling monitor logs.

Enabling Monitor Logs

Use the following example to configure monitor log targets:

```plaintext
configure

logging monitor { ip_addr | IPv6_addr | msid id | username name }

end
```

Repeat to configure additional monitor log targets.

Disabling Monitor Logs

Use the following example to disable monitor logs:

```plaintext
configure

no logging monitor { ip_addr | IPv6_addr | msid id | username name }

end
```
Viewing Logging Configuration and Statistics

Logging configuration and statistics can be verified by entering the following command from the Exec mode:

```
[local]host_name# show logging [ active | verbose ]
```

When no keyword is specified, the global filter configuration is displayed as well as information about any other type of logging that is enabled.

The following table provides information and descriptions of the statistics that are displayed when the `verbose` keyword is used.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Logging Statistics</td>
<td></td>
</tr>
<tr>
<td>Total events received</td>
<td>Displays the total number of events generated by the system.</td>
</tr>
<tr>
<td>Number of applications receiving events</td>
<td>Displays the number of applications receiving the events.</td>
</tr>
<tr>
<td>Logging Source Statistics</td>
<td></td>
</tr>
<tr>
<td>Event sequence ids by process</td>
<td>Displays a list of system processes that have generated events and the reference identification number of the event that was generated.</td>
</tr>
<tr>
<td>Msg backlog stat with total cnt</td>
<td>Displays the number of event messages that have been back logged in comparison to the total number of events generated.</td>
</tr>
<tr>
<td>LS L2 filter drop rate</td>
<td>Displays the percentage of logging source (LS) layer 2 (L2) event drops.</td>
</tr>
<tr>
<td>Abnormal Log Source Statistics</td>
<td>Displays abnormal logging source (LS) statistics, if any.</td>
</tr>
<tr>
<td>Runtime Logging Buffer Statistics</td>
<td></td>
</tr>
<tr>
<td>Active buffer</td>
<td>Displays the number of events currently logged in the active memory buffer as well as a date/time timestamp for the oldest and most recent entries in the buffer.</td>
</tr>
<tr>
<td>Inactive buffer</td>
<td>Displays the number of events currently logged in the inactive memory buffer.</td>
</tr>
</tbody>
</table>
Viewing Event Logs Using the CLI

Event logs generated by the system can be viewed in one of the following ways:

- **From the syslog server:** If the system is configured to send logs to a syslog server, the logs can be viewed directly on the syslog server.
- **From the system CLI:** Logs stored in the system memory buffers can be viewed directly from the CLI.
- **From the console port:** By default, the system automatically displays events over the console interface to a terminal provided that there is no CLI session active.

This section provides instructions for viewing event logs using the CLI. These instructions assume that you are at the root prompt for the Exec mode.

Step 1
Copy the active log memory buffer to the inactive log memory buffer.

When the active log memory buffer is copied to the inactive log memory buffer existing information in the inactive log memory buffer is deleted.

Both active and inactive event log memory buffers can be viewed using the CLI in Exec mode. However, it is preferable to view the inactive log in order to prevent any data from being over-written. The information from the active log buffer can be copied to the inactive log buffer by entering the following command:

```
[local]host_name# logs checkpoint
```

Step 2
View the logs by entering the following command:

```
[local]host_name# show logs
```

Important: A number of optional keywords/variables are available for the `show logs` command. Refer to the *Exec Mode Show Commands* chapter in the *Command Line Interface Reference* for more information.
Configuring and Viewing Crash Logs

In the unlikely even of a software crash, the system stores information that could be useful in determining the reason for the crash. This information can be maintained in system memory or it can be transferred and stored on a network server.

The system supports the generation of the following two types of logs:

- **Crash log**: Crash logs record all possible information pertaining to a software crash (full core dump). Due to their size, they can not be stored in system memory. Therefore, these logs are only generated if the system is configured with a Universal Resource Locator (URL) pointing to a local device or a network server where the log can be stored.

- **Abridged crash log**: Crash event records are automatically generated when a software crash occurs and are stored in flash memory on management cards. The abridged crash log contains a list crash event records along with associated dump files. This log allows you to view event records and dump files via CLI commands.

Crash Logging Architecture

The crash log is a persistent repository of crash event information. Each event is numbered and contains text associated with a CPU (minicore), NPU or kernel crash. The logged events are recorded into fixed length records and stored in /flash/crashlog2.

Whenever a crash occurs, the following crash information is stored:

1. The event record is stored in /flash/crashlog2 file (the crash log).
2. The associated minicore, NPU or kernel dump file is stored in the /flash/crs directory.
3. A full core dump is stored in a user configured directory.

Important: The crashlog2 file along with associated minicore, NPU and kernel dumps are automatically synchronized across redundant management cards (SMC, MIO/UMIO). Full core dumps are **not** synchronized across management cards.

The following behaviors apply to the crash logging process:

- When a crash event arrives on an active management card, the event record is stored in its crashlog2 file along with the minicore, NPU, or kernel dump file in /flash/crsh2. The crash event and dump file are also automatically stored in the same locations on the standby management card.
- When a crash log entry is deleted via CLI command, it is deleted on both the active and standby management cards.
- When a management card is added or replaced, active and standby cards will automatically synchronize crash logs and dump files.
- When a crash event is received and the crash log file is full, the oldest entry in the crash log and its related dump file will be replaced with the latest arrived event and dump file on both management cards. Information for a maximum of 120 crash events can be stored on management cards.
- Duplicate crash events bump the count of hits in the existing record and update the new record with the old crash event record. Additions to the count use the timestamp for the first time the event happened.
Configuring Software Crash Log Destinations

The system can be configured to store software crash log information to any of the following locations:

- On the ASR 5000:
 - CompactFlash™: Installed on the SMC [abridged crash log and associated dump files only]
 - PCMCIA Flash Card: Installed in the PCMCIA1 slot on the SMC

- On the ASR 5500:
 - Flash memory: Installed on the active MIO/UMIO [abridged crash log and associated dump files only]
 - USB memory stick: Installed in the USB slot on the active MIO/UMIO

- On QvPC
 - Flash memory: Accessible by the virtual machine
 - USB memory stick: Installed in the USB slot of the platform (USB slot has been enabled via the hypervisor)

- Network Server: Any workstation or server on the network that the system can access using the Trivial File Transfer Protocol (TFTP), the File Transfer Protocol (FTP), the Secure File Transfer Protocol (SFTP), or the Hyper-Text Transfer Protocol (HTTP); this is recommended for large network deployments in which multiple systems require the same configuration

Crash log files (full core dumps) are written with unique names as they occur to the specified location. The name format is crash-card-cpu-time-core. Where card is the card slot, cpu is the number of the CPU on the card, and time is the Portable Operating System Interface (POSIX) timestamp in hexadecimal notation.

Use the following example to configure a software crash log destination in the Global Configuration mode:

```
configure

crash enable [ encrypted ] url crash_url

end
```

Notes:

- Refer to the Global Configuration Mode Commands chapter in the Command Line Interface Reference for more information on this command.

- Repeat to configure additional software crash log destinations. There is no limit to the number of destinations that can be configured.

Save the configuration as described in the Verifying and Saving Your Configuration chapter.
Viewing Abridged Crash Log Information Using the CLI

You can view abridged crash information that is stored as a set of event records in flash memory on management cards (/flash/crashlog2). Each crash event record has an associated dump file (minicore, NPU or kernel) that can also be displayed (/flash/crash2)

Follow the instructions in this section to view software crash events that have occurred on the system. These instructions assume that you are at the root prompt for the Exec mode.

Step 1 View a list of software crash events by entering the following Exec mode command:

```
[local]host_name# show crash { all | list | number crash_num }
```

Notes:

- Run `show crash list` to obtain the number for a specific crash event.
- Run `show crash number crash_num` to display the output for the target crash event.

⚠️ **Important:** Information about similar crash events is suppressed in the output of this command.

Step 2 View the dump file associated with a specific crash event.

The information contained in the dump file helps identify and diagnose any internal or external factors causing the software to crash.

- Crash # – unique number assigned by StarOS when logging the crash event
- SW Version – StarOS build release in format: RR.n(bbbbbb)
- Similar Crash Count – number of similar crashes
- Time of first crash – timestamp when first crash occurred in format: YYYY-MMM-DD+hh:mm:ss
- Failure message – text of event message
- Function – code identifier
- Process – where the crash occurred (Card, CPU, PID, etc.)
- Crash time – timestamp for when the crash occurred in the format: YYYY-MMM-DD+hh:mm:ss time zone
- Recent errno – text of most recent error number.
- Stack – memory stack information
- Last Bounce – information about the messaging received prior to the crash
- Registers – memory register contents
- Current inbound message – hexadecimal information for the current inbound message
- Address Map
- Recent heap activity (oldest first)
- Recent events (oldest first)
- Profile depth
Important: The informational content of each crash log entry varies based on the type of crash and the StarOS release.

Saving Log Files

Log files can be saved to a file in a local or remote location specified by a URL. Use the following Exec mode command to save log files:

```
save logs { url } [active] [inactive] [callid call_id] [event-verbosity evt_verboseness] [facility facility] [level severity_level] [pdu-data pdu_format] [pdu-verbosity pdu_verboseness] [since from_date_time] [until to_date_time] [ | { grep grep_options | more } ]
```

For detailed information on the `save logs` command, see the Exec Mode Commands chapter in the Command Line Interface Reference.
Important: The use of event IDs depends on the platform type and the licenses running on the platform.

Identification numbers (IDs) are used to reference events as they occur when logging is enabled on the system. As described previously, logs are collected on a per facility basis. Each facility possesses its own range of event IDs as indicated in the following table.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
<th>Event ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a10</td>
<td>A10 Protocol Facility</td>
<td>28000-28999</td>
</tr>
<tr>
<td>a11</td>
<td>A11 Protocol Facility</td>
<td>29000-29999</td>
</tr>
<tr>
<td>a11mgr</td>
<td>A11 Manager Facility</td>
<td>9000-9999</td>
</tr>
<tr>
<td>aaa-client</td>
<td>AAA Client Facility</td>
<td>6000-6999</td>
</tr>
<tr>
<td>aaamgr</td>
<td>AAA Manager Facility</td>
<td>36000-36999</td>
</tr>
<tr>
<td>aaaproxy</td>
<td>AAA Proxy Facility</td>
<td>64000-64999</td>
</tr>
<tr>
<td>acl2</td>
<td>AAL2 Protocol Facility</td>
<td>173200-173299</td>
</tr>
<tr>
<td>acl-log</td>
<td>IP Access Control List (ACL) Facility</td>
<td>21000-21999</td>
</tr>
<tr>
<td>acsctrl</td>
<td>Active Charging Service Controller (ACSCtrl) Facility</td>
<td>90000-90999</td>
</tr>
<tr>
<td>acsmgr</td>
<td>Active Charging Service Manager (ACSMgr) Facility</td>
<td>91000-91999</td>
</tr>
<tr>
<td>afctrl</td>
<td>Ares Fabric Controller (ASR 5500 only)</td>
<td>186000-186999</td>
</tr>
<tr>
<td>afmgr</td>
<td>Ares Fabric Manager (ASR 5500 only)</td>
<td>187000-187999</td>
</tr>
<tr>
<td>alarmctrl</td>
<td>Alarm Controller Facility</td>
<td>65000-65999</td>
</tr>
<tr>
<td>alcap</td>
<td>Access Link Control Application Part (ALCAP) Protocol Facility</td>
<td>160900-161399</td>
</tr>
<tr>
<td>alcapmgr</td>
<td>ALCAP Manager Facility</td>
<td>160500-160899</td>
</tr>
<tr>
<td>asf</td>
<td>ASF Facility</td>
<td>73000-73999</td>
</tr>
<tr>
<td>asfp</td>
<td>ASFPRT Facility</td>
<td>59000-59999</td>
</tr>
<tr>
<td>asngwmg</td>
<td>Access Service Network (ASN) Gateway Manager Facility</td>
<td>100000-100499</td>
</tr>
<tr>
<td>asncmgr</td>
<td>ASN Paging/Location-Registry Manager Facility</td>
<td>100500-100999</td>
</tr>
<tr>
<td>bcmcs</td>
<td>Broadcast/Multicast Service (BCMCS) Facility</td>
<td>109000-109999</td>
</tr>
<tr>
<td>bfd</td>
<td>Bidirectional Forwarding Detection (BFD) Protocol Facility</td>
<td>170500-170999</td>
</tr>
<tr>
<td>bgp</td>
<td>Border Gateway Protocol (BGP) Facility</td>
<td>85000-85999</td>
</tr>
<tr>
<td>bindmux</td>
<td>BindMux Manager Facility [Intelligent Policy Control Function (IPCF)]</td>
<td>158200-158999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>bngmgr</td>
<td>Broadband Network Gateway (BNG) Manager Facility</td>
<td>182000-182999</td>
</tr>
<tr>
<td>bssap</td>
<td>Base Station System Application Part+ (BSSAP+) Service Facilities</td>
<td>131000-131199</td>
</tr>
<tr>
<td>bssgp</td>
<td>Base Station System GPRS Protocol (BSSGP) Facility</td>
<td>115050-115099</td>
</tr>
<tr>
<td>callhome</td>
<td>Call Home Facility</td>
<td>173600-173999</td>
</tr>
<tr>
<td>cap</td>
<td>CAMEL Application Part (CAP) Facility</td>
<td>87900-88099</td>
</tr>
<tr>
<td>chatconf</td>
<td>CHATCONF Facility</td>
<td>74000-74999</td>
</tr>
<tr>
<td>cli</td>
<td>Command Line Interface (CLI) Facility</td>
<td>30000-30999</td>
</tr>
<tr>
<td>connproxy</td>
<td>Connection Proxy Facility</td>
<td>190000-190999</td>
</tr>
<tr>
<td>crdt-ctl</td>
<td>Credit Control Facility</td>
<td>127000-127999</td>
</tr>
<tr>
<td>csf</td>
<td>Call Session Control Function (CSCF) Facility</td>
<td>105000-108924</td>
</tr>
<tr>
<td>cscfcpmgr</td>
<td>CSCF CP Manager Facility</td>
<td>197000-197999</td>
</tr>
<tr>
<td>cscfmr</td>
<td>CSCF FM Manager Facility</td>
<td>101000-101999</td>
</tr>
<tr>
<td>cscfnpdb</td>
<td>CSCF NPDB Facility</td>
<td>108925-108949</td>
</tr>
<tr>
<td>cscfrtcp</td>
<td>CSCF RTCP Facility</td>
<td>108976-108999</td>
</tr>
<tr>
<td>cscfrtp</td>
<td>CSCF RTP Facility</td>
<td>108950-108975</td>
</tr>
<tr>
<td>cscfttmgr</td>
<td>CSCF TT Manager Facility</td>
<td>163000-163499</td>
</tr>
<tr>
<td>csg</td>
<td>Closed Subscriber Groups (CSG) Facility</td>
<td>188000-188999</td>
</tr>
<tr>
<td>csg-acl</td>
<td>CSG Access Control List (ACL) Facility</td>
<td>189000-189999</td>
</tr>
<tr>
<td>csp</td>
<td>Card/Slot/Port (CSP) Facility</td>
<td>7000-7999</td>
</tr>
<tr>
<td>css</td>
<td>Content Steering Service (CSS) Facility [ESC]</td>
<td>77000-77499</td>
</tr>
<tr>
<td>css-sig</td>
<td>Content Service Selection (CSS) RADIUS Signaling Facility</td>
<td>77500-77599</td>
</tr>
<tr>
<td>cx-diameter</td>
<td>Cx Diameter Message Facility</td>
<td>92840-92849</td>
</tr>
<tr>
<td>dcardctrl</td>
<td>Daughter Card Controller Facility</td>
<td>62000-62999</td>
</tr>
<tr>
<td>dcardmgr</td>
<td>Daughter Card Manager Facility</td>
<td>57000-57999</td>
</tr>
<tr>
<td>demuxmgr</td>
<td>Demux Manager Facility</td>
<td>110000-110999</td>
</tr>
<tr>
<td>dgmbmgr</td>
<td>Diameter Gmb (DGMB) Application Manager Facility</td>
<td>126000-126999</td>
</tr>
<tr>
<td>dhcp</td>
<td>DHCP Facility</td>
<td>53000-53999</td>
</tr>
<tr>
<td>dhcpv6</td>
<td>DHCPv6 Protocol Facility</td>
<td>123000-123999</td>
</tr>
<tr>
<td>dhost</td>
<td>Distributed Host Manager Facility</td>
<td>83000-83999</td>
</tr>
<tr>
<td>diameter</td>
<td>Diameter Endpoint Facility</td>
<td>92000-92599</td>
</tr>
<tr>
<td>diibase</td>
<td>Diabase Message Facility</td>
<td>92800-92809</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>diameter-acct</td>
<td>Diameter Accounting Protocol Facility</td>
<td>112000-112999</td>
</tr>
<tr>
<td>diameter-auth</td>
<td>Diameter Authentication Protocol Facility</td>
<td>111000-111999</td>
</tr>
<tr>
<td>diameter-dns</td>
<td>Diameter DNS Subsystem Facility</td>
<td>92600-92699</td>
</tr>
<tr>
<td>diameter-ecs</td>
<td>ECS Diameter Signaling Facility</td>
<td>81990-81999</td>
</tr>
<tr>
<td>diameter-hdd</td>
<td>Diameter Horizontal Directional Drilling (HDD) Interface Facility</td>
<td>92700-92799</td>
</tr>
<tr>
<td>diameter-svc</td>
<td>Diameter Service Facility</td>
<td>121200-121999</td>
</tr>
<tr>
<td>diamproxy</td>
<td>Diameter Proxy Facility</td>
<td>119000-119999</td>
</tr>
<tr>
<td>dpath</td>
<td>Data Path for IPSec Facility</td>
<td>54000-54999</td>
</tr>
<tr>
<td>drvctrl</td>
<td>Driver Controller Facility</td>
<td>39000-39999</td>
</tr>
<tr>
<td>ds3mgr</td>
<td>DS3 and DS3/E Line Card Manager Facility (part of NPU Manager Controller Facility)</td>
<td>40000-40999</td>
</tr>
<tr>
<td>eap-diameter</td>
<td>Extensible Authentication Protocol (EAP) Diameter Facility</td>
<td>92870-92879</td>
</tr>
<tr>
<td>eap-ipsec</td>
<td>EAP IPSec Facility</td>
<td>118000-118999</td>
</tr>
<tr>
<td>ecs-css</td>
<td>ACS Session Manager (ACSMgr) Signalling Interface Facility</td>
<td>97000-97099</td>
</tr>
<tr>
<td>edr</td>
<td>Event Data Record (EDR) Facility</td>
<td>80000-80999</td>
</tr>
<tr>
<td>egtpc</td>
<td>eGTP-C Facility</td>
<td>141000-141999</td>
</tr>
<tr>
<td>egtpmgr</td>
<td>eGTP Manager Facility</td>
<td>143000-143999</td>
</tr>
<tr>
<td>egtpu</td>
<td>eGTP-U Facility</td>
<td>142000-142999</td>
</tr>
<tr>
<td>epdg</td>
<td>Evolved Packet Data Gateway (ePDG) Facility</td>
<td>178000-178999</td>
</tr>
<tr>
<td>evlog</td>
<td>Event Log Facility</td>
<td>2000-2999</td>
</tr>
<tr>
<td>famgr</td>
<td>Foreign Agent (FA) Manager Facility</td>
<td>33000-33999</td>
</tr>
<tr>
<td>firewall</td>
<td>Firewall Facility</td>
<td>96000-96999</td>
</tr>
<tr>
<td>fng</td>
<td>Femto Network Gateway (FNG) Facility</td>
<td>149000-149999</td>
</tr>
<tr>
<td>gbrmgr</td>
<td>Gb-Manager Facility</td>
<td>201900-202699</td>
</tr>
<tr>
<td>gcdr</td>
<td>GGSN-Charging Data Record (G-CDR) Facility</td>
<td>66000-66999</td>
</tr>
<tr>
<td>gmm</td>
<td>GPRS Mobility Management (GMM) Facility</td>
<td>88100-88299</td>
</tr>
<tr>
<td>gprs-app</td>
<td>General Packet Radio Service (GPRS) Application Facility</td>
<td>115100-115399</td>
</tr>
<tr>
<td>gprs-ns</td>
<td>GPRS-NS Protocol Facility</td>
<td>115000-115049</td>
</tr>
<tr>
<td>gq-rx-tx-diameter</td>
<td>Gq/Rx/Tx Diameter Messages Facility</td>
<td>92830-92839</td>
</tr>
<tr>
<td>gss-gcdr</td>
<td>GTPP Storage Server GCDR Facility</td>
<td>98000-98099</td>
</tr>
<tr>
<td>gtpc</td>
<td>GTPC Protocol Facility</td>
<td>47000-47999</td>
</tr>
<tr>
<td>gtpcmsg</td>
<td>GTPC Signaling Demultiplexer Manager Facility</td>
<td>46000-46999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>gtp</td>
<td>GTP-PRIME Protocol Facility</td>
<td>52000-52999</td>
</tr>
<tr>
<td>gtpu</td>
<td>GTPU Protocol Facility</td>
<td>45000-45999</td>
</tr>
<tr>
<td>gtpumgr</td>
<td>GTPU Manager Facility</td>
<td>157200-157999</td>
</tr>
<tr>
<td>gx-ty-diameter</td>
<td>Gx/Ty Diameter Messages Facility</td>
<td>92820-92829</td>
</tr>
<tr>
<td>gy-diameter</td>
<td>Gy Diameter Messages Facility</td>
<td>92810-92819</td>
</tr>
<tr>
<td>h248p</td>
<td>H.248 Protocol Facility</td>
<td>42000-42999</td>
</tr>
<tr>
<td>hamgr</td>
<td>Home Agent (HA) Manager Facility</td>
<td>34000-34999</td>
</tr>
<tr>
<td>hat</td>
<td>High Availability Task (HAT) Facility</td>
<td>3000-3999</td>
</tr>
<tr>
<td>hddctrl</td>
<td>Hard Disk (HD) Controller Facility</td>
<td>132000-132999</td>
</tr>
<tr>
<td>hddshare</td>
<td>HDD Share Facility</td>
<td>184000-184999</td>
</tr>
<tr>
<td>henb-gw</td>
<td>Home eNodeB-GW Facility</td>
<td>195000-195999</td>
</tr>
<tr>
<td>henbapp</td>
<td>Home eNodeB Application Facility</td>
<td>196000-196999</td>
</tr>
<tr>
<td>hengw demux</td>
<td>Home eNodeB-GW Demux Facility</td>
<td>194000-194999</td>
</tr>
<tr>
<td>hengw mgr</td>
<td>Home eNodeB-GW Manager Facility</td>
<td>193000-193999</td>
</tr>
<tr>
<td>hnb-gw</td>
<td>Home NodeB (HNB) Gateway Facility</td>
<td>151000-151999</td>
</tr>
<tr>
<td>hnbmgr</td>
<td>HNB Manager Facility</td>
<td>158000-158199</td>
</tr>
<tr>
<td>hss-peer-service</td>
<td>Home Subscriber Server (HSS) Facility [MME]</td>
<td>138000-138999</td>
</tr>
<tr>
<td>igmp</td>
<td>Internet Group Management Protocol (IGMP) Facility</td>
<td>113000-113999</td>
</tr>
<tr>
<td>ikev2</td>
<td>IKEv2 Facility</td>
<td>122000-122999</td>
</tr>
<tr>
<td>ims-authoriztn</td>
<td>IMS Authorization Service Library Facility</td>
<td>98100-98999</td>
</tr>
<tr>
<td>ims-sh</td>
<td>IMS SH Library Facility</td>
<td>124000-124999</td>
</tr>
<tr>
<td>imsimgr</td>
<td>International Mobile Subscriber Identity (IMSI) Manager Facility</td>
<td>114000-114999</td>
</tr>
<tr>
<td>imsue</td>
<td>IMS User Equipment (IMSUE) Facility</td>
<td>144000-145999</td>
</tr>
<tr>
<td>ip-arp</td>
<td>IP Address Resolution Protocol (ARP) Facility</td>
<td>19000-19999</td>
</tr>
<tr>
<td>ip-interface</td>
<td>IP Interface Facility</td>
<td>18000-18999</td>
</tr>
<tr>
<td>ip-route</td>
<td>IP Route Facility</td>
<td>20000-20999</td>
</tr>
<tr>
<td>ipms</td>
<td>Intelligent Packet Monitoring System (IPMS) Facility</td>
<td>134000-134999</td>
</tr>
<tr>
<td>ipne</td>
<td>IP Network Enabler (IPNE) Facility</td>
<td>192000-192999</td>
</tr>
<tr>
<td>ipsec</td>
<td>IPSec Protocol Facility</td>
<td>55000-56998</td>
</tr>
<tr>
<td>ipsg</td>
<td>IP Services Gateway (IPSG) Facility</td>
<td>128000-128999</td>
</tr>
<tr>
<td>ipsgmgr</td>
<td>IPSG Manager (IPSGMgr) Facility</td>
<td>99000-99999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>ipsp</td>
<td>IP Pool Sharing Protocol (IPSP) Facility</td>
<td>68000-68999</td>
</tr>
<tr>
<td>kvstore</td>
<td>Key/Value Store (KVSTORE) Facility</td>
<td>125000-125999</td>
</tr>
<tr>
<td>l2tp-control</td>
<td>L2TP Control PDU Protocol Facility</td>
<td>50000-50999</td>
</tr>
<tr>
<td>l2tp-data</td>
<td>L2TP Data PDU Protocol Facility</td>
<td>49000-49999</td>
</tr>
<tr>
<td>l2tpdemux</td>
<td>L2TP Demux Facility</td>
<td>63000-63999</td>
</tr>
<tr>
<td>l2tpmgr</td>
<td>L2TP Manager Facility</td>
<td>48000-48999</td>
</tr>
<tr>
<td>lagmgr</td>
<td>Link Aggregation Group (LAG) Manager Facility</td>
<td>179000-179999</td>
</tr>
<tr>
<td>ldap</td>
<td>Lightweight Directory Access Protocol (LDAP) Request Facility</td>
<td>160000-160499</td>
</tr>
<tr>
<td>li</td>
<td>Lawful Intercept (LI) Log Facility</td>
<td>69000-69999</td>
</tr>
<tr>
<td>linkmgr</td>
<td>Link Manager Facility</td>
<td>89500-89999</td>
</tr>
<tr>
<td>llc</td>
<td>Logical Link-Control (LLC) Layer Facility (GPRS)</td>
<td>115700-115799</td>
</tr>
<tr>
<td>local-policy</td>
<td>Local Policy Configuration Facility</td>
<td>161400-162399</td>
</tr>
<tr>
<td>m3ua</td>
<td>MTP Level 3 (M3UA) Protocol Facility [SIGTRAN]</td>
<td>87500-87699</td>
</tr>
<tr>
<td>magmgr</td>
<td>Mobile Access Gateway (MAG) Manager Facility</td>
<td>137500-137999</td>
</tr>
<tr>
<td>map</td>
<td>Mobile Application Part (MAP) Protocol Facility [SS7]</td>
<td>87100-87299</td>
</tr>
<tr>
<td>megadiammgr</td>
<td>MegaDiameter Manager Facility</td>
<td>121000-121199</td>
</tr>
<tr>
<td>mme-app</td>
<td>Mobility Management Entity (MME) Application Facility</td>
<td>147000-147999</td>
</tr>
<tr>
<td>mme-misc</td>
<td>MME Miscellaneous Facility</td>
<td>155800-156199</td>
</tr>
<tr>
<td>mmedemux</td>
<td>MME Demux Manager Facility</td>
<td>154000-154999</td>
</tr>
<tr>
<td>mmemgr</td>
<td>MME Manager Facility</td>
<td>137000-137499</td>
</tr>
<tr>
<td>mmgr</td>
<td>Master Manager (MMGR) Facility</td>
<td>86000-86399</td>
</tr>
<tr>
<td>mobile-ip</td>
<td>Mobile IP (MIP) Protocol Facility</td>
<td>26000-26999</td>
</tr>
<tr>
<td>mobile-ip-data</td>
<td>MIP Tunneled Data Facility</td>
<td>27000-27999</td>
</tr>
<tr>
<td>mobile-ipv6</td>
<td>Mobile IPv6 Facility</td>
<td>129000-129999</td>
</tr>
<tr>
<td>mpls</td>
<td>Multiprotocol Label Switching (MPLS) Facility</td>
<td>163500-163999</td>
</tr>
<tr>
<td>mseg-app</td>
<td>Mobile Services Edge Gateway (MSEG) Application Facility</td>
<td>172300-172999</td>
</tr>
<tr>
<td>mseg-gtpc</td>
<td>MSEG GTPC Application Facility</td>
<td>172000-172199</td>
</tr>
<tr>
<td>mseg-gtpu</td>
<td>MSEG GTPU Application Facility</td>
<td>172200-172299</td>
</tr>
<tr>
<td>msegmgr</td>
<td>MSEG Manager Facility</td>
<td>171000-171999</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>mtp2</td>
<td>Message Transfer Part 2 (MTP2) Service Facility [SS7]</td>
<td>116900-116999</td>
</tr>
<tr>
<td>mtp3</td>
<td>Message Transfer Part 3 (MTP3) Service Facility [SS7]</td>
<td>115600-115699</td>
</tr>
<tr>
<td>multicast-proxy</td>
<td>Multicast Proxy Facility</td>
<td>94000-94999</td>
</tr>
<tr>
<td>nas</td>
<td>Network Access Signaling (NAS) Facility</td>
<td>153000-153999</td>
</tr>
<tr>
<td>netwstrg</td>
<td>Network Storage Facility</td>
<td>78000-78999</td>
</tr>
<tr>
<td>npucrtl</td>
<td>Network Processing Unit (NPU) Control Facility</td>
<td>16000-16999</td>
</tr>
<tr>
<td>npudrv</td>
<td>NPU Driver Facility</td>
<td>191000-191999</td>
</tr>
<tr>
<td>npumgr</td>
<td>NPU Manager (NPUMGR) Facility</td>
<td>17000-17999</td>
</tr>
<tr>
<td>npumgr-acl</td>
<td>NPUMGR ACL Facility</td>
<td>169000-169999</td>
</tr>
<tr>
<td>npumgr-driv</td>
<td>NPUMGR Driver Facility</td>
<td>185000-185999</td>
</tr>
<tr>
<td>npumgr-flow</td>
<td>NPUMGR Flow Facility</td>
<td>167000-167999</td>
</tr>
<tr>
<td>npumgr-fwd</td>
<td>NPUMGR Forwarding Facility</td>
<td>168000-168999</td>
</tr>
<tr>
<td>npumgr-init</td>
<td>NPUMGR Initialization Facility</td>
<td>164000-164999</td>
</tr>
<tr>
<td>npumgr-lc</td>
<td>NPUMGR LC Facility</td>
<td>180000-180999</td>
</tr>
<tr>
<td>npumgr-port</td>
<td>NPUMGR Port Facility</td>
<td>166000-166999</td>
</tr>
<tr>
<td>npumgr-recovery</td>
<td>NPUMGR Recovery Facility</td>
<td>165000-165999</td>
</tr>
<tr>
<td>npumgr-vpn</td>
<td>NPUMGR VPN Facility</td>
<td>181000-181999</td>
</tr>
<tr>
<td>npusim</td>
<td>NPUSIM Facility</td>
<td>176000-176999</td>
</tr>
<tr>
<td>ntfy-intf</td>
<td>Event Notification Interface Facility</td>
<td>170000-170499</td>
</tr>
<tr>
<td>orbs</td>
<td>Object Request Broker (ORB) System Facility</td>
<td>15000-15999</td>
</tr>
<tr>
<td>ospf</td>
<td>Open Shortest Path First (OSPF) Protocol Facility</td>
<td>38000-38999</td>
</tr>
<tr>
<td>ospfv3</td>
<td>OSPFv3 Protocol Facility</td>
<td>150000-150999</td>
</tr>
<tr>
<td>p2p</td>
<td>Peer-to-Peer (P2P) Facility</td>
<td>146000-146999</td>
</tr>
<tr>
<td>pccmgr</td>
<td>Policy Charging and Control (PCC) Manager Facility</td>
<td>159000-159499</td>
</tr>
<tr>
<td>pdg</td>
<td>Packet Data Gateway (PDG) Facility</td>
<td>152010-152999</td>
</tr>
<tr>
<td>pdgdmgr</td>
<td>PDG TCP Demux Manager (pdgdmgr) Facility (this is a customer-specific facility)</td>
<td>162400-162999</td>
</tr>
<tr>
<td>pdif</td>
<td>Packet Data Interworking Function (PDIF) Facility</td>
<td>120000-120999</td>
</tr>
<tr>
<td>pgw</td>
<td>Packet Data Network Gateway (PGW) Facility</td>
<td>139000-139999</td>
</tr>
<tr>
<td>phs</td>
<td>Payload Header Suppression (PHS) Facility</td>
<td>177000-177999</td>
</tr>
<tr>
<td>phs-control</td>
<td>PHS X1/X5 and X2/X6 Interface Facility</td>
<td>136000-136899</td>
</tr>
<tr>
<td>phs-data</td>
<td>PHS Data Facility</td>
<td>136900-136979</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>phs-eapol</td>
<td>PHS EAP over LAN (EAPOL) Facility</td>
<td>136980-136999</td>
</tr>
<tr>
<td>phsgwmg</td>
<td>PHS Gateway Manager Facility</td>
<td>135000-135499</td>
</tr>
<tr>
<td>phspcmgr</td>
<td>PHS Paging Controller Manager Facility</td>
<td>135500-135999</td>
</tr>
<tr>
<td>pmm-app</td>
<td>Packet Mobility Management (PMM) Application Facility [SGSN]</td>
<td>89200-89499</td>
</tr>
<tr>
<td>ppp</td>
<td>Point-To-Point Protocol (PPP) Facility</td>
<td>25000-25999</td>
</tr>
<tr>
<td>pppoe</td>
<td>Point-to-Point Protocol over Ethernet (PPPoE) Facility</td>
<td>183000-183999</td>
</tr>
<tr>
<td>ptt</td>
<td>PTT Facility</td>
<td>76000-76999</td>
</tr>
<tr>
<td>push</td>
<td>PUSH (VPNMgr CDR Push) Facility</td>
<td>133000-133999</td>
</tr>
<tr>
<td>radius-acct</td>
<td>RADIUS Accounting Protocol Facility</td>
<td>24000-24999</td>
</tr>
<tr>
<td>radius-auth</td>
<td>RADIUS Authentication Protocol Facility</td>
<td>23000-23999</td>
</tr>
<tr>
<td>radius-coa</td>
<td>RADIUS Change of Authorization (CoA) and Disconnect Facility</td>
<td>70000-70999</td>
</tr>
<tr>
<td>ranap</td>
<td>Radio Access Network Application Part (RANAP) Facility</td>
<td>87700-87899</td>
</tr>
<tr>
<td>rct</td>
<td>Recovery Control Task (RCT) Facility</td>
<td>13000-13999</td>
</tr>
<tr>
<td>rdt</td>
<td>Redirector Task (RDT) Facility</td>
<td>67000-67999</td>
</tr>
<tr>
<td>resmgr</td>
<td>Resource Manager (RM) Facility</td>
<td>14000-14999</td>
</tr>
<tr>
<td>rf-diameter</td>
<td>Rf Diameter Messages Facility</td>
<td>92860-92869</td>
</tr>
<tr>
<td>rip</td>
<td>Routing Information Protocol (RIP) Facility</td>
<td>35000-35999</td>
</tr>
<tr>
<td>rohc</td>
<td>Robust Header Compression (ROHC) Protocol Facility</td>
<td>103000-103999</td>
</tr>
<tr>
<td>rsvp</td>
<td>RSVP Protocol Facility</td>
<td>93000-93999</td>
</tr>
<tr>
<td>rua</td>
<td>RANAP User Adaptation (RUA) Protocol Facility</td>
<td>152000-152009</td>
</tr>
<tr>
<td>s1ap</td>
<td>S1 Application Protocol (S1AP) Facility</td>
<td>155200-155799</td>
</tr>
<tr>
<td>saegw</td>
<td>System Architecture Evolution Gateway Facility</td>
<td>191000-191999</td>
</tr>
<tr>
<td>sct</td>
<td>Shared Configuration Task (SCT) Facility</td>
<td>32000-32099</td>
</tr>
<tr>
<td>sctp</td>
<td>Stream Control Transmission Protocol (SCTP) Protocol Facility</td>
<td>87300-87499</td>
</tr>
<tr>
<td>sess-gr</td>
<td>SESS-GR Facility</td>
<td>77600-77999</td>
</tr>
<tr>
<td>sessctrl</td>
<td>Session Controller Facility</td>
<td>8000-8999</td>
</tr>
<tr>
<td>sessmgr</td>
<td>Session Manager Facility</td>
<td>10000-12999</td>
</tr>
<tr>
<td>sesstrc</td>
<td>Session Trace Facility</td>
<td>155500-155199</td>
</tr>
<tr>
<td>sft</td>
<td>Switch Fabric Task (SFT) Facility</td>
<td>58000-58999</td>
</tr>
<tr>
<td>sgs</td>
<td>SGs Interface Protocol Facility</td>
<td>173000-173199</td>
</tr>
<tr>
<td>Facility</td>
<td>Description</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>sgsn-app</td>
<td>SGSN Application Interface Facility</td>
<td>115900-115999</td>
</tr>
<tr>
<td>sgsn-failures</td>
<td>SGSN Call Failures Facility</td>
<td>89100-89199</td>
</tr>
<tr>
<td>sgsn-gtpc</td>
<td>SGSN GTP-C Protocol Facility</td>
<td>116000-116599</td>
</tr>
<tr>
<td>sgsn-gtpu</td>
<td>SGSN GTP-U Protocol Facility</td>
<td>86900-87099</td>
</tr>
<tr>
<td>sgsn-mbms-bearer</td>
<td>SGSN MBMS Bearer Application (SMGR) Facility</td>
<td>116600-116799</td>
</tr>
<tr>
<td>sgsn-misc</td>
<td>SGSN Miscellaneous Facility</td>
<td>88800-89099</td>
</tr>
<tr>
<td>sgsn-system</td>
<td>SGSN System Components Facility</td>
<td>86400-86499</td>
</tr>
<tr>
<td>sgsn-test</td>
<td>SGSN Tests Facility</td>
<td>88700-88799</td>
</tr>
<tr>
<td>sgsn2</td>
<td>SGSN2 Facility</td>
<td>114000-117999</td>
</tr>
<tr>
<td>sgtpcmgr</td>
<td>SGSN GTP-C (SGTPC) Manager Facility</td>
<td>117000-117999</td>
</tr>
<tr>
<td>sgw</td>
<td>Serving Gateway (SGW) Facility</td>
<td>140000-140999</td>
</tr>
<tr>
<td>sh-diameter</td>
<td>Sh Diameter Messages Facility</td>
<td>92850-92859</td>
</tr>
<tr>
<td>sipcdprt</td>
<td>SIPCDPRT Facility</td>
<td>95000-95999</td>
</tr>
<tr>
<td>sitmain</td>
<td>System Initiation Task (SIT) Main Facility</td>
<td>4000-4999</td>
</tr>
<tr>
<td>sm-app</td>
<td>Short Message Service (SMS) Facility</td>
<td>88300-88499</td>
</tr>
<tr>
<td>sms</td>
<td>SMS Service Facility</td>
<td>116800-116899</td>
</tr>
<tr>
<td>sndcp</td>
<td>Sub Network Dependent Convergence Protocol (SNDCP) Facility</td>
<td>115800-115899</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol (SNMP) Facility</td>
<td>22000-22999</td>
</tr>
<tr>
<td>sprmgr</td>
<td>Subscriber Policy Register (SPR) Manager Facility</td>
<td>159500-159999</td>
</tr>
<tr>
<td>srdb</td>
<td>Static Rating Database Facility</td>
<td>102000-102999</td>
</tr>
<tr>
<td>srp</td>
<td>Service Redundancy Protocol (SRP) Facility</td>
<td>84000-84999</td>
</tr>
<tr>
<td>sscfnni</td>
<td>SSCFNNI Protocol Facility [ATM]</td>
<td>115500-115599</td>
</tr>
<tr>
<td>sscop</td>
<td>SSCOP Protocol Facility [ATM]</td>
<td>115400-115499</td>
</tr>
<tr>
<td>ssh-ipsecc</td>
<td>SSH IP Security Facility</td>
<td>56999-56999</td>
</tr>
<tr>
<td>ssl</td>
<td>SSL Facility (this is a customer-specific facility)</td>
<td>156200-157199</td>
</tr>
<tr>
<td>stat</td>
<td>Statistics Facility</td>
<td>31000-31999</td>
</tr>
<tr>
<td>system</td>
<td>System Facility</td>
<td>1000-1999</td>
</tr>
<tr>
<td>tacacs+</td>
<td>TACACS+ Protocol Facility</td>
<td>37000-37999</td>
</tr>
<tr>
<td>tacclp</td>
<td>TACLCP Facility</td>
<td>44000-44999</td>
</tr>
<tr>
<td>tcap</td>
<td>Transaction Capabilities Application Part (TCAP) Protocol Logging Facility</td>
<td>86500-86699</td>
</tr>
<tr>
<td>testctrl</td>
<td>Test Controller Facility</td>
<td>174000-174999</td>
</tr>
</tbody>
</table>
Event ID Overview

<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
<th>Event ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>testmgr</td>
<td>Test Manager Facility</td>
<td>175000-175999</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold Facility</td>
<td>61000-61999</td>
</tr>
<tr>
<td>ttg</td>
<td>Tunnel Termination Gateway (TTG) Facility</td>
<td>130000-130999</td>
</tr>
<tr>
<td>tucl</td>
<td>TCP/UDP Convergence Layer (TUCL) Facility [SS7]</td>
<td>88500-88699</td>
</tr>
<tr>
<td>udr</td>
<td>User Data Record (UDR) Facility</td>
<td>79000-79999</td>
</tr>
<tr>
<td>user-data</td>
<td>User-Data Facility</td>
<td>51000-51999</td>
</tr>
<tr>
<td>user-l3tunnel</td>
<td>User L3 Tunnel Facility</td>
<td>75000-75999</td>
</tr>
<tr>
<td>usertcp-stack</td>
<td>User TCP Stack Facility</td>
<td>173300-173499</td>
</tr>
<tr>
<td>vim</td>
<td>Voice Instant Message (VIM) Facility</td>
<td>60000, 60999</td>
</tr>
<tr>
<td>vinfo</td>
<td>VINFO Facility</td>
<td>82000, 82999</td>
</tr>
<tr>
<td>vmgctrl</td>
<td>Virtual Media Gateway (VMG) Controller Facility</td>
<td>41000, 41999</td>
</tr>
<tr>
<td>vmgctxmgr</td>
<td>VMG Context Manager Facility</td>
<td>43000, 43999</td>
</tr>
<tr>
<td>vpn</td>
<td>Virtual Private Network (VPN) Facility</td>
<td>5000-5999</td>
</tr>
<tr>
<td>wimax-data</td>
<td>WiMAX DATA Facility</td>
<td>104900-104999</td>
</tr>
<tr>
<td>wimax-r6</td>
<td>WiMAX R6 Protocol (Signaling) Facility</td>
<td>104000-104899</td>
</tr>
</tbody>
</table>

Event Severities

The system provides the flexibility to configure the level of information that is displayed when logging is enabled. The following levels are supported:

- **critical**: Logs only those events indicating a serious error has occurred that is causing the system or a system component to cease functioning. This is the highest severity level.
- **error**: Logs events that indicate an error has occurred that is causing the system or a system component to operate in a degraded state. This level also logs events with a higher severity level.
- **warning**: Logs events that may indicate a potential problem. This level also logs events with a higher severity level.
- **unusual**: Logs events that are very unusual and may need to be investigated. This level also logs events with a higher severity level.
- **info**: Logs informational events and events with a higher severity level.
- **trace**: Logs events useful for tracing and events with a higher severity level.
- **debug**: Logs all events regardless of the severity.

Each of the above levels correspond to the “severity” level of the event ID. Therefore, only those event IDs with a “severity” level equal to the logging level are displayed.
Understanding Event ID Information in Logged Output

This section explains the event information that is displayed when logging is enabled.

The following displays a sample output for an event that was logged.

2011-Dec-11+5:18:41.993 [cli 30005 info] [8/0/609 cli:8000609 _commands_cli.c:1290] [software internal system] CLI session ended for Security Administrator admin on device /dev/pts/2

The following table describes the elements of contained in the sample output.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-Dec-11+5:18:41.993</td>
<td>Date/Timestamp indicating when the event was generated</td>
</tr>
</tbody>
</table>
| [cli 30005 info] | Information about the event including:
 - The facility the event belongs to
 - The event ID
 - The event’s severity level
In this example, the event belongs to the CLI facility, has an ID of 3005, and a severity level of “info”. |
| [8/0/609 cli:8000609 _commands_cli.c:1290] | Information about the specific CLI instance. |
| [software internal system] | Indicates that the event was generated because of system operation. |
| CLI session ended for Security Administrator admin on device /dev/pts/2 | The event’s details. Event details may, or may not include variables that are specific to the occurrence of the event. |
Chapter 12
Troubleshooting

This chapter provides information and instructions for using the system command line interface (CLI) for troubleshooting any issues that may arise during system operation.

Refer to the *ASR 5500 Installation Guide* for comprehensive descriptions of the hardware components addressed by these troubleshooting procedures.

The following topics are included:

- Detecting Faulty Hardware
- Taking Corrective Action
- Verifying Network Connectivity
- Using the System Diagnostic Utilities
Detecting Faulty Hardware

When power is applied to the chassis, power is sequentially applied to the Management I/O (MIO) cards, Management I/O Universal (UMIO) cards, Data Processing Cards (DPCs), Data Processing Universal Cards (UDPCs), Fabric and Storage Cards (FSCs) and System Status Cards (SSCs).

Each PFU and card installed in the system incorporates light emitting diodes (LEDs) that indicate its operating status. This section describes how to use these status LEDs to verify that all of the installed components are functioning properly.

Important: As the system progresses through its boot process, some cards will not exhibit immediate LED activity. Allow several minutes to elapse after a reboot is initiates before checking the LEDs on the various cards to verify that the boot process has successfully completed.

Licensing Issues

The system boot process is governed by StarOS licenses. During the startup process, each card performs a series of Power-On Self Tests (POSTs) to ensure that the hardware is operational. These tests also verify that the card meets all license requirements to operate in this chassis.

Refer to *Chassis, UMIO and UDPC License Requirements* in the *ASR 5500 Installation Guide* for additional information on the effect licenses and card types have on the boot process.

Using the CLI to View Status LEDs

The status of application and line card LEDs can be viewed through the CLI by entering the `show leds all` command in Exec mode.

The following displays a sample of this command’s output.

```
Slot 01: Run/Fail: Green | Active: Off | Redundant: Green
Slot 02: Run/Fail: Green | Active: Off | Redundant: Green
Slot 03: Run/Fail: Green | Active: Off | Redundant: Green
Slot 05: Run/Fail: Green | Active: Green | Redundant: Green
     Master: Green
Slot 06: Run/Fail: Green | Active: Off | Redundant: Green
     Master: Off
Slot 08: Run/Fail: Green | Active: Off | Redundant: Green
Slot 11: Run/Fail: Green | Active: Green | Redundant: Green
     Status: Green | Service: Off
Slot 12: Run/Fail: Green | Active: Green | Redundant: Green
     Status: Green | Service: Off
Slot 13: Run/Fail: Green | Active: Green | Redundant: Green
Slot 14: Run/Fail: Green | Active: Green | Redundant: Green
Slot 15: Run/Fail: Green | Active: Green | Redundant: Green
Slot 16: Run/Fail: Green | Active: Green | Redundant: Green
Slot 17: Run/Fail: Green | Active: Green | Redundant: Green
```

The status of the two Power Filter Units (PFUs) can be viewed by entering the `show power chassis` command in the Exec mode.
Checking the LEDs on the PFU

Each PFU has four LEDs along the top edge of its front panel. You must unsnap the top front cover from the chassis to view these LEDs. Each LED is associated with one of the four -48 VDC power feeds connected to the PFU.

Each LED on the PFU should illuminate blue for normal operating conditions.

Figure 9. PFU LEDs

The possible states for these LEDs are described in the following table. If the LED is not blue, use the troubleshooting information below to diagnose the problem.

Table 13. PFU LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Power feed is supplying -48VDC to this power plane</td>
<td>None needed.</td>
</tr>
<tr>
<td>None</td>
<td>PFU is not receiving power to one or more of its power planes.</td>
<td>Verify that each circuit breaker is in the ON position. Verify that the RTN and -48VDC lugs are attached properly to the posts on the upper rear of the chassis. Verify that the ground lug is attached properly. Use a voltmeter to verify that the power distribution panel is supplying the correct voltage and sufficient current to the terminals at the rear of the PFU. Check the cables from the power source to the rack for continuity. If a power distribution panel (PDP) is installed between the power distribution frame (PDF) and the chassis, verify that its circuit breakers are set to ON. If a PDP is installed between the PDF and the chassis, check the cables from the PDP to the chassis for continuity. If all of the above suggestions have been verified, then it is likely that the PFU is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>
Checking the LEDs on the MIO and UMIO

Each MIO/UMIO is equipped with the following LEDs:

- Run/Fail
- Active
- Redundancy
- Master
- Busy

The possible states for all MIO/UMIO LEDs are described in the sections that follow.

MIO/UMIO Run/Fail LED States

The MIO/UMIO *Run/Fail* LED indicates the overall status of the card. This LED should be steady green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 14. MIO/UMIO Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software</td>
<td>This is normal operation during boot-up.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the system's command line interface during boot.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power</td>
<td>Verify that the LEDs on the PFUs are blue. If they are not, refer to Checking the LEDs on the PFU for troubleshooting information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the power source is supplying ample voltage and current to the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the card is properly installed per the instructions in the ASR 5500 Installation Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If all of the above suggestions have been verified, it is possible that the MIO is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

MIO/UMIO Active LED States

The *active* LED on the MIO/UMIO indicates that the software is loaded on the card and it is ready for operation. For the MIO installed in chassis slot 5, this LED should be green for normal operation. For the MIO installed in slot 6, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 15. Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active</td>
<td>None needed for the MIO/UMIO in slot 5. If green for the MIO/UMIO in slot 6, verify that the MIO/UMIO in slot 5 is installed and licensed properly according to the instructions in the ASR 5500 Installation Guide.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes being migrated from the active MIO to the standby MIO.</td>
<td>Refer to Monitoring the System for information on determining the status of the MIO/UMIO and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card has failed.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to MIO/UMIO Run/Fail LED States for troubleshooting information.</td>
</tr>
</tbody>
</table>
MIO/UMIO Redundancy LED States

The *Redundancy* LED on the MIO/UMIO indicates that software is loaded on the card, but it is serving as a redundant component. For the MIO/UMIO installed in slot 6, this LED should be green for normal operation. For the MIO/UMIO installed in slot 8, this LED should be off for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 16. MIO/UMIO Redundancy LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode</td>
<td>None needed. If green for the MIO/UMIOs in slot 5 and slot 6, the cards and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ports are fully backed up.</td>
</tr>
<tr>
<td>Amber</td>
<td>Card or port on this card is not backed up by</td>
<td>Check the status of the other MIO/UMIO. If it has failed or one or more of its</td>
</tr>
<tr>
<td></td>
<td>other MIO.</td>
<td>ports are no longer active, the system can continue to function but redundancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is compromised. Refer to Monitoring the System for information on determining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the status of the MIO/UMIO and system software processes.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Tasks or processes being migrated from the</td>
<td>Refer to Monitoring the System for information on determining the status of</td>
</tr>
<tr>
<td>Amber</td>
<td>active MIO to the standby MIO.</td>
<td>the MIO/UMIO and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and</td>
</tr>
<tr>
<td>OR</td>
<td>Card has failed.</td>
<td>POST results are positive. If it is off, refer to MIO/UMIO RunFail LED States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for troubleshooting information on.</td>
</tr>
</tbody>
</table>

MIO/UMIO Master LED States

The *Master* LED on the MIO/UMIO indicates whether the card is in Active or Standby mode.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information also provided to diagnose the problem.

Table 17. MIO/UMIO Master LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>This card is the Active MIO.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes being migrated from the active</td>
<td>Refer to Monitoring the System for information on determining the status of</td>
</tr>
<tr>
<td></td>
<td>MIO to the standby MIO.</td>
<td>the MIO/UMIO and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>This card is the Standby MIO.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and</td>
</tr>
<tr>
<td>OR</td>
<td>Card has failed.</td>
<td>POST results are positive. If it is off, refer to MIO/UMIO RunFail LED States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or troubleshooting information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Monitoring the System for information on determining the status of the MIO/UMIO and system software processes.</td>
</tr>
</tbody>
</table>
MIO/UMIO Busy LED States

The Busy LED on the MIO/UMIO indicates that the card is accessing the RAID solid state drives on the FSCs. This LED is off when no file storage activity is occurring. The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Files are being transferred to or accessed from the RAID configuration on the FSCs.</td>
<td>None required.</td>
</tr>
<tr>
<td>None</td>
<td>No RAID activity. OR RAID configuration is unavailable.</td>
<td>Checking the LEDs on the FSC</td>
</tr>
</tbody>
</table>

MIO/UMIO – Interface Link LED States

The Link LED associated with a 1000Base-T (management) or 10 Gigabit Ethernet port on an MIO/UMIO daughter card (subscriber traffic) indicates the status of the network link. This LED should be green for normal operation. The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Link is up</td>
<td>None needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: This LED will not indicate the presence of a network link until the interface parameters are set during the software configuration process.</td>
</tr>
<tr>
<td>None</td>
<td>No power to card. OR Link is down.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power. If it is off, refer to MIO/UMIO Run/Fail LED States for troubleshooting information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the interface is cabled properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the device on which the interface is located is cabled and powered properly.</td>
</tr>
</tbody>
</table>

MIO/UMIO – Interface Activity LED States

The Activity LED associated with a 1000Base-T (management) or 10 Gigabit Ethernet port on an MIO/UMIO daughter card (subscriber traffic) indicates the presence of traffic on the network link. This LED should be green when data is being transmitted or received over the interface.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 20. MIO/UMIO – Interface Activity LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing Green</td>
<td>Traffic is present on the link</td>
<td>None needed.</td>
</tr>
<tr>
<td>None</td>
<td>No traffic is present on the link</td>
<td>None needed if there is no activity on the link. Prior to interface configuration, this is normal operation.</td>
</tr>
</tbody>
</table>

Checking the LEDs on the DPC and UDPC

Each DPC/UDPC is equipped with status LEDs as listed below:

- Run/Fail
- Active
- Redundancy

DPC/UDPC Run/Fail LED States

The DPC/UDPC Run/Fail LED indicates the overall status of the card. This LED should be green for normal operation. The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 21. DPC/UDPC Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered up with no errors detected.</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software.</td>
<td>This is normal operation during boot-up.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered up with error(s) detected.</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the system's command line interface during boot.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power.</td>
<td>Verify that the LEDs on the PFUs are blue. If they are not, refer to Checking the LEDs on the PFU for troubleshooting information. Verify that the power source is supplying ample voltage and current to the chassis. Verify that the card is properly installed and licensed per the instructions in the ASR 5500 Installation Guide. If all of the above suggestions have been verified, it is possible that the DPC/UDPC is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

DPC/UDPC Active LED States

The Active LED on the DDPC/UDPC indicates that the software is loaded on the card and that the card is ready for operation. When the system first boots up, all installed DPC/UDPCs are booted into standby mode. The system must then be configured as to which DPC/UDPCs should serve as redundant components (remain in standby mode) and which should function as active components.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 22. DPC/UDPC Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The first time power is applied to the system, all of the DPC/UDPCs should be booted into the standby mode. Therefore, this LED should be off.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes are being migrated from an active DPC to a standby DPC.</td>
<td>Verify that the Redundancy LED on a standby DPC/UDPC is also blinking green. If so, there is an issue with the active DPC/UDPC and it is transferring its processes. Refer to Monitoring the System for information on determining the status of the DPC/UDPC and system software processes and functionality.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to DPC/UDPC Run/Fail LED States for troubleshooting information. Check the state of the Redundancy LED. If it is green, the card is in standby mode. This is normal operation for the initial power-up. If needed, refer to the Configuring DPC Availability section of System Settings for information on making the card active.</td>
</tr>
</tbody>
</table>
DPC/UDPC Redundancy LED States

The Redundancy LED on the DPC/UDPC indicates that software is loaded on the card, but it is serving as a standby component. DPC/UDPCs support n:1 redundancy; the Redundancy LED should be green on only one DPC/UDPC for normal system operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in standby mode.</td>
<td>None needed. There is at least one DPC/UDPC in Standby mode.</td>
</tr>
<tr>
<td>Amber</td>
<td>Card is not backed up by a standby DPC.</td>
<td>Check the status of the other DPC/UDPCs. If one DPC/UDPC has failed or has been removed from the chassis, the system can continue to function but redundancy is compromised. Refer to Monitoring the System for information on determining the status of the DPC/UDPC and system software processes.</td>
</tr>
<tr>
<td>Blinking Amber</td>
<td>Tasks or processes being migrated from an active DPC to the standby DPC.</td>
<td>Refer to Monitoring the System for information on determining the status of the DPC/UDPC and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card has failed.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to DPC/UDPC Run/Fail LED States for troubleshooting information.</td>
</tr>
</tbody>
</table>

Checking the LEDs on the FSC

Each FSC is equipped with the following LEDs as shown in the accompanying figure:

- Run/Fail
- Active
- Redundancy
- Drive 1 Activity
- Drive 2 Activity
The possible states for all FSC LEDs are described in the sections that follow.

FSC Run/Fail LED States

The FSC *Run/Fail* LED indicates the overall status of the card. This LED should be green for normal operation. The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software</td>
<td>This is normal operation during boot-up.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the system's command line interface during boot.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power</td>
<td>Verify that the LEDs on the PFUs are blue. If they are not, refer to Checking the LEDs on the PFU for troubleshooting information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the power source is supplying ample voltage and current to the chassis.</td>
</tr>
</tbody>
</table>
Troubleshooting ▀ ▄

Detecting Faulty Hardware

ASR 5500 System Administration Guide, StarOS Release 17

184

Verify that the card is properly installed per the instructions in the ASR 5500 Installation Guide.

If all of the above suggestions have been verified, it is possible that the FSC is not functional. Please contact your service representative.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The first time power is applied to the system, all of the FSCs should be booted into the ready mode. Therefore, this LED should be on.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes being migrated from an active FSC to a standby FSC.</td>
<td>Verify that the Redundancy LED on a standby FSC is also blinking green. If so, there is an issue with the active FSC and it is transferring its processes. Refer to Monitoring the System for information on determining the status of the FSC and system software processes and functionality.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to FSC Run/Fail LED States for troubleshooting information. Check the state of the Redundancy LED. If it is green, the card is in standby mode.</td>
</tr>
</tbody>
</table>

FSC Active LED States

The Active LED on the FSC indicates that the software is loaded on the card and that the card is ready for operation. When the system first boots up, all installed FSCs are booted into ready mode.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 25. FSC Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The first time power is applied to the system, all of the FSCs should be booted into the ready mode. Therefore, this LED should be on.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes being migrated from an active FSC to a standby FSC.</td>
<td>Verify that the Redundancy LED on a standby FSC is also blinking green. If so, there is an issue with the active FSC and it is transferring its processes. Refer to Monitoring the System for information on determining the status of the FSC and system software processes and functionality.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to FSC Run/Fail LED States for troubleshooting information. Check the state of the Redundancy LED. If it is green, the card is in standby mode.</td>
</tr>
</tbody>
</table>

FSC Redundancy LED States

The Redundancy LED on the FSC indicates that software is loaded on the card, but it is serving as a redundant component. FSC support n+1 redundancy; the Redundancy LED should be green on only one FSC for normal system operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Table 26. SC Redundancy LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in redundant mode</td>
<td>None needed. There is at least one FSC in Standby mode.</td>
</tr>
<tr>
<td>Amber</td>
<td>Card is not backed up by a standby FSC.</td>
<td>Check the status of the other FSCs. If one FSC has failed or has been removed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the chassis, the system can continue to function but redundancy is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compromised.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Monitoring the System for information on determining the status of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSC and system software processes.</td>
</tr>
<tr>
<td>Blinking Amber</td>
<td>Tasks or processes being migrated</td>
<td>Refer to Monitoring the System for information on determining the status of the</td>
</tr>
<tr>
<td></td>
<td>from an active FSC to the standby FSC.</td>
<td>FSC and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card has failed.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST results are positive. If it is off, refer to FSC Run/Fail LED States for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>troubleshooting information.</td>
</tr>
</tbody>
</table>

FSC Drive n Activity LED States

The Drive 1 Activity and Drive 2 Activity LEDs on the FSC indicate that the RAID solid state drives are being accessed by the MIO. Drive 1 and Drive 2 on each FSC form a RAID 0 configuration.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information also provided to diagnose the problem.

Table 27. FSC Drive n Activity LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Files are being transferred to or accessed from</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td>the RAID configuration by the MIO.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>There is no RAID activity. OR RAID configuration</td>
<td>Checking the LEDs on the MIO and UMIO</td>
</tr>
<tr>
<td></td>
<td>is unavailable.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST results are positive. If it is off, refer to FSC RunFail LED States for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>troubleshooting information.</td>
</tr>
</tbody>
</table>

Checking the LEDs on the SSC

Each SSC is equipped with the following LEDs as shown in the accompanying figure:

- Run/Fail
- Active
- Redundancy
- System Status
- System Service

![SSC Status LEDs](image)

The possible states for all SSC LEDs are described in the sections that follow.

SSC Run/Fail LED States

The SSC Run/Fail LED indicates the overall status of the card. This LED should be green for normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.
Troubleshooting

Detecting Faulty Hardware

Table 28. SSC Run/Fail LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card powered with no errors detected</td>
<td>None needed.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Card is initializing and/or loading software</td>
<td>This is normal operation during boot-up.</td>
</tr>
<tr>
<td>Red</td>
<td>Card powered with error(s) detected</td>
<td>Errors were detected during the Power On Self Tests (POSTs). It is likely that the errors were logged to the system's command line interface during boot.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power</td>
<td>Verify that the LEDs on the PFUs are blue. If they are not, refer to Checking the LEDs on the PFU for troubleshooting information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the power source is supplying ample voltage and current to the chassis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that the card is properly installed per the instructions in the ASR 5500 Installation Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If all of the above suggestions have been verified, it is possible that the SSC is not functional. Please contact your service representative.</td>
</tr>
</tbody>
</table>

SSC Active LED States

The *Active* LED on the SSC indicates that the software is loaded on the card and that the card is ready for operation. When the system first boots up, both SSCs are booted into ready mode.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 29. SSC Active LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is active.</td>
<td>The first time power is applied to the system, both SSCs should be booted into the ready mode. Therefore, this LED should be on.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Tasks or processes being migrated from an active FSC to a standby FSC.</td>
<td>Verify that the Redundancy LED on a Istanbul SSC is also blinking green. If so, there is an issue with the active SSC and it is transferring its processes. Refer to Monitoring the System for information on determining the status of the SSC and system software processes and functionality.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card is in Standby Mode.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to the SSC Run/Fail LED States section for troubleshooting information. Check the state of the Redundancy LED. If it is green, the card is in standby mode.</td>
</tr>
</tbody>
</table>
SSC Redundancy LED States

The Redundancy LED on the SSC indicates that software is loaded on the card, but it is serving as a standby component. SSC support 1:1 redundancy; the Redundancy LED should be green on the other SSC for normal system operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

Table 30. SSC Redundancy LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Card is in standby mode</td>
<td>None needed. The other SSC should be in Standby mode.</td>
</tr>
<tr>
<td>Amber</td>
<td>Card is not backed up by the standby SSC.</td>
<td>Check the status of the other SSC. If one it has failed or has been removed from the chassis, the system can continue to function but redundancy is compromised. Refer to Monitoring the System for information on determining the status of the SSC and system software processes.</td>
</tr>
<tr>
<td>Blinking Amber</td>
<td>Tasks or processes being migrated from the active SSC to the standby SSC.</td>
<td>Refer to Monitoring the System for information on determining the status of the SSC and system software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power. OR Card has failed.</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to the SSC Run/Fail LED States section for troubleshooting information.</td>
</tr>
</tbody>
</table>

SSC System Status LED States

The System Status LED on the SSC indicates that there is a loss of service somewhere in the system. If this LED is red, the system requires maintenance or service (for example, the system could not locate a a valid software image at boot-up, or a high temperature condition exists).

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information also provided to diagnose the problem.

Table 31. SSC System Status LED States

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>System is operating normally</td>
<td>None required.</td>
</tr>
<tr>
<td>Red</td>
<td>The system has experienced a loss of service.</td>
<td>Refer to Monitoring the System for information on determining the status of system hardware and software processes.</td>
</tr>
<tr>
<td>None</td>
<td>Card is not receiving power</td>
<td>Verify that the Run/Fail LED is green. If so, the card is receiving power and POST results are positive. If it is off, refer to the SSC Run/Fail LED States section for troubleshooting information.</td>
</tr>
</tbody>
</table>
SSC System Service LED States

The System Service LED on the SSC illuminates amber to indicate that the system has experienced a hardware component failure.

This LED is off during normal operation.

The possible states for this LED are described in the following table. If the LED is not green, use the troubleshooting information in the table to diagnose the problem.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>System requires maintenance (fan filter, temperature warning, PFU outage etc.).</td>
<td>Monitoring the System for <code>show</code> commands, the outputs of which will assist in further determining the problem. Refer to System Logs for information on how to view logs.</td>
</tr>
<tr>
<td>None</td>
<td>No component failures have been detected. OR Card is not receiving power.</td>
<td>No maintenance needed.</td>
</tr>
</tbody>
</table>

Testing System Alarm Outputs

The system provides the following two physical alarm mechanisms:

- **System Audible Alarm:** Located on the SSC, the speaker is used to provide an audible indicator that a minor, major, or critical alarm has occurred.

- **CO Alarms Interface:** Located on the SSC, this interface provides a DB-15 connector that enables three dry-contact relays (Form C) for the triggering of external audio and/or visual indicators. These indicators can be used to alert that either a minor, major, or critical alarm has occurred.

The operation of these alarms can be tested by issuing the following command:

```
test alarm { audible | central-office [ critical | major | minor ] }
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>audible</td>
<td>Tests the CO Alarm Speaker on the SSC to verify operation.</td>
</tr>
</tbody>
</table>
| central-office | Tests the CO Alarm Interface on the MIO to verify operation. Individual alarms can be tested by using one of the following keywords:
| | - **critical:** Specifies that the critical CO Alarms output is to be tested.
| | - **major:** Specifies that the major CO Alarms output is to be tested.
| | - **minor:** Specifies that the minor CO Alarms output is to be tested.
| | If no keyword is specified, all alarms are tested. |

When this command is executed, the specified alarm is activated for a period of 10 seconds. After this time, the alarm will return to its previous condition.
Taking Corrective Action

In the event that an issue was discovered with an installed application or line card, depending on the severity, it may be necessary to take corrective action.

The system provides several redundancy and fail-over mechanisms to address issues with application and line cards in order to minimize system downtime and data loss. These mechanisms are described in the sections that follow.

Switching MIO/UMIOs

When the system boots up, the MIO/UMIO installed in chassis slot 5 will boot into the Active mode and begin booting other system components. The MIO/UMIO installed in chassis slot 6 will automatically be booted into Standby mode dictating that it will serve as a redundant component. The active MIO/UMIO automatically synchronizes currently running tasks or processes with the standby MIO/UMIO.

In the event of a critical failure on the MIO/UMIO in slot 5, system control will be automatically switched to the standby MIO/UMIO in slot 6. This is a relatively seamless transition because the two are synchronized. The formerly active MIO will then enter the standby mode allowing it to be safely replaced or restored.

In the event that an issue arises that is not severe enough for the system to perform an automatic switchover, a manual switchover can be invoked by executing the following commands from the Exec mode prompt:

```
[local] host_name#
```

Step 1 Initiate a manual MIO/UMIO switch over by entering the following command:

```
   card switch from <5 or 6> to <6 or 5>
```

You will receive the following prompt:

```
Are You Sure? [Yes|No]:
```

Step 2 Press **Y** to start the switchover.

Step 3 Verify that the switchover was successful by entering the `show card table` command at the Exec mode prompt: Check the entry in the `Oper State` column next to the MIO just switched. Its state should be `Standby`.

Busying Out a DPC/UDPC

This `busy-out` command moves processes from the source DPC/UDPC to the destination DPC/UDPC, or disables the DPC/UDPC from accepting any new calls. When busy-out is enabled, the DPC/UDPC stops receiving new calls but continues to process calls until they are completed. The command prompt is returned once the command is initiated. The busy-out procedure is completed in background.

```
[local] host_name#
```

Step 1 Initiate a busy-out by entering the following command:

```
   card busy-out slot_number
```
Troubleshooting

You will receive the following prompt:

Are You Sure? [Yes|No]:

Step 2 Press Y to start the switchover.

Step 3 Verify that the busy-out was successful by entering the show card table command at the Exec mode prompt: Check the entry in the Oper State column next to the DPC/UDPC just busied-out. Its state should be Standby.

Migrating a DPC/UDPC

When the system boots up, all DPC/UDPCs enter the “standby” mode. The standby mode indicates that the card is available for use but is not configured for operation. Installed components can be made active through the software configuration process. Cards that are not configured to enter the “active” mode will remain in standby mode for use as redundant components.

In the event of the critical failure of a DPC/UDPC, tasks will be automatically be migrated from the active card to a redundant card in standby mode.

In the event that an issue arises that is not severe enough for the system to perform an automatic migration, a manual migration can be initiated. Follow the instructions below to manually initiate a DPC/UDPC migration. These instructions assume you are at the root prompt for the Exec mode:

[local]host_name#

Step 1 Initiate a DPC/UDPC migration by entering the following command:

card migration from original_slot# to final_slot#

You will receive the following prompt:

Are You Sure? [Yes|No]:

Step 2 Press Y to start the migration.

Step 3 Verify that the migration was successful by entering the show card table command at the Exec mode prompt. Check the entry in the Oper State column next to the packet processing card that was just migrated from. Its state should be Standby. The state of the packet processing card migrated to should be Active.

Halting Cards

Cards other than MIO/UMIOs that are in either the Active or Standby modes can be halted. Halting these cards places them into the “offline” mode. In this mode, the card is unusable for session processing as either an active or redundant component.

If a card in the active mode is halted, its tasks, processes, or network connections will be migrated or switched to a redundant component prior to entering the offline mode.

This section describes how to initiate a card halt and restore halted components.
Initiate a Card Halt

Important: Do not initiate a **card halt** for an active FSC if there are less than **two** active FSCs in the system. The system returns an error message if there are less than two active FSCs. There are similar restrictions when executing the **card reboot** or **card upgrade** commands on active FSCs. Refer to the **Command Line Interface Reference** for detailed information.

Follow the instructions below to manually initiate a card halt. These instructions assume you are at the root prompt for the Exec mode:

```
[local]host_name# 
```

Step 1
Initiate a manual card migration by entering the following command:

```
card halt slot# 
```

slot# is the chassis slot number in which the card to be halted is installed. It can be any integer from 1 through 4, and 7 through 18. You will receive the following prompt:

```
Are You Sure? [Yes|No]:  
```

Step 2
Press **Y** to initiate the halt operation.

Step 3
Verify that the migration was successful by entering the **show card table** command at the Exec mode prompt. Check the entry in the **Oper State** column next to the card that was just halted. Its state should be **Offline**. If the card was in active mode prior to the execution of this command, the state of the redundant component associated with it should now be **Active**.

Restore a Previously Halted Card

Follow the instructions below to restore a card that was previously halted. These instructions assume you are at the root prompt for the Exec mode:

```
[local]host_name# 
```

Step 1
Reboot the card to be restored by entering the following command.

```
card reboot slot# -force 
```

You will receive the following prompt:

```
Are You Sure? [Yes|No]:  
```

Step 2
Press **Y** to start the reboot of the card.

Step 3
Verify that the migration was successful by entering the **show card table** command at the prompt. Check the entry in the **Oper State** column next to the card that was just restored. Its state should be the state of that it was in before it was halted.
Verifying Network Connectivity

There are multiple commands supported by the system to verify and/or troubleshoot network connectivity. Note that network connectivity can only be tested once system interfaces and ports have been configured and bound.

The commands specified in this section should be issued on a context-by-context basis. Contexts act like virtual private networks (VPNs) that operate independently of other contexts. Ports, interfaces, and routes configured in one context cannot be tested from another context without additional configuration.

To switch between contexts enter the following command at the root prompt for the Exec mode:

```
context context_name
```

`context_name` is the name of the context to which you wish to switch. The following prompt appears:

```
[context_name]host_name#`

Using the ping or ping6 Command

The ping or ping6 command verifies the system’s ability to communicate with a remote node in the network by passing data packets between and measuring the response. This command is useful in verifying network routing and if a remote node is able to respond at the IP layer.

Syntax

The ping command has the following syntax:

```
ping host_ipv4_address [count num_packets] [flood] [pattern packet_pattern]
[size octet_count] [src { src_host_name | src_host_ipv4_address }]
[vrf vrf_nam]
```

```
ping6 host_ipv6_address [count num_packets] [flood] [pattern packet_pattern]
[size octet_count] [src { src_host_name | src_host_ipv6_address }]
[vrf vrf_nam]
```

For complete information on the above commands, see the Exec Mode Commands chapter of the Command Line Interface Reference.

The following displays a sample of a successful `ping` (IPv4) response.

```
PING 192.168.250.1 (192.168.250.1): 56 data bytes
64 bytes from 192.168.250.1: icmp_seq=0 ttl=255 time=0.4 ms
64 bytes from 192.168.250.1: icmp_seq=1 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=2 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=3 ttl=255 time=0.2 ms
64 bytes from 192.168.250.1: icmp_seq=4 ttl=255 time=0.2 ms
--- 192.168.250.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.4 ms
```
Troubleshooting

If no response is received from the target follow these troubleshooting procedures:

- Verify that the correct IP address was entered.
- Attempt to ping a different device on the same network. If the ping was successful then it is likely that your system configuration is correct. Verify that the device you are attempting to ping is powered and functioning properly.
- Verify the port is operational.
- Verify that the configuration of the ports and interfaces within the context are correct.
- If the configuration is correct and you have access to the device that you’re attempting to ping, ping the system from that device.
- If there is still no response, it is likely that the packets are getting discarded by a network device. Use the traceroute or traceroute6 and show ip static-route commands discussed in this chapter to further troubleshoot the issue.

Using the traceroute or traceroute6 Command

The traceroute or traceroute6 command collects information on the route data will take to a specified host. This is a useful troubleshooting command that can be used to identify the source of significant packet delays or packet loss on the network. This command can also be used to identify bottle necks in the routing of data over the network.

traceroute – IPv4

The traceroute command has the following syntax:

```
traceroute { host_name | host_ipv4_address } [count packets] [df]
[maxttl max_ttl] [minttl min_ttl] [port port_number] [size octet_count]
[src { src_host_name | src_host_ipv4_address }] [timeout seconds]
[vrf vrf_name]
```

For complete information on the above command, see the Exec Mode Commands chapter of the Command Line Interface Reference.

The following displays a sample output.

```
traceroute to 192.168.250.1 (192.168.250.1), 30 hops max, 40 byte packets
1 192.168.250.1 (192.168.250.1) 0.446 ms 0.235 ms 0.178 ms
```

traceroute6 – IPv6

The traceroute6 command has the following syntax:

```
traceroute6 { host_name | host_ipv6_address } [count packets] [maxttl max_ttl]
[port port_number] [size octet_count] [src { src_host_name | src_host_ipv6_address }] [timeout seconds] [vrf vrf_name]
```

For complete information on the above commands, see the Exec Mode Commands chapter of the Command Line Interface Reference.
The following displays a sample output.

```
traceroute6 to 2001:4A2B::1f3F (2001:4A2B::1f3F), 30 hops max, 40 byte packets
1 2001:4A2B::1f3F (2001:4A2B::1f3F) 0.446 ms 0.235 ms 0.178 ms
```

**Viewing IP Routes**

The system provides a mechanism for viewing route information to a specific node or for an entire context. This information can be used to verify network connectivity and to ensure the efficiency of the network connection. The command has the following syntax:

```
show ip route [route_ip_address]
show ipv6 route [route_ipv6_address]
```

For complete information on the above commands, see the *Exec Mode show Commands* chapter of the *Command Line Interface Reference*.

If no keywords are specified, all IP routes within the context’s routing table are displayed.

The following displays a sample of this command’s output showing a context IPv4 routing table.

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>*0.0.0.0/0</td>
<td>10.0.4.1</td>
<td>static</td>
<td>0</td>
<td>0</td>
<td>SPI01</td>
</tr>
<tr>
<td>*10.0.4.0/24</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SPI01</td>
</tr>
<tr>
<td>*10.0.4.0/32</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SPI01</td>
</tr>
<tr>
<td>*10.0.4.3/32</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SPI01</td>
</tr>
<tr>
<td>*10.0.4.255/32</td>
<td>0.0.0.0</td>
<td>kernel</td>
<td>0</td>
<td>0</td>
<td>SPI01</td>
</tr>
</tbody>
</table>
```

**Viewing the Address Resolution Protocol Table**

The system provides a mechanism for viewing Address Resolution Protocol (ARP) table information to a specific node or for an entire context. This information can be used to verify that when the system sends an ARP packet, it receives valid responses from other network nodes. The command has the following syntax:

```
show ip arp [arp_ip_address]
```

*arp_ip_address* specifies a specific network node for which to display ARP information. The address can be entered in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation. If this keyword is not specified, all entries within the context’s ARP table are displayed.

---

**Important:** Restarting the VPN Manager removes all interfaces from the kernel which in turn removes all ARP entries. However, the NPU still retains all of the ARP entries so that there is no traffic disruption. From a user point of view, *show ip arp* is broken since this command gathers information from the kernel and not the NPU.
The following displays a sample of this command’s output showing a context’s ARP table.

Flags codes:
C - Completed, M - Permanent, P - Published, ! - Not answered
T - has requested trailers

<table>
<thead>
<tr>
<th>Address</th>
<th>Link Type</th>
<th>Link Address</th>
<th>Flags</th>
<th>Mask Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.4.240</td>
<td>ether</td>
<td>00:05:47:02:20:20</td>
<td>C</td>
<td>MIO1</td>
</tr>
<tr>
<td>10.0.4.7</td>
<td>ether</td>
<td>00:05:47:03:36</td>
<td>C</td>
<td>MIO1</td>
</tr>
<tr>
<td>10.0.4.1</td>
<td>ether</td>
<td>00:01:30:F2:7F:00</td>
<td>C</td>
<td>MIO1</td>
</tr>
</tbody>
</table>
Using the System Diagnostic Utilities

The system provides protocol monitor and test utilities that are useful when troubleshooting or verifying configurations. The information generated by these utilities can help identify the root cause of a software or network configuration issue.

This section describes how to use these utilities.

Important: Only an administrator with Operator or higher privilege can run the diagnostic utilities described in this section.

Using the Monitor Utility

For troubleshooting purposes, the system provides a protocol monitoring utility. This tool displays protocol information for a particular subscriber session or for every session being processed.

Caution: The monitor tool may cause session processing delays and/or data loss. Therefore, it should be used only when troubleshooting.

Using the Protocol Monitor

The protocol monitor displays information for every session that is currently being processed. Depending on the number of protocols monitored, and the number of sessions in progress, a significant amount of data is generated. It is highly recommended that logging be enabled on your terminal client in order to capture all of the information that is generated.

Follow the instructions below to invoke and configure the protocol monitoring tool.

Step 1
Invoke the protocol monitor from the Exec mode by entering the `monitor protocol` command.
An output listing all the currently available protocols, each with an assigned number, is displayed.

Step 2
Choose the protocol that you wish to monitor by entering the associated number at the `Select:` prompt. A right arrow (>) appears next to the protocol you selected.

Step 3
Repeat step 2 as needed to choose multiple protocols.

Step 4
Press B to begin the protocol monitor.

WARNING!!! You have selected options that can DISRUPT USER SERVICE
Existing CALLS MAY BE DROPPED and/or new CALLS MAY FAIL!!!
(Under heavy call load, some debugging output may not be displayed)
Proceed? - Select (Y)es or (N)o
Step 5  Enter Y to proceed with the monitor or N to go back to the previous menu.

C - Control Events (ON)
D - Data Events  (ON)
E - EventID Info  (ON)
H - Display ethernet (ON)
I - Inbound Events (ON)
O - Outbound Events (ON)
S - Sender Info  (OFF)
T - Timestamps (ON)
X - PDU Hexdump  (OFF)
A - PDU Hex/Ascii  (OFF)
+/ Verbosity Level (1)
L - Limit Context (OFF)
M - Match Newcalls (ON)
R - RADIUS Dict  (no-override)
G - GTPP Dict  (no-override)
Y - Multi-Call Trace  (OFF))
(Q)uit,  <ESC> Prev Menu,  <SPACE> Pause,  <ENTER> Re-Display Options

Step 6  Configure the amount of information that is displayed by the monitor. To enable or disable options, enter the letter associated with that option (C, D, E, etc.). To increase or decrease the verbosity, use the plus ( + ) or minus ( - ) keys. The current state, ON (enabled) or OFF (disabled), is shown to the right of each option.

Step 7  Press the Enter key to refresh the screen and begin monitoring.

The monitor remains active until disabled. To quit the protocol monitor and return to the prompt, press q.

Using the Protocol Monitor for a Specific Subscriber

The protocol monitor can be used to display information for a specific subscriber session that is currently being processed. Depending on the number of protocols monitored, and the number of sessions in progress, a significant amount of data is generated. It is highly recommended that logging be enabled on your terminal client in order to capture all of the information that is generated.

Follow the instructions in this section to invoke and configure the protocol monitoring tool for a specific subscriber session.

Step 1  To invoke the session-specific protocol monitor from the Exec mode enter the monitor subscriber command.

```
monitor subscriber { callid | imei | imsi | ipaddr | ipv6addr | msid | msisdn | next-call | pcf | peer-fa | peer-lac | sgsn-address | type | username }
```

Step 2  Specify the method the monitor should use by entering the appropriate keyword.

Step 3  Select other options and/or enter the appropriate information for the selected keyword.

If no session matching the specified criteria was being processed when the monitor was invoked, a screen of available monitoring options appears.

Step 4  Configure the amount of information that is displayed by the monitor. To enable or disable options, enter the letter or 2-digit number associated with that option (C, D, E, 11, 12, etc.). To increase or decrease the verbosity, use the plus ( + ) or minus ( - ) keys.
The current state, ON (enabled) or OFF (disabled), is shown to the right of each option.

**Important:** Option Y for performing multi-call traces is only supported for use with the GGSN.

**Step 5**  
Repeat step 6 as needed to enable or disable multiple protocols.

**Step 6**  
Press Enter to refresh the screen and begin monitoring.

The following displays a portion of a sample of the monitor’s output for a subscriber named user2@aaa. The default protocols were monitored.

```
Incoming Call:
MSID: 0000012345 Callid: 002dc6c2
Username: user2@aaa SessionType: unknown
Status: Active Service Name: xxx1
Src Context: source Dest Context:

<<<<OUTBOUND 10:02:35:415 Eventid:25001(0)
PPP Tx PDU (9)
PAP 9: Auth-Ack(1), Msg=

<<<<OUTBOUND 10:02:35:416 Eventid:25001(0)
PPP Tx PDU (14)
IPCP 14: Conf-Req(1), IP-Addr=192.168.250.70

<<<<OUTBOUND 10:02:35:416 Eventid:25001(0)
PPP Tx PDU (27)
CCP 27: Conf-Req(1), MPPC, Stac-LZS, Deflate, MVRCA

INBOUND>>>>> 10:02:35:517 Eventid:25000(0)
PPP Rx PDU (30)
IPCP 30: Conf-Req(1), IP-Comp VJ-Comp, IP-Addr=0.0.0.0, Pri-DNS=0.0.0.0, Sec-DNS=0.0.0.0

<<<<OUTBOUND 10:02:35:517 Eventid:25001(0)
PPP Tx PDU (26)
IPCP 26: Conf-Rej(1), IP-Comp VJ-Comp, Pri-DNS=0.0.0.0, Sec-DNS=0.0.0.0

INBOUND>>>>> 10:02:35:517 Eventid:25000(0)
PPP Rx PDU (12)
IPCP 12: Conf-Ack(1), IP-Addr=192.168.250.70

INBOUND>>>>> 10:02:35:518 Eventid:25000(0)
PPP Rx PDU (31)
LCP 31: Prot-Rej(1), Rejected-Protocol=CCP (0x80fd)

INBOUND>>>>> 10:02:35:518 Eventid:25000(0)
PPP Rx PDU (12)
IPCP 12: Conf-Req(2), IP-Addr=0.0.0.0
```
Using the System Diagnostic Utilities

Using the DHCP Testing Tool

The CLI provides a mechanism for testing network connectivity with and configuration of DHCP servers. This functionality can help determine the accuracy of the system’s DHCP configuration and the server’s response time. This tool provides a mechanism for obtaining an IP address for one or more DHCP servers with which the system communicates.

**Important:** This tool must be executed from the context in which the DHCP server(s) are configured.

To execute the DHCP test tool enter the following command within the appropriate context:

```
dhcp test dhcp-service { service_name } [all | server ip_addr]
```

For complete information on the above command, see the *Exec Mode Commands* chapter of the *Command Line Interface Reference*. 

The monitor remains active until disabled. To quit the protocol monitor and return to the prompt, press `q`. 
Chapter 13
System Recovery

This chapter describes how to recover a system after it has failed to complete a reboot following a power off cycle or interruption of the normal boot sequence following a reload command.

This chapter includes the following sections:

- Prerequisites
- Accessing the boot CLI
- Booting from a Selected Image

⚠️ Caution: This system recovery process interrupts subscriber service by dropping any existing flows and preventing traffic from being processed during the boot interval. It should only be initiated as an emergency measure.
Prerequisites

Successful recovery from a failed reboot requires that you have access to the system via a console port, and have an uncorrupted copy of the StarOS boot image file stored in flash memory on the management card, or accessible from an external memory device.

Console Access

The boot recovery sequence can only be executed via a terminal connected to the serial console port on the active management card. This connection can be through a terminal server that is accessible via a LAN interface.

The boot recovery sequence can only be viewed via the Console port.

Boot Image

The boot recovery command line interface allows you to specify from which boot image you would like to boot the system. If the system failed to reload following a software update, you can initiate a boot from a previously stored image.

The system recovery procedure will prompt you to enter the path name for the location of the StarOS boot image from which the system will boot. By default the boot command will timeout and attempt to reload the highest priority image from flash memory using the default configuration file.

The operating system software is delivered as a single binary file (.bin file extension) and is loaded as a single instance for the entire system.

- For StarOS releases prior to 16.1, the image filename is identified by its release version and corresponding build number. Format = production.build_number.platform.bin.
- For StarOS release 16.1 onwards, the image filename is identified by its platform type and release number. Format = platform-release_number.bin.

Refer to the Configuring the Boot Stack section in the Software Management Operations chapter for additional information on boot stack entries and prioritization.
Accessing the boot CLI

To access the boot CLI you must interrupt an in-progress reload (reboot) sequence.

⚠️ **Caution:** This system recovery process interrupts subscriber service by dropping any existing flows and preventing traffic from being processed during the boot interval. It should only be initiated as an emergency measure.

Initiate a Reboot

A reload can be initiated in one of two ways:

- Power cycle the chassis – Turn the circuit breakers on the power filter units (PFUs) Off (0) and then On (1).
- Execute a `reload` command

```
[local]host_name# reload -noconfirm
```

The boot sequence displays messages on the terminal as it steps through its processes.

Interrupt the Boot Sequence

When the “Booting priority” message line appears (and not before), press CTRL+C to break out of the boot process as shown in the example below:

```
Booting priority 8
 image : /flash/image_filename.bin
 config: /flash/system.cfg
 Entry at 0x000000000cba45e0

Press CTRL+C at this point in the sequence.
```

A message similar to the following appears after the boot process has been interrupted:

```
*******9/0 Ctrl-C Pressed--
Failed.
 aborted by user
8/0:boot>
```

Enter CLI Mode

With the boot prompt displayed, enter `cli` to access the boot recovery CLI. The CLI prompt changes as shown below:

```
8/0:boot>cli
8/0:cli>
```
boot Command Syntax

The boot recovery command has the following syntax:

```
boot [-show | -priority=* | -config=* | -noconfig] { bootfile_URL }
```

The options for this command include:

- `-show`: displays the current boot configuration
- `-priority=*`: selects the desired boot stack priority (*)
- `-config=*`: enters the desired configuration filename (*), if not the default file
- `-noconfig`: boots using no configuration file

`bootfile_URL` is the URL for the location of the StarOS boot image file. It specifies the path and file name of the StarOS .bin file from which the system will be booted.

The URL may refer to a local file (flash) or an external file on a memory device attached to the management card. The URL must be entered in the following format:

```
{ /flash | /pcmcia1 or usb1 / filename
```
Booting from a Selected Image

You will issue a `boot` command via the boot CLI to initiate the system recovery process.

Boot Using No Configuration File

This procedure boots the system using the specified boot image without also loading a configuration file. A sample command string appears below:

```
8/0:cli>boot -noconfig /flash/image_filename.bin
```

The boot sequence ends with a prompt to enter the Quick Setup Wizard for creating a configuration file.

```
Launching StarOS
Starting program at 0x0000000000100000
Starent Networks ASR5x00 Intelligent Mobile Gateway
management_card is starting up..........................
Starting software image_version_number...
No configuration found, press enter to continue.
1. Do you wish to continue with the Quick Setup Wizard[yes/no]:
```

You can exit the Quick Setup Wizard by entering `no` in response to the above prompt. Load a desired configuration file using the Exec mode `configure` command followed by the URL for the configuration file as shown in the example below:

```
[local]host_name# configure /flash/system.cfg
```

Boot Using A Specified Configuration File

This procedure boots the system using the specified boot image and configuration file. A sample command string appears below:

```
8/0:cli>boot -config=/flash/system.cfg /flash/image_filename.bin
```

The boot sequence ends with the appearance of the CLI prompt.

```
[local]host_name#
```

Confirm that the desired configuration has loaded by running the Exec mode `show configuration` command.
Chapter 14
Access Control Lists

This chapter describes system support for access control lists and explains how they are configured. The product administration guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model before using the procedures described below.

**Important:** You do not require a license to configure ACLs. However, the number of ACLs configured may impact performance significantly.

This chapter contains the following sections:

- Understanding ACLs
- Configuring ACLs on the System
- Applying IP ACLs

**Important:** Not all commands and keywords/variables may be available. Availability depends on the platform type.
Overview

IP access lists, commonly known as access control lists (ACLs), control the flow of packets into and out of the system. They are configured on a per-context basis and consist of “rules” (ACL rules) or filters that control the action taken on packets that match the filter criteria. Once configured, an ACL can be applied to any of the following:

- An individual interface
- All traffic facilitated by a context (known as a policy ACL)
- An individual subscriber
- All subscriber sessions facilitated by a specific context

Separate ACLs may be created for IPv4 and IPv6 access routes.
Understanding ACLs

This section discusses the two main aspects to ACLs on the system:

- Rule(s)
- Rule Order

**Important**: Refer to *ACL Configuration Mode Commands* and the *IPv6 ACL Configuration Mode Commands* chapter in the *Command Line Interface Reference* for the full command syntax.

**Rule(s)**

A single ACL consists of one or more ACL rules. Each rule is a filter configured to take a specific action when packets matching specific criteria. Up to 128 rules can be configured per ACL.

**Important**: Configured ACLs consisting of no rules imply a “deny any” rule. The *deny* action and *any* criteria are discussed later in this section. This is the default behavior for an empty ACL.

Each rule specifies the action to take when a packet matches the specified criteria. This section discusses the rule actions and criteria supported by the system.

**Actions**

ACLs specify that one of the following actions can be taken on a packet that matches the specified criteria:

- **Permit**: The packet is accepted and processed.
- **Deny**: The packet is rejected.
- **Redirect**: The packet is forwarded to the specified next-hop address through a specific system interface or to the specified context for processing.

**Important**: Redirect rules are ignored for ACLs applied to specific subscribers or all subscribers facilitated by a specific context, or APN for UMTS subscribers.

**Criteria**

Each ACL consists of one or more rules specifying the criteria that packets will be compared against. The following criteria are supported:

- **Any**: Filters all packets
- **Host**: Filters packets based on the source host IP address
- **ICMP**: Filters Internet Control Message Protocol (ICMP) packets
- **IP**: Filters Internet Protocol (IP) packets
- **Source IP Address**: Filter packets based on one or more source IP addresses
• **TCP**: Filters Transport Control Protocol (TCP) packets
• **UDP**: Filters User Datagram Protocol (UDP) packets

Each of the above criteria are described in detail in the sections that follow.

---

**Important**: The following sections contain basic ACL rule syntax information. Refer to the *ACL Configuration Mode Commands* and *IPv6 ACL Configuration Mode Commands* chapters in the *Command Line Interface Reference* for the full command syntax.

- **Any**: The rule applies to all packets.
- **Host**: The rule applies to a specific host as determined by its IP address.
- **ICMP**: The rule applies to specific Internet Control Message Protocol (ICMP) packets, Types, or Codes. ICMP type and code definitions can be found at [www.iana.org](http://www.iana.org) (RFC 3232).
- **IP**: The rule applies to specific Internet Protocol (IP) packets or fragments.
- **IP Packet Size Identification Algorithm**: The rule applies to specific Internet Protocol (IP) packets identification for fragmentation during forwarding.
  
  This configuration is related to the “IP Identification field” assignment algorithm used by the system, when subscriber packets are being encapsulated (such as Mobile IP and other tunneling encapsulation). Within the system, subscriber packet encapsulation is done in a distributed way and a 16-bit IP identification space is divided and distributed to each entity which does the encapsulation, so that unique IP identification value can be assigned for IP headers during encapsulation.

  Since this distributed IP Identification space is small, a non-zero unique identification will be assigned only for those packets which may potentially be fragmented during forwarding (since the IP identification field is only used for reassembly of the fragmented packet). The total size of the IP packet is used to determine the possibility of that packet getting fragmented.

- **Source IP Address**: The rule applies to specific packets originating from a specific source address or a group of source addresses.
- **TCP**: The rule applies to any Transport Control Protocol (TCP) traffic and could be filtered on any combination of source/destination IP addresses, a specific port number, or a group of port numbers. TCP port numbers definitions can be found at [www.iana.org](http://www.iana.org)

- **UDP**: The rule applies to any User Datagram Protocol (UDP) traffic and could be filtered on any combination of source/destination IP addresses, a specific port number, or a group of port numbers. UDP port numbers definitions can be found at [www.iana.org](http://www.iana.org).

---

**Rule Order**

A single ACL can consist of multiple rules. Each packet is compared against each of the ACL rules, in the order in which they were entered, until a match is found. Once a match is identified, all subsequent rules are ignored.

Additional rules can be added to an existing ACL and properly ordered using either of the following options:

- **Before**
- **After**

Using these placement options requires the specification of an existing rule in the ACL and the configuration of the new rule as demonstrated by the following flow:

```
[before | after] { existing_rule }
```
Configuring ACLs on the System

This section describes how to configure ACLs.

Important: This section provides the minimum instruction set for configuring access control list on the system. For more information on commands that configure additional parameters and options, refer to the ACL Configuration Mode Commands and IPv6 ACL Configuration Mode Commands chapters in the Command Line Interface Reference.

To configure the system to provide an access control list facility to subscribers:

Step 1 Create the access control list by following the example configuration in Creating ACLs.

Step 2 Specify the rules and criteria for action in the ACL list by following the example configuration in Configuring Action and Criteria for Subscriber Traffic.

Step 3 Optional. The system provides an “undefined” ACL that acts as a default filter for all packets into the context. The default action is to “permit all”. Modify the default configuration for “unidentified” ACLs for by following the example configuration in Configuring an Undefined ACL.

Step 4 Verify your ACL configuration by following the steps in Verifying the ACL Configuration.

Step 5 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode save configuration command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Creating ACLs

To create an ACL, enter the following command sequence from the Exec mode of the system CLI:

```
classroom
context acl_ctxt_name [-noconfirm]
 (ip | ipv6) access-list acl_list_name
 end
```

Notes:

- The maximum number of ACLs that can be configured per context is limited by the amount of available memory in the VPN Manager software task. Typically, the maximum is less than 200.
Configuring Action and Criteria for Subscriber Traffic

To create rules to deny/permit the subscriber traffic and apply the rules after or before action, enter the following command sequence from the Exec mode of the system CLI:

```
configure

context acl_ctxt_name [-noconfirm]

(ip | ipv6) access-list acl_list_name

deny { ip_address | any | host | icmp | ip | log | tcp | udp }

permit { ip_address | any | host | icmp | ip | log | tcp | udp }

after { deny | permit | readdress | redirect }

before { deny | permit | readdress | redirect }

deny { ip_address | any | host | icmp | ip | log | tcp | udp }

permit { ip_address | any | host | icmp | ip | log | tcp | udp }

after { deny | permit | readdress | redirect }

before { deny | permit | readdress | redirect }

deny { ip_address | any | host | icmp | ip | log | tcp | udp }

permit { ip_address | any | host | icmp | ip | log | tcp | udp }

after { deny | permit | readdress | redirect }

before { deny | permit | readdress | redirect }

access-list undefined { deny-all | permit-all }

end
```

Notes:

⚠️ **Caution:** The system does not apply a “deny any” rule, unless it is specified in the ACL. This behavior can be changed by adding a “deny any” rule at the end of the ACL.

- The maximum number of rules that can be configured per ACL varies depending on how the ACL is to be used. For more information, refer to the *Engineering Rules* chapter.
- Use the information provided in the *Actions* and *Criteria* to configure the rules that comprise the ACL. For more information, refer to the *ACL Configuration Mode Commands* and *IPv6 ACL Configuration Mode Commands* chapters in the *Command Line Interface Reference*.

Configuring an Undefined ACL

As discussed previously the system uses an “undefined” ACL mechanism for filtering the packet(s) in the event that an ACL that has been applied is not present. This scenario is likely the result of a mis-configuration such as the ACL name being mis-typed during the configuration process.

For these scenarios, the system provides an “undefined” ACL that acts as a default filter for all packets into the context. The default action is to “permit all”.

To modify the default behavior for unidentified ACLs, use the following configuration:

```
configure

context acl_ctxt_name [-noconfirm]

access-list undefined { deny-all | permit-all }

end
```
Notes:

- Context name is the name of the context containing the “undefined” ACL to be modified. For more information, refer to the Context Configuration Mode Commands chapter in the Command Line Interface Reference.

Verifying the ACL Configuration

To verify the ACL configuration, enter the Exec mode `show { ip | ipv6 } access-list` command.

The following is a sample output of this command. In this example, an ACL named `acl_1` was configured.

```
 ip access list acl_1
 deny host 10.2.3.4
 deny ip any host 10.2.3.4
 permit any 10.2.4.4

1 ip access-lists are configured.
```
Applying IP ACLs

Once an ACL is configured, it must be applied to take effect.

**Important:** All ACLs should be configured and verified according to the instructions in the Configuring ACLs on the System prior to beginning these procedures. The procedures described below also assume that the subscribers have been previously configured.

As discussed earlier, you can apply an ACL to any of the following:

- Applying an ACL to an Individual Interface
- Applying an ACL to All Traffic Within a Context (known as a policy ACL)
- Applying an ACL to an Individual Subscriber
- Applying a Single ACL to Multiple Subscribers
- Applying a Single ACL to Multiple Subscribers via APNs (for 3GPP subscribers only)

**Important:** ACLs must be configured in the same context in which the subscribers and/or interfaces to which they are to be applied. Similarly, ACLs to be applied to a context must be configured in that context.

If ACLs are applied at multiple levels within a single context (such as an ACL is applied to an interface within the context and another ACL is applied to the entire context), they will be processed as shown in the following figure and table.
Table 33. ACL Processing Order Descriptions

Packet coming from the mobile node to the packet data network (left to right)

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An inbound ACL configured for the receiving interface in the Source Context is applied to the tunneled data (such as the outer IP header). The packet is then forwarded to the Destination Context.</td>
</tr>
<tr>
<td>2</td>
<td>An inbound ACL configured for the subscriber (either the specific subscriber or for any subscriber facilitated by the context) is applied.</td>
</tr>
<tr>
<td>3</td>
<td>A context ACL (policy ACL) configured in the Destination Context is applied prior to forwarding.</td>
</tr>
<tr>
<td>4</td>
<td>An outbound ACL configured on the interface in the Destination Context through which the packet is being forwarded, is applied.</td>
</tr>
</tbody>
</table>

Packet coming from the packet data network to the mobile node (right to left)

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An inbound ACL configured for the receiving interface configured in the Destination Context is applied.</td>
</tr>
<tr>
<td>2</td>
<td>An outbound ACL configured for the subscriber (either the specific subscriber or for any subscriber facilitated by the context) is applied. The packet is then forwarded to the Source Context.</td>
</tr>
<tr>
<td>3</td>
<td>A context ACL (policy ACL) configured in the Source Context is applied prior to forwarding.</td>
</tr>
<tr>
<td>4</td>
<td>An outbound ACL configured on the interface in the Source Context through which the packet is being forwarded, is applied to the tunneled data (such as the outer IP header).</td>
</tr>
</tbody>
</table>

In the event that an IP ACL is applied that has not been configured (for example, the name of the applied ACL was configured incorrectly), the system uses an “undefined” ACL mechanism for filtering the packet(s).

This section provides information and instructions for applying ACLs and for configuring an “undefined” ACL.
Applying an ACL to an Individual Interface

This section provides information and instructions for applying one or more ACLs to an individual interface configured on the system.

Important: This section provides the minimum instruction set for applying the ACL list to an interface on the system. For more information on commands that configure additional parameters and options, refer to the Ethernet Interface Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide ACL facility to subscribers:

**Step 1** Apply the configured access control list by following the example configuration in Applying the ACL to an Interface.

**Step 2** Verify that ACL is applied properly on interface by following the steps in Verifying the ACL Configuration on an Interface.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Applying the ACL to an Interface

To apply the ACL to an interface, use the following configuration:

```
configure

 context acl_ctxt_name [-noconfirm]

 interface interface_name

 { ip | ipv6 } access-group acl_list_name { in | out } [preference]

end
```

Notes:

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.
Verifying the ACL Configuration on an Interface

This section describes how to verify the ACL configuration.

Step 1 In the Exec Mode, enter the following command:

```
show configuration context context_name
```

`context_name` is the name of the context containing the interface to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
 context context_name
 ip access-list acl_name
 deny host ip_address
 deny ip any host ip_address
 exit
 ip access-group access_group_name
 service-redundancy-protocol
 exit
 interface interface_name
 ip address ip_address/mask
 exit
 subscriber default
 exit
 aaa group default
 exit
 gtp group default
end
```

Applying an ACL to All Traffic Within a Context

This section provides information and instructions for applying one or more ACLs to a context configured within a specific context on the system. The applied ACLs, known as policy ACLs, contain rules that apply to all traffic facilitated by the context.

**Important:** This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the `Context Configuration Mode Commands` chapter in the `Command Line Interface Reference`.

To configure the system to provide access control list facility to subscribers:

**Step 1** Apply the configured ACL as described in Applying the ACL to a Context.

**Step 2** Verify that ACL is applied properly on interface as described in Verifying the ACL Configuration in a Context.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the `Verifying and Saving Your Configuration` chapter.
Applying the ACL to a Context

To apply the ACLs to a context, use the following configuration:

```
configure

context acl_ctxt_name [-noconfirm]

{ ip | ipv6 } access-group acl_list_name [in | out] [preference]

end
```

Notes:
- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- The context-level ACL is applied to outgoing packets. This applies to incoming packets also if the flow match criteria fails and forwarded again.
  The `in` and `out` keywords are deprecated and are only present for backward compatibility.

Context ACL will be applied in the following cases:
- Outgoing packets to an external source.
- Incoming packets that fail flow match and are forwarded again. In this case, the context ACL applies first and only if it passes are packets forwarded.
  During forwarding, if an ACL rule is added with a destination address as a loopback address, the context ACL is also applied. This is because StarOS handles packets destined to the kernel by going through a forwarding lookup for them. To apply ACL rules to incoming packets, the interface ACL must be used instead of the context ACL.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration in a Context

To verify the ACL configuration:

**Step 1**  
Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.
Applying IP ACLs

configure
context context_name
  ip access-list acl_name
    deny host ip_address
    deny ip any host ip_address
  exit
  ip access-group access_group_name
  service-redundancy-protocol
  exit
interface interface_name
  ip address ip_address/mask
  exit
subscriber default
  exit
aaa group default
  exit
gtp group default
end

Applying an ACL to a RADIUS-based Subscriber

IP ACLs are applied to subscribers via attributes in their profile. The subscriber profile could be configured locally on the system or remotely on a RADIUS server.

To apply an ACL to a RADIUS-based subscriber, use the Filter-Id attribute.

For more details on this attribute, if you are using StarOS 12.3 or an earlier release, refer to the AAA and GTPP Interface Administration and Reference. If you are using StarOS 14.0 or a later release, refer to the AAA Interface Administration and Reference.

This section provides information and instructions for applying an ACL to an individual subscriber whose profile is configured locally on the system.

**Important:** This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the Subscriber Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

**Step 1** Apply the configured access control list by following the example configuration in Applying an ACL to an Individual Subscriber.

**Step 2** Verify that ACL is applied properly on interface by following the steps in Verifying the ACL Configuration to an Individual Subscriber.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.
Applying an ACL to an Individual Subscriber

To apply the ACL to an individual subscriber, use the following configuration:

```
configure

context acl_ctxt_name [-noconfirm]

subscriber name subs_name

{ ip | ipv6 } access-group acl_list_name [in | out]

end
```

Notes:
- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- If neither the `in` nor the `out` keyword is specified, the ACL will be applied to all inbound and outbound packets.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration to an Individual Subscriber

These instructions are used to verify the ACL configuration.

**Step 1** Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context containing the subscriber `subs1` to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure

context context_name
ip access-list acl_name
 deny host ip_address
 deny ip any host ip_address
 exit
ip access-group access_group_name
service-redundancy-protocol
 exit
interface interface
 ip address ip_address/mask
 exit
subscriber default
 exit
subscriber name subscriber_name
 ip access-group access_group_name in
```
Applying a Single ACL to Multiple Subscribers

As mentioned in the previous section, IP ACLs are applied to subscribers via attributes in their profile. The subscriber profile could be configured locally on the system or remotely on a RADIUS server.

The system provides for the configuration of subscriber functions that serve as default values when specific attributes are not contained in the individual subscriber’s profile. The following table describes these functions.

**Table 34. Functions Used to Provide “Default” Subscriber Attributes**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| Subscriber named *default* | Within each context, the system creates a subscriber called *default*. The profile for the subscriber named *default* provides a configuration template of attribute values for subscribers authenticated in that context.  
Any subscriber attributes that are not included in a RADIUS-based subscriber profile is configured according to the values for those attributes as defined for the subscriber named *default*.  
**NOTE:** The profile for the subscriber named *default* is not used to provide missing information for subscribers configured locally. |
| **default subscriber** | This command in the PDSN, FA, and HA service Configuration modes specifies a profile from a subscriber named something other than *default* to use a configuration template of attribute values for subscribers authenticated in that context.  
This command allows multiple services to draw “default” subscriber information from multiple profiles. |

When configured properly, the functions described in the table above could be used to apply an ACL to:

- All subscribers facilitated within a specific context by applying the ACL to the profile of the subscriber named *default*.
- All subscribers facilitated by specific services by applying the ACL to a subscriber profile and then using the **default subscriber** command to configure the service to use that subscriber as the “default” profile.
Applying an ACL to the Subscriber Named default

This section provides information and instructions for applying an ACL to the subscriber named default.

**Important:** This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to *Subscriber Configuration Mode Commands* in the *Command Line Interface Reference*.

To configure the system to provide access control list facility to subscribers:

**Step 1** Apply the configured access control list by following the example configuration in Applying an ACL to the Subscriber Named default.

**Step 2** Verify that ACL is applied properly on interface by following the steps in Applying an ACL to the Subscriber Named default.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the *Verifying and Saving Your Configuration* chapter.

### Applying an ACL to the Subscriber Named default

To apply the ACL to the subscriber named default, use the following configuration:

```
configure

 context acl_ctxt_name [-noconfirm]

 subscriber name subs_name

 { ip | ipv6 } access-group acl_list_name [in | out]

end
```

**Notes:**

- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- If neither the `in` nor the `out` keyword is specified, the ACL will be applied to all inbound and outbound packets.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

### Verifying the ACL Configuration to the Subscriber Named default

These instructions are used to verify the ACL configuration.

**Step 1** Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context containing the subscriber default to which the ACL(s) was/were applied.
The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
 context context_name
 ip access-list acl_name
 deny host ip_address
 deny ip any host ip_address
 exit
 ip access-group access_group_name
 service-redundancy-protocol
 exit
 interface interface
 ip address ip_address/mask
 exit
 subscriber name default
 ip access-group access_group_name in
 ip access-group access_group_name out
 exit
 aaa group default
 exit
 gtp-group default
 exit
 content-filtering server-group cfsg_name
 response-timeout response_timeout
 connection retry-timeout retry_timeout
end
```

### Applying an ACL to Service-specified Default Subscriber

This section provides information and instructions for applying an ACL to the subscriber to be used as the “default” profile by various system services.

**Important:** This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the Subscriber Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

#### Step 1
Apply the configured access control list by following the example configuration in Applying an ACL to Service-specified Default Subscriber.

#### Step 2
Verify that the ACL is applied properly on interface by following the steps in Verifying the ACL Configuration to Service-specified Default Subscriber.

#### Step 3
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.
Applying an ACL to Service-specified Default Subscriber

To apply the ACL to a service-specified Default subscriber, use the following configuration:

```
configure
 context acl_ctxt_name [-noconfirm]
 { psdn-service | fa-service | ha-service } service_name
 default subscriber svc_default_subs_name
 exit

subscriber name svc_default_subs_name
 { ip | ipv6 } access-group acl_list_name [in | out]
end
```

Notes:
- The context name is the name of the ACL context containing the interface to which the ACL is to be applied.
- If neither the in nor the out keyword is specified, the ACL will be applied to all inbound and outbound packets.
- The ACL to be applied must be configured in the context specified by this command.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Verifying the ACL Configuration to Service-specified Default Subscriber

To verify the ACL configuration.

**Step 1** Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context containing the service with the default subscriber to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
 context context_name
 ip access-list acl_name
 deny host ip_address
 deny ip any host ip_address
 exit
 ip access-group access_group_name
 interface interface
 ip address ip_address/mask
 exit
 subscriber default
 exit
```
Applying an ACL to Multiple Subscriber via APNs

If IP ACLs are applied to subscribers via attributes in their profile, the subscriber profile could be configured locally on the system or remotely on a RADIUS server.

To reduce configuration time, ACLs can alternatively be applied to APN templates for GGSN subscribers. When configured, any subscriber packets facilitated by the APN template would then have the associated ACL applied.

This section provides information and instructions for applying an ACL to an APN template.

**Important:** This section provides the minimum instruction set for applying the ACL list to all traffic within a context. For more information on commands that configure additional parameters and options, refer to the Subscriber Configuration Mode Commands chapter in the Command Line Interface Reference.

To configure the system to provide access control list facility to subscribers:

**Step 1** Apply the configured access control list by following the example configuration in Applying an ACL to Multiple Subscriber via APNs.

**Step 2** Verify that ACL is applied properly on interface by following the steps in Verifying the ACL Configuration to APNs.

**Step 3** Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode `save configuration` command. For additional information refer to the Verifying and Saving Your Configuration chapter.

Applying an ACL to Multiple Subscriber via APNs

To apply the ACL to multiple subscribers via APN, use the following configuration:

```file
subscriber name subscriber_name
 ip access-group access_group_name in
 ip access-group access_group_name out
exit
psdn-service service_name
 default subscriber subscriber_name
end
```

Notes:

- The ACL to be applied must be in the destination context of the APN (which can be different from the context where the APN is configured).
- If neither the `in` nor the `out` keyword is specified, the ACL will be applied to all inbound and outbound packets.
- Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.
Verifying the ACL Configuration to APNs

To verify the ACL configuration:

**Step 1** Verify that your ACL lists were applied properly by entering the following command in Exec Mode:

```
show configuration context context_name
```

`context_name` is the name of the context containing the APN `apn1` having `default` subscriber to which the ACL(s) was/were applied.

The output of this command displays the configuration of the entire context. Examine the output for the commands pertaining to interface configuration. The commands display the ACL(s) applied using this procedure.

```
configure
 context context_name
 ip access-list acl_name
 deny host ip_address
 deny ip any host ip_address
 exit
 ip access-group access_group_name
 interface interface
 ip address ip_address/mask
 exit
 subscriber default
 exit
 apn apn_name
 ip access-group access_group_name in
 ip access-group access_group_name out
 end
```
Chapter 15
Congestion Control

This chapter describes the Congestion Control feature. It covers the following topics:

- Overview
- Configuring Congestion Control
Overview

Congestion Control monitors the system for conditions that could potentially degrade performance when the system is under heavy load. Typically, these conditions are temporary (for example, high CPU or memory utilization) and are quickly resolved. However, continuous or large numbers of these conditions within a specific time interval may impact the system’s ability to service subscriber sessions. Congestion control helps identify such conditions and invokes policies for addressing the situation.

Congestion control operation is based on configuring the following:

- **Congestion Condition Thresholds**: Thresholds dictate the conditions for which congestion control is enabled and establishes limits for defining the state of the system (congested or clear). These thresholds function in a way similar to operation thresholds that are configured for the system as described in the *Thresholding Configuration Guide*. The primary difference is that when congestion thresholds are reached, a service congestion policy and an SNMP trap (starCongestion) are generated.

  A threshold tolerance dictates the percentage under the configured threshold that must be reached in order for the condition to be cleared. An SNMP trap, starCongestionClear, is then triggered.

- **Port Utilization Thresholds**: If you set a port utilization threshold, when the average utilization of all ports in the system reaches the specified threshold, congestion control is enabled.

- **Port-specific Thresholds**: If you set port-specific thresholds, when any individual port-specific threshold is reached, congestion control is enabled system-wide.

- **Service Congestion Policies**: Congestion policies are configurable for each service. These policies dictate how services respond when the system detects that a congestion condition threshold has been crossed.

---

**Important**: This section provides the minimum instruction set for configuring congestion control. Commands that configure additional interface or port properties are provided in *Subscriber Configuration Mode* in the *Command Line Interface Reference*. Always refer to the Administration Guides for all of the licensed products running on this platform for additional configuration information with respect to congestion control. Congestion control functionality varies based on product and StarOS version.

For the MME three levels of congestion control thresholds are supported – critical, major and minor. By default only the critical threshold is supported for other products. SNMP traps also support major and minor congestion control thresholds. A set of *congestion-action-profile* commands allows an operator to establish additional actions to be taken for specific thresholds and threshold levels.
Configuring Congestion Control

To configure Congestion Control functionality:

Step 1  Configure congestion control thresholds as described in Configuring the Congestion Control Threshold.
Step 2  Configure service congestion policies as described in Configuring Service Congestion Policies.
Step 3  Enable redirect overload policies as described in Enabling Congestion Control Redirect Overload Policy.
Step 4  Configure disconnecting subscribers based on call or inactivity time as described in Disconnecting Subscribers Based on Call or Inactivity Time.
Step 5  Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Configuring the Congestion Control Threshold

To configure congestion control threshold, apply the following example configuration in the Global Configuration mode of the CLI:

```
configure

congestion-control threshold max-sessions-per-service-utilization percent
congestion-control threshold tolerance percent

end
```

Notes:

- There are numerous threshold parameters. See Global Configuration Mode Commands in the Command Line Interface Reference for more information.
- The tolerance is the percentage under a configured threshold that dictates the point at which the condition is cleared.
- Multiple levels of congestion thresholds – critical, major and minor – are supported for various types of congestion control thresholds. If a threshold level is not specified, the default is critical. Currently, major and minor thresholds are only supported for the MME. The congestion-action-profile command under lte-policy defines the action to be taken when thresholds are exceeded. See Global Configuration Mode Commands, LTE Policy Configuration Mode Commands and Congestion Action Profile Configuration Mode Commands in the Command Line Interface Reference for more information.
- Repeat this configuration as needed for additional thresholds.
Configuring Service Congestion Policies

To create a congestion control policy, apply the following example configuration in the Global Configuration mode of the CLI:

```plaintext
configure

congestion-control policy service action { drop | none | redirect | reject }

end
```

Notes:
- When the redirect action occurs for PDSN services, the PDSN responds to the PCF with a reply code of 136, “unknown PDSN address” along with the IP address of an alternate PDSN.
- `redirect` is not available for PDIF. The default action for PDIF is “none.”
- When the redirect action occurs for HA services, the system responds to the FA with a reply code of 136, “unknown home agent address”.
- `redirect` cannot be used in conjunction with GGSN services.
- `redirect` is not available for the Local Mobility Anchor (LMA) service.
- When setting the action to `reject`, the reply code is 130, “insufficient resources”.
- For the GGSN, the reply code is 199, “no resources available”.
- For the SaMOG, MME, `redirect` is not available.
- For the MME, create action profiles for optional major and minor thresholds using the `congestion-action-profile` command under `lte-policy` in the Global Configuration mode.
- For the MME, you can specify `service` as `critical`, `major` or `minor` to set a policy and associate an action-profile for the respective threshold. See `Global Configuration Mode Commands` in the `Command Line Interface Reference` for more information.

Configuring Overload Reporting on the MME

When an overload condition is detected on an MME and the report-overload keyword is enabled in the `congestion-control policy` command, the system reports the condition to a specified percentage of eNodeBs and proceeds to take the configured action on incoming sessions. To create a congestion control policy with overload reporting, apply the following example configuration:

```plaintext
configure

congestion-control policy mme-service action report-overload reject-new-sessions enodeb-percentage percentage

end
```

Notes:
- Other overload actions include `permit-emergency-sessions` and `reject-non-emergency-sessions`.
Enabling Congestion Control Redirect Overload Policy

To create a congestion control policy and configure a redirect overload policy for the service, apply the following example configuration:

```
Important: Redirect is not available on PDIF or MME for this release.

configure
 congestion-control
 context context_name
 {service_configuration_mode}
 policy overload redirect address
 end
```

Notes:
- **Optional**: If the congestion control policy action was configured to redirect, then a redirect overload policy must be configured for the service(s) that are affected.
- There are several service configuration modes that you can configure. See the Command Line Interface Reference for a complete list of modes.
- You can set various options for redirection. See the Command Line Interface Reference for more information.
- Repeat this configuration example to configure overload policies for additional services configured in the same context.

Verify the Service Overload Policies

To verify that the service overload policies were properly configured enter the following command in the Exec Mode:

```
show service_type name service_name
```

This command lists the entire service configuration. Verify that the information displayed for the “Overload Policy” is accurate. Repeat this configuration example to configure additional services in other contexts.

Verify the Congestion Control Configuration

To verify Congestion Control Configuration enter the `show congestion-control configuration` command in the Exec Mode.

The following output is a concise listing of all threshold and policy configurations showing multi-level Critical, Major and Minor threshold parameters:
Congestion-control: enabled

Congestion-control Critical threshold parameters

- system cpu utilization: 80%
- service control cpu utilization: 80%
- system memory utilization: 80%
- message queue utilization: 80%
- message queue wait time: 10 seconds
- port rx utilization: 80%
- port tx utilization: 80%
- license utilization: 100%
- max-session-per-service utilization: 100%
- tolerance limit: 10%

Congestion-control Major threshold parameters

- system cpu utilization: 0%
- service control cpu utilization: 0%
- system memory utilization: 0%
- message queue utilization: 0%
- message queue wait time: 0 seconds
- port rx utilization: 0%
- port tx utilization: 0%
- license utilization: 0%
- max-session-per-service utilization: 0%
- tolerance limit: 0%

Congestion-control Minor threshold parameters

- system cpu utilization: 0%
- service control cpu utilization: 0%
- system memory utilization: 0%
- message queue utilization: 0%
- message queue wait time: 0 seconds
- port rx utilization: 0%
- port tx utilization: 0%
- license utilization: 0%
- max-session-per-service utilization: 0%
- tolerance limit: 0%

Overload-disconnect: disabled

Overload-disconnect threshold parameters

- license utilization: 80%
- max-session-per-service utilization: 80%
- tolerance: 10%
- session disconnect percent: 5%
The primary threshold to observe is license utilization. This threshold is defaulted to 80%. Overload controls on the system enables the Congestion-control Policy when the system has only 80% of the licenses used. The overload condition will not clear until the utilization drops below the tolerance limit setting. The tolerance limit is defaulted to 10%. If the system goes into overload due to license utilization (threshold at 80%), the overload condition will not clear until the license utilization reaches 70%.

The system may go into overload if threshold settings are set too low and congestion control is enabled. You will need to review all threshold values and become familiar with the settings.

Since the recommendation for license utilization overload threshold is 100%, you should enable a license threshold alarm at 80%. An alarm is then triggered when the license utilization hits 80%. When the congestion-control policy setting is set to drop, the system drops incoming packets containing new session requests.

**Important:** For additional information on configuring the alarm threshold, refer to the *Threshold Configuration Guide.*
Verify MME Congestion Action Profiles

To verify MME multilevel congestion action profiles, run the following Exec mode command:

```
show lte-policy congestion-action-profile { name profile_name | summary }
```

Disconnecting Subscribers Based on Call or Inactivity Time

During periods of heavy system load, it may be necessary to disconnect subscribers in order to maintain an acceptable level of system performance. You can establish thresholds to select subscribers to disconnect based on the length of time that a call has been connected or inactive.

To enable overload disconnect for the currently selected subscriber, use the following configuration example:

```
configure

context context_name

subscriber name subscriber_name

default overload-disconnect threshold inactivity-time dur_thresh

default overload-disconnect threshold connect-time dur_thresh

end
```

To disable the overload disconnect feature for this subscriber, use the following configuration example:

```
configure

context context_name

subscriber subscriber_name

no overload-disconnect {[threshold inactivity-time] | [threshold connect-time]}

end
```

Notes:

- overload-disconnect is not supported for the Call Session Control Function (CSCF) service.
Chapter 16
Routing

This chapter provides information on configuring an enhanced, or extended, service. The product administration guides provide examples and procedures for configuring basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model before using the procedures described below.

This chapter includes the following sections:

- Routing Policies
- Static Routing
- OSPF Routing
- OSPFv3 Routing
- Equal Cost Multiple Path (ECMP)
- BGP-4 Routing
- Bidirectional Forwarding Detection
- Viewing Routing Information
Routing Policies

This section describes how to configure the elements needed to define routing policies. Routing policies modify and redirect routes to and from the system to satisfy specific network deployment requirements.

Use the following building blocks to configure routing policies:

- **Route Access Lists** – The basic building block of a routing policy. Route access lists filter routes based on a range of IP addresses.
- **IP Prefix Lists** – A more advanced element of a routing policy. An IP Prefix list filters routes based on IP prefixes.
- **AS Path Access Lists** – A basic building block used for Border Gateway Protocol (BGP) routing. These lists filter Autonomous System (AS) paths.
- **Route Maps** – Route-maps provide detailed control over routes during route selection or route advertisement by a routing protocol, and in route redistribution between routing protocols. For this level of control you use IP Prefix Lists, Route Access Lists and AS Path Access Lists to specify IP addresses, address ranges, and Autonomous System paths.

Creating IP Prefix Lists

Use the following configuration example to create IP Prefix Lists:

```config
context context_name

ip prefix-list name list_name { deny | permit } network_address/net_mask
```

Notes:

- Set the IP prefix list to deny, permit or match any prefix.
- IPv4 dotted-decimal and IPv6 colon-separated-hexadecimal addresses are supported.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
Creating Route Access Lists

Use the following procedure to create a Route Access List:

```plaintext
config

context context_name

route-access-list { extended identifier } { deny | permit } [ip address ip_address]

route-access-list named list_name { deny | permit } { ip_address/mask | any } [exact-match]

route-access-list standard identifier { permit | deny } { ip_address wildcard_mask | any | network_address }
```

Notes:
- A maximum of 64 access lists are supported per context.
- A maximum of 16 entries can be defined for each route-access-list.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Creating AS Path Access Lists

Use the following procedure to create an AS Path Access List:

```plaintext
config

context context_name

ip as-path access-list list_name [{ deny | permit } reg_exp]
```

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Creating Route Maps

Use the following configuration example to create a Route Map:

```plaintext
config

context context_name

route-map map_name { deny | permit } seq_number
```
Notes:

- Use the `match` and `set` commands in Route Map Configuration mode to configure the route map. Refer to the *Command Line Interface Reference* for more information on these commands.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

**Sample Configuration**

The example below shows a configuration that creates two route access lists, applies them to a route map, and uses that route map for a BGP router neighbor.

The example below shows a configuration that creates two route access lists, applies them to a route map, and uses that route map for a BGP router neighbor.

```config
cfg
context ispl
 route-access-list named RACLlin1a permit 88.151.1.0/30
 route-access-list named RACLlin1a permit 88.151.1.4/30
 route-access-list named RACLany permit any
 route-map RMnet1 deny 100
 match ip address route-access-list RACLlin1a
 #exit
 route-map RMnet1 deny 200
 match ip address route-access-list RACLlin1b
 #exit
 route-map RMnet1 permit 1000
 match ip address route-access-list RACLany
 #exit
router bgp 1
 neighbor 152.20.1.99 as-path 101
 neighbor 152.20.1.99 route-map RMnet1
```
Static Routing

The system supports static network route configuration on a per context basis. Define network routes by specifying the:

- IP address and mask for the route
- Name of the interface in the current context that the route must use
- Next hop IP address

Adding Static Routes to a Context

To add static routes to a context configuration, you must know the names of the interfaces that are configured in the current context. Use the `show ip interface` command to list the interfaces in the current context (Exec mode). Information for all interfaces configured in the current context is displayed as shown in the following example.

```
[local]host_name# show ip interface
Intf Name: Egress 1
Description:
IP State: Up (Bound to slot/port untagged ifIndex 402718721)
IP Address: 192.168.231.5
Subnet Mask: 255.255.255.0
Bcast Address: 192.168.231.255
MTU: 1500
Resoln Type: ARP ARP timeout: 3600 secs
L3 monitor LC-port switchover: Disabled
Number of Secondary Addresses: 0
Total interface count: 1
```

The first line of information for each interface lists the interface name for the current context as shown in the example output. In this example, there is one interface with the name `Egress 1`.

```
config

context context_name

 ip route { ip_address [ip_mask] | ip_addr_mask_combo } { next-hop
next_hop_address | egress_name [precedence precedence [cost cost]
```

Notes:

- You can configure a maximum of 1,200 static routes per context. Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
Deleting Static Routes From a Context

Use the following configuration example to remove static routes from a context’s configuration:

```
config

context context_name

 no ip route { ip_address ip_mask | ip_addr_mask_combo } next_hop_address
egress_name [precedence precedence] [cost cost]
```

Notes:

- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
OSPF Routing

This section gives an overview of Open Shortest Path First (OSPF) routing and its implementation in the system. It also describes how to enable the base OSPF functionality and lists the commands that are available for more complex configurations.

You must purchase and install a license key before you can use this feature. Contact your Cisco account representative for more information on licenses.

**Important:** During system task recovery, it is possible for a dynamically-learned forwarding entry to incorrectly remain in the system forwarding table if that forwarding entry has been removed from the dynamic routing protocol during the recovery.

**OSPF Version 2 Overview**

OSPF is a link-state routing protocol that employs an interior gateway protocol (IGP) to route IP packets using the shortest path first based solely on the destination IP address in the IP packet header. OSPF routed IP packets are not encapsulated in any additional protocol headers as they transit the network.

An Autonomous System (AS), or Domain, is defined as a group of networks within a common routing infrastructure. OSPF is a dynamic routing protocol that quickly detects topological changes in the AS (such as router interface failures) and calculates new loop-free routes after a period of convergence. This period of convergence is short and involves a minimum of routing traffic.

In a link-state routing protocol, each router maintains a database, referred to as the link-state database, that describes the Autonomous System's topology. Each participating router has an identical database. Each entry in this database is a particular router's local state (for example, the router's usable interfaces and reachable neighbors). The router distributes its local state throughout the AS by flooding.

All routers run the same algorithm in parallel. From the link-state database, each router constructs a tree of shortest paths with itself as root to each destination in the AS. Externally derived routing information appears on the tree as leaves. The cost of a route is described by a single dimensionless metric.

OSPF allows sets of networks to be grouped together. Such a grouping is called an area. The topology of this area is hidden from the rest of the AS, which enables a significant reduction in routing traffic. Also, routing within the area is determined only by the area’s own topology, lending the area protection from bad routing data. An area is a generalization of an IP subnetted network.

OSPF enables the flexible configuration of IP subnets so that each route distributed by OSPF has a destination and mask. Two different subnets of the same IP network number may have different sizes (that is, different masks). This is commonly referred to as variable-length subnetting. A packet is routed to the best (longest or most specific) match. Host routes are considered to be subnets whose masks are “all ones” (0xffffffff).

OSPF traffic can be authenticated or non-authenticated, or can use no authentication, simple/clear text passwords, or MD5-based passwords. This means that only trusted routers can participate in the AS routing. You can specify a variety of authentication schemes and, in fact, you can configure separate authentication schemes for each IP subnet.

Externally derived routing data (for example, routes learned from an exterior protocol such as BGP) is advertised throughout the AS. This externally derived data is kept separate from the OSPF link state data.

Each external route can also be tagged by the advertising router, enabling the passing of additional information between routers on the boundary of the AS.

OSPF uses a link-state algorithm to build and calculate the shortest path to all known destinations.
Basic OSPFv2 Configuration

This section describes how to implement basic OSPF routing.

Enabling OSPF Routing For a Specific Context

Use the following configuration example to enable OSPF Routing for a specific context:

```
config
c context context_name
 router ospf
end
```

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Enabling OSPF Over a Specific Interface

After you enable OSPF, specify the networks on which it will run. Use the following command to enable OSPF:

```
network network_ip_address/network_mask area { area_id | area_ip_address }
```

**Important:** The default cost for OSPF on the system is 10. To change the cost, refer to the `ip ospf cost` command in the Ethernet Interface Configuration Mode Commands chapter of the Command Line Interface Reference.

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Redistributing Routes Into OSPF (Optional)

Redistributing routes into OSPF means any routes from another protocol that meet specified a specified criterion, such as route type, metric, or rule within a route-map, are redistributed using the OSPFv2 protocol to all OSPF areas. This is an optional configuration.

```
config
c context context_name
 router ospf
 redistribute { connected | static }
end
```

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Confirming OSPF Configuration Parameters

To confirm the OSPF router configuration, use the following command and look for the section labeled `router ospf` in the screen output:

```
show config context ctxt_name [verbose]
```
OSPFv3 Routing

This section gives an overview of Open Shortest Path First Version 3 (OSPFv3) routing and its implementation in the system. It also describes how to enable the base OSPFv3 functionality and lists the commands that are available for more complex configurations.

OSPFv3 Overview

Much of OSPF version 3 is the same as OSPF version 2. OSPFv3 expands on OSPF version 2 to provide support for IPv6 routing prefixes and the larger size of IPv6 addresses. OSPFv3 dynamically learns and advertises (redistributes) IPv6 routes within an OSPFv3 routing domain.

In OSPFv3, a routing process does not need to be explicitly created. Enabling OSPFv3 on an interface will cause a routing process and its associated configuration to be created.

Basic OSPFv3 Configuration

This section describes how to implement basic OSPF routing.

Enabling OSPFv3 Routing For a Specific Context

Use the following configuration example to enable OSPF Routing for a specific context:

```config
context context_name
 router ospfv3
end
```

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.

Enabling OSPFv6 Over a Specific Interface

After you enable OSPFv3 specify the area in which it will run. Use the following command to enable OSPFv3:

```area { area_id | area_ip_address } [ default-cost df1t-cost ] [ stub stub-area ] [ virtual-link vl-neighbor-ipv4address ]
```

**Important:** The default cost for OSPFv3 on the system is 10. To change the cost, refer to the `ipv6 ospf cost` command in the Ethernet Interface Configuration Mode Commands chapter of the Command Line Interface Reference.

Notes:
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Redistributing Routes Into OSPFv3 (Optional)

Redistributing routes into OSPFv3 means any routes from another protocol that meet specified criteria, such as route type, metric, or rule within a route-map, are redistributed using the OSPFv3 protocol to all OSPF areas. This is an optional configuration.

```config
context context_name
 router ospf3
 redistribute { connected | static }
 end
```

Notes:
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Confirming OSPFv3 Configuration Parameters

To confirm the OSPF router configuration, use the following command and look for the section labeled `router ipv6 ospf` in the screen output:

```
show config context context_name [verbose]
```

Equal Cost Multiple Path (ECMP)

The system supports ECMP for routing protocols. ECMP distributes traffic across multiple routes that have the same cost to lessen the burden on any one route.

The following command configures the maximum number of equal cost paths that can be submitted by a routing protocol:

```config
context context_name
 ip routing maximum-paths [max_num]
```

Notes:
- `max_num` is an integer from 1 through 10.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
BGP-4 Routing

The Border Gateway Protocol 4 (BGP-4) routing protocol is supported through a BGP router process that is implemented at the context level.

The Border Gateway Protocol (BGP) is an inter-AS routing protocol. An Autonomous System (AS) is a set of routers under a single technical administration that use an interior gateway protocol and common metrics to route packets within the AS. The set of routers uses an exterior gateway protocol to route packets to other autonomous systems.

BGP runs over TCP. This eliminates the need for the BGP protocol to implement explicit update fragmentation, retransmission, acknowledgement, and sequencing information. Any authentication scheme used by TCP may be used in addition to BGP’s own authentication mechanisms.

BGP routers exchange network reachability information with other BGP routers. This information builds a picture of AS connectivity from which routes are filtered and AS-level policy decisions are enforced.

BGP-4 provides classless inter-domain routing. This includes support for advertising an IP prefix and eliminates the concept of network class within BGP. BGP-4 also allows the aggregation of routes, including the aggregation of AS paths.

Overview of BGP Support

Mobile devices communicate to the Internet through Home Agents (HAs). HAs assign IP addresses to the mobile node from a configured pool of addresses. These addresses are also advertised to Internet routers through an IP routing protocol to ensure dynamic routing. The BGP-4 protocol is used as a monitoring mechanism between an HA and Internet router with routing to support Interchassis Session Recovery (ICSR). (Refer to Interchassis Session Recovery for more information.)

The objective of BGP-4 protocol support is to satisfy routing requirements and monitor communications with Internet routers. BGP-4 may trigger an active to standby switchover to keep subscriber services from being interrupted.

The following BGP-4 features are supported:

- Exterior Border Gateway Protocol (EBGP) multi-hop
- Route Filtering for inbound and outbound routes
- Route redistribution and route-maps
- Support for BGP communities and extended communities in route maps
- Local preference for IPv4 and IPv6 (IBGP peers)

IP pool routes and loopback routes are advertised in the BGP domain in the following ways:

- Through BGP Configuration Mode redistribution commands, all or some of the connected routes are redistributed into the BGP domain. (IP pool and loopback routes are present in the IP routing table as connected routes.) The network routemap command provides the flexibility to change many BGP attributes.
- Through the BGP Configuration Mode network commands, connected routes are explicitly configured for advertisement into the BGP domain. The network routemap command provides the flexibility to change many BGP attributes. Refer to the Border Gateway Protocol Configuration Mode Commands chapter of the Command Line Interface Reference for details on these commands.

**Important:** If a BGP task restarts because of a processing card failure, a migration, a crash, or the removal of a processing card, all peering session and route information is lost.
Configuring BGP

This section describes how to configure and enable basic BGP routing support in the system.

```
config

context context_name

router bgp AS_number

neighbor ip_address remote-as AS_num
```

Notes:
- A maximum of 64 BGP peers are supported per context.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Redistributing Routes Into BGP (Optional)

Redistributing routes into BGP simply means that any routes from another protocol that meet a specified criterion, such as a route type, or a rule within a route-map, are redistributed through the BGP protocol to all BGP areas. This is an optional configuration.

```
config

context context_name

router bgp as_number

redistribute bgp { bgp | connected | static } [metric metric_value] [metric-type { 1 | 2 }] [route-map route_map_name]
```

Notes:
- The redistribution options are connected, ospf, rip, or static. Refer to the *Border Gateway Protocol Configuration Mode Commands* chapter of the *Command Line Interface Reference* for details on the redistribute command.
- A maximum of 64 route-maps are supported per context.
- Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.
BGP Communities and Extended Communities

Route filtering based on a BGP community or extended community (route target) via CLI Route Map Configuration mode commands.

BGP Communities

Configuring a BGP Community

A BGP community is a group of destinations that share some common attribute. Each destination can belong to multiple communities. Autonomous system administrators define to which communities a destination belongs.

You configure a BGP community via a Context Configuration mode command.

```
config

 context context_name

 ip community-list { named named_list | standard identifier } { deny | permit } { internet | local-AS | no-advertise | no-export | value AS-community_number AS-community_number AS-community_number ...}

 { internet | local-AS | no-advertise | no-export | value AS-community_number AS-community_number AS-community_number ...}

 { internet | local-AS | no-advertise | no-export | value AS-community_number AS-community_number AS-community_number ...}
```

You can permit or deny the following BGP community destinations.

- **internet** – Advertise this route to the internet community, and any router that belongs to it.
- **local-AS** – Use in confederation scenarios to prevent sending packets outside the local autonomous system (AS).
- **no-advertise** – Do not advertise this route to any BGP peer, internal or external.
- **no-export** – Do not advertise to external BGP (eBGP) peers. Keep this route within an AS.
- **value AS-community_number** – Specifies a community string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters).

You can enter multiple destinations and AS community numbers for each community. For additional information, see the Command Line Interface Reference.

Multiple community-list entries can be attached to a community-list by adding multiple permit or deny clauses for various community strings. Up to 64 community-lists can be configured in a context.
Setting the Community Attribute

You set the BGP community attribute via a `set community` command in a route map.

```
config

context context_name

route-map map_name { deny | permit } sequence_number

set community [additive] { internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ... }

{ internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ... }

{ internet | local-AS | no-advertise | no-export | none | value AS-community_number AS-community_number AS-community_number ... }
```

The `additive` option allows you to enter multiple destinations and AS community numbers. For additional information, see the Command Line Interface Reference.

Filtering via a BGP Community

To filter routes based on a BGP community, you configure a `match` clause in a route map. The command sequence follows below.

```
config

context context_name

route-map map_name { deny | permit } sequence_number

match community { named named_list | standard identifier }
```

BGP Extended Communities

Configuring a BGP Extended Community (Route Target)

A BGP extended community defines a route target. MPLS VPNs use a 64-bit Extended Community attribute called a Route Target (RT). An RT enables distribution of reachability information to the correct information table.

You configure a BGP extended community via a Context Configuration mode command.

```
config

context context_name

ip extcommunity-list { named named_list | standard identifier } { deny | permit } rt rt_number rt_number rt_number ...
```

`rt_number` specifies a Route Target as a string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters). You can add multiple route numbers to an IP extcommunity list.
Multiple extended community-list entries can be attached to an extended community-list by adding multiple permit or deny clauses for various extended community strings. Up to 64 extended community-lists can be configured in a context.

**Setting the Extended Community Attribute**

You set the BGP extended community attribute via a `set extcommunity` command in a route map.

```
config
context context_name
route-map map_name { deny | permit } sequence_number
set extcommunity rt rt_number rt_number rt_number ...
```

`rt_number` specifies a Route Target as a string in AS:NN format, where AS = 2-byte AS-community hexadecimal number and NN = 2-byte hexadecimal number (1 to 11 characters). You can add multiple route numbers to an IP extcommunity list.

**Filtering via a BGP Extended Community**

To filter routes based on a BGP extended community (route target), you configure a `match` clause in a route map. The command sequence follows below.

```
config
context context_name
route-map map_name { deny | permit }
[no] match extcommunity { named named_list | standard identifier }
```

**BGP Local Preference**

The BGP local preference attribute is sent by BGP speaker only to IBGP peers. It is set in a route map via the following command sequence:

```
config
context context_name
route-map map_name { deny | permit }
set local-preference pref_number
```

There is no `match` clause corresponding to local preference in the route-map because local-preference is directly used in the route selection algorithm.
ICSR and SRP Groups

BGP is employed with Interchassis Session Recovery (ICSR) configurations linked via Service Redundancy Protocol (SRP). By default an ICSR failover is triggered when all BGP peers within a context are down.

Optionally, you can configure SRP peer groups within a context. ICSR failover would then occur if all peers within a group fail. This option is useful in deployments in which a combination of IPv4 and IPv6 peers are spread across multiple paired VLANs, and IPv4 or IPv6 connectivity is lost by all members of a peer group.

For additional information refer to Interchassis Session Recovery in this guide and the description of the monitor bgp, monitor diameter and monitor authentication-probe commands in the Service Redundancy Protocol Configuration Mode Commands chapter of the Command Line Interface Reference.

Advertising BGP Routes from a Standby ICSR Chassis

An SRP Configuration mode command enables advertising BGP routes from an ICSR chassis in standby state. This command and its keywords allow an operator to take advantage of faster network convergence accrued from deploying BGP Prefix Independent Convergence (PIC) in the Optical Transport Network Generation Next (OTNGN).

BGP PIC is intended to improve network convergence which will safely allow for setting aggressive ICSR failure detection timers.

```bash
configure
context context_name

service-redundancy-protocol

 advertise-routes-in-standby-state [hold-off-time hold-off-time] [reset-bfd-nbrs bfd-down-time]

end
```

Notes:

- **hold-off-time** delays advertising the BGP routes until the timer expires. Specify hold-off-time in seconds as an integer from 1 to 300.
- After resetting BFD, **reset-bfd-nbrs** keeps the BFD sessions down for the configured number of milliseconds to improve network convergence. Specify bfd-down-time as an integer from 50 to 120000.

Configurable BGP Route Advertisement Interval for ICSR

By default, the MinRtAdvInterval is set for each peer with a value of 5 seconds for an iBGP peer and 30 seconds for an eBGP peer. An operator can use the `neighbor identifier advertisement-interval` command to globally change the default interval.

The BGP advertisement-interval can also be separately set for each address family. If configured, this value over-rides the peer's default advertisement-interval for that address-family only. BGP will send route update-message for each AFI/SAFI based on the advertisement-interval configured for that AFI/SAFI. If no AFI/SAFI advertisement-interval is configured, the peer-based default advertisement-interval is used.

In ICSR configurations, this feature can be used to speed route advertisements and improve network convergence times.
The `timers bgp icsr-aggr-advertisement-interval` command is available in both the BGP Address-Family (VPNv4/VPNv6) Configuration and BGP Address-Family (VRF) Configuration modes.

```
configure

context context_name

router bgp as_number

 address-family { ipv4 | ipv6 | vpnv4 | vpnv6 }

 timers bgp icsr-aggr-advertisement-interval seconds
```

Notes:

- `seconds` – sets the number of seconds as an integer from 0 to 30. Default: 0.
Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) is a network protocol used to detect faults between two forwarding engines connected by a link. BFD establishes a session between two endpoints over a particular link. If more than one link exists between two systems, multiple BFD sessions may be established to monitor each one of them. The session is established with a three-way handshake, and is torn down the same way. Authentication may be enabled on the session. A choice of simple password, MD5 or SHA1 authentication is available.

Overview of BFD Support

BFD does not have a discovery mechanism; sessions must be explicitly configured between endpoints. BFD may be used on many different underlying transport mechanisms and layers, and operates independently of all of these. Therefore, it needs to be encapsulated by whatever transport it uses.

Protocols that support some form of adjacency setup, such as OSPF or IS-IS, may also be used to bootstrap a BFD session. These protocols may then use BFD to receive faster notification of failing links than would normally be possible using the protocol's own keepalive mechanism.

In asynchronous mode, both endpoints periodically send Hello packets to each other. If a number of those packets are not received, the session is considered down.

When Echo is active, a stream of Echo packets is sent to the other endpoint which then forwards these back to the sender. Echo can be globally enabled via the `bfd-protocol` command, and/or individually enabled/disabled per interface. This function is used to test the forwarding path on the remote system.

The system supports BFD in asynchronous mode with optional Echo capability via static or BGP routing.

Configuring BFD

This section describes how to configure and enable basic BFD routing protocol support in the system.

There are several factors affecting the configuration of BFD protocol:

- Configuring a BFD Context
- Configuring IPv4 BFD for Static Routes
- Configuring IPv6 BFD for Static Routes
- Configuring BFD for Single Hop
- Configuring Multihop BFD
- Scaling of BFD
- Associating BGP Neighbors with the Context
- Associating OSPF Neighbors with the Context
- Associating BFD Neighbor Groups with the BFD Protocol
- Enabling BFD on OSPF Interfaces
- Monitoring BFD Connection for ICSR
Configuring a BFD Context

```config
context context_name
 bfd-protocol
 [[no] bfd echo]
exit
```

Notes:
- Echo function can be optionally enabled for all interfaces in this context.
- 16 BFD sessions per context and 64 per chassis.

Configuring IPv4 BFD for Static Routes

Enable BFD on an interface.

```config
context bfd_context_name
 interface if_name
 ip address ipv4_address ipv4_mask
 bfd interval interval_value min_rx rx_value multiplier multiplier_value
 [[no] bfd echo]
exit
```

Configure BFD static route.

```ip route static bfd if_name ipv4_gw_address```

Add static routes.

```ip route ipv4_address ipv4_mask```
```ip route ipv4_address ipv4_mask```

Configuring IPv6 BFD for Static Routes

Enable BFD on an Interface

```config
context bfd_context_name
   interface if_name
```
ipv6 address ipv6_address ipv6_mask

bdf interval interval_value min_rx rx_value multiplier multiplier_value

[[no] bfd echo]

exit

Configure BFD static route.

ipv6 route static bfd if_name ipv6_gw_address

Add static routes.

ipv6 route ipv6_address ipv6_mask
ipv6 route ipv6_address ipv6_mask

Configuring BFD for Single Hop

Enable BFD on an interface.

config

context bfd_context_name

interface if_name

ip address ipv4_address ipv4_mask
ipv6 address ipv6_address ipv6_mask

bdf interval interval_value min_rx rx_value multiplier multiplier_value

[[no] bfd echo]

exit

Enable BFD on a BGP Neighbor. For additional information, see Associating BGP Neighbors with the Context.

Enable BFD on an OSPF Neighbor. For additional information, see Associating OSPF Neighbors with the Context.

Configuring Multihop BFD

Enable BFD on an interface.

config

context bfd_context_name

interface if_name

ip address ipv4_address ipv4_mask
ipv6 address ipv6_address ipv6_mask
Bidirectional Forwarding Detection

```
bfd interval interval_value min_rx rx_value multiplier multiplier_value
[ [no] bfd echo ]
exit
```

Configure a Multihop BFD session.

```
bfd-protocol
  bfd multihop peer destination-address interval interval-value
  multiplier multiplier-value
```

Enable BFD on a BGP Neighbor. For additional information, see [Associating BGP Neighbors with the Context](#).

Scaling of BFD

Configure an active BFD session using one of the above methods and use same BFD neighbor while configuring the active interface. For additional information, see [Associating BFD Neighbor Groups with the BFD Protocol](#).

```
bfd-protocol
  bfd nbr-group-name grp_name active-if-name if_name nexthop_address
```

Apply the same BFD results to one or more passive interfaces.

```
bfd nbr-group-name grp_name passive-if-name if_name nexthop_address
```

Associating BGP Neighbors with the Context

```
config
  context context_name
  router bgp AS_number
    neighbor neighbor_ip-address remote-as rem_AS_number
    neighbor neighbor_ip-address ebgp-multihop max-hop max_hops
    neighbor neighbor_ip-address update-source update-src_ip-address
    neighbor neighbor_ip-address failover bfd [ multihop ]
```

Notes:
- Repeat the sequence to add neighbors.
Associating OSPF Neighbors with the Context

```
config

context context_name

router ospf

neighbor neighbor_ip-address
```

Notes:
- Repeat the sequence to add neighbors.

Associating BFD Neighbor Groups with the BFD Protocol

```
config

context context_name

bfd-protocol

bfd nbr-group-name grp_name active-if-name if_name nexthop_address

bfd nbr-group-name grp_name passive-if-name if_name nexthop_address
```

Enabling BFD on OSPF Interfaces

All OSPF Interfaces

```
config

context context_name

router ospf

bfd-all-interfaces
```

Specific OSPF Interface

```
config

context context_name

interface interface_name

broadcast

ip ospf bfd
```
Monitoring BFD Connection for ICSR

For ICSR configurations, the following command sequence initiates monitoring of the connection between the primary chassis and the BFD neighbor in the specified context. If the connection drops, the standby chassis becomes active.

```
config

    context context_name

    service-redundancy-protocol

    monitor bfd context context_name { ipv4_address | ipv6_address } { chassis-to-chassis | chassis-to-router }
```

Notes:
- `ipv4_address | ipv6_address` defines the IP address of the BFD neighbor to be monitored, entered using IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.
- `chassis-to-chassis` enables BFD to run between primary and backup chassis on non-SRP links.
- `chassis-to-router` enables BFD to run between chassis and router.

Saving the Configuration

Save your configuration as described in the *Verifying and Saving Your Configuration* chapter.

Chassis-to-Chassis BFD Monitoring for ICSR

An operator can configure BFD to more quickly advertise routes during an ICSR switchover. This solution complements the feature that allows the advertising of BGP routes from a Standby ICSR chassis. The overall goal is to support more aggressive failure detection and recovery in an ICSR configuration when implementing of VoLTE.

You must configure the following features for chassis-to-chassis BFD monitoring in ICSR configurations:

- Enable Primary Chassis BFD Monitoring
- Set BFD to Ignore ICSR Dead Interval
- Configure ICSR Switchover Guard Timer
- Enable BFD Multihop Fall-over
- Enable Advertising BGP Routes from Standby ICSR Chassis

Enable Primary Chassis BFD Monitoring

You must enable monitoring of the connection between the primary chassis and specified BFD neighbors. If the connection drops, the standby chassis becomes active. For more information, see *Monitoring BFD Connection for ICSR*.
Set BFD to Ignore ICSR Dead Interval

The SRP Configuration mode `bfd-mon-ignore-dead-interval` command causes the standby ICSR chassis to ignore the dead interval and remain in the standby state until all the BFD chassis-to-chassis monitors fail.

Enable this feature in association with BFD chassis-to-chassis monitoring to support more aggressive ICSR failure detection times.

```plaintext
configure
    context context_name
        service-redundancy-protocol variable
            bfd-mon-ignore-dead-interval
        end
end
```

Configure ICSR Switchover Guard Timer

The SRP Configuration mode `guard timer` command configures the redundancy-guard-period and monitor-damping-period for SRP service monitoring.

Use these guard timers to ensure that local failures, such as card reboots and task restarts, do not result in ICSR events which can be disruptive.

```plaintext
configure
    context context_name
        service-redundancy-protocol variable
            guard-timer { aaa-switchover-timers { damping-period seconds |
                guard-period seconds } |
                diameter-switchover-timers { damping-period seconds |
                guard-period seconds } |
                srp-redundancy-timers { aaa { damping-period seconds |
                guard-period seconds } |
                bgp { damping-period seconds |
                guard-period seconds } |
                diam { damping-period seconds |
                guard-period seconds } }
        end
```

Notes:

- **aaa-switchover-timers** – sets timers that prevent back-to-back ICSR switchovers due to an AAA failure (post ICSR switchover) while the network is still converging.
 - **damping-period** – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
 - **guard-period** – configures the local-failure-recovery network-convergence timer.
- **diameter-switchover-timers** – sets timers that prevent a back-to-back ICSR switchover due to a Diameter failure (post ICSR switchover) while the network is still converging.
 - **damping-period** – configures a delay time to trigger an ICSR switchover due to a monitoring failure within the guard-period.
 - **guard-period** – configures the local-failure-recovery network-convergence timer.
• **srp-redundancy-timers** – sets timers that prevent an ICSR switchover while the system is recovering from a local card-reboot/critical-task-restart failure.

 - **aaa** – local failure followed by AAA monitoring failure
 - **bgp** – local failure followed by BGP monitoring failure
 - **diam** – local failure followed by Diameter monitoring failure

Enable BFD Multihop Fall-over

A **fall-over bfd multihop mhsess_name** keyword in the Context Configuration mode ip route and ipv6 route commands enables fall-over BFD functionality for the specified multihop session. The **fall-over bfd** option uses BFD to monitor neighbor reachability and liveliness. When enabled it will tear down the session if BFD signals a failure.

```plaintext
configure
  context context_name
    ip route { ip_address/ip_mask | ip_address ip_mask } { gateway_ip_address | next-hop next_hop_ip_address | point-to-point | tunnel } egress_intrfc_name
      [ cost cost ] [ fall-over bfd multihop mhsess_name ] [ precedence precedence ]
      [ vrf vrf_name [ cost value ] [ fall-over bfd multihop mhsess_name ]
      [ precedence precedence ] +
  end
```

The **ip route** command now also allows you to add a static multihop BFD route.

```
ip route static multihop bfd mhbfd_sess_name local_endpt_ipaddr remote_endpt_ipaddr
```

Important: SNMP traps are generated when BFD sessions go up and down (BFDsessUp and BFDsessDown).

ip route Command

```plaintext
configure
  context context_name
    ip route { ip_address/ip_mask | ip_address ip_mask } { gateway_ip_address | next-hop next_hop_ip_address | point-to-point | tunnel } egress_intrfc_name
      [ cost cost ] [ fall-over bfd multihop mhsess_name ] [ precedence precedence ]
      [ vrf vrf_name [ cost value ] [ fall-over bfd multihop mhsess_name ]
      [ precedence precedence ] +
  end
```

The **ip route** command now also allows you to add a static multihop BFD route.

```
ip route static multihop bfd mhbfd_sess_name local_endpt_ipaddr remote_endpt_ipaddr
```
ip routev6 Command

configure

 context context_name

 ipv6 route ipv6_address/prefix_length { interface name | next-hop
ipv6_address interface name } [cost cost] [fall-over bfd multihop mhsess_name]
[precedence precedence] [vrf vrf_name [cost value] [fall-over bfd multihop
mhsess_name] [precedence precedence]

end

The ipv6 route command now also allows you to add a static multihop BFD route.

 ipv6 route static multihop bfd mhbfd_sess_name local_endpt_ipv6addr
 remote_endpt_ipv6addr

Adjust BFD Interval

Set the transmit interval (in milliseconds) between BFD packets to meet the convergence requirements of your network deployment.

configure

 context context_name

 interface interface_name broadcast

 bfd interval interval_num min_rx milliseconds multiplier value

end

Notes:
• milliseconds is an integer from 50 through 10000. (Default 50)

Enable Advertising BGP Routes from Standby ICSR Chassis

For information on configuring the feature, see Advertising BGP Routes from a Standby ICSR Chassis.

Saving the Configuration

Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Viewing Routing Information

To view routing information for the current context, run one of the following Exec mode commands;

- **show ip route**: Displays information for IPv4 routes in the current context.
- **show ipv6 route**: Displays information for ipv6 routes in the current context.
- **show ip static**: Displays information only for IPv4 static routes in the current context.
- **show ip ospf**: Displays IPv4 OSPF process summary information in the current context.
- **show ipv6 ospf**: Displays IPv6 OSPFv3 process summary information in the current context.
- **show ip bgp**: Displays IPv4 BGP information.

This example shows sample output of the command, **show ip route**.

```
[local] host_name# show ip route
"*" indicates the Best or Used route.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Nexthop</th>
<th>Protocol</th>
<th>Prec</th>
<th>Cost</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>*44.44.44.0/24</td>
<td>208.230.231.50</td>
<td>static</td>
<td>1</td>
<td>0</td>
<td>local1</td>
</tr>
<tr>
<td>*192.168.82.0/24</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*192.168.83.0/24</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>208.230.231.0/24</td>
<td>0.0.0.0</td>
<td>ospf</td>
<td>110</td>
<td>10</td>
<td>local1</td>
</tr>
<tr>
<td>*208.230.231.0/24</td>
<td>0.0.0.0</td>
<td>connected</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total route count: 5
```
Chapter 17
VLANs

This chapter provides information on configuring virtual local area networks (VLANs) in support of enhanced or extended services. The product administration guides provide examples and procedures for configuration of services on the system that may utilize VLANs. You should select the configuration example that best meets your service model before using the procedures described below.

This chapter includes the following sections:

- Overview
- Creating VLAN Tags
- Verifying the Port Configuration
- Configuring Subscriber VLAN Associations
- VLAN-Related CLI Commands

Important: VLAN – Layer 2 Traffic Management is a Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.
Overview

Virtual LANs (VLANs) provide greater flexibility in the configuration and use of contexts and services. They are configured as “tags” on a per-port basis and allow more complex configurations to be implemented. The VLAN tag allows a single physical port to be bound to multiple logical interfaces that can be configured in different contexts. Therefore, each Ethernet port can be viewed as containing many logical ports when VLAN tags are employed.

Important: VLANs are supported in conjunction with subscriber traffic ports on Management I/O (MIO/UMIO) cards. The system supports the configuration limits for VLANs as described in Engineering Rules.

Overlapping IP Address Pool Support – GGSN

Overlapping IP Address pools provide allow operators to more flexibly support multiple corporate VPN customers with the same private IP address space without expensive investments in physically separate routers or virtual routers.

The system supports two types of overlapping pools – resource and overlap. Resource pools are designed for dynamic assignment only, and use a VPN tunnel (such as a GRE tunnel) to forward and receive the private IP addresses to and from the VPN. Overlapping type pools can be used for both dynamic and static addressing, and use VLANs and a next hop forwarding address to connect to the VPN customer.

To forward downstream traffic to the correct PDP context, the GGSN uses either the GRE tunnel ID or the VLAN ID to match the packet. When forwarding traffic upstream, the GGSN uses the tunnel and forwarding information in the IP pool configuration; overlapping pools must be configured in the APN in such instances.

When a PDP context is created, the IP address is assigned from the IP pool. In this case the forwarding rules are also configured into the GGSN. If the address is assigned statically, when the GGSN confirms the IP address from the pool configured in the APN, the forwarding rules are also applied.

The GGSN can scale to as many actual overlapping pools as there are VLAN interfaces per context, and there can be multiple contexts per GGSN. The limit is the number of IP pools. This scalability allows operators who wish to provide VPN services to customers using the customer's private IP address space, not to be concerned about escalating hardware costs or complex configurations.

RADIUS VLAN Support – Enhanced Charging Services

VPN customers often use private address space which can easily overlap with other customers. The subscriber addresses are supported with overlapping pools which can be configured in the same virtual routing context.

RADIUS Server and NAS IP addresses do not need to be in separate contexts, thereby simplifying APN and RADIUS configuration and network design. This feature allows the following scenarios to be defined in the same context:

- Overlapping RADIUS NAS-IP addresses for various RADIUS server groups representing different APNs.
- Overlapping RADIUS server IP addresses for various RADIUS servers groups.

Every overlapping NAS-IP address is given a unique next-hop address which is then bound to an interface that is bound to a unique VLAN, thereby allowing the configuration to exist within the same context.

The system forwards RADIUS access requests and accounting messages to the next hop defined for that NAS-IP; the connected routers forward the messages to the RADIUS server. The next hop address determines the interface and VLAN to use. Traffic from the server is identified as belonging to a certain NAS-IP by the port/VLAN combination.
The number of RADIUS NAS-IP addresses that can be configured is limited by the number of loopback addresses that can be configured.

APN Support – PDN Gateway (P-GW)

P-GW Access Point Name (APN) supports extensive parameter configuration flexibility for the APN. VLAN tagging may be selected by the APN, but are configured in the P-GW independently from the APN.

Creating VLAN Tags

Use the following example to create VLANs on a port and bind them to pre-existing interfaces. For information on creating interfaces, refer to System Interfaces and Ports.

```
config
    port ethernet slot/port
        no shutdown
        vlan vlan_tag_ID
        no shutdown
        bind interface interface_name context_name
end
```

Notes:

- Optional: Configure VLAN-subscriber associations. Refer to Configuring Subscriber VLAN Associations for more information.
- Repeat this procedure as needed to configure additional VLANs for the port.
- Refer to VLAN-Related CLI Commands and the Command Line Interface Reference for additional information.
- Save your configuration as described in the Verifying and Saving Your Configuration chapter.
Verifying the Port Configuration

Run the following command to verify the port configuration:

```
show port info slot/port
```

An example of this command’s output when at least one VLAN has been configured for the port is shown below:

```
Port: 5/11
  Port Type : 10G Ethernet
  Role : Service Port
  Description : (None Set)
  Redundancy Mode : Port Mode
  Redundant With : 6/11
  Preferred Port : Non-Revertive
  Physical ifIndex : 85262336
  Administrative State : Enabled
  Configured Duplex : Auto
  Configured Speed : Auto
  Fault Unidirection Mode : 802_3ae clause 46
  Configured Flow Control : Enabled
  Interface MAC Address : 64-9E-F3-69-5B-EA
  SRP Virtual MAC Address : None
  Fixed MAC Address : 64-9E-F3-69-5B-CA
  Link State : Up
  Link Duplex : Full
  Link Speed : 10 Gb
  Flow Control : Enabled
  Link Aggregation Group : None
  Untagged:
    Logical ifIndex : 85262337
    Operational State : Up, Active
  Tagged VLAN: VID 10
    Logical ifIndex : 285278210
    VLAN Type : Standard
    VLAN Priority : 0
    Administrative State : Enabled
    Operational State : Up, Active
    Number of VLANs : 1
    SFP Module : Present (10G Base-SR)
```

Notes:

- Repeat this sequence as needed to verify additional ports.
- **Optional**: Configure VLAN-subscriber associations. Refer to Configuring Subscriber VLAN Associations for more information.
- Refer to VLAN-Related CLI Commands for additional information.
- Save your configuration as described in the **Verifying and Saving Your Configuration** chapter.
Configuring Subscriber VLAN Associations

Subscriber traffic can be routed to specific VLANs based on the configuration of their user profile. This functionality provides a mechanism for routing all traffic from a subscriber over the specified VLAN. All packets destined for the subscriber must also be sent using only IP addresses valid on the VLAN or they will be dropped.

RADIUS Attributes Used

The following RADIUS attributes can be configured within subscriber profiles on the RADIUS server to allow the association of a specific VLAN to the subscriber:

- **SN-Assigned-VLAN-ID**: In the Starent VSA dictionary
- **SN1-Assigned-VLAN-ID**: In the Starent VSA1 dictionary

Important: Since the instructions for configuring subscriber profiles differ between RADIUS server applications, this section only describes the individual attributes that can be added to the subscriber profile. Please refer to the documentation that shipped with your RADIUS server for instructions on configuring subscribers.

Configuring Local Subscriber Profiles

Use the configuration example below to configure VLAN associations within local subscriber profiles on the system.

Important: These instructions assume that you have already configured subscriber-type VLAN tags according to the instructions provided in **Creating VLAN Tags**.

```
config

context context_name

subscriber name user_name

   ip vlan vlan_id

end
```

Verify the Subscriber Profile Configuration

Use the following command to view the configuration for a subscriber profile:

```
show subscriber configuration username user_name
```

Notes:

- Repeat this command for each subscriber.
- Save your configuration as described in the **Verifying and Saving Your Configuration** chapter.
VLAN-Related CLI Commands

VLAN-related features and functions are supported across several CLI command modes. The following tables identify commands associated with configuration and monitoring of VLAN-related functions.

For detailed information regarding the use of the commands listed below, see the Command Line Interface Reference.

Table 35. VLAN-Related Configuration Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA Server Group Configuration Mode</td>
<td><code>radius attribute nas-ip-address address ip_address nexthop-forwarding-address ip_address vlan vlan_id</code></td>
<td>Sets the RADIUS client to provide the VLAN ID with the nexthop forwarding address to a system when running in single nexthop gateway mode. Note: To access the <code>vlan</code> keyword, <code>aaa-large configuration</code> must be enabled via the Global Configuration mode.</td>
</tr>
<tr>
<td>ACS Charging Action Configuration Mode</td>
<td><code>ip vlan vlan_id</code></td>
<td>Configures the VLAN identifier to be associated with the subscriber traffic in the destination context.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td><code>ip pool pool_name nexthop forwarding address ip_address overlap vlanid vlan_id</code></td>
<td>When a nexthop forwarding address is configured, the <code>overlap vlanid</code> keyword enables support for overlapping IP address pools and associates the pool with the specified VLAN ID.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td><code>ip routing overlap-pool</code></td>
<td>Advertises overlap-pool addresses in dynamic routing protocols when overlap pools are configured using VLAN IDs. When enabled, the overlap addresses are added as interface addresses and advertised.</td>
</tr>
<tr>
<td>Context Configuration Mode</td>
<td><code>radius attribute nas-ip-address address ip_address nexthop-forwarding-address ip_address vlan vlan_id</code></td>
<td>Specifies the VLAN ID to be associated with the next-hop IP address.</td>
</tr>
<tr>
<td>Ethernet Interface Configuration Mode</td>
<td><code>[no] logical-port-statistics</code></td>
<td>Enables or disables the collection of logical port (VLAN and NPU) bulk statistics for the first 32 configured Ethernet or PVC interface types.</td>
</tr>
<tr>
<td>Ethernet Interface Configuration Mode</td>
<td><code>vlan-map next-hop ipv4_address</code></td>
<td>Sets a single next-hop IP address so that multiple VLANs can use a single next-hop gateway. The vlan-map is associated with a specific interface.</td>
</tr>
<tr>
<td>Ethernet Port Configuration Mode</td>
<td><code>vlan vlan_id</code></td>
<td>Enters VLAN Configuration mode.</td>
</tr>
<tr>
<td>PVC Configuration Mode</td>
<td><code>[no] shutdown</code></td>
<td>Enables or disables traffic over a specified VLAN. See below.</td>
</tr>
<tr>
<td>Subscriber Configuration Mode</td>
<td><code>ip vlan vlan_id</code></td>
<td>Configures the subscriber VLAN ID that is used with the assigned address for the subscriber session to receive packets. If the IP pool from which the address is assigned is configured with a VLAN ID, this subscriber configured VLAN ID overrides it.</td>
</tr>
</tbody>
</table>
VLAN-Related CLI Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Configuration Mode</td>
<td>bind interface interface_name context_name</td>
<td>Binds a virtual interface and context to support VLAN service.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>[no] ingress-mode</td>
<td>Enables or disables port ingress incoming) mode.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>priority value</td>
<td>Configures an 802.1p VLAN priority bit for ASN-GW service only.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>[no] shutdown</td>
<td>Enables or disables traffic over the current VLAN.</td>
</tr>
<tr>
<td>VLAN Configuration Mode</td>
<td>vlan-map interface if_name context_name</td>
<td>Associates an IP interface having a VLAN ID with a context.</td>
</tr>
</tbody>
</table>

Table 36. VLAN-Related Monitoring Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Mode show commands</td>
<td>clear port slot/port vlan vlan_id</td>
<td>Clears NPU statistics for the port that has a previously configured VLAN ID.</td>
</tr>
<tr>
<td>Exec Mode show commands</td>
<td>show logical-port utilization table vlan { 5-minute</td>
<td>hourly }</td>
</tr>
<tr>
<td>Exec Mode show commands</td>
<td>show port info slot/port vlan vlan_id</td>
<td>Displays NPU counters for a previously configured VLAN ID.</td>
</tr>
</tbody>
</table>
Chapter 18
BGP MPLS VPNs

This chapter describes services that are supported by the ASR 5x00 for Border Gateway Protocol (BGP) Multi-Protocol Label Switching (MPLS) Virtual Private Networks (VPNs).

Important: MPLS is a licensed Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.

It includes the following topics:

- Introduction
- MPLS-CE Connected to PE
- ASR 5x00 as a PE
- IPv6 Support for BGP MPLS VPNs
- VPN-Related CLI Commands
Introduction

Service providers require the ability to support a large number of corporate Access Point Names (APNs) which have a number of different addressing models and requirements. The ASR 5x00 uses BGP MPLS Layer 3 VPNs to segregate corporate customer APNs in a highly scalable manner. This solution conforms to RFC 4364 – *BGP/MPLS IP Virtual Private Networks (VPNs)*.

The BGP/MPLS solution supports the following scenarios:

- **MPLS-CE Connected to PE**
- **ASR 5x00 as a PE**

The ASR 5x00 also supports VPNv6 as described in RFC 4659 – *BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN*. See *IPv6 Support for BGP MPLS VPNs* for details.

MPLS-CE Connected to PE

In this scenario the ASR 5x00 functions as an MPLS-CE (Customer Edge) network element connected to a Provider Edge (PE) Label Edge Router (LER), which in turn connects to the MPLS core (RFC 4364). See the figure below.

![Figure 15. ASR 5x00 MPLS-CE to PE](image)

The MPLS-CE functions like a PE router within its own Autonomous System (AS). It maintains Virtual Routing and Forwarding (VRF) routes and exchanges VPN route information with the PE via an MP-eBGP (Multi-Protocol-external BGP) session.

The PE is also configured with VRFs and exchanges VPN routes with other PEs in its AS via MP-iBGP (Multi-Protocol-internal BGP) connections and the MPLS-CE via an MP-eBGP connection.

The EBGP connection allows the PE to change next-hop IP addresses and labels in the routes learned from IBGP peers before advertising them to the MPLS-CE. The MPLS-CE in this case uses only MP-eBGP to advertise and learn routes. Label Distribution Protocol (LDP) and Resource Reservation Protocol (RSVP) are not required because of direct-connect EBGP peering. The MPLS-CE in this scenario pushes/pops a single label (learned over the MP-eBGP connection) to/from the PE.
ASR 5x00 as a PE

Overview

In this scenario, the ASR 5x00 functions as a PE router sitting at the edge of the MPLS core. See the figure below.

Figure 16. ASR 5x00 as a PE

The ASR 5x00 eliminates the need for an ASBR or PE as shown in the first two scenarios. In this scenario, two main requirements are introduced: IBGP functionality and MPLS label distribution protocols.

The ASR 5x00 can be configured to add two labels:

- an outer label learned from LDP or RSVP-TE (RSVP-Traffic Engineering)
- an inner label learned from MP-iBGP

This solution supports traffic engineering and QoS initiated via the ASR 5x00.

Sample Configuration

In this example, VRFs are configured on the ASR 5x00 PE and pools are associated with VRFs. The ASR 5x00 exchanges VPN routes with its IBGP peers (PE routers) and learns the MPLS paths to reach PEs via LDP. The ASR 5x00 forwards the packets to the next-hop with two labels – an inner label learned from PE and an outer label learned from the next hop IBGP neighbor.
mpls ip
 protocol ldp
 enable
 exit
exit

ip vrf vrf1
 mpls traffic-class copy
 exit
ip vrf vrf2
 mpls traffic-class value 5
 exit

router bgp 300
 ip vrf vrf1
 route-target export 300 1
 route-target import 300 1
 route-distinguisher 300 1
 exit
 ip vrf vrf2
 route-target export 300 2
 route-target import 300 2
 route-distinguisher 300 2
 exit

router-id 2.2.2.2
neighbor 192.168.107.20 remote-as 300
neighbor 192.168.107.20 update-source node1_loopback

address-family vpnv4
 neighbor 192.168.107.20 activate
 neighbor 192.168.107.20 send-community both
 neighbor 192.168.107.20 next-hop-self
 exit

address-family ipv4 vrf vrf1
 redistribute connected
 exit

address-family ipv4 vrf vrf2
 redistribute connected
 exit

interface interface_to_internet
 ip address 192.168.109.65/24
 mpls ip
 exit
router ospf
 network 192.168.109.0/24 area 0.0.0.0
 exit
IPv6 Support for BGP MPLS VPNs

Overview

The ASR 5x00 supports VPNv6 as described in RFC 4659 – BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN.

An IPv6 VPN is connected over an IPv6 interface or sub-interface to the Service Provider (SP) backbone via a PE router. The site can be both IPv4 and IPv6 capable. Each VPNv6 has its own address space which means a given address denotes different systems in different VPNs. This is achieved via a VPNv6 address-family which prepends a Route Distinguisher (RD) to the IP address.

A VPNv6 address is a 24-byte quantity beginning with an 8-byte RD and ending with a 16-byte IPv6 address. When a site is IPv4 and IPv6 capable, the same RD can be used for the advertisement of both IPv4 and IPv6 addresses.

The system appends RD to IPv6 routes and exchanges the labeled IPv6-RD using the VPNv6 address-family. The Address Family Identifier (AFI) and Subsequent Address Family Identifier (SAFI) fields for VPNv6 routes will be set to 2 and 128 respectively.

The IPv6 VPN traffic will be transported to the BGP speaker via IPv4 tunneling. The BGP speaker advertises to its peer a Next Hop Network Address field containing a VPN-IPv6 address whose 8-octet RD is set to zero and whose 16-octet IPv6 address is encoded as an IPv4-mapped IPv6 address (RFC 4291) containing the IPv4 address of the advertising router. It is assumed that only EBGP peering will be used to exchange VPNv6 routes.

Support for VPN-IPv6 assumes the following:

- Dual Stack (IPv4/IPv6) routing
- IPv6 pools in VRFs
- BGP peering over a directly connected IPv4 interface

See the figure below.

Figure 18. IPv6-RD Support for VPNv6
Sample Configuration

This example assumes three VRFs. VRF 1 has only IPv4 routes, VRF 2 has both IPv4 and IPv6 routes, and VRF 3 has only IPv6 routes.

Configure VRFs.

```
ip vrf vrf1
exit
ip vrf vrf2
exit
ip vrf vrf3
exit
```

Enable MPLS BGP forwarding.

```
mpls bgp forwarding
```

Configure pools.

```
ip pool vrf1-pool 51.52.53.0 255.255.255.0 private 0 vrf vrf1
exit
ip pool vrf2-pool 51.52.53.0 255.255.255.0 private 0 vrf vrf2
exit
ipv6 pool vrf2-v6pool prefix 2005:0101::/32 private 0 vrf vrf2
exit
ipv6 pool vrf3-v6pool prefix 2005:0101::/32 private 0 vrf vrf3
exit
```

Configure interfaces.

```
interface ce_interface_to_rtr
   ip address 192.168.110.90 255.255.255.0
exit
interface ce_v6_interface
   ip address 2009:0101:0101:0101::1/96
exit
interface ce_loopback loopback
   ip address 52.1.2.3 255.255.255.255
```

Figure 19. VPNv6 Sample Configuration
exit
interface vrf1-loop loopback
 ip vrf forwarding vrf1
 ip address 1.52.53.54 255.255.255.255
exit
interface vrf2-loop loopback
 ip vrf forwarding vrf2
 ip address 2.52.53.54 255.255.255.255
exit
interface vrf2-v6loop loopback
 ip vrf forwarding vrf2
 ip address 2005:0202:0101::1/128
exit
interface vrf3-v6loop loopback
 ip vrf forwarding vrf3
 ip address 2005:0303:0101::1/128
exit

Configure BGP along with address families and redistribution rules.

router bgp 800
 router-id 1.1.1.1
 neighbor 192.168.110.20 remote-as 1003
 neighbor 192.168.110.20 activate
 address-family vpnv4
 neighbor 192.168.110.20 activate
 neighbor 192.168.110.20 send-community both
 exit
 address-family vpnv6
 neighbor 192.168.110.20 activate
 neighbor 192.168.110.20 send-community both
 exit
 ip vrf vrf1
 route-distinguisher 800 1
 route-target export 800 1
 route-target import 800 1
 exit
 address-family ipv4 vrf vrf1
 redistribute connected
 redistribute static
 exit
 ip vrf vrf2
 route-distinguisher 800 2
 route-target export 800 2
 route-target import 800 2
 exit
 address-family ipv4 vrf vrf2
 redistribute connected
 redistribute static
 exit
 address-family ipv6 vrf vrf2
 redistribute connected
 redistribute static
exit
ip vrf vrf3
 route-distinguisher 800 3
 route-target export 800 3
 route-target import 800 3
exit
address-family ipv6 vrf vrf3
 redistribute connected
 redistribute static
exit

Configure APNs.

apn walmart51.com
 selection-mode sent-by-ms
 accounting-mode none
 aaa group walmart-group
 authentication pap 1 chap 2 allow-noauth
 ip context-name Gi_ce
 ip address pool name vrf1-pool
exit
apn amazon51.com
 selection-mode sent-by-ms
 accounting-mode none
 aaa group amazon-group
 authentication pap 1 chap 2 allow-noauth
 ip context-name Gi_ce
 ip address pool name vrf2-pool
 ipv6 address prefix-pool vrf2-v6pool
exit
apn apple51.com
 selection-mode sent-by-ms
 accounting-mode none
 aaa group apple-group
 authentication pap 1 chap 2 allow-noauth
 ip context-name Gi_ce
 ipv6 address prefix-pool vrf3-v6pool
exit
aaa-group amazon-group
 radius ip vrf vrf2
aaa group default
exit
gtpp group default
exit
ip igmp profile default
exit

Bind physical interfaces with the port.
VPN-Related CLI Commands

VPN-related features and functions are supported across several CLI command modes. The following tables identify commands associated with configuration and monitoring of VPN-related functions.

For detailed information regarding the use of the commands listed below, see the Command Line Interface Reference.

Table 37. VPN-Related Configuration Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Address-Family (IPv4/IPv6)</td>
<td><code>neighbor ip_address activate</code></td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (IPv4/IPv6)</td>
<td>`neighbor ip_address send community { both</td>
<td>extended</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (IPv4/IPv6)</td>
<td><code>redistribute connected</code></td>
<td>Redistributes routes into BGP from another protocol as BGP neighbors.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (VPNv4)</td>
<td><code>neighbor ip_address activate</code></td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (VPNv4)</td>
<td>`neighbor ip_address send community { both</td>
<td>extended</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (VRF)</td>
<td><code>neighbor ip_address activate</code></td>
<td>Enables the exchange of routing information with a peer router.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (VRF)</td>
<td>`neighbor ip_address send community { both</td>
<td>extended</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Address-Family (VRF)</td>
<td><code>redistribute connected</code></td>
<td>Redistributes routes into BGP from another protocol as BGP neighbors.</td>
</tr>
<tr>
<td>Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td>`address-family { ipv4 vrf vrf_name</td>
<td>vpnv4 }`</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td>`address-family { ipv6 vrf vrf_name</td>
<td>vpnv6 }`</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Configuration Mode</td>
<td><code>ip vrf vrf_name</code></td>
<td>Adds a VRF to BGP and switches to the VRF Configuration mode to allow configuration of BGP attributes for the VRF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP IP VRF Configuration Mode</td>
<td>`route-distinguisher { as_value</td>
<td>ip_address } rd_value`</td>
</tr>
<tr>
<td>CLI Mode</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>BGP IP VRF</td>
<td>`route-target { both</td>
<td>import</td>
</tr>
<tr>
<td>Context</td>
<td><code>ip pool pool_name addr_range vrf vrf_name { mpls-label input inlabel1 output outlabel1 outlabel2 }</code></td>
<td>Configures a pool into the specified VRF. This parameter must be specified with the Next-Hop parameter. <code>inlabel1</code> is the MPLS label that identifies inbound traffic destined for this pool. <code>outlabel1</code> and <code>outlabel2</code> specify the MPLS labels to be added to packets sent for subscribers from this pool.</td>
</tr>
<tr>
<td>Context</td>
<td><code>ip vrf vrf_name</code></td>
<td>Creates a VRF and assigns a VRF-ID. A VRF is created in the router.</td>
</tr>
<tr>
<td>Context</td>
<td><code>ipv6 pool pool_name vrf vrf_name</code></td>
<td>Associates the pool with that VRF.</td>
</tr>
<tr>
<td>Context</td>
<td><code>mpls bgp forwarding</code></td>
<td>Globally enables MPLS Border Gateway Protocol (BGP) forwarding.</td>
</tr>
<tr>
<td>Context</td>
<td><code>mpls exp value</code></td>
<td>Sets the default behavior as Best Effort using a zero value in the 3-bit MPLS EXP header. This value applies to all the VRFs in the context. The default behavior is to copy the DSCP value of mobile subscriber traffic to the EXP header, if there is no explicit configuration for DSCP to EXP (via the <code>mpls map-dscp-to-exp dscp n exp m</code> command). <code>mpls exp</code> disables the default behavior and sets the EXP value to the configured <code>value</code>.</td>
</tr>
<tr>
<td>Context</td>
<td><code>mpls ip</code></td>
<td>Globally enables the MPLS forwarding of IPv4 packets along normally routed paths.</td>
</tr>
<tr>
<td>Context</td>
<td>`radius change-authorize-nas-ip ip_address ip_address { encrypted</td>
<td>key } value port port_num mpls input inlabel output outlabel1 outlabel2`</td>
</tr>
<tr>
<td>Ethernet Interface</td>
<td><code>mpls ip</code></td>
<td>Enables dynamic MPLS forwarding of IP packets on this interface.</td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>clear ip bgp peer</code></td>
<td>Clears BGP sessions.</td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>lsp-ping ip_prefix_FEC</code></td>
<td>Checks MPLS Label-Switched Path (LSP) connectivity for the specified forwarding equivalence class (FEC). It must be followed by an IPv4 or IPv6 FEC prefix.</td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>lsp-traceroute ip_prefix_FEC</code></td>
<td>Discovers MPLS LSP routes that packets actually take when traveling to their destinations. It must be followed by an IPv4 or IPv6 FEC prefix.</td>
</tr>
<tr>
<td>IP VRF Context</td>
<td><code>mpls map-dscp-to-exp dscp dscp_bit_value exp exp_bit_value</code></td>
<td>Maps the final differentiated services code point (DSCP) bit value in the IP packet header to the final Experimental (EXP) bit value in the MPLS header for incoming traffic.</td>
</tr>
</tbody>
</table>
VPN-Related CLI Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP VRF Context Configuration Mode</td>
<td>mpls map-exp-to-dscp exp exp_bit_value dscp dscp_bit_value</td>
<td>Maps the incoming EXP bit value in the MPLS header to the internal DSCP bit value in IP packet headers for outgoing traffic.</td>
</tr>
<tr>
<td>MPLS-IP Configuration Mode</td>
<td>protocol ldp</td>
<td>Creates the MPLS protocol family configuration modes, or configures an existing protocol and enters the MPLS-LDP Configuration Mode in the current context. This command configures the protocol parameters for the MPLS protocol family.</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>advertise-labels { explicit-null</td>
<td>implicit-null }</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>discovery { hello { hello-interval seconds</td>
<td>hold-interval seconds }</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>enable</td>
<td>Enables Label Distribution Protocol (LDP).</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>router-id ip_address</td>
<td>Configures the LDP Router ID.</td>
</tr>
<tr>
<td>MPLS-LDP Configuration Mode</td>
<td>session timers { hold-interval seconds</td>
<td>keepalive-interval seconds }</td>
</tr>
</tbody>
</table>

Table 38. VPN-Related Monitoring Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Mode show Commands</td>
<td>show ip bgp neighbors</td>
<td>Displays information regarding BGP neighbors.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>show ip bgp vpnv4 { all</td>
<td>route-distinguisher</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>show ip bgp vpnv6</td>
<td>Displays contents of VPNv6 routing table.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>show ip bgp vpnv6 { all</td>
<td>route-distinguisher</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>show ip pool</td>
<td>Displays pool details including the configured VRF.</td>
</tr>
<tr>
<td>Exec Mode show Commands</td>
<td>show mpls cross-connect</td>
<td>Displays MPLS cross-connect information. MPLS tunnel cross-connects between interfaces and Label-Switched Paths (LSPs) connect two distant interface circuits of the same type via MPLS tunnels that use LSPs as the conduit.</td>
</tr>
</tbody>
</table>
VPN-Related CLI Commands

<table>
<thead>
<tr>
<th>CLI Mode</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Mode</td>
<td><code>show mpls ftm [vrf vrf_name]</code></td>
<td>Displays MPLS FEC-to-NHLFE (FTN) table information.</td>
</tr>
<tr>
<td>show Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>show mpls ftm [vrf vrf_name]</code></td>
<td>Displays contents of the MPLS FTN table for a specified VRF.</td>
</tr>
<tr>
<td>show Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>show mpls ilm</code></td>
<td>Displays MPLS Incoming Label Map (ILM) table information.</td>
</tr>
<tr>
<td>show Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>show mpls ldp</code></td>
<td>Displays the MPLS LDP information.</td>
</tr>
<tr>
<td>show Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exec Mode</td>
<td><code>show mpls next-hop-label-forwarding-entry</code></td>
<td>Displays MPLS Next-Hop Label Forwarding Entry (NHLFE) table information.</td>
</tr>
<tr>
<td>show Commands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 19
Content Service Steering

This chapter provides information on configuring Content Service Steering (CSS). The product administration guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model as described in the respective product administration guide, before using the procedures described below.

Important: Internal CSS is a generic feature, if an ECSv2 license is installed on your system, internal CSS can be enabled. A separate license is not required to enable internal CSS. Contact your local Cisco account representative for information on how to obtain a license.

This chapter contains the following topics:

- Overview
- Configuring Internal Content Service Steering
Overview

Content Service Steering (CSS) selectively directs subscriber traffic to In-line services internal to the system based on data content presented by mobile subscribers. CSS is a broad term that includes features such as NAT, HTTP redirection, and DNS redirection.

CSS uses Access Control Lists (ACLs) to redirect subscriber traffic flows. ACLs control the flow of packets into and out of the system. ACLs consist of “rules” (ACL rules) or filters that control the action taken on packets matching the filter criteria.

ACLs are configurable on a per-context basis and applies to a subscriber through either a subscriber profile (or an APN profile in the destination context. For additional information, refer to the Access Control Lists chapter.
Configuring Internal Content Service Steering

To configure and activate a single CSS service for redirecting all of a subscriber’s IP traffic to an internal in-line service:

Step 1 Define an IP ACL as described in Defining IP Access Lists for Internal CSS.

Step 2 Optional: Apply an ACL to an individual subscriber as described in Applying an ACL to an Individual Subscriber (Optional).

Step 3 Optional: Apply a single ACL to multiple subscribers as described in Applying an ACL to Multiple Subscribers (Optional).

Step 4 Optional: Apply an ACL to multiple subscribers via APNs as described in Applying an ACL to Multiple Subscribers via APNs (Optional).

Step 5 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Important: Commands used in the configuration examples in this section provide base functionality to the extent that the most common or likely commands and/or keyword options are presented. In many cases, other optional commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands. Not all commands or keywords/variables may be supported or available. Availability varies on the platform type and installed license(s).

Defining IP Access Lists for Internal CSS

IP ACLs specify what type of subscriber traffic and which direction (uplink, downlink, or both) traffic is redirected. The IP ACL must be specified in the context in which subscriber authentication is performed.

Caution: To minimize the risk of data loss, do not make configuration changes to ACLs while the system is facilitating subscriber sessions.

Use the following configuration example to define an IP ACL for internal CSS; start in the Exec mode of the CLI:

```plaintext
configure

context context_name

ip access-list acl_name

redirect css service service_name keywords options

end
```
Notes:

- `service_name` must be an ACL service name.
- For information on the keywords and options available with the `redirect css service` command, see the ACL Configuration Mode Commands chapter in the Command Line Interface Reference.
- For IPv6 ACLs, the same configurations must be done in the IPv6 ACL Configuration Mode. See the IPv6 ACL Configuration Mode Commands chapter in the Command Line Interface Reference.

Applying an ACL to an Individual Subscriber (Optional)

For information on how to apply an ACL to an individual subscriber, refer to the Applying an ACL to an Individual Subscriber section of the Access Control Lists chapter.

Applying an ACL to Multiple Subscribers (Optional)

IP ACLs are applied to subscribers via attributes in their profiles. The subscriber profile can be configured locally on the system or remotely on a RADIUS server.

The system provides for the configuration of subscriber functions that serve as default values when specific attributes are not contained in the individual subscriber’s profile. When configured properly, the functions can be used to apply an ACL to:

- All subscribers facilitated within a specific context by applying the ACL to the profile of the subscriber named default.
- All subscribers facilitated by specific services by applying the ACL to a subscriber profile and then using the default subscriber command to configure the service to use that subscriber as the “default” profile.

Applying an ACL to the Subscriber Named default (Optional)

For information on how to apply an ACL to the default subscriber, refer to the Applying an ACL to the Subscriber Named default section in the Access Control Lists chapter.

Applying an ACL to Service-specified Default Subscribers (Optional)

For information on how to apply an ACL to the subscriber to be used as the “default” profile by various system services, refer to the Applying an ACL to Service-specified Default Subscribers section in the Access Control Lists chapter.

Applying an ACL to Multiple Subscribers via APNs (Optional)

IP ACLs are applied to subscribers via attributes in their profiles. The subscriber profile can be configured locally on the system or remotely on a RADIUS server.

To reduce configuration time, ACLs can alternatively be applied to APN templates. When configured, any subscriber packets facilitated by the APN template would then have the associated ACL applied.

For information on how to apply an ACL to multiple subscribers via APNs, refer to the Applying a Single ACL to Multiple Subscribers via APNs section in the Access Control Lists chapter.
Chapter 20
Session Recovery

With robust hardware failover and redundancy protection, any card-level hardware failures on the system can quickly be corrected. However, software failures can occur for numerous reasons, often without prior indication.

This chapter describes the Session Recovery feature that provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault.

Important: Session Recovery is a licensed Cisco feature. A separate feature license may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the *Managing License Keys* section of *Software Management Operations.*

This chapter includes the following sections:

- How Session Recovery Works
- Additional ASR 5x00 Hardware Requirements
- Configuring the System to Support Session Recovery
- Recovery Control Task Statistics
How Session Recovery Works

This section provides an overview of how this feature is implemented and the recovery process.

The Session Recovery feature provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault within the system preventing a fully connected user session from being disconnected.

Session recovery is performed by mirroring key software processes (for example, session manager and AAA manager) within the system. These mirrored processes remain in an idle state (standby-mode) wherein they perform no processing, until they may be needed in the event of a software failure (for example, a session manager task aborts).

The system spawns new instances of “standby mode” session and AAA managers for each active control processor (CP) being used. These mirrored processes require both memory and processing resources, which means that additional hardware may be required to enable this feature (see Additional Hardware Requirements).

Other key system-level software tasks, such as VPN manager, are performed on a physically separate packet processing card to ensure that a double software fault (for example, session manager and VPN manager fails at same time on same card) cannot occur. The packet processing card that hosts the VPN manager process is in active mode and reserved by the operating system for this sole use when session recovery is enabled.

There are two modes of session recovery.

- **Task recovery mode**: Wherein one or more session manager failures occur and are recovered without the need to use resources on a standby packet processing card. In this mode, recovery is performed by using the mirrored “standby-mode” session manager task(s) running on active packet processing cards. The “standby-mode” task is renamed, made active, and is then populated using information from other tasks such as AAA manager. In case of Task failure, limited subscribers will be affected and will suffer outage only until the task starts back up.

- **Full packet processing card recovery mode**: Used when a packet processing card hardware failure occurs, or when a planned packet processing card migration fails. In this mode, the standby packet processing card is made active and the “standby-mode” session manager and AAA manager tasks on the newly activated packet processing card perform session recovery.

Session/Call state information is saved in the peer AAA manager task because each AAA manager and session manager task is paired together. These pairs are started on physically different packet processing cards to ensure task recovery.

There are some situations wherein session recovery may not operate properly. These include:

- Additional software or hardware failures occur during the session recovery operation. For example, an AAA manager fails while the state information it contained was being used to populate the newly activated session manager task.

- A lack of hardware resources (packet processing card memory and control processors) to support session recovery.

Important: After a session recovery operation, some statistics, such as those collected and maintained on a per manager basis (AAA Manager, Session Manager, etc.) are in general not recovered, only accounting and billing related information is checkpointed and recovered.

Session Recovery is available for the following functions:

- Any session needing L2TP LAC support (excluding regenerated PPP on top of an HA or GGSN session)
- ASR 5000 only – Closed RP PDSN services supporting simple IP, Mobile IP, and Proxy Mobile IP
Session Recovery

How Session Recovery Works

- CSCF sessions
- ASR 5000 only – eHRPD service (evolved High Rate Packet Data)
- ASR 5000 only – ePDG service (evolved Packet Data Gateway)
- ASR 5000 only – eWAG service (enhanced Wireless Access Gateway)
- GGSN services for IPv4 and PPP PDP contexts
- HA services supporting Mobile IP and/or Proxy Mobile IP session types with or without per-user Layer 3 tunnels
- ASR 5000 only – HNB-GW: HNB Session over IuH
- ASR 5000 only – HNB-GW: HNB-CN Session over IuPS and IuCS
- ASR 5000 only – HNB-GW: SeGW Session IPSec Tunnel
- ASR 5000 only – HSGW services for IPv4
- IPCF (Intelligent Policy Control Function)
- ASR 5000 only – IPSG-only systems (IP Services Gateway)
- LNS session types (L2TP Network Server)
- MME (Mobility Management Entity)
- ASR 5000 only – NEMO (Network Mobility)
- P-GW services for IPv4
- ASR 5000 only – PDG/TTG (Packet Data Gateway/Tunnel Termination Gateway)
- ASR 5000 only – PDIF (Packet Data Interworking Function)
- PDSN services supporting simple IP, Mobile IP, and Proxy Mobile IP
- S-GW (Serving Gateway)
- SaMOG (S2a Mobility over GTP) Gateway (CGW and MRME)
- ASR 5000 only – SAE-GW (System Architecture Evolution Gateway)
- SCM (Service Control Manager)
- ASR 5000 only – SGSN services (3G and 2.5G services) for IPv4 and PPP PDP contexts

Session recovery is not supported for the following functions:

- Destination-based accounting recovery
- GGSN network initiated connections
- GGSN session using more than 1 service instance
- MIP/L2TP with IPSec integration
- MIP session with multiple concurrent bindings
- Mobile IP sessions with L2TP
- Multiple MIP sessions

Important: Always refer to the Administration Guides for individual products for other possible session recovery and Interchassis Session Recovery (ICSR) support limitations.
When session recovery occurs, the system reconstructs the following subscriber information:

- Data and control state information required to maintain correct call behavior.
- A minimal set of subscriber data statistics; required to ensure that accounting information is maintained.
- A best-effort attempt to recover various timer values such as call duration, absolute time, and others.
- The idle time timer is reset to zero and the re-registration timer is reset to its maximum value for HA sessions to provide a more conservative approach to session recovery.

Important: Any partially connected calls (for example, a session where HA authentication was pending but has not yet been acknowledged by the AAA server) are not recovered when a failure occurs.

Additional ASR 5x00 Hardware Requirements

Because session recovery requires numerous hardware resources, such as memory, control processors, NPU processing capacity, some additional hardware may be required to ensure that enough resources are available to fully support this feature.

Important: A minimum of four packet processing cards (three active and one standby) per individual chassis is required to use this feature.

To allow for complete session recovery in the event of a hardware failure during a packet processing card migration, a minimum of three active packet processing cards and two standby packet processing cards should be deployed.

To assist you in your network design and capacity planning, consider the following factors:

- Subscriber capacity is decreased depending on the hardware configuration. A fully configured chassis would experience a smaller decrease in subscriber capacity versus a minimally configured chassis.
- The amount by which control transaction processing capacity is reduced.
- The reduction in subscriber data throughput.
- The recovery time for a failed software task.
- The recovery time for a failed packet processing card.

A packet processing card migration may temporarily impact session recovery as hardware resources (memory, processors, etc.) that may be needed are not available during the migration. To avoid this condition, a minimum of two standby packet processing cards should be configured.
Configuring the System to Support Session Recovery

The following procedures allow you to configure the session recovery feature for either an operational system that is currently in-service (able to accept incoming calls) or a system that is out-of-service (not part of your production network and, therefore, not processing any live subscriber/customer data).

Important: The session recovery feature, even when the feature use key is present, is disabled by default on the system.

Enabling Session Recovery

As noted earlier, session recovery can be enabled on a system that is out-of-service (OOS) and does not yet have any contexts configured, or on an in-service system that is currently capable of processing calls. However, if the system is in-service, it must be restarted before the session recovery feature takes effect.

Enabling Session Recovery on an Out-of-Service System

The following procedure is for a system that does not have any contexts configured.

To enable the session recovery feature on an out-of-service system, follow the procedure below. This procedure assumes that you begin at the Exec mode prompt.

Step 1 At the Exec mode prompt, verify that the session recovery feature is enabled via the session and feature use licenses on the system by running the show license info command.

Important: If the current status of the Session Recovery feature is Disabled, you cannot enable this feature until a license key is installed in the system.

Step 2 Use the following configuration example to enable session recovery.

 configure
 require session recovery
 end

Step 3 Save your configuration as described in Verifying and Saving Your Configuration.

The system, when started, enables session recovery, creates all mirrored “standby-mode” tasks, and performs packet processing card reservations and other operations automatically.

Step 4 After the system has been configured and placed in-service, you should verify the preparedness of the system to support this feature as described in Viewing Session Recovery Status.
Enabling Session Recovery on an In-Service System

When enabling session recovery on a system that already has a saved configuration, the session recovery commands are automatically placed before any service configuration commands in the configuration file.

To enable the session recovery feature on an in-service system, follow the procedure below. This procedure assumes that you begin at the Exec mode prompt.

Step 1 At the Exec mode prompt, verify that the session recovery feature is enabled via the session and feature use licenses on the system by running the *show license info* command:

```
Important: If the current status of the Session Recovery feature is Disabled, You cannot enable this feature until a license key is installed in the system.
```

Step 2 Use the following configuration example to enable session recovery.

```
configure

    require session recovery

end
```

```
Important: This feature does not take effect until after the system has been restarted.
```

Step 3 Save your configuration as described in *Verifying and Saving Your Configuration*.

Step 4 Perform a system restart by entering the *reload* command:

The following prompt appears:

```
Are you sure? [Yes|No]:
```

Confirm your desire to perform a system restart by entering *yes*.

The system, when restarted, enables session recovery and creates all mirrored “standby-mode” tasks, performs packet processing card reservations, and other operations automatically.

Step 5 After the system has been restarted, you should verify the preparedness of the system to support this feature as described in *Viewing Session Recovery Status*.

```
Important: More advanced users may opt to simply insert the *require session recovery* command syntax into an existing configuration file using a text editor or other means, and then applying the configuration file manually. Exercise caution when doing this to ensure that this command is placed among the first few lines of any existing configuration file; it must appear before the creation of any non-local context.
```

Disabling the Session Recovery Feature

To disable the session recovery feature on a system, enter the `no require session recovery` command from the Global Configuration mode prompt.

Important: If this command is issued on an in-service system, then the system must be restarted by issuing the `reload` command.

Viewing Session Recovery Status

To determine if the system is capable of performing session recovery, when enabled, enter the `show session recovery status verbose` command from the Exec mode prompt.

The output of this command should be similar to the examples shown below.

```
[local]host_name# show session recovery status
Session Recovery Status:
 Overall Status   : SESSMGR Not Ready For Recovery
 Last Status Update: 1 second ago

[local]host_name# show session recovery status
Session Recovery Status:
 Overall Status   : Ready For Recovery
 Last Status Update: 8 seconds ago

[local]host_name# show session recovery status verbose
Session Recovery Status:
 Overall Status   : Ready For Recovery
 Last Status Update: 2 seconds ago

<table>
<thead>
<tr>
<th>cpu state</th>
<th>---- sessmgr----</th>
<th>---- aaamgr----</th>
<th>demux</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>active</td>
<td>standby</td>
<td>active</td>
<td>standby</td>
</tr>
<tr>
<td>1/1 Active</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/2 Active</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/3 Active</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2/1 Active</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2/2 Active</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/3 Active</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3/0 Active</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2 Active</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/1 Standby</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4/2 Standby</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/3 Standby</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
[local]host_name#
```
Viewing Recovered Session Information

To view session state information and any session recovery status, enter the following command:

```
show subscriber debug-info { callid id | msid id | username name }
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>callid id</td>
<td>Displays subscriber information for the call specified by id. The call ID is an 8-byte hexadecimal number.</td>
</tr>
<tr>
<td>msid id</td>
<td>Displays information for the mobile user identified by an MSID from 7 to 16 digits specified as an IMSI, MIN, or RMI. Wildcard characters $ and * are allowed. The * wildcard matches multiple characters and the $ wildcard matches a single character. If you do not want the wildcard characters interpreted as a wildcard enclose them in single quotes (‘'). For example; ‘$’.</td>
</tr>
<tr>
<td>username name</td>
<td>Displays information for connections for the subscriber identified by a previously configured username. name is a sequence of alphanumeric characters and/or wildcard characters ('$' and ‘*’) from 1 to 127 characters in length. The * wildcard matches multiple characters and the $ wildcard matches a single character. If you do not want the wildcard characters interpreted as wildcard enclose them in single quotes (‘’). For example; ‘$’.</td>
</tr>
</tbody>
</table>

The following example shows the output of this command both before and after a session recovery operation has been performed. The “Redundancy Status” fields in this example have been bold-faced for clarity.

```
username: user1  callid: 01callbl  msid: 0000100003
Card/Cpu: 4/2
Sessmgr Instance: 7
Primary callline:
Redundancy Status: Original Session
Checkpoints  Attempts  Success  Last-Attempt  Last-Success
Full:  69  68  29800ms  29800ms
Micro:  206  206  20100ms  20100ms
Current state: SMGR_STATE_CONNECTED
FSM Event trace:
  State            Event
  SMGR_STATE_OPEN  SMGR_EVT_NEWCALL
  SMGR_STATE_NEWCALL_ARRIVED  SMGR_EVT_ANSWER_CALL
  SMGR_STATE_NEWCALL_ANSWERED  SMGR_EVT_LINE_CONNECTED
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_LINK_CONTROL_UP
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_AUTH_REQ
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_IPADDR_ALLOC_SUCCESS
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_AUTH_SUCCESS
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_UPDATE_SESS_CONFIG
  SMGR_STATE_LINE_CONNECTED  SMGR_EVT_LOWER_LAYER_UP
Data Reorder statistics
  Total timer expiry:  0                Total flush (tmr expiry):  0
  Total no buffers:  0                Total flush (no buffers):  0
  Total flush (queue full):  0          Total flush (out of range):  0
  Total flush (svc change):  0          Total out-of-seq pkt drop:  0
  Total out-of-seq arrived:  0
IPV4 Reassembly Statistics:
  Success:  0                In Progress:  0
  Failure (timeout):  0                Failure (no buffers):  0
```
Failure (other reasons): 0
Redirected Session Entries:
 Allowed: 2000 Current: 0
 Added: 0 Deleted: 0
 Revoked for use by different subscriber: 0
Peer callline:
Redundancy Status: Original Session
Checkpoints Attempts Success Last-Attempt Last-Success
 Full: 0 0 0ms 0ms
 Micro: 0 0 0ms 0ms
Current state: SMGR_STATE_CONNECTED
FSM Event trace:
 State Event
 SMGR_STATE_LINE_CONNECTED SMGR_EVT_LOWER_LAYER_UP
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS
 SMGR_STATE_CONNECTED SMGR_EVT_REQ_SUB_SESSION
 SMGR_STATE_CONNECTED SMGR_EVT_RSP_SUB_SESSION
 SMGR_STATE_CONNECTED SMGR_EVT_ADD_SUB_SESSION
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ
 SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS
Data Reorder statistics
 Total timer expiry: 0 Total flush (tmr expiry): 0
 Total no buffers: 0 Total flush (no buffers): 0
 Total flush (queue full): 0 Total flush (out of range): 0
 Total flush (svc change): 0 Total out-of-seq pkt drop: 0
 Total out-of-seq arrived: 0
IPv4 Reassembly Statistics:
 Success: 0 In Progress: 0
 Failure (timeout): 0 Failure (no buffers): 0
 Failure (other reasons): 0
Redirected Session Entries:
 Allowed: 2000 Current: 0
 Added: 0 Deleted: 0
 Revoked for use by different subscriber: 0

Notice that in the example above, where the session has been recovered/recreated, that state events (FSM Event State field) no longer exist. This field is re-populated as new state changes occur.
Recovery Control Task Statistics

Recovery Control Task (RCT) statistics show the following:

- Recovery action taken – Migration, Shutdown, Switchover
- Type of event – Planned or Unplanned
- From card to card – slot numbers
- Start time – YYY-MM-DD+hh:mm:ss.sss
- Duration – seconds
- Card failure device (such as CPU\textit{n})
- Card failure reason
- Card is in usable state or not failed
- Recovery action status – Success or failure reason
- If recovery action failed, failure time stamp
- If recovery action failed, failure task facility name
- If recovery action failed, failure instance number

show rct stats Command

The Exec mode \texttt{show rct stats} command employs the following syntax:

\texttt{show rct stats [verbose]}

\textbf{Without} the \texttt{verbose} keyword, a summary output is displayed as show in the example below:

\begin{verbatim}
RCT stats Summary

Migrations = 0
Switchovers = 1, Average time - 25.855 sec
\end{verbatim}

With the \texttt{verbose} keyword the detailed statistics show in \texttt{Sample Output for show rct stats verbose} are provided.
Sample Output for show rct stats verbose

```
show rct stats verbose

RCT stats Details (Last 5 Actions)

Stats 1:
Action : Shutdown
From : 4
To : 5
Start Time : 2013-Aug-30+03:02:00.132
Duration : 002.804 sec
Is Card Usable : Yes
Failure Reason : CPU_CRITICAL_TASK_FAILURE
Failure Device : CPU_0
Recovery Status : Success
Facility : N.A
Instance : N.A

Stats 2:
Action : Shutdown
From : 12
To : 13
Start Time : 2013-Aug-30+03:02:10.100
Duration : 002.901 sec
Is Card Usable : Yes
Failure Reason : NPU_LC_CONNECT_TOP_FAIL
Failure Device : PAC_LC_CONNECT_HARDWARE
Recovery Status : Success
Facility : N.A
Instance : N.A

Stats 3:
Action : Migration
From : 7
To : 11
Start Time : 2013-Aug-30+03:03:40.120
Duration : 003.423 sec
Is Card Usable : Yes
Failure Reason : N.A.
Failure Device : N.A
Recovery Status : Success
Facility : N.A
Instance : N.A

Stats 4:
Action : Migration
From : 7
```
Recovery Control Task Statistics

To : 11
Start Time : 2013-Aug-30+03:03:41.256
Duration : 005.222 sec
Is Card Usable : Yes
Failure Reason : N.A.
Failure Device : N.A
Recovery Status : TASK_MIGRATION_FAIL_PREMIGRATE
Facility : vpnmgr
Instance : 13

Stats 5:
Action : Migration
From : 6
To : 7
Start Time : 2013-Aug-30+04:18:30.106
Duration : 004.134 sec
Is Card Usable : Yes
Failure Reason : N.A.
Failure Device : N.A
Recovery Status : TASK_MIGRATION_FAIL_RENAME
Facility : sessmgr
Instance : 63

RCT stats Summary

Migrations = 3, Average time = 4.260 sec
Switchovers = 0
Chapter 21
Interchassis Session Recovery

This chapter describes how to configure Interchassis Session Recovery (ICSR). The product Administration Guides provide examples and procedures for configuration of basic services on the system. You should select the configuration example that best meets your service model, and configure the required elements for that model as described in the respective product Administration Guide, before using the procedures described below.

Important: ICSR is a licensed Cisco feature that requires a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of Software Management Operations.

This chapter discusses the following:

- Overview
- ICSR Operation
- Configuring Interchassis Session Recovery (ICSR)
- Updating the Operating System
Overview

The ICSR feature provides the highest possible availability for continuous call processing without interrupting subscriber services. ICSR allows the operator to configure geographically distant gateways for redundancy purposes. In the event of a node or gateway failure, ICSR allows sessions to be transparently routed around the failure, thus maintaining the user experience. ICSR also preserves session information and state.

ICSR is implemented through the use of redundant chassis. The chassis are configured as primary and backup, with one being active and one standby. Both chassis are connected to the same AAA server. A checkpoint duration timer controls when subscriber data is sent from the active chassis to the standby chassis. If the active chassis handling the call traffic goes out of service, the standby chassis transitions to the active state and continues processing the call traffic without interrupting the subscriber session.

The chassis determine which is active through a proprietary TCP-based connection known as the Service Redundancy Protocol (SRP) link. The SRP link is used to exchange Hello messages between the primary and backup chassis and must be maintained for proper system operation.

ICSR licenses are currently supported for the following services:

- eHRPD – Evolved High Rate Packet Data
- ePDG – Evolved Packet Data Gateway
- GGSN – Gateway GPRS Support Node
- HA – Home Agent
- IPSG – IP Services Gateway
- MME – Mobility Management Entity
- P-GW – Packet Data Network Gateway
- PDSN – Packet Data Serving Node
- S-GW – Serving Gateway
- SAEGW – System Architecture Evolution Gateway

L2TP Access Concentrator (LAC) functionality for ICSR is supported by the following services:

- eGTP – enhanced GPRS Tunneling Protocol
- GGSN – Gateway GPRS Support Node
- SAEGW – System Architecture Evolution Gateway

L2TP Access Concentrator (LAC) functionality for ICSR is not supported by the following services:

- HA – Home Agent
- PMIP - P-GW – Proxy Mobile IP - Packet Data Network Gateway

L2TP Network Server (LNS) functionality for ICSR is not supported by any services.

Important: For releases prior to 17.0, ICSR should not be configured on chassis supporting L2TP calls.
Important: ICSR support for LAC requires a separate LAC license, as well as an Inter-Chassis Session Recovery license.

Important: Contact your Cisco account representative to verify whether a specific service supports ICSR as an option.

Interchassis Communication

Chassis configured to support ICSR communicate using periodic Hello messages. These messages are sent by each chassis to notify the peer of its current state. The Hello message contains information about the chassis such as its configuration and priority. A dead interval is used to set a time limit for a Hello message to be received from the chassis’ peer. If the standby chassis does not receive an Hello message from the active chassis within the dead interval, the standby chassis transitions to the active state. In situations where the SRP link goes out of service, a priority scheme is used to determine which chassis processes the session. The following priority scheme is used:

- route modifier
- chassis priority
- MIO/UMIO MAC address

Checkpoint Messages

Checkpoint messages are sent from the active chassis to the standby chassis. These messages are sent at specific intervals and contain all the information needed to recreate the sessions on the standby chassis, if that chassis were to become active. Once a session exceeds the checkpoint duration, checkpoint data is collected on the session.

AAA Monitor

AAA servers are monitored using the authentication probe mechanism. AAA servers are considered Up if the authentication-probe receives a valid response. AAA servers are considered Down when the `max-retries count` specified in the configuration of the AAA server has been reached. SRP initiates a switchover when none of the configured AAA servers responds to an authentication probe. AAA probing is only performed on the active chassis.

Important: A switchover event caused by an AAA monitoring failure is non-revertible.

If the newly active chassis fails to monitor the configured AAA servers, it remains as the active chassis until one of the following occurs:

- a manual switchover
- another non-AAA failure event causes the system to switchover
- a CLI command is used to clear the AAA failure flag and allow the chassis to switch to standby
BGP Interaction

The Service Redundancy Protocol implements revertible switchover behavior via a mechanism that adjusts the route modifier value for the advertised loopback/IP Pool routes. The initial value of the route modifier value is determined by the chassis’ configured role and is initialized to a value that is higher than a normal operational value. This ensures that in the event of an SRP link failure and an SRP task failure, the correct chassis is still preferred in the routing domain.

The Active and Standby chassis share current route modifier values. When BGP advertises the loopback and IP pool routes, it converts the route modifier into an autonomous systems (AS) path prepend count. The Active chassis always has a lower route modifier, and thus prepends less to the AS-path attribute. This causes the route to be preferred in the routing domain.

If communication on the SRP link is lost, and both chassis in the redundant pair are claiming to be Active, the previously Active chassis is still preferred since it is advertising a smaller AS-path into the BGP routing domain. The route modifier is incremented as switchover events occur. A threshold determines when the route modifier should be reset to its initial value to avoid rollover.

Requirements

ICSR configurations require the following:

- Two chassis configured for the same service types. The services must be bound on an SRP-activated loopback interface.
- Both chassis must have identical hardware.
- Three contexts:
 - **Redundancy** – to configure the primary and backup chassis redundancy.
 - **Source** – AAA configuration of the specified nas-ip-address must be the IP address of an interface bound to an HA, or any core network service configured within the same context.
 - **Destination** – to configure monitoring and routing to the PDN.
- AAA RADIUS server
- Border Gateway Protocol (BGP) – ICSR uses the route modifier to determine the chassis priority.

Important: ICSR is a licensed Cisco feature. Verify that each chassis has the appropriate license before using these procedures. To do this, log in to both chassis and execute a `show license information` command. Look for “Inter-Chassis Session Recovery”. If the chassis is not licensed, please contact your Cisco account representative.

The following figure shows an ICSR network.
ICSR Operation

This section shows operational flows for ICSR.

The following figure shows an ICSR process flow due to a primary failure.
Figure 21. ICSR Process Flow (Primary Failure)

Primary
- State = Active
- Pass Hello messages.
- Send session checkpoint message after call duration of 60 seconds
- Fails and stops sending hello messages. State = Active
- Hello Message State = Standby
- Hello Message State = Standby
- Hello Message State = Standby
- Recovers and begins sending hello messages. State = Standby
- Receives hello message with backup status of active and transitions to the standby state. State = Standby

Backup
- State = Standby
- Dead Interval (Default = 60 secs)
- Detects that the primary has not sent a hello within the dead-interval and initiates switchover from the standby to the active state. State = Active
- Begins advertising the srp-activated loopback and pool routes into the routing domain, and AAA services are enabled. Begins taking calls. State = Active
- Hello Message State = Standby
- Hello Message State = Standby
The following figure shows an ICSR process flow due to a manual switchover.

Figure 22. ICSR Process Flow (Manual Switchover)

- **Primary**
 - State = Active
 - User initiates ICSR switchover command.
 - State = Active-Pending-Standby
 - Send outstanding checkpoints.
 - State = Standby

- **Backup**
 - State = Standby

- **Switchover Request Message initiating switchover**
 - Waiting for Peer system to respond to switchover request.
 - State = Active-Pending-Standby
 - Switchover Response Message acknowledging successful switchover to Active state.
 - State = Active

- **Session Subsystem retains all checkpoint data.**
 - Session Audit Request
 - Session Audit Response
 - Send Checkpoint data (from newly Active).
 - Session subsystem invalidates old checkpoint data and refreshes with new checkpoints from Active chassis.

- **Switchover complete. Exchange Hello Messages every hello interval.**
Chassis Initialization

When the chassis are simultaneously initialized, they send Hello messages to their configured peer. The peer sends a response, establishes communication between the chassis, and messages are sent that contain configuration information.

During initialization, if both chassis are misconfigured in the same mode - both active (primary) or both standby (backup), the chassis with the highest priority (lowest number set with the ICSR priority command) becomes active and the other chassis becomes the standby.

If the chassis priorities are the same, the system compares the two MAC addresses and the chassis with the higher MIO/UMIO MAC address becomes active. For example, if the chassis have MAC addresses of 00-02-43-03-1C-2B and 00-02-43-03-01-3B, the last 3 sets of octets (the first 3 sets are the vendor code) are compared. In this example, the 03-1C-2B and 03-01-3B are compared from left to right. The first pair of octets in both MAC addresses are the same, so the next pairs are compared. Since the 01 is lower than the 1C, the chassis with the MIO/UMIO MAC address of 00-02-43-03-1C-2B becomes active and the other chassis becomes the standby.

Chassis Operation

This section describes how the chassis communicate, maintain subscriber sessions, and perform chassis switchover.

Chassis Communication

If one chassis in the active state and one in the standby state, they both send Hello messages at each hello interval. Subscriber sessions that exceed the checkpoint session duration are included in checkpoint messages that are sent to the standby chassis. The checkpoint message contains subscriber session information so if the active chassis goes out of service, the backup chassis becomes active and is able to continue processing the subscriber sessions. Additional checkpoint messages occur at various intervals whenever subscriber session information is updated on the standby chassis.

Chassis Switchover

If the active chassis goes out of service, the standby chassis continues to send Hello messages. If the standby chassis does not receive a response to the Hello messages within the dead interval, the standby chassis initiates a switchover. During the switchover, the standby chassis begins advertising its srp-activated loopback and pool routes into the routing domain. Once the chassis becomes active, it continues to process existing AAA services and subscriber sessions that had checkpoint information, and is also able to establish new subscriber sessions.

When the primary chassis is back in service, it sends Hello messages to the configured peer. The peer sends a response, establishes communication between the chassis, and sends Hello messages that contain configuration information. The primary chassis receives an Hello message that shows the backup chassis state as active and then transitions to standby. The Hello messages continue to be sent to each peer, and checkpoint information is now sent from the active chassis to the standby chassis at regular intervals.

When chassis switchover occurs, the session timers are recovered. The access gateway session recovery is recreated with the full lifetime to avoid potential loss of the session and the possibility that a renewal update was lost in the transitional checkpoint update process.
Configuring Interchassis Session Recovery (ICSR)

Important: The ICSR configuration must be the same on the primary and backup chassis. If each chassis has a different Service Redundancy Protocol (SRP) configuration, the session recovery feature does not function and sessions cannot be recovered when the active chassis goes out of service.

This section describes how to configure basic ICSR on each chassis. For information on commands that configure additional parameters and options, refer to the Command Line Interface Reference.

Caution: ICSR should not be configured for chassis supporting L2TP calls.

The procedures described below assume the following:

- The chassis have been installed and configured with core network services.
 - For more configuration information and instructions on configuring services, refer to the respective product Administration Guide.
- In addition, the IP address pools must be **srp activated**.
- AAA server is installed, configured and accessible by both chassis.
 - For more information on configuring the AAA server, refer to the AAA Interface Administration and Reference.
- BGP router installed and configured. See Routing for more information on configuring BGP services.

To configure the ICSR on a primary and/or backup chassis:

Step 1 Configure the SRP context by applying the example configuration in Configuring the Service Redundancy Protocol (SRP) Context.

Step 2 Modify the source context of the core network service by applying the example configuration in Modifying the Source Context for ICSR.

Step 3 Modify the destination context of core network service by applying the example configuration in Modifying the Destination Context for ICSR.

Step 4 Optional: Disable bulk statistics collection on the standby system by applying the example configuration in Disabling Bulk Statistics Collection on a Standby System.

Step 5 Verify your primary and backup chassis configuration by following the steps in Verifying the Primary and Backup Chassis Configuration.

Step 6 Save your configuration as described in Verifying and Saving Your Configuration.
Configuring the Service Redundancy Protocol (SRP) Context

To configure the system to work with ICSR:

Step 1 Create the chassis redundancy context and bind it to the IP address of the primary chassis by applying the example configuration in Creating and Binding the SRP Context.

Step 2 Configure the chassis redundancy context with priority, chassis mode, hello interval, dead-interval and peer IP address by applying the example configuration in Configuring the SRP Context Parameters.

Step 3 Configure the SRP context with interface parameters (including interface name, IP address and port number) for interchassis communication by applying the example configuration in Configuring the SRP Context Interface Parameters.

Step 4 Verify your SRP context configuration by following the steps in Verifying SRP Configuration.

Step 5 Save your configuration as described in Verifying and Saving Your Configuration.

Creating and Binding the SRP Context

Use the example below to create the SRP context and bind it to primary chassis IP address:

```
configure

context srp_ctxt_name [-noconfirm]

  service-redundancy-protocol

    bind address ip_address

end
```

Notes:

- ICSR should be configured and maintained in a separate context.
- Be sure to bind the local IP address to the primary chassis. When configuring the backup chassis, be sure to bind the local IP address to the backup chassis.
Configuring the SRP Context Parameters

This configuration assigns a chassis mode and priority, and also configures the redundancy link between the primary and backup chassis:

```plaintext
configure
  context srp_ctxt_name
    service-redundancy-protocol
    chassis-mode { primary | backup }
    priority priority
    peer-ip-address ip_address
    hello-interval dur_sec
    dead-interval dead_dur_sec
end
```

Notes:
- ICSR should be configured and maintained in a separate context.
- When assigning the chassis mode on the backup chassis be sure to enter the `backup` keyword.
- The `priority` determines which chassis becomes active in the event that both chassis are misconfigured with the same chassis mode; see `Chassis Initialization`. The higher priority chassis has the lower number. Be sure to assign different priorities to each chassis.
- Enter the IP chassis of the backup chassis as the `peer-ip-address` to the primary chassis. Assign the IP address of the primary chassis as the `peer-ip-address` to the backup chassis.
- The `dead-interval` must be at least three times greater than the `hello-interval`. For example, if the hello interval is 10, the dead interval should be at least 30. System performance is severely impacted if the hello interval and dead interval are not set properly.

Configuring the SRP Context Interface Parameters

This procedure configures the communication interface with the IP address and port number within the SRP context. This interface supports interchassis communication.

```plaintext
configure
  context srp_ctxt_name
    service-redundancy-protocol
    peer-ip-address ip_address
    hello-interval dur_sec
end
```
Verifying SRP Configuration

Step 1 Verify that your SRP contexts were created and configured properly by entering the `show srp info` command (Exec Mode).

Sample output for this command as shown. In this example, an SRP context called `srp1` was configured with default parameters.

```
Service Redundancy Protocol:  
-----------------------------------------------
Context:                     srp1
Local Address:               0.0.0.0
Chassis State:               Init
Chassis Mode:                Backup
Chassis Priority:            125
Local Tiebreaker:            00-00-00-00-00-00
Route-Modifier:              34
Peer Remote Address:         0.0.0.0
Peer State:                  Init
Peer Mode:                   Init
Peer Priority:               0
Peer Tiebreaker:             00-00-00-00-00-00
Peer Route-Modifier:         0
Last Hello Message received: -
Peer Configuration Validation: Initial
Last Peer Configuration Error: None
Last Peer Configuration Event: -
Connection State:             None
```
Modifying the Source Context for ICSR

To modify the source context of core service:

Step 1 Add the Border Gateway Protocol (BGP) router AS-path and configure the gateway IP address, neighbor IP address, remote IP address in the source context where the core network service is configured, by applying the example configuration in Configuring BGP Router and Gateway Address.

Step 2 Configure the service redundancy context with the BGP neighbor context and IP address to monitor the BGP link activity by applying the example configuration in Configuring the SRP Context for BGP.

Step 3 Verify your BGP context configuration by following the steps in Verifying BGP Configuration.

Step 4 Save your configuration as described in Verifying and Saving Your Configuration.

Configuring BGP Router and Gateway Address

Use the following example to create the BGP context and network addresses.

```
configure

context source_ctxt_name

router bgp AS_num

    network gw_ip_address

    neighbor neighbor_ip_address remote-as AS_num

end
```

Notes:

• *source_ctxt_name* is the context where the core network service is configured.

Configuring the SRP Context for BGP

Use the following example to configure the BGP context and IP addresses in the SRP context.

```
configure

context srp_ctxt_name

    service-redundancy-protocol

    monitor bgp context source_ctxt_name neighbor_ip_address

end
```

neighbor_ip_address can be entered in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation. Multiple IP addresses can be added per context as IPv4 and/or IPv6 IP addresses.

An ICSR failover is triggered when all BGP peers within a context are down.
Optionally, you can configure SRP peer groups within a context. ICSR failover would then occur if all peers within a group fail. This option is useful in deployments in which a combination of IPv4 and IPv6 peers are spread across multiple paired VLANs, and IPv4 or IPv6 connectivity is lost by all members of a peer group.

A sample configuration for SRP peer groups within a context (“PGWin”) appears below.

```plaintext
monitor bgp context PGWin 10.1.1.16 group 1
monitor bgp context PGWin 10.1.1.17 group 1
monitor bgp context PGWin 69.2.215.0 group 2
monitor bgp context PGWin 69.2.215.1 group 2
monitor bgp context PGWin 2001:4333:201:1102:103:2a1:: group 3
monitor bgp context PGWin 2001:4333:201:1102:103:2a1:0:1 group 3
```

In the above sample configuration, ICSR failover would occur if both addresses in group 1, 2 or 3 lost connectivity.

For additional information refer to the description of the `monitor bgp`, `monitor diameter` and `monitor authentication-probe` commands in the *Service Redundancy Protocol Configuration Mode Commands* chapter of the *Command Line Interface Reference*.

Verifying BGP Configuration

Verify your BGP configuration by entering the `show srp monitor bgp` command (Exec Mode).

Modifying the Destination Context for ICSR

To modify the destination context of core service:

Step 1 Add the BGP router and configure the gateway IP address, neighbor IP address, remote IP address in the destination context where the core network service is configured, by applying the example configuration in *Configuring BGP Router and Gateway Address in Destination Context*.

Step 2 Configure the service redundancy context with BGP neighbor context and IP address to monitor the BGP link activity by applying the example configuration in *Configuring SRP Context for BGP for Destination Context*.

Step 3 Set the subscriber mode to `default` by following the steps in *Setting Subscriber to Default Mode*.

Step 4 Verify your BGP context configuration by following the steps in *Verifying BGP Configuration in Destination Context*.

Step 5 Save your configuration as described in *Verifying and Saving Your Configuration*.

Configuring BGP Router and Gateway Address in Destination Context

Use the following example to create the BGP context and network addresses.

```plaintext
configure

context dest_ctxt_name

router bgp AS_num

network gw_ip_address

neighbor neighbor_ip_address remote-as AS_num
```
Configuring SRP Context for BGP for Destination Context

Use the following example to configure the BGP context and IP addresses in the SRP context.

```
configure
context srp_ctxt_name
  service-redundancy-protocol
  monitor bgp context dest_ctxt_name neighbor_ip_address
end
```

Setting Subscriber to Default Mode

Use the following example to set the subscriber mode to default.

```
configure
context dest_ctxt_name
  subscriber default
end
```

Verifying BGP Configuration in Destination Context

Verify your BGP configuration by entering the `show srp monitor bgp` command (Exec Mode).

Disabling Bulk Statistics Collection on a Standby System

You can disable the collection of bulk statistics from a system when it is in the standby mode of operation.

Important: When this feature is enabled and a system transitions to standby state, any pending accumulated statistical data is transferred at the first opportunity. After that no additional statistics gathering takes place until the system comes out of standby state.

Use the following example to disable the bulk statistics collection on a standby system.

```
configure
  bulkstat mode
    no gather-on-standby
```
Interchassis Session Recovery

Configuring Interchassis Session Recovery (ICSR)

Verifying the Primary and Backup Chassis Configuration

This section describes how to compare the ICSR configuration on both chassis.

Step 1 Enter the `show configuration srp` command on both chassis (Exec mode).

Verify that both chassis have the same SRP configuration information. The output looks similar to following:

```
config
  context source
    interface haservice loopback
      ip address 172.17.1.1 255.255.255.255 srp-activate
    #exit
    radius attribute nas-ip-address address 172.17.1.1
    radius server 192.168.83.2 encrypted key 01abd002c82b4a2c port 1812
    radius accounting server 192.168.83.2 encrypted key 01abd002c82b4a2c port 1813
    ha-service ha-pdsn
      mn-ha-spi spi-number 256 encrypted secret 6c93f7960b726b6f6c93f7960b726b6f
      hash-algorithm md5
      fa-ha-spi remote-address 192.168.82.0/24 spi-number 256 encrypted secret 1088bdd6817f64df
      bind address 172.17.1.1
      #exit
    #exit
  context destination
    ip pool dynamic 172.18.0.0 255.255.0.0 public 0 srp-activate
    ip pool static 172.19.0.0 255.255.240.0 static srp-activate
    #exit
  context srp
    service-redundancy-protocol
    #exit
#exit
```

Configuring Subscriber State Management Audit Process

This audit is to ensures that two ICSR peers are in synch and identifies any discrepancies prior to any scheduled or unscheduled switchover events.

Step 1 Enter the SRP Context mode and enter the `service-redundancy-protocol` command.

Step 2 Enter the `audit daily-start-time` command. Specify the daily start time as an hour and minute. For example, a start time of 06 00 indicates that the audit will begin at 6:00 AM.

Step 3 Enter the `audit periodicity` command. Specify the interval in minutes for generating SRP audit statistics as an integer from 60 through 1440. For example, a periodicity of 90 indicates that SRP audit statistics will be generated every 90 minutes beginning at the specified start time. Default = 60.
A sample configuration sequence appears below.

```
config
  context srp
    service-redundancy-protocol
      audit daily-start-time 06 00
      audit periodicity 90
    end
```

Updating the Operating System

Updating the operating system (StarOS™) on ICSR chassis requires performing an Off-line update of each chassis while it is standby mode. Traffic disruption is minimal since an active chassis will be handling call sessions while the standby chassis is being updated.

The general upgrade sequence is as follows:

- Download the StarOS software image and copy/transfer it to both chassis.
- Save the currently running configurations on both chassis.
- Update the standby backup chassis first.
- Initiate an SRP switchover from the active primary chassis to make the standby backup chassis active.
- Update the standby primary chassis.
- Initiate an SRP switchover from the active backup chassis to make the standby primary chassis active.

The four-part flowchart below shows a more complete view of all the procedures required to complete the StarOS upgrade process.

Caution: Enabling the Demux on MIO/UMIO feature changes resource allocations within the system. This directly impacts an upgrade or downgrade between StarOS versions in ICSR configurations. Contact Cisco TAC for procedural assistance prior to upgrading or downgrading your ICSR deployment.
Figure 23. ICSR Software Upgrade – Part 1

START
Primary Chassis Active

Save Configuration

Copy Build onto Chassis

Copy Config Scripts onto Chassis (optional)

START
Backup Chassis Standby

Save Configuration

Copy Build onto Chassis

Copy Config Scripts onto Chassis (optional)

Fix Problems No

Health Check Passed?

Yes

Fix Problems

SRP Check Passed?

Yes

BGP Check Passed?

Yes

Update Boot Record

Synchronize File Systems

Reload

Optional: Based on network deployment

A

B
Figure 24. ICSR Software Upgrade – Part 2

A

Initiate SRP Switchover

C

B

Optional: Use TAC-prepared Config scripts.

Update Config File

Verify Version

Save Configuration

Synchronize File Systems

Fix Problems

Heath Check Passed?

Yes

SRP Check Passed?

Yes

Optional: Based on network deployment

Fix Problems

BGP Check Passed?

Yes

Allow Time for Session Synchronization

D

355607
Figure 25. ICSR Software Upgrade – Part 3

- Primary Becomes Standby
 - Update Boot Record
 - Reload
 - Update Config File (Optional: Use TAC-prepared Config scripts)
 - Verify Version
 - Save Configuration
 - Synchronize File Systems
 - Health Check Passed?
 - Yes
 - SRP Check Passed?
 - Yes
 - Fix Problems
 - No
 - Fix Problems
 - No
 - AAA Monitor Okay? (Optional: Based on network deployment)
 - No
 - Fix Problems
 - Yes
Figure 26. ICSR Software Upgrade – Part 4

- **E**
 - Optional: Based on network deployment
 - BGP Check Passed?
 - Yes
 - Allow Time for Session Synchronization
 - No
 - Fix Problems
 - Primary Becomes Active
 - Optional: Based on network deployment
 - AAA Monitor Okay?
 - Yes
 - Backup Becomes Standby
 - No
 - Fix Problems
 - Make Test Calls
 - Software Upgrade COMPLETE

- **F**
 - Initiate SRP Switchover
Both ICSR Chassis

Log into the CLI of the primary and backup and perform the tasks described below.

Downloading and Transferring the StarOS Build

Step 1 Verify that there is enough free space on the /flash device to accommodate the new operating system image file by entering the following Exec mode command:

[local]host_name# directory /flash

Step 2 Access to the Cisco support site and download facility is username and password controlled. Download the software image to a network location or physical device (USB stick) from which it can be uploaded to the /flash device.

Step 3 Transfer the new operating system image file to the /flash device on the MIO/UMIO using one of the following methods:

Step a Copy the file from a network location or local device plugged into the MIO/UMIO using the copy command

[local]host_name# copy from_url to_url [-noconfirm]

Step b Transfer the file to the /flash device using an FTP client with access to the system. The FTP client must be configured to transfer the file using binary mode.

Step c Transfer the file to the /flash device using an SFTP client with access to the system.

Step 4 Verify that the image file was successfully transferred to the /flash device by running the Exec mode the following command

[local]host_name# directory /flash

Step 5 Run the show version /flash/image_filename command to verify the build information. For example:

[local]host_name# show version /flash/image_filename.bin
Standby Backup Chassis

Log into the backup standby chassis and perform the tasks described below.

Performing Health Checks

Health checks are a series of Exec mode `show` commands to determine the readiness of the system to handle a software update.

Step 1 Run `show card table all |grep unknown`. No output should be displayed.

Step 2 Run `show card table |grep offline`. No output should be displayed.

Step 3 Run `show resources |grep Status`. The output should display “Within acceptable limits”.

Step 4 Run `show alarm outstanding`. Review the output for any issues that may preclude performing the software update.

Performing SRP Checks

Service Redundancy Protocol (SRP) checks verify that the mechanism for monitoring ICSR system status is operational.

Step 1 Run `show srp monitor all`.

Step 2 Review the output for any issues that may preclude performing the software update.

Performing BGP Checks

Border Gateway Protocol (BGP) checks are only required when BGP is used to support redundant interchassis communication. These checks are run per context and per service type.

Step 1 For each BGP-enabled context, run `show ip bgp summary`. Verify that the BGP peers are connected and IPv4 and IPv6 peers are up. Repeat for all BGP-enable contexts.

Step 2 Run `show service_name all |grep "Service Status:"`. The service should be “Started”. Repeat for all services running on the chassis.

Updating the Boot Record

You must add a new boot stack entry for the recently downloaded software image (.bin) file.

Step 1 Run the Exec mode `show boot` command to verify that there are less than 10 entries in the boot.sys file and that a higher priority entry is available (minimally there is no priority 1 entry in the boot stack).

Step 2 Create a new boot stack entry for the new file group, consisting of the new operating system image file and the currently used CLI configuration file by entering the following Global Configuration command:

```bash
[local]host_name(config)# boot system priority number image image_url /flash/filename config cfg_url /flash/filename
```
Step 3 Assign the next highest priority to this entry, by using the <N-1> method, wherein you assign a priority number that is one number less than your current highest priority.

If priority 1 is in use, you must renumber the existing entries to ensure that at least that priority is available.

The maximum number of boot stack entries that can be contained in the boot.sys file is 10. If there are already 10 entries in the boot stack, you must delete at least one of these entries (typically, the lowest priority) and, if necessary, renumber some or all of the other entries before proceeding. Use the **no boot system priority** command to delete a boot stack entry.

For information on using the **boot system priority** command, refer to the *Adding a New Boot Stack Entry* section in this guide

Synchronizing File Systems

Synchronize the local file systems by entering the following Exec mode command:

```
[local]host_name# filesystem synchronize all
```

Reloading the Chassis

Reboot the chassis by entering the following command:

```
[local]host_name# reload [-noconfirm]
```

As the system reboots, it loads the new operating system software image and its corresponding CLI configuration file using the new boot stack entry configured earlier.

After the system reboots, establish a CLI session and enter the **show version** command to verify that the active software version is correct.

Optional for PDSN: If you are using the IP Pool Sharing Protocol during your upgrade, refer to *Configuring IPSP Before the Software Upgrade* in the *PDSN Administration Guide*.

Updating the Configuration File

Features in the new operating system may require changes to the configuration file. These changes can be done manually or facilitated by custom scripts prepared by Cisco TAC. Make whatever changes are necessary prior to saving the updated configuration file.

Verifying the Software Version

After the system has successfully booted, verify that the new StarOS version is running by executing the Exec mode **show version** command.

Saving the Configuration File

Use the Exec mode **save configuration** command to save the currently running configuration to the **/flash** device and to an off-chassis location (external memory device or network URL). The off-chassis copy assures that you will have a fallback, loadable configuration file should a problem be encountered.
Completing the Update Process

Repeat the following tasks to complete the upgrade process on the standby secondary chassis:

- Synchronizing File Systems
- Performing Health Checks
- Performing SRP Checks
- Performing BGP Checks

Waiting for Session Synchronization

Allow time for session synchronization to occur between the ICSR chassis before preceding to the next steps.

Step 1 Run the `show session recovery status verbose` command on both chassis. Proceed to the next steps only when no errors are seen in the output of this command.

Step 2 On the standby chassis, run `show srp checkpoint statistics |more`.

Step 3 On active chassis, run `show subs summary |grep Total`.

Step 4 Compare the number of subscribers on the active chassis and the number of Current pre-allocated calls: on the standby chassis. They should be similar (within 5%). Allow a few minutes for systems to complete synchronization.
Primary Chassis

Log into the active primary chassis and complete the tasks described below.

Initiating an SRP Switchover

An SRP switchover places the primary chassis in standby mode and makes the backup chassis active. The secondary chassis is now processing sessions with the upgraded software.

Step 1 On the primary chassis run the `srp initiate-switchover` command. All existing sessions will be migrated to the backup chassis and it begins servicing new session requests. Allow the switchover process to complete.

Step 2 On the primary chassis, run the `show srp info` command. Chassis State should indicate Standby when switchover is complete.

Step 3 On the backup chassis, confirm the switchover is complete by running the `show srp info` command. Chassis State should indicate Active when switchover is complete.

Checking AAA Monitor Status on the Newly Active Chassis

If your network deployment requires communication with AAA servers, log into the newly active chassis and perform an AAA monitor check. You will be checking for the existence of any SNMP traps that indicate the chassis cannot communicate with AAA servers (`starSRPAAAUnreachable`).

Step 1 Run the Exec mode command `show snmp trap history |grep starSRPAAAUnreachable`.

Step 2 There should be no output for this command, or no very recent SNMP trap notifications (based on the event timestamp).

Step 3 If the active chassis cannot communicate with one or more AAA servers, refer to Checking AAA Monitor Status for additional information on how to proceed.

Completing the Software Update

Log into the standby chassis and repeat the following tasks to complete the upgrade process on the standby primary chassis:

- Updating the Boot Record
- Reloading the Chassis
- Updating the Configuration File
- Verifying the Software Version
- Saving the Configuration File
- Synchronizing File Systems
- Performing Health Checks
- Performing SRP Checks
- Performing BGP Checks
- Waiting for Session Synchronization
Initiating an SRP Switchover

An SRP switchover places the primary chassis in active mode and makes the backup chassis active. The primary chassis is now processing sessions with the upgraded software.

Step 1 On the backup chassis run the `srp initiate-switchover` command. All existing sessions will be migrated to the primary chassis and it begins servicing new session requests. Allow the switchover process to complete.

Step 2 On the backup chassis, run the `show srp info` command. Chassis State should indicate Standby when switchover is complete.

Step 3 On the primary chassis, confirm the switchover is complete by running the `show srp info` command. Chassis State should indicate Active when switchover is complete.

Checking AAA Monitor Status

If your network deployment requires communication with AAA servers, check the status of communication with AAA servers as described in Checking AAA Monitor Status on the Newly Active Chassis.

Making Test Calls

Once the chassis state is verified and subscribers are migrated, perform new call testing to make sure calls are successful.

Fallback Procedure

To revert to the previous configuration and software build, perform the following steps as a user with administrative privileges.

Step 1 Run the Exec mode `show boot` command. The topmost lowest numbered entry of the displayed output should be the new configuration with the new software build. The second topmost entry should be the backup configuration.

Step 2 Remove the topmost boot entry n, and synchronize the configuration across the management cards.

```
[local]host_name# config
[local]host_name(config)# no boot system priority n
[local]host_name(config)# end
[local]host_name# filesystem synchronize all
```

Step 3 Reboot the system to load its previous configuration.

```
[local]host_name# reload
```

Step 4 Perform health checks as described in Performing Health Checks.
Chapter 22
Support Data Collector

The Support Data Collector (SDC) is a system feature that allows scheduled collection of process state, counter, event and attribute data that may be useful when troubleshooting problems at an installation site.

This chapter includes the following sections:

- Overview
- Configuring SDR Collection
- Displaying the SDR Collection Configuration
- Collecting and Storing the SDR Information
- Managing Record Collection
- Using SDRs to Diagnose Problems
- SDR CLI Commands
Overview

The task of collecting the support data is performed by a background CLI task called the record collector. The administrator configures the SDC via the CLI with the commands to be executed on a periodic basis. The record collector always runs in the background and checks if there are records to be collected.

When it is time to collect support data, the scheduler executes the configured sequence of CLI commands and stores the results in a gunzipped (.gz) file on the hard-disk. This file is called an SDR (Support Data Record), and represents a snapshot of the overall state of the system at that time.

Technical Assistance Center (TAC) personnel and local administrators can review the SDRs on-line or by transferring them off the system. They may also wish to investigate the collector state information. The figure below shows system tasks that contain state and counter information. Arrows between tasks and processes represent messenger requests and indicate the predominant flow of data.

Figure 27. SDC Tasks and Processes
Configuring SDR Collection

The Support Data Record (SDR) is an ordered set of the CLI support commands’ display output that is stored in a stand-alone compressed file. Each CLI support command output is stored in its own record section. The record section is identified by a record section name and its ASCII command syntax. For example, the record section `show_version` would have a CLI command string of “show version”.

The order in which the record section commands appear in the configuration is significant. All of the support record section commands must be configured together as an ordered set. In other words, just specifying one command by itself will result in just that one command output constituting the contents of the entire SDR.

The user may configure a specific set of record sections for the SDR which may or may not include some or all of the default SDR record sections. This configuration is stored in the Global Configuration section of the configuration file. Refer to Configuration Commands (Global Configuration Mode) for more detail on the `support record section` command.

Displaying the SDR Collection Configuration

The `show configuration verbose` command displays the default support record sections, if the user has not specified any support record sections. If the user has configured support record sections, then the `show configuration` command displays user-configured support record sections. The support collection schedule configuration also appears in the `show configuration` output under the Global Configuration section.

Collecting and Storing the SDR Information

At the scheduled time, the Support Data Collector (SDC), if active, runs in the background to collect all the record section commands that have been specified. This information is concatenated as one contiguous output. The output is compressed and stored as a file on disk in the `/hd-raid/support/record/` directory.

The periodicity of the SDC is configured by the `support collection schedule` command under Global Configuration Mode. Once the SDR is stored, the SDC waits the sleep-duration interval specified via the `support collection` command before collecting another SDR.

Important: The period between SDRs is equal to the configured sleep-duration interval + the time taken to collect the previous record.
Managing Record Collection

The SDRs are stored together in a self-relative set. This self-relative set is called a Support Record Collection. Each individual SDR is identified with a record-id. The record-id of the most recent SDR is always 0 (zero). The next older SDR is record-id 1, and so on, for the number of records in the stored collection. For example, if there are five SDRs, they are identified as SDR-0 through SDR-4.

When a new SDR is created, the numbers all increment by one and the newest SDR is given the value of 0. If the total number of records exceeds a configured maximum, then the oldest SDR is deleted.

Using the example above, when the maximum SDR count of 5 is reached, the SDRs continue to be SDR-0 through SDR-4, with the file timestamps indicating that the files are changing over time.

The time interval between collections may vary by several minutes in relation to the specified sleep-duration. This is because the interval specifies the idle time between scheduled collection runs. Since the actual overhead of the
collecting process is not included in the scheduled intervals, the time differences between collections includes this non-
deterministic amount of time.

Important: Using a shorter interval to compensate for this behavior is not recommended, since it will only add to
the overhead incurred by the collection process and will ultimately impact the overall system performance. The sleep-
duration (idle-time) between scheduled collections is an important component of the “self-throttling” mechanism that
should not be circumvented by the user.

The Exec Mode `show support collection` command displays useful information about the Support Data Collector. The
output includes information about when the collector last ran, how long it took to run, when it is scheduled to run again,
as well as the number of SDRs currently stored, where they are stored, and how much storage space is being used. Refer
to `show Commands (Exec Mode)` for more detail about this command.

Using SDRs to Diagnose Problems

The user can compare the SDRs by examining two or more in sequence. These SDRs are dumped out in their CLI-
formatted output display. Comparing the display outputs reveals trends and performance or configuration differences
that indicate problem areas.

Once specific record sections have been identified as having problematic characteristics, only the CLI `show` commands
associated with those sections need be monitored and compared to further isolate the problem areas. In addition,
individual SDRs may be transferred via system-supported protocols to remote system, or the current collection may be
transferred as a set for later analysis.
SDR CLI Commands

You may use the collected support data records to view support data chronologically. If the default list and sequence of sections is inadequate for system monitoring, you can configure your own set of record section commands that make up a particular support record.

Important:
Refer to the SDR CLI Command Strings appendix for a listing of supported CLI strings (show commands) for record sections. The listing also identifies the CLI strings supported as default record sections. You can obtain the same listing by running the `show support collection definitions` command.

Important:
You may enter up to 200 SDR CLI strings in a single record section command. If you attempt to add more than 200 CLI strings, an error message appears. You may also receive an error message if the system is unable to parse all of the requested CLI strings because they are too complicated to parse.

After configuring the SDR you then configure the sleep-duration interval between record collections and the number of historical records to be retained before being overwritten. By default, configuring this collection information makes the collector mechanism active (if not already active).

After one or more collection intervals have passed, the SDR data becomes available for analysis. The administrator can then use CLI commands to examine the SDR information to perform root cause analysis and trend analysis based on how the data has changed over time. The administrator may decide to transfer the SDRs off the system to be analyzed remotely, for example, by Cisco TAC.

For complete descriptions of the CLI commands discussed below, refer to the Command Line Interface Reference.

Configuration Commands (Global Configuration Mode)

support record

```
support record section section-name command "command-string" [ section section-name command "command-string" ] ...

no support record [ all | section section_name ]

default support record [ all | section section_name ]
```

The `support record section` command configures a specific record section or set of record sections for a support information output command. The order in which record sections are saved is fixed, regardless of the sequence in which the CLI commands were entered.

For example:

```
[local]host_name(config)# support record section show_context command "show context"
```

If the `support record section` command is not explicitly configured by the user, a default set of record section commands are used. These default record section commands are displayed when you run the `show configuration verbose` command. If support record section commands are explicitly configured, they replace the default commands.
Important: Refer to the *SDR CLI Command Strings* appendix for a listing of supported CLI strings (*show* commands) for record sections. The listing also identifies the CLI strings included in default record sections.

The `no support record` command removes either a specific section of the record definition or all of the sections. If you specify the `default support record` command, the default record section definition of that specified record section is used. If neither the keyword `all` or `section` is specified, all the record section definitions are removed.

support collection

```
  support collection [ sleep-duration [ hours h | minutes m ] ] [ max-records n ]
  no support collection
  default support collection
```

The `support collection` command modifies and/or enables the support collection process. If support collection has been previously disabled, this command enables the collection activity. If the support collection is currently enabled, this command may be used to modify the sleep-duration interval and/or the maximum number of SDRs that can be collected and stored.

The `sleep duration` keyword specifies the time interval between the collection of support data. It can be specified in hours or minutes with a default of one hour (60 minutes).

The `max-records` keyword specifies the number of SDRs to store as an integer from 1 to 65535. When this value is exceeded, the new SDR overwrites the oldest SDR. The default value is 168.

Important: SDR files will be stored in the `/hd-raid/support/records/` directory.

For example:

```
[local]host_name(config)# support collection sleep-duration minute 30 max-records 50
```

Use the `no support collection` command to explicitly disable the collection of the SDRs. If no record section commands are defined, the support data collector mechanism is also effectively disabled.

Use the `default support collection` command to enable the support data collector using the default record sections.
Exec Mode Commands

show support record

```
show support record record-id [ to record-id ] [ section section_name ]
```

The `show support record` command displays a collection of SDRs. The SDRs are displayed in order from lowest record-id to highest record-id.

Each SDR is identified by a time index called the record-id. For example, the most recent record is always record-id 0 (filename = sdr.0.gz). The next older record is record-id 1 (filename = sdr.1.gz), and so on.

When a new record is collected it is given a record-id of 0. The previously most recent record is renamed to record-id 1, and so on. The display includes the record-id along with the collection time-stamp.

The `record-id` variable identifies a single SDR. The `to` keyword specifies the endpoint record-id when displaying a range of SDRs.

The `section` keyword displays a particular section of the record.

delete support record

```
delete support record record-id [ to record-id ]
```

The `delete support records` command removes an SDR with a specified record-id or all SDRs in the specified range of record-ids.

show support collection

```
show support collection [ definitions ]
```

The `show support collection` command displays information on SDC activity. It display informations such as the start time of the last scheduled collection, the duration of the last scheduled collection, whether the collection is still in progress, etc. In addition this command lists the currently stored set of SDR record-ids, their respective timestamps, and size of each SDR.

```
[local]host_name# show support collection
Record Collection Enabled : yes
Last Collection Start Time : Monday October 21 06:29:05 PDT 2013
Last Collection End Time : Monday October 21 06:29:09 PDT 2013
Est. Collection Next Start : Monday October 21 07:29:13 PDT 2013 (40 minutes)

Support Data Records at /var/tmp/support-records/ 
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Size</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>167</td>
<td>sdr.167.gz</td>
<td>42863</td>
<td>Monday October 21 04:40:00 PDT 2013</td>
</tr>
<tr>
<td>166</td>
<td>sdr.166.gz</td>
<td>170425</td>
<td>Monday October 21 05:40:08 PDT 2013</td>
</tr>
</tbody>
</table>

total SDRs 2, total bytes 2132880, time span is last 1 day(s) 1 hour(s)
```

The optional `definitions` keyword displays the list of default support record section definitions. This is the list of all valid record section definitions. The display also indicates whether the record section is enabled or disabled by default.

```
[local]host_name# show support collection definitions
```
The output of this command reflects the sequence in which record sections will be output, regardless of the sequence in which they may have been entered by the user. Refer to the SDR CLI Command Strings appendix for additional information.
Appendix A
StarOS Version Numbering

This appendix describes the new StarOS version numbering system being introduced in version 16.1.
The following topics are discussed:

- Overview
- Old versus New StarOS Version Numbering Format
- show version Output Changes
- StarOS Image Filenames
Overview

The output of the `show version` command displays detailed information about the version of StarOS currently running on the ASR 5x00 or QvPC platform.

Prior to release 16.1, the Image Version version field displayed a branch of software including the build number, for example “16.0 (55435)”. Subsequent releases of software for the major release differed only in build number. Lab Quality/EFT releases versus deployment releases also differed only in build number.

From release 16.1 onwards the output of the `show version` command, as well as the terminology used to describe the Build Version Number fields, has changed. Additionally, `show version` will display slightly different information depending on whether or not a build is suitable for deployment. For a detailed description of deployment versus non-deployment releases, refer to `show version Output Changes`.

The Version Build Number for 16.1 and onwards releases now include, at minimum, a major, maintenance, and emergency release number, for example “16.1.2”. The appropriate version number field increments after a version has been released. The new version numbering format is a contiguous sequential number that represents incremental changes between releases. This format will facilitate identifying the changes between releases when using Bug Toolkit to research software releases.
Old versus New StarOS Version Numbering Format

The following diagram shows the differences between the old numbering format and the new numbering format.

In the old format, the first two fields of the Build Version Number represented the Major release and subsequent releases (MRs/ERs) would differ only by build number. Documentation references to a release included descriptive text to indicate whether the release was an MR or ER. For instance, “16.0.65781 MR1” indicates via its descriptor that it is the first maintenance release for 16.0.

In the new format, the maintenance release number changes with subsequent Maintenance Releases (MRs). For example, “16.2” would represent the second maintenance release (MR2) of release 16.

A third digit in the Build Version Number now indicates an Emergency Release for a previous FCS or MR build. For example “16.1.3” indicates the third ER of the first MR of the 16.0 major release.

The Build Version Number may now also include an optional variant indicator just before the ER number to identify the release as a variant of an MR or ER Release. A variant release is one that is given to a particular customer or group of customers, as opposed to a mainstream release which is suitable for all customers.
show version Output Changes

The following changes have been made to the output of the `show version` command:

- Build images acceptable for deployment in live networks omit the build number in the Image Version string and display “Deployment_Build” in the Image Description field.
- Build images suitable for lab/EFT testing only (Non-Deployment builds) display the build number as part of the Image Version string and display “NonDeployment_Build” in the Image Description field.
- Developer build images display “private” instead of a build number in the Image Version field and “Developer_Build” in the Image Description field. These images must never be deployed in any customer network.

Important: The information about Non-Deployment and Developer build types is for reference by customers who are conducting field trials in collaboration with Cisco TAC or Advanced Services.

Deployment Build

A deployment build has been qualified as suitable for deployment in customer networks. The build number only appears in the Image Build Number line and the Image Description is “Deployment_Build”.

A sample output of the `show version` command for a deployment build appears below.

```
[local]asr5000# show version
Active Software:
  Image Version: 16.1.0
  Image Build Number: 56012
  Image Description: Deployment_Build
  Image Date: Mon Jun 30 17:05:09 EDT 2014
  Boot Image: Unknown
```

Non-Deployment Build

A Non-Deployment build has not been fully qualified. Non-Deployment build images may be sent out as lab quality for Early Field Trial (EFT) testing. The build number appears on the Image Version and Image Build Number lines and the Image Description is “NonDeployment_Build”.

A sample output of the `show version` command for a Non-Deployment build appears below.

```
[local]asr5000# show version
Active Software:
  Image Version: 16.1.a0.56012
  Image Build Number: 56012
  Image Description: NonDeployment_Build
  Image Date: Mon Jun 30 15:03:09 EDT 2014
  Boot Image: Unknown
```
Developer Build

A developer build is generated by a development engineer for test or diagnostic purposes. It is only intended for use within the Cisco development engineering environment. Such builds are also known as private builds. The Image Version line displays the string “private” instead of a build number. It may or may not appear in the Image Build Number line.

⚠️ **Caution:** Private builds are generated by individual engineers and have not been qualified for deployment, lab testing, or EFTs. These images are used for debug purposes at the request of MITG engineering.

A sample output of the `show version` command for a developer build appears below.

```
[local]asr5000# show version

Active Software:
Image Version: 16.1.a3.private
Image Build Number: private
Image Description: Developer_Build
Image Date: Mon Jun 30 08:26:43 EDT 2014
Boot Image: Unknown
```
StarOS Image Filenames

Changes have also been made to StarOS file (starfile) naming conventions. The general format changes appear below.

- **Releases prior to 16.1 – production.<build number>.<image>.bin, where <image> = “asr5000”, “asr5500” “ssi”. For example, “production.54029.asr5000.bin” or “production.54029.ssi.bin”.

- **Releases 16.1 onwards:**
 - Deployable images – <platform><version>.bin, where <platform> = “asr5000”, “asr5500”, “qvpc-si” “qvpc-di”. For example, “asr5500.16.1.0.bin” or “qvpc-si.16.1.0.bin”.
 - Non-deployable images – <platform><version>.<build number>.bin. For example, “asr5500.16.1.0.65046.bin” or “qvpc-si.16.1.0.65046.bin”.

The following are samples for all StarOS component filenames for release 16.1 onwards (including KVM and OVA templates):

- **Deployable** (no build number)
 - asr5000-16.1.0.bin
 - asr5500-16.1.0.bin
 - companion-16.1.0.tgz
 - qvpc-si-17.0.0.bin
 - qvpc-si-17.0.0.iso
 - qvpc-si-template-libvirt-kvm-17.0.0.tgz
 - qvpc-si-template-vmware-17.0.0.ova
 - qvpc-di-17.0.0.bin
 - qvpc-di-17.0.0.iso
 - qvpc-di-template-libvirt-kvm-17.0.0.tgz
 - qvpc-di-template-vmware-17.0.0.ova

- **Non-deployable** (includes build number)
 - asr5000-16.1.0.57089.bin
 - asr5500-16.1.0.57089.bin
 - companion-16.1.0.57089.tgz
 - qvpc-si-17.0.0.58209.bin
 - qvpc-si-17.0.0.58209.iso
 - qvpc-si-template-libvirt-kvm-17.0.0.58209.tgz
 - qvpc-si-template-vmware-17.0.0.58209.ova
 - qvpc-di-17.0.0.60102.bin
 - qvpc-di-17.0.0.60102.iso
 - qvpc-di-template-libvirt-kvm-17.0.0.60102.tgz
 - qvpc-di-template-vmware-17.0.0.60102.ova
Appendix B

Engineering Rules

This appendix provides engineering guidelines for configuring the system to meet network deployment requirements. This appendix consists of the following topics:

- CLI Session Rules
- ASR 5500 Interface and Port Rules
- Context Rules
- Subscriber Rules
- Service Rules
- Access Control List (ACL) Engineering Rules
CLI Session Rules

Multiple CLI session support is based on the amount of available memory. The Resource Manager reserves enough resources to support a minimum of six CLI sessions at all times. One of the six sessions is further reserved for use exclusively by a CLI session on an MIO/UMIO serial interface.

Additional CLI sessions beyond the pre-reserved limit are permitted if sufficient MIO/UMIO resources are available. If the Resource Manager is unable to reserve resources for a CLI session beyond those that are pre-reserved, users with administrator-privileges are prompted to create the new CLI session, even without reserved resources.

ASR 5500 Interface and Port Rules

The rules discussed in this section pertain to the Ethernet ports used for subscriber traffic on the MIO/UMIO card (ports 10 through 29).

- Give all logical interfaces a unique name to identify the interface from others in the same context. Logical interfaces in different contexts may have the same name.
- A single physical port can support multiple logical interfaces when you configure VLAN tags for that physical port. You can use VLAN tagging to bind a single physical port to multiple logical interfaces that reside in different contexts.
- Assign all logical interfaces a valid IP address and subnet.
 - Give each logical interface within a context a unique IP address(es). Logical interfaces in different contexts can have the same IP address(es).
 - If multi-homing is supported on the network, you can assign all logical interfaces a single primary IP address and up to 16 secondary IP addresses.
- You can configure a logical interface in only one context, but you can configure multiple interfaces (up to 512) in a single context.
- You can apply a maximum of 256 access control list (ACL) rules to a single logical interface.
- All ports are identified by their `<slot#>/<port#>`.
- Each physical port for subscriber traffic on an MIO/UMIO card may contain up to a maximum of 1,024 VLAN tags.
- A logical interface is limited to using a single VLAN on a single physical port, identified by its `<card#/slot#/port#>`.

Packet Data Network (PDN) Interface Rules

The following engineering rules apply to the interface to the packet data network (PDN):

- Configure the logical interfaces used to facilitate the PDN interface within the egress context.
- The default is to use a single interface within the egress context to facilitate the PDN interface.
- You can configure multiple interfaces in the egress context by using static routes or dynamic routing protocols.
- You may also configure next-hop default gateways.
Context Rules

- A maximum of 63 contexts may be configured per chassis. Enabling demux functions on an MIO card reduces the maximum number of contexts to 10.

- Interfaces per Context
 - Prior to Release 15.0: Up to 16 interfaces can be configured within a single context.
 - For Release 15.0 and higher: With the Demux MIO/UMIO feature enabled, up to 64 interfaces can be configured within a single context.
 - 512 Ethernet+PPP+tunnel interfaces
 - 32 ipv6ip tunnel interfaces
 - 511 GRE tunnels (2,048 GRE tunnels per chassis)
 - 256 loopback interfaces

- IP Addresses and IP Address Pools
 - Prior to Release 15.0: Up to 32 IPv6 pools can be configured within a single context.
 - For Release 15.0 and higher: Up to 256 IPv6 pools can be configured within a single context.
 - There is also a limit of 4,000,000 pool addresses and 32,000,000 static addresses that can be configured per context. Therefore, the number of pools depends on how many addresses are being used and how they are subnetted.
 - Each context supports up to 32,000,000 static IP pool addresses. You can configure a maximum total of 96,000,000 static IP pool addresses per chassis. Each static IP pool can contain up to 500,000 addresses.
 - Each context supports up to 16,000,000 dynamic IP pool addresses. You can configure a maximum total of 32,000,000 dynamic IP pool addresses per chassis. Each dynamic IP pool can contain up to 500,000 addresses.

Important: Each address in the pool requires approximately 60 bytes of memory. The amount of memory required, however, depends on a number of factors such as the pool type, and hold-timer usage. Therefore, in order to conserve available memory, you may need to limit the number of pools depending on the number of addresses to be configured and the number of installed application cards.

- The maximum number of simultaneous subscriber sessions is controlled by the installed capacity license for the service(s) supported.
- The maximum number of static address resolution protocol (ARP) entries per context is 128.
- The maximum number of domains per context is 2,048.
- ASN-GW services configured within the same context cannot communicate with each other.

- Routes
 - Up to 1,200 static routes per context (48,000 per chassis).
 - 6,000 pool routes per context (6,000 per chassis)
 - 5,000 pool explicit host routes per context (6,000 per chassis)
- 64 route maps per context

- BGP
 - 16,000 BGP prefixes can be configured per context (64,000 per chassis)
 - 64 EBGP peers can be configured per context (512 per chassis)
 - 16 IBGP peers per context
 - 512 BGP/AAA monitors per context in support of Interchassis Session Recovery (ICSR)

- OSPF
 - 200 OSPF neighbors per chassis
 - 10,000 OSPF routes per context (64,000 per chassis)

- MPLS
 - 16 label distribution protocol (LDP) sessions per context
 - 8,000 forwarding equivalence class (FEC) entries per context (48,000 per chassis)
 - Up to 8,000 incoming label map (ILM) entries per context (48,000 per chassis)

- VRF (GGSN)
 - Prior to Release 15.0: 250 virtual routing and forwarding (VRF) tables per context (1,024 or 2,048 [release 14.0+] VRFs per chassis)
 - Release 15.0 and higher: 300 virtual routing and forwarding (VRF) tables per context (2,048 VRFs per chassis) [256 VRFs per context with demux functions enabled on the MIO card]
 - 16,384 IP routes

- NEMO (Network Mobility)
 - Prior to Release 15.0: 256K prefixes/framed routes per chassis
 - Release 15.0 and higher: 512K prefixes/framed routes per chassis
 - Up to 8 dynamically learned prefixes per MR (Mobile Router)
 - 128 AAA servers per context for a default AAA server group. The servers can be configured as accounting, authentication, charging servers, or any combination thereof.
 - You can configure up to 800 AAA server groups per context with following limitations:
 - 128 servers per AAA server group (accounting, authentication, charging server, or any combination thereof)
 - 1,600 servers per context in AAA Server group mode (accounting, authentication, charging server, or any combination thereof)
 - 800 NAS-IP address/NAS identifier (one primary and one secondary per server group) per context
 - Up to 12 charging gateway functions (CGFs) for GTPP accounting can be configured per context.
 - Up to 16 bidirectional forwarding detection (BFD) sessions per context (64 per chassis)

Important: Refer to Engineering Rules in your product administration guide for additional information on product-specific operating limits.
Subscriber Rules

The following engineering rules apply to subscribers configured within the system:

- Configure a maximum of 2,048 local subscribers per context.
- You may configure attributes for each local subscriber.
- The system creates a default subscriber for each context when the context is made. Configure attributes for each default subscriber. If a AAA-based subscriber is missing attributes in the authentication reply message, the default subscriber attributes in the context where the subscriber was authenticated are used.

Important: Default is not used when local authentication (for local subscribers) is performed.

- Configure default subscriber templates on a per AAA realm (domain aliases configured within a context) basis.
- Configure default subscriber templates on a per PDSN, FA, ASN-GW, or HA service.
- For AAA authenticated subscribers, the selection of local subscriber template to use for setting attributes is in the following order:
 - If the username (NAI) matches any local domain name and the domain name has a local subscriber name configured, that local subscriber template is used.
 - If the first case fails, and if the serving service has a default username configured, that subscriber template is used.
 - If the first two cases fail, the default subscriber template in the AAA context is used.

Service Rules

The following engineering rules apply to services configured within the system:

- Configure a maximum of 256 services (regardless of type) per system.

Caution: Large numbers of services greatly increase the complexity of management and may affect overall system performance. Therefore, you should not configure a large number of services unless your application absolutely requires it. Please contact your Cisco service representative for more information.

- The total number of entries per table and per chassis is limited to 256.
- Although you can use service names that are identical to those configured in different contexts on the same system, this is not a good practice. Services with the same name can lead to confusion and difficulty in troubleshooting problems, and make it difficult to understand the output of `show` commands.
Access Control List (ACL) Engineering Rules

The following rules apply to Access Control Lists:

- The maximum number of rules per ACL is 128.
- The maximum number of ACL rules applied per port is 128.
- The maximum number of ACL rules applied per context is 1,024.
- The maximum number of ACL rules per IPSec policy is 1.
- The maximum number of IPSec ACL rules per context is 1,024.
- The maximum number of IPSec ACL rules per crypto map is 8.
- The maximum number of ACLs you can configure per context is limited by the number of rules allowed within each ACL. If each ACL contained the maximum number of rules (128), the maximum number of ACLs per context is 8 (128 X 8 ACLs = 1,024 ACL rules per context).
- The maximum number of ACLs applied to an IP access group is 1, whether it is configured for a port or context. Since the maximum number of IP access groups you can apply to an interface or context is 16, the following calculations apply:
 - For each interface/port: 8 rules per ACL multiplied by 16 IP access groups = 128 (the ACL rules limit per port)
 - For each context: 64 rules per ACL multiplied by 16 IP access groups = 1,024 (the ACL rules limit per context)
Appendix C
ASR 5500 SDR CLI Command Strings

This appendix identifies the CLI command strings that can be entered for a record section via the `support record section` command in the Global Configuration Mode. The string must be entered within double quotation marks (" ") to be recognized. The table below also indicates default and non-default strings.

For detailed command string information, refer to the *Command Line Interface Reference* or the online Help for the command.

The table below also indicates default and non-default strings. It reflects the output sequence of the `show support collection definitions` command.

<table>
<thead>
<tr>
<th>No.</th>
<th>Default SDR</th>
<th>Command String</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>“show version verbose”</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
<td>“show clock”</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>“show clock universal”</td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>“show configuration”</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>“show_profile”</td>
</tr>
<tr>
<td>5</td>
<td>Enabled</td>
<td>“show context”</td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>“show boot”</td>
</tr>
<tr>
<td>7</td>
<td>Enabled</td>
<td>“show boot initial-config”</td>
</tr>
<tr>
<td>8</td>
<td>Enabled</td>
<td>“show system uptime”</td>
</tr>
<tr>
<td>9</td>
<td>Disabled</td>
<td>“show license information”</td>
</tr>
<tr>
<td>10</td>
<td>Disabled</td>
<td>“show license history”</td>
</tr>
<tr>
<td>11</td>
<td>Disabled</td>
<td>“show hardware inventory”</td>
</tr>
<tr>
<td>12</td>
<td>Disabled</td>
<td>“show hardware version”</td>
</tr>
<tr>
<td>13</td>
<td>Disabled</td>
<td>“show card hardware”</td>
</tr>
<tr>
<td>14</td>
<td>Disabled</td>
<td>“show card dhaccel hardware counters”</td>
</tr>
<tr>
<td>15</td>
<td>Enabled</td>
<td>“show hd raid verbose”</td>
</tr>
<tr>
<td>16</td>
<td>Enabled</td>
<td>“debug hdctrl mdstat”</td>
</tr>
<tr>
<td>17</td>
<td>Enabled</td>
<td>“debug hdctrl history”</td>
</tr>
<tr>
<td>18</td>
<td>Disabled</td>
<td>“debug hdctrl Issas”</td>
</tr>
<tr>
<td>19</td>
<td>Disabled</td>
<td>“debug hdctrl mapping”</td>
</tr>
<tr>
<td>20</td>
<td>Enabled</td>
<td>“show hd iocnt all”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>21</td>
<td>Disabled</td>
<td>“show hd logs all”</td>
</tr>
<tr>
<td>22</td>
<td>Enabled</td>
<td>“show hd smart all”</td>
</tr>
<tr>
<td>23</td>
<td>Enabled</td>
<td>“debug hdctrl state”</td>
</tr>
<tr>
<td>24</td>
<td>Enabled</td>
<td>“debug hdctrl client list”</td>
</tr>
<tr>
<td>25</td>
<td>Disabled</td>
<td>“show card info”</td>
</tr>
<tr>
<td>26</td>
<td>Enabled</td>
<td>“show card diag”</td>
</tr>
<tr>
<td>27</td>
<td>Enabled</td>
<td>“show card table all”</td>
</tr>
<tr>
<td>28</td>
<td>Enabled</td>
<td>“show port table all”</td>
</tr>
<tr>
<td>29</td>
<td>Enabled</td>
<td>“show port info”</td>
</tr>
<tr>
<td>30</td>
<td>Enabled</td>
<td>“show port utilization table”</td>
</tr>
<tr>
<td>31</td>
<td>Enabled</td>
<td>“show data-path congestion”</td>
</tr>
<tr>
<td>32</td>
<td>Disabled</td>
<td>“show npu details”</td>
</tr>
<tr>
<td>33</td>
<td>Disabled</td>
<td>“show lagngr details”</td>
</tr>
<tr>
<td>34</td>
<td>Enabled</td>
<td>“show fans”</td>
</tr>
<tr>
<td>35</td>
<td>Disabled</td>
<td>“show hardware version fans”</td>
</tr>
<tr>
<td>36</td>
<td>Enabled</td>
<td>“show power chassis”</td>
</tr>
<tr>
<td>37</td>
<td>Enabled</td>
<td>“show temperature”</td>
</tr>
<tr>
<td>38</td>
<td>Disabled</td>
<td>“show timing”</td>
</tr>
<tr>
<td>39</td>
<td>Disabled</td>
<td>“show alarm audible”</td>
</tr>
<tr>
<td>40</td>
<td>Disabled</td>
<td>“show alarm central-office”</td>
</tr>
<tr>
<td>41</td>
<td>Disabled</td>
<td>“show alarm outstanding”</td>
</tr>
<tr>
<td>42</td>
<td>Disabled</td>
<td>“show alarm statistics”</td>
</tr>
<tr>
<td>43</td>
<td>Enabled</td>
<td>“show cpu table”</td>
</tr>
<tr>
<td>44</td>
<td>Disabled</td>
<td>“show cpu info verbose”</td>
</tr>
<tr>
<td>45</td>
<td>Enabled</td>
<td>“show cpu errors verbose”</td>
</tr>
<tr>
<td>46</td>
<td>Enabled</td>
<td>“show cpu performance verbose”</td>
</tr>
<tr>
<td>47</td>
<td>Disabled</td>
<td>“show resources”</td>
</tr>
<tr>
<td>48</td>
<td>Disabled</td>
<td>“show task table”</td>
</tr>
<tr>
<td>49</td>
<td>Disabled</td>
<td>“show task memory”</td>
</tr>
<tr>
<td>50</td>
<td>Disabled</td>
<td>“show task memory max”</td>
</tr>
<tr>
<td>51</td>
<td>Disabled</td>
<td>“show task resources”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>52</td>
<td>Disabled</td>
<td>“show task resources max”</td>
</tr>
<tr>
<td>53</td>
<td>Enabled</td>
<td>“show crash list”</td>
</tr>
<tr>
<td>54</td>
<td>Enabled</td>
<td>“show crash all”</td>
</tr>
<tr>
<td>55</td>
<td>Disabled</td>
<td>“show persistdump list”</td>
</tr>
<tr>
<td>56</td>
<td>Disabled</td>
<td>“show persistdump display”</td>
</tr>
<tr>
<td>57</td>
<td>Enabled</td>
<td>“show snmp trap history verbose”</td>
</tr>
<tr>
<td>58</td>
<td>Disabled</td>
<td>“show snmp trap statistics verbose”</td>
</tr>
<tr>
<td>59</td>
<td>Enabled</td>
<td>“show logs“</td>
</tr>
<tr>
<td>63</td>
<td>Disabled</td>
<td>“show messenger settings”</td>
</tr>
<tr>
<td>64</td>
<td>Enabled</td>
<td>“show messenger nameservice”</td>
</tr>
<tr>
<td>65</td>
<td>Enabled</td>
<td>“show messenger statistics”</td>
</tr>
<tr>
<td>66</td>
<td>Enabled</td>
<td>“show messenger bounces”</td>
</tr>
<tr>
<td>67</td>
<td>Disabled</td>
<td>“debug limits checkup detailed”</td>
</tr>
<tr>
<td>68</td>
<td>Disabled</td>
<td>“show plugin”</td>
</tr>
<tr>
<td>69</td>
<td>Disabled</td>
<td>“show module”</td>
</tr>
<tr>
<td>70</td>
<td>Disabled</td>
<td>“show ppp statistics”</td>
</tr>
<tr>
<td>71</td>
<td>Disabled</td>
<td>“show rsvp statistics”</td>
</tr>
<tr>
<td>72</td>
<td>Enabled</td>
<td>“show session disconnect-reasons verbose”</td>
</tr>
<tr>
<td>73</td>
<td>Disabled</td>
<td>“show apn statistics all”</td>
</tr>
<tr>
<td>74</td>
<td>Disabled</td>
<td>“show ipsg statistics”</td>
</tr>
<tr>
<td>75</td>
<td>Disabled</td>
<td>“show pdsn-service all”</td>
</tr>
<tr>
<td>76</td>
<td>Disabled</td>
<td>“show hsgw-service all”</td>
</tr>
<tr>
<td>77</td>
<td>Disabled</td>
<td>“show hsgw-service statistics all”</td>
</tr>
<tr>
<td>78</td>
<td>Disabled</td>
<td>“show epdg-service all counters”</td>
</tr>
<tr>
<td>79</td>
<td>Disabled</td>
<td>“show epdg-service statistics”</td>
</tr>
<tr>
<td>80</td>
<td>Disabled</td>
<td>“show fa-service all”</td>
</tr>
<tr>
<td>81</td>
<td>Disabled</td>
<td>“show ha-service all”</td>
</tr>
<tr>
<td>82</td>
<td>Disabled</td>
<td>“show mag-service all”</td>
</tr>
<tr>
<td>83</td>
<td>Disabled</td>
<td>“show mipv6ha-service all”</td>
</tr>
<tr>
<td>84</td>
<td>Disabled</td>
<td>“show lma-service all”</td>
</tr>
<tr>
<td>85</td>
<td>Disabled</td>
<td>“show dhcp-service all”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>86</td>
<td>Disabled</td>
<td>“show sgsn-service all”</td>
</tr>
<tr>
<td>87</td>
<td>Disabled</td>
<td>“show sgsn sessmgr all memory statistics”</td>
</tr>
<tr>
<td>88</td>
<td>Disabled</td>
<td>“show operator-policy all”</td>
</tr>
<tr>
<td>89</td>
<td>Disabled</td>
<td>“show call-control-profile all”</td>
</tr>
<tr>
<td>90</td>
<td>Disabled</td>
<td>“show apn-profile all”</td>
</tr>
<tr>
<td>91</td>
<td>Disabled</td>
<td>“show imei-profile all”</td>
</tr>
<tr>
<td>92</td>
<td>Disabled</td>
<td>“show gprs-service all”</td>
</tr>
<tr>
<td>93</td>
<td>Disabled</td>
<td>“show iups-service all”</td>
</tr>
<tr>
<td>94</td>
<td>Disabled</td>
<td>“show sgtp-service all”</td>
</tr>
<tr>
<td>95</td>
<td>Disabled</td>
<td>“show map-service all”</td>
</tr>
<tr>
<td>96</td>
<td>Disabled</td>
<td>“show gs-service all”</td>
</tr>
<tr>
<td>97</td>
<td>Disabled</td>
<td>“show ggsn-service all”</td>
</tr>
<tr>
<td>98</td>
<td>Disabled</td>
<td>“show ggsn-service ggsn-table”</td>
</tr>
<tr>
<td>99</td>
<td>Disabled</td>
<td>“show cscf service all”</td>
</tr>
<tr>
<td>100</td>
<td>Disabled</td>
<td>“show cscf service diameter policy-control statistics”</td>
</tr>
<tr>
<td>101</td>
<td>Disabled</td>
<td>“show cscf service diameter location-info statistics”</td>
</tr>
<tr>
<td>102</td>
<td>Disabled</td>
<td>“show cscf service li-packet-cable statistics”</td>
</tr>
<tr>
<td>103</td>
<td>Disabled</td>
<td>“show cscf peer-servers full”</td>
</tr>
<tr>
<td>104</td>
<td>Disabled</td>
<td>“show demux-mgr statistics cscfmgr all”</td>
</tr>
<tr>
<td>105</td>
<td>Disabled</td>
<td>“show lac-service all”</td>
</tr>
<tr>
<td>106</td>
<td>Disabled</td>
<td>“show lns-service all”</td>
</tr>
<tr>
<td>107</td>
<td>Disabled</td>
<td>“show pdseclosedrp-service all”</td>
</tr>
<tr>
<td>108</td>
<td>Enabled</td>
<td>“show subscriber summary”</td>
</tr>
<tr>
<td>109</td>
<td>Enabled</td>
<td>“show connproxy sockets all”</td>
</tr>
<tr>
<td>110</td>
<td>Disabled</td>
<td>“show session progress”</td>
</tr>
<tr>
<td>111</td>
<td>Disabled</td>
<td>“show session subsystem data-info verbose”</td>
</tr>
<tr>
<td>112</td>
<td>Disabled</td>
<td>“show session subsystem full data-info”</td>
</tr>
<tr>
<td>113</td>
<td>Disabled</td>
<td>“show session subsystem facility sessmgr all debug-info”</td>
</tr>
<tr>
<td>114</td>
<td>Disabled</td>
<td>“show sessctrl config-reconciliation statistics”</td>
</tr>
<tr>
<td>115</td>
<td>Disabled</td>
<td>“show rp statistics”</td>
</tr>
<tr>
<td>116</td>
<td>Disabled</td>
<td>“show mipfa statistics”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>117</td>
<td>Disabled</td>
<td>“show mipha statistics”</td>
</tr>
<tr>
<td>118</td>
<td>Disabled</td>
<td>“show mipv6ha statistics”</td>
</tr>
<tr>
<td>119</td>
<td>Disabled</td>
<td>“show lma-service statistics”</td>
</tr>
<tr>
<td>120</td>
<td>Disabled</td>
<td>“show mag-service statistics”</td>
</tr>
<tr>
<td>121</td>
<td>Disabled</td>
<td>“show cli configuration-monitor”</td>
</tr>
<tr>
<td>122</td>
<td>Enabled</td>
<td>“show srp info”</td>
</tr>
<tr>
<td>123</td>
<td>Enabled</td>
<td>“show srp checkpoint statistics”</td>
</tr>
<tr>
<td>124</td>
<td>Disabled</td>
<td>“show srp checkpoint statistics verbose”</td>
</tr>
<tr>
<td>125</td>
<td>Disabled</td>
<td>“show srp checkpoint statistics sessmgr all”</td>
</tr>
<tr>
<td>126</td>
<td>Disabled</td>
<td>“show srp checkpoint statistics ipsecmgr all”</td>
</tr>
<tr>
<td>127</td>
<td>Enabled</td>
<td>“show srp checkpoint statistics sessmgr all write-list-stats”</td>
</tr>
<tr>
<td>128</td>
<td>Disabled</td>
<td>“show srp monitor”</td>
</tr>
<tr>
<td>129</td>
<td>Enabled</td>
<td>“show srp monitor all”</td>
</tr>
<tr>
<td>130</td>
<td>Disabled</td>
<td>“show srp monitor diameter debug”</td>
</tr>
<tr>
<td>131</td>
<td>Enabled</td>
<td>“show srp statistics”</td>
</tr>
<tr>
<td>132</td>
<td>Disabled</td>
<td>“show srp call-loss statistics”</td>
</tr>
<tr>
<td>133</td>
<td>Disabled</td>
<td>“show srp audit-statistics”</td>
</tr>
<tr>
<td>134</td>
<td>Disabled</td>
<td>“show gtpc statistics verbose”</td>
</tr>
<tr>
<td>135</td>
<td>Enabled</td>
<td>“show gtpu statistics verbose”</td>
</tr>
<tr>
<td>136</td>
<td>Enabled</td>
<td>“show gtpu debug-info”</td>
</tr>
<tr>
<td>137</td>
<td>Enabled</td>
<td>“show gmm-sm statistics verbose”</td>
</tr>
<tr>
<td>138</td>
<td>Enabled</td>
<td>“show sgtpc statistics verbose”</td>
</tr>
<tr>
<td>139</td>
<td>Enabled</td>
<td>“show sgtpu statistics”</td>
</tr>
<tr>
<td>140</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all scfp asp all status peer-server all peer-server-process all verbose”</td>
</tr>
<tr>
<td>141</td>
<td>Enabled</td>
<td>“show ss7-routing-domain all scfp asp all statistics gen”</td>
</tr>
<tr>
<td>142</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all m3ua status peer-server all”</td>
</tr>
<tr>
<td>143</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all m3ua statistics peer-server all peer-server-process all”</td>
</tr>
<tr>
<td>144</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all qsaal statistics linkset all link all”</td>
</tr>
<tr>
<td>145</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all sscf statistics linkset all link all”</td>
</tr>
<tr>
<td>146</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all mtp3 status linkset all link all”</td>
</tr>
<tr>
<td>147</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all mtp3 statistics gen”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>148</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all mtp3 statistics linkset all link all”</td>
</tr>
<tr>
<td>149</td>
<td>Disabled</td>
<td>“show ss7-routing-domain all routes”</td>
</tr>
<tr>
<td>150</td>
<td>Disabled</td>
<td>“show ccpp-network all status all”</td>
</tr>
<tr>
<td>151</td>
<td>Disabled</td>
<td>“show global-title-translation association”</td>
</tr>
<tr>
<td>152</td>
<td>Disabled</td>
<td>“show global-title-translation address-map”</td>
</tr>
<tr>
<td>153</td>
<td>Enabled</td>
<td>“show egtpc peers”</td>
</tr>
<tr>
<td>154</td>
<td>Disabled</td>
<td>“show egtpc statistics interface mme”</td>
</tr>
<tr>
<td>155</td>
<td>Enabled</td>
<td>“show egtpc statistics interface sgsn”</td>
</tr>
<tr>
<td>156</td>
<td>Enabled</td>
<td>“show egtpc statistics interface sgsn-ingress”</td>
</tr>
<tr>
<td>157</td>
<td>Enabled</td>
<td>“show egtpc statistics interface sgsn-egress”</td>
</tr>
<tr>
<td>158</td>
<td>Enabled</td>
<td>“show egtpc statistics interface pgw-ingress”</td>
</tr>
<tr>
<td>159</td>
<td>Enabled</td>
<td>“show egtpc statistics interface cgw-egress”</td>
</tr>
<tr>
<td>160</td>
<td>Enabled</td>
<td>“show egtpc statistics interface epdg-egress”</td>
</tr>
<tr>
<td>161</td>
<td>Disabled</td>
<td>“show egt-service all”</td>
</tr>
<tr>
<td>162</td>
<td>Disabled</td>
<td>“show gtup-service all”</td>
</tr>
<tr>
<td>163</td>
<td>Disabled</td>
<td>“show pgw-service all”</td>
</tr>
<tr>
<td>164</td>
<td>Disabled</td>
<td>“show sgw-service all”</td>
</tr>
<tr>
<td>165</td>
<td>Disabled</td>
<td>“show saegw-service all”</td>
</tr>
<tr>
<td>166</td>
<td>Disabled</td>
<td>“show henbgw-access-service statistics”</td>
</tr>
<tr>
<td>167</td>
<td>Disabled</td>
<td>“show henbgw-network-service statistics”</td>
</tr>
<tr>
<td>168</td>
<td>Disabled</td>
<td>“show mme-service all”</td>
</tr>
<tr>
<td>169</td>
<td>Disabled</td>
<td>“show mme-service enodeb-association full all”</td>
</tr>
<tr>
<td>170</td>
<td>Disabled</td>
<td>“show mme-service statistics debug”</td>
</tr>
<tr>
<td>171</td>
<td>Disabled</td>
<td>“show mme-service db statistics”</td>
</tr>
<tr>
<td>172</td>
<td>Disabled</td>
<td>“show sgs-service all”</td>
</tr>
<tr>
<td>173</td>
<td>Disabled</td>
<td>“show sgs-service vlr-status full”</td>
</tr>
<tr>
<td>174</td>
<td>Disabled</td>
<td>“show sgs-service statistics all”</td>
</tr>
<tr>
<td>175</td>
<td>Enabled</td>
<td>“show sgw-service statistics all”</td>
</tr>
<tr>
<td>176</td>
<td>Disabled</td>
<td>“show saegw-service statistics all verbose”</td>
</tr>
<tr>
<td>177</td>
<td>Disabled</td>
<td>“show saegw-service statistics all function sgw verbose”</td>
</tr>
<tr>
<td>178</td>
<td>Disabled</td>
<td>“show saegw-service statistics all function pgw verbose”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>179</td>
<td>Enabled</td>
<td>“show pgw-service statistics all”</td>
</tr>
<tr>
<td>180</td>
<td>Disabled</td>
<td>“show sccp statistics”</td>
</tr>
<tr>
<td>181</td>
<td>Disabled</td>
<td>“show tcap statistics”</td>
</tr>
<tr>
<td>182</td>
<td>Disabled</td>
<td>“show map statistics”</td>
</tr>
<tr>
<td>183</td>
<td>Disabled</td>
<td>“show sms statistics”</td>
</tr>
<tr>
<td>184</td>
<td>Disabled</td>
<td>“show pdg-service statistics”</td>
</tr>
<tr>
<td>185</td>
<td>Disabled</td>
<td>“show hnbgw sessmgr all memory statistics”</td>
</tr>
<tr>
<td>186</td>
<td>Disabled</td>
<td>“show hnbgw sessmgr all internal statistics”</td>
</tr>
<tr>
<td>187</td>
<td>Disabled</td>
<td>“show hnbgw disconnect-reasons”</td>
</tr>
<tr>
<td>188</td>
<td>Disabled</td>
<td>“show cs-network statistics”</td>
</tr>
<tr>
<td>189</td>
<td>Disabled</td>
<td>“show ps-network statistics”</td>
</tr>
<tr>
<td>190</td>
<td>Disabled</td>
<td>“show hnbgw statistics”</td>
</tr>
<tr>
<td>191</td>
<td>Disabled</td>
<td>“show hnbgw counters”</td>
</tr>
<tr>
<td>192</td>
<td>Disabled</td>
<td>“show demux-mgr statistics hnbmgr full”</td>
</tr>
<tr>
<td>193</td>
<td>Disabled</td>
<td>“show demuxmgr statistics bngmgr all”</td>
</tr>
<tr>
<td>194</td>
<td>Disabled</td>
<td>“show alcap statistics”</td>
</tr>
<tr>
<td>195</td>
<td>Disabled</td>
<td>“show pdg-service statistics micro-tunnel”</td>
</tr>
<tr>
<td>196</td>
<td>Disabled</td>
<td>“show pdg-service statistics transport”</td>
</tr>
<tr>
<td>197</td>
<td>Disabled</td>
<td>“show demuxmgr statistics a11mgr all”</td>
</tr>
<tr>
<td>198</td>
<td>Disabled</td>
<td>“show demuxmgr statistics famgr all”</td>
</tr>
<tr>
<td>199</td>
<td>Disabled</td>
<td>“show demuxmgr statistics hamgr all”</td>
</tr>
<tr>
<td>200</td>
<td>Disabled</td>
<td>“show demuxmgr statistics l2tpmgr all”</td>
</tr>
<tr>
<td>201</td>
<td>Disabled</td>
<td>“show demuxmgr statistics ipsmgmgr all”</td>
</tr>
<tr>
<td>202</td>
<td>Enabled</td>
<td>“show demuxmgr statistics sgtpcmgr all”</td>
</tr>
<tr>
<td>203</td>
<td>Disabled</td>
<td>“show demuxmgr statistics imsimgr all”</td>
</tr>
<tr>
<td>204</td>
<td>Enabled</td>
<td>“show demuxmgr statistics gtpcmgr all”</td>
</tr>
<tr>
<td>205</td>
<td>Enabled</td>
<td>“show demuxmgr statistics egtpimgr all”</td>
</tr>
<tr>
<td>206</td>
<td>Disabled</td>
<td>“show demuxmgr statistics egtpemgr all”</td>
</tr>
<tr>
<td>207</td>
<td>Disabled</td>
<td>“show demuxmgr statistics pdgdmgr all”</td>
</tr>
<tr>
<td>208</td>
<td>Enabled</td>
<td>“show demuxmgr statistics gtpumgr all”</td>
</tr>
<tr>
<td>209</td>
<td>Disabled</td>
<td>“show bcmcs statistics all”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>210</td>
<td>Enabled</td>
<td>“show linkmgr all parser statistics all”</td>
</tr>
<tr>
<td>211</td>
<td>Disabled</td>
<td>“show gtpp accounting servers”</td>
</tr>
<tr>
<td>212</td>
<td>Disabled</td>
<td>“show gtpp statistics verbose”</td>
</tr>
<tr>
<td>213</td>
<td>Disabled</td>
<td>“show gtpp counters all”</td>
</tr>
<tr>
<td>214</td>
<td>Disabled</td>
<td>“show gtpp storage-server”</td>
</tr>
<tr>
<td>215</td>
<td>Disabled</td>
<td>“show gtpp storage-server statistics verbose”</td>
</tr>
<tr>
<td>216</td>
<td>Disabled</td>
<td>“show gtpp storage-server local file statistics verbose”</td>
</tr>
<tr>
<td>217</td>
<td>Disabled</td>
<td>“show gtpp storage-server local file counters all”</td>
</tr>
<tr>
<td>218</td>
<td>Disabled</td>
<td>“show gtpp storage-server streaming file statistics verbose”</td>
</tr>
<tr>
<td>219</td>
<td>Disabled</td>
<td>“show gtpp storage-server streaming file counters all”</td>
</tr>
<tr>
<td>220</td>
<td>Disabled</td>
<td>“show gtpp group all”</td>
</tr>
<tr>
<td>221</td>
<td>Enabled</td>
<td>“show hd-storage-policy statistics all verbose”</td>
</tr>
<tr>
<td>222</td>
<td>Enabled</td>
<td>“show hd-storage-policy counters all verbose”</td>
</tr>
<tr>
<td>223</td>
<td>Disabled</td>
<td>“show dhcp statistics verbose”</td>
</tr>
<tr>
<td>224</td>
<td>Disabled</td>
<td>“show npu table”</td>
</tr>
<tr>
<td>225</td>
<td>Disabled</td>
<td>“show npu sf hw-info”</td>
</tr>
<tr>
<td>228</td>
<td>Enabled</td>
<td>“show npu asr5500”</td>
</tr>
<tr>
<td>229</td>
<td>Disabled</td>
<td>“show l2tp statistics”</td>
</tr>
<tr>
<td>230</td>
<td>Enabled</td>
<td>“show fabric asr5500”</td>
</tr>
<tr>
<td>231</td>
<td>Enabled</td>
<td>“show vpn subsystem facility vpmgr”</td>
</tr>
<tr>
<td>232</td>
<td>Enabled</td>
<td>“show session recovery status verbose”</td>
</tr>
<tr>
<td>233</td>
<td>Enabled</td>
<td>“show clock all”</td>
</tr>
<tr>
<td>234</td>
<td>Disabled</td>
<td>“show sntp statistics verbose”</td>
</tr>
<tr>
<td>235</td>
<td>Disabled</td>
<td>“show llc statistics verbose”</td>
</tr>
<tr>
<td>236</td>
<td>Disabled</td>
<td>“show bssgp statistics verbose”</td>
</tr>
<tr>
<td>237</td>
<td>Disabled</td>
<td>“show bssap+ statistics verbose”</td>
</tr>
<tr>
<td>238</td>
<td>Disabled</td>
<td>“show network-service-entity ip-config”</td>
</tr>
<tr>
<td>239</td>
<td>Disabled</td>
<td>“show network-service-entity fr-config”</td>
</tr>
<tr>
<td>240</td>
<td>Disabled</td>
<td>“show gprsns statistics sns-msg-stats”</td>
</tr>
<tr>
<td>241</td>
<td>Disabled</td>
<td>“show radius authentication servers detail”</td>
</tr>
<tr>
<td>242</td>
<td>Disabled</td>
<td>“show radius accounting servers detail”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>243</td>
<td>Enabled</td>
<td>“show radius counters all”</td>
</tr>
<tr>
<td>244</td>
<td>Enabled</td>
<td>“debug console card cpu tail 4000 only”</td>
</tr>
<tr>
<td>245</td>
<td>Enabled</td>
<td>“show ret stats”</td>
</tr>
<tr>
<td>246</td>
<td>Enabled</td>
<td>“show heartbeat stats hatcups”</td>
</tr>
<tr>
<td>247</td>
<td>Disabled</td>
<td>“show ntp associations all”</td>
</tr>
<tr>
<td>248</td>
<td>Disabled</td>
<td>“show npu details”</td>
</tr>
<tr>
<td>249</td>
<td>Disabled</td>
<td>“show active-charging service all”</td>
</tr>
<tr>
<td>250</td>
<td>Disabled</td>
<td>“show active-charging tcp-proxy statistics all verbose debug-info”</td>
</tr>
<tr>
<td>251</td>
<td>Disabled</td>
<td>“show active-charging edr-udr-file flow-control-counters verbose debug-only”</td>
</tr>
<tr>
<td>252</td>
<td>Disabled</td>
<td>“show active-charging service statistics”</td>
</tr>
<tr>
<td>253</td>
<td>Disabled</td>
<td>“show active-charging analyzer statistics”</td>
</tr>
<tr>
<td>254</td>
<td>Disabled</td>
<td>“show active-charging dns-learnt-ip-addresses statistics sessmgr all verbose”</td>
</tr>
<tr>
<td>255</td>
<td>Disabled</td>
<td>“show active-charging analyzer statistics name ip verbose”</td>
</tr>
<tr>
<td>256</td>
<td>Disabled</td>
<td>“show active-charging analyzer statistics name ipv6 verbose”</td>
</tr>
<tr>
<td>257</td>
<td>Disabled</td>
<td>“show active-charging analyzer statistics name tcp verbose”</td>
</tr>
<tr>
<td>258</td>
<td>Disabled</td>
<td>“show active-charging analyzer statistics name http verbose”</td>
</tr>
<tr>
<td>259</td>
<td>Disabled</td>
<td>“show active-charging charging-action statistics”</td>
</tr>
<tr>
<td>260</td>
<td>Disabled</td>
<td>“show active-charging rulebase statistics”</td>
</tr>
<tr>
<td>261</td>
<td>Disabled</td>
<td>“show active-charging ruledef statistics all charging”</td>
</tr>
<tr>
<td>262</td>
<td>Enabled</td>
<td>“show active-charging ruledef statistics all firewall wide”</td>
</tr>
<tr>
<td>263</td>
<td>Disabled</td>
<td>“show active-charging regex status all”</td>
</tr>
<tr>
<td>264</td>
<td>Disabled</td>
<td>“show active-charging regex statistics memory summary”</td>
</tr>
<tr>
<td>265</td>
<td>Disabled</td>
<td>“show active-charging regex statistics ruledef summary”</td>
</tr>
<tr>
<td>266</td>
<td>Disabled</td>
<td>“show active-charging edr-format statistics”</td>
</tr>
<tr>
<td>267</td>
<td>Disabled</td>
<td>“show active-charging subsystem all debug-only”</td>
</tr>
<tr>
<td>268</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats cumulative all-flows”</td>
</tr>
<tr>
<td>269</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats cumulative http”</td>
</tr>
<tr>
<td>270</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats cumulative ip”</td>
</tr>
<tr>
<td>271</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats cumulative tcp”</td>
</tr>
<tr>
<td>272</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats cumulative udp”</td>
</tr>
<tr>
<td>273</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats max-simultaneous-flows all-flows”</td>
</tr>
</tbody>
</table>
Access Control List (ACL) Engineering Rules

<table>
<thead>
<tr>
<th>No.</th>
<th>Default SDR</th>
<th>Command String</th>
</tr>
</thead>
<tbody>
<tr>
<td>274</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats max-simultaneous-flows http”</td>
</tr>
<tr>
<td>275</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats max-simultaneous-flows ip”</td>
</tr>
<tr>
<td>276</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats max-simultaneous-flows tcp”</td>
</tr>
<tr>
<td>277</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats max-simultaneous-flows udp”</td>
</tr>
<tr>
<td>278</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats duration-based all-flows”</td>
</tr>
<tr>
<td>279</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats duration-based tcp”</td>
</tr>
<tr>
<td>280</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats duration-based udp”</td>
</tr>
<tr>
<td>281</td>
<td>Disabled</td>
<td>“debug acsmgr show flow-stats lifetime-based all-flows”</td>
</tr>
<tr>
<td>282</td>
<td>Disabled</td>
<td>“debug acsmgr show p2p detection-params sct”</td>
</tr>
<tr>
<td>283</td>
<td>Disabled</td>
<td>“debug acsmgr show rule-optimization-information”</td>
</tr>
<tr>
<td>284</td>
<td>Disabled</td>
<td>“debug sessmgr charging-service show-stats all”</td>
</tr>
<tr>
<td>285</td>
<td>Disabled</td>
<td>“debug acsmgr show memory usage”</td>
</tr>
<tr>
<td>286</td>
<td>Disabled</td>
<td>“debug aaamgr show memory usage”</td>
</tr>
<tr>
<td>287</td>
<td>Disabled</td>
<td>“show active-charging credit-control statistics debug-info”</td>
</tr>
<tr>
<td>288</td>
<td>Disabled</td>
<td>“show active-charging credit-control session-states”</td>
</tr>
<tr>
<td>289</td>
<td>Disabled</td>
<td>“show active-charging credit-control statistics”</td>
</tr>
<tr>
<td>290</td>
<td>Disabled</td>
<td>“show diameter endpoints all”</td>
</tr>
<tr>
<td>291</td>
<td>Disabled</td>
<td>“show diameter endpoints all debug-info”</td>
</tr>
<tr>
<td>292</td>
<td>Disabled</td>
<td>“show diameter route table debug-info”</td>
</tr>
<tr>
<td>293</td>
<td>Disabled</td>
<td>“show diameter peers full debug”</td>
</tr>
<tr>
<td>294</td>
<td>Disabled</td>
<td>“show diameter aaa-statistics”</td>
</tr>
<tr>
<td>295</td>
<td>Disabled</td>
<td>“show diameter aaa-statistics all”</td>
</tr>
<tr>
<td>296</td>
<td>Disabled</td>
<td>“show diameter aaa-statistics debug-info”</td>
</tr>
<tr>
<td>297</td>
<td>Disabled</td>
<td>“show diameter accounting servers debug-info”</td>
</tr>
<tr>
<td>298</td>
<td>Disabled</td>
<td>“show diameter authentication servers debug-info”</td>
</tr>
<tr>
<td>299</td>
<td>Disabled</td>
<td>“show diameter statistics”</td>
</tr>
<tr>
<td>300</td>
<td>Disabled</td>
<td>“show diameter statistics debug-info”</td>
</tr>
<tr>
<td>301</td>
<td>Disabled</td>
<td>“show diameter statistics proxy”</td>
</tr>
<tr>
<td>302</td>
<td>Disabled</td>
<td>“show diameter statistics proxy debug-info”</td>
</tr>
<tr>
<td>303</td>
<td>Disabled</td>
<td>“show diameter dynamic-dictionary all contents”</td>
</tr>
<tr>
<td>304</td>
<td>Disabled</td>
<td>“show active-charging edr-udr-file statistics”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>305</td>
<td>Disabled</td>
<td>“show active-charging firewall statistics debug-info”</td>
</tr>
<tr>
<td>306</td>
<td>Disabled</td>
<td>“show active-charging nat statistics”</td>
</tr>
<tr>
<td>307</td>
<td>Disabled</td>
<td>“show demuxmgr statistics asngwmgr all”</td>
</tr>
<tr>
<td>308</td>
<td>Disabled</td>
<td>“show asngw-service all”</td>
</tr>
<tr>
<td>309</td>
<td>Disabled</td>
<td>“show asngw-service statistics verbose”</td>
</tr>
<tr>
<td>310</td>
<td>Disabled</td>
<td>“show demuxmgr statistics asnpcmgr all”</td>
</tr>
<tr>
<td>311</td>
<td>Disabled</td>
<td>“show asnpc-service all”</td>
</tr>
<tr>
<td>312</td>
<td>Disabled</td>
<td>“show asnpc-service statistics verbose”</td>
</tr>
<tr>
<td>313</td>
<td>Disabled</td>
<td>“show demuxmgr statistics phsgwmgr all”</td>
</tr>
<tr>
<td>314</td>
<td>Disabled</td>
<td>“show phsgw-service all”</td>
</tr>
<tr>
<td>315</td>
<td>Disabled</td>
<td>“show phsgw-service statistics verbose”</td>
</tr>
<tr>
<td>316</td>
<td>Disabled</td>
<td>“show demuxmgr statistics phspcmgr all”</td>
</tr>
<tr>
<td>317</td>
<td>Disabled</td>
<td>“show phspc-service all”</td>
</tr>
<tr>
<td>318</td>
<td>Disabled</td>
<td>“show phspc-service statistics verbose”</td>
</tr>
<tr>
<td>319</td>
<td>Disabled</td>
<td>“show demuxmgr statistics magmgr all”</td>
</tr>
<tr>
<td>320</td>
<td>Disabled</td>
<td>“show active-charging content-filtering category policy-id all”</td>
</tr>
<tr>
<td>321</td>
<td>Disabled</td>
<td>“show content-filtering category database all verbose”</td>
</tr>
<tr>
<td>322</td>
<td>Disabled</td>
<td>“show content-filtering category database facility srdbmgr all verbose”</td>
</tr>
<tr>
<td>323</td>
<td>Disabled</td>
<td>“show content-filtering category statistics”</td>
</tr>
<tr>
<td>324</td>
<td>Disabled</td>
<td>“show content-filtering category statistics facility srdbmgr all”</td>
</tr>
<tr>
<td>325</td>
<td>Disabled</td>
<td>“show active-charging content-filtering category statistics”</td>
</tr>
<tr>
<td>326</td>
<td>Disabled</td>
<td>“show active-charging content-filtering server-group statistics verbose”</td>
</tr>
<tr>
<td>327</td>
<td>Disabled</td>
<td>“show active-charging url-blacklisting statistics”</td>
</tr>
<tr>
<td>328</td>
<td>Disabled</td>
<td>“show url-blacklisting database all”</td>
</tr>
<tr>
<td>329</td>
<td>Disabled</td>
<td>“show url-blacklisting database facility acsmgr all”</td>
</tr>
<tr>
<td>330</td>
<td>Disabled</td>
<td>“show active-charging tethering-detection database”</td>
</tr>
<tr>
<td>331</td>
<td>Disabled</td>
<td>“show active-charging tethering-detection database sessmgr all”</td>
</tr>
<tr>
<td>332</td>
<td>Disabled</td>
<td>“show active-charging tethering-detection statistics”</td>
</tr>
<tr>
<td>333</td>
<td>Disabled</td>
<td>“show ims-authorization service statistics”</td>
</tr>
<tr>
<td>334</td>
<td>Disabled</td>
<td>“show ims-authorization policy-control statistics”</td>
</tr>
<tr>
<td>335</td>
<td>Disabled</td>
<td>“show ims-authorization policy-control statistics debug-info”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>336</td>
<td>Disabled</td>
<td>“show local-policy statistics summary”</td>
</tr>
<tr>
<td>337</td>
<td>Disabled</td>
<td>“show rohc statistics”</td>
</tr>
<tr>
<td>338</td>
<td>Disabled</td>
<td>“show dns client statistics”</td>
</tr>
<tr>
<td>339</td>
<td>Disabled</td>
<td>“show hss-peer-service service all”</td>
</tr>
<tr>
<td>340</td>
<td>Disabled</td>
<td>“show ipms status all”</td>
</tr>
<tr>
<td>341</td>
<td>Disabled</td>
<td>“show ipms status debug-info”</td>
</tr>
<tr>
<td>342</td>
<td>Disabled</td>
<td>“show kvstore”</td>
</tr>
<tr>
<td>343</td>
<td>Disabled</td>
<td>“show kvstore verbose”</td>
</tr>
<tr>
<td>344</td>
<td>Disabled</td>
<td>“show kvstore kvclient”</td>
</tr>
<tr>
<td>345</td>
<td>Disabled</td>
<td>“show kvstore kvmgr”</td>
</tr>
<tr>
<td>346</td>
<td>Disabled</td>
<td>“show pcc-service all”</td>
</tr>
<tr>
<td>347</td>
<td>Disabled</td>
<td>“show pcc-service statistics all”</td>
</tr>
<tr>
<td>348</td>
<td>Disabled</td>
<td>“show pcc-policy service all”</td>
</tr>
<tr>
<td>349</td>
<td>Disabled</td>
<td>“show pcc-policy service statistics all”</td>
</tr>
<tr>
<td>350</td>
<td>Disabled</td>
<td>“show pcc-quota service all”</td>
</tr>
<tr>
<td>351</td>
<td>Disabled</td>
<td>“show pcc-quota service statistics all”</td>
</tr>
<tr>
<td>352</td>
<td>Disabled</td>
<td>“show pcc-af service all”</td>
</tr>
<tr>
<td>353</td>
<td>Disabled</td>
<td>“show pcc-af service statistics all”</td>
</tr>
<tr>
<td>354</td>
<td>Disabled</td>
<td>“show pcc-sp-endpoint all”</td>
</tr>
<tr>
<td>355</td>
<td>Disabled</td>
<td>“show pcc-sp-endpoint statistics all”</td>
</tr>
<tr>
<td>356</td>
<td>Disabled</td>
<td>“show event-notif server all”</td>
</tr>
<tr>
<td>357</td>
<td>Disabled</td>
<td>“show event-notif statistics”</td>
</tr>
<tr>
<td>358</td>
<td>Disabled</td>
<td>“show demux-mgr statistics bindmux all”</td>
</tr>
<tr>
<td>359</td>
<td>Disabled</td>
<td>“show congestion-control configuration”</td>
</tr>
<tr>
<td>360</td>
<td>Disabled</td>
<td>“show congestion-control statistics mme full”</td>
</tr>
<tr>
<td>361</td>
<td>Disabled</td>
<td>“show congestion-control statistics imsimgr all full”</td>
</tr>
<tr>
<td>362</td>
<td>Enabled</td>
<td>“show ge-switch counters (second sample)”</td>
</tr>
<tr>
<td>363</td>
<td>Enabled</td>
<td>“ethtool -S cpeth”</td>
</tr>
<tr>
<td>364</td>
<td>Enabled</td>
<td>“Standby SMC Ophir Mac counters (second sample)” [ASR 5000 only]</td>
</tr>
<tr>
<td>365</td>
<td>Disabled</td>
<td>“show cli history”</td>
</tr>
<tr>
<td>366</td>
<td>Disabled</td>
<td>“card-cpu boxer summary”</td>
</tr>
<tr>
<td>No.</td>
<td>Default SDR</td>
<td>Command String</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>367</td>
<td>Disabled</td>
<td>“show sls-service all”</td>
</tr>
<tr>
<td>368</td>
<td>Disabled</td>
<td>“show sls-service peers all”</td>
</tr>
<tr>
<td>369</td>
<td>Disabled</td>
<td>“show sls-service statistics all”</td>
</tr>
</tbody>
</table>

Notes:
- Enabled = Included in default record section
- Disabled = Not included in default record section