THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED
WITH THE PRODUCT AND ARE INCORPORATED HEREEIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain
version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR
ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at
www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco ASR 5000 Serving GPRS Support Node Administration Guide

© 2014 Cisco Systems, Inc. All rights reserved.
CONTENTS

About this Guide

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventions Used</td>
<td>xvi</td>
</tr>
<tr>
<td>Supported Documents and Resources</td>
<td>xvii</td>
</tr>
<tr>
<td>Related Common Documentation</td>
<td>xvii</td>
</tr>
<tr>
<td>Related Product Documentation</td>
<td>xvii</td>
</tr>
<tr>
<td>Obtaining Documentation</td>
<td>xvii</td>
</tr>
<tr>
<td>Contacting Customer Support</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Serving GPRS Support Node (SGSN) Overview

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
<td>20</td>
</tr>
<tr>
<td>Qualified Platforms</td>
<td>21</td>
</tr>
<tr>
<td>Licenses</td>
<td>21</td>
</tr>
<tr>
<td>Network Deployments and Interfaces</td>
<td>22</td>
</tr>
<tr>
<td>SGSN and Dual Access SGSN Deployments</td>
<td>22</td>
</tr>
<tr>
<td>SGSN/GGSN Deployments</td>
<td>24</td>
</tr>
<tr>
<td>S4-SGSN Deployments</td>
<td>24</td>
</tr>
<tr>
<td>SGSN Logical Network Interfaces</td>
<td>26</td>
</tr>
<tr>
<td>SGSN Core Functionality</td>
<td>30</td>
</tr>
<tr>
<td>All-IP Network (AIPN)</td>
<td>30</td>
</tr>
<tr>
<td>SS7 Support</td>
<td>30</td>
</tr>
<tr>
<td>PDP Context Support</td>
<td>31</td>
</tr>
<tr>
<td>Mobility Management</td>
<td>31</td>
</tr>
<tr>
<td>GPRS Attach</td>
<td>31</td>
</tr>
<tr>
<td>GPRS Detach</td>
<td>32</td>
</tr>
<tr>
<td>Paging</td>
<td>32</td>
</tr>
<tr>
<td>Service Request</td>
<td>32</td>
</tr>
<tr>
<td>Authentication</td>
<td>33</td>
</tr>
<tr>
<td>P-TMSI Reallocation</td>
<td>33</td>
</tr>
<tr>
<td>P-TMSI Signature Reallocation</td>
<td>33</td>
</tr>
<tr>
<td>Identity Request</td>
<td>33</td>
</tr>
<tr>
<td>Location Management</td>
<td>33</td>
</tr>
<tr>
<td>Session Management</td>
<td>34</td>
</tr>
<tr>
<td>PDP Context Activation</td>
<td>34</td>
</tr>
<tr>
<td>PDP Context Modification</td>
<td>35</td>
</tr>
<tr>
<td>PDP Context Deactivation</td>
<td>35</td>
</tr>
<tr>
<td>PDP Context Preservation</td>
<td>35</td>
</tr>
<tr>
<td>Charging</td>
<td>35</td>
</tr>
<tr>
<td>SGSN in GPRS/UMTS Network</td>
<td>35</td>
</tr>
<tr>
<td>SGSN in LTE/SAE Network</td>
<td>37</td>
</tr>
<tr>
<td>Features and Functionality</td>
<td>38</td>
</tr>
<tr>
<td>3G-2G Location Change Reporting</td>
<td>40</td>
</tr>
<tr>
<td>Accounting Path Framework, New for 14.0</td>
<td>40</td>
</tr>
<tr>
<td>AAA Changes To Support Location Services (LCS) Feature</td>
<td>40</td>
</tr>
<tr>
<td>APN Aliasing</td>
<td>40</td>
</tr>
<tr>
<td>Default APN</td>
<td>41</td>
</tr>
<tr>
<td>APN Redirection per APN with Lowest Context-ID</td>
<td>41</td>
</tr>
<tr>
<td>APN Resolution with SCHAR or RNC-ID</td>
<td>41</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Automatic Protection Switching (APS)</td>
<td>42</td>
</tr>
<tr>
<td>Authentications and Reallocations -- Selective</td>
<td>42</td>
</tr>
<tr>
<td>Avoiding PDP Context Deactivations</td>
<td>43</td>
</tr>
<tr>
<td>Bulk Statistics Support</td>
<td>43</td>
</tr>
<tr>
<td>CAMEL Service Phase 3, Ge Interface</td>
<td>44</td>
</tr>
<tr>
<td>CAMEL Service</td>
<td>44</td>
</tr>
<tr>
<td>CAMEL Support</td>
<td>44</td>
</tr>
<tr>
<td>Ge Interface</td>
<td>45</td>
</tr>
<tr>
<td>CAMEL Configuration</td>
<td>45</td>
</tr>
<tr>
<td>Commandguard</td>
<td>45</td>
</tr>
<tr>
<td>Configurable RAB Asymmetry Indicator in RAB Assignment Request</td>
<td>46</td>
</tr>
<tr>
<td>Direct Tunnel</td>
<td>46</td>
</tr>
<tr>
<td>Direct Tunnel Support on the S4-SGSN</td>
<td>46</td>
</tr>
<tr>
<td>Downlink Data Lockout Timer</td>
<td>47</td>
</tr>
<tr>
<td>DSCP Templates for Control and Data Packets - Iu or Gb over IP</td>
<td>47</td>
</tr>
<tr>
<td>Dual PDP Addresses for Gn/Gp</td>
<td>47</td>
</tr>
<tr>
<td>ECMP over ATM</td>
<td>47</td>
</tr>
<tr>
<td>EDR Enhancements</td>
<td>48</td>
</tr>
<tr>
<td>Equivalent PLMN</td>
<td>48</td>
</tr>
<tr>
<td>First Vector Configurable Start for MS Authentication</td>
<td>48</td>
</tr>
<tr>
<td>Gb Manager</td>
<td>48</td>
</tr>
<tr>
<td>GMM-SM Event Logging</td>
<td>49</td>
</tr>
<tr>
<td>Gn/Gp Delay Monitoring</td>
<td>49</td>
</tr>
<tr>
<td>GTP-C Path Failure Detection and Management</td>
<td>49</td>
</tr>
<tr>
<td>Handling Multiple MS Attaches All with the Same Random TLLI</td>
<td>50</td>
</tr>
<tr>
<td>HSPA Fallback</td>
<td>50</td>
</tr>
<tr>
<td>Ignore Context-ID during 4G/3G Handovers</td>
<td>50</td>
</tr>
<tr>
<td>Intra- or Inter-SGSN Serving Radio Network Subsystem (SRNS) Relocation (3G only)</td>
<td>51</td>
</tr>
<tr>
<td>Lawful Intercept</td>
<td>51</td>
</tr>
<tr>
<td>Link Aggregation - Horizontal</td>
<td>51</td>
</tr>
<tr>
<td>Local DNS</td>
<td>51</td>
</tr>
<tr>
<td>Local Mapping of MBR</td>
<td>52</td>
</tr>
<tr>
<td>Local QoS Capping</td>
<td>52</td>
</tr>
<tr>
<td>Location Services</td>
<td>52</td>
</tr>
<tr>
<td>Lock/Shutdown the BSC from the SGSN</td>
<td>53</td>
</tr>
<tr>
<td>Management System Overview</td>
<td>53</td>
</tr>
<tr>
<td>Multiple PLMN Support</td>
<td>54</td>
</tr>
<tr>
<td>Network Sharing</td>
<td>55</td>
</tr>
<tr>
<td>Benefits of Network Sharing</td>
<td>55</td>
</tr>
<tr>
<td>GWCN Configuration</td>
<td>55</td>
</tr>
<tr>
<td>MOCN Configuration</td>
<td>56</td>
</tr>
<tr>
<td>Implementation</td>
<td>56</td>
</tr>
<tr>
<td>NRI Handling Enhancement</td>
<td>57</td>
</tr>
<tr>
<td>NRPCA - 3G</td>
<td>57</td>
</tr>
<tr>
<td>NRSPCA Support for S4-SGSN</td>
<td>57</td>
</tr>
<tr>
<td>Operator Policy</td>
<td>57</td>
</tr>
<tr>
<td>Some Features Managed by Operator Policies</td>
<td>58</td>
</tr>
<tr>
<td>Overcharging Protection</td>
<td>58</td>
</tr>
<tr>
<td>QoS Traffic Policing per Subscriber</td>
<td>58</td>
</tr>
<tr>
<td>QoS Classes</td>
<td>59</td>
</tr>
<tr>
<td>QoS Negotiation</td>
<td>59</td>
</tr>
<tr>
<td>DSCP Marking</td>
<td>59</td>
</tr>
<tr>
<td>Traffic Policing</td>
<td>59</td>
</tr>
<tr>
<td>Reordering of SNDCP N-PDU Segments</td>
<td>60</td>
</tr>
</tbody>
</table>
Supported Standards ... 93
IETF Requests for Comments (RFCs) .. 93
3GPP Standards .. 93
ITU Standards .. 98
Object Management Group (OMG) Standards ... 99

SGSN in a 2.5G GPRS Network ... 101
2.5G SGSN Configuration Components ... 102
The SGSN_CTX ... 102
The Accounting_CTX ... 104
How the 2.5G SGSN Works .. 105
For GPRS and/or IMSI Attach ... 105
For PDP Activation .. 106
Information Required for the 2.5G SGSN ... 108
Global Configuration .. 108
SGSN Context Configuration ... 110
Accounting Context Configuration .. 111

SGSN 3G UMTS Configuration ... 113
3G SGSN Configuration Components .. 114
For GPRS and/or IMSI Attach ... 115
Information Required for 3G Configuration .. 116
Global Configuration .. 116
SGSN Context Configuration ... 118
Accounting Context Configuration .. 120

SGSN Service Configuration Procedures .. 123
2.5G SGSN Service Configuration ... 125
3G SGSN Service Configuration ... 127
Dual Access SGSN Service Configuration ... 129
Configuring the S4-SGSN ... 131
Configuring an SS7 Routing Domain .. 133
Configuring an SS7 Routing Domain to Support Broadband SS7 Signaling 133
Example Configuration .. 133
Configuring an SS7 Routing Domain to Support IP Signaling for SIGTRAN 134
Example Configuration .. 135
Configuring GTT .. 136
Example Configuration .. 136
Configuring an SCCP Network ... 138
Example Configuration .. 138
Configuring a MAP Service .. 139
Example Configuration .. 139
Configuring an IuPS Service (3G only) ... 141
Example Configuration .. 141
Configuring an SGTP Service ... 142
Example Configuration .. 142
Configuring a Gs Service ... 143
Example Configuration .. 143
Configuring an SGSN Service (3G only) .. 144
Example Configuration .. 144
Configuring a GPRS Service (2.5G only) .. 146
Example Configuration .. 146
Configuring a Network Service Entity .. 148
Configure a Network Service Entity for IP .. 148
Example Configuration for a Network Service Entity for IP .. 148
Creating and Configuring ATM Interfaces and Ports (3G only) .. 182
Creating and Configuring Frame Relay Ports (2.5G only) .. 183
Configuring a Network Service Entity for Frame Relay ... 148
Example Configuration for a Network Service Entity for IP .. 149
Configuring DNS Client ... 150
Example Configuration .. 150
Configuring GTPP Accounting Support .. 151
Creating GTPP Group .. 151
Configuring GTPP Group ... 152
Verifying GTPP Group Configuration .. 153
Configuring and Associating the EGTP Service (S4 Only) ... 154
Example Configuration .. 154
Configuring and Associating the GTPU Service (S4 Only) .. 156
Example Configuration .. 156
Configuring the DNS Client Context for APN and SGW Resolution (Optional) 157
Example Configuration .. 157
Configuring the S6d Diameter Interface (S4 Only) ... 159
Configuring the Diameter Endpoint for the S6d Interface .. 159
Example Configuration .. 160
Configuring the HSS Peer Service and Interface Association for the S6d Interface 160
Example Configuration .. 161
Associating the HSS Peer Service with the SGSN and GPRS Services for the S6d Interface 161
Example Configuration .. 161
Configuring Operator Policy-Based S6d Interface Selection (Optional) 162
Example Configuration .. 162
Configuring the Subscription Interface Preference for the S6d Interface (Optional) 162
Example Configuration .. 162
Configuring the S13’ Interface (S4 Only, Optional) ... 163
Configuring a Diameter Endpoint for the S13’ Interface ... 163
Example Configuration .. 164
Configuring the HSS Peer Service and Interface Association for the S13’ Interface 164
Example Configuration .. 165
Associating the HSS Peer Service with the SGSN and GPRS Services for the S13’ Interface ... 166
Example Configuration .. 166
Configuring S13’ Interface Selection Based on an Operator Policy .. 166
Example Configuration .. 167
Configuring QoS Mapping for EPC-Capable UEs using the S4 Interface (S4 Only, Optional) ... 168
Example Configuration .. 168
Configuring the Peer SGSN Interface Type (S4 Only, Optional) ... 170
Example Configuration .. 170
Configuring Gn Interface Selection Based on an Operator Policy (S4 Only, Optional) 171
Example Configuration .. 171
Configuring a Custom MME Group ID (S4 Only, Optional) .. 172
Example Configuration .. 172
Configuring and Associating the Selection of an SGW for RAI (S4 Only, Optional) 174
Example Configuration .. 174
Configuring a Local PGW Address (S4 Only, Optional) ... 176
Example Configuration .. 176
Configuring the Peer MME Address (S4 Only, Optional) ... 177
Example Configuration .. 177
Configuring the ISR Feature (S4 Only, Optional) .. 178
Example Configuration .. 178
Configuring IDFT for Connected Mode Handover (S4 Only, Optional) 180
Example Configuration .. 180
Creating and Configuring ATM Interfaces and Ports (3G only) ... 182
Creating and Configuring Frame Relay Ports (2.5G only) ... 183
3G-2G Location Change Reporting

Feature Description .. 186
 Relationships .. 186
License ... 186
Standards Compliance .. 186
How it Works .. 187
Call Flows .. 187
Configuring Location Change Reporting 189
 Verifying the Location Change Reporting Configuration 189

Attach Rate Throttling .. 191

Feature Description ... 192
How it Works .. 193
 Attach Rate Throttling Feature .. 193
Limitations ... 194
Configuring the Attach Rate Throttling Feature 195
Monitoring and Troubleshooting the Attach Rate Throttling Feature 196
Attach Rate Throttling Show Commands and Outputs 196

Direct Tunnel ... 197

Direct Tunnel Feature Overview .. 198
Direct Tunnel Configuration ... 202
 Configuring Direct Tunnel on the SGSN 202
 Enabling Setup of GTP-U Direct Tunnels 203
 Enabling Direct Tunnel per APN .. 203
 Enabling Direct Tunnel per IMEI .. 204
 Enabling Direct Tunnel to Specific RNCs 204
 Verifying the SGSN Direct Tunnel Configuration 205
Configuring S12 Direct Tunnel Support on the S-GW 207

Direct Tunnelling for the S4-SGSN 209

Feature Description ... 210
How It Works .. 212
 Establishment of Direct Tunnel ... 212
 Direct Tunnel Activation for Primary PDP Context 212
 Direct Tunnel Activation for UE Initiated Secondary PDP Context 213
 RAB Release with Direct Tunnel 213
 Iu Release with Direct Tunnel ... 214
 Service Request with Direct Tunnel 215
 Downlink Data Notification with Direct Tunnel when UE in Connected State 215
 Downlink Data Notification with Direct Tunnel when UE in Idle State 216
 Intra SGSN Routing Area Update without SGW Change 217
 Routing Area Update with S-GW Change 218
 Intra SRNS with S-GW Change ... 220
 Intra SRNS without S-GW Change 221
 New SRNS with S-GW Change and Direct Data Transfer 222
 New SRNS with S-GW Change and Indirect Data Transfer 223
 Old SRNS with Direct Data Transfer 224
 Old SRNS with Indirect Data Transfer 224
 Network Initiated Secondary PDP Context Activation 229
 PGW Init Modification when UE is Idle 229
Limitations ... 230
Standards Compliance .. 230
Configuring Direct Tunnel on an S4-SGSN .. 231
Enabling Setup of GTP-U Direct Tunnel ... 231
Enabling Direct Tunnel to RNCs ... 231
Verifying the Call-Control Profile Configuration .. 232
Verifying the RNC Configuration ..., 232
Monitoring and Troubleshooting Direct Tunnel ... 233
 show subscribers sgsn-only .. 233
 show gmm-sm statistics sm-only ... 233
Direct Tunnel Bulk Statistics .. 233

GMM-SM Event Logging .. 235
Feature Description .. 236
Feature Overview ... 236
Events to be Logged ... 236
Event Record Fields .. 236
EDR Storage ... 240
Architecture ... 240
Limitations .. 240
Configuration .. 241

Idle Mode Signalling Reduction on the S4-SGSN ... 243
Feature Description .. 244
 Relationships .. 244
How ISR Works ... 245
 Limitations ... 246
Call Flows .. 246
 2G ISR Activation by the S4-SGSN ... 246
 2G ISR Activation by the MME .. 248
Standards Compliance ... 250
Configuring Idle-Mode-Signaling Reduction ... 251
 Configuring 2G ISR .. 251
 Verifying the 2G ISR Configuration .. 251
 Configuring 3G ISR .. 252
 Verifying the 3G ISR Configuration ... 253
Monitoring and Troubleshooting the ISR Feature .. 254
ISR Show Command(s) and Outputs ... 254
 show subscribers gprs-only full .. 254
 show subscribers sgsn-only full .. 254
 show s4-sgsn statistics (2G ISR) ... 254
 show s4-sgsn statistics (3G ISR) ... 254
 show gmm statistics (2G ISR) ... 255
 show gmm statistics (3G ISR) ... 255

ISR with Circuit Switched Fallback ... 257
ISR with CSFB - Feature Description ... 258
Call Flows .. 259
Relationships to Other Features ... 261
Relationships to Other Products ... 262
How it Works ... 263
ISR CSFB Procedures ... 264
Standards Compliance .. 268
Configuring ISR with Circuit Switched Fallback ... 269
Monitoring and troubleshooting the CSFB feature .. 270

Location Services ... 271
Location Services - Feature Description ... 272
Contents

How Location Services Works ... 273
 Relationship to Other SGSN Functions ... 273
 Architecture ... 273
 Limitations .. 274
 Flows ... 274
 Flows ... 274
 Standards Compliance .. 276
Configuring Location Services (LCS) on the SGSN ... 277
 Enabling LCS .. 277
 Identifying the GMLC .. 278
 Creating the Location Service Configuration .. 278
 Fine-tuning the Location Service Configuration .. 279
 Associating the Location Service Config with the SGSN ... 280
 Associating the Location Service Config with an Operator Policy ... 280
 Verifying the LCS Configuration for the SGSN ... 280
 Monitoring and Troubleshooting the LCS on the SGSN ... 282

MOCN for 2G SGSN .. 283
 Feature Description ... 284
 Gate Core Network (GW-CN) Configuration ... 284
 Multi Operator Core Network (MOCN) Configuration ... 284
 Relationships to Other Features ... 285
 How It Works .. 286
 Automatic PLMN Selection in Idle Mode .. 286
 MOCN Configuration with Non-supporting MS ... 286
 Architecture .. 287
 Redirection in GERAN with MOCN Configuration .. 287
 Standards Compliance .. 289
 Configuring 2G MOCN ... 290
 GPRS MOCN Configuration .. 290
 gprs-mocn .. 290
 Verifying gprs-mocn Configuration ... 290
 Common PLMN-Id and List of PLMN Ids Configuration ... 290
 plmn id ... 290
 Verifying plmn id Configuration .. 291
 Network Sharing Configuration ... 291
 network-sharing cs-ps-coordination ... 291
 Verifying network-sharing Configuration ... 291
 network-sharing failure-code ... 292
 Verifying Failure Code Configuration .. 292
 Monitoring and Troubleshooting 2G SGSN MOCN Support .. 293
 show sgsn-mode ... 293
 show gprs-service name ... 293
 show gmm-sm statistics verbose ... 293

Network Requested Secondary PDP Context Activation ... 297
 Feature Description ... 298
 Benefits ... 298
 Relationships to Other Features .. 298
 How It Works .. 299
 Gn/Gp SGSN .. 299
 Successful Activation for Gn/Gp SGSN ... 299
 Unsuccessful Activation for Gn/Gp SGSN ... 300
 S4-SGSN ... 302
 Successful Activation for S4-SGSN ... 302
RIM Message Transfer from BSC or RNC to eNodeB

Feature Description ... 362
RAN Information Management (RIM) 362
Relationships to Other Features or Products 362
How It Works ... 363
RIM Addressing .. 363
Call Flows - Transmitter of GTP RIM Msg 363
Call Flows - Receiver of GTP RIM Msg 364
RIM Application .. 364
Standards Compliance ... 365
Configuring RIM Msg Transfer to or from eNodeB 366
Configuring RIM Functionality ... 366
Associating Previously Configured SGTP and IuPS Services 366
Configuring the peer-MME’s address - Locally 367
Configuring the peer-MME’s address - for DNS Query 367
Monitoring and Troubleshooting RIM Msg Transfer 368
show gmm-sm statistics verbose 368
show gmm-sm statistics verbose grep RIM 368
show sgtpc statistics verbose ... 368
show bsggp statistics verbose .. 369

S4-SGSN Suspend-Resume Feature.. 371
Feature Description .. 372
Suspension of GPRS Services .. 372
Relationships to Other Features .. 372
How it Works .. 373
S4-SGSN Suspend-Resume Feature 373
Limitations .. 373
Call Flows .. 373
Intra-SGSN Suspend Procedure with Resume as the Subsequent Procedure .. 374
Intra-SGSN Suspend with Resume Procedure with Intra-RAU as Subsequent Procedure 375
Inter-SGSN Suspend and Resume Procedure with Peer S4-SGSN/MME ... 376
New Inter-SGSN Suspend and Resume Procedure from BSS to 2G Gn-SGSN ... 377
New SGSN Suspend and Resume Procedure with Peer Gn-SGSN as Old SGSN ... 378
Interface Selection Logic for Inter-SGSN Suspend (New SGSN) Procedure ... 379
Intra-SGSN Inter-System Suspend and Resume Procedure .. 381
Intra-SGSN Inter-System Suspend and Resume Procedure 381
Standards Compliance ... 383
Configuring the S4-SGSN Suspend/Resume Feature 385
Monitoring and Troubleshooting the S4-SGSN Suspend/Resume Feature ... 386
S4-SGSN Suspend and Resume Feature Show Commands 386
show subscriber gprs-only full all................................. 386
show subscriber sgsn-only full all 387
show bsggp statistics verbose ... 388
show egtpc statistics .. 388
Every 6 Months

Troubleshooting

Problems and Issues

1. Troubleshooting More Serious Problems

Causes for Attach Reject

Single Attach and Single Activate Failures

Mass Attach and Activate Problems

Single PDP Context Activation without Data

Mass PDP Context Activation but No Data

Engineering Rules

Service Rules

SGSN Connection Rules

Operator Policy Rules

SS7 Rules

SIP7 Connection Rules

SIP7 Routing

SIP7

SS7

GTT

SCCP

GTT

Service Rules

3G Interface Limits

2G Interface Limits

System-Level Interface Rules

Engineer Rules

GGSN Interface Rules

System-Level Interface Rules

GGSN Interface Limits

2G Interface Limits

System-Level Interface Limits

Engineer Rules

Technical Specifications

Appendix A: Glossary

Appendix B: Acronyms

Appendix C: References

Index
About this Guide

This preface describes the *SGSN Administration Guide*, its organization, document conventions, related documents, and contact information for Cisco customer service.

The SGSN (Serving GPRS Support Node) is a StarOS™ application that runs on Cisco® ASR 5x00.
Conventions Used

The following tables describe the conventions used throughout this documentation.

Icon

<table>
<thead>
<tr>
<th>Icon</th>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

Typeface Conventions

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text represented as a screen display</td>
<td>This typeface represents displays that appear on your terminal screen, for example: Login:</td>
</tr>
</tbody>
</table>
| Text represented as commands | This typeface represents commands that you enter, for example: show ip access-list
 | This document always gives the full form of a command in lowercase letters. Commands are not case sensitive. |
| Text represented as a command variable | This typeface represents a variable that is part of a command, for example: show card slot_number
 | slot_number is a variable representing the desired chassis slot number. |
| Text represented as menu or sub-menu names | This typeface represents menus and sub-menus that you access within a software application, for example:
 | Click the File menu, then click New |
Supported Documents and Resources

Related Common Documentation

The most up-to-date information for this product is available in the SGSN Release Notes provided with each product release.

The following common documents are available:

- AAA Interface Administration and Reference
- Command Line Interface Reference
- GTPP Interface Administration and Reference
- Installation Guide (platform dependent)
- Release Change Reference
- SNMP MIB Reference
- Statistics and Counters Reference
- System Administration Guide (platform dependent)
- Thresholding Configuration Guide
- Cisco StarOS IP Security (IPSec) Reference

Related Product Documentation

The following documents are also available for products that work in conjunction with the SGSN:

- GGSN Administration Guide
- InTracer Installation and Administration Guide
- MME Administration Guide
- MURAL Software Installation Guide
- Web Element Manager Installation and Administration Guide

Obtaining Documentation

The most current Cisco documentation is available on the following website:
http://www.cisco.com/cisco/web/psa/default.html

Use the following path selections to access the SGSN documentation:
Products > Wireless > Mobile Internet> Network Functions > Cisco SGSN Serving GPRS Support Node
Contacting Customer Support

Use the information in this section to contact customer support.

Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
Chapter 1
Serving GPRS Support Node (SGSN) Overview

This section contains general overview information about the Serving GPRS Support Node (SGSN), including sections for:

- Product Description
- Network Deployments and Interfaces
- SGSN Core Functionality
- Features and Functionality
- How the SGSN Works
- Supported Standards
Product Description

StarOS provides a highly flexible and efficient Serving GPRS Support Node (SGSN) service to the wireless carriers. Functioning as an SGSN, the system readily handles wireless data services within 2.5G General Packet Radio Service (GPRS) and 3G Universal Mobile Telecommunications System (UMTS) data networks. The SGSN also can serve as an interface between GPRS and/or UMTS networks and the EPC (4G) network.

Important: Throughout this section the designation for the subscriber equipment is referred to in various ways: UE for user equipment (common to 3G/4G scenarios), MS or mobile station (common to 2G/2.5G scenarios), and MN or mobile node (common to 2G/2.5G scenarios involving IP-level functions). Unless noted, these terms are equivalent and the term used usually complies with usage in the relevant standards.

In a GPRS/UMTS network, the SGSN works in conjunction with radio access networks (RANs) and Gateway GPRS Support Nodes (GGSNs) to:

- Communicate with home location registers (HLR) via a Gr interface and mobile visitor location registers (VLRs) via a Gs interface to register a subscriber’s user equipment (UE), or to authenticate, retrieve or update subscriber profile information.
- Support Gd interface to provide short message service (SMS) and other text-based network services for attached subscribers.
- Activate and manage IPv4, IPv6, or point-to-point protocol (PPP) -type packet data protocol (PDP) contexts for a subscriber session.
- Setup and manage the data plane between the RAN and the GGSN providing high-speed data transfer with configurable GEA0-3 ciphering.
- Provide mobility management, location management, and session management for the duration of a call to ensure smooth handover.
- Provide various types of charging data records (CDRs) to attached accounting/billing storage mechanisms such as our SMC-based hard drive or a GTPP Storage Server (GSS) or a charging gateway function (CGF).
- Provide CALEA support for lawful intercepts.

The S4-SGSN is an SGSN configured with 2G and/or 3G services and then configured to interface with the 4G EPC network via the S4 interface. This enables the S4-SGSN to support handovers from UMTS/GPRS networks to the EPC network. The S4-SGSN works in conjunction with EPC network elements and gateways to:

- Interface with the EPC network S-GW (via the S4 interface) and MME (via the S3 interface) to enable handovers between 2G/3G networks and the EPC (4G) network.
- Interface with the Equipment Identity Registry via the S13’ interface to perform the ME identity check.
- Interface with the HSS via the S6d interface to obtain subscription-related information.
- Communicate with S4-SGSNs via the S16 interface.
- Provide Idle Mode Signaling support for EPC-capable UEs.

This section catalogs many of the SGSN key components and features for data services within the GPRS/UMTS environment. Also, a range of SGSN operational and compliance information is summarized with pointers to other information sources.
Qualified Platforms

SGSN is a StarOS™ application that runs on Cisco® ASR 5x00 platforms. For additional platform information, refer to the appropriate System Administration Guide and/or contact your Cisco account representative.

Licenses

The SGSN is a licensed Cisco product and requires the purchase and installation of the SGSN Software License. Separate feature licenses may be required. Contact your Cisco account representative for detailed information on specific licensing requirements.

For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations section in the System Administration Guide.
Network Deployments and Interfaces

The following logical connection maps illustrate the SGSN’s ability to connect to various radio access network types, core network types, and network components:

- GSM edge radio access network (GERAN) provides access to the 2.5G general packet radio service (GPRS) network
- UMTS terrestrial radio access network (UTRAN) provides access to the 3G universal mobile telecommunications system (UMTS) network
- evolved UTRAN (E-UTRAN) provides access to the 4G mobile evolved packet core (EPC) of the long term evolution/system architecture evolution (LTE/SAE) network
- another SGSN
- standalone gateway GPRS support node (GGSN)
- co-located P-GW/GGSN
- mobile service center (MSC)
- visitor location register (VLR)
- home location register (HLR)
- charging gateway (CF - sometimes referred to as a charging gateway function (CGF))
- GTPP storage server (GSS)
- equipment identity registry (EIR)
- home subscriber server (HSS)
- mobility management entity (MME)
- serving gateway (S-GW)
- CAMEL service’s GSM service control function (gsmSCF)
- short message service server center (SMS-C)
- network devices in another PLMN

SGSN and Dual Access SGSN Deployments

SGSNs and GGSNs work in conjunction within the GPRS/UMTS network. As indicated earlier in the section on System Configuration Options, the flexible architecture of StarOS enables a single chassis to reduce hardware requirements by supporting integrated co-location of a variety of the SGSN services.

A chassis can be devoted solely to SGSN services or the SGSN system can include any co-location combination, such as multiple instances of 2.5G SGSNs (configured as GPRS services); or multiple instances of 3G SGSNs (configured as SGSN services); or a combination of 2.5G and 3G SGSN to comprise a dual access SGSN.

Important: The following illustrates the GPRS/UMTS Dual Access architecture with a display of all the interfaces supported as of Release 14.0. The SGSN Logical Network Interfaces section below lists the interfaces available for the release applicable to the version of this manual.
Figure 1. 2.5G & 3G Dual Access Architecture
SGSN/GGSN Deployments

The co-location of the SGSN and the GGSN in the same chassis facilitates handover. A variety of GSN combos is possible, 2.5G or 3G SGSN with the GGSN.

S4-SGSN Deployments

An S4-SGSN is an SGSN that is configured for S4 interface support to enable the soft handover of 2G and 3G subscribers to the EPC S-GW via the EPC S4 interface. Comprehensive S4-SGSN support includes interfaces to the following network elements and gateways:

- EPC serving gateway (S-GW) via the S4 interface
- Equipment identity registry (EIR) via the S13’ interface
- Home subscriber server (HSS) via the S6d interface
- EPC mobility management entity (MME) via the S3 interface
- Peer S4-SGSN via the S16 interface
The S4, S13’ and S6d interfaces are license-enabled features. Support for the S16 and S3 interfaces are included as part of the S4 license.

Figure 3. S4-SGSN Network Architecture
SGSN Logical Network Interfaces

The SGSN provides IP-based transport on all RAN and core network interfaces, in addition to the standard IP-based interfaces (Ga, Gn, Gp, Iu-PS). This means enhanced performance, future-proof scaling and reduction of interconnectivity complexity. The all-IP functionality is key to facilitating evolution to the next generation technology requirements.

The SGSN provides the following functions over the logical network interfaces illustrated above:

- **Ga:** The SGSN uses the Ga interface with GPRS Transport Protocol Prime (GTPP) to communicate with the charging gateway (CG, also known as CGF) and/or the GTPP storage server (GSS). The interface transport layer is typically UDP over IP but can be configured as TCP over IP for:
 - One or more Ga interfaces per system context, and
 - An interface over Ethernet 10/100 or Ethernet 1000 interfaces

The charging gateway handles buffering and pre-processing of billing records and the GSS provides storage for Charging Data Records (CDRs). For additional information regarding SGSN charging, refer to the Charging section.

- **IuPS:** The SGSN provides an IP over ATM (IP over AAL5 over ATM) interface between the SGSN and the RNCs in the 3G UMTS radio access network (UTRAN). RANAP is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle IuPS-C (control) for the RNCs.

Some of the procedures supported across this interface are:

- Control plane based on M3UA/SCTP
- Up to 128 Peer RNCs per virtual SGSN. Up to 256 peers per physical chassis
- SCTP Multi-Homing supported to facilitate network resiliency
- M3UA operates in and IPSP client/server and single/double-ended modes
- Multiple load shared M3UA instances for high-performance and redundancy
- Works over Ethernet and ATM (IPoA) interfaces
- Facilitates SGSN Pooling
- RAB (Radio Access Bearer) Assignment Request
- RAB Release Request
- Iu Release Procedure
- SGSN-initiated Paging
- Common ID
- Security Mode Procedures
- Initial MN Message
- Direct Transfer
- Reset Procedure
- Error Indication
- SRNS relocation
Gb: This is the SGSN’s interface to the base station system (BSS) in a 2G radio access network (RAN). It connects the SGSN via UDP/IP via an Ethernet interface or Frame Relay via a Channelized SDH or SONET interface (only available on an ASR 5000 chassis). Gb-IP is the preferred interface as it improves control plane scaling as well as facilitates the deployment of SGSN Pools.

Some of the procedures supported across this interface are:
- BSS GSM at 900/1800/1900 MHz
- BSS Edge
- Frame Relay congestion handling
- Traffic management per Frame Relay VC
- NS load sharing
- NS control procedures
- BVC management procedures
- Paging for circuit-switched services
- Suspend/Resume
- Flow control
- Unacknowledged mode
- Acknowledged mode

Gn/Gp: The Gn/Gp interfaces, comprised of GTP/UDP/IP-based protocol stacks, connect the SGSNs and GGSNs to other SGSNs and GGSNs within the same public land mobile network (PLMN) - the Gn - or to GGSNs in other PLMNs - the Gp.

This implementation supports:
- GTPv0 and GTPv1, with the capability to auto-negotiate the version to be used with any particular peer
- GTP-C (control plane) and GTP-U (user plane)
- Transport over ATM/STM-1 Optical (only available with an ASR 5000 chassis), Fast Ethernet, and Ethernet 1000 line cards/QGLCs
- One or more Gn/Gp interfaces configured per system context

As well, the SGSN can support the following IEs from later version standards:
- IMEI-SV
- RAT TYPE
- User Location Information
- Extended PDP Type (Release 9)
- Extended RNC ID (Release 9)

Ge: This is the interface between the SGSN and the SCP that supports the CAMEL service. It supports both SS7 and SIGTRAN and uses the CAP protocol.

Gr: This is the interface to the HLR. It supports SIGTRAN (M3UA/SCTP/IP) over Ethernet.

Some of the procedures supported by the SGSN on this interface are:
- Send Authentication Info
Serving GPRS Support Node (SGSN) Overview

Network Deployments and Interfaces

- Update Location
- Insert Subscriber Data
- Delete Subscriber Data
- Cancel Location
- Purge
- Reset
- Ready for SM Notification
- SIGTRAN based interfaces M3UA/SCTP
- Peer connectivity can be through an intermediate SGP or directly depending on whether the peer (HLR, EIR, SMSC, GMLC) is SIGTRAN enabled or not
- SCTP Multi-Homing supported to facilitate network resiliency
- M3UA operates in IPSP client/server and single/double-ended modes
- Multiple load shared M3UA instances for high-performance and redundancy
- Works over Ethernet (IPoA) interface

- **Gs**: This is the interface used by the SGSN to communicate with the visitor location register (VLR) or mobile switching center (MSC) to support circuit switching (CS) paging initiated by the MSC. This interface uses Signaling Connection Control Part (SCCP) connectionless service and BSSAP+ application protocols.

- **Gd**: This is the interface between the SGSN and the SMS Gateway (SMS-GMSC / SMS-IWMSC) for both 2G and 3G technologies through multiple interface mediums. Implementation of the Gd interface requires purchase of an additional license.

- **Gf**: Interface is used by the SGSN to communicate with the equipment identity register (EIR) which keeps a listing of UE (specifically mobile phones) being monitored. The SGSN’s Gf interface implementation supports functions such as:
 - International Mobile Equipment Identifier-Software Version (IMEI-SV) retrieval
 - IMEI-SV status confirmation

- **Lg**: This interface, between the SGSN and the gateway mobile location center (GMLC), supports 3GPP standards-compliant LoCation Services (LCS) for both 2G and 3G technologies. Implementation of the Lg interface requires purchase of an additional license.

- **S3**: On the S4-SGSN, this interface provides a GTPv2-C signaling path connection between the EPC mobility management entity (MME) and the SGSN. This functionality is part of the S4 interface feature license.

- **S4**: On the S4-SGSN, this interface provides a data and signaling interface between the EPC S-GW and the S4-SGSN for bearer plane transport (GTPv1-U). The S4-SGSN communicates with the P-GW via the S-GW. A separate feature license is required for S4 interface support.

- **S6d**: On the SGSN, this is the S6d interface between the SGSN and the HSS. This enables the SGSN to get subscription details of a user from the HSS when a user tries to register with the SGSN. A separate feature license is required for S6d Diameter interface support.

- **S13’**: The SGSN supports the S13’ interface between the SGSN and the EIR. This enables the SGSN to communicate with an Equipment Identity Registry (EIR) via the Diameter protocol to perform the Mobile Equipment (ME) identity check procedure between the SGSN and EIR. Performing this procedure enables the SGSN to verify the equipment status of the Mobile Equipment. A separate feature license is required for S13’ interface support.
- **S16**: On the S4-SGSN, this interface provides a GTPv2 path to a peer S4-SGSN. Support for this interface is provided as part of the S4 interface license.
SGSN Core Functionality

The SGSN core functionality is comprised of:

- All-IP Network (AIPN)
- SS7 Support
- PDP Context Support
- Mobility Management
- Location Management
- Session Management
- Charging

All-IP Network (AIPN)

AIPN provides enhanced performance, future-proof scaling and reduction of inter-connectivity complexity.

In accordance with 3GPP, the SGSN provides IP-based transport on all RAN and core network interfaces, in addition to the standard IP-based interfaces (Ga, Gn, Gp, Iu-Data). The all-IP functionality is key to facilitating Iu and Gb Flex (SGSN pooling) functionality as well as evolution to the next generation technology requirements.

The following IP-based protocols are supported on the SGSN:

- SCTP
- M3UA over SCTP
- GTPv0 over UDP
- GTPv1 over UDP
- GTPv2 over UDP (S4-SGSN only)
- GTP-U over UDP
- Diameter over TCP and SCTP (S4-SGSN only)

SS7 Support

StarOS SGSN implements SS7 functionality to communicate with the various SS7 network elements, such as HLRs and VLRs.

The SGSN employs standard SS7 addressing (point codes) and global title translation. SS7 feature support includes:

- Transport layer support includes:
 - Broadband SS7 (MTP3B/SCCF/SSCOP/AAL5)
 - Narrowband SS7 (high speed and low speed) (only available on an ASR 5000 chassis)
 - SIGTRAN (M3UA/SCTP/IP)
- SS7 variants supported:
PDP Context Support

Support for subscriber primary and secondary Packet Data Protocol (PDP) contexts in compliance with 3GPP standards ensure complete end-to-end GPRS connectivity.

The SGSN supports a total of 11 PDP contexts per subscriber. Of the 11 PDP context, all can be primaries, or 1 primary and 10 secondaries or any combination of primary and secondary. Note that there must be at least one primary PDP context in order for secondaries to establish.

PDP context processing supports the following types and functions:

- Types: IPv4, IPv6, IPv4v6 (dual stack) and/or PPP
- GTPP accounting support
- PDP context timers
- Quality of Service (QoS)

Mobility Management

The SGSN supports mobility management (MM) in compliance with applicable 3GPP standards and procedures to deliver the full range of services to the mobile device. Some of the procedures are highlighted below:

GPRS Attach

The SGSN is designed to accommodate a very high rate of simultaneous attaches. The actual attach rate depends on the latencies introduced by the network and scaling of peers. In order to optimize the entire signaling chain, the SGSN eliminates or minimizes bottlenecks caused by large scale control signaling. For this purpose, the SGSN implements features such as an in-memory data-VLR and SuperCharger. Both IMSI and P-TMSI based attaches are supported.

The SGSN provides the following mechanisms to control MN attaches:
• **Attached Idle Timeout** - When enabled, if an MN has not attempted to setup a PDP context since attaching, this timer forces the MN to detach with a cause indicating that the MN need not re-attach. This timer is particularly useful for reducing the number of attached subscribers, especially those that automatically attach at power-on.

• **Detach Prohibit** - When enabled, this mechanism disables the Attached Idle Timeout functionality for selected MNs which aggressively re-attach when detached by the network.

• **Prohibit Reattach Timer** - When enabled, this timer mechanism prevents MNs, that were detached due to inactivity, from re-attaching for a configured period of time. Such MNs are remembered by the in-memory data-VLR until the record needs to be purged.

• **Attach Rate Throttle** - It is unlikely that the SGSN would become a bottleneck because of the SGSN’s high signaling rates. However, other nodes in the network may not scale commensurately. To provide network overload protection, the SGSN provides a mechanism to control the number of attaches occurring through it on a per second basis.

Beside configuring the rate, it is possible to configure the action to be taken when the overload limit is reached. See the `network-overload-protection` command in the “Global Configuration Mode” section in the Command Line Interface Reference. Note, this is a soft control and the actual attach rate may not match exactly the configured value depending on the load conditions.

GPRS Detach

The SGSN is designed to accommodate a very high rate of simultaneous detaches. However, the actual detach rate is dependent on the latencies introduced by the network and scaling of peers. A GPRS detach results in the deactivation of all established PDP contexts.

There are a variety of detaches defined in the standards and the SGSN supports the following detaches:

- **MN Initiated Detach** - The MN requests to be detached.
- **SGSN Initiated Detach** - The SGSN requests the MN to detach due to expiry of a timer or due to administrative action.
- **HLR Initiated Detach** - The detach initiated by the receipt of a cancel location from the HLR.

Mass detaches triggered by administrative commands are paced in order to avoid flooding the network and peer nodes with control traffic.

Paging

CS-Paging is initiated by a peer node - such as the MSC - when there is data to be sent to an idle or unavailable UE. CS-paging requires the Gs interface. This type of paging is intended to trigger a service request from the UE. If necessary, the SGSN can use PS-Paging to notify the UE to switch channels. Once the UE reaches the connected state, the data is forwarded to it.

Paging frequency can be controlled by configuring a paging-timer.

Service Request

The Service Request procedure is used by the MN in the PMM Idle state to establish a secure connection to the SGSN as well as request resource reservation for active contexts.

The SGSN allows configuration of the following restrictions:

- **Prohibition of services**
• Enforce identity check
• PLMN restriction
• Roaming restrictions

Authentication

The SGSN authenticates the subscriber via the authentication procedure. This procedure is invoked on attaches, PDP activations, inter-SGSN routing Area Updates (RAUs), and optionally by configuration for periodic RAUs. The procedure requires the SGSN to retrieve authentication quintets/triplets from the HLR (AuC) and issuing an authentication and ciphering request to the MN. The SGSN implements an in-memory data-VLR functionality to prefetch and store authentication vectors from the HLR. This decreases latency of the control procedures.

Additional configuration at the SGSN allows for the following:
• Enforcing ciphering
• Retrieval of the IMEI-SV

P-TMSI Reallocation

The SGSN supports standard Packet-Temporary Mobile Identity (P-TMSI) Reallocation procedures to provide identity confidentiality for the subscriber.

The SGSN can be configured to allow or prohibit P-TMSI reallocation on the following events:
• Routing Area Updates
• Attaches
• Detaches
• Service Requests

The SGSN reallocates P-TMSI only when necessary.

P-TMSI Signature Reallocation

The SGSN supports operator definition of frequency and interval for Packet Temporary Mobile Subscriber Identity (P-TMSI) signature reallocation for all types of routing area update (RAU) events.

Identity Request

This procedure is used to retrieve IMSI and IMEI-SV from the MN. The SGSN executes this procedure only when the MN does not provide the IMSI and the MM context for the subscriber is not present in the SGSN’s data-VLR.

Location Management

The SGSN’s 3GPP compliance for location management ensures efficient call handling for mobile users.

The SGSN supports routing area updates (RAU) for location management. The SGSN implements standards based support for:
• Periodic RAUs
Serving GPRS Support Node (SGSN) Overview

SGSN Core Functionality

- Intra-SGSN RAUs
- Inter-SGSN RAUs.

The design of the SGSN allows for very high scalability of RAUs. In addition, the high capacity of the SGSN and Flex functionality provides a great opportunity to convert high impact Inter-SGSN RAUs to lower impact Intra-SGSN RAUs. The SGSN provides functionality to enforce the following RAU restrictions:

- Prohibition of GPRS services
- Enforce identity request
- Enforce IMEI check
- PLMN restriction
- Roaming restrictions

The SGSN also provides functionality to optionally supply the following information to the MN:

- P-TMSI Signature and Allocated P-TMSI
- List of received N-PDU numbers for loss less relocation
- Negotiated READY timer value
- Equivalent PLMNs
- PDP context status
- Network features supported

Session Management

Session management ensures proper PDP context setup and handling.

For session management, the SGSN supports four 3GPP-compliant procedures for processing PDP contexts:

- Activation
- Modification
- Deactivation
- Preservation

PDP Context Activation

The PDP context activation procedure establishes a PDP context with the required QoS from the MN to the GGSN. These can be either primary or secondary contexts. The SGSN supports a minimum of 1 PDP primary context per attached subscriber, and up to a maximum of 11 PDP contexts per attached subscriber.

The PDP context types supported are:

- PDP type IPv4
- PDP type IPv6
- PDP type IPv4v6
- PDP type PPP
Both dynamic and static addresses for the PDP contexts are supported. The SGSN provides configuration to control the duration of active and inactive PDP contexts. When activating a PDP context the SGSN can establish the GTP-U data plane from the RNC through the SGSN to the GGSN or directly between the RNC and the GGSN (one tunnel). The SGSN is capable of interrogating the DNS infrastructure to resolve the specified APN to the appropriate GGSN. The SGSN also provides default and override configuration of QoS and APN.

PDP Context Modification

This procedure is used to update the MN and the GGSN. The SGSN is capable of initiating the context modification or negotiating a PDP context modification initiated by either the MN or the GGSN.

PDP Context Deactivation

This procedure is used to deactivate PDP contexts. The procedure can be initiated by the MN or the SGSN. The SGSN provides configurable timers to initiate PDP deactivation of idle contexts as well as active contexts.

PDP Context Preservation

The SGSN provides this functionality to facilitate efficient radio resource utilization. This functionality comes into play on the following triggers:

- **RAB (Radio Access Bearer) Release Request**
 This is issued by the RAN to request the release of RABs associated with specific PDP contexts. The SGSN responds with a RAB assignment request, waits for the RAB assignment response and marks the RAB as having been released. The retention of the PDP contexts is controlled by configuration at the SGSN. If the PDP contexts are retained the SGSN is capable of receiving downlink packets on them.

- **Iu Release Request**
 The RAN issues an Iu release request to release all RABs of an MN and the Iu connection. The retention of the PDP contexts is controlled by configuration at the SGSN. When PDP contexts are retained the SGSN is capable of receiving downlink packets on them.

 When PDP contexts are preserved, the RABs can be restored on a service request from the MN without having to go through the PDP context establishment process again. The service request is issued by the MN either when it has some data to send or in response to a paging request, on downlink data, from the SGSN.

Charging

Charging functionality for the SGSN varies depending upon the type of network in which it is deployed.

SGSN in GPRS/UMTS Network

The SGSN provides an efficient and accurate billing system for all calls and SMSs passing through the SGSN. The charging-specific interfaces and 3GPP standards supported by the SGSN deployments are listed below:

- Allows the configuration of multiple CGFs and a single GSS in a single GTPP group along with their relative priorities.
- Implements the standardized Ga interface.
- Fully supports the GPRS Tunneling Protocol Prime (GTPP) over UDP/TCP.
- Supports the relevant charging information as defined in:
 - 3GPP TS 32.215 v5.9.0 (2005-06): 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Charging data description for the Packet Switched (PS) domain (Release 4)
 - 3GPP TS 32.251 V8.8.0 (2009-12): 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Packet Switched (PS) domain charging (Release 8).
 - 3GPP TS 32.298 V8.7.0 (2009-12): 3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; Telecommunication management; Charging management; Charging Data Record (CDR) parameter description (Release 8)

Charging Data Records (CDRs)

The SGSN generates CDRs with the charging information. The following sections outline the types of CDRs generated by the SGSN.

For full dictionary, CDR and field information, refer to the *GTPP Accounting Overview*, the *SGSN and Mobility Management Charging Detail Record Field Reference Tables*, and the *S-CDR Field Descriptions* sections in the *AAA and GTPP Interface Administration and Reference*

SGSN Call Detail Records (S-CDRs)

These charging records are generated for PDP contexts established by the SGSN. They contain attributes as defined in TS 32.251 v7.2.0.

Mobility Call Detail Records (M-CDRs)

These charging records are generated by the SGSN’s mobility management (MM) component and correspond to the mobility states. They contain attributes as defined in 3GPP TS 32.251 v7.2.0.

Short Message Service CDRs

SGSN supports following CDRs for SMS related charging:
- SMS-Mobile Originated CDRs (SMS-MO-CDRs)
- SMS Mobile Terminated CDRs (SMS-MT-CDRs)

These charging records are generated by the SGSN’s Short Message Service component. They contain attributes as defined in 3GPP TS 32.215 v5.9.0.

Location Request CDRs

SGSN supports the following Location Request CDRs:
- Mobile terminated location request CDRs (LCS-MT-CDRs)
• Mobile originated location request CDRs (LCS-MO-CDRs)

SGSN in LTE/SAE Network

Beginning in release 14.0, an SGSN can function in an LTE/SAE network using enhancements to support various other interfaces including an S4 interface. In these cases, the SGSN is referred to as an S4-SGSN.

Serving Gateway Call Detail Records (S-GW-CDRs)

The S4-SGSN does not support S-CDRs because the S4 interface is used, per PDP (or EPS bearer) and charging records are generated by the S-GW using the S-GW-CDR. The S-GW collects the charging information per user per IP-CAN bearer. The collected information is called as S-GW-CDR and sent to the Charging Gateway over the Gz interface.
Features and Functionality

It is impossible to list all of the features supported by the Gn/Gp SGSN (2.5G and 3G) or the S4-SGSN.

Those features listed below are only a few of the features that enable the operator to control the SGSN and their network. All of these features are either proprietary or comply with relevant 3GPP specifications.

Some of the proprietary features may require a separate license. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations section in the System Administration Guide.

The following is an alphabetical list of the features described in this overview:

- 3G-2G Location Change Reporting
- AAA Changes To Support Location Services (LCS) Feature
- Accounting Path Framework, New for 14.0
- APN Aliasing
- APN Redirection per APN with Lowest Context-ID
- APN Resolution with SCHAR or RNC-ID
- Automatic Protection Switching (APS)
- Authentications and Reallocations -- Selective
- Avoiding PDP Context Deactivations
- Bulk Statistics Support
- CAMEL Service Phase 3, Ge Interface
- Commandguard
- Configurable RAB Asymmetry Indicator in RAB Assignment Request
- Direct Tunnel
- Direct Tunnel Support on the S4SGSN
- Downlink Data Lockout Timer
- DSCP Templates for Control and Data Packets - Iu or Gb over IP
- Dual PDP Addresses for Gn/Gp
- ECMP over ATM
- EDR Enhancements
- Equivalent PLMN
- First Vector Configurable Start for MS Authentication
- Gb Manager
- GMM-SM Event Logging
- Gn/Gp Delay Monitoring
- GTP-C Path Failure Detection and Management
- Handling Multiple MS Attaches All with the Same Random TLLI
- Ignore Context-ID during 4G3G Handovers
- Intra- or Inter-SGSN Serving Radio Network Subsystem (SRNS) Relocation (3G only)
- Lawful Intercept
- Link Aggregation - Horizontal
- Local DNS
- Local Mapping of MBR
- Local QoS Capping
- Location Services
- LockShutdown the BSC from the SGSN
- Management System Overview
- Multiple PLMN Support
- Network Sharing
- NRI Handling Enhancement
- NRPCA 3G
- NRSPCA Support for S4-SGSN
- Operator Policy
- Overcharging Protection
- QoS Traffic Policing per Subscriber
- Reordering of SNDCP N-PDU Segments
- S4 Support on the SGSN
- Session Recovery
- SGSN Pooling and Iu-Flex Gb-Flex
- SGSN Support for RAI Based Query
- SGSN Support for Sending Extended Bits Bi-directionally
- Short Message Service (SMS over Gd)
- SMS Authentication Repetition Rate
- SMSC Address Denial
- Status Updates to RNC
- Threshold Crossing Alerts (TCA) Support
- Tracking Usage of GEA Encryption Algorithms
- VLR Pooling via the Gs Interface
- Synchronization of Crash Events and Minicores between Management Cards
- Zero Volume S-CDR Suppression
3G-2G Location Change Reporting

With Location Change Reporting enabled, the SGSN facilitates location-based charging on the GGSN by providing the UE’s geographical location information when the UE is in connected mode.

Location-based charging is a values-added function that ensures subscribers pay a premium for location-based services, such as service in a congested areas. With the required feature license installed, the operator uses the CLI to enable the reporting independently for each network access type: GPRS (2G) or UMTS (3G).

For more information about how the feature works and how to configure it, refer to the 3G-2G Location Change Reporting feature section.

Accounting Path Framework, New for 14.0

As of Release 14.0, the SGSN uses a new accounting path framework to support PSC3 numbers of 8 million attached subs and 16 million PDP contexts. In the old accounting path framework, there was one AAA session per sub-session in the Session manager and one archive session per sub-session in AAA manager. As part of the new accounting path framework there is only one AAA session per call in the Session manager and one archive session per call in the AAA manager. Also, there is an additional accounting session in the Session manager and the AAA manager per sub-session.

The new accounting path framework improves memory and CPU utilization and prevents tariff or time limit delay. There are no changes in the CLI syntax to support the new accounting path and the existing accounting behavior of SGSN is not modified.

AAA Changes To Support Location Services (LCS) Feature

The Location Services (LCS) feature in SGSN provides the mechanism to support mobile location services for operators, subscribers and third party service providers. AAA changes have been made to support the LCS feature. A new CDR type Mobile Originated Location Request CDRs (LCS-MO-CDR) is introduced. LCS-MO-CDRs support the standard dictionaries.

For detailed information on LCS-MO-CDRs, refer to the GTPP Interface Administration and Reference.

APN Aliasing

In many situations, the APN provided in the Activation Request is unacceptable – perhaps it does not match with any of the subscribed APNs or it is misspelled – and would result in the SGSN rejecting the Activation Request. The APN Aliasing feature enables the operator to override an incoming APN – specified by a subscriber or provided during the APN selection procedure (TS 23.060) – or replace a missing APN with an operator-preferred APN.

The APN Aliasing feature provides a set of override functions: Default APN, Blank APN, APN Remapping, and Wildcard APN to facilitate such actions as:

- overriding a mismatched APN with a default APN.
- overriding a missing APN (blank APN) with a default or preferred APN.
- overriding an APN on the basis of charging characteristics.
- overriding an APN by replacing part or all of the network or operator identifier with information defined by the operator, for example, MNC123.MCC456.GPRS could be replaced by MNC222.MCC333.GPRS.
- overriding an APN for specific subscribers (based on IMSI) or for specific devices (based on IMEI).
Default APN

Operators can configure a “default APN” for subscribers not provisioned in the HLR. The default APN feature will be used in error situations when the SGSN cannot select a valid APN via the normal APN selection process. Within an APN remap table, a default APN can be configured for the SGSN to:

- override a requested APN when the HLR does not have the requested APN in the subscription profile.
- provide a viable APN if APN selection fails because there was no “requested APN” and wildcard subscription was not an option.

In either of these instances, the SGSN can provide the default APN as an alternate behavior to ensure that PDP context activation is successful.

Recently, the SGSN’s default APN functionality was enhanced so that if a required subscription APN is not present in the subscriber profile, then the SGSN will now continue the activation with another configured 'dummy' APN. The call will be redirected, via the GGSN, to a webpage informing the user of the error and prompting to subscribe for services. Refer to the APN Remap Table Configuration Mode in the Command Line Interface Reference for the command to configure this feature.

APN Redirection per APN with Lowest Context-ID

The APN Redirection per APN with Lowest Context-ID feature adds the flexibility to select the subscription APN with the least context ID when the APN is not found in the subscription. SGSN already provides sophisticated APN replacement with support for first-in-subscription, default APN, blank APN, and wildcard APN. This latest feature works along similar lines providing further flexibility to the operator in allowing activations when the MS requested APN is incorrect, misspelled, or not present in the subscription.

The SGSN's APN selection procedure is based on 3GPP 23.060 Annex A, which this feature extends based on CLI controls under the APN Remap Table configuration mode.

APN Resolution with SCHAR or RNC-ID

It is now possible to append charging characteristic information to the DNS string. The SGSN includes the profile index value portion of the CC as binary/decimal/hexadecimal digits (type based on the configuration) after the APN network identification. The charging characteristic value is taken from the subscription record selected for the subscriber during APN selection. This enables the SGSN to select a GGSN based on the charging characteristics information.

After appending the charging characteristic the DNS string will take the following form:
<apn_network_id>.<profile_index>.<apn_operator_id>. The profile index in the following example has a value 10: quicknet.com.uk.1010.mnc234.mcc027.gprs.

If the RNC_ID information is configured to be a part of the APN name, and if inclusion of the profile index of the charging characteristics information is enabled before the DNS query is sent, then the profile index is included after the included RNC_ID and the DNS APN name will appear in the following form:
<apn_network_id>.<rnc_id>.<profile_index>.<apn_operator_id>. In the following example, the DNS query for a subscriber using RNC 0321 with the profile index of value 8 would appear as:
quicknet.com.uk.0321.1000.mnc234.mcc027.gprs.
Automatic Protection Switching (APS)

Automatic protection switching (APS) is now available on an inter-card basis for SONET configured CLC2 (Frame Relay) and OLC2 (ATM) optical line cards. Multiple switching protection (MSP) version of is also available for SDH configured for the CLC2 and OLC2 (ATM) line cards.

APS/MSP offers superior redundancy for SONET/SDH equipment and supports recovery from card failures and fiber cuts. APS allows an operator to configure a pair of SONET/SDH lines for line redundancy. In the event of a line problem, the active line switches automatically to the standby line within 60 milliseconds (10 millisecond initiation and 50 millisecond switchover).

At this time, the Gn/Gp-SGSN supports the following APS/MSP parameters:

- **1+1** - Each redundant line pair consists of a working line and a protection line.
- **uni-directional** - Protection on one end of the connection.
- **non-revertive** - Upon restoration of service, this parameter prevents the network from automatically reverting to the original working line.

The protection mechanism used for the APS/MSP uses a linear 1+1 architecture, as described in the ITU-T G.841 standard and the Bellcore publication GR-253-CORE, SONET Transport Systems; Common Generic Criteria, Section 5.3. The connection is unidirectional.

With APS/MSP 1+1, each redundant line pair consists of a working line and a protection line. Once a signal fail condition or a signal degrade condition is detected, the hardware switches from the working line to the protection line.

With the non-revertive option, if a signal fail condition is detected, the hardware switches to the protection line and does not automatically revert back to the working line.

Since traffic is carried simultaneously by the working and protection lines, the receiver that terminates the APS/MSP 1+1 must select cells from either line and continue to forward one consistent traffic stream. The receiving ends can switch from working to protection line without coordinating at the transmit end since both lines transmit the same information.

Refer to the section on Configuring APS/MSP Redundancy in the SGSN Service Configuration Procedures section for configuration details.

Authentications and Reallocations -- Selective

Subscriber event authentication, P-TMSI reallocation, and P-TMSI signature reallocation are now selective rather than enabled by default.

The operator can enable and configure them to occur according to network requirements:
• every instance or every nth instance;
• on the basis of UMTS, GPRS or both;
• on the basis of elapsed time intervals between events.

There are situations in which authentication will be performed unconditionally:
• IMSI Attach – all IMSI attaches will be authenticated
• When the subscriber has not been authenticated before and the SGSN does not have a vector
• When there is a P-TMSI signature mismatch
• When there is a CKSN mismatch

There are situations in which P-TMSI will be reallocated unconditionally:
• Inter SGSN Attach/RAU
• Inter-RAT Attach/RAU in 2G
• IMSI Attach

Avoiding PDP Context Deactivations

The SGSN can be configured to avoid increased network traffic resulting from bursts of service
deactivations/activations resulting from erroneous restart counter change values in received messages (Create PDP
Context Response or Update PDP Context Response or Update PDP Context Request). By default, the SGSN has the
responsibility to verify possible GTP-C path failure by issuing an Echo Request/Echo Response to the GGSN. Path
failure will only be confirmed if the Echo Response contains a new restart counter value. Only after this confirmation of
the path failure does the SGSN begin deactivation of PDP contexts.

Bulk Statistics Support

System support for bulk statistics allows operators to choose which statistics to view and to configure the format in
which the statistics are presented. This simplifies the post-processing of statistical data since it can be formatted to be
parsed by external, back-end processors.

When used in conjunction with the Web Element Manager, the data can be parsed, archived, and graphed.

The system can be configured to collect bulk statistics (performance data) and send them to a collection server (called a
receiver). Bulk statistics are statistics that are collected in a group. The individual statistics are grouped by schema. The
following is the list of schemas supported for use by the SGSN:

• **System**: Provides system-level statistics
• **Card**: Provides card-level statistics
• **Port**: Provides port-level statistics
• **DLCI-Util**: Provides statistics specific to DLCIs utilization for CLC-type line cards
• **EGTPC**: Provides statistics specific to the configured ETPC service on the S4-SGSN
• **GPRS**: Provides statistics for LLC, BSSGP, SNDCP, and NS layers
• **SCCP**: Provides SCCP network layer statistics
• **SGTP**: Provides SGSN-specific GPRS Tunneling Protocol (GTP) statistics
Serving GPRS Support Node (SGSN) Overview

Features and Functionality

- SGSN: Provides statistics for: mobility management (MM) and session management (SM) procedures; as well, MAP, TCAP, and SMS counters are captured in this schema. SGSN Schema statistic availability is per service (one of: SGSN, GPRS, MAP) and per routing area (RA)

- SS7Link: Provides SS7 link and linkset statistics

- SS7RD: Provides statistics specific to the proprietary SS7 routing domains

The system supports the configuration of up to 4 sets (primary/secondary) of receivers. Each set can be configured with to collect specific sets of statistics from the various schemas. Statistics can be pulled manually from the chassis or sent at configured intervals. The bulk statistics are stored on the receiver(s) in files.

The format of the bulk statistic data files can be configured by the user. Users can specify the format of the file name, file headers, and/or footers to include information such as the date, chassis host name, chassis uptime, the IP address of the system generating the statistics (available for only for headers and footers), and/or the time that the file was generated.

When the Web Element Manager is used as the receiver, it is capable of further processing the statistics data through XML parsing, archiving, and graphing.

The Bulk Statistics Server component of the Web Element Manager parses collected statistics and stores the information in the PostgreSQL database. If XML file generation and transfer is required, this element generates the XML output and can send it to a Northbound NMS or an alternate bulk statistics server for further processing.

Additionally, if archiving of the collected statistics is desired, the Bulk Statistics server writes the files to an alternative directory on the server. A specific directory can be configured by the administrative user or the default directory can be used. Regardless, the directory can be on a local file system or on an NFS-mounted file system on the Web Element Manager server.

CAMEL Service Phase 3, Ge Interface

The SGSN provides PDP session support as defined by Customized Applications for Mobile network Enhanced Logic (CAMEL) phase 3.

CAMEL Service

CAMEL service enables operators of 2.5G/3G networks to provide operator-specific services (such as prepaid GPRS service and prepaid SMS service) to subscribers, even when the subscribers are roaming outside their HPLMN.

CAMEL Support

SGSN support for CAMEL phase 3 services expands with each SGSN application release. Current support enables operators of 2.5G/3G networks to provide operator-specific services (such as prepaid GPRS service and prepaid SMS service) to subscribers, even when the subscribers are roaming outside their HPLMN.

For this release the SGSN has expanded its support for CAMEL Scenario 1 adding:
- Implementation of Scenario1 triggers (TDP-Attach, TDP-Attach-ChangeofPosition)
- Implementation of Scenario1 Dynamic triggers (DP-Detach, DP-ChangeofPosition)
- Expanded conformance to 3GPP spec 23.078 (Release 4)

The SGSN supports the following GPRS-related functionality in CAMEL phase 3:
- Control of GPRS PDP contexts
Functional support for CAMEL interaction includes:

- PDP Context procedures per 3GPP TS 29.002
 - GPRS TDP (trigger detection point) functions
 - Default handling codes, if no response received from SCP
 - GPRS EDP (event detection points) associated with SCP
 - Charging Procedures: Handle Apply Charging GPRS & Handle Apply Charging Report GPRS
- “GPRS Dialogue scenario 2" for CAMEL control with SCP
- CAMEL-related data items in an S-CDR:
 - SCF Address
 - Service Key
 - Default Transaction Handling
 - Level of CAMEL service (phase 3)
- Session Recovery for all calls have an ESTABLISHED CAMEL association.

Ge Interface

The SGSN’s implementation of CAMEL uses standard CAP protocol over a Ge interface between the SGSN and the SCP. This interface can be deployed over SS7 or SIGTAN.

The SGSN's Ge support includes use of the gprsSSF CAMEL component with the SGSN and the gsmSCF component with the SCP.

CAMEL Configuration

To provide the CAMEL interface on the SGSN, a new service configuration mode, called “CAMEL Service”, has been introduced on the SGSN.

1. An SCCP Network configuration must be created or exist already.
2. A CAMEL Service instance must be created.
3. The CAMEL Service instance must be associated with either the SGSN Service configuration or the GPRS Service configuration in order to enable use of the CAMEL interface.
4. The CAMEL Service must be associated with the SCCP Network configuration.

Until a CAMEL Service is properly configured, the SGSN will not process any TDP for pdp-context or mo-sms.

For configuration details, refer to the Serving GPRS Support Node Administration Guide and the Command Line Interface Reference.

Commandguard

Operators can accidentally enter configuration mode via CLI or file replay. To protect against this, SGSN supports commandguard CLI command. Commandguard, which is disabled by default, can only be enabled or disabled from the Global Configuration mode. When Commandguard is enabled it affects the configure and autoconfirm CLI commands by causing them to prompt (Y/N) for confirmation. When autoconfirm is enabled Commandguard has no affect. The commandguard state is preserved in the SCT and, when enabled, is output by the various variants of the show config CLI.
Configurable RAB Asymmetry Indicator in RAB Assignment Request

The SGSN sets the value for the RAB Asymmetry Indicator that is included in the RAB Assignment Request.

In releases prior to R12.0, the SGSN set the RAB asymmetry indicator to "Symmetric-Bidirectional" when downlink and uplink bit rates were equal. Now, the SGSN selects the value based on the symmetry of negotiated maximum bit rates as follows:

- If the uplink and downlink bit rates are equal then it is set to “Symmetric-Bidirectional”,
- If uplink bit rate is set to 0 kbps, then it is set to “Asymmetric-Unidirectional-Downlink”,
- If downlink bit rate is set to 0 kbps, then it is set to “Asymmetric-Unidirectional-Uplink”,
- If the uplink and downlink bit rates are non-zero and different, then it is set to “Asymmetric-Bidirectional”.

A change in CLI configuration allows the SGSN to override the above functionality and set the RAB Asymmetry Indicator to “Asymmetric-Bidirectional” when uplink and downlink bit rates are equal. As a result, two sets of bit rates - one for downlink and one for uplink - will be included in the RAB Assignment Requests as mandated in 3GPP TS 25.413.

Direct Tunnel

In accordance with standards, one tunnel functionality enables the SGSN to establish a direct tunnel at the user plane level - a GTP-U tunnel, directly between the RAN and the GGSN. Feature details and configuration procedures are provided in the Direct Tunnel feature section in this guide.

Direct Tunnel Support on the S4-SGSN

Important: With this release, this feature is qualified for lab and field trials only.

Direct tunnelling of user plane data between the RNC and the S-GW can be employed to scale UMTS system architecture to support higher traffic rates. The direct tunnel (DT) approach optimizes core architecture without impact to UEs and can be deployed independently of the LTE/SAE architecture.

Now, DT support is added to the S4-SGSN to enable the establishment of a direct tunnel over the S12 interface between an RNC and an S-GW in a PS domain under a range of scenarios, such as (but not limited to):

- Primary PDP activation
- Secondary PDP activation
- Service Request Procedure
- Intra SGSN Routing Area Update without SGW change
- Intra SGSN Routing Area Update with SGW change
- Intra SGSN SRNS relocation without SGW change
- Intra SGSN SRNS relocation with SGW change
- New SGSN SRNS relocation with SGW change
- New SGSN SRNS relocation without SGW relocation
• E-UTRAN to UTRAN Iu mode IRAT handover - with application of S12U FTEID for Indirect Data Forwarding Tunnels as well
• UTRAN to E-UTRAN Iu mode IRAT handover - with application of S12U FTEID for Indirect Data Forwarding Tunnels as well
• Network-Initiated PDP Activation

For a complete description of this feature and its configuration requirements, refer to the *S4-SGSN Direct Tunnel Solution* session in the *Serving GPRS Support Node Administration Guide*

Downlink Data Lockout Timer

The Downlink Data Lockout Timer is a new, configurable timer added for both GPRS and SGSN services to reduce the frequency of mobile-initiated keep alive messages. If enabled, this timer starts whenever the paging procedure fails after the maximum number of retransmissions and the Page Proceed Flag (PPF) is cleared. If there is any downlink activity when the lockout timer is running, the packets are dropped and the drop cause is set as Page Failed. When the lockout timer expires, the PPF is set to true and further downlink packets are queued and ringing is re-initiated. In order to avoid endless paging activity when there is no page response or uplink activity from the UE, an optional configurable repeat count value is used. If the repeat value is configured as 'y' then the lockout timer is started 'y' number of times after page failure. The implementation of the lockout timer is different for 2G/3G subscribers, but the behavior is the same.

DSCP Templates for Control and Data Packets - Iu or Gb over IP

The SGSN supports a mechanism for differentiated services code point (DSCP) marking of control packets and signaling messages for the SGSN’s M3UA level on the Iu interface and for LLC messages for the Gb interface.

This DSCP marking feature enables the SGSN to perform classifying and managing of network traffic and to determine quality of service (QoS) for the interfaces to an IP network.

Implementation of this feature requires the use of several CLIs commands to create one or more reusable templates. These templates set DSCP parameter configuration for downlink control packets and data packets that can be associated with one or more configurations for at the GPRS service level, the peer-NSEI level, the IuPS service level, and the PSP instance level.

Dual PDP Addresses for Gn/Gp

In accordance with 3GPP Release 9.0 specifications, it is now possible to configure SGSN support for dual stack PDP type addressing (IPv4v6) for PDP context association with one IPv4 address and one IPv6 address/prefix when requested by the MS/UE.

ECMP over ATM

Iu Redundancy is the ASR 5000's implementation of equal-cost multi-path routing (ECMP) over ATM.

Iu Redundancy is based on the standard ECMP multi-path principle of providing multiple next-hop-routes of equal cost to a single destination for packet transmission. ECMP works with most routing protocols and can provide increased bandwidth when traffic load-balancing is implemented over multiple paths.

ECMP over ATM will create an ATM ECMP group when multiple routes with different destination ATM interfaces are defined for the same destination IP address. When transmitting a packet with ECMP, the NPU performs a hash on the
packet header being transmitted and uses the result of the hash to index into a table of next hops. The NPU looks up the ARP index in the ARP table (the ARP table contains the next-hop and egress interfaces) to determine the next-hop and interface for sending packets.

EDR Enhancements

A new event-logging handle has been introduced. In earlier releases the EDR module was used for event logging purpose, from this release onwards CDR_MODULE_EVENT_RECORD is used instead of CDR_MODULE_EDR. In Release 12.0, for generating event logs the SGSN re-used the existing “EDR” module which is primarily used for charging records. But from Release 15.0 onwards, the session-event module will be used by SGSN for event logging. The CLI options present under the EDR Module are also present under the Session Event Module.

Equivalent PLMN

This feature is useful when an operator deploys both GPRS and UMTS access in the same radio area and each radio system broadcasts different PLMN codes. It is also useful when operators have different PLMN codes in different geographical areas, and the operators’ networks in the various geographical areas need to be treated as a single HPLMN.

This feature allows the operator to consider multiple PLMN codes for a single subscriber belonging to a single home PLMN (HPLMN). This feature also allows operators to share infrastructure and it enables a UE with a subscription with one operator to access the network of another operator.

First Vector Configurable Start for MS Authentication

Previously, the SGSN would begin authentication towards the MS only after the SGSN received all requested vectors. This could result in a radio network traffic problem when the end devices timed out and needed to re-send attach requests.

Now, the SGSN can be configured to start MS authentication as soon as it receives the first vector from the AuC/HLR while the SAI continues in parallel. After an initial attach request, some end devices restart themselves after waiting for the PDP to be established. In such cases, the SGSN restarts and a large number of end devices repeat their attempts to attach. The attach requests flood the radio network, and if the devices timeout before the PDP is established then they continue to retry, thus even more traffic is generated. This feature reduces the time needed to retrieve vectors over the GR interface to avoid the high traffic levels during PDP establishment and to facilitate increased attach rates.

Gb Manager

A new SGSN proclet has been developed. Now, all the link level procedures related to Gb -

- protocol (GPRS-NS and BSSGP) hosting, handling, administration, message distribution,
- keeping the other managers informed about the link/remote-node status,
- handling functionality of the Gb interface (all 2G signaling)

are removed from the Link Manager and moved to the SGSN's new Gb Manager proclet. The new Gb Manager provides increased flexibility in handling link level procedures for each access type independently and ensures scalability. The consequence of relieving the Link Manager, of a large amount of message handling, is to decrease delays in sending sscop STAT messages resulting in the detection of link failure at the remote end. Use of this separate new proclet to handle 2G signaling messages means there will not be any MTP link fluctuation towards the
RNS, which is seen during the BSC restart or extension activity in the network. As well, this improves the fluctuation towards the 3G connectivity.

GMM-SM Event Logging

To facilitate troubleshooting, the SGSN will capture procedure-level information per 2G or 3G subscriber (IMSI-based) in CSV formatted event data records (EDRs) that are stored on an external server. This feature logs the following events:

- Attaches
- Activation of PDP Context
- RAU
- ISRAU
- Deactivation of PDP Context
- Detaches
- Authentications
- PDP Modifications

The new SGSN event logging feature is enabled/disabled per service via CLI commands. For more information on this feature, refer to the section *GMM/SM Event Logging* in this guide.

Gn/Gp Delay Monitoring

The SGSN measures the control plane packet delay for GTP-C signaling messages on the SGSN’s Gn/Gp interface towards the GGSN. If the delay crosses a configurable threshold, an alarm will be generated to prompt the operator. A delay trap is generated when the GGSN response to an ECHO message request is delayed more than a configured amount of time and for a configured number of consecutive responses. When this occurs, the GGSN will be flagged as experiencing delay. A clear delay trap is generated when successive ECHO Response (number of successive responses to detect a delay clearance is configurable), are received from a GGSN previously flagged as experiencing delay. This functionality can assist with network maintenance, troubleshooting, and early fault discovery.

GTP-C Path Failure Detection and Management

The SGSN now provides the ability to manage GTP-C path failures detected as a result of spurious restart counter change messages received from the GGSN.

Previous Behavior: The old default behavior was to have the Session Manager (SessMgr) detect GTP-C path failure based upon receiving restart counter changes in messages (Create PDP Context Response or Update PDP Context Response or Update PDP Context Request) from the GGSN and immediately inform the SGTPC Manager (SGTPCMgr) to pass the path failure detection to all other SessMgrs so that PDP deactivation would begin.

New Behavior: The new default behavior has the SessMgr inform the SGTPCMgr of the changed restart counter value. The SGTPCMgr now has the responsibility to verify a possible GTP-C path failure by issuing an Echo Request/Echo.
Response to the GGSN. Path failure will only be confirmed if the Echo Response contains a new restart counter value. Only after this confirmation of the path failure does the SGTPCMgr inform all SessMgrs so that deactivation of PDP contexts begins.

Handling Multiple MS Attaches All with the Same Random TLLI

Some machine-to-machine (M2M) devices from the same manufacturer will all attempt PS Attaches using the same fixed random Temporary Logical Link Identifier (TLLI).

The SGSN cannot distinguish between multiple M2M devices trying to attach simultaneously using the same random TLLI and routing area ID (RAI). As a result, during the attach process of an M2M device, if a second device tries to attach with the same random TLLI, the SGSN interprets that as an indication that the original subscriber moved during the Attach process and the SGSN starts communicating with the second device and drops the first device.

The SGSN can be configured to allow only one subscriber at a time to attach using a fixed random TLLI. While an Attach procedure with a fixed random TLLI is ongoing (that is, until a new P-TMSI is accepted by the MS), all other attaches sent to the SGSN with the same random TLLI using a different IMSI will be dropped by the SGSN’s Linkmgr.

To limit the wait-time functionality to only the fixed random TLLI subscribers, the TLLI list can be configured to control which subscribers will be provided this functionality.

HSPA Fallback

Besides enabling configurable support for either 3GPP Release 6 (HSPA) and 3GPP Release 7 (HSPA+) to match whatever the RNCs support, this feature enables configurable control of data rates on a per RNC basis. This means that operators can allow subscribers to roam in and out of coverages areas with different QoS levels.

The SGSN can now limit data rates (via QoS) on a per-RNC basis. Some RNCs support HSPA rates (up to 16 Mbps in the downlink and 8 Mbps in the uplink) and cannot support higher data rates - such as those enabled by HSPA+ (theoretically, up to 256 Mbps both downlink and uplink). Being able to specify the QoS individually for each RNC makes it possible for operators to allow their subscribers to move in-and-out of coverage areas with different QoS levels, such as those based on 3GPP Release 6 (HSPA) and 3GPP Release 7 (HSPA+).

For example, when a PDP context established from an RNC with 21 Mbps is handed off to an RNC supporting only 16 Mbps, the end-to-end QoS will be re-negotiated to 16 Mbps. Note that an MS/UE may choose to drop the PDP context during the QoS renegotiation to a lower value.

This data rate management per RNC functionality is enabled, in the radio network controller (RNC) configuration mode, by specifying the type of 3GPP release specific compliance, either release 7 for HSPA+ rates or pre-release 7 for HSPA rates. For configuration details, refer to the RNC Configuration Mode section in the Command Line Interface Reference.

Ignore Context-ID during 4G/3G Handovers

HSS and HLR, when operating as separate network nodes, are required to use the same context-ID for a given APN-configuration of a subscriber. During inter-RAT cell reselections and handovers between 2G/3G and 4G, if the SGSN does not find a matching APN-configuration for the given context-ID learnt from the peer node, then the PDP does not get established. This could result in SRNS relocation failures when none of the PDP’s learnt from the SGSN has a matching context-ID in the HLR.

New commands have been added to enable the operator to configure the SGSN to ignore the context-ID provided by the peer and to use the PDP-type and address information to search through HLR subscription and to update the context-ID.
information within the PDP. For details, refer to the description for the rau-inter command under the Call-Control Profile Configuration Mode Commands section of the Command Line Interface Reference.

Intra- or Inter-SGSN Serving Radio Network Subsystem (SRNS) Relocation (3G only)

Implemented according to 3GPP standard, the SGSN supports both inter- and intra-SGSN RNS relocation (SRNS) to enable handover of an MS from one RNC to another RNC.

The relocation feature is triggered by subscribers (MS/UE) moving from one RNS to another. If the originating RNS and destination RNS are connected to the same SGSN but are in different routing areas, the behavior triggers an intra-SGSN Routing Area Update (RAU). If the RNS are connected to different SGSNs, the relocation is followed by an inter-SGSN RAU. This feature is configured through the Call-Control Profile Configuration Mode which is part of the feature set.

Lawful Intercept

The Cisco Lawful Intercept feature is supported on the SGSN. Lawful Intercept is a license-enabled, standards-based feature that provides telecommunications service providers with a mechanism to assist law enforcement agencies in monitoring suspicious individuals for potential illegal activity. SGSN supports use of IP Security (a separate license-enabled, standards-based feature) for the LI interface; for additional information on IPSec, refer to the Cisco StarOS IP Security (IPSec) Reference. For additional information and documentation on the Lawful Intercept feature, contact your Cisco account representative.

Link Aggregation - Horizontal

The SGSN supports enhanced link aggregation (LAG) within ports on different XGLCs. Ports can be from multiple XGLCs. LAG works by exchanging control packets (Link Aggregation Control Marker Protocol) over configured physical ports with peers to reach agreement on an aggregation of links. LAG sends and receives the control packets directly on physical ports attached to different XGLCs. The link aggregation feature provides higher aggregated bandwidth, auto-negotiation, and recovery when a member port link goes down.

Local DNS

Previously, the SGSN supported GGSN selection for an APN only through operator policy, and supported a single pool of up to 16 GGSN addresses which were selected in round robin fashion.

The SGSN now supports configuration of multiple pools of GGSNs; a primary pool and a secondary. As part of DNS resolution, the operator can use operator policies to prioritize local GGSNs versus remote ones. This function is built upon existing load balancing algorithms in which weight and priority are configured per GGSN, with the primary GGSN pool used first and the secondary used if no primary GGSNs are available.

The SGSN first selects a primary pool and then GGSNs within that primary pool; employing a round robin mechanism for selection. If none of the GGSNs in a pool are available for activation, then the SGSN proceeds with activation selecting a GGSN from a secondary pool on the basis of assigned weight. A GGSN is considered unavailable when it does not respond to GTP Requests after a configurable number of retries over a configurable time period. Path failure is detected via GTP-echo.
Local Mapping of MBR

The SGSN provides the ability to map a maximum bit rate (MBR) value (provided by the HLR) to an HSPA MBR value.

The mapped value is selected based on the matching MBR value obtained from the HLR subscription. QoS negotiation then occurs based on the converted value.

This feature is available within the operator policy framework. MBR mapping is configured via new keywords added to the `qos class` command in the APN Profile configuration mode. A maximum of four values can be mapped per QoS per APN.

Important: To enable this feature the `qos prefer-as-cap`, also a command in the APN Profile configuration mode, must be set to either `both-hlr-and-local` or to `hlr subscription`.

Local QoS Capping

The operator can configure a cap or limit for the QoS bit rate.

The SGSN can now be configured to cap the QoS bit rate parameter when the subscribed QoS provided by the HLR is lower than the locally configured value.

Depending upon the keywords included in the command, the SGSN can:

- take the QoS parameter configuration from the HLR configuration.
- take the QoS parameter configuration from the local settings for use in the APN profile.
- during session establishment, apply the lower of either the HLR subscription or the locally configured values.

Refer to the `APN Profile Configuration Mode` section of the `Command Line Interface Reference` for the `qos` command.

Location Services

LoCation Services (LCS) on the SGSN is a 3GPP standards-compliant feature that enables the SGSN to collect and use or share location (geographical position) information for connected UEs in support of a variety of location services, such as location-based charging and positioning services.

The SGSN uses the Lg interface to the gateway mobile location center (GMLC), which provides the mechanisms to support specialized mobile location services for operators, subscribers, and third party service providers. Use of this feature and the Lg interface is license controlled. This functionality is supported on the 2G and 3G SGSN.

For details about basic location services and its configuration, refer to the `Location Services` section of the `SGSN Administration Guide`.

With Release 15.0, supported functionality has expanded to include:

- Mobile terminating deferred location requests are now supported
- Mobile originating requests are now supported, both immediate and deferred
- Differences between 2G and 3G LCS call flows are eliminated

Important: With this release, expanded functionality for this feature is qualified for lab and field trials only.
Lock/Shutdown the BSC from the SGSN

When the SGSN returns to Active state, after scenarios such as rebooting or reloading, all the BSCs that had been connected to the SGSN would attempt to re-establish connections. This could result in two serious problems for operators:

1. High CPU usage in the SGSN where too many BSC/RNCs were connected.
2. Network overload when other network nodes cannot match the SGSN's capacity.

The SGSN now supports a Lock/Shutdown feature that provides a two prong solution. CPU Usage Solution: Staggering the BSC auto-learning procedures when the SGSN re-loads will help to reduce the high CPU usage. This can be achieved by the operator locking the NSE/BSCs from the SGSN before reboot/reload and then unlocking them one-by-one to avoid high CPU usage.

Network Overload Solution: A new timer, SNS-GUARD, has been added to clean-up resources if the SNS procedure does not complete properly, whether or not the BSC is administratively locked. Now the SGSN starts this timer after sending SNS-SIZE-ACK and the BSC information will be removed, if the auto-learning clean-up procedure does not complete before the timer expires.

A series of new commands and keywords has been added to enable the operator to configure this new administrative Lock/Shutdown the BSC functionality as part of 'interface management' configuration. For details, refer to the SGSN Global Interface Management section of the Command Line Interface Reference.

Management System Overview

The system's management capabilities are designed around the Telecommunications Management Network (TMN) model for management - focusing on providing superior quality network element (NE) and element management system (Web Element Manager) functions. The system provides element management applications that can easily be integrated, using standards-based protocols (CORBA and SNMPv1, v2), into higher-level management systems - giving wireless operators the ability to integrate the system into their overall network, service, and business management systems. In addition, all management is performed out-of-band for security and to maintain system performance.

The Operation and Maintenance module of the system offers comprehensive management capabilities to the operators and enables them to operate the system more efficiently. There are multiple ways to manage the system either locally or remotely using its out-of-band management interfaces.

These include:

- Using the command line interface (CLI)
- Remote login using Telnet, and Secure Shell (SSH) access to CLI through SPIO card's Ethernet management interfaces
- Local login through the Console port on SPIO card using an RS-232 serial connection
- Using the Web Element Manager (WEM) application (requires a separate license)
- Supports communications through 10 Base-T, 100 Base-TX, 1000 Base-TX, or 1000 Base-SX (optical gigabit Ethernet) Ethernet management interfaces on the SPIO
- Client-Server model supports any browser (i.e. Microsoft Internet Explorer v5.0 and above or Netscape v4.7 or above, and others)
- Supports Common Object Request Broker Architecture (CORBA) protocol and Simple Network Management Protocol version 1 (SNMPv1) for fault management
- Provides complete Fault, Configuration, Accounting, Performance, and Security (FCAPS) capabilities
- Can be easily integrated with higher-level network, service, and business layer applications using the Object Management Group's (OMG's) Interface Definition Language (IDL)

The following figure demonstrates these various element management options and how they can be utilized within the wireless carrier network.

Figure 5. Element Management Methods

```
Important: By default, SGSN management functionality is enabled for console-based access.

For more information on command line interface based management, refer to the Command Line Interface Reference.

**Multiple PLMN Support**

With this feature, the 2.5G and 3G SGSNs now support more than one PLMN ID per SGSN. Multiple PLMN support facilitates MS handover from one PLMN to another PLMN.

Multiple PLMN support also means an operator can 'hire out' their infrastructure to other operators who may wish to use their own PLMN IDs. As well, multiple PLMN support enables an operator to assign more than one PLMN ID to a cell-site or an operator can assign each cell-site a single PLMN ID in a multi-cell network (typically, there are no more than 3 or 4 PLMN IDs in a single network).

This feature is enabled by configuring, within a single context, multiple instances of either an IuPS service for a single 3G SGSN service or multiple GPRS services for a 2.G SGSN. Each IuPS service or GPRS service is configured with a
unique PLMN ID. Each of the SGSN and/or GPRS services must use the same MAP, SGTPU and GS services so these only need to be defined one-time per context.

## Network Sharing

In accordance with 3GPP TS 23.251, the 2G and 3G SGSN provides an operator the ability to share the RAN and/or the core network with other operators. Depending upon the resources to be shared, there are 2 network sharing modes of operation: the Gateway Core Network (GWCN) and the Multi-Operator Core Network (MOCN).

### Benefits of Network Sharing

Network sharing provides operators with a range of logistical and operational benefits:

- Enables two or more network operators to share expensive common network infrastructure.
- A single operator with multiple MCC-MNC IDs can utilize a single physical access infrastructure and provide a single HPLMN view to the UEs.
- Facilitates implementation of MVNOs.

### GWCN Configuration

For the 3G SGSN with a gateway core network configuration, the complete radio access network and part of the core network are shared (for example, MSC/SGSN) among different operators, while each operator maintains its own separate network nodes (for example, GGSN/HLR).

With the GWCN configuration, the SGSN supports two scenarios:
• GWCN with non-supporting UE
• GWCN with supporting UE

MOCN Configuration

In the multi-operator core network configuration, the complete radio network is shared among different operators, while each operator maintains its own separate core network. This functionality is available for both 2G and 3G SGSN.

Figure 7. MOCN-type Network Sharing

With the MOCN configuration, the SGSN supports the following scenarios:
• MOCN with non-supporting UE
• MOCN with supporting UE

**Important:** The MOCN network sharing functionality now requires a separate feature license for both 2G and 3G scenarios. Contact your Cisco representative for licensing information.

Implementation

To facilitate network sharing, the SGSN implements the following key features:
• Multiple virtual SGSN services in a single physical node.
• Sharing operators can implement independent policies, such as roaming agreements.
• Equivalent PLMN configuration.
• RNC identity configuration allows RNC-ID + MCC-MNC instead of just RNC-ID.

Configuration for network sharing is accomplished by defining:
• NRI in the SGSN service configuration mode
• PLMN IDs and RNC IDs in the IuPS configuration mode
• Equivalent PLMN IDs and configured in the Call-Control Profile configuration mode.
• IMSI ranges are defined in the SGSN-Global configuration mode
• The Call-Control Profile and IMSI ranges are associated in the configuration mode.

For commands and information, refer to the 2G SGSN Multi-Operator Core Network section in the Serving GPRS Support Node Administration Guide and the command details in the Command Line Interface Reference.

NRI Handling Enhancement

The SGSN's DNS lookup for SGSN pooling is supported in the call control profile. Previously, the SGSN's complete Gn DNS database had to be configured in the call control profile. If there was more than one SGSN in the local pool, then there would be multiple instances for every SGSN in the pool.

By using just the NRI value, this enhancement facilitates lookup for a peer SGSN in the local pool.

NRPCA - 3G

The SGSN supports the Network Requested Primary PDP Context Activation (NRPCA) procedure for 3G attachments. There are no interface changes to support this feature. Support is configured with existing CLI commands (network-initiated-pdp-activation, location-area-list) in the call control profile configuration mode and timers (T3385-timeout and max-actv-retransmission) are set in the SGSN service configuration mode. For command details, see the Command Line Interface Reference.

NRSPCA Support for S4-SGSN

The SGSN supports Secondary PDP context activation by the network. 3GPP TS 23.060 specifies two procedures for GGSN-initiated PDP Context Activation:

• Network Requested PDP Context Activation (NRPCA) - the SGSN already supports this but only for 3G access, and

• Network Requested Secondary PDP Context Activation (NRSPCA) Procedure.

NRSPCA allows the network to initiate Secondary PDP context activation if the network determines that the service requested by the user requires activation of an additional secondary PDP context. Network requested bearer control makes use of the NRSPCA procedure.

Network requested bearer control functionality is mandatory in EPC networks, requiring use of NRSPCA. The P-GW supports only the NRSPCA procedure. With this release, now the S4-SGSN supports network requested bearer control.

For a complete description of this feature and its configuration requirements, refer to the Network Requested Secondary PDP Context Activation chapter in the Serving GPRS Support Node Administration Guide.

Operator Policy

This non-standard feature is unique to the StarOS. This feature empowers the carrier with unusual and flexible control to manage functions that are not typically used in all applications and to determine the granularity of the implementation of any: to groups of incoming calls or to simply one single incoming call. For details about the feature, its components, and how to configure it, refer to the Operator Policy section in this guide.
**Important:** SGSN configurations created prior to Release 11.0 are not forward compatible. All configurations for SGSNs, with -related configurations that were generated with software releases prior to Release 11.0, must be converted to enable them to operate with an SGSN running Release 11.0 or higher. Your Cisco Representative can accomplish this conversion for you.

**Some Features Managed by Operator Policies**

The following is a list of some of the features and functions that can be controlled via configuration of Operator Policies:

- APN Aliasing
- Authentication
- Direct Tunnel - for feature description and configuration details, refer to the Direct Tunnel section in this guide
- Equivalent PLMN
- IMEI Override
- Intra- or Inter-SGSN Serving Radio Network Subsystem (SRNS) Relocation (3G only)
- Network Sharing
- QoS Traffic Policing per Subscriber
- SGSN Pooling - Gb/Iu Flex
- SuperCharger
- Subscriber Overcharging Protection - for feature description and configuration details for Gn-SGSN, refer to the Subscriber Overcharging Protection section in this guide.

**Overcharging Protection**

Overcharging Protection enables the Gn-SGSN to avoid overcharging the subscriber if/when a loss of radio coverage (LORC) occurs in a UMTS network. For details and configuration information, refer to the Subscriber Overcharging Protection section in this book.

**QoS Traffic Policing per Subscriber**

Traffic policing enables the operator to configure and enforce bandwidth limitations on individual PDP contexts for a particular traffic class.

Traffic policing typically deals with eliminating bursts of traffic and managing traffic flows in order to comply with a traffic contract.

The SGSN conforms to the DiffServ model for QoS by handling the 3GPP defined classes of traffic, QoS negotiation, DSCP marking, traffic policing, and support for HSDPA/HSUPA.
QoS Classes

The 3GPP QoS classes supported by the SGSN are:

- Conversational
- Streaming
- Interactive
- Background

The SGSN is capable of translating between R99 and R97/98 QoS attributes.

QoS Negotiation

On PDP context activation, the SGSN calculates the QoS allowed, based upon:

- **Subscribed QoS** - This is a per-APN configuration, obtained from the HLR on an Attach. It specifies the highest QoS allowed to the subscriber for that APN.
- **Configured QoS** - The SGSN can be configured with default and highest QoS profiles in the configuration.
- **MS requested QoS** - The QoS requested by the UE on pdp-context activation.

DSCP Marking

The SGSN performs diffserv code point (DSCP) marking of the GTP-U packets according to allowed-QoS to PHB mapping. The default mapping matches that of the UMTS to IP QoS mapping defined in 3GPP TS 29.208.

The SGSN also supports DSCP marking of the GTP control plane messages on the Gn/Gp interface. This allows QoS to be set on GTP-C messages, and is useful if Gn/Gp is on a less than ideal link. DSCP marking is configurable via the CLI, with default = Best Effort Forwarding.

Traffic Policing

The SGSN can police uplink and downlink traffic according to predefined QoS negotiated limits fixed on the basis of individual contexts - either primary or secondary. The SGSN employs the Two Rate Three Color Marker (RFC2698) algorithm for traffic policing. The algorithm meters an IP packet stream and marks its packets either green, yellow, or red depending upon the following variables:

- **PIR** - Peak Information Rate (measured in bytes/second)
- **CIR** - Committed Information Rate (measured in bytes/second)
- **PBS** - Peak Burst Size (measured in bytes)
- **CBS** - Committed Burst Size (measured in bytes)

The following figure depicts the working of the TCM algorithm:
For commands and more information on traffic policing configuration, refer to the Command Line Interface Reference.

Reordering of SNDCP N-PDU Segments

The SGSN fully supports reordering of out-of-order segments coming from the same SNDCP N-PDU. The SGSN waits the configured amount of time for all segments of the N-PDU to arrive. If all the segments are not received before the timer expires, then all queued segments are dropped.

RAN Information Management (RIM)

RAN information is transferred from a source RAN node to a destination RAN node in a RIM container. This is a mechanism for the exchange of information between applications belonging to RAN nodes, for example two BSCs. The RIM container is transparent to the SGSN.

Support for RIM procedures is optional for both the SGSN and other RAN nodes (e.g., RNC). When the SGSN supports RIM procedures, the SGSN provides addressing, routing and relay functions. All RIM messages are routed independently by the SGSN. The SGSN performs relaying of RIM messages between BSSGP, RANAP, and GTP in accordance with 3GPP TS 48.018, TS25.413, and TS29.060 respectively.

On the Gb (BSSGP) interface, RIM procedures are negotiated at the start/restart of a Gb link as part of the signaling BVC reset procedure. On the Iu (RANAP) interface, there is no negotiation for using RIM procedures. Support for RIM procedures enhances the subscriber’s user experience by minimizing the service outage during cell re-selection.

S4 Support on the SGSN

The SGSN can provide an interface between UMTS (3G) and/or GPRS (2.5G) networks and the evolved packet core (EPC) network. This functionality requires a special S4 feature license. Throughout the documentation the SGSN with this additional functionality is referred to as an S4-SGSN.
To facilitate communication with GPRS, UMTS, and EPC networks, the SGSN is configured with standard 2.5G SGSN, 3G SGSN or dual access SGSN services, and then configured with additional enhancements to enable communication with the EPC network.

The S4-SGSN communicates with other UMTS and GPRS core networks elements via the GTPv1 protocol, and communicates with EPC network elements and peer S4-SGSNs via the GTPv2 protocol. The S4-SGSN communicates with the UMTS (3G) / GPRS (2.5G) radio access network elements in the same manner as an SGSN.

Depending on the configured SGSN service type, the S4-SGSN can interface with some or all of the following UMTS/GPRS and EPC network elements:

- Serving Gateway (S-GW)
- Mobility Management Entity (MME)
- Peer S4-SGSN (2.5G or 3G with S4 support)
- Peer dual access S4-SGSN
- Peer SGSN (2.5G or 3G)
- Peer dual access SGSN
- GGSN

The S4-SGSN includes the following S4-SGSN specific functionality and features:

- S3 and S4 Interface Support
- S6d / Gr Interface Support
- Configurable Pacing of PDP Deactivations on the S4-SGSN
- DNS SNAPTR Support
- S4-SGSN Specific Bulk Statistics Support
- S13’ Interface Support
- Idle Mode Signaling Reduction
- ISR with Circuit Switched Fallback
- ISD DSD Message Handling and HSS Initiated Bearer Modification
- UMTS-GSM AKA Support on the S4-SGSN
- 3G and 2G SGSN Routing Area Update
- IPv4 and IPv6 PDP Type Override
- NAPTR-based Dynamic HSS Discovery
- P-GW Initiated PDP Bearer Deactivation
- S-GW and P-GW Tunnel and EPS Subscription Recovery
- Local Configuration of S-GW and S4-SGSN per RAI
- Configurable GUTI to RAI Conversion Mapping
- S4-SGSN Support for Fallback to V1 Cause Code in GTPv2 Context Response
- S4-SGSN Support for Mobility Management Procedures
- QoS Mapping Support
Serving GPRS Support Node (SGSN) Overview

Features and Functionality

- MS Initiated Primary and Secondary Activation
- Deactivation Procedure Support
- MS, PGW and HSS Initiated PDP Modification Procedure Support
- Fallback from the S4 Interface to the Gn Interface
- Operator Policy Selection of S4 or Gn Interface
- IDFT Support During Connected Mode Handovers
- Disassociated DSR Support
- SGSN Serving Radio Network Subsystem (SRNS) Relocation Support
- Support for Gn Handoff from S4-SGSN to 2G-3G Gn SGSN
- Suspend-Resume Support on the S4-SGSN
- Flex Pooling (Iu Gb over S16) Support on the S4-SGSN
- Summary of Functional Differences between an SGSN and an S4-SGSN (Gn/Gp)

S3 and S4 Interface Support

S3 and S4 interface support is a license-enabled feature that enables 2G and 3G networks to interface with the 4G evolved packet core (EPC) network. The S3/S4 functionality ensures session continuity on handovers between 2G/3G subscribers and 4G LTE subscribers. S3/S4 functionality simplifies core network operations the following ways:

- Replaces the GGSN in the network with the P-GW
- Replaces the need for an HLR by providing connectivity to the HSS
- Optimized idle mode signaling during 3G/2G to 4G handovers (when the ISR feature is enabled)

The S3 and S4 interfaces provide control and bearer separation, and offload the backward compatibility requirement from the mobility management entity (MME) and serving gateway (S-GW) EPC elements to the UMTS core.

- **S3 Interface**: Provides a GTPv2-C signaling path connection between the MME and the SGSN (MPC). The S4-SGSN to MME RAU/TAU context handovers are supported via the S3 interface.

- **S4 Interface**: Provides a data and signaling interface between the S-GW and the S4-SGSN (MPC) for bearer plane transport (GTPv2-U). The S4-SGSN communicates with the P-GW via the S-GW.

With support for S3/S4 interface, soft-handoffs between 2G/3G and the EPC networks are possible for multi-mode UEs. Without this functionality, the Gn/Gp SGSN can still inter-work with the EPC core using GTPv1, but soft-handoffs cannot be achieved. Note that GTPv2 to GTPv1 conversions (for QoS and Context IDs) are lossy data conversions, so a subscriber doesn’t encounter a similar type of network behavior while in 2G/3G and 4G networks.

S6d and Gr Interface Support

The S4-SGSN supports the Diameter based S6d interface to the HSS, in addition to the legacy Gr interface to the HLR (used by an SGSN configured to use the Gn/Gp interfaces). This is a license-enabled feature.

The S6d / Gr interface enhancements allow operators to consolidate the HLR/HSS functions into a single node, which improves operational efficiency and other overhead. With the deployment of the EPC core, many operators may consolidate the HLR/HSS functions into a single node. Until then, the S4-SGSN still supports the MAP-based Gr and the Diameter based S6d interfaces.
The SGSN selects the Gr interface / S6d interface based on the MAP or HSS service associated with the configured SGSN and/or GPRS services. If both the services are associated, then SGSN will use the following order of selection:

1. Select the appropriate interface based on any operator policy preference for S6d / Gr.
2. If no operator policy is present, then by use the Gr interface by default.

The S4-IMSI sets the following initiate UGL messages on a change of HSS service:

- Initial attach indicator bit in Update GPRS Location message, ISR information IE, if the UGL is sent for an initial attach or for an inbound routing area update without ISR activation and the selected interface is Gr.
- Initial attach indicator bit in Update Location Request message, ULR flags, if the ULR is sent for an initial attach or for an inbound routing area update without ISR activation and the selected interface is S6d.

**Configurable Pacing of PDP Deactivations on the S4-IMSI**

The S4-IMSI now supports configurable pacing of PDP de-activations towards UEs due to path failures. Previously in the S4-IMSI, the pacing of path failure delivery was started by the EGTP application and it used the generic session manager pacing mechanism. The generic pacing mechanism performed 1000 path failure initiated PDP de-activations per second per session manager. Since this may not be desirable for many operators based on their RAN's capability, the S4-IMSI now supports the configurable pacing of PDP deactivations via the SGSN application (the same mechanism used in the Gn/Gp SGSN).

The existing **pdp-activation-rate command** in **SGSN Global Configuration Mode** can be used to configure the pacing of PDP de-activations for both the connected-ready state and the idle-standby state.

This feature is included with the SGSN S3/S4 license. No additional feature license is required.

**DNS SNAPTR Support**

By default, the S4-IMSI supports the initiation of a DNS query after APN selection using a S-NAPTR query. The SGSN resolves a P-GW by sending an APN-FQDN query to the DNS client. Similarly, the SGSN resolves the S-GW by sending a RAI-FQDN query to the DNS client. The DNS Client then sends a query to the DNS server to retrieve NAPTR/SRV/A records and return the S-GW or P-GW IP address to the SGSN.

On the S4-IMSI, an additional configurable is available that identifies the context where DNS lookup for EPC-capable UEs must occur. This is accomplished by creating a call control profile that directs the system’s DNS client to perform the lookup in the context where the SGSN’s DNS client is configured.

If the CLI configurable is not used, or removed, the S4-IMSI chooses the DNS client from the context where the EGTP service is configured for performing P-GW DNS resolution, if the EGTP service is associated for an EPC capable UE.

If the EGTP service is not present and the UE is EPC-capable, and if **apn-resolve-dns-query snaptr** is configured in an APN profile, then the S4-IMSI uses the DNS client in the context where the SGTP service is present for resolving a co-located P-GW/GGSN and selects the Gn interface.

**S4-IMSI Statistics Support**

Statistics have been added to provide information on S4-IMSI functionality.

The statistics added track information related to:

- SGW Relocations
- ISR Deactivations
- Number of active PDPs using the S4 interface in 3G
- S3 Interface Selection Statistics
- Procedure Abort Statistics
- GTPU Statistics
- IDFT Statistics

In addition, support for EGTPC schema bulk statistics is implemented to provide information on communication between the S4-SGSN and the EPC S-GW over the S4 interface.

### S13' Interface Support

In addition to the MAP-based Gf interface, the S4-SGSN supports the Diameter-based S13’ (S13 prime) interface towards the equipment identify registry. The S13’ interface support enables operators to consolidate the EIR functions into a single node, which increases operational efficiency. S13’ interface support is a license-enabled feature.

The S13’ interface enables the S4-SGSN to perform the ME Identity Check procedure to validate the IMEI with the EIR. The S4-SGSN selects Gf or S13’ interface based on which interface is configured and the type of service (MAP or HSS) is associated with the SGSN and/or the GPRS service. If both services are associated, then the S4-SGSN will select the appropriate interface based on the following sequence:

1. An operator policy preference is configured for Gf or S13’
2. If no operator policy preference is set, then by default the S4-SGSN uses the Gf interface

By default, the IMSI is sent to the EIR as part of the IMEI Check procedure over the S13’ interface.

### Idle Mode Signaling Reduction

The Idle mode signaling reduction (ISR) feature on the S4-SGSN provides a mechanism to optimize and/or reduce signaling load during inter-RAT cell-reselection in idle mode (that is, in the ECM-IDLE, PMM-IDLE, and GPRS-STANDBY states). It is a mechanism that allows the UE to remain simultaneously registered in a UTRAN/GERAN Routing Area (RA) and an E-UTRAN Tracking Area (TA) list. This allows the UE to make cell reselections between E-UTRAN and UTRAN/GERAN without having to send any TAU or RAU requests, as long as the UE remains within the registered RA and TA list.

ISR is a feature that reduces the mobility signalling and improves the battery life of UEs. Also reduces the unnecessary signalling with the core network nodes and air interface. This is important especially in initial deployments when E-UTRAN coverage will be limited and inter-RAT changes will be frequent.

The benefit of the ISR functionality comes at the cost of more complex paging procedures for UEs, which must be paged on both the registered RA and all registered TAs. The HSS also must maintain two PS registrations (one from the MME and another from the SGSN).

ISR support for 3G subscribers was introduced in release 14.0. ISR support for 2G subscribers is available in 15.0 and later releases.

ISR is not supported on the Gn/Gp SGSN.

For a detailed description of this feature, refer to the *Idle Mode Signaling Reduction on the S4-SGSN* chapter in this guide.

---

**Important:** ISR is a license enabled feature. Contact your Cisco representative for details on licensing information.
ISR with Circuit Switched Fallback

Circuit-Switched Fallback (CSFB) is an alternative solution to using IMS and SRVCC to provide voice services to users of LTE. The IMS is not part of the solution, and voice calls are never served over LTE. Instead, the CSFB relies on a temporary inter-system that switches between LTE and a system where circuit-switched voice calls can be served.

The LTE terminals 'register' in the circuit switched domain when powered and attaching to LTE. This is handled through an interaction between the MME and the MSC-Server in the circuit-switched network domain over the SGs interface.

Consider the following scenarios:

- Voice calls initiated by the mobile user: If the user makes a voice call, the terminal switches from a LTE system to a system with circuit-switched voice support. Depending on where the UE latches on after completion of the voice call:
  - The packet-based services that are active on the end-user device at this time are handed over and continue to run in a system with circuit-switched voice support but with lower data speeds.
  - OR
  - The packet-based services that are active on the end-user device at this time are suspended until the voice call is terminated and the terminal switches back to LTE again and the packet services are resumed.

- Voice calls received by the mobile user: If there is an incoming voice call to an end-user that is currently attached to the LTE system, the MSC-Server requests a paging in the LTE system for the specific user. This is done through the SGs interface between the MSC Server and the MME. The terminal receives the page, and temporarily switches from the LTE system to the system with circuit-switched voice support, where the voice call is received. Once the voice call is terminated, the terminal switches back to the LTE system.

For a detailed feature description of this feature refer to the chapter “ISR with Circuit Switched Fallback” in this document.

ISD / DSD Message Handling and HSS Initiated Bearer Modification

The Home Subscriber Server (HSS) / Home Location Register (HLR) maintains the subscriber database. Insert Subscriber Data (ISD) and Delete Subscriber Data (DSD) messages are generated by the HSS/HLR. These messages are used to communicate the subscribers current subscription data to the S4-SGSN. The subscription data for a subscriber can include one of the following:

- GPRS subscription data.
- EPS subscription data.
- Both GPRS and EPS subscription data.

The PDP is either modified or deleted based on the subscription data received by the S4-SGSN.

The S4-SGSN deletes the PDP context if any form of barring is detected or if the APN-name or PDP-type of the PDP address is changed. The S4-SGSN modifies the PDP if QoS is changed or APN-AMBR is changed (in case of EPS subscription).

If a PDP modification is required based on the subscription data received but the associated UE is disconnected or in an inactive state, such PDP contexts are deleted by the S4-SGSN.

If the UE is connected or in a ready state, the S4-SGSN sends an updated bearer command (with subscribed QoS) to the S-SGW or P-GW and the P-GW initiates a PDP modify procedure.
HSS initiated bearer modification

The Modify bearer command is a notification sent to the S-GW/P-GW which notifies a change in the subscribed QoS. The message is sent to S-GW/P-GW if the UE is in ready or connected state. Modify Bearer command is not sent when the PDP is in preserved state and when ISR is active, in such cases the S4-SGSN initiated modify request using Modify Bearer Request updates the QoS to the S-GW/P-GW after the PDP is active or UE activity is detected on S4-SGSN respectively.

UMTS-GSM AKA Support on the S4-SGSN

The S4-SGSN provides support for the following UMTS/GSM Authentication and Key Agreement (AKA) procedures:

- SRNS relocation
- Attach
- PTMSI attach (foreign/local)
- Service Request
- Inter SGSN RAU
- Timers Handling
- Re-use of Vectors
- Using the Peer SGSN/MME vectors (ISRAU/PTMSI attach) in the same or different PLMN

3G and 2G SGSN Routing Area Update

The S4-SGSN supports outbound Routing Area Update (RAU) procedures for a subscriber already attached on that SGSN (that have PDP contexts anchored through S4 interface) and inbound RAU procedures for an EPC capable UE. The RAU procedures are required to enable mobility across the UMTS and EPC core network coverage areas using the S3 interface for context transfers.

The S4-SGSN determines if the old peer node is an MME or SGSN based on the most significant bit of the LAC. If the most significant bit of the LAC is set then the old peer node is an MME (and the RAI is mapped from GUTI). If the bit is not set then the old RAI represents an SGSN.

However, some operators have already used LAC values greater than 32768 (most significant bit set) for their existing UMTS / GPRS networks. For such operators identification of a peer node through MSB bit of LAC will not work. In these cases, operators can use the Configurable GUTI to RAI Conversion Mapping feature.

The following RAU procedures are supported for both 2G and 3G services:

- 2G and 3G Intra-SGSN RAU with and without S-GW relocation
- 2G and 3G Inter-SGSN/SGSN-MME RAU with and without S-GW relocation across S16 and S3 interfaces
- Intra-SGSN Inter-RAT RAU with and without S-GW relocation

2G and 3G Intra RAU with and without S-GW Relocation

The S4-SGSN supports the intra-SGSN routing area update (ISRAU), which can occur in the following scenarios:

- The MS changes its routing area
- The periodic RAU timer expires for the MS
- The MS changes its network capability
The S4-SGSN also supports intra SGSN, inter PLMN RAU requests. However, if the new PLMN’s operator policy is configured to use the Gn interface, the PDP contexts are not transferred from the S4 interface to the Gn interface.

**Important:** The S4-SGSN currently does not support the association of a different EGTP service for each PLMN.

### 2G and 3G Inter-SGSN and Inter SGSN-MME RAU with and without S-GW Relocation Across S16 and S3 Interfaces

The S4-SGSN supports both Inter-SGSN RAU and SGSN-MME RAU, which will be triggered when a UE sends Routing Area Update (RAU) request to a new SGSN in the following scenarios:

- The serving RAI changes from one SGSN coverage area to another SGSN coverage area
- During a handover from an E-UTRAN coverage area to a UMTS coverage area

### Intra-SGSN Inter-RAT RAU with and without S-GW Relocation

The S4-SGSN supports intra-SGSN 3G to 2G routing area updates (RAU) and supports the handover of MM and PDP contexts from the SGSN service to the GPRS service. Similarly, it supports intra-SGSN 2G to 3G RAUs and supports the handover of MM and PDP contexts from the GPRS service to the SGSN service.

**Important:** Currently, the S4-SGSN expects that both the SGSN and GPRS services will be associated with the same EGTP service for successful intra-SGSN inter-RAT handovers.

### IPv4 and IPv6 PDP Type Override

The S4-SGSN supports the override of the IPv4/IPv6 PDP type by either IPv4 or IPv6 when the dual PDP feature is enabled. This is controlled via a call control profile, and is configured independently for 2G GPRS and 3G UMTS access.

Statistics are maintained to track successes and failures for IPv4 and IPv6 PDP activations with override.

### NAPTR-based Dynamic HSS Discovery

In releases prior to R15.0, the SGSN could contact a HSS only through static configuration of the HSS peer end point through the HSS service. From Release R15.0 onwards, dynamic peer discovery is supported. The HSS address will be resolved using NAPTR based DNS request-response method. The following commands have to be enabled for dynamic peer discovery:

- In the Context Configuration Mode, the command `diameter endpoint < endpoint_name >` has to be enabled.
- In the Diameter Endpoint Configuration Mode, the command `dynamic-peer-discovery [ protocol { sctp | tcp } ]` has to be enabled.
- In the Diameter Endpoint Configuration Mode, the command `dynamic-peer-realm < realm_name >` has to be enabled.
- In the Diameter Endpoint Configuration Mode, the command `dynamic-peer-failure-retry-count < no_of_retries >` has to be enabled.
The “realm name” is used for dynamic peer discovery. The “dynamic-peer-failure-retry-count” is used to configure the number of re-tries in peer discovery.

**P-GW Initiated PDP Bearer Deactivation**

The S4-SGSN supports the P-GW initiated PDP deactivation procedure in addition to the legacy MS initiated deactivation procedure.

The S4-SGSN processes Delete Bearer Requests received from the S-GW (sent by the P-GW) and deactivates the requested bearers (PDP contexts) by sending a Deactivate PDP Context Request to the UE and then deactivates the PDP context. If the S4-SGSN receives a Delete Bearer Request from the S-GW and the subscriber is in the PMM-IDLE / GPRS-STANDBY state, it pages the UE before deactivating the PDP context request.

In the case of 3G, the S4-SGSN will initiate RAB release procedures for the deactivated bearers. For 2G there is no RAB release procedure.

**S-GW and P-GW Tunnel and EPS Subscription Recovery**

The S4-SGSN supports session recovery procedures and recovers the S4 tunnel created for each subscriber assigned PDP contexts through S4 interface. This functionality is part of session recovery procedures and allows sessions to be reconstructed when the system recovers from a card-level software fault.

The SGSN side TEID and the S-GW side TEID for the S4 tunnel are check-pointed and recovered during session recovery. The S4-SGSN also recovers every PDN connection and their corresponding P-GW-side TEID.

The S4-SGSN session recovery procedures have been enhanced to support recovery of EPS subscription data received from the HLR / HSS. The EPS subscription information may contain a maximum of 50 APN profiles and each APN profile contains an APN name string and a PDN GW FQDN string, which is check-pointed and recovered as part of the enhanced session recovery procedures.

**Local Configuration of S-GW and S4-SGSN per RAI**

The SGSN already supports selection of the S-GW using DNS SNAPTR queries for the RAI FQDN. The S4-SGSN now provides the option to configure a local S-GW address for a RAI (LAC, RAC MCC and MNC). This functionality enhances the S-GW selection logic to allow the call to continue even if DNS lookup fails for any reason.

The S4-SGSN will select this local S-GW address based on the configured local policy. The local policy also can be configured to allow the selection of the locally configured S-GW address when the DNS lookup fails.

Local selection of the S-GW address applies in the following scenarios:

- First PDP context activation for a subscriber
- Intra SGSN routing area update
- New SGSN routing area update
- Intra SGSN inter RAT handover

**Configurable GUTI to RAI Conversion Mapping**

The S4-SGSN allows operators to configure mapping to an EPC MME for networks that already use LAC ranges between 32768 and 65535.
LAC ranges between 32768 to 65535 are currently being used in some UMTS/GPRS deployments although 3GPP TS 23.003 indicates that a UMTS / GPRS network should not use LACs in that range. This range is reserved for the MME group code.

In an LTE network, the MME group code is mapped to the LAC and therefore the LAC and MME group code should be separate. The S4-SGSN provides a customized solution for this problem by identifying the valid MME group codes, which it uses to identify whether the received LAC is a native LAC or a LAC mapped from GUTI (i.e., an MME group code part of GUTI).

**S4-SGSN Support for Fallback to V1 Cause Code in GTPv2 Context Response**

As per revised 3GPP TS 29.274 v8.6.0, the Context Response message received from a peer SGSN can have a cause code “Fallback to GTP-V1”, if the peer SGSN had provided a Gn interface for a subscriber due to local policy. When a new SGSN receives a Context Response with cause code as “Fallback to GTP-v1” it performs a GTP-v1 SGSN Context Request, Context Response and Context Ack with the peer SGSN to obtain the subscribers MM and PDP contexts.

**S4-SGSN Support for Mobility Management Procedures**

To support the S6d/Gr interface, the S4-SGSN supports the following mobility management procedures over the those (HSS/HLR) interfaces:

- Attach
- Service request
- Detach
- Iu-Release procedures
- Operator policy override for the Gn/S4 interface for EPC subscribers
- Zone code
- ARD
- ADD
- Operator policy-based Mobility Management context handling

**QoS Mapping Support**

The S4-SGSN supports the configuration of QoS parameters to ensure proper QoS parameter mapping between the S4-SGSN and EPC S-GWs, P-GWs, and UEs.

The S4-SGSN communicates QoS parameters towards the S-GW and P-GW in EPC QoS. However, it sends QoS towards the UE in the QoS format defined in the GMM/SM specification (TS 24.008). 3GPP defines a mapping for EPS QoS to pre-release 8 QoS in TS 23.401, Annex E. On the S4-SGSN, operators can configure the quality of service (QoS) parameters as call-control-profiles that will ensure proper QoS mapping between the S4-SGSN and the EPC gateways (P-GW and S-GW) and UEs.

The configured call-control-profiles will be used if the S4 interface is chosen for PDP activation, but the subscription does not have an EPS subscription. Therefore, GPRS subscription data (which uses QoS in pre-release 8 format), will be mapped to EPS QoS behavior. The Allocation and Retention policy will be mapped to EPS ARP using the configured call control profiles.

If the QoS mapping configuration is not used, the following default mappings are used:

- Default ARP high-priority value = 5
• Default ARP medium-priority value = 10
• Default pre-emption capability = shall-not-trigger-pre-emption
• Default pre-emption vulnerability = not pre-emptable

**MS Initiated Primary and Secondary Activation**

The S4-SGSN supports default and dedicated bearer activation for:

• Default and dedicated activation - secondary PDP procedure trigger from MS).
• Lawful Intercept for activation rejects and failures
• Dual stack PDP handling
• APN-selection as per annex A.2/Spec 23.060 rel-9

**Deactivation Procedure Support**

The S4-SGSN supports the following deactivation procedures:

• 3G / 2G MS initiated bundle deactivation
• 3G / 2G MS initiated dedicated bearer deactivation
• 3G / 2G P-GW initiated dedicated bearer deactivation
• 3G / 2G P-GW initiated PDN deactivation

**MS, PGW and HSS Initiated PDP Modification Procedure Support**

The S4-SGSN supports the following packet data protocol (PDP) modification procedures:

• 2G and 3G MS initiated PDP modification procedures
• 2G and 3G P-GW Initiated PDP modification procedures
• 2G and 3G HSS initiated PDP modification procedures

The PDP context modification procedures are invoked by the network or by the MS to modify the parameters that were negotiated under the following conditions:

• During the PDP context activation procedure
• During the secondary PDP context activation procedure
• At a previously performed PDP context modification procedure

Depending on the selected Bearer Control Mode, the MS or the network may also create and delete a traffic flow template (TFT) in an active PDP context. The procedure can be initiated by the network or the MS at any time when a PDP context is active. Only the network may modify or delete a TFT packet filter that the network has created. Conversely, only the MS may modify or delete a TFT packet filter that the MS has created.

**MS-Initiated PDP Context Modification**

The Mobile Station (MS) initiated PDP context modification procedure MS allows for a change in negotiated QoS, the radio priority level, or the TFT negotiated during the PDP context activation procedure.
E-UTRAN capable MSs will not modify the QoS of the first PDP context that was established within the PDN connection.

The MS initiates the Modification procedure by sending a MODIFY PDP CONTEXT REQUEST message to the SGSN. The SGSN validates the received message and sends out a BEARER RESOURCE COMMAND message to the S-GW with a valid PTI value which is then sent to the PGW. On accepting the modification, the P-GW sends out an Update Bearer Request with the PTI copied from the received BEARER RESOURCE COMMAND message. Upon successful completion of the modification, the SGSN replies with the MODIFY PDP CONTEXT ACCEPT message.

**P-GW-Initiated PDP Context Modification**

The Packet Data Node Gateway (P-GW) initiated PDP context modification procedure is used in cases when:

- One or several of the EPS Bearer QoS parameters are to be modified
- To add/modify/delete the TFT related to the PDP Context or BCM-Mode change
- To modify the APN-AMBR

The P-GW can request the modification procedure by sending an UPDATE BEARER REQUEST message without a PTI field to the S-GW, and the S-GW will forward the request to SGSN. The SGSN validates the request and initiates a MODIFY PDP CONTEXT REQUEST message to the MS. On successful completion of the procedure, the SGSN will send an UPDATE BEARER RESPONSE with an appropriate cause value.

**HSS Initiated PDP Context Modification**

The Home Subscriber Server (HSS) initiated PDP context modification procedure is used when the HSS decides to modify the subscribed QoS, where typically QoS related parameters are changed. The parameters that may be modified are UE-AMBR, APN-AMBR QCI and Allocation/Retention Policy.

The HSS initiates the modification by sending an Insert Subscriber Data (IMSI, Subscription Data) message to the SGSN. The Subscription Data includes EPS subscribed QoS (QCI, ARP) and the subscribed UE-AMBR and APN AMBR.

The S4-SGSN then updates the stored Subscription Data and acknowledges the Insert Subscriber Data message by returning an Insert Subscriber Data Ack (IMSI) message to the HSS and sends the Modify Bearer Command (EPS Bearer Identity, EPS Bearer QoS, APN AMBR) message to the S-GW. The S-GW forwards the Modify Bearer Command (EPS Bearer Identity, EPS Bearer QoS, APN AMBR) message to the P-GW. Note that the EPS Bearer QoS sent in the Modify Bearer Command does not modify the per bearer bit-rate. It is sent to carry only a change in the ARP / QCI received from subscription. Also, the Modify Bearer Command can be sent only for the default bearer (primary PDP) in a PDN connection.

The P-GW modifies the default bearer of each PDN connection corresponding to the APN for which subscribed QoS has been modified. If the subscribed ARP parameter has been changed, the P-GW shall also modify all dedicated EPS bearers having the previously subscribed ARP value unless superseded by PCRF decision. The P-GW then sends the Update Bearer Request (EPS Bearer Identity, EPS Bearer QoS [if QoS is changed], TFT, APN AMBR) message to the S-GW.

The S-GW sends the Update Bearer Request (EPS Bearer Identity, EPS Bearer QoS [if QoS is changed] APN-AMBR, TFT) message to the SGSN. On completion of modification S4-SGSN acknowledges the bearer modification by sending the "Update Bearer Response (EPS Bearer Identity)" message to P-GW via S-GW. If the bearer modification fails, the P-GW deletes the concerned EPS Bearer.
Fallback from the S4 Interface to the Gn Interface

The S4-SGSN supports fallback the S4 interface and selects the Gn interface for the 1st PDP context activation if the APN DNS-SNAPTR resolution returns only a Gn address. This functionality allows the PDP context request to be completed when DNS resolution returns a GGSN address instead of a P-GW address.

This mechanism is applicable in the following cases:

- The UE is EPC-capable
- The UE’s subscription has a GPRS subscription only (and not an EPS subscription)

If the subscription has an EPS subscription for an APN, then it is assumed that the P-GW addresses are configured in the DNS for that APN.

Operator Policy Selection of S4 or Gn Interface

The S4-SGSN supports Operator Policy selection of either the S4 or the Gn interface for PDP context operations. This feature allows flexible operator control over interface selection for operational or administrative reasons.

This functionality overrides any other criteria for selection of the P-GW or the GGSN for PDP contexts. This feature is applicable only for EPC-capable UEs.

IDFT Support During Connected Mode Handovers

The S4-SGSN supports the setup of indirect data forwarding tunnels (IDFT) between the eNodeB and the RNC via the SGW during connected mode handovers. This allows the S4-SGSN to support connected mode handovers between the UTRAN and E-UTRAN networks across the S3 interface.

Once enabled, IDFT is employed under the following conditions:

- If the SGSN is the old node participating in the connected mode handover, then indirect data forwarding tunnels is used if:
  - The target node to which the connected mode handover is initiated should be an eNodeB (i.e., the SGSN performs the handover to the MME).
  - The `enb-direct-data-forward` CLI setting is not configured as the source RNC configuration (in RNC Configuration Mode).

- If the SGSN is the new node participating in the connected mode handover, then indirect data forwarding tunnels is employed if:
  - The source node from which connected mode handover is initiated is an eNodeB (i.e., the MME is performing a handover to the SGSN).
  - The `enb-direct-data-forward` setting is not configured in the source RNC configuration (in RNC Configuration Mode).
  - The source MME indicated that it does not support direct forwarding via a Forward Relocation Request.

**Important:** If the target SGSN did not relocate to a new SGW, IDFT does not apply. The target SGSN sets up an indirect data forwarding tunnel with SGW only if the SGW is relocated. If the SGW is not relocated, then it is the source MME that sets up the indirect data forwarding tunnel between source the eNodeB and target RNC through the SGW.
Disassociated DSR Support

The S4-SGSN supports the disassociation of the SGSN and EGTP applications for a Delete Session Request in a certain scenario. In this scenario, the SGSN application instructs the EGTP facility to send the Delete Session Request to the SGW and not respond back to the SGSN application to confirm the action. In effect, the SGSN application disassociates itself from the EGTP facility. Since the SGSN application is no longer waiting for a response from the EGTP facility, there will be reduced internal communication between the SGSN and EGTP. The EGTP facility will handle retransmissions of the DSR request, thereby eliminating the possibility of hanging sessions at the SGSN.

The behavior of the disassociated DSR feature for each of the applicable scenarios follows:

1. The SGSN / MME wants to send a DSR with OI=0 and SI=1 to an old SGW during SGW relocation.
2. The SGSN application instructs the EGTP facility to inform the old SGW of the DSR and the SGSN doesn't expect any response from EGTP.
3. The EGTP facility handles retransmissions of this DSR request.

SGSN Serving Radio Network Subsystem (SRNS) Relocation Support

SRNS relocation is the method defined in 3GPP TS 23.401 for connected mode inter-RAT handovers from E-UTRAN to UTRAN or UTRAN to E-UTRAN networks. The SGSN already supports SRNS relocation across the Gn interface. The SGSN now also supports SRNS relocation with the following cases across the S3 (S4-SGSN to MME) and S16 (S4-SGSN to S4-SGSN) interfaces:

- Intra-SGSN SRNS relocation
- Inter-SGSN SRNS relocation over the S16 interface
- UTRAN-to-E-UTRAN connected mode Inter-RAT handover over the S3 interface
- UTRAN-to-E-UTRAN connected mode Inter-RAT handover over the S3 interface

The relocation feature is triggered by subscribers (MS/UE) moving between an eNodeB and an RNC. If the originating and destination nodes are connected to the same S4-SGSN but are in different routing areas, the behavior triggers an intra-SGSN Routing Area Update (RAU). If the nodes are connected to different S4-SGSNs, the relocation is followed by an inter-SGSN RAU.

As part of the SRNS relocation feature implementation on the S4-SGSN, the SGSN application also supports the gtpv2 (egtp) protocol for:

- Inter-SGSN SRNS relocations over the S16 interface
- MME - SGSN SRNS relocations over the S3 interface

A command is available to enable the SGSN to support SRNS relocation when the source RNC is behaving as the target RNC.

Configuration and Maintenance

The existing `srns-inter` and `srns-intra` commands in Call Control Profile Configuration Mode are used to enable this feature.

In addition, the `enb-direct-data-forward` command in RNC Configuration Mode can be used to enable the S4-SGSN to apply direct forwarding tunnels or indirect data forwarding tunnels (IDFT) between a particular eNodeB and RNC.

Statistics are also available with the `show s4-sgsn statistics all` command that enable operators to track SGW relocations and SRNS procedure aborts.
E-UTRAN Service Handover Support

The SGSN supports configuration-based enabling of the E-UTRAN Service Handover Information Element, which is optional in the following RANAP messages used during SRNS relocation:

- RAB Assignment Request
- Relocation Request

This feature is useful in the following scenarios:

1. A UE is E-UTRAN capable, the PLMN is E-UTRAN capable, but the UE has not subscribed to EPS services (no 4G subscription available).
2. The VPLMN is E-UTRAN-capable, and the UE of an inbound roamer is E-UTRAN capable, but the UE has only a UTRAN/GERAN roaming agreement in place.

The feature ensures that an SRNS relocation handover to E-UTRAN is not allowed for E-UTRAN capable UEs that have only a UTRAN/GERAN roaming agreement. This results in an elimination of potential service denial or disruption issues, and unnecessary signaling.

To implement this feature, CLI commands have been implemented so that the SGSN can be configured to:

- Override the "eutran-not-allowed" flag received from the HLR/HSS in the ISD/ULA request for the Access Restriction Data (ARD) parameter (for scenario #2 above).
- Enable the inclusion of the E-UTRAN Service Handover IE in RAB Assignment Request and Relocation Request RANAP messages for scenarios #1 and #2 above.

**Important:** SRNS relocation must be configured via the `srns-inter` and/or `srns-intra` commands in Call Control Profile Configuration Mode before configuring E-UTRAN Service Handover Support.

Support for Gn Handoff from S4-SGSN to 2G/3G Gn SGSN

The S4-SGSN supports handoffs from the S4-SGSN to a 2G/3G peer Gn/Gp SGSN as follows:

- An EPC capable UE is attached to an S4-SGSN and has PDP contexts towards the EPC core using the S4 interface.

- When the UE hands off to a Gn/Gp SGSN, the S4-SGSN transfers the PDP contexts to the peer SGSN using the GTPv1 protocol.

No CLI commands are required to implement this functionality.

Suspend/Resume Support on the S4-SGSN

The S4-SGSN Suspend/Resume feature provides support for suspend/resume procedures from the BSS and a peer S4-SGSN.

When a UE in a 2G coverage area wants to make a circuit switched voice call but the Class A mode of operation is not supported by the network, then the packet switched data session (PDP contexts) must be suspended before the voice call can be made. In this case, the BSS sends a Suspend Request to the SGSN. If the UE is already attached at that SGSN then the suspend request is handled via an intra-SGSN suspend/resume procedure. If the UE is not attached at the SGSN then the Suspend Request is forwarded to a peer SGSN/MME through GTPv2 and an inter-SGSN/SGSN-MME suspend procedure occurs. Once the UE completes the voice call, either the BSS sends a resume request to resume the suspended PDPs or the UE directly sends a Routing Area Update Request (RAU) in 2G which will be treated as an implicit resume.
The ability for a GPRS user to access circuit-switched services depends on the subscription held, the network capabilities, and the MS capabilities.

For detailed information on this feature, refer to the *S4-SGSN Suspend/Resume Feature* chapter in this guide.

**Flex Pooling (Iu / Gb over S16) Support on the S4-SGSN**

This feature adds the SGSN Pooling functionality across S16 (peer S4-SGSN) interface, so that the default SGSN can forward the received Context Requests from the non-Pooled SGSN to the right pooled SGSN, based on the NRI in P-TMSI. Flex pooling provides better scalability and load balancing. A new CLI command for pooling has been provided under eGTP Service Configuration to enable S4-SGSN pooling across the S16 interface. For more information on the command, refer to the *Command Line Interface Reference Manual*.

This feature requires the SGSN S3/S4 license and Flex feature license - no additional feature licenses are required.

**Summary of Functional Differences between an S4-SGSN and an SGSN (Gn/Gp)**

Since the S4-SGSN is configured with 2G, 3G, and/or dual access SGSN services before being configured with enhancements to enable communication with the EPC network, it shares similarities with a Gn/Gp SGSN. But, the S4-SGSN also contains a number of functional differences. The following table summarizes these differences.
Table 1. Summary of Functional Differences between SGSN and S4-SGSN

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Gn/Gp SGSN</th>
<th>S4-SGSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Initiated First Primary PDP Context Activation</td>
<td>1. The requested QoS is negotiated with the subscribed QoS. The negotiated QoS is sent in the Create PDP Context Request.</td>
<td>1. The requested QoS is ignored if UE has EPS subscription. If EPS subscription is available SGSN always uses the subscribed EPS QoS to send in the Create Session Request. If there is no EPS subscription but the UE is still granted access to the S4 interface, then the system negotiates the requested QoS with the subscribed GPRS QoS. The S4-SGSN maps the negotiated QoS to EPS QoS as per as per the mapping table given in TS 23.203 Table 6.1.7 and TS 23.401 Annex E and sends the Create Session Request. If the requested traffic class is conversational / streaming, then the system maps it to the interactive class as a primary PDP context. In S4-SGSN if QoS is downgraded by RNC during RAB establishment, then by default the PDP activation is rejected. This is as per section 9.2.2.1A of 23.060 step A below figure 64b. But S4-SGSN provides a CLI to locally accept the RAB negotiated QoS to override this spec defined behavior. 2. Two primary PDP contexts are for the same APN must be selected for the same P-GW.</td>
</tr>
<tr>
<td>MS Initiated Secondary PDP Context Activation</td>
<td>1. Secondary PDP context’s requested QoS will be capped to the subscribed QoS. 2. Since the Create PDP Context is the message also used for creating the Secondary PDP context, ARP also is sent for secondary PDP context.</td>
<td>1. ARP is not sent in the Bearer Resource command. But it is sent by the P-GW in the Create Bearer Request.</td>
</tr>
<tr>
<td>MS Initiated PDP Context Deactivation</td>
<td>1. Both single and bundle deactivation is allowed.</td>
<td>1. If a primary PDP context must be deactivated, only bundle deactivation is allowed.</td>
</tr>
<tr>
<td>GGSN/P-GW Initiated PDP Context Deactivation</td>
<td>1. The GGSN can deactivate the primary PDP context alone without initiating a bundle deactivation.</td>
<td>1. If the P-GW deactivates the primary PDP context (default bearer), it is treated as a bundle deactivation.</td>
</tr>
<tr>
<td>Procedure</td>
<td>Gn/Gp SGSN</td>
<td>S4-SGSN</td>
</tr>
<tr>
<td>-----------------------------------------------------</td>
<td>--------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PDP Context Preservation for conversational/streaming class.</td>
<td>1. The SGSN sends the Update PDP Context Request to the GGSN with 0kbps as the Maximum Bit Rate value.</td>
<td>1. The S4-SGSN preserves the PDP context as it is.</td>
</tr>
<tr>
<td></td>
<td>2. If a direct tunnel was established, or if ISR is active, then the S4-SGSN sends a Release Access Bearer Request to the S-GW.</td>
<td></td>
</tr>
<tr>
<td>PDP Context Preservation for interactive/background class.</td>
<td>1. The SGSN preserves the PDP context as it is.</td>
<td>2. The S4-SGSN preserves the PDP context as it is.</td>
</tr>
<tr>
<td></td>
<td>1. The S4-SGSN ignores the RAB Modify Request received from the RNC.</td>
<td></td>
</tr>
<tr>
<td>RNC Initiated QoS Modification</td>
<td>1. The SGSN initiates the PDP Context Modification procedure.</td>
<td>1. An intra-SGSN RAU may involve a change of S-GW.</td>
</tr>
<tr>
<td></td>
<td>2. An S4-SGSN sends a Modify Bearer Request to the S-GW/P-GW if the RAU involves a change of PLMN and if the S-GW doesn’t change.</td>
<td></td>
</tr>
<tr>
<td>Intra-SGSN Routing Area Update in PMM-Idle Mode</td>
<td>1. The SGSN sends the Update PDP Context Request to the GGSN if the PLMN changes.</td>
<td>1. An intra-SGSN RAU may involve a change of the S-GW.</td>
</tr>
<tr>
<td></td>
<td>2. An S4-SGSN sends a Modify Bearer Request to the S-GW/P-GW if the RAU involves a change of PLMN and if the S-GW doesn’t change.</td>
<td></td>
</tr>
<tr>
<td>Intra SGSN RAU in PMM-CONNECTED Mode</td>
<td>1. The SGSN sends the Update PDP Context Request to the GGSN if the PLMN changes or if QoS changed due to an RNC release change.</td>
<td>1. An intra-SGSN RAU may involve a change of the S-GW.</td>
</tr>
<tr>
<td></td>
<td>2. However, in an S4-SGSN, the SGSN initiated modification procedure is defined only for changing of APN-AMBR. A change of RNC release will initiate a per bearer QoS change. There is no way to communicate this to the S-GW / P-GW.</td>
<td></td>
</tr>
</tbody>
</table>
### Old - Inter-SGSN RAU with no change in interface type across SGSNs

**Gn/Gp SGSN**

Where both “old” and “new” refer to SGSNs (Gn/Gp):

1. The old SGSN orders the PDP contexts as per priority in the SGSN Context Response message. If the UE is PMM-CONNECTED in the old SGSN, then the old SGSN initiates an SRNS Context Transfer before sending the SGSN context response. In addition, the old SGSN initiates an SRNS Data Forward Command to the SRNS to transfer the unsent data from the old SRNS to the old SGSN.

**S4-SGSN**

Where both “old” and “new” refer to S4-SGSNs.

1. If the new S4-SGSN indicated that the S-GW has changed in the Context Ack message, then the old S4-SGSN has to initiate a Delete Session Request to the old S-GW with Scope Indication bit set. This Delete Session Request is locally consumed at old SGW and will not be forwarded to PGW.

2. The S4-SGSN does not support lossless PDCP for inter-SGSN handovers. If the UE was PMM-CONNECTED in the old S4-SGSN, then it will not initiate an SRNS Context Transfer before sending the Context Response. The assumption is that the SRNS relocation procedure had occurred prior to the inter-SGSN RAU for CONNECTED subscribers.

3. For inter S4-SGSN context transfers the Context Ack message doesn’t carry any data TEID. That is, the GTPv2 protocol doesn’t define any inter-SGSN data tunnel. Therefore, during connected mode, a RAU between two S4-SGSN without an SRNS relocation will result in packet losses. It is assumed that SRNS relocation is enabled in the UTRAN.

### Old - Inter SGSN RAU with change in interface across SGSN

**Gn/Gp SGSN**

Where “old” is SGSN (Gn/Gp) and “new” is S4-SGSN:

1. The old SGSN sends a SGSN context response with PDP contexts in prioritized order.

2. If the MS is in PMM-CONNECTED state in the old SGSN, it will initiate an SRNS Context Transfer towards the old SRNS and will initiate SRNS Data Forward Command to transfer unsent packets from old SRNS back to old SGSN. In the new SGSN, the PDPs will continue to use Gn interface. Promotion of PDPs to S4 post handover from a Gn SGSN is not yet supported.

**S4-SGSN**

Where “old” is S4-SGSN and “new” is SGSN (Gn/Gp):

1. The old S4-SGSN receives a GTPv1 SGSN Context Request and it converts the EPS bearer information to PDP contexts and responds with a SGSN Context Response towards the new SGSN.

2. The old S4-SGSN prioritizes the PDP contexts as per ARP. PDP prioritization for EPS bearers is not supported.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Gn/Gp SGSN</th>
<th>S4-SGSN</th>
</tr>
</thead>
</table>
| New Inter SGSN RAU for a PMM-IDLE subscriber without a change of interface | 1. Uses the PDP context prioritized order in the SGSN Context Response to select high priority PDP contexts in the case of resource limitations at the new SGSN.  
2. The SGSN ends the UPCQ to GGSN. | 1. Performs the S-GW selection procedure.  
2. Uses ARP to prioritize EPS bearers. In GTPv1 the PDP contexts sent in SGSN context response will be in prioritized order. But such an order is not defined for sending EPS bearers in Context Response. The idea is to use ARP for prioritization. PDP prioritization for EPS bearers is not supported.  
3. The new S4-SGSN alerts of any change in S-GW through the Context Ack to the old S4-SGSN. The PMM module will wait until the S-GW selection procedure is complete at the new S4-SGSN to alert of the context ack. |
| New Inter SGSN RAU for a PMM-CONNECTED subscriber | Where “old” is S4-SGSN and “new” is SGSN (Gn/Gp):  
1. The new SGSN receives PDP contexts in the SGSN Context Response in prioritized order.  
2. RABs will be established at the new SGSN based on the ASI bit value for each PDP. | Where “new” is S4-SGSN and “old” is SGSN (Gn/Gp):  
1. The new S4-SGSN receives PDP contexts in the Context Response. There is no prioritized order. ARP is used to prioritize. PDP prioritization for EPS bearers is not supported.  
2. New S4-SGSN performs S-GW selection.  
3. The new S4-SGSN cannot establish RAB as there is no ASI bit in the GTPv2 Context Response. The assumption is that the Context Req / Response is used only for IDLE mode handover, and that for connected mode handover, the SRNS relocation procedure should be used. |
| New – SGSN PMM-CONNECTED / PMM-IDLE subscriber handover with interface change | Where “old” is S4-SGSN and “new” is SGSN (Gn/Gp):  
1. The new S4-SGSN sends a GTPv1 SGSN Context Request and receives the PDP contexts mapped from EPS bearers in the SGSN context response.  
2. The old SGSN will establish an inter-SGSN tunnel for transferring queued packets. | Where “old” is SGSN (Gn/Gp) and “new” is S4-SGSN:  
1. The new S4-SGSN sends a GTPv1 SGSN context request, after learning that the old SGSN is an SGSN (Gn/Gp) based on a DNS S-NAPTR response.  
2. The new S4-SGSN will continue to use the Gn interface for the PDPs. Conversion of PDPs to S4-SGSN is not supported at this time. |
### Features and Functionality

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Gn/Gp SGSN</th>
<th>S4-SGSN</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>APN Selection Logic</strong></td>
<td>1. No concept of subscribed default APN.</td>
<td>1. One among the subscribed APN will be indicated as a default APN by the HSS. That APN will be used under the following cases: 1) No requested APN, 2) The requested APN is not in the subscription but the requested PDP type matches with default APN’s PDP type.</td>
</tr>
<tr>
<td><strong>DNS Queries</strong></td>
<td>1. APN FQDN, RAI FQDN and RNC-ID FQDN are formed with a .gprs extension.</td>
<td>1. APN FQDN, RAI FQDN, RNC-ID FQDN are formed with a .3gppnetwork.org extension.</td>
</tr>
<tr>
<td></td>
<td>2. DNS A/AAAA records are queried.</td>
<td>2. DNS S-NAPTR records are queried</td>
</tr>
<tr>
<td></td>
<td>3. Optionally, also uses S-NAPTR queries for EPC-capable UEs to select a co-located P-GW/GGSN</td>
<td></td>
</tr>
<tr>
<td><strong>Path Failure Detection</strong></td>
<td>1. Can be echo-based or non-echo-based.</td>
<td>1. Echo-based only.</td>
</tr>
<tr>
<td><strong>Charging</strong></td>
<td>1. Applicable.</td>
<td>1. Charging for PDP contexts applicable only if CAMEL is used. However, the S4-SGSN will continue to generate M-CDRs. Also CAMEL is not supported in S4-SGSN now. Hence S4-SGSN only generates M-CDRs. PDP related CDRs are generated by SGW.</td>
</tr>
<tr>
<td><strong>Intra-SGSN Inter System Handover (2G to 3G or 3G to 2G Inter RAT handovers)</strong></td>
<td>1. For 2G to 3G handovers, the RABs are not established in 3G after handover. It is the function of the UE to initiate Service Request procedure to setup RAB. 2. For 3G to 2G handovers, the QoS is capped to 472 Kbps in 2G and the Update PDP Context Request initiated from 2G will carry the capped QoS to GGSN.</td>
<td>1. For 2G to 3G handovers, the RABs are not established in 3G after the handover. The S4-SGSN preserves the PDP without deactivation. For 3G to 2G handover, the QoS is not capped to 472 Kbps in 2G. The reason is that in GTPv2 the Modify Bearer Request initiated from S4-SGSN upon 3G to 2G RAU is defined only for informing S-GW / P-GW of a switch in tunnel IDs and change in RAT type. This message doesn’t carry QoS. The S4-SGSN relies on the P-GW + PCRF to decide the best QoS for the informed RAT type and lets the P-GW initiate a separate modification procedure to set the right QoS.</td>
</tr>
</tbody>
</table>
### Session Recovery

Session recovery provides a seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault that prevents a fully attached user session from having the PDP contexts removed or the attachments torn down.

Session recovery is performed by mirroring key software processes (e.g., session manager and AAA manager) within the system. These mirrored processes remain in an idle state (in standby-mode) until they may be needed in the case of a software failure (e.g., a session manager task aborts). The system spawns new instances of “standby mode” session and AAA managers for each active control processor (CP) being used.

As well, other key system-level software tasks, such as VPN manager, are performed on a physically separate packet processing card to ensure that a double software fault (e.g., session manager and VPN manager fail at the same time on the same card) cannot occur. The packet processing card used to host the VPN manager process is in active mode and is reserved by the operating system for this sole use when session recovery is enabled.

The additional hardware resources required for session recovery include a standby System Management Card and a standby packet processing card.

There are two modes for Session Recovery.

- **Task recovery mode:** One or more session manager failures occur and are recovered without the need to use resources on a standby packet processor card. In this mode, recovery is performed by using the mirrored “standby-mode” session manager task(s) running on active packet processor cards. The “standby-mode” task is renamed, made active, and is then populated using information from other tasks such as AAA manager.

- **Full packet processing card recovery mode:** Used when a packet processing card hardware failure occurs, or when a packet processor card migration failure happens. In this mode, the standby packet processor card is made active and the “standby-mode” session manager and AAA manager tasks on the newly activated packet processor card perform session recovery.

Session/Call state information is saved in the peer AAA manager task because each AAA manager and session manager task is paired together. These pairs are started on physically different packet processor cards to ensure task recovery.

When session recovery occurs, the system reconstructs the following subscriber information:

---

**Table: Configuration of DT for Gn/Gp and S4-SGSN**

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Gn/Gp SGSN</th>
<th>S4-SGSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Tunnel (DT) Activation</td>
<td>Configuration enabling DT is accomplished at various levels - the Call Control Profile level, the RNC level, and at the APN Profile level for DT per APN/GGSN. For a given UE, it is possible that one PDN connection to an APN to a GGSN uses DT while another PDN connection to a different APN to a different GGSN does not use DT. It all depends upon whether or not the target GGSN supports DT.</td>
<td>Configuration for DT is only available at Call Control Profile and RNC levels as the S4-SGSN’s DT is between an SGW and an RNC. In an S4-SGSN, either all PDPs of a given UE use DT or none of them use DT. So, combinations of some PDPs using DT and some PDPs not using DT is not possible.</td>
</tr>
<tr>
<td>Handling Suspend from BSS/peer SGSN</td>
<td>PDPs are suspended at SGSN. Any downlink data received at this point will be queued by the SGSN.</td>
<td>PDPs are suspended at SGSN. Downlink data buffering happens at the PGW and not the SGSN because the PDP suspension is carried via a GTPv2 Suspend Notification message from the SGSN to the SGW to the PGW.</td>
</tr>
</tbody>
</table>
Features and Functionality

- Data and control state information required to maintain correct call behavior
- Subscriber data statistics that are required to ensure that accounting information is maintained
- A best-effort attempt to recover various timer values such as call duration, absolute time, and others

For more information on session recovery use and session recovery configuration, refer to the Session Recovery section in the System Administration Guide.

SGSN Pooling and Iu-Flex / Gb-Flex

This implementation allows carriers to load balance sessions among pooled SGSNs, to improve reliability and efficiency of call handling, and to use Iu-Flex / Gb-Flex to provide carriers with deterministic failure recovery.

The SGSN, with its high capacity, signaling performance, and peering capabilities, combined with its level of fault tolerance, delivers many of the benefits of Flex functionality even without deploying SGSN pooling.

As defined by 3GPP TS 23.236, the SGSN implements Iu-Flex and Gb-Flex functionality to facilitate network sharing and to ensure SGSN pooling for 2.5G and 3G accesses as both separate pools and as dual-access pools.

SGSN pooling enables the following:

- Eliminates the single point of failure between an RNC and an SGSN or between a BSS and an SGSN.
- Ensures geographical redundancy, as a pool can be distributed across sites.
- Minimizes subscriber impact during service, maintenance, or node additions or replacements.
- Increases overall capacity via load sharing across the SGSNs in a pool.
- Reduces the need/frequency for inter-SGSN RAUs. This substantially reduces signaling load and data transfer delays.
- Supports load redistribution with the SGSN offloading procedure.

Gb/Iu Flex Offloading

The SGSN supports Gb/Iu Flex subscriber offloading from one SGSN to another specific SGSN in a 2G/3G pool.

In addition, the operator can configure the offloading Target NRI in P-TMSI, and the quantity to offload to the Target. This can be used to provide load balancing, or to offload a single node in pool, take it out of service for whatever reason (e.g., maintenance).

SGSN Support for RAI Based Query

The SGSN now supports a RAI based query when NRI based query fails. A new CLI option `rai-fqdn-fallback` is provided in the `peer-nri-length` CLI under the Call Control Profile Configuration, which allows the operator to configure the SGSN's support to fallback on RAI based query when NRI based query fails.

This feature is not supported in the following scenarios:

- 2G Context Request and Identification Request messages are not supported.
- S4 support of this extensions for all applicable scenarios is not supported.
SGSN Support For Sending Extended Bits Bi-directionally

The SGSN now supports sending extended bitrates in both uplink and downlink directions. Extended bitrates are included in both uplink and downlink direction when the negotiated bitrate indicates that extended bitrates should be included in one direction. A new CLI `ranap bidirectional-always ext-mbr-ie` is added under the RNC Configuration mode to enable sending extended bitrates bi-directionally.

Short Message Service (SMS over Gd)

The SGSN implements a configurable Short Message Service (SMS) to support sending and receiving text messages up to 140 octets in length. The SGSN handles multiple, simultaneous messages of both types: those sent from the MS/UE (SMS-MO: mobile originating) and those sent to the MS/UE (SMS-MT: mobile terminating). Short Message Service is disabled by default.

After verifying a subscription for the PLMN’s SMS service, the SGSN connects with the SMSC (short message service center), via a Gd interface, to relay received messages (from a mobile) using MAP-MO-FORWARD-REQUESTs for store-and-forward.

In the reverse, the SGSN awaits messages from the SMSC via MAP-MT-FORWARD-REQUESTs and checks the subscriber state before relaying them to the target MS/UE.

The SGSN will employ both the Page procedure and MNRG (mobile not reachable for GPRS) flags in an attempt to deliver messages to subscribers that are absent.

The SGSN supports

- charging for SMS messages, and
- lawful intercept of SMS messages

For information on configuring and managing the SMS, refer to the *SMS Service Configuration Mode* section in the Command Line Interface Reference.

SMS Authentication Repetition Rate

The SGSN provides an authentication procedures for standard GMM events like Attach, Detach, RAU, and Service-Request, and SMS events such as Activate, all with support for 1-in-N Authenticate functionality. The SGSN did not provide the capability to authenticate MO/MT SMS events.

Now, the authentication functionality has been expanded to the Gs interface where the SGSN now supports configuration of the authentication repetition rate for SMS-MO and SMS-MT, for every nth event. This functionality is built on existing SMS CLI, with configurable MO and/or MT. The default is not to authenticate.

SMSC Address Denial

Previously, the SGSN supported restricting MO-SMS and MT-SMS only through SGSN operator policy configuration. Now, the SGSN can restrict forwarding of SMS messages to specific SMSC addresses, in order to allow operators to block SMS traffic that cannot be charged for. This functionality supports multiple SMSCs and is configurable per SMSC address with a maximum of 10 addresses. It is also configurable for MO-SMS and/or MT-SMS messages.
Status Updates to RNC

During MMGR recovery due to memory overload or demux migration leads to missing status updates for RNC. As the result RNC status remains unavailable even when links towards RNC are up. The Session Controller allows the Standby Session Managers along with Active Session Managers to fetch the status updates.

Threshold Crossing Alerts (TCA) Support

Threshholding on the system is used to monitor the system for conditions that could potentially cause errors or outage. Typically, these conditions are temporary (i.e. high CPU utilization, or packet collisions on a network) and are quickly resolved. However, continuous or large numbers of these error conditions within a specific time interval may be indicative of larger, more severe issues. The purpose of thresholding is to help identify potentially severe conditions so that immediate action can be taken to minimize and/or avoid system downtime.

The system supports Threshold Crossing Alerts for certain key resources such as CPU, memory, number of sessions etc. With this capability, the operator can configure threshold on these resources whereby, should the resource depletion cross the configured threshold, a SNMP Trap would be sent.

The following thresholding models are supported by the system:

- **Alert**: A value is monitored and an alert condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

- **Alarm**: Both high and low threshold are defined for a value. An alarm condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

Thresholding reports conditions using one of the following mechanisms:

- **SNMP traps**: SNMP traps have been created that indicate the condition (high threshold crossing and/or clear) of each of the monitored values.

  Generation of specific traps can be enabled or disabled on the chassis. Ensuring that only important faults get displayed. SNMP traps are supported in both Alert and Alarm modes.

- **Logs**: The system provides a facility called threshold for which active and event logs can be generated. As with other system facilities, logs are generated Log messages pertaining to the condition of a monitored value are generated with a severity level of WARNING.

  Logs are supported in both the Alert and the Alarm models.

- **Alarm System**: High threshold alarms generated within the specified polling interval are considered “outstanding” until a the condition no longer exists or a condition clear alarm is generated. “Outstanding” alarms are reported to the system’s alarm subsystem and are viewable through the Alarm Management menu in the Web Element Manager.

  The Alarm System is used only in conjunction with the Alarm model.

---

**Important**: For more information on threshold crossing alert configuration, refer to the *Thresholding Configuration Guide*. 

---
Tracking Usage of GEA Encryption Algorithms

GPRS encryption algorithm (GEA) significantly affects the SGSN processing capacity based on the GEAx level used - GEA1, GEA2, or GEA3.

Operators would like to be able to identify the percentages of their customer base that are using the various GEA encryption algorithms. The same tool can also track the migration trend from GEA2 to GEA3 and allow an operator to forecast the need for additional SGSN capacity.

New fields and counters have been added to the output generated by the `show subscribers gprs-only|sgsn-only summary` command. This new information enables the operator to track the number of subscribers capable of GEA0-GEO3 and to easily see the number of subscribers with negotiated GEAx levels.

VLR Pooling via the Gs Interface

VLR Pooling, also known as Gs Pooling, helps to reduce call delays and call dropping, when the MS/UE is in motion, by routing a service request to a core network (CN) node with available resources.

VLR pools are configured in the Gs Service, which supports the Gs interface configuration for communication with VLRs and MSCs.

A pool area is a geographical area within which an MS/UE can roam without the need to change the serving CN node. A pool area is served by one or more CN nodes in parallel. All the cells, controlled by an RNC or a BSC belong to the same one (or more) pool area(s).

VLR hash is used when a pool of VLRs is serving a particular LAC (or list of LACs). The selection of VLR from this pool is based on the IMSI digits. From the IMSI, the SGSN derives a hash value (V) using the algorithm: `[(IMSI div 10) modulo 1000]`. Every hash value (V) from the range 0 to 999 corresponds to a single MSC/VLR node. Typically many values of (V) may point to the same MSC/VLR node.

For commands to configure the VLR and pooling, refer to the “Gs Service Configuration Mode” section in the Command Line Interface Reference.

Synchronization of Crash Events and Minicores between Management Cards

The crashlog is unique to each of the management cards, so if a crash occurs when card the “8” is active it will be logged on card “8”. A subsequent switchover would no longer display the crash in the log. To retrieve this crash, a switch back over to card “8” has to be done. The crash event log and dumps are unique to active and standby management cards, so if a crash occurs on an active card then the crash event log and related dumps will be stored on an active card only. This crash information is not available on the standby card. Whenever the cards switchover due to a crash in the active card, and crash information is no longer displayed on the card which takes over. Crash information can be retrieved only from the current active card. To retrieve the crash list of the other card a switchover is required again. To avoid this switchover and to obtain the crash information from the standby card, synchronization between two management cards and maintaining latest crash information is required.

The arriving crash event will be sent over to the standby SMC/MMIO and saved in the standby’s crashlog file in the similar manner. Minicore, NPU or kernel dumps on flash of active SMC/MMIO needs to be synchronized to standby SMC/MMIO using the ‘rsync’ command. When a crashlog entry or the whole list is deleted through the CLI command, it should be erased on both active and standby SMCs/MMIOs. There is no impact on memory. All the crash related synchronization activity will be done by the evlogd of standby SMC/MMIO card, as the standby evlogd is less loaded and the standby card has enough room for synchronization activity. Therefore the performance of the system will not be affected.
Zero Volume S-CDR Suppression

This feature is developed to suppress the CDRs with zero byte data count, so that the OCG node is not overloaded with a flood of CDRs. The CDRs can be categorized as follows:

- **Final-cdrs**: These CDRs are generated at the end of a context.
- **Internal-trigger-cdrs**: These CDRs are generated due to internal triggers such as volume limit, time limit, tariff change or user generated interims through the CLI commands.
- **External-trigger-cdrs**: These CDRs are generated due to external triggers such as QoS Change, RAT change and so on. All triggers which are not considered as final-cdrs or internal-trigger-cdrs are considered as external-trigger-cdrs.

The customers can select the CDRs they want to suppress. A new CLI command `[no] [default] gtpp suppress-cdrs zero-volume { external-trigger-cdr | final-cdr | internal-trigger-cdr }` is developed to enable this feature. This feature is disabled by default to ensure backward compatibility. For more information see, *Command Line Interface Reference* and *Statistics and Counters Reference*.
How the SGSN Works

This section illustrates some of the GPRS mobility management (GMM) and session management (SM) procedures the SGSN implements as part of the call handling process. All SGSN call flows are compliant with those defined by 3GPP TS 23.060.

First-Time GPRS Attach

The following outlines the setup procedure for a UE that is making an initial attach.

**Figure 9. Simple First-Time GPRS Attach**

This simple attach procedure can connect an MS via a BSS through the Gb interface (2.5G setup) or it can connect a UE via a UTRAN through the Iu interface in a 3G network with the following process:

**Table 2. First-Time GPRS Attach Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The MS/UE sends an Attach Request message to the SGSN. Included in the message is information, such as:</td>
</tr>
<tr>
<td></td>
<td>• Routing area and location area information</td>
</tr>
<tr>
<td></td>
<td>• Mobile network identity</td>
</tr>
<tr>
<td></td>
<td>• Attach type</td>
</tr>
</tbody>
</table>
How the SGSN Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2    | Authentication is mandatory if no MM context exists for the MS/UE:  
- The SGSN gets a random value (RAND) from the HLR to use as a challenge to the MS/UE.  
- The SGSN sends an Authentication Request message to the UE containing the random RAND.  
- The MS/UE contains a SIM that contains a secret key (Ki) shared between it and the HLR called a Individual Subscriber Key. The UE uses an algorithm to process the RAND and Ki to get the session key (Kc) and the signed response (SRES).  
- The MS/UE sends an Authentication Response to the SGSN containing the SRES. |
| 3    | The SGSN updates location information for the MS/UE:  
a) The SGSN sends an Update Location message, to the HLR, containing the SGSN number, SGSN address, and IMSI.  
b) The HLR sends an Insert Subscriber Data message to the “new” SGSN. It contains subscriber information such as IMSI and GPRS subscription data.  
c) The “New” SGSN validates the MS/UE in new routing area:  
If invalid: The SGSN rejects the Attach Request with the appropriate cause code.  
If valid: The SGSN creates a new MM context for the MS/UE and sends a Insert Subscriber Data Ack back to the HLR.  
d) The HLR sends an Update Location Ack to the SGSN after it successfully clears the old MM context and creates new one |
| 4    | The SGSN sends an Attach Accept message to the MS/UE containing the P-TMSI (included if it is new), VLR TMSI, P-TMSI Signature, and Radio Priority SMS.  
At this point the GPRS Attach is complete and the SGSN begins generating M-CDRs. |

If the MS/UE initiates a second call, the procedure is more complex and involves information exchanges and validations between “old” and “new” SGSNs and “old” and “new” MSC/VLRs. The details of this combined GPRS/IMSI attach procedure can be found in 3GPP TS23.060.
PDP Context Activation Procedures

The following figure provides a high-level view of the PDP Context Activation procedure performed by the SGSN to establish PDP contexts for the MS with a BSS-Gb interface connection or a UE with a UTRAN-Iu interface connection.

![Call Flow for PDP Context Activation](image)

The following table provides detailed explanations for each step indicated in the figure above.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The MS/UE sends a PDP Activation Request message to the SGSN containing an Access Point Name (APN).</td>
</tr>
<tr>
<td>2</td>
<td>The SGSN sends a DNS query to resolve the APN provided by the MS/UE to a GGSN address. The DNS server provides a response containing the IP address of a GGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN sends a Create PDP Context Request message to the GGSN containing the information needed to authenticate the subscriber and establish a PDP context.</td>
</tr>
<tr>
<td>4</td>
<td>If required, the GGSN performs authentication of the subscriber.</td>
</tr>
<tr>
<td>5</td>
<td>If the MS/UE requires an IP address, the GGSN may allocate one dynamically via DHCP.</td>
</tr>
<tr>
<td>6</td>
<td>The GGSN sends a Create PDP Context Response message back to the SGSN containing the IP Address assigned to the MS/UE.</td>
</tr>
</tbody>
</table>
How the SGSN Works

The SGSN sends a Activate PDP Context Accept message to the MS/UE along with the IP Address. Upon PDP Context Activation, the SGSN begins generating S-CDRs. The S-CDRs are updated periodically based on Charging Characteristics and trigger conditions. A GTP-U tunnel is now established and the MS/UE can send and receive data.

Network-Initiated PDP Context Activation Process

In some cases, the GGSN receives information that requires it to request the MS/UE to activate a PDP context. The network, or the GGSN in this case, is not actually initiating the PDP context activation -- it is requesting the MS/UE to activate the PDP context in the following procedure:

Figure 11. Network-Initiated PDP Context Activation

The table below provides details describing the steps indicated in the graphic above.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The GGSN receives a PDU with a static PDP address that the GGSN ‘knows’ is for an MS/UE in its PLMN.</td>
</tr>
<tr>
<td>2</td>
<td>The GGSN uses the IMSI in place of the PDP address and sends an SRI (send routing information for GPRS) to the HLR. The HLR sends an SRI response back to the GGSN. The response may include the access of the target SGSN and it may also indicate if the MS/UE is not reachable, in which case it will include the reason in the response message.</td>
</tr>
<tr>
<td>3</td>
<td>The GGSN sends a PDU Notification Request to the SGSN (if the address was received). If the address was not received or if the MS/UE continues to be unreachable, the GGSN sets a flag marking that the MS/UE was unreachable. The notified SGSN sends a PDU Notification Response to the GGSN.</td>
</tr>
</tbody>
</table>
### MS-Initiated Detach Procedure

This process is initiated by the MS/UE for a range of reasons and results in the MS/UE becoming inactive as far as the network is concerned.

**Figure 12. MS-Initiated Combined GPRS/IMSI Detach**

The following table provides details for the activity involved in each step noted in the diagram above.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The UE sends a Detach Request message to the SGSN containing the Detach Type, P-TMSI, P-TMSI Signature, and Switch off indicator (i.e. if UE is detaching because of a power off).</td>
</tr>
<tr>
<td>2</td>
<td>The SGSN sends Delete PDP Context Request message to the GGSN containing the TEID. The GGSN sends a Delete PDP Context Response back to the SGSN. The SGSN stops generating S-CDR info at the end of the PDP context.</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN sends a IMSI Detach Indication message to the MSC/VLR.</td>
</tr>
</tbody>
</table>
### How the SGSN Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The SGSN sends a GPRS Detach Indication message to the MSC/VLR. The SGSN stops generating M-CDR upon GPRS Detach.</td>
</tr>
<tr>
<td>5</td>
<td>If the detach is not due to a UE switch off, the SGSN sends a Detach Accept message to the UE.</td>
</tr>
<tr>
<td>6</td>
<td>Since the UE GPRS Detached, the SGSN releases the Packet Switched Signaling Connection.</td>
</tr>
</tbody>
</table>
Supported Standards

The SGSN services comply with the following standards for GPRS/UMTS and EPC wireless data services.

IETF Requests for Comments (RFCs)

- RFC-1035, Domain Names - Implementation and Specification, November 1987; 3GPP TS 23.003 v7.4.0 (2007-06)
- RFC-3332, MTP3 User Adaptation Layer (M3UA), September 2002; 3GPP TS 29.202 v6.0.0 (2004-12)
- RFC-4666, Signaling System 7 (SS7) Message Transfer Part 3 (MTP3) - User Adaptation Layer (M3UA), September 2006; 3GPP TS 29.202 v6.0.0 (2004-12)

3GPP Standards

3GPP Release 6 and higher is supported for all specifications unless otherwise noted. Support for higher releases is indicated below, in relation to current and planned development, including support for IEs and messages determined by supported functionality. Product development is aiming ultimately towards full compliance with the releases listed below:

Table 6. 3GPP Standards Supported

<table>
<thead>
<tr>
<th>3GPP Standard</th>
<th>R15.0</th>
<th>R16.0</th>
<th>R17.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP TS 9.60, 3rd Generation Partnership Project; Technical Specification Group Core Network; General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface (R98).</td>
<td>v7.10.0 (2002-12)</td>
<td>v7.10.0 (2002-12)</td>
<td>v7.10.0 (2002-12)</td>
</tr>
<tr>
<td>3GPP TS 22.041, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Operator Determined Barring (ODB)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td>3GPP TS 22.042, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network Identity and Timezone (NITZ); Service description, Stage 1</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td>3GPP Standard</td>
<td>R15.0</td>
<td>R16.0</td>
<td>R17.0</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td><strong>3GPP TS 23.003</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification</td>
<td>v10.5.0 (2012-03)</td>
<td>v10.5.0 (2012-03)</td>
<td>v10.5.0 (2012-03)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.007</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network; Restoration procedures</td>
<td>v9.10.0 (2011-12)</td>
<td>v9.10.0 (2011-12)</td>
<td>v11.8.0 (2014-03)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.015</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network; Technical realization of Operator Determined Barring (ODB)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.016</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network; Subscriber data management; Stage 2</td>
<td>v9.1.0 (2010-03)</td>
<td>v9.1.0 (2010-03)</td>
<td>v9.1.0 (2010-03)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.040</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Technical realization of the Short Message Service (SMS)</td>
<td>v9.3.0 (2010-09)</td>
<td>v9.3.0 (2010-09)</td>
<td>v9.3.0 (2010-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.060</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2</td>
<td>v10.11.0(2013-03)</td>
<td>v10.12.0 (2013-06)</td>
<td>v11.8.0 (2013-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.107</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Quality of Service (QoS) concept and architecture</td>
<td>v9.3.0 (2011-12)</td>
<td>v9.3.0 (2011-12)</td>
<td>v9.3.0 (2011-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.236</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Intra-domain connection of Radio Access Network (RAN) nodes to multiple Core Network (CN) nodes</td>
<td>v11.0.0(2012-09)</td>
<td>v11.0.0(2012-09)</td>
<td>v11.0.0(2012-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 23.251</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network Sharing; Architecture and functional description</td>
<td>v10.5.0 (2012-12)</td>
<td>v10.5.0 (2012-12)</td>
<td>v10.5.0 (2012-12)</td>
</tr>
<tr>
<td>3GPP Standard</td>
<td>R15.0</td>
<td>R16.0</td>
<td>R17.0</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td><strong>3GPP TS 24.007</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network; Mobile radio interface signalling layer 3; General aspects</td>
<td>v10.0.0 (2011-03)</td>
<td>v10.0.0 (2011-03)</td>
<td>v10.0.0 (2011-03)</td>
</tr>
<tr>
<td><strong>3GPP TS 24.008</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Mobile radio interface Layer 3 specification; Core network protocols; Stage 3</td>
<td>v9.10.0 (2012-03)</td>
<td>v9.10.0 (2012-03)</td>
<td>v11.8.0 (2013-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 24.080</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Mobile radio interface layer 3 supplementary services specification; Formats and coding (Release 9)</td>
<td>v10.0.0 (2011-04)</td>
<td>v10.0.0 (2011-04)</td>
<td>v10.0.0 (2011-04)</td>
</tr>
</tbody>
</table>
## Supported Standards

<table>
<thead>
<tr>
<th>3GPP Standard</th>
<th>R15.0</th>
<th>R16.0</th>
<th>R17.0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3GPP TS 29.002</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Mobile Application Part (MAP) specification</td>
<td>v9.8.0 (2012-03)</td>
<td>v10.10.0 (2013-09)</td>
<td>v11.8.0 (2013-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.016</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network; General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR); Gs interface network service specification</td>
<td>v8.0.0 (2008-12)</td>
<td>v8.0.0 (2008-12)</td>
<td>v8.0.0 (2008-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.018</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR) Gs interface layer 3 specification</td>
<td>v9.1.0 (2010-12)</td>
<td>v10.7.0 (2012-09)</td>
<td>v10.7.0 (2012-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.060</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface</td>
<td>v9.9.0 (2011-12)</td>
<td>v10.9.0 (2013-09)</td>
<td>v11.8.0 (2013-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.202</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; SS7 Signalling Transport in Core Network; Stage 3</td>
<td>v8.0.0 (2007-06)</td>
<td>v8.0.0 (2007-06)</td>
<td>v8.0.0 (2007-06)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.272</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol (Release 9)</td>
<td>v9.7.0 (2011-2006)</td>
<td>v10.8.0 (2013-06)</td>
<td>v11.9.0 (2013-12)</td>
</tr>
<tr>
<td>3GPP Standard</td>
<td>R15.0</td>
<td>R16.0</td>
<td>R17.0</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td><strong>3GPP TS 29.274</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3 (Release 9)</td>
<td>v10.10.0 (2013-03)</td>
<td>v10.12.0 (2013-12)</td>
<td>v11.9.0 (2013-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 29.303</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Domain Name System Procedures; Stage 3 (Release 9)</td>
<td>v9.4.0 (2011-2006)</td>
<td>v10.4.0 (2012-09)</td>
<td>v10.4.0 (2012-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 32.215</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Charging data description for the Packet Switched (PS) domain</td>
<td>v5.9.0 (2007-10)</td>
<td>v5.9.0 (2007-10)</td>
<td>v5.9.0 (2007-10)</td>
</tr>
<tr>
<td><strong>3GPP TS 32.251</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Packet Switched (PS) domain charging</td>
<td>v9.8.0</td>
<td>v9.8.0</td>
<td>v9.8.0</td>
</tr>
<tr>
<td><strong>3GPP TS 32.298</strong>, 3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; Telecommunication management; Charging management; Charging Data Record (CDR) parameter description</td>
<td>v8.7.0 (2009-2012)- Fully compliant</td>
<td>v9.6.0 (2010-2012) - Partially compliant (IMSI unAuth and CSG Information not supported)</td>
<td>v8.7.0 (2009-2012)- Fully compliant</td>
</tr>
<tr>
<td><strong>3GPP TS 32.406</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Performance Management (PM); Performance measurements Core Network (CN) Packet Switched (PS) domain</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 32.410</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Key Performance Indicators (KPI) for UMTS and GSM</td>
<td>v9.0.0 (2009-09)</td>
<td>v9.0.0 (2009-09)</td>
<td>v9.0.0 (2009-09)</td>
</tr>
<tr>
<td><strong>3GPP TS 33.102</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Security architecture</td>
<td>v9.4.0 (2010-12)</td>
<td>v9.4.0 (2010-12)</td>
<td>v9.4.0 (2010-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 33.106</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security; Lawful Interception requirements</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
</tbody>
</table>
## Supported Standards

<table>
<thead>
<tr>
<th>3GPP Standard</th>
<th>R15.0</th>
<th>R16.0</th>
<th>R17.0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3GPP TS 33.107</strong>, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security; Lawful interception architecture and functions</td>
<td>v9.4.0 (2011-03)</td>
<td>v9.4.0 (2011-03)</td>
<td>v9.4.0 (2011-03)</td>
</tr>
<tr>
<td><strong>3GPP TS 44.064</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Mobile Station - Serving GPRS Support Node (MS-SGSN); Logical Link Control (LLC) layer specification</td>
<td>v9.1.0 (2011-12)</td>
<td>v9.1.0 (2011-12)</td>
<td>v9.1.0 (2011-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 44.065</strong>, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Mobile Station (MS) - Serving GPRS Support Node (SGSN); Subnetwork Dependent Convergence Protocol (SNDCP)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 48.014</strong>, 3rd Generation Partnership Project; Technical Specification Group GSM EDGE Radio Access Network; General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN) interface; Gb interface Layer 1</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 48.016</strong>, 3rd Generation Partnership Project; Technical Specification Group GSM EDGE Radio Access Network; General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN) interface; Network Service</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
<td>v9.0.0 (2009-12)</td>
</tr>
<tr>
<td><strong>3GPP TS 48.018</strong>, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN); BSS GPRS Protocol (BSSGP) (Release 7)</td>
<td>v10.7.0 (2012-09)</td>
<td>v10.7.0 (2012-09)</td>
<td>v10.7.0 (2012-09)</td>
</tr>
</tbody>
</table>

## ITU Standards

- **Q711**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
- **Q712**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
Supported Standards

- **Q713**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
- **Q714**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
- **Q715**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
- **Q716**: 3GPP TS 29.002 v7.15.0 (2006-2010), 3GPP TS 29.016 v7.0.0 (2007-08), and 3GPP TS 25.410 v7.0.0 (2006-03)
- **Q771**: 3GPP TS 29.002 v7.15.0 (2006-2010)
- **Q772**: 3GPP TS 29.002 v7.15.0 (2006-2010)
- **Q773**: 3GPP TS 29.002 v7.15.0 (2006-2010)
- **Q774**: 3GPP TS 29.002 v7.15.0 (2006-2010)
- **Q775**: 3GPP TS 29.002 v7.15.0 (2006-2010)

Object Management Group (OMG) Standards

- CORBA 2.6 Specification 01-09-35, Object Management Group
This chapter outlines the basic configuration and operation of the Serving GPRS Support Node (SGSN) in 2.5G GPRS wireless data networks.

The simplest configuration that can be implemented on the system to support SGSN functionality in a 2.5G network requires one context but we recommend a minimum of two: one for the SGSN service (required) and another for the charging context.

The service context organizes the following:

- GPRS service configuration
- MAP (Mobile Application Part) configuration
- DNS (Domain Naming System) configuration for resolution of APN (Access Point Name) domain names
- SGTP (SGSN GPRS Tunneling Protocol) configuration

The charging context facilitates the following:

- Configuration of connectivity to the CGF (Charging Gateway Function)

The following functionality is configured at the global or system level in the local management context:

- NSEI (Network Service Entity Identity) configuration
- SCCP (Signalling Connection Control Part) network configuration
- SS7 (Signaling System 7) connectivity configuration
- GTT (Global Title Translation) configuration

To simplify configuration management, more contexts can be created to categorize the service configuration. Each context can be named as needed. The contexts listed above can be configured as illustrated in the figure on the next page.
2.5G SGSN Configuration Components

In order to support 2.5G SGSN functionality, the system must be configured with at least one context for the GPRS service (2.5G SGSN service). In the example below, the required context has been named “SGSN_Ctx”.

Figure 13. Sample 2.5G SGSN Configuration

The SGSN_Ctx

As indicated, there must be at least one context to contain the service and routing configurations. Although multiple context can be created, our example configuration uses only one context, named “SGSN_Ctx”, to contain all of the following configurations:

- **SS7 Routing Domain** - SS7 routing is facilitated through the configuration and use of SS7 routing domains. SS7 routing domains group SS7-related configuration parameters. Depending on the SS7 signalling method, an SS7 routing domain may be configured with one of the following:
  - **Linksets** - Used for broadband SS7 signalling, linksets are comprised of link ids that specify point codes for SCCP endpoints. It is important to note that SCCP endpoints are further defined through the
configuration of SCCP Networks which are associated with the SS7 routing domain in which the linkset is configured.

- **Application Server Processes (ASPs) / Peer Server Processes (PSPs)** - Used for IP (SIGTRAN), M3UA ASPs and PSPs dictate the IP address and port information used to facilitate communication between network endpoints. ASPs refer to the local endpoints.

- **GTT** - Global Title Translation (GTT) configuration consists of defining GTT associations, defining GTT address maps, and referring to these in an SCCP network configuration. The GTT Associations define GTT rules. The GTT Address Maps define a GTT database. These are configured in the Global Configuration mode and are available to all SCCP networks configured in the system.

- **SCCP Network** - SCCP (Signalling Connection Control Part) networks are a concept specific to this platform. SCCP networks apply only to SS7 applications using SCCP. The purpose of an SCCP network is to isolate the higher protocol layers above SCCP and the application itself from SS7 connectivity issues, as well as, to provide a place for global SCCP configuration specific to SGSN services. Use the following example configuration to specify a global SCCP configuration specific to SGSN services.

- **MAP Service** - The Mobile Application Part (MAP) is an SS7 protocol which provides an application layer for the various nodes in GSM and UMTS mobile core networks and GPRS core networks to communicate with each other in order to provide services to mobile phone users. MAP is the application-layer protocol used to access the Home Location Register (HLR), Visitor Location Register (VLR), Mobile Switching Center (MSC), Equipment Identity Register (EIR), Authentication Center (AUC), Short Message Service Center (SMSC) and Serving GPRS Support Node (SGSN).

  The primary facilities provided by MAP are:

  - Mobility Services: location management (when subscribers move within or between networks), authentication, managing service subscription information, fault recovery.
  - Operation and Maintenance: subscriber tracing, retrieving a subscriber's IMSI.
  - Call Handling: routing, managing calls while roaming, checking that a subscriber is available to receive calls.
  - Supplementary Services.
  - SMS
  - Packet Data Protocol (PDP) services for GPRS: providing routing information for GPRS connections.
  - Location Service Management Services: obtaining the location of subscribers.

- **SGTP Service** - The SGSN GPRS Tunneling Protocol (GTP) service specifies the GTP settings for the SGSN. At a bare minimum, an address to use for GTP-C (Control signaling) and an address for GTP-U (User data) must be configured.

- **GPRS Service** - All of the parameters needed for the system to perform as a an SGSN in a GPRS network are configured in the GPRS service. The GPRS service uses other configurations such as SGTP and MAP to communicate with other network entities and setup communications between the BSS and the GGSN.

- **NSEI** (Network Service Entity Instance) - This identifies the NSEI to use and associates it with a Network Service Virtual Connection Identifier.

- **DNS** - DNS Client configurations provide DNS configuration in a context to resolve APN domain names.
The Accounting_CTX

If no context is defined for GTPP configuration, the SGSN automatically generates an accounting context with default GTPP configurations. The context, from our example, contains the following configuration:

- **GTPP Configuration** - This configuration specifies how to connect to the GTPP charging servers.
- **Ga Interface** - This is an IP interface.
How the 2.5G SGSN Works

In compliance with 3GPP specifications, the 2.5G SGSN supports standard operational procedures such as: attach, detach, PDP activation.

For GPRS and/or IMSI Attach

The following illustrates the step-by-step call flow indicating how the 2.5G SGSN handles a GPRS/IMSI attach procedure.

1. An Attach Request message is sent from the UE to the SGSN by the BSS over the Gb interface. This is Typically a Frame Relay connection.
2. The SGSN identifies UE and determines IMSI. Depending on whether or not the UE is already attached, this could be a simple database lookup or it could require the SGSN to communicate with an SGSN that may have been previously handling the call.
3. The SGSN communicates with the HLR to authenticate the UE.
4. Once the UE has been authenticated, the SGSN communicates with the EIR to verify that the equipment is not stolen.
5. Once equipment check is complete, the SGSN communicates with the HLR to update UE location information.
6. The SGSN then sends an Attach Complete message to UE.
7. SGSN begins sending M-CDR data to the CG.

For PDP Activation

The following provides a step-by-step illustration indicating how the 2.5G SGSN handles a PDP activation procedure.

Figure 15. PDP Activation Procedure

1. A PDP Activation Request message is sent from the UE to the SGSN by the BSS over the Gb interface. This request includes the Access Point Name (APN) the UE is attempting to connect to. This is typically a Frame relay connection.
2. The SGSN queries the DNS server to resolve the APN to the IP address of the GGSN to use to establish the PDP context.
3. The SGSN sends a Create PDP Context Request message to the GGSN. This message identifies the APN the UE is attempting to connect to and other information about the subscriber.
4. The GGSN performs its processes for establishing the PDP context. This may include subscriber authentication, service provisioning, etc. The GGSN eventually sends an affirmative create PDP context response to the SGSN containing the IP address assigned to the UE.
5. The SGSN sends an Activate PDP Context Accept message back to the UE. The subscriber can now begin sending/receiving data.
6. The SGSN begins generating S-CDR data that will be sent to the CG.
## Information Required for the 2.5G SGSN

This section describes the minimum amount of information required to configure the SGSN to be operational in a 2.5G GPRS network. To make the process more efficient, we recommend that this information be collected and available prior to configuring the system.

There are additional configuration parameters that deal with fine-tuning the operation of the SGSN in the network. Information on these parameters is not provided here but can be found in the appropriate configuration command chapters in the *Command Line Interface Reference*.

### Global Configuration

The following table lists the information that is required to be configured in Global Configuration mode.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSEI (Network Service Entity)</td>
<td></td>
</tr>
<tr>
<td>NSVL Instance ID</td>
<td>A unique ID number to identify the NSVL instance</td>
</tr>
<tr>
<td>Peer Network Service Entity</td>
<td>The name or NSEI index number of a peer NSE.</td>
</tr>
<tr>
<td>SS7 Routing Domain For Broadband SS7 Signaling</td>
<td></td>
</tr>
<tr>
<td>SS7 Routing Domain ID</td>
<td>A unique ID number from 1 through 12 to identify the SS7 Routing Domain.</td>
</tr>
<tr>
<td>SS7 Routing Domain Variant</td>
<td>The network variant for the SS7 Routing Domain.</td>
</tr>
<tr>
<td>Sub Service Field</td>
<td>The Sub Service Field selector that this SS7 Routing Domain should use.</td>
</tr>
<tr>
<td>Linkset ID</td>
<td>A unique ID number from 1 through 49 to identify the linkset.</td>
</tr>
<tr>
<td>Linkset Self Point Code</td>
<td>A point code for the specified network variant that will identify the system when using this linkset.</td>
</tr>
<tr>
<td>Adjacent Point Code</td>
<td>The pointcode of the entity that the system will use to communicate for SS7 signaling when this linkset is used.</td>
</tr>
<tr>
<td>Link ID</td>
<td>A unique ID number from 1 through 16 that identifies the MTP3 link.</td>
</tr>
<tr>
<td>Priority</td>
<td>An MTP3 priority number from 0 through 15 for the link.</td>
</tr>
<tr>
<td>Signaling Link Code</td>
<td>A number from 0 through 15 that is unique from all other SLCs in the linkset.</td>
</tr>
<tr>
<td>Arbitration</td>
<td>Whether the link will use passive or active arbitration.</td>
</tr>
<tr>
<td>SS7 Routing Domain to Support IP SS7 Signaling for SIGTRAN</td>
<td></td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SS7 Routing Domain ID</td>
<td>A unique ID number from 1 through 12 to identify the SS7 Routing Domain.</td>
</tr>
<tr>
<td>SS7 Routing Domain Variant</td>
<td>The network variant for the SS7 Routing Domain.</td>
</tr>
<tr>
<td>Sub Service Field</td>
<td>The Sub Service Field selector that this SS7 Routing Domain should use.</td>
</tr>
<tr>
<td>ASP Instance ID</td>
<td>A unique ID number from 1 through 4 to use for the M3UA ASP instance.</td>
</tr>
<tr>
<td>ASP Instance Endpoint</td>
<td>The IP address and Port if needed of an interface that will be used as this ASP instance end point. If the interface was created in a context other than the current context, that context name is also needed.</td>
</tr>
<tr>
<td>Peer Server ID</td>
<td>A unique ID number from 1 through 49 to use for the M3UA peer server configuration.</td>
</tr>
<tr>
<td>Peer Server Name</td>
<td>A name for the Peer Server configuration. Usually this is the name of the SS7 network entity that this instance is configured to communicate with. HLR, VLR, or EIR for example.</td>
</tr>
<tr>
<td>Routing Context ID</td>
<td>The ID of the M3UA routing context used to reach this peer server.</td>
</tr>
<tr>
<td>Peer Server Process ID</td>
<td>A unique number from 1 through 4 used to identify each PSP process for the current peer server.</td>
</tr>
<tr>
<td>Peer server self-point-code</td>
<td>The point code to identify the peer server process being configured.</td>
</tr>
<tr>
<td>PSP Mode</td>
<td>Specify whether this peer server process will be used to communicate with the peer server in client or server mode.</td>
</tr>
<tr>
<td>Exchange Mode</td>
<td>Specify whether this peer server process will use double or single-ended mode for exchanges with the peer server.</td>
</tr>
<tr>
<td>SCTP End Point Address</td>
<td>A local SCTP end point address configured in an ASP instance that this peer server process will use.</td>
</tr>
<tr>
<td>ASP Association</td>
<td>The ID of a configured ASP instance that this peer server process will be associated with.</td>
</tr>
<tr>
<td>GTT</td>
<td>There are many different ways to configure a GTT Association and the needs of every network are different. Please refer to the Global Title Translation Association Configuration Mode chapter in the Command Line Interface Reference for the commands available.</td>
</tr>
<tr>
<td>GTT Association</td>
<td>There are many different ways to configure a GTT Address Map and the needs of every network are different. Please refer to the Global Title Translation Address Map Configuration Mode chapter in the Command Line Interface Reference for the commands available.</td>
</tr>
<tr>
<td>SCCP Network</td>
<td>There are many different ways to configure a GTT Association and the needs of every network are different. Please refer to the Global Title Translation Association Configuration Mode chapter in the Command Line Interface Reference for the commands available.</td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>A unique number from 1 through 12 with which to identify the SCCP configuration.</td>
</tr>
<tr>
<td>SCCP Variant</td>
<td>The network variant for the SCCP network configuration.</td>
</tr>
<tr>
<td>Self Point Code</td>
<td>The point code that the system will use to identify itself when using this SCCP configuration.</td>
</tr>
<tr>
<td>SS7 Routing Domain Association</td>
<td>The ID number of the SS7 routing Domain with which to associate this SCCP network configuration.</td>
</tr>
</tbody>
</table>
### SGSN Context Configuration

The following table lists the information that is required to configure the SGSN context.

**Table 8. Required Information for SGSN Context Configuration**

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGSN context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the SGSN context will be recognized by the system.</td>
</tr>
<tr>
<td>MAP service Configuration</td>
<td></td>
</tr>
<tr>
<td>MAP Service name</td>
<td>A unique name with which to identify an individual MAP service.</td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>The ID of the SCCP network configuration to use for SS7 connectivity for SCCP applications.</td>
</tr>
<tr>
<td>EIR Address</td>
<td>The ISDN or point code of the EIR.</td>
</tr>
<tr>
<td>HLR Mapping</td>
<td>The IMSI prefixes and associated HLR point codes and the point code for the default HLR.</td>
</tr>
<tr>
<td>SGTP Service</td>
<td></td>
</tr>
<tr>
<td>SGTP Service Name</td>
<td>A unique alpha and/or numeric name for the SGTP service configuration.</td>
</tr>
<tr>
<td>GTPC Address</td>
<td>An IP address that is associated with an interface in the current context. This is used for GTP-C.</td>
</tr>
<tr>
<td>GTPU Address</td>
<td>An IP address that is associated with an interface in the current context. This is used for GTP-U.</td>
</tr>
<tr>
<td>GPRS Service</td>
<td></td>
</tr>
<tr>
<td>GPRS Service Name</td>
<td>A unique name to identify this GPRS service.</td>
</tr>
<tr>
<td>PLMN ID</td>
<td>The MCC and MNC for the SGSN service to use to identify itself in the PLMN.</td>
</tr>
<tr>
<td>Core Network ID</td>
<td>The core Network ID for this SGSN service to use to identify itself on the core network.</td>
</tr>
<tr>
<td>SGSN Number</td>
<td>The E.164 number to use to identify this SGSN.</td>
</tr>
<tr>
<td>MAP Service Name</td>
<td>The name of a MAP service that this SGSN service will use for MAP. If the MAP service is not in the same context, the context name of the MAP service must also be specified.</td>
</tr>
<tr>
<td>Network Service Entity Identifier</td>
<td>The ID of a configured Network Service Entity Identifier (NSEI) and the RAC and LAC that this SGSN should use.</td>
</tr>
<tr>
<td>DNS Client</td>
<td></td>
</tr>
</tbody>
</table>
Information Required for the 2.5G SGSN

### Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Server Addresses</td>
<td>The IP addresses of Domain Naming Servers in the network.</td>
</tr>
<tr>
<td>DNS Client Name</td>
<td>A unique name for the DNS client.</td>
</tr>
<tr>
<td>DNS Client Address</td>
<td>The IP address of an Interface in the current context that the DNS is bound to.</td>
</tr>
</tbody>
</table>

### Accounting Context Configuration

The following table lists the information that is required to configure the Charging Context.

**Table 9. Required Information for Accounting Context Configuration**

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context name</td>
<td>An identification string from 1 to 79 alphanumeric characters by which the SGSN context will be recognized by the system. Our example uses the name Accounting_Ctx.</td>
</tr>
<tr>
<td>GTTP Charging</td>
<td>If you are going to configure GTTP accounting server groups, you will need to name them.</td>
</tr>
<tr>
<td>GTTP Group Name</td>
<td>If you are going to configure GTTP accounting server groups, you will need to name them.</td>
</tr>
<tr>
<td>Charging Agent Address</td>
<td>The IP address of an interface in the current context that to use for the Ga interface to communicate with the CGFs.</td>
</tr>
<tr>
<td>GTTP Server</td>
<td>The IP address and priority to use to contact the GTTP server.</td>
</tr>
<tr>
<td>GTTP Dictionary Name</td>
<td>The name of the GTTP dictionary to use.</td>
</tr>
</tbody>
</table>
This chapter outlines the basic deployment, configuration, and operation of the system to function as a Serving GPRS Support Node (SGSN) in 3G UMTS wireless data networks.

The simplest configuration that can be implemented on the system to support SGSN functionality in a 3G network requires one context but we recommend a minimum of two: one for the SGSN service (required) and another for the charging context.

The SGSN context facilitates the following:

- SGSN service configuration
- Mobile Application Part (MAP) configuration
- IuPS (Iu Packet Switched) interface configuration for communication with the RAN (Radio Access Network)
- DNS (Domain Naming System) Client configuration for resolution of APN domain names
- SGTP (SGSN GPRS Tunneling Protocol) configuration

The charging context facilitates the following:

- Configuration of connectivity to the CGF (Charging Gateway Function)

The following functionality is configured at the global system level:

- SCCP (Signalling Connection Control Part) network configuration
- SS7 (Signaling System 7) connectivity configuration
- GTT (Global Title Translation) configuration

To simply configuration management, more contexts can be created and used and all context can be named as needed. The contexts listed above can be configured as illustrated in the figure on the next page.
3G SGSN Configuration Components

In order to support 3G SGSN functionality, the system must be configured with at least one context for the SGSN (UMTS) service. In the example below, the required context has been named “SGSN_CTX”.

Figure 16. Sample 3G Network Configuration

This configuration uses two contexts:

- SGSN Context containing:
  - Contains SGSN and related services
  - DNS Configuration

- Accounting Context containing:
  - GTPP configuration
For GPRS and/or IMSI Attach

1. An Attach Request message is sent from the UE to the SGSN by the RNC over the IuPS interface.
2. The SGSN identifies UE and determines IMSI. Depending on whether or not the UE is already attached, this could be a simple database lookup or it could require the SGSN to communicate with an SGSN that may have been previously handling the call.
3. The SGSN communicates with the HLR to authenticate the UE.
4. Once the UE has been authenticated, the SGSN communicates with the EIR to verify that the equipment is not stolen.
5. Once equipment check is complete, the SGSN communicates with the HLR to update UE location information.
6. The SGSN then sends an Attach Complete message to UE.
7. SGSN begins sending M-CDR data to the CG.
Information Required for 3G Configuration

The following sections describe the minimum amount of information required to configure and make the SGSN operational on the network. To make the process more efficient, it is recommended that this information be available prior to configuring the system.

There are additional configuration parameters that are not described in this section. These parameters deal mostly with fine-tuning the operation of the SGSN in the network. Information on these parameters can be found in the appropriate sections of the Command Line Interface Reference.

Global Configuration

The following table lists the information that is required to be configured in Global Configuration mode.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS7 Routing Domain to Support IP SS7 Signaling for SIGTRAN for the IuPS Interface</td>
<td></td>
</tr>
<tr>
<td>SS7 Routing Domain ID</td>
<td>A unique ID number from 1 through 12 to identify the SS7 Routing Domain.</td>
</tr>
<tr>
<td>SS7 Routing Domain Variant</td>
<td>The network variant for the SS7 Routing Domain.</td>
</tr>
<tr>
<td>Sub Service Field</td>
<td>The Sub Service Field selector that this SS7 Routing Domain should use.</td>
</tr>
<tr>
<td>ASP Instance ID</td>
<td>A unique ID number from 1 through 4 to use for the M3UA ASP instance.</td>
</tr>
<tr>
<td>ASP Instance Endpoint Context</td>
<td>The IP address and port (if needed) of an interface that will be used as this ASP instance end point.</td>
</tr>
<tr>
<td>Peer Server ID</td>
<td>A unique ID number from 1 through 49 to use for the M3UA peer server configuration.</td>
</tr>
<tr>
<td>Peer Server Name</td>
<td>A name for the Peer Server configuration. Usually this is the name of the SS7 network entity that this instance is configured to communicate with. HLR, VLR, or EIR for example.</td>
</tr>
<tr>
<td>Peer Server Mode</td>
<td>The mode of operation for the peer server.</td>
</tr>
<tr>
<td>Routing Context ID</td>
<td>The ID of the M3UA routing context used to reach this peer server.</td>
</tr>
<tr>
<td>Self Point Code</td>
<td>The point code that the peer server will be routed to for its destination.</td>
</tr>
<tr>
<td>Peer Server Process (PSP) ID</td>
<td>A unique number from 1 through 4 used to identify each PSP process for the current peer server.</td>
</tr>
<tr>
<td>PSP Mode</td>
<td>Specify whether this peer server process will be used to communicate with the peer server in client or server mode.</td>
</tr>
<tr>
<td>Exchange Mode</td>
<td>Specify whether this peer server process will use double or single-ended mode for exchanges with the peer server.</td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SCTP End Point Address</td>
<td>A local SCTP end point address configured in an ASP instance that this peer server process will use. For the IuPS service, this is the address of the RNC.</td>
</tr>
<tr>
<td>ASP Association</td>
<td>The ID of a configured ASP instance that this peer server process will be associated with.</td>
</tr>
<tr>
<td>SS7 Routing Domain to Support IP SS7 Signaling for SIGTRAN for the Gr Interface</td>
<td></td>
</tr>
<tr>
<td>SS7 Routing Domain ID</td>
<td>A unique ID number from 1 through 12 to identify the SS7 Routing Domain.</td>
</tr>
<tr>
<td>SS7 Routing Domain Variant</td>
<td>The network variant for the SS7 Routing Domain.</td>
</tr>
<tr>
<td>Sub Service Field</td>
<td>The Sub Service Field selector that this SS7 Routing Domain should use.</td>
</tr>
<tr>
<td>ASP Instance ID</td>
<td>A unique ID number from 1 through 4 to use for the M3UA ASP instance.</td>
</tr>
<tr>
<td>ASP Instance Endpoint</td>
<td>The IP address and Port (if needed) of an interface that will be used as this ASP instance end point.</td>
</tr>
<tr>
<td>ASP Instance Endpoint Context</td>
<td>The name of the context in which the interface associated with this routing domain is configured</td>
</tr>
<tr>
<td>Peer Server ID</td>
<td>A unique ID number from 1 through 49 to use for the M3UA peer server configuration.</td>
</tr>
<tr>
<td>Peer Server Name</td>
<td>A name for the Peer Server configuration. Usually this is the name of the SS7 network entity that this instance is configured to communicate with. HLR, VLR, or EIR for example.</td>
</tr>
<tr>
<td>Peer Server Mode</td>
<td>The mode of operation for the peer server.</td>
</tr>
<tr>
<td>Routing Context ID</td>
<td>The ID of the M3UA routing context used to reach this peer server.</td>
</tr>
<tr>
<td>Self Point Code</td>
<td>The point code that the peer server will be routed to for its destination.</td>
</tr>
<tr>
<td>Peer Server Process ID</td>
<td>A unique number from 1 through 4 used to identify each PSP process for the current peer server.</td>
</tr>
<tr>
<td>PSP Mode</td>
<td>Specify whether this peer server process will be used to communicate with the peer server in client or server mode.</td>
</tr>
<tr>
<td>Exchange Mode</td>
<td>Specify whether this peer server process will use double or single-ended mode for exchanges with the peer server.</td>
</tr>
<tr>
<td>SCTP End Point Address</td>
<td>A local SCTP end point address configured in an ASP instance that this peer server process will use. For the IuPS service, this is the address of the HLR.</td>
</tr>
<tr>
<td>ASP Association</td>
<td>The ID of a configured ASP instance that this peer server process will be associated with.</td>
</tr>
<tr>
<td>SCCP Network for the IuPS Interface</td>
<td></td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>A unique number from 1 through 12 with which to identify the SCCP configuration.</td>
</tr>
<tr>
<td>SCCP Variant</td>
<td>The network variant for the SCCP network configuration.</td>
</tr>
<tr>
<td>Self Point Code</td>
<td>The point code that the system will use to identify itself when using this SCCP configuration.</td>
</tr>
<tr>
<td>SS7 Routing Domain Association</td>
<td>The ID number of the SS7 routing Domain with which to associate this SCCP network configuration.</td>
</tr>
<tr>
<td>SCCP Destination Point Code</td>
<td>The point code for the SCCP destination entity. For the IuPS interface, this is the RNC’s point code</td>
</tr>
<tr>
<td>SCCP Destination Name</td>
<td>The name by which the SCCP destination will be known by the system.</td>
</tr>
</tbody>
</table>
### Information Required for 3G Configuration

#### Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Destination Version</td>
<td>The SCCP variant.</td>
</tr>
<tr>
<td>SCCP Destination Subsystem Number</td>
<td>The subsystem number (SSN) of the SCCP destination.</td>
</tr>
<tr>
<td>SCCP Network for the Gr Interface</td>
<td></td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>A unique number from 1 through 12 with which to identify the SCCP configuration.</td>
</tr>
<tr>
<td>SCCP Variant</td>
<td>The network variant for the SCCP network configuration.</td>
</tr>
<tr>
<td>Self Point Code</td>
<td>The point code that the system will use to identify itself when using this SCCP configuration.</td>
</tr>
<tr>
<td>SS7 Routing Domain Association</td>
<td>The ID number of the SS7 routing Domain with which to associate this SCCP network configuration.</td>
</tr>
<tr>
<td>SCCP Destination Point Code</td>
<td>The point code for the SCCP destination entity. For the IuPS interface, this is the RNC’s point code</td>
</tr>
<tr>
<td>SCCP Destination Name</td>
<td>The name by which the SCCP destination will be known by the system</td>
</tr>
<tr>
<td>SCCP Destination Version</td>
<td>The SCCP variant.</td>
</tr>
<tr>
<td>SCCP Destination Subsystem Number</td>
<td>The subsystem number (SSN) of the SCCP destination.</td>
</tr>
</tbody>
</table>

#### Port Configuration

| Bind-to Interface Name                | The name of the logical interface to bind the port to.                      |
| Bind-to Interface Context Name        | The name of the context in which the logical interface is configured.        |

### SGSN Context Configuration

The following table lists the information that is required to configure the SGSN context.

#### Table 11. Required Information for SGSN Context Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGSN context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the SGSN context will be recognized by the system.</td>
</tr>
<tr>
<td>Logical Interface Name</td>
<td>The name by which the logical interface will be known by the system.</td>
</tr>
<tr>
<td>Logical Interface Addresses</td>
<td>IP addresses and subnets are assigned to the logical interface(s) which are then associated with physical ports.</td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>MAP service Configuration</strong></td>
<td></td>
</tr>
<tr>
<td>MAP Service name</td>
<td>A unique name with which to identify an individual MAP service.</td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>The ID of the SCCP network configuration to use for SS7 connectivity for SCCP applications.</td>
</tr>
<tr>
<td>HLR IMSI Mapping</td>
<td>The IMSI prefixes for the HLR associated with this service.</td>
</tr>
<tr>
<td>HLR Point Code</td>
<td>The point code of the HLR to map to the IMSIs</td>
</tr>
<tr>
<td><strong>Iu-PS Service</strong></td>
<td></td>
</tr>
<tr>
<td>IuPS Service Name</td>
<td>A unique name to identify the IuPS service.</td>
</tr>
<tr>
<td>SCCP Network ID</td>
<td>The ID of the SCCP network configuration to use for SS7 connectivity for SCCP applications.</td>
</tr>
<tr>
<td>GTPU Address</td>
<td>The address of an IP interface defined in the current context to use for GTPU connections to the RNC.</td>
</tr>
<tr>
<td>RNC ID</td>
<td>A unique ID number from 0 through 4095 for this RNC configuration and the MCC and MNC associated with the RNC.</td>
</tr>
<tr>
<td>RNC MCC</td>
<td>The mobile country code (MCC) associated with the RNC.</td>
</tr>
<tr>
<td>RNC MNC</td>
<td>The mobile network code (MNC) associated with RNC.</td>
</tr>
<tr>
<td>RNC Point Code</td>
<td>The SS7 point code for the specified RNC.</td>
</tr>
<tr>
<td>LAC ID</td>
<td>The location area code (LAC) ID associated with the RNC.</td>
</tr>
<tr>
<td>RAC ID</td>
<td>The routing area code (RAC) ID associated with the RNC.</td>
</tr>
<tr>
<td><strong>SGTP Service</strong></td>
<td></td>
</tr>
<tr>
<td>SGTP Service Name</td>
<td>A unique alpha and/or numeric name for the SGTP service configuration.</td>
</tr>
<tr>
<td>GTP-C Address</td>
<td>An IP address that is associated with an interface in the current context. This is used for GTP-C over the Gn and/or Gp interface.</td>
</tr>
<tr>
<td>GTP-U Address</td>
<td>An IP address that is associated with an interface in the current context. This is used for GTP-U over the Gn and/or Gp interface.</td>
</tr>
<tr>
<td><strong>SGSN Service</strong></td>
<td></td>
</tr>
<tr>
<td>SGSN Service Name</td>
<td>A unique name to identify this SGSN service.</td>
</tr>
<tr>
<td>Core Network ID</td>
<td>The core Network ID for this SGSN service to use to identify itself on the core network.</td>
</tr>
<tr>
<td>SGSN Number</td>
<td>The E.164 number to use to identify this SGSN.</td>
</tr>
<tr>
<td>MAP Service Name</td>
<td>The name of a MAP service that this SGSN service will use for MAP.</td>
</tr>
<tr>
<td>MAP Service Context</td>
<td>The context in which the MAP service is configured.</td>
</tr>
</tbody>
</table>
### Information Required for 3G Configuration

#### Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum PDP Contexts</td>
<td>The maximum number of contexts each UE can establish at one time.</td>
</tr>
<tr>
<td>IuPS Service Name</td>
<td>The name of a configured IuPS service to use with the SGSN configuration. If the IuPS service is not in the same context, the context name of the IuPS service must also be specified.</td>
</tr>
<tr>
<td>IuPS Service Context</td>
<td>The context in which the IuPS service is configured.</td>
</tr>
<tr>
<td>SGTP Service Name</td>
<td>The name of the SGTP service that this SGSN service will use for GTP.</td>
</tr>
<tr>
<td>SGTP Service Context</td>
<td>The context in which the SGTP service is configured.</td>
</tr>
<tr>
<td>Accounting Context Name</td>
<td>By default, the SGSN service looks for the GTPP accounting configuration in the same context as the SGSN service. If GTPP accounting is configured in a different context the context name must be specified.</td>
</tr>
</tbody>
</table>

#### DNS Client Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Server Addresses</td>
<td>The IP addresses of Domain Name Service (DNS) servers in the network.</td>
</tr>
<tr>
<td>DNS Client Name</td>
<td>A unique name for the DNS client configured on the system.</td>
</tr>
<tr>
<td>DNS Client Address</td>
<td>The IP address of an Interface in the current context that the DNS is bound to.</td>
</tr>
<tr>
<td>DNS Client Port</td>
<td>The UDP port to use for DNS communications.</td>
</tr>
</tbody>
</table>

### Accounting Context Configuration

The following table lists the information that is required to configure the Accounting Context.

#### Table 12. Required Information for Accounting Context Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Context Name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the context will be recognized by the system.</td>
</tr>
<tr>
<td>Ga Interface Name</td>
<td>The name by which the logical interface used as the Ga interface will be known by the system.</td>
</tr>
<tr>
<td>Ga Interface Address</td>
<td>The IP address and subnet for the Ga interface.</td>
</tr>
<tr>
<td>GTPP Charging</td>
<td></td>
</tr>
<tr>
<td>GTTP Group Name</td>
<td>If you are going to configure GTTP accounting Server groups, you will need to name them.</td>
</tr>
<tr>
<td>Charging Agent Address</td>
<td>The IP address of an interface in the current context that to use for the Ga interface to communicate with the CGFs.</td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>GTTP Server</td>
<td>The IP address and priority to use to contact the GTTP server.</td>
</tr>
<tr>
<td>GTTP Dictionary Name</td>
<td>The name of the GTTP dictionary to use.</td>
</tr>
</tbody>
</table>
Chapter 4
SGSN Service Configuration Procedures

This chapter provides configuration instructions to enable the SGSN to function in GPRS (2.5G), UMTS (3G), or LTE (4G) networks. The System Administration Guide provides interface and system-level configuration details and the Command Line Interface Reference provides additional command information.

**Important:** Please note that LTE (4G) support is only available in releases 14.0 and higher.

High level step-by-step service configuration procedures are provided for the following:

- 2.5G SGSN Service Configuration
- 3G SGSN Service Configuration
- Dual Access SGSN Service Configuration
- Configuring the S4-SGSN

**Important:** At least one packet processing card must be activated prior to configuring the first service. Procedures for configuring the packet processing card can be found in the System Administration Guide.

Detailed procedures are provided for the following:

- Configuring an SS7 Routing Domain
  - Configuring an SS7 Routing Domain to Support Broadband SS7 Signaling
  - Configuring an SS7 Routing Domain to Support IP Signaling for SIGTRAN
- Configuring GTT
- Configuring an SCCP Network
- Configuring a MAP Service
- Configuring an IuPS Service (3G only)
- Configuring an SGTP Service
- Configuring a Gs Service
- Configuring a GPRS Service (2.5G only)
- Configuring an SGSN Service (3G only)
- Configuring a Network Service Entity
  - Configure a Network Service Entity for IP
  - Configure a Network Service Entity for Frame Relay
- Configuring DNS Client
- Configuring GTPP Accounting Support
- Configuring and Associating the EGTP Service (S4 Only)
- Configuring DNS for APN Resolution (S4 Only)
- Configuring the S6d Diameter Interface (S4 Only)
  - Configuring the Diameter Endpoint for the S6d Interface
  - Configuring the HSS Peer Service and Interface Association for the S6d Interface
  - Associating the HSS Peer Service with the SGSN and GPRS Services for the S6d Interface
  - Configuring Operator Policy-Based S6d Interface Selection (Optional)
  - Configuring the Subscription Interface Preference for the S6d Interface (Optional)
- Configuring the S13’ Interface (S4 Only)
  - Configure a Diameter Endpoint for the S13’ Interface
  - Configuring the HSS Peer Service and Interface Association for the S13’ Interface
  - Associate the HSS Peer Service with the SGSN Service for the S13’ Interface
  - Configuring Operator Policy-Based S13’ Interface Selection
- Configuring QoS Mapping for EPC-Capable UEs using the S4 Interface (S4 Only)
- Configuring the Peer SGSN Interface Type (S4 Only, Optional)
- Configuring Operator Policy-Based Gn Interface Selection (S4 Only, Optional)
- Configuring a Custom MME Group ID (S4 Only, Optional)
- Configuring the Selection of an SGW for RAI (S4 Only, Optional)
- Configuring a Local PGW Address (S4 Only, Optional)
- Configuring the Peer MME Address (S4 Only, Optional)
- Configuring the ISR Feature (S4 Only, Optional)
- Creating and Configuring ATM Interfaces and Ports (3G only)
- Creating and Configuring Frame Relay Ports (2.5G only)
- Configuring APS/MSP Redundancy
2.5G SGSN Service Configuration

The following configuration steps must be completed to allow the system to operate in a 2.5G GPRS network. The service handling the GPRS or 2.5G functions in the SGSN is called the “gprs-service”.

Step 1 Create all the contexts you will use in your configuration. Refer to the “System Element Configuration Procedures” chapter in the System Administration Guide.

Step 2 Create and configure the Frame Relay interface(s) and Ethernet interface(s). Refer to the “System Element Configuration Procedures” chapter in the System Administration Guide.

Step 3 Configure SS7 routing domains. Use the procedure in Configuring an SS7 Routing Domain. The concept of an SS7 routing domain is not a standard SS7 concept. It is a concept specific to this platform which groups a set of SS7 feature configuration together to facilitate the management of the SS7 connectivity resources for an SGSN service.

Step 4 Configure GTT. The GTT configuration is used to set rules for GTT and define the GTT databases. Follow the procedure in Configuring GTT.

Step 5 Configure SCCP-Networks. The purpose of an SCCP network is to isolate the higher protocol layers above SCCP and the application itself from SS7 connectivity issues, as well as, to provide a place for global SCCP configuration specific to SGSN services. Use the procedure in Configuring an SCCP Network.

Step 6 Configure MAP services. The MAP service configuration is used by the SGSN service to communicate with many of the nodes on the narrow band-SS7 network part of the network such as HLR, EIR, GSM-SCF, GMLC and SMS-GMSC/SMS-IWMSC. The purpose of having an isolated map configuration is to enable different application services to use the map service to communicate with other map entities in the network. Use the procedure in Configuring a MAP Service.

Step 7 Configure SGTP. The SGTP service configures the parameters used for GTP Tunneling. At the minimum, interfaces for GTP-C and GTP-U must be configured. Use the procedure in Configuring an SGTP Service.

Step 8 Configure the SGSN service. All the parameters specific to the operation of an SGSN are configured in the SGSN service configuration mode. SGSN services use other configurations like MAP and IuPS to communicate with other elements in the network. The system can support multiple gprs-services.

Step 9 Configure the GPRS service. All of the parameters needed for the system to perform as a an SGSN in a GPRS network are configured in the GPRS service. The GPRS service uses other configurations such as SGTP and MAP to communicate with other network entities and setup communications between the BSS and the GGSN. Use the procedure in Configuring a GPRS Service (2.5G only).

Step 10 Configure the Network Service Entity Instance. This identifies the NSEI to use and associates it with a Network Service Virtual Connection Identifier. Use the procedure in Configuring a Network Service Entity.

Step 11 Configure DNS. This configuration enables domain name resolution and specifies the DNSs to use for lookup. Use the procedure in Configuring DNS Client.

Step 12 Configure GTPP Accounting. This configures GTPP-based accounting for subscriber PDP contexts. Use the procedure in Configuring GTPP Accounting Support.

Step 13 Configure Frame Relay DLCI paths and bind them to NSEI links as needed. Refer to Creating and Configuring Frame Relay Interfaces and Ports in the System Administration Guide.
Step 14  
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the *System Administration Guide* and the *Command Line Interface Reference*. 
3G SGSN Service Configuration

The following configuration steps must be completed to allow the system to operate in a 3G network.

**Step 1** Create the contexts needed. Refer to the *System Element Configuration Procedures* chapter in the *System Administration Guide*.

**Step 2** Create any interfaces needed in the appropriate context. Refer to the *System Element Configuration Procedures* chapter in the *System Administration Guide* for IP (broadcast Ethernet) interfaces and for ATM interfaces.

**Step 3** Configure SS7 routing domains. The SS7 routing domain is a proprietary concept to provide a combined configuration for the SS7 links, linksets, and related parameters. SS7 routing domain configurations are common to both SIGTRAN and MTP3-B networks. Use the procedure in *Configuring an SS7 Routing Domain*.

**Step 4** Configure global title translations (GTT). The GTT configuration is used to set rules for GTT and to define the GTT databases. Follow the procedure in *Configuring GTT*.

**Step 5** Configure SCCP networks. The SCCP network (layer) provides services to protocol layers higher in the SS7 protocol stack, for example RANAP and TCAP. The SCCP layer is also responsible for GTT. As well, all the SS7 routing domains (created in step 3) will be associated with an SCCP network. Use the procedure in *Configuring an SCCP Network*.

**Step 6** Configure MAP services. The MAP service configuration is used by the SGSN service to communicate with many of the nodes in the SS7 network, such as the HLR, EIR, GSM-SCF, GMLC and SMS-GMSC/SMS-IWMSC. Having an isolated MAP configuration enables different application services to use the MAP service to communicate with other MAP entities in the network. Use the procedure in *Configuring a MAP Service*.

**Step 7** Configure IuPS services. A set of parameters define the communication path between the SGSN service and radio network controllers (RNCs) in a UMTS IuPS service. Use the procedure in *Configuring an IuPS Service (3G only)*.

**Step 8** Configure SGTP services. The SGTP service configures the parameters used for GTP Tunneling. At a minimum, interfaces for GTP-C and GTP-U must be configured. Use the procedure in *Configuring an SGTP Service*.

**Step 9** Configure the SGSN service. All the parameters specific to the operation of an SGSN are configured in the SGSN service configuration mode. SGSN services use other service configurations like MAP (map-service) and IuPS (iups-service) to communicate with other elements in the network.

**Step 10** Configure DNS clients. This configuration enables domain name resolution and specifies the DNSs to use for lookup. Use the procedure in *Configuring DNS Client*.

**Step 11** *Optional:* Configure operator policies. Operator policies are not required for SGSN operation, however, they provide the operator with a powerful method for determining call handling. SGSN operator policies specify rules governing the services, facilities and privileges available to a single subscriber or groups of subscribers. Use the procedure in *Configuring SGSN Operator Policies*.

**Step 12** Configure GTPP Accounting. This configures GTPP-based accounting for subscriber PDP contexts. Use the procedure in *Configuring GTPP Accounting Support*.

**Step 13** Configure ATM PVCs and bind them to interfaces or SS7 links as needed. Refer to *Creating and Configuring ATM Interfaces and Ports* in the *System Administration Guide*.
Step 14  Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the `System Administration Guide` and the `Command Line Interface Reference`. 
Dual Access SGSN Service Configuration

The following configuration steps must be completed to allow the SGSN to operate in both GPRS (2.5G) and UMTS (3G) networks. This type of co-location is referred to as dual access.

To configure dual access requires a combination of steps from both the 2.5G and 3G configuration procedures:

**Step 1** Create the contexts needed. Refer to the *System Element Configuration Procedures* chapter in the *System Administration Guide*.

**Step 2** Create any interfaces needed in the appropriate context refer to the *System Element Configuration Procedures* chapter in the *System Administration Guide*.

- **Step a** For IP (broadcast Ethernet) interfaces, refer to *Creating and Configuring Ethernet Interfaces and Ports* in the *System Administration Guide*.
- **Step b** For ATM interfaces (3G) refer to *Creating and Configuring ATM Interfaces and Ports* in the *System Administration Guide*.
- **Step c** For Frame Relay interfaces (2.5G) refer to *Creating and Configuring Frame Relay Interfaces and Ports* in the *System Administration Guide*.

**Step 3** Configure SS7 routing domains. The SS7 routing domain is a non-standard, proprietary SS7 concept specific to this platform. SS7 routing domains provide a combined configuration for the SS7 links, linksets, and related parameters for SS7 connectivity resources for an SGSN service. SS7 routing domain configurations are common to both SIGTRAN and MTP3-B networks. Use the procedure in *Configuring an SS7 Routing Domain*.

**Step 4** Configure global title translations (GTT). The GTT configuration is used to set rules for GTT and to define the GTT databases. Follow the procedure in *Configuring GTT*.

**Step 5** Configure SCCP networks. The SCCP network (layer) provides services to protocol layers higher in the SS7 protocol stack, for example RANAP and TCAP. The SCCP layer is also responsible for GTT (step 4) and every SS7 routing domain (step 3) will be associated with an SCCP network. Use the procedure in *Configuring an SCCP Network*.

**Step 6** Configure MAP services. The MAP service configuration is used by the SGSN service to communicate with many of the nodes in the SS7 network, such as the HLR, EIR, GSM-SCF, GMLC and SMS-GMSC/SMS-IWMSC. Having an isolated MAP configuration enables different application services to use the MAP service to communicate with other MAP entities in the network. Use the procedure in *Configuring a MAP Service*.

**Step 7** Configure IuPS services. A set of parameters define the communication path between the SGSN service and radio network controllers (RNCs) in a UMTS IuPS service. Use the procedure in *Configuring an IuPS Service (3G only)*.

**Step 8** Configure SGTP services. The SGTP service configures the parameters used for GTP Tunneling. At a minimum, interfaces for GTP-C and GTP-U must be configured. Use the procedure in *Configuring an SGTP Service*.

**Step 9** Configure the GPRS service. All of the parameters needed for the system to perform as a an SGSN in a GPRS network are configured in the GPRS service. The GPRS service uses other service configurations, such as SGTP (sgtp-service) and MAP (map-service) to communicate with other network entities and setup communications between the BSS and the GGSN. Use the procedure in *Configuring a GPRS Service (2.5G only)*.

**Step 10** Configure the Network Service Entity Instance. This identifies the NSEI to use and associates it with a Network Service Virtual Connection Identifier. Use the procedure in *Configuring a Network Service Entity*. 
Step 11 Configure DNS. This configuration enables domain name resolution and specifies the DNSs to use for lookup. Use the procedure in Configuring DNS Client.

Step 12 Configure GTPP Accounting. This configures GTPP-based accounting for subscriber PDP contexts. Use the procedure in Configuring GTPP Accounting Support.

Step 13 Configure ATM PVCs and bind them to interfaces or SS7 links as needed. Refer to Creating and Configuring ATM Interfaces and Ports in the System Administration Guide.

Step 14 Configure Frame Relay DLCI paths and bind them to NSEI links as needed. Refer to Creating and Configuring Frame Relay Interfaces and Ports in the System Administration Guide.

Step 15 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.
Configuring the S4-SGSN

The following configuration steps comprise the required and optional tasks for configuring the S4-SGSN to provide an interface between GPRS (2.5G) / UMTS (3G) networks and EPC (4G) networks via the EPC S4 interface. This is referred to as an S4-SGSN.

⚠️ **Caution:** The S4-SGSN cannot operate until after 2G, 3G or dual access SGSN service is configured. Do not begin S4-SGSN configuration until one of those services is configured and operational. Refer to the 2.5G SGSN Service Configuration, 3G SGSN Service Configuration, or Dual Access SGSN Service Configuration sections in this chapter for details on configuring those services.

Before you begin the configuration procedure, note the following:

- Configuration steps 1 through 5 are **mandatory** for the S4-SGSN to operate properly.
- Configuration steps 6 through 15 are **optional**. They can be used to configure or enable various optional functionality and features, including:
  - Bypass DNS resolution for various network elements
  - Configure GUTI-to-RAI mapping
  - Configure operator-specific QoS mapping values
  - Configure the S13’ interface for the Mobile Equipment Identity (MEI) check
  - Configure the license-enabled Idle Mode Signaling Reduction feature
  - Configure the Indirect Data Forwarding Tunnel feature

**Step 1** Configure, 2G, 3G or Dual Access SGSN service support. Refer to the 2.5G SGSN Service Configuration, 3G SGSN Service Configuration, or Dual Access SGSN Service Configuration sections in this chapter for the configuration.

**Step 2** Configure and associate the EGTP service. The EGTP service is required to support communication between the SGSN and the EPC SGW over the S4 interface using the GTPv2 protocol. Refer to the Configuring and Associating the EGTP Service (S4 Only) procedure.

**Step 3** Configure and associate the GTPU service. The GTPU service supports the configured EGTP service by enabling the sending and receiving of GTP bearer packets from the EPC SGW over the S4 interface. Refer to the Configuring and Associating the GTPU Service (S4 Only) procedure.

**Step 4** Configure DNS for APN resolution. Configurables must be set to enable the default DNS client on the SGSN to resolve EPC PGW and SGW addresses. Refer to the Configuring the DNS Client Context for APN and SGW Resolution procedure.

**Step 5** Configure the S6d Diameter Interface. The S6d interface is used by the SGSN to communicate with the HSS. The HSS is a master user database that contains all subscription related information. Refer to the Configuring the S6d Diameter Interface (S4 Only) procedure.

**Step 6** *Optional.* Configure the S13’ (S13 prime) interface. This interface is used to perform Mobile Equipment (ME) identity check procedure between the SGSN and Equipment Identity Registry. Refer to the Configuring the S13 Interface (S4 Only, Optional) procedure.
Step 7  
*Optional.* Configure operator-specific QoS mapping between EPC elements and the SGSN. The S4-SGSN communicates QoS parameters towards the SGW/PGW and EPC UEs in different formats. Operators must configure the SGSN quality of service (QoS) parameters as a call-control-profile that will ensure proper QoS mapping between the S4-SGSN, SGW/PGW and UEs. Refer to the Configuring QoS Mapping for EPC-Capable UEs using the S4 Interface (S4 Only, Optional) procedure.

Step 8  
*Optional.* Configure the interface type used by the S4-SGSN to communicate with the peer SGSN. Refer to the Configuring the Peer SGSN Interface Type (S4 Only, Optional) procedure.

Step 9  
*Optional.* Configure Gn interface selection for EPC-capable UEs based on an operator policy. When the EGTP service is configured, the SGSN, by default, selects the S4 interface for 1) EPC capable UEs and 2) non-EPC capable UEs that have an EPS subscription only. However, operators have the option to forcefully select the Gn interface for both types of UEs. Refer to the Configuring Gn Interface Selection Based on an Operator Policy (S4 Only, Optional) procedure.

Step 10  
*Optional.* Configure a custom MME group ID. For operators who are using LAC ranges between 32768 and 65535 in UMTS/GPRS deployments, rather than for MMEs in LTE deployments, the SGSN provides a workaround to ensure backward compatibility. Refer to the Configuring a Custom MME Group ID (S4 Only, Optional) procedure.

Step 11  
*Optional.* Configure the S-GW for a RAI. If operators wish to bypass DNS resolution for obtaining the EPC S-GW address, the S4-SGSN can select a locally configured S-GW by performing a local look-up for the current RAI. Refer to the Configuring the Selection of an SGW for RAI (S4 Only, Optional) procedure.

Step 12  
*Optional.* Configure a Local PGW Address. For operators who wish to bypass DNS resolving an EPC P-GW address, the SGSN can be configured with a local P-GW address as part of an APN profile. Refer to the Configuring a Local PGW Address (S4 Only, Optional) procedure.

Step 13  
*Optional.* Configure the peer MME address. If operators wish to bypass DNS to resolve the peer MME address, the SGSN supports the local configuration of a peer MME address for a given MME group (LAC) and MME code (RAC). Refer to Configuring the Peer MME Address (S4 Only, Optional) procedure.

Step 14  
*Optional.* Configure the Idle Mode Signaling Reduction (ISR) feature. The ISR is a license-enabled feature allows the UE to roam between LTE and 2G/3G networks while reducing the frequency of TAU and RAU procedures due to the UE selecting E-UTRAN or UTRAN networks. Refer to the Configuring the ISR Feature (S4 Only, Optional) procedure.

Step 15  
*Optional.* Enable the setup of indirect data forwarding tunnels (IDFT) between the eNodeB and the RNC via the SGW during connected mode handovers. This allows for connected mode handovers between the UTRAN and E-UTRAN networks across the S3 (S4-SGSN-to-MME) interface. Refer to Configuring IDFT for Connected Mode Handover (S4 Only, Optional).

---

Cisco ASR 5000 Serving GPRS Support Node Administration Guide

132
Configuring an SS7 Routing Domain

The SGSN supports both SS7- and IP-based routing. IP-based routing is provided through the use of contexts. SS7 routing is facilitated through the configuration and use of SS7 routing domains. SS7 routing domains group SS7-related configuration parameters. Depending on the SS7 signaling method, an SS7 routing domain may be configured with one of the following:

- **Linksets**: Used for broadband SS7 signaling, linksets are comprised of link ids that specify point codes for SCCP endpoints. It is important to note that SCCP endpoints are further defined through the configuration of SCCP Networks (refer to Configuring an SCCP Network) which are associated with the SS7 routing domain in which the linkset is configured.

- **Application Server Processes (ASPs) / Peer Server Processes (PSPs)**: Used for IP (SIGTRAN), M3UA ASPs and PSPs dictate the IP address and port information used to facilitate communication between network endpoints. ASPs refer to the local endpoints.

Configuring an SS7 Routing Domain to Support Broadband SS7 Signaling

**Step 1** In global configuration mode, create a new SS7 routing domain, give it a unique ID and specify the network variant that SS7 communications through this routing domain use.

**Step 2** In SS7 routing domain configuration mode, configure the MTP-3 sub-service field (SSF).

**Step 3** Create an SS7 linkset with a unique ID.

**Step 4** In linkset configuration mode, specify the self point code - this is the point code of the SGSN.

**Step 5** Specify the adjacent point code to communicate with another SS7 node, e.g., an RNC.

**Step 6** Configure individual links, identified with link IDs.

**Step 7** In link configuration mode, specify the MTP3 link priority.

**Step 8** Specify the Signaling Link Code (SLC) for this link. This must be unique to this link within the current linkset. Note that SLCs must match, one-to-one, with those defined for the peer nodes.

**Step 9** Configure this link to use either passive or active arbitration.

**Step 10** In SS7 routing domain configuration mode, configure SS7 routes by specifying destination point codes and associated linkset IDs.

Example Configuration

```
configure

ss7-routing-domain <id> variant <variant>

ssf <subsvc>

linkset id <id>
```
Configuring an SS7 Routing Domain to Support IP Signaling for SIGTRAN

To configure IP, the SS7 routing domain must be configured in a specific way as described below:

Step 1  In Global configuration mode, create a new SS7 routing domain, give it a unique ID and specify the network variant that SS7 communications through this routing domain use.

Step 2  In SS7 Routing Domain configuration mode, configure the MTP-3 subservice field.

Step 3  Create an ASP (Application Service Part) instance for M3UA ASP configuration and give it a unique ID.

Step 4  Specify the local SCTP (Stream Control Transmission Protocol) end-point IP address and the name of the context where the IP interface associated with the address is configured.

Important: At least one address needs to be configured before the end-point can be activated.

Step 5  Specify the end-point SCTP port address to be used. Default port address is 2905.

Step 6  Bind the end-point to the application server process (ASP) instance to activate it.

Step 7  In SS7 routing domain configuration mode, create a peer server configuration with a unique ID.

Step 8  Name the peer server configuration. Usually this is the name of the SS7 network entity that this instance is configured to communicate with, for example an HLR, an STP, or an RNC.

Step 9  Specify the M3UA routing context ID.

Step 10 Create a PSP instance and give it a unique ID.

Step 11 In PSP configuration mode, specify the PSP mode in which this PSP instance should operate.

Step 12 Specify the communication mode this PSP instance should use as client or server.

self-point-code <#.#.#>

adjacent-point-code <#.#.#>

link id <id>

  priority <pri>

  signaling-link-code <code>

  arbitration <arbitration>

  exit

  exit

  route destination-point-code <dpc> linkset-id <id>

end
Step 13 Configure the exchange mode this PSP instance should use. Generally this is not configured for IPSP-SG configuration, e.g., SGSN and STP.

Step 14 Configure the IP address of the peer node SCTP end-point for this PSP instance. At least one address needs to be configured before the end-point can be activated. Up to two addresses can be configured.

Step 15 Specify the ID of the ASP instance with which to associate this PSP instance.

Step 16 Configure SS7 routes, in SS7 routing domain configuration mode, by specifying destination point codes and peer server IDs. Routes are configured if the destination point code (DPC) is at least a hop away from the SGSN or when the DPC is not the same as the peer server. For example, the route is configured between the SGSN and the HLR which communicates through STPs or signaling gateways. In this case, the signaling gateways are configured as the peer server on the SGSN.

Example Configuration

```
configure
 ss7-routing-domain <id> variant <variant>
 ssf <sssvc>
 asp instance <instance_id>
 end-point address <address> context <ctxt_name>
 end-point bind
 exit
 peer-server id <id>
 name <name>
 routing-context <ctxt_id>
 psp instance <id>
 psp-mode <mode>
 exchange-mode <mode>
 end-point address <address>
 associate asp instance <id>
 exit
 exit
 route destination-point-code <dpc> peer-server-id <id>
 end
```
Configuring GTT

Global Title Translation (GTT) configuration consists of defining GTT associations, defining GTT address maps, and referring to these in an SCCP network configuration. The GTT Associations define GTT rules applicable to a specific GT format. The GTT Address Maps define a global title address to be routed to using a specific routing indicator. These are configured in the global configuration mode and are available to all SCCP networks configured in the system.

**Step 1**
In global configuration mode, create a GTT association with a unique name.

**Step 2**
In GTT association configuration mode, define the type of digit analysis to be used; “fixed” is the generally used digit analysis and if specified, also define the length of the digits to be analyzed. This is represented using action IDs.

**Step 3**
In GTT association configuration mode, define the GT format (1 to 4) for which the analysis needs to be applied.

**Step 4**
In the GT format configuration mode, specify the numbering plan and the nature of address to be used. Note that a separate GTT association needs to be created for a combination of numbering plan, nature of address, and GT format.

**Important:** There are many different ways to configure a GTT association and the needs of every network are different. Please refer to the Global Title Translation Association Configuration Mode chapter in the Command Line Interface Reference for the commands available.

**Step 5**
In global configuration mode, create a GTT address map, with a unique name, for a specific global title address.

**Step 6**
In GTT address map configuration mode, associate a specific GTT association and the action ID.

**Step 7**
In GTT address map configuration mode, define the routing indicator to be included in the Called-party Address in the out-going SCCP message along with the destination of the message using the option out-address.

**Important:** There are many different ways to configure a GTT Address Map and the needs of every network are different. Please refer to the GTT Address Map Configuration Mode chapter in the Command Line Interface Reference for the commands available.

### Example Configuration

```bash
configure
global-title-translation association instance <inst#>
 action id <id> type <action_type> start-digit <num> end-digit <num>
gt-format <format_num>
exit
global-title-translation address-map instance <inst#>
 associate gtt-association <assoc#> action id <id>
gt-address <gt_addr_prefix>
```
out-address <name>

ssf <sub_svcFld>

routing-indicator <route_ind>

ni-indicator <addr_ind>

ssn <sub_sys_num>

point-code <pt_code>

dend
Configuring an SCCP Network

SCCP (Signaling Connection Control Part) networks are a concept specific to this platform. The SCCP network provides services to protocol layers higher in the SS7 protocol stack, e.g., RANAP and TCAP. This layer is also responsible for GTT. Every SS7 routing domain will be associated with an SCCP network. Use the following example configuration to specify a global SCCP configuration specific to SGSN services.

| Important: | A total of 12 SCCP networks can be configured. |

To configure an SCCP network:

**Step 1**
In global configuration mode, specify an identification number for this SCCP network configuration and the signaling variant.

**Step 2**
Specify the self point code of the SGSN.

**Step 3**
Specify the SS7 routing domain with which to associate this SCCP network configuration.

**Step 4**
If using GTT (Global Title Translation), specify the name of a GTT address map to use.

**Step 5**
Configure a destination point code and give it a name.

**Step 6**
Configure the destination point code version.

**Step 7**
Configure the destination point code subsystem number.

### Example Configuration

```bash
configure

cscp-network <id_number> variant <v_type>

 self-pointcode <sp_code>

 associate ss7-routing-domain <rd_id>

 global-title-translation address-map <map_name>

 destination dpc <dp_code> name <name>

 destination dpc <dp_code> version <ver_type>

 destination dpc <dp_code> ssn <ss_number>

end
```
Configuring a MAP Service

The Mobile Application Part (MAP) is an SS7 protocol which provides an application layer for the various nodes in GSM and UMTS mobile core networks and GPRS core networks to communicate with each other in order to provide services to mobile phone users. MAP is the application-layer protocol used to access the Home Location Register (HLR), Visitor Location Register (VLR), Mobile Switching Center (MSC), Equipment Identity Register (EIR), Authentication Center (AUC), Short Message Service Center (SMSC) and Serving GPRS Support Node (SGSN).

The primary facilities provided by MAP are:

- Mobility Services: location management (when subscribers move within or between networks), authentication, managing service subscription information, fault recovery.
- Operation and Maintenance: subscriber tracing, retrieving a subscriber's IMSI.
- Call Handling: routing, managing calls while roaming, checking that a subscriber is available to receive calls.
- Supplementary Services.
- Short Message Service (SMS)
- Packet Data Protocol (PDP) services for GPRS: providing routing information for GPRS connections.
- Location Service Management Services: obtaining the location of subscribers.

**Important:** A maximum of 12 MAP services can be configured on the system.

To configure MAP services:

**Step 1** In the context config mode, create a MAP service and give it a name.

**Step 2** In MAP Service configuration mode, configure the SCCP network that defines SS7 connectivity for SCCP applications.

**Step 3** Configure the parameters to contact the HLR.

**Step 4** In HLR configuration mode, specify the HLR pointcodes that should be associated with specific IMSI prefixes.

**Step 5** Configure the HLR pointcode to use as the default.

**Step 6** *Optional:* Enable the Short Message Service functionality.

**Step 7** *Optional:* Configure the SMS routing.

**Example Configuration**

```
configure

context <context_name>

map-service <map_name>

access-protocol sccp-network <sccp_network_id>

equipment-identity-register point-code <pnt_code>
```
Configuring a MAP Service

```

 hlr
 imsi any point-code
 default policy routing
 exit

 short-message-service
 smsc-routing imsi-starts-with <prefix> point-code <sms_pc>
 end
```
Configuring an IuPS Service (3G only)

A set of parameters, in the IuPS service configuration mode, define the communication path between the SGSN service and the RNC. These configured parameters pertain to the RANAP layer of the protocol stack. IuPS services must be configured in the same context as the SGSN service that will use them.

To configure an IuPS service:

Step 1  In context configuration mode for the SGSN service, create an IuPS service and give it a unique name.
Step 2  In IuPS service configuration mode, specify the ID of the SCCP network to use for access protocol parameters.
Step 3  Bind an address of an IP interface defined in the current context to use for GTPU connections to the RNC.
Step 4  Specify an RNC to configure with a unique ID and the MCC and MNC associated with the RNC.
Step 5  In RNC configuration mode, specify the RNCs point code.
Step 6  Specify the LAC ID and RAC ID associated with the RNC.

**Important:** Appropriate interfaces (i.e., physical, loopback, secondary) must be defined prior to configuring the IuPS service or the GTP-U IP address will decline to bind to the service.

Example Configuration

```
configure

context <context_name>

iups-service <iups_name>

access-protocol sccp-network <sccp_network_id>

gtpu bind address <ip_address>

rnc id <rnc_id> mcc <mcc_num> mnc <mnc_num>

 pointcode <rnc_pc>

lac <lac_id> rac <rac_id>

end
```
Configuring an SGTP Service

This section provides instructions for configuring GPRS Tunneling Protocol (GTP) settings for the SGSN. At a bare minimum, an address to use for GTP-C (Control signaling) and an address for GTP-U (User data) must be configured. To configure the SGTP service:

**Step 1** Create an SGTP service and give it a unique name, in context configuration mode.

**Step 2** Specify the IP address of an interface in the current context to use for GTP-C.

**Step 3** Specify the IP address of an interface in the current context to use for GTP-U.

**Important:** Appropriate interfaces (i.e., physical, loopback, secondary) must be defined prior to configuring the SGTP service or the GTP-U IP address will decline to bind to the service.

Example Configuration

```
configure
c
context <name>

sgtp-service <name>

gtpc bind address <address>
gtpu bind address <address>
end
```
Configuring a Gs Service

This section provides instructions for creating and configuring a Gs interface used by the SGSN to communication with an MSC or VLR. The Gs interface is defined as a Gs service which handles the configuration for the MSC/VLR.

The Gs interface parameters are configured within a Gs service in a context. Then the Gs service is referred to in a GPRS service, an SGSN service, or a Call-Control Profile. The Gs service does not need to be in the same context as the SGSN service, GPRS service, or a Call-Control Profile.

To configure the Gs service:

**Step 1** In context configuration mode, create a Gs service and give it a unique name. Usually Gs service is defined in the same context in which MAP service is defined because the MSC/VLR, HLR, EIR, and SMS-C are reachable via the STP or SGW connected to the SGSN.

**Step 2** Specify the name of the SCCP network that identifies the SS7 access protocols.

**Step 3** Specify the target SS7 sub-system number (SSN), of the Base Station System Application Part (BSSAP), for communication. Without this bit of configuration, the Gs service can not start.

**Step 4** Identify a location area code, in either a pooled or non-pooled configuration, relevant to the MSC/VLR. This step can be repeated as needed.

**Step 5** Define the MSC/VLR by identifying its ISDN number, its SS7 point code, and the BSSAP SSN used to communicate with it. Repeat this step to define multiple MSC/VLRs. (Note: SSN only needs to be defined if the routing defined is to the MSC/VLR is PC+SSN.)

Example Configuration

```
configure

context <name>

gs-service <name>

 associate-sccp-network <id>

 bssap+ ssn <ssn>

 non-pool-area <id> use-vlr <vlr_id> lac <lac_id>

 vlr <vlr_id> isdn-number <isdn_number> bssap+ ssn <ssn> point-code <vlr_pt_code>

end
```
Configuring an SGSN Service (3G only)

All the parameters specific to the operation of an SGSN in a UMTS network are configured in an SGSN service configuration. SGSN services use other service configurations like MAP (map-service) and IuPS (iups-service) to communicate with other elements in the network.

To configure an SGSN service:

**Step 1** In Context configuration mode, create an SGSN service and give it a unique name.

**Step 2** Specify the Core Network (CN) ID that will identify this SGSN service on the CN.

**Step 3** Specify the E.164 number to identify this SGSN service.

**Step 4** Configure the maximum number of PDP contexts that a UE can establish.

**Step 5** Specify the MAP service and the context in which it is configured that this SGSN service should use.

**Step 6** Specify the IuPS service name and the context in which it is configured for the SGSN service to use for RAN protocol settings.

**Important:** If a direct tunnel is to be established, GTP-U direct tunneling must be enabled in both the IuPs service and in the call-control-profile. For the IuPS service, the DT must be enabled per RNC; DT is enabled by default on RNCs.

**Step 7** Specify the SGTP service and the context in which it is configured for this SGSN service to use for GTP configuration.

**Step 8** Specify the CDR types that the SGSN service should generate.

**Step 9** Specify the context in which GTPP accounting is configured. If the accounting context is not specified the current context is assumed.

**Step 10** Configure the charging characteristics profile. (Number of buckets for the max change condition, volume limit, time limit, and tariff time switch values should be defined individually according to requirements for each of the charging characteristics profiles.

**Step 11** Optional: Specify the Gs service name and the context in which it is configured.

**Important:** Session Management (SM) and GPRS Mobility Management (GMM) settings can be configured as needed using the SGSN configuration mode commands; `<keyword>` and `<keyword>`. Refer to the **SGSN Service Configuration Mode** chapter in the GPRS/UMTS Command Line Interface Reference.

### Example Configuration

```plaintext
configure

context <context_name>

sgsn-service <svc_name>
```
core-network id <cn_id>
sgsn-number <sgsn_number>
max-pdp-contexts per-ms <max_number>

{ mobile-application-part-service | associate map-service } <map_name> context <map_context>
ran-protocol iups-service <iups_svc_name> context <iups_context>
{ sgtp-service | associate sgtp-service } <svc_name> context <name>
accounting cdr-types [ mcdr | scdr ]
accounting context <acct_context>
cc profile <profile_number> interval <seconds>
{ gs-service context | associate gs-service } <ctxt> service <gs_service_name>
end

Notes:

- For releases 12.2 and earlier, use mobile-application-part-service <map_name> context <map_context> command. For releases 14.0 and later, use the associate map-service <map_name> context <map_context> command.
- For releases 12.2 and earlier, use the sgtp-service <svc_name> context <name> command. For releases 14.0 and later, use associate sgtp-service <svc_name> context <name> command.
- For releases 12.2 and earlier, use the gs-service context <ctxt> service <gs_service_name> command. For releases 14.0 and later, use the associate gs-service context <ctxt> service <gs_service_name> command.
Configuring a GPRS Service (2.5G only)

All the parameters specific to the operation of an SGSN in a GPRS network are configured in a GPRS service configuration. GPRS services use other configurations like MAP and SGTP to communicate with other elements in the network. The system can support multiple GPRS services.

To configure a GPRS service:

**Step 1** In Context configuration mode, create a GPRS service instance and give it a unique name.

**Step 2** Specify the context in which the accounting parameters have been configured.

**Step 3** Create a PLMN definition for the GPRS service to include the identity of the mobile country code (MCC) and the mobile network code (MNC).

**Step 4** Associate other services (such as a MAP or Gs or SGTP service) and their configurations with this GPRS service. This command should be repeated to associate multiple service types and/or multiple instances.

**Step 5** Define the network service entity identifier (NSEI) of one or more remote SGSNs with their location area code (LAC) and routing area code (RAC). This step can be repeated to associate multiple peer-NSEIs.

**Step 6** Specify the E.164 number to identify this SGSN.

**Step 7** Configure the charging characteristic(s).

**Step 8** Specify the types of CDRs to generate.

**Example Configuration**

```
configure

 context <context_name>

 gprs-service <gprs_service_name>

 accounting <ctxt>

 plmn id mcc <mcc_num> mnc <mnc_num>

 { service | associate service | }<service_type> <service_name> context
 <service_ctxt>

 peer-nsei <peer_nsei_id> lac <lac_id> rac <rac_id>

 sgsn-number <sgsn_isdn_number>

 cc profile <id> buckets <value>

 cc profile <id> interval <value>

 accounting cdr-types <cdr_type>
```
end
Configuring a Network Service Entity

Configure a Network Service Entity for IP

Prior to implementing this configuration, the IP interfaces should have been defined in the same context as the GPRS service.

**Step 1**  
In Global configuration mode, create a network service entity (NSE) for IP. The resulting prompt will appear as:

```
[local]<hostname>(nse-ip-local)#
```

**Step 2**  
In the Network Service Entity - IP local configuration mode, create up to four virtual links (NSVLs) for this entity each with a unique NSVL Id. The resulting prompt will appear as:

```
[local]<hostname>(nse-ip-local-nsvl-<id>)#
```

**Step 3**  
Configure the link access information: IP address, context name, and port number.

**Step 4**  
Configure the links signaling characteristics.

**Example Configuration for a Network Service Entity for IP**

```
config

 network-service-entity ip-local -n

 nsvl instance <id>

 nsvl-address ip-address <ip_addr> context <ctxt> port <num>

 signaling-weight <num> data-weight <num>

end
```

Configure a Network Service Entity for Frame Relay

**Step 1**  
In Global configuration mode, create a network service entity (NSE) for Frame Relay. The resulting prompt will appear as:

```
[local]<hostname>(nse-fr-peer-nsei-id)#
```

**Step 2**  
In the Peer NSEI configuration mode, create a virtual connection instance for this entity. The resulting prompt will appear as:

```
[local]<hostname>(nse-fr-peer-nsei-<id>-nsvci-<id>)#
```
Example Configuration for a Network Service Entity for IP

    config
    
    network-service-entity peer-nsei <id> frame-relay
    
    ns-vc id <id> -n
    
    end
Configng DNS Client

DNS client services can be configured for a context.

Step 1 In context configuration mode, enable DNS lookup.

Step 2 Specify the DNS to use for lookups; maximum of two DNS addresses can be used.

Step 3 Create a DNS client with a unique name.

Step 4 In DNS Client configuration mode, bind the DNS client to the IP address of an interface in the current context.

Example Configuration

```
configure

 context <context_name>

 ip domain-lookup

 ip name-servers <ip_address>

 dns-client <name>

 bind address <ip_address>

 end
```
Configuring GTPP Accounting Support

This section provides instructions for configuring GTPP-based accounting which allows the SGSN to send M-CDR and/or S-CDR accounting data to the Charging Gateways (CGs) over the Ga interface.

The Ga interface and GTPP functionality are typically configured within a separate charging context.

The SGSN begins to generate M-CDR data upon GPRS/IMSI attach. S-CDR data generation begins upon PDP context activation.

Accounting servers can be configured individually or as GTPP accounting server groups. GTPP accounting server groups can each have completely different GTPP settings configured. Although a GTPP server can be included in multiple GTPP groups.

Any GTPP accounting servers configured at the context level that are not specifically configured as part of a GTPP group, are automatically assigned to be part of the GTPP server group called default that is part of every context.

A maximum of 8 GTPP named server groups can be configured across all contexts. A maximum of 4 CGFs can be configured in each GTPP server group. A total of total 32 CGFs can be configured across all server groups, including the server group called default, in one context. Each GTPP group must have unique GTPP charging agents (CGFs) configured.

**Important:** The system supports the specification of the UDP port number for the charging agent function on the system and for the CG. The default charging agent port is 49999. The default CG Server port is (3386). If an SGSN service and a GGSN service are both configured on this system be sure that the UDP ports are unique for each type of service. Refer to the Command Line Interface Reference for information on changing the ports used.

To configure the GTPP accounting support for a SGSN service:

Step 1 Create the GTPP group in accounting context by applying the example configuration in the Creating GTPP Group section.

Step 2 Configure the charging agent and GTPP server (CGF) related parameters for the GTPP accounting support by applying the example configuration in the Configuring GTPP Group section.

Step 3 Verify your GTPP group and accounting configuration by following the steps in the Verifying GTPP Group Configuration section.

Step 4 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Creating GTPP Group

Use the following example to create the GTPP group to support GTPP accounting:

```
configure

 context <vpn_ctxt_name>

 gtppp group <gtpp_group_name> -noconfirm
```
Configuring GTPP Accounting Support

Notes:

- In addition to one default GTPP group “default” a maximum of 8 GTPP groups can be configured with this command in a context.
- In case no GTPP group is configured in this context, system creates a default GTPP group named “default” and all the CGF servers and their parameters configured in this context are applicable to this “default” GTPP group.

Configuring GTPP Group

Use the following example to configure the GTPP server parameters, GTPP dictionary, and optionally CGF to support GTPP accounting:

```
configure
context <vpn_ctxt_name>

 gtppp group <gtppp_group_name>
 gtppp charging-agent address <ip_address> [port <port>]
 gtppp server <ip_address> [max <msgs>] [priority <priority>]
 gtppp dictionary <dictionaries>
 gtppp max-cdrs <number_cdrs> [wait-time <dur_sec>]
 gtppp transport-layer { tcp | udp }

end
```

Notes:

- In addition to one default GTPP group “default” a maximum of 8 GTPP groups can be configured with this command in a context.
- In case no GTPP group is configured in this context, system creates a default GTPP group named “default” and all the CGF servers and their parameters configured in this context are applicable to this “default” GTPP group.
- Command for CGF gtppp charging-agent is optional and configuring gtppp charging-agent on port 3386 may interfere with ggsn-service configured with the same ip address. Multiple interfaces can be configured within a single context if needed.
- For more information on GTPP dictionary encoding, if you are using StarOS 12.3 or an earlier release, refer to the AAA and GTPP Interface Administration and Reference. If you are using StarOS 14.0 or a later release, refer to the GTPP Interface Administration and Reference.
- For better performance, it is recommended to configure maximum number of CDRs as 255 with gtppp max-cdrs command.
- You can select transport layer protocol as TCP or UDP for Ga interface with gtppp transport-layer command. By default it is UDP.
- Multiple GTPP server can be configured using multiple instances of this command subject to following limits:
  - Total 4 GTPP server in one GTPP group
- Total 32 GTPP server in one context
- Total 9 GTPP groups (1 default and 8 user defined GTPP groups) can be configured in one context. Number of CGFs in 1 GTPP group is limited to 4 and a total of 32 CGF servers across all GTPP groups in one context are configurable.

**Verifying GTPP Group Configuration**

**Step 1**
Verify that your CGFs were configured properly by entering the following command in Exec Mode:

```plaintext
show gtpp accounting servers
```

This command produces an output similar to that displayed below:

```plaintext
context: source

<table>
<thead>
<tr>
<th>Preference</th>
<th>IP</th>
<th>Port</th>
<th>Priority</th>
<th>State</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>192.168.32.135</td>
<td>3386</td>
<td>1</td>
<td>Active</td>
<td>default</td>
</tr>
<tr>
<td>Primary</td>
<td>192.168.89.9</td>
<td>3386</td>
<td>100</td>
<td>Active</td>
<td>default</td>
</tr>
</tbody>
</table>
```
Configuring and Associating the EGTP Service (S4 Only)

This section describes how to configure and associate the EGTP service to support S4-SGSN functionality. The SGSN communicates with the EPC network SGW via the GTPv2 protocol over the S4 interface. GTPv2 is configured on the chassis as part of an EGTP service. Once configured, the EGTP service then must be associated with the configured UMTS (3G) and/or GPRS (2G) service configured on the system to provide access to the EPC network.

Once the EGTP service is associated with the UTRAN and/or GERAN service, then the S4-SGSN will be chosen for PDP context activation in the following cases:

- If the last known capability of the UE indicates that it is EPC-capable.
- If the last known capability of the UE indicates it is non-EPC capable but has an EPS subscription only.
- If a PDP context is already activated for the UE, and the S4 interface is already selected for the UE.

**Important:** The S4 feature license must be enabled on the S4-SGSN to configure the EGTP service.

**Important:** S4 support for the SGSN requires the presence of an SGTP service, even though S4 support is being configured for the SGSN to use the S4 interface. The SGTP service is required to interface with non-EPC capable roaming partners via the Gn interface. SGTP is also required for subscribers using mobile phones that are not EPC-capable in an EPC network.

**Important:** Currently, the S4-SGSN does not support the transfer of PDP contexts from the S4 interface to the Gn interface within the same S4-SGSN.

Use the following procedure to configure and associate the EGTP service to for S4 functionality on the SGSN:

**Step 1** Access Context Configuration Mode.

**Step 2** Create and configure the EGTP service in the desired context.

**Step 3** Configure the interface type for the EGTP service.

**Step 4** Configure the validation mode for the EGTP service. The default and recommended setting is `standard`.

**Step 5** Associate the EGTP service with the configured 2.5G service (if configured).

**Step 6** Associate the EGTP service with the configured 3G service (if configured).

### Example Configuration

```
config

context <context_name>

egtp-service <service_name>

 gtpc bind ipv4-address <ipv4_address>
```
interface-type interface-sgsn
validation-mode standard
end

config
context <context_name>
gprs-service <gprs_service_name>
associate egtp-service <egtp_service_name> context <context_name>
end

config
context <context_name>
sgsn-service <sgsn_service_name>
associate egtp-service <egtp_service_name> context <context_name>
end
Configuring and Associating the GTPU Service (S4 Only)

This section describes how to configure and associate the GTPU service on the S4-SGSN. The GTPU service is required to support the EGTP service for the sending and receiving of GTP bearer packets to and from the EPC SGW.

Use the following procedure to configure and associate the GTPU service:

Step 1  Access Context Configuration Mode.

Step 2  Create the GTPU service in the same context where the egtp-service is configured.

Step 3  Bind the GTPU service to the IP address to be used for GTP-U (the S4-SGSN side IP address for GTP-U packets).

Step 4  Associate the GTPU service with the configured egtp-service.

Example Configuration

```
cfg

 context <context_name>
 gtpu-service <service_name>
 bind ipv4-address <ipv4_address>
 end
 end

cfg

 context <egtp-service_context_name>
 egtp-service <egtp-service_name>
 associate gtpu-service <egtp_service_name>
 end
```

Configuring the DNS Client Context for APN and SGW Resolution (Optional)

This section describes how to configure the context from which DNS client has to be selected for performing an APN FQDN query for resolving a PGW address (S4-SGSN) or a co-located PGW / GGSN address (Gn SGSN), and the context from which DNS client has to be selected for performing an RAI FQDN query for resolving an SGW address (S4-SGSN).

By default, the S4-SGSN supports the initiation of a DNS query after APN selection using a S-NAPTR query for EPC-capable subscribers. The S4-SGSN resolves a PGW/GGSN by sending an APN-FQDN query to the DNS client. Similarly, the S4-SGSN resolves the SGW by sending a RAI-FQDN query to the DNS client. The DNS Client then sends a query to the DNS server to retrieve NAPTR/SRV/A records and return the SGW or PGW IP address to the SGSN.

**Important:** For non-EPC capable subscribers, the S4-SGSN initiates only a DNS A query.

The Gn SGSN supports selecting a co-located PGW/GGSN node for EPC capable UEs by performing a DNS SNAPTR lookup for APN FQDN for the service parameter "x-3gpp-pgw:x-gn" / "x-3gpp-pgw:x-gp". Note that in addition to these parameters, the service parameters In addition to these interfaces "x-3gpp-ggsn:x-gn" & "x-3gpp-ggsn:x-gp" are used for selecting standalone GGSNs.

For performing a DNS SNAPTR query, the SGSN requires an additional, optional, configuration that identifies the context where DNS lookup for EPC-capable UEs must occur. This is accomplished by creating a call-control-profile that specifies the context from which the DNS client should be used for resolving a co-located PGW/GGSN address on a Gn SGSN as well.

Use the following procedure to configure and associate the configure DNS for APN resolution to support S4 functionality:

**Step 1**  Access Call Control Profile Configuration Mode and create a call control profile.

**Step 2**  Configure the DNS client context to resolve PGW UEs via the context the DNS client is configured.

**Step 3**  Configure the DNS client context to resolve SGW UEs via the context where the DNS client is configured.

**Example Configuration**

```
config

call-control-profile <name>
 dns-pgw context <dns_client_context_name>
 dns-sgw context <dns_client_context_name>
end
```

**Notes:**
- **dns-pgw context** is valid for selecting a PGW (in an S4-SGSN) as well as a co-located PGW/GGSN (in a Gn SGSN). If the interface selected for a UE is S4 and if there is no **dns-pgw context** configured under the Call Control Profile Configuration Mode, the SGSN will resolve the PGW/GGSN using a DNS A query.
Control Profile, then by default it will look for the DNS client in the context where the EGTP service is defined. If the interface selected for a UE is gn-gp, and if there is no **dns-pgw context** configured under the Call Control Profile, then by default the system will look for the DNS client in the context where the SGTP service is configured for selecting co-located PGW/GGSNs if:

- The UE is EPC capable and,
- **apn-resolve-dns-query snaptr** is configured under an APN Profile.

**dns-sgw context** specifies the name of the context where the DNS client is configured and that will be used for DNS resolution of SGWs. If **dns-sgw** is not configured, the S4-SGSN uses the DNS client configured in the context where EGTP service is configured to query the SGW DNS address.
Configuring the S6d Diameter Interface (S4 Only)

This section describes how to configure the S6d Diameter interface to support S4 functionality. The S6d interface is a Diameter-based interface used to support S4 functionality by enabling the S4-SGSN to communicate with the HSS. The HSS is a master user database that contains all subscription related information, and performs the following functions:

- Authentication and authorization of the user
- Provides the subscribers location information
- Provides the subscribers IP information

To support the S6d interface, an HSS Peer Service must be configured and associated with a Diameter endpoint. This HSS Peer Service is then associated with the configured SGSN and/or GPRS services to enable communication with the HSS via the S6d interface. Optionally, operators can configure an operator policy-based interface selection.

Configuring the S6d interface consists of the following procedures:

1. Configuring a Diameter Endpoint for the S6d interface
2. Configuring the HSS Peer Service and Interface Association for the S6d interface
3. Associating the HSS Peer Service with the SGSN and GPRS Services for the S6d interface.

Configuring the Diameter Endpoint for the S6d Interface

Use the following procedure to configure the Diameter endpoint for the S6d interface:

**Step 1** Configure a port that will be bound to an interface (at step 3) to be used as the S6d interface.

**Step 2** Configure an Ethernet interface to be used as a diameter endpoint.

**Step 3** Configure a Diameter endpoint to be used as the S6d interface.

**Step 4** Specify the origin host address and the IP address of the Ethernet interface to be used as the S6d interface.

**Step 5** Specify the origin realm. The realm is the Diameter identity. The originator’s realm is present in all Diameter messages and is typically the company or service provider’s name.

**Step 6** Specify the peer name, peer realm name, peer IP address and port number. The peer IP address and port number are the IP address and port number of the HSS.

**Step 7** Specify the route entry peer. This parameter is optional. The route entry peer parameter is required if multiple HSS peers are configured under a Diameter point and operators want to associate a routing weight to each HSS peer so that the S4-SGSN contacts each HSS based on the weight distribution.

**Step 8** Optional. Enable or disable the `watchdog-timeout` parameter.

**Step 9** The `use-proxy` keyword can be specified in the `diameter-endpoint` command to enable the proxy mode. The usage of proxy mode depends on the operator’s HSS capabilities.
Example Configuration

```
config

 port ethernet <slot number/port number>
 no shutdown
 bind interface <s6d_interface_name> <context_name>

end

config

 context <context_name>

 interface <s6d_interface_name>
 ip address <s6d_interface_ip_address> <subnet_mask>
 exit

 diameter endpoint <endpoint_name>
 origin host <host_name> address <s6d_interface_ip_address>
 origin realm <realm_name>
 peer <peer_name> realm <realm_name> address <hss_ip_address>
 route-entry peer <route_entry_name>
 use-proxy
 no watchdog-timeout

end
```

Configuring the HSS Peer Service and Interface Association for the S6d Interface

Use the following procedure to configure the HSS Peer Service and interface association for the S6d interface:

**Step 1** Configure a Diameter endpoint. If not already configured, refer to the Configuring the Diameter Endpoint for the S6d Interface procedure. Then specify the IP address of the Ethernet interface configured in Step 1 as the Diameter endpoint address.

**Step 2** Associate the Diameter endpoint with an HSS peer service.

**Step 3** Specify the Diameter dictionary to be used for the HSS Peer Service. The `standard-r9` dictionary must be used for the S6d interface.
Example Configuration

```
config
 context <sgsn_context_name>
 hss-peer-service <hss_peer_service_name>
 diameter hss-endpoint <hss_endpoint_name>
 diameter hss-dictionary standard_r9
 end
 end
```

Associating the HSS Peer Service with the SGSN and GPRS Services for the S6d Interface

Use this procedure to association the HSS Peer Service with the SGSN and GPRS Services:

**Step 1** Access Context Configuration Mode and create an SGSN service.

**Step 2** Associate the HSS peer service name with the SGSN service.

**Step 3** Access Context Configuration Mode and create a GPRS service.

**Step 4** Associate the HSS peer service name with the GPRS service.

Example Configuration

```
config
 context <context name>
 sgsn-service <sgsn-service-name>
 associate hss-peer-service <hss-peer-service-name>
 end
 end
config
 context <context name>
 gprs-service <gprs-service-name>
 associate hss-peer-service <hss-peer-service-name>
 end
```
Configuring Operator Policy-Based S6d Interface Selection (Optional)

It is mandatory for the SGSN and GPRS services to have either a MAP service association or an HSS-Peer-Service association.

- If no MAP service is associated with the SGSN or GPRS services, and only the HSS service is associated with the SGSN or GPRS services, then the S6d interface is selected.
- If both the MAP service and the HSS-Peer-Service are associated with the SGSN or GPRS service, by default the Gr interface is selected. To override the default use of the Gr interface, configure the operator policy to select the s6d-interface.
- Once the interface selection is configured, the call-control-profile is first checked to determine whether to select the MAP-interface or HSS-interface. If neither the MAP nor HSS is configured under the call control profile, then the system checks the configured SGSN or GPRS-services.

Step 1  Access Call Control Profile Configuration Mode and create a call-control-profile.

Step 2  Associate the configured HSS peer service with the S6d interface. The s6d-interface option must be selected.

Example Configuration

```
config

call-control-profile <name>

 associate hss-peer-service <name> s6d-interface

end
```

Configuring the Subscription Interface Preference for the S6d Interface (Optional)

The S4-SGSN provides a mechanism to associate a MAP service with call-control-profile. In some situations, it is possible that both the MAP service and the HSS peer service are associated with the Call Control Profile. In these cases, operators can configure the preferred subscription interface.

Step 1  Access Call Control Profile Configuration Mode and create a call-control-profile.

Step 2  Specify the preference of the subscription-interface. Selecting the hlr option will cause the MAP protocol to be used to exchange messages with the HLR. The hss option causes the Diameter-protocol to be used to exchange messages with the HSS.

Example Configuration

```
config

call-control-profile <name>

 prefer subscription-interface { hlr | hss }

end
```
Configuring the S13’ Interface (S4 Only, Optional)

The S13’ (S13 prime) interface is a Diameter-based interface that is used to perform the Mobile Equipment (ME) identity check procedure between the SGSN and EIR. Configuring the S13’ interface is optional.

The SGSN performs ME identity check to verify the Mobile Equipment’s identity status.

The S13’ interface uses the Diameter protocol. An HSS Peer Service must be configured and associated with a Diameter endpoint. It is not mandatory to configure the HSS Peer Service under the SGSN or the GPRS service. By configuring the HSS Peer Service in Call Control Profile Configuration Mode, the S13’ interface can be used.

In the absence of an operator policy, the HSS Peer Service must be associated with the configured SGSN or GPRS service to be able to utilize the S13’ interface. In the presence of an operator policy, the operator policy configured overrides the service configured in the SGSN or GPRS service.

Important: The S13’ interface can only be configured after the S6d interface has been configured. Refer to Configuring the S6d Diameter Interface (S4 Only) procedure for information on configuring the S6d interface.

Configuring the S13’ interface consists of the following procedures;

**Step 1** Configure a Diameter Endpoint for the S13’ interface.

**Step 2** Configure the HSS Peer Service and Interface association for the S13’ interface.

**Step 3** Associate the HSS Peer Service with the SGSN and GPRS services for the S13’ interface.

**Step 4** Optional. Configure an operator policy S13-based interface selection call control profile for the S13’ interface.

Configuring a Diameter Endpoint for the S13’ Interface

Use this procedure to configure a Diameter endpoint for the S13’ interface:

**Step 1** Access Context Configuration Mode and create a Diameter endpoint.

**Step 2** Specify the origin host address and the IP address of the S13’ interface.

**Step 3** Specify the origin realm. The realm is the Diameter identity. The originator’s realm is present in all Diameter messages and is typically the company or service name.

**Step 4** Specify the peer name, peer realm name, peer IP address and port number. The peer IP address and port number are the IP address and port number of the HSS.

**Step 5** Specify the route entry peer (optional). The route entry peer parameter is required if multiple HSS or EIR peers are configured under a Diameter point and operators wish to associate a routing weight to each HSS or EIR peer so that SGSN contacts each HSS or EIR based on the weight distribution.

**Step 6** The user can optionally enable or disable the parameter watchdog-timeout.

**Step 7** The use-proxy keyword can be specified in the diameter-endpoint command to enable the proxy mode. The usage of proxy mode depends on the operator’s EIR capabilities.
Example Configuration

```
interface ethernet <s13’_interface_name>
 no shutdown
bind interface <s13’_interface_name> <sgsn_context_name>
end

context <context_name>
 interface <s13’_interface_ip> <subnet_mask>
 exit

 diameter endpoint <s13’_endpoint_name>
 origin host <host_name> address <host_address>
 origin realm <realm_address>
 peer <peer_name> realm <realm_name> address <hss_ip_address>
 route-entry peer <route_entry_name>
 use-proxy
 no watchdog-timeout
 exit

 hss-peer-service <hss_peer_service_name>
 diameter hss-endpoint <s6d_endpoint_name> eir-endpoint <s13’_endpoint_name>
end
```

Configuring the HSS Peer Service and Interface Association for the S13’ Interface

Use the following procedure to configure the HSS Peer Service and Interface association:

**Step 1** Configure an Ethernet interface to be used as a Diameter endpoint.

**Step 2** Configure a Diameter endpoint and specify the IP address of the Ethernet interface configured in Step 1 as the Diameter endpoint address.

**Step 3** Configure an HSS peer service and associate it with the Diameter endpoint configured for the S6d and S13’ interfaces.
**Step 4** Specify the Diameter dictionary to be used for the HSS-Peer-Service. The `standard-r9` option must be selected for the SGSN.

**Example Configuration**

```plaintext
config
 port ethernet <slot_number/port_number>
 no shutdown
 bind interface <s6d_interface_name> <sgsn_context_name>
end
config
 context <sgsn_context_name>
 interface <s6d_interface_name>
 ip address <s6d_interface_ip_address> <subnetmask>
 exit
 diameter endpoint <s6d_endpoint_name>
 origin realm <realm_name>
 origin host <name> address <s6d_interface_address>
 peer <peer_name> realm <realm_name> address <hss_ip_address>
 exit
 diameter endpoint <s13'_endpoint_name>
 origin realm <realm_name>
 origin host <name> address <s13'_interface_address>
 peer <peer_name> realm <realm_name> address <eir_ip_address>
 exit
 hss-peer-service <hss_peer_service_name>
 diameter hss-endpoint <hss_endpoint_name> eir-endpoint <eir_endpoint_name>
 diameter hss-dictionary standard-r9
end
```
Associating the HSS Peer Service with the SGSN and GPRS Services for the S13’ Interface

Use this procedure to associate the HSS Peer Service with the SGSN and GPRS services.

**Step 1**  
In *Context Configuration Mode* create a SGSN service.

**Step 2**  
Associate the HSS peer service with SGSN service, if configured, and provide the HSS peer service name and context name.

**Step 3**  
Associate the HSS peer service with GPRS service, if configured, and provide the HSS peer service name and context name.

**Example Configuration**

```ini
config
 context <context_name>
 sgsn-service <sgsn_service_name>
 associate hss-peer-service <hss-peer-service-name>
 end
 config
 context <context_name>
 gprs-service <gprs_service_name>
 associate hss-peer-service <hss-peer-service-name>
 end
```

**Configuring S13’ Interface Selection Based on an Operator Policy**

It is mandatory for the SGSN and GPRS service to have either a MAP service association or an HSS Peer Service association.

- In the absence of a MAP service association with SGSN or GPRS service, and if the HSS service is associated with the SGSN or GPRS service then the S13’ interface is selected.
- If both the MAP service and the HSS-Peer-Service are associated with the SGSN or GPRS service, by default the Gf interface is selected. To override this default, operators can configure an operator policy to configure behavior for the S13’ interface selection.
- Once configured, the behavior is as follows:
  - First, the call control profile is checked to determine on whether a MAP or HSS interface is configured.
  - If neither A MAP or HSS is configured under the call control profile, then the system uses the configuration in the SGSN or GPRS service.
Use this procedure to configure an operator policy used for S13’ interface selection.

**Step 1** Access *Call Control Configuration Mode* and configure a call-control-profile.

**Step 2** Associate the HSS Peer Service with the *s13-prime-interface*.

**Example Configuration**

```
config

call-control-profile <name>

 associate hss-peer-service <name> s13-prime-interface

end
```
Configuring QoS Mapping for EPC-Capable UEs using the S4 Interface (S4 Only, Optional)

An S4-SGSN communicates QoS parameters towards the SGW and PGW in EPC QoS. However, it sends QoS towards the UE in the QoS format defined in the GMM/SM specification (TS 24.008). 3GPP defines a mapping for EPS QoS to pre-release 8 QoS in TS 23.401, Annex E. On the S4-SGSN, operators can configure the quality of service (QoS) parameters as Call Control Profiles that will ensure proper QoS mapping between the S4-SGSN and the EPC gateways (PGW and SGW) and UEs. However, such configurations are optional. If no mapping is configured, then the S4-SGSN uses the default mapping.

The configured Call Control Profiles also will be used if the S4 interface is chosen for PDP activation, but the subscription does not have an EPS subscription. Therefore, GPRS subscription data (which uses QoS in pre-release 8 format), will be mapped to EPS QoS behavior. The allocation and retention policy will be mapped to EPS ARP using the configured Call Control Profiles. Specifically, the configuration provided in this section enables the S4-SGSN to:

- Map EPC ARP (allocation and retention priority) parameters to pre-release 8 ARP (Gn/Gp ARP) parameters during S4-SGSN to Gp SGSN call handovers.
- Map ARP parameters received in a GPRS subscription from the HLR to EPC ARP parameters if the S4 interface is selected for an EPC capable UE that has only a GPRS subscription (but no EPS subscription) in the HLR / HSS.

If the QoS mapping configuration is not used, the following default mappings are used:

- Default ARP high-priority value = 5
- Default ARP medium-priority value = 10
- Default pre-emption capability = shall-not-trigger-pre-emption
- Default pre-emption vulnerability = pre-emptable

Use this procedure to configure QoS mapping for EPC Gateways and UEs:

Step 1  Access Call Control Profile Configuration Mode and create a call-control-profile.

Step 2  Configure the QoS ARP settings.

Step 3  Exit back to the Local prompt.

Step 4  Access the call-control profile you just configured.

Step 5  Configure the QoS pre-emption or vulnerability capabilities.

Example Configuration

```
config

 call-control-profile <cc_profile_name>

 qos gn-gp arp high-priority <hi_prior_value> medium-priority <med_prior_value>

 end
```
config

    call-control-profile <cc-profile-name>

    qos gn-gp pre-emption { capability { may-trigger-pre-emption | shall-not-trigger-pre-emption } | vulnerability { not-pre-emptable | pre-emptable } }

    end
Configuring the Peer SGSN Interface Type (S4 Only, Optional)

Operators can specify the type of interface the S4-SGSN will use to communicate with the peer SGSN in a call control profile.

Use the following procedure to configure the peer SGSN interface type:

Step 1  Access the Call Control Profile configuration for the peer SGSN.

Step 2  Configure the interface type to be used for communication between the S4-SGSN and the peer SGSN. \texttt{s16} must be specified if the peer SGSN is an S4-SGSN.

Example Configuration

```
config

 call-control-profile \texttt{<cc_profile_name>}

 sgsn-address \{ rac \texttt{<rac value>} lac \texttt{<lac value>} | rnc_id \texttt{rnc_id} \} prefer \{ local | fallback-for-dns \} address ipv4 \texttt{<ipv4 address>} interface \{ gn | s16 \}

 end

```

Notes:

- The \texttt{rnc_id} parameter can be used instead of the \texttt{rac} and \texttt{lac} values if operators wish to configure the target RNC ID that maps to the address of the peer SGSN via the S16 interface. The RNC ID is used by the S4-SGSN for inter-SGSN SRNS relocation. Configuration of the \texttt{rnc_id} is optional, and valid only if SRNS relocation first has been configured in \textit{Call Control Profile Configuration Mode} using the \texttt{srns-inter} and/or \texttt{srns-intra} commands.

- The \texttt{fallback-for-dns option} is under development for future use, and is not currently supported on the S4-SGSN.

- NRI-based validation is not supported on the S4-SGSN.
The S4-SGSN uses the S4 interface to communicate with EPC-capable UEs. However, operators have the option to create a call-control-profile that enables the S4-SGSN to forcefully select the Gn interface for EPC-capable UEs.

Use this procedure to forcefully select the Gn interface for EPC-capable UEs:

**Step 1** Access *Call Control Profile Configuration Mode*.

**Step 2** Create a call-control-profile.

**Step 3** Configure the SGSN to forcefully select the Gn interface.

### Example Configuration

```plaintext
config

 call-control-profile <cc_profile_name>

 sgsn-core-nw-interface { gn | s4 }

 end

Notes:

- *sgsn-core-nw-interface* specifies the interface that EPC-capable UEs will use to communicate with the packet core gateways (GGSN/SGW). The default setting for EPC-capable UEs is *s4*.```
Configuring a Custom MME Group ID (S4 Only, Optional)

3GPP specifications define how a GUTI allocated by an MME is translated into an old P-TMSI and old RAI when a UE hands over to an SGSN. 3GPP specifications state that when a GUTI is mapped to an old RAI, the MME group ID portion of the GUTI will be mapped to a Location Area Code (LAC). MME group IDs are 16-bit numbers which always have their most significant bit set. As a result, their range is 32768 - 65535.

However, some operators may have already configured their networks with LACs for UTRAN and GERAN coverage in the 32768 - 65535 range. To provide backward compatibility for such deployments, a custom list of MME group IDs must be configured for use by both the S4-SGSN and MME products for UTRAN/GERAN and E-UTRAN handovers.

Once the custom MME Group IDs have been configured, operators then can configure the S4-SGSN to use the available custom MME Group IDs configured for both GPRS (2G) and UTRAN (3G) network services.

Use the following procedure to configure the SGSN to use the custom MME Group IDs:

Step 1 Access LTE Network Global MME ID Management Database Configuration Mode.

Step 2 Specify the PLMN MCC and MNC values.

Step 3 Configure the low and high end values of the LAC range to be used.

Step 4 Access the context in which the SGSN (3G) service is configured.

Step 5 Associate the 3G service (if configured), with the MME’s Network Global MME ID Management Database that contains the custom list of MME Group IDs.

Step 6 Access the context in which the 2G GPRS service is configured.

Step 7 Associate the 2G service, if configured, with the MME’s Network Global MME ID Management Database that contains the custom list of MME Group IDs.

Example Configuration

```
config

lte-policy

network-global-mme-id-mgmt-db

plmn mcc <mcc_value> mnc <mnc_value> mme-group-id-range first
<low_end_of_range> last <high_end_of_range>

exit

context <context_name>

sgsn-service <sgsn_service_name>

associate network-global-mme-id-mgmt-db
```
end

config

context <context_name>

 gprs-service <gprs_service_name>

 associate network-global-mme-id-mgmt-db

end
Configuring and Associating the Selection of an SGW for RAI (S4 Only, Optional)

If operators wish to bypass DNS resolution of RAI FQDN for obtaining the S-GW address, the SGSN can select an S-GW by performing a local configuration look-up for the current Routing Area Instance (RAI). This is accomplished by configuring the TAI Management Database (tai-mgmt-db) of the SGSN to select an S-GW address and its associated RAI. In addition, the TAI Management Database must be associated with the 2G and/or 3G services configured on the SGSN. The TAI Management Database can also be associated with a call-control-profile for RAI-to-SGW address mapping.

Use the following procedure to configure the selection of an SGW for RAI:

Step 1 Access Global Configuration Mode.
Step 2 Access LTE Policy Configuration Mode.
Step 3 Create a TAI Management Database and enter TAI Management Database Configuration Mode.
Step 4 Create a TAI Management Object and enter TAI Management Object Configuration Mode.
Step 5 Configure the RAI. Specify the RAI MCC, MNC, LAC and RAC values.
Step 6 Configure the SGW address serving the RAI. Specify the IPv4 address, the S5-to-S8 protocol as GTP, and the load balancing Weight for this SGW. On the S4-SGSN, only GTP is supported as the protocol option.
Step 7 Access SGSN Service Configuration Mode and associate the configured UTRAN (3G) service with the S-GW addresses and their associated RAI.
Step 8 Access GPRS Service Configuration Mode and associate the configured GERAN (2G) service with the S-GW addresses and their associated RAIs.
Step 9 Optional. Associate the SGW address-to-RAI mapping with a call-control-profile.

Example Configuration

```config
lte-policy

tai-mgmt-db <tai_mgmt_db_name>

tai-mgmt-ojb <obj_name>

raia mnc <mnc_value> mnc <mnc_value> lac <lac_value> rac <rac_value>

sgw-address <ipv4_addr> | <ipv6_addr> s5-s8-protocol gtp weight <number>

end
```

Cisco ASR 5000 Serving GPRS Support Node Administration Guide

174
context <context_name>
 sgsn-service <sgsn_service_name>
 associate tai-mgmt-db <tai_mgmt_db_name>
end
config
context <context_name>
 gprs-service <gprs_service_name>
 associate tai-mgmt-db <tai_mgmt_db_name>
end
config

call-control-profile <cc_profile_name>
 associate tai-mgmt-db <tai_mgmt_db_name>
end
Configuring a Local PGW Address (S4 Only, Optional)

If operators wish to bypass DNS resolution of APN FQDN on the S4-SGSN for obtaining a PGW address, the S4-SGSN can be configured to use a locally configured PGW IPv4 address in an APN profile.

Use the following procedure to configure the local PGW address:

Step 1 Access APN Profile Configuration Mode and create an APN profile.
Step 2 Specify the address resolution mode for the PGW as local.
Step 3 Configure the P-GW address.
Step 4 Configure the load balancing weight preference for the P-GW.

Example Configuration

```
config

  apn-profile <apn_profile_name>
    address-resolution-mode local
    pgw-address <ipv4_address | ipv6_address> weight <weight_preference>

end
```
Configuring the Peer MME Address (S4 Only, Optional)

For operators wishing to bypass DNS resolution to obtain the peer EPC MME address, the SGSN supports the local configuration of a peer MME address for a given MME group (LAC) and MME code (RAC).

Use the following procedure to configure the peer MME address:

Step 1 Access *Call Control Configuration Mode* and create a call-control-profile.

Step 2 Configure the peer MME Group ID LAC and RAC values or the TAC.

Step 3 Specify a local preference for selection of the peer MME address.

Step 4 Specify the local MME address to use for lookup instead of a DNS query.

Step 5 Specify the interface type to use when communicating with the peer MME. The interface must be s3.

Example Configuration

```plaintext
config
call-control-profile <cc-profile-name>
    peer-mme { mme-groupid <lac_value> mme-code <rac_code> | tac tac } prefer local address <ipv4_address | ipv6_address> interface { gn [ s3 ] | s3 [ gn ] }
end
```

Notes:

- The *tac* keyword can be used instead of the *mme-groupid* and *mme-code* parameters to configure the Tracking Area Code (TAC) of the target eNodeB that maps to the peer MME address. The TAC is used by the S4-SGSN for UTRAN to E-UTRAN (SGSN to MME) SRNS relocation across the S3 interface. Configuration of the *tac* is valid only if SRNS relocation first has been configured in *Call Control Profile Configuration Mode* via the *srns-inter* and/or *srns-intra* commands.
Configuring the ISR Feature (S4 Only, Optional)

Idle Mode Signaling Reduction (ISR) is a license-enabled feature that allows the UE to roam between LTE and 2G/3G networks while reducing the frequency of TAU and RAU procedures due to the UE selecting E-UTRAN or UTRAN networks. ISR reduces the signaling between the UE and the network, and also reduces the signaling between the E-UTRAN and UTRAN networks.

Use the following procedure to configure the ISR feature:

Step 1 Access Call Control Configuration Mode.

Step 2 Create a call-control-profile.

Step 3 Enable the Idle Mode Signaling Reduction feature for 3G (UMTS) network access

Step 4 Set the T3323 timeout value that the configured SGSN service will send to the UE in Attach Accept and RAU Accept messages.

Step 5 Enable the ISR feature for 2G network access

Step 6 Configure the implicit detach timer for 2G subscribers.

Example Configuration

```
config

    call-control-profile <cc-profile-name>
        idle-mode-signaling-reduction access-type umts
    end

config

    context <context_name>
        sgsn-service <sgsn_service_name>
            gmm T3323-timeout <dur_mins>
        end
    end

config

    call-control-profile name
        idle-mode-signaling-reduction access-type gprs
    end

config

    context plmn_name
```
gprs-service gprs_service_name

gmm implicit-detach-timeout secs

end

Notes:

- **idle-mode-signaling-reduction access-type umts** enables ISR for 3G network access.
- **gmm T3323-timeout dur_mins** is the amount of time, in minutes, the UE should wait after the Periodic RAU timer (T3312 timer) expiry before deactivating ISR for the 3G subscriber. Valid entries are from 1 to 186. The default is 54.
- **idle-mode-signaling-reduction access-type umts** enables ISR for 2G network access.
- **gmm implicit-detach-timeout secs** specifies the implicit detach timeout value to use for 2G ISR. Valid entries are from 240 to 86400 seconds. The default value is 3600 seconds.
Configuring IDFT for Connected Mode Handover (S4 Only, Optional)

The S4-SGSN supports the setup of indirect data forwarding tunnels (IDFT) between the eNodeB and the RNC via the SGW during connected mode handovers. This allows the S4-SGSN to support connected mode handovers between the UTRAN and E-UTRAN networks across the S3 interface.

Once enabled, IDFT is employed under the following conditions:

- **If the SGSN is the old node participating in the connected mode handover:**
 - The target node to which the connected mode handover is initiated should be an eNodeB (i.e., the SGSN performs the handover to the MME).
 - The `enb-direct-data-forward` CLI setting is not configured in the target RNC configuration (in RNC Configuration Mode).

- **If the SGSN is the new node participating in the connected mode handover:**
 - The source node from which connected mode handover is initiated is an eNodeB (i.e., the MME is performing a handover to the SGSN).
 - The `enb-direct-data-forward` CLI setting is not configured in the target RNC configuration (in RNC Configuration Mode).
 - The source MME indicated that it does not support direct forwarding via a Forward Relocation Request.

Important: If the target SGSN did **not** relocate to a new SGW, then IDFT does not apply. The target SGSN sets up an indirect data forwarding tunnel with the SGW only if the SGW is relocated. If the SGW is not relocated, then the source MME sets up the indirect data forwarding tunnel between the source eNodeB and the target RNC through the SGW.

Important: By default, indirect data forwarding is enabled, and direct forwarding is disabled.

To configure IDFT for connected mode inter RAT handovers:

Step 1 Enter the context where the IuPS service is configured.

Step 2 Enter IuPS Service Configuration Mode and enter the configured IuPS service.

Step 3 Enter the RNC ID of the IuPS service for which you want to enable IDFT.

Step 4 Disable direct data forwarding for connected mode inter RAT handovers.

Example Configuration

```
config

    context <context_name>

    iups-service <iups_service_name>
```
rnc id <rnc_id>

 no enb-direct-data-forward

end

Where:

- `no enb-direct-data-forward` enables the setup of IDFT between the eNodeB and the RNC via the SGW for connected mode inter RAT handovers. If IDFT is enabled, the SGSN/MME will send the IDFT request towards the SGW. Once enabled, the SGSN/MME will send IDFT requests towards the SGW.
- To disable IDFT, enter the `enb-direct-data-forward` command.
Creating and Configuring ATM Interfaces and Ports (3G only)

ATM ports and their associated PVCs can be configured for use with point-to-point interfaces and defined in a context or they can be bound to link IDs defined in SS7 routing domains.

Refer to the chapter titled System Element Configuration Procedures in the System Administration Guide for information on configuring ATM interfaces.
Creating and Configuring Frame Relay Ports (2.5G only)

Frame Relay ports and their associated DLCIs can be configured for communication with 2G Base Station subsystem (BSS) for an SGSN implementation.

Refer to the chapter titled System Element Configuration Procedures in the System Administration Guide for information on configuring Frame Relay ports.
Configuring APS/MSP Redundancy

ASP/MSP redundancy is only available for the OLC2 and CLC2 line cards. It is setup per linecard -- all ports share the same setup.

APS is enabled with the `redundancy` command in the Card configuration mode.

Important: At this time the `aps` command in the *Card Configuration Mode* chapter is still in development and should not be used. The parameters are all set by default and cannot be changed or disabled.

- Related configuration for signal degrade and signal failure bit error rate thresholds for high path, low path, and transport overhead - use the commands in the Port Channelized configuration mode.

 For command details, refer to the *Card Configuration Mode Commands* chapter and the *Port Configuration Mode Commands* chapter in the *Cisco UMTS Command Line Interface Reference*.

1. **Step 1** Configure a line card for either SONET or SDH.
2. **Step 2** Configure APS for a SONET line card or MPS for an SDH line card.

Use the configuration example below:

Example Configuration

Use the following example (replacing specific values) to setup a CLC2 (Frame Relay) line card:

```config
config
card 27
  framing sdh el
  header-type 4-byte
  initial-el-framing standard
  redundancy aps-mode
  service-type frame-relay
  no shutdown
end
```
Chapter 5
3G-2G Location Change Reporting

3G/2G Location Change Reporting on the SGSN facilitates location-based charging on the GGSN by providing the UE’s location information when it is in connected mode.

The SGSN notifies the GGSN whenever one of the following changes:

- the serving cell global identity (CGI), or
- the service area identity (SAI), or
- the routing area identity (RAI).

Contents
This document contains the following sections:

- Feature Description
- How it Works
- Configuring Location Change Reporting
Feature Description

The 3G/2G Location Change Reporting feature enables the operator to charge the user for location-based services. Location-based charging is a values-added function that ensures subscribers pay a premium for operator-determined location-based services, such as service in a congested area.

This optional feature functions in accordance with 3GPP TS 23.060, Release 9, sections 12.7.5 and 15.1.3 and requires an additional license - the Location Reporting License. With the license, the operator uses the CLI to enable the feature independently for each access type: GPRS (2G) or UMTS (3G).

Relationships

The SGSN works with the GGSN for this feature. The GGSN must send subscription information to the SGSN for the 3G/2G Location Change Reporting feature to work.

This feature is independent of user location information (ULI) configuration, which allows GTP-C messages to be used for carrying user location information to the GGSN.

License

A feature-specific license is required. Please consult your Cisco Account Representative for information about the specific license. For information on installing and verifying licenses, refer to the “Managing License Keys” section of the Software Management Operations chapter in the System Administration Guide.

Standards Compliance

The SGSN 3G/2G Location Change Reporting feature complies with the following standards:

- 3GPP TS 23.060 Release 9
- 3GPP TS 29.060 Release 9.7.0
How it Works

When the Location Change Reporting feature is enabled, the SGSN advertizes support for location change reporting to the GGSN by including an extension header - MS-Info-Change-Reporting indication - in the Create-PDP-Context-Request (CPCR) or the Update-PDP-Context-Request (UPCQ) GTP-C messages (as specified in section 6.1.5 of TS 23.060, R9).

The SGSN initiates the process to report the UE location when subscription information is received from the GGSN. The SGSN decodes the MS-Info-Change-Reporting-Action IE in the CPCR, the UPCQ, and the UPCUPCR messages received from the GGSN that request the SGSN to check user locations.

The SGSN uses cell update procedures, location reporting procedures, and routing area update (RAU) procedures to identify changes in the serving cell (2G), or in the service area (3G), or in the routing area respectively to identify location changes. In a 2G network, the SGSN sends location information to the GGSN when it receives a cell update from a BSC. In a 3G network, the SGSN sends information to the GGSN when it receives location reports from the RNC. If the GGSN subscribes to the RAI changes and the UE performs an RAU, then the SGSN informs the GGSN of the new RAI.

Call Flows

The following call flows illustrate system behavior when the feature is enabled.

Figure 18. 2G Subscription

1. Subscription is created.
2. Determines if subscription is present.
3. Location is sent to all GGSNs to which the UE subscribes.
Figure 19. 3G Subscription

1. **CPCR/UPCO/UPCR Report Location**
2. **Location Report Control (Start Service Area Change)**
3. **Location Report/RAU**
4. **MS Info Change Notification Request**
5. **MS Info Change Notification Response**

Subscription SAI or RAI if SAI Subscriber with

If Subscription is Present, Send Location to GGSN

Figure 20. Delete Subscription

1. **CPCR/UPCO/UPCR MS Info Change Notification Response (Stop Location Report)**
2. **Location Report Control (Start Service Area Change)**

Delete Subscription when:
1. All PDUs are deactivated.
2. Stop Location Report is received in CPCR/UPCO/MS Info Change Notification Response.
 If a Subscription for SAI, then send Stop Service Area Change Message to RNC.

Configuring Location Change Reporting

By default, Location Change Reporting is disabled. Reporting to the GGSN is easily enabled in the Call Control Profile configuration mode.

The following configuration enables this feature:

```
config
  call-control-profile <cc_profile_name>
    location-reporting { gprs | umts }
  exit
```

Notes:
- The command can be repeated to enable location change reporting for GPRS (2G) and UMTS (3G).

The following configuration disables this feature:

```
config
  call-control-profile <cc_profile_name>
    remove location-reporting { gprs | umts }
  exit
```

Notes:
- Using the `remove` keyword with the command disables the feature.

Verifying the Location Change Reporting Configuration

This section explains how to display the configuration after saving it in the .cfg file as described in the System Administration Guide.

Verification for the call control profile configuration is accomplished via the corresponding show command in Exec Mode:

```
show call-control-profile
```

[local]S4SGSN_Sim# show call-control-profile full name ccpfl

Call Control Profile Name = ccpfl

<table>
<thead>
<tr>
<th>Accounting Mode (SGW)</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPRS Attach All</td>
<td>Allow</td>
</tr>
<tr>
<td>GPRS Attach All Failure Code</td>
<td>14</td>
</tr>
</tbody>
</table>
UMTS Attach All : Allow
UMTS Attach All Failure Code : 14

Location Reporting for UMTS : Enabled
Location Reporting for GPRS : Enabled
EPS Attach Restrict
Voice Unsupported : FALSE
IMSI Attach Fail : FALSE
CSFB Restrictions
Chapter 6
Attach Rate Throttling

This chapter describes the Attach rate throttling feature and includes the following topics:

- Feature Description
- How it Works
- Configuring the Attach Rate Throttling Feature
- Monitoring and Troubleshooting the Attach Rate Throttling Feature
Feature Description

The SGSN is located at the core of the GPRS Network. It is connected to several nodes in the network like the HLR, GGSN, MSC/VLR, and RNC/BSC so on.

The diagram below depicts the SGSN and its network connections in a GPRS Network.

Figure 21. SGSN in a GPRS Network.
How it Works

Attach Rate Throttling Feature

The Mobile Stations access the services of a GPRS Network by attaching themselves to the network through SGSN nodes. The SGSN can process more than “5000” such attach requests per second. In a typical network the SGSN can be connected to other network elements over a narrow band link and these network elements may not be able to process requests at high rates such as the SGSN. This may lead to an overload condition in other network elements. To prevent such scenarios, the Attach Rate throttling feature is designed, this feature limits the rate at which the SGSN processes requests.

The diagram below depicts the high level software architecture in a SGSN node:

Figure 22. Software architecture in a SGSN node.

In a SGSN node the Link Manager/Gb Managers and the IMSI Manager perform the following tasks:

1. **Link Manager/GbManager:** Manages the links towards different network elements such as RNC, HLR so on. The Attach requests and ISRAU requests received on the Link Manager/Gb Manager are sent to the IMSI Manager.

2. **IMSI Manager:** The IMSI Manager assigns the new connection requests to the various Session Managers. The assignment is done after verifying the load on the Session Managers. The Attach Rate Throttling feature is implemented at the IMSI Manager.

 The IMSI manager is responsible for identifying the Session Manager to handle the incoming requests. The requests are then queued for the identified Session Manager. These queues are processed at the maximum possible rate. With the introduction of Attach Rate Throttling feature, an intermediary queue is introduced which buffers the incoming requests and processes these requests at the rate configured by the operator. The requests from the intermediary queue are
processed at the configured attach rate and then forwarded to the identified Session Manager queue for normal processing. This allows the operator to cap the rate at which new requests are accepted by the SGSN. An overload scenario can be prevented with the introduction of the Attach Rate Throttling feature. The intermediary queues are operational only when the Attach Rate Throttling feature is enabled. If the feature is disabled, attach requests are directly queued for processing at the identified Session Manager.

Limitations

The operator must ensure that an optimal attach rate must be configured based on the network conditions:

1. If the incoming requests arrive at a very high rate and the attach rate configured to a very low rate, the requests will be dropped from the intermediary queue once the queue is full. The IMSI Manager can send a reject response with the appropriate reject cause codes for such all dropped requests or silently drop the requests.
2. If the configured attach rate is very low, the requests waiting time in the queue increases. The "t3310" timer at the MS expires and the MS will have to re-transmit the request. The IMSI Manager drops all requests which have waited in the queue for more than the configured wait time.

The configured Attach rate must have an optimal processing rate and waiting time.
Configuring the Attach Rate Throttling Feature

The following command is used to configure the Attach Rate Throttling feature, this command configures an attach rate throttle mechanism to control the number of new connections (attaches or inter-SGSN RAUs), through the SGSN, on a per second basis:

```
config

    network-overload-protection sgsn-new-connections-per-second #_new_connections action { drop | reject with cause { congestion | network failure } } [ queue-size queue_size ] [ wait-time wait_time ] default network-overload-protection sgsn-new-connections-per-second

    exit
```

Notes:

- The default mode of the command disables the Attach Rate Throttling feature.
- For detailed information on the command see, Cisco ASR 5x00 Command Line Interface Reference.
Monitoring and Troubleshooting the Attach Rate Throttling Feature

Attach Rate Throttling Show Commands and Outputs

This section provides information regarding show commands and/or their outputs in support of the Attach Rate Throttling feature.

The counters for this feature are available under the show command `show gmm-sm statistics`, as a part of the Network Overload Protection counters.

- Network Overload Protection
 - Number of valid packets processed in the last sec.
 - Number of packets in Q in the last tick
 - Packets to be dequeued in the last tick
 - Number of new requests processed from the pacing queue in the last tick
 - Number of requests dropped from the pacing queue in the last tick
 - Average Number of requests processed per min (1 min)
 - Average Number of requests processed per min (5 min)
 - Average Number of requests processed per min (10 min)
Chapter 7
Direct Tunnel

This chapter briefly describes the 3G/4G UMTS direct tunnel (DT) feature, indicates how it is implemented on various systems on a per call basis, and provides feature configuration procedures.

Products supporting direct tunnel include:

- 3G devices (per 3GPP TS 23.919 v8.0.0):
 - the Serving GPRS Support Node (SGSN)
 - the Gateway GPRS Support Node (GGSN)
- LTE devices (per 3GPP TS 23.401 v8.3.0):
 - Serving Gateway (S-GW)
 - PDN Gateway (P-GW)

Important: Direct tunnel is a licensed Cisco feature. A separate feature license is required for configuration. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.

The SGSN determines if setup of a direct tunnel is allowed or disallowed. Currently, the SGSN and S-GW are the only products that provide configuration commands for this feature. All other products that support direct tunnel do so by default.

This chapter provides the following information:

- Direct Tunnel Feature Overview
- Direct Tunnel Configuration
Direct Tunnel Feature Overview

The direct tunnel architecture allows the establishment of a direct *user plane* (GTP-U) tunnel between the radio access network equipment (RNC) and the GGSN/P-GW.

Once a direct tunnel is established, the SGSN/S-GW continues to handle the *control plane* (RANAP/GTP-C) signaling and retains the responsibility of making the decision to establish direct tunnel at PDN context activation.

A direct tunnel improves the user experience (for example, expedites web page delivery, reduces round trip delay for conversational services) by eliminating switching latency from the user plane. An additional advantage, direct tunnel functionality implements optimization to improve the usage of user plane resources (and hardware) by removing the requirement from the SGSN/S-GW to handle the user plane processing.

A direct tunnel is achieved upon PDN context activation in the following ways:

- **3G network**: The SGSN establishes a user plane (GTP-U) tunnel directly between the RNC and the GGSN, using an Updated PDN Context Request toward the GGSN.
1. Direct Tunneling - 3G Network

- **LTE network**: When Gn/Gp interworking with pre-release 8 (3GPP) SGSNs is enabled, the GGSN service on the P-GW supports direct tunnel functionality. The SGSN establishes a user plane (GTP-U) tunnel directly between the RNC and the GGSN/P-GW, using an Update PDN Context Request toward the GGSN/P-GW.

2. Direct Tunneling - LTE Network, GTP-U Tunnel

- **LTE network**: The SGSN establishes a user plane tunnel (GTP-U tunnel over an S12 interface) directly between the RNC and the S-GW, using an Update PDN Context Request toward the S-GW.
A major consequence of deploying a direct tunnel is that it produces a significant increase in control plane load on both the SGSN/S-GW and GGSN/P-GW components of the packet core. Hence, deployment requires highly scalable GGSNs/P-GWs since the volume and frequency of Update PDP Context messages to the GGSN/P-GW will increase substantially. The SGSN/S-GW platform capabilities ensure control plane capacity will not be a limiting factor with direct tunnel deployment.

The following figure illustrates the logic used within the SGSN/S-GW to determine if a direct tunnel will be setup.
Figure 24. Direct Tunneling - Establishment Logic

- IMSI check
 - Matched operator policy for MS?
 - YES
 - DT permitted by operator policy?
 - YES
 - Matched APN or IMEI profile for PDP context?
 - YES
 - DT restricted by RNC config?
 - YES
 - No Direct Tunnel
 - NO
 - DT restricted by SGTP service config?
 - YES
 - DT restricted by APN profile?
 - YES
 - No Direct Tunnel
 - NO
 - Direct Tunnel
 - NO
 - NO

335145
Direct Tunnel Configuration

The following configurations are provided in this section:

- Configuring Direct Tunnel Support on the SGSN
- Configuring S12 Direct Tunnel Support on the S-GW

The SGSN/S-GW direct tunnel functionality is enabled within an operator policy configuration. One aspect of an operator policy is to allow or disallow the setup of direct GTP-U tunnels. If no operator policies are configured, the system looks at the settings in the system operator policy named default.

By default, direct tunnel support is

- disallowed on the SGSN/S-GW
- allowed on the GGSN/P-GW.

Important: If direct tunnel is allowed in the default operator policy, then any incoming call that does not have an applicable operator policy configured will have direct tunnel allowed.

For more information about operator policies and configuration details, refer to Operator Policy.

Configuring Direct Tunnel Support on the SGSN

The following is a high-level view of the steps, and the associated configuration examples, to configure the SGSN to setup a direct tunnel.

Before beginning any of the following procedures, you must have completed (1) the basic service configuration for the SGSN, as described in the Cisco ASR Serving GPRS Support Node Administration Guide, and (2) the creation and configuration of a valid operator policy, as described in the Operator Policy chapter in this guide.

Step 1 Configure the SGSN to setup GTP-U direct tunnel between an RNC and an access gateway by applying the example configuration presented in the Enabling Setup of GTP-U Direct Tunnels section below.

Step 2 Configure the SGSN to allow GTP-U direct tunnels to an access gateway, for a call filtered on the basis of the APN, by applying the example configuration presented in the Enabling Direct Tunnel per APN section below.

Important: It is only necessary to complete either step 2 or step 3 as a direct tunnel can not be setup on the basis of call filtering matched with both an APN profile and an IMEI profile.

Step 3 Configure the SGSN to allow GTP-U direct tunnels to a GGSN, for a call filtered on the basis of the IMEI, by applying the example configuration presented in the Enabling Direct Tunnel per IMEI section below.

Step 4 Configure the SGSN to allow GTP-U direct tunnel setup from a specific RNC by applying the example configuration presented in the Enabling Direct Tunnel to Specific RNCs section below.

Step 5 *(Optional)* Configure the SGSN to disallow direct tunnel setup to a single GGSN that has been configured to allow it in the APN profile. This command allows the operator to restrict use of a GGSN for any reason, such as load balancing. Refer to the direct-tunnel-disabled-ggsn command in the SGTP Service Configuration Mode chapter of the Command Line Interface Reference.
Step 6 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Step 7 Check that your configuration changes have been saved by using the sample configuration found in the Verifying the SGSN Direct Tunnel Configuration section in this chapter.

Enabling Setup of GTP-U Direct Tunnels

The SGSN determines whether a direct tunnel can be setup and by default the SGSN doesn’t support direct tunnel.

Example Configuration

Enabling direct tunnel setup on an SGSN is done by configuring direct tunnel support in a call-control profile.

```
config
call-control-profile <policy_name>
  direct-tunnel attempt-when-permitted
end
```

Notes:
- A call-control profile must have been previously created, configured, and associated with a previously created, configured, and valid operator policy. For information about operator policy creation/configuration, refer to the Operator Policy chapter in this guide.
- Direct tunnel is now allowed on the SGSN but will only setup if allowed on both the destination node and the RNC.

Enabling Direct Tunnel per APN

In each operator policy, APN profiles are configured to connect to one or more GGSNs and to control the direct tunnel access to that GGSN based on call filtering by APN. Multiple APN profiles can be configured peroperator policy.

By default, APN-based direct tunnel functionality is allowed so any existing direct tunnel configuration must be removed to return to default and to ensure that the setup has not been restricted.

Example Configuration

The following is an example of the commands used to ensure that direct tunneling, to a GGSN(s) identified in the APN profile, is enabled:

```
config
  apn-profile <profile_name>
    remove direct tunnel
end
```

Notes:
An APN profile must have been previously created, configured, and associated with a previously created, configured, and valid operator policy. For information about operator policy creation/configuration, refer to the Operator Policy chapter in this guide.

Direct tunnel is now allowed for the APN but will only setup if also allowed on the RNC.

Enabling Direct Tunnel per IMEI

Some operator policy filtering of calls is done on the basis of international mobile equipment identity (IMEI) so the direct tunnel setup may rely upon the feature configuration in the IMEI profile.

The IMEI profile basis its permissions for direct tunnel on the RNC configuration associated with the IuPS service. By default, direct tunnel functionality is enabled for all RNCs.

Example Configuration

The following is an example of the commands used to enable direct tunneling in the IMEI profile:

```bash
config
  imei-profile <profile_name>
    direct-tunnel check-iups-service
  end
```

Notes:

- An IMEI profile must have been previously created, configured, and associated with a previously created, configured, and valid operator policy. For information about operator policy creation/configuration, refer to the Operator Policy chapter in this guide.

- Direct tunnel is now allowed for calls within the IMEI range associated with the IMEI profile but a direct tunnel will only setup if also allowed on the RNC.

Enabling Direct Tunnel to Specific RNCs

SGSN access to radio access controllers (RNCs) is configured in the IuPS service.

Each IuPS service can include multiple RNC configurations that determine communications and features depending on the RNC.

By default, direct tunnel functionality is enabled for all RNCs.

Example Configuration

The following is an example of the commands used to ensure that restrictive configuration is removed and direct tunnel for the RNC is enabled:

```bash
config
  context <ctx_name>
    iups-service <service_name>
      rnc id <rnc_id>
```
default direct-tunnel

end

Notes:
- An IuPS service must have been previously created, and configured.
- An RNC configuration must have been previously created within an IuPS service configuration.
- Command details for configuration can be found in the Command Line Interface Reference.

Verifying the SGSN Direct Tunnel Configuration

Enabling the setup of a GTP-U direct tunnel on the SGSN is not a straight forward task. It is controlled by an operator policy with related configuration in multiple components. Each of these component configurations must be checked to ensure that the direct tunnel configuration has been completed. You need to begin with the operator policy itself.

Verifying the Operator Policy Configuration

For the feature to be enabled, it must be allowed in the call-control profile and the call-control profile must be associated with an operator policy. As well, either an APN profile or an IMEI profile must have been created/configured and associated with the same operator policy. Use the following command to display and verify the operator policy and the association of the required profiles:

```
show operator-policy full name <policy_name>
```

The output of this command displays profiles associated with the operator policy.

```
[local]asr5x00# show operator-policy full name oppolicy1
Operator Policy Name = oppolicy1

Call Control Profile Name : ccprofile1
Validity : Valid
IMEI Range 99999999999990 to 99999999999995
IMEI Profile Name : imeiprofile1
Validity : Invalid
APN NI homers1
   APN Profile Name : apnprofile1
   Validity : Valid
APN NI visitors2
   APN Profile Name : apnprofile2
   Validity : Invalid
```

Notes:
- Validity refers to the status of the profile. Valid indicates that profile has been created and associated with the policy. Invalid means only the name of the profile has been associated with the policy.
- The operator policy itself will only be valid if one or more IMSI ranges have been associated with it - refer to the Operator Policy chapter, in this guide, for details.

Verifying the Call-Control Profile Configuration

Use the following command to display and verify the direct tunnel configuration for the call-control profiles:

```
show call-control-profile full name <profile_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified call-control profile.

```
Call Control Profile Name = ccprofile1
...
Re-Authentication : Disabled
Direct Tunnel : Not Restricted
GTPU Fast Path : Disabled
```

Verifying the APN Profile Configuration

Use the following command to display and verify the direct tunnel configuration in the APN profile:

```
show apn-profile full name <profile_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified APN profile.

```
Call Control Profile Name = apnprofile1
...
IP Source Validation : Disabled
Direct Tunnel : Not Restricted
Service Restriction for Access Type > UMTS : Disabled
```

Verifying the IMEI Profile Configuration

Use the following command to display and verify the direct tunnel configuration in the IMEI profile:

```
show imei-profile full name <profile_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified IMEI profile.

```
IMEI Profile Name = imeiprofile1
```
Verifying the RNC Configuration

Use the following command to display and verify the direct tunnel configuration in the RNC configuration:

```
show iups-service name <service_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified IuPS service.

```
IService name : iups1
...
Available RNC:
  Rnc-Id : 1
  Direct Tunnel : Not Restricted
```

Configuring S12 Direct Tunnel Support on the S-GW

The example in this section configures an S12 interface supporting direct tunnel bypass of the S4 SGSN for inter-RAT handovers.

The direct tunnel capability on the S-GW is enabled by configuring an S12 interface. The S4 SGSN is then responsible for creating the direct tunnel by sending an FTEID in a control message to the MME over the S3 interface. The MME forwards the FTEID to the S-GW over the S11 interfaces. The S-GW responds with its own U-FTEID providing the SGSN with the identification information required to set up the direct tunnel over the S12 interface.

Use the following example to configure this feature:

```
configure

  context <egress_context_name> -noconfirm

  interface <s12_interface_name>

    ip address <s12_ipv4_address_primary>

    ip address <s12_ipv4_address_secondary>

  exit

  exit

  port ethernet <slot_number/port_number>

    no shutdown

    bind interface <s12_interface_name> <egress_context_name>
```
exit
c
context <egress_context_name> -noconfirm
gtpu-service <s12_gtpu_egress_service_name>
 bind ipv4-address <s12_interface_ip_address>
 exit
gtpe-service <s12_egtp_egress_service_name>
 interface-type interface-sgw-egress
 validation-mode default
 associate gtpu-service <s12_gtpu_egress_service_name>
 gtpc bind address <s12_interface_ip_address>
 exit
sgw-service <sgw_service_name> -noconfirm
 associate egress-proto gtp egress-context <egress_context_name> egtp-service <s12_egtp_egress_service_name>
end

Notes:

- The S12 interface IP address(es) can also be specified as IPv6 addresses using the ipv6 address command.
Chapter 8
Direct Tunnelling for the S4-SGSN

This chapter describes S4-SGSN support for Direct Tunnel (DT) functionality over the S12 interface to optimize packet data traffic. Included information for this feature are:

Important: This feature is present in the code base, but is not fully qualified and is recommended for Lab and Field trials only. This feature will be qualified in the next planned release.

- Feature Description
- How It Works
- Configuring Direct Tunnel on an S4-SGSN
- Monitoring and Troubleshooting Direct Tunnel
Feature Description

The amount of user plane data will increase significantly during the next few years because of High Speed Packet Access (HSPA) and IP Multimedia Subsystem technologies. Direct tunnelling of user plane data between the RNC and the S-GW can be employed to scale UMTS system architecture to support higher traffic rates.

DT offers a solution that optimizes core architecture without impact to UEs and can be deployed independently of the LTE/SAE architecture.

S4-SGSN now supports establishment of a GTP-U direct tunnel between an RNC and the S-GW under the scenarios listed below:

- Primary PDP activation
- Secondary PDP activation
- Service Request Procedure
- Intra SGSN Routing Area Update without S-GW change
- Intra SGSN Routing Area Update with S-GW change
- Intra SGSN SRNS relocation without S-GW change
- Intra SGSN SRNS relocation with S-GW change
- New SGSN SRNS relocation with S-GW change
- New SGSN SRNS relocation without S-GW relocation
- E-UTRAN-to-UTRAN Iu mode IRAT handover with application of S12U FTEID for Indirect Data Forwarding Tunnels as well
- UTRAN-to-E-UTRAN Iu mode IRAT handover with application of S12U FTEID for Indirect Data Forwarding Tunnels as well
- Network Initiated PDP Activation

Scenarios that vary at S4-SGSN when direct tunneling is enabled, as compared to DT on a 2G or 3G SGSN using the Gn interface, include:

- RAB Release
- Iu Release
- Error Indication from RNC
- Downlink Data Notification from S-GW
- Downlink Data Error Indication from S-GW
- MS Initiated PDP Modification
- P-GW Initiated PDP Modification while the UE is IDLE
- HLR/HSS Initiated PDP Modification
- Session Recovery with Direct Tunnel

The above scenarios exhibit procedural differences in S4-SGSN when a direct tunnel is established.
Direct Tunnelling for the S4-SGSN

DT functionality enables direct user plane tunnel between RNC and SGW within the PS domain. With direct tunneling the SGSN provides the RNC with the TEID and user plane address of the S-GW, and also provides the S-GW with the TEID and user plane address of the RNC.

The SGSN handles the control plane signaling and makes the decision when to establish the direct tunnel between RNC and S-GW, or use two tunnels for this purpose (based on configuration).
How It Works

Establishment of Direct Tunnel

The S4-SGSN uses the S12 interface for DT.

Direct Tunnel Activation for Primary PDP Context

For the PDP Context Activation procedure this solution uses new information elements (IEs) for the GPRS Tunnelling Protocol v2 (GTPv2) as defined in TS 29.274. SGSN provides the user plane addresses for RNC and S-GW as S12U FTEIDs as illustrated in the figure below.

The sequence for establishing a direct tunnel between the RNC and S-GW during PDP activation is as follows:

- SGSN sends a Create Session Request to the S-GW with the indication flag DTF (direct tunnel flag) bit set
- In its Create Session Response, the S-GW sends the SGSN an S12U FTEID (Fully Qualified Tunnel Endpoint Identifier).
- The SGSN forwards the S-GW S12U to the RNC during the RAB Assignment Request.
- In its RAB Assignment Response, the RNC sends the SGSN its transport address and Tunnel Endpoint ID (TEID).
- The SGSN forwards the RNC S12 U FTEID to the S-GW via a Modify Bearer Request.

Figure 25. Primary PDP Activation with Direct Tunnel
Direct Tunnel Activation for UE Initiated Secondary PDP Context

The following is the general sequence for establishing a direct tunnel for a Secondary PDP Context Activation:

- The SGSN sends a Bearer Resource Command to the S-GW with no flags set. (S-GW already knows Direct Tunnel is enabled for primary.)
- The S-GW sends a Create Bearer Response that includes the S12U FTEID to the SGSN.
- The SGSN forwards the S-GW S12U to RNC via a RAB Assignment Request.
- In its RAB Assignment Response, the RNC sends its transport address and TEID to the SGSN.
- The SGSN forwards the S12U TEID received from the RNC to the S-GW via a Create Bearer Response.

Figure 26. Secondary PDP Activation with Direct Tunnel

RAB Release with Direct Tunnel

If the SGSN receives a RAB Release Request from the RNC for bearer contexts activated with Direct Tunnel, it sends a Release Access Bearer Request to the S-GW.

Upon receiving the Release Access Bearer Request, the S-GW removes the S12 U RNC FTEID. If any downlink data appears, the S-GW sends a Downlink Data Notification because it does not have a user plane FTEID with which to forward data.

Bearers with a streaming or conversational class will not be included in the Release Access Bearer Request because these bearers should be deactivated. However, S4-SGSN currently does not support deactivation of streaming/conversational bearers upon RAB release.
Important: Operators should not use conversational or streaming class bearers in S4-SGSN.

Iu Release with Direct Tunnel

If the SGSN receives an Iu Release and bearers are activated with direct tunneling, it sends a Release Access Bearer Request to the S-GW.

Bearers with a streaming or conversational class will not be included in the Release Access Bearer Request because these bearers should be deactivated. However, S4-SGSN currently does not support deactivation of streaming or conversational bearers upon Iu release.

Important: Operators should not use conversational or streaming class bearers in S4-SGSN.
Service Request with Direct Tunnel

When a UE is Idle and wants to establish a data or signaling connection, it sends a Service Request for data. Alternatively a UE can also send a Service Request to the SGSN when it is paged by the SGSN.

Upon receiving a Service Request for data, the SGSN establishes RABs and sends a Modify Bearer Request to the S-GW with the 12U FTEID received from the RNC.

Downlink Data Notification with Direct Tunnel when UE in Connected State

When RABs are released (but UE retains an Iu connection with the SGSN), the SGSN notifies the S-GW to release the RNC side TEIDs via a Release Access Bearer Request.

If the S-GW receives any downlink GTPU data from the P-GW after receiving the Release Access Bearer Request, it knows neither the RNC TEID nor SGSN user plane TEID to which to forward the data. So it signals the SGSN to establish the RABs. This signaling message is a Downlink Data Notification message from the S-GW.

If the Downlink Data Notification is received from the S-GW, all of the missing RABs are established and a Modify Bearer Request is sent to the S-GW with the RNC S12U FTEID.
Downlink Data Notification with Direct Tunnel when UE in Idle State

When an Iu is released the UE goes IDLE. The SGSN informs the S-GW to release the RNC side TEIDs by sending a Release Access Bearer Request. After this point if the S-GW receives any downlink GTPU data from the P-GW, it knows neither the RNC TEID nor SGSN user plane TEID to which to forward the data.

If the S-GW receives any downlink GTPU data after receiving the Release Access Bearer Request, it knows neither the RNC TEID nor SGSN user plane TEID to which to forward the data. So it signals the SGSN to establish the RABs. This signaling message is a Downlink Data Notification from the S-GW. If a Downlink Data Notification is received from S-GW when the UE is idle, the SGSN pages the UE before establishing the RABs. The SGSN sends a Modify Bearer Request to the S-GW with the RNC S12U FTEID.
Intra SGSN Routing Area Update without SGW Change

For a Routing Area Update without an S-GW change with Direct Tunnel, the SGSN sends a Modify Bearer Request to the S-GW with the RNC FTEID. The SGSN will establish RABs with the target RNC only if the RABs were present with the source RNC.

Figure 32. Routing Area Update Procedure without SGW Change

The table below includes detailed behaviors for a Routing Area Update without S-GW change.

Table 13. Routing Area Update without S-GW Change Behavior Table

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>No</td>
<td>Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. No Modify Bearer Request to S-GW</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>No</td>
<td>Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. No Modify Bearer Request to S-GW</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>Some RABs</td>
<td>Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>No</td>
<td>Only the present RABs are established. MBR sent to S-GW with the bearers with RABs that are be modified and the rest released. The bearers without RABs will be deactivated post RAU. If PLMN changed then MBR will carry the new PLMN ID.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Yes</td>
<td>Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. MBR is sent with only PLMN change. Bearer Context will not carry any TEID.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Yes</td>
<td>Supported</td>
<td>No</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>
How It Works

Direct Tunnelling for the S4-SGSN

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>No</td>
<td>Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. Modify Bearer Request to S-GW with DTF set and no user FTEID.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>No</td>
<td>Supported</td>
<td>No</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>Some RABs</td>
<td>Not Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>No</td>
<td>Only the present RABs are established. MBR sent to S-GW with the bearers with RABs to be modified and the rest to be released. The bearers without RABs will be deactivated post RAU. If PLMN changed then MBR will carry the new PLMN ID. Modify Bearer.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>Yes</td>
<td>Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. MBR is sent with only PLMN change. SGSN will page / Service req / establish RABs when a downlink data notification is received.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>Yes</td>
<td>Supported</td>
<td>No</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

Intra RAU: New RNC does not support Direct Tunnel. No SGW relocation

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Do not care</td>
<td>Not Supported</td>
<td>No</td>
<td>No RAB establishment with new RNC. SGSN sends Modify Bearer Request to S-GW with S4U TEID. If there is change in PLMN ID, then new PLMN ID will be carried.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Do not care</td>
<td>No Supported</td>
<td>No</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>Some RABs</td>
<td>Supported</td>
<td>Do not care</td>
<td>Not supported</td>
<td>No</td>
<td>Only the present RABs are established. MBR sent to S-GW with all bearers having S4U TEID. If there is change in PLMN ID, the new PLMN ID will be carried.</td>
</tr>
</tbody>
</table>

Routing Area Update with S-GW Change

In a Routing Area Update with an S-GW change, the SGSN sends a Create Session Request with DTF flag set and no user plane FTEID. In its Create Session Response, the S-GW sends an S12U FTEID which is forwarded to the RNC via a RAB Assignment Request.

The SGSN sends the RNC FTEID received in the RAB Assignment Response to the S-GW in a Modify Bearer Request. There are many scenarios to consider during Intra SGSN RAU.
Figure 33. Routing Area Update Procedure with SGW Change

The table below includes detailed behaviors for a Routing Area Update with S-GW change.

Table 14. Routing Area Update with S-GW Change Behavior Table

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU: Both RNCs support Direct Tunnel. SGW relocation</td>
<td>[Intra RAU Not Present]</td>
<td>No RAB</td>
<td>Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>Yes</td>
<td>Send CSR request to new S-GW with DTF flag but no S4U / S12U FTEID. S-GW will send its S12U TEID that SGSN stores as part of DP's remote TEID. SGSN will not initiate any MBR request to S-GW since no RABs are established with new RNC. If S-GW subsequently gets downlink data, SGSN will get DDN and establish RABs and send MBR.</td>
</tr>
</tbody>
</table>
| Intra RAU: Old RNC does not support Direct Tunnel. SGW relocation | \[Intra RAU Present \] | Some RABs | Supported | Do not care | Supported | Yes | Send CSR request to new S-GW with DTF flag but no S4U / S12U FTEID. S-GW sends its S12U TEID. RABs that are present will be established with new RNC. MBR will be initiated only with those RABs that are present; rest of bearers to be removed.
How It Works

Direct Tunnelling for the S4-SGSN

Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>Yes</td>
<td>Send CSR request to new S-GW with DTF flag but no S4U / S12U FTEID. S-GW sends its S12U TEID that SGSN stores as part of our DP's remote TEID. SGSN will not initiate any MBR request to S-GW since no RABs are established with new RNC. If S-GW subsequently gets downlink data, SGSN gets DDN and establishes RABs and sends MBR.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>present</td>
<td>No RAB</td>
<td>Not Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>Yes</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>Some RABs</td>
<td>Not Supported</td>
<td>Do not care</td>
<td>Supported</td>
<td>Yes</td>
<td>Send CSR request to new S-GW with DTF flag but no S4U / S12U FTEID. S-GW sends its S12U TEID. RABs that are present will be established with new RNC and MBR will be initiated only with those RABs that are present and the rest as bearers to be removed.</td>
</tr>
</tbody>
</table>

Intra RAU: New RNC does not support Direct Tunnel. SGW relocation

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Old RNC Status</th>
<th>Old RNC RAB</th>
<th>Old RNC DT Status</th>
<th>PLMN Change</th>
<th>NEW RNC DT Status</th>
<th>S-GW Change</th>
<th>SGSN Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra RAU</td>
<td>Not Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Do not care</td>
<td>Not Supported</td>
<td>Yes</td>
<td>CSR request without DTF flag and with S4U FTEID.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>No RAB</td>
<td>Supported</td>
<td>Do not care</td>
<td>Not Supported</td>
<td>Yes</td>
<td>CSR request without DTF flag and with S4U FTEID.</td>
</tr>
<tr>
<td>Intra RAU</td>
<td>Present</td>
<td>Some RABs</td>
<td>Supported</td>
<td>Do not care</td>
<td>Not Supported</td>
<td>Yes</td>
<td>CSR request without DTF flag and with S4U FTEID. No deactivation of PDPs.</td>
</tr>
</tbody>
</table>

Intra SRNS with S-GW Change

In Intra SRNS (Serving Radio Network Subsystem) with S-GW change, the SGSN sends a Create Session Request with DTF flag set and no user plane FTEID. The Create Session Response from the new S-GW contains the SGW S12U FTEID which the SGSN forwards to the Target RNC in a Relocation Request.

The SGSN sends the RNC S12U FTEID to the new S-GW in a Modify Bearer Request.
The table below includes detailed behaviors for intra SRNS scenarios.

Intra SRNS without S-GW Change

In Intra SRNS without S-GW change, a Relocation Request is sent with SGW S12U FTEID. The RNC S12U FTEID received is forwarded to the S-GW in a Modify Bearer Request.
The table below includes detailed behaviors for intra SRNS scenarios.

Table 15. Intra SRNS Behaviors

<table>
<thead>
<tr>
<th>Old RNC DT Status</th>
<th>New RNC DT Status</th>
<th>S-GW Relocation</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>No</td>
<td>Relocation Request to Target RNC is sent with S-GW S12 U FTEID. Modify Bearer Request to S-GW is sent with RNC S12 U FTEID.</td>
</tr>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>No</td>
<td>Relocation Request to Target RNC is sent with SGSN S4 U FTEID. Modify Bearer Request to S-GW is sent with SGSN S4 U FTEID.</td>
</tr>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>No</td>
<td>Relocation Request to Target RNC is sent with S-GW S12U FTEID. Modify Bearer Request to S-GW is sent with RNC S12 U FTEID.</td>
</tr>
</tbody>
</table>
How It Works

<table>
<thead>
<tr>
<th>Old RNC DT Status</th>
<th>New RNC DT Status</th>
<th>S-GW Relocation</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Yes</td>
<td>Create Session Request to new S-GW is sent with DTF flag set and no user plane FTEID. Even if S-GW sent S4U FTEID in CSR Response SGSN internally treats that as an S12U FTEID and continues the relocation. Relocation Request to Target RNC is sent with S12 U FTEID received in Create Session Response. Modify Bearer Request to new S-GW is sent with RNC S12U FTEID</td>
</tr>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Yes</td>
<td>Create Session Request to new SGW is sent with S4 U FTEID. Relocation Request to Target RNC is sent with SGSN U FTEID. Modify Bearer Request is sent with SGSN S4U FTEID.</td>
</tr>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Yes</td>
<td>SGSN sends a Create Session Request to new SGW with DTF flag set and no user plane FTEID. Even if S-GW sent S4U FTEID in CSR Response, SGSN will internally treat that as S12U FTEID and continue the relocation. Relocation Request to the Target RNC is sent with the S12 U FTEID received in the Create Session Response. Modify Bearer Request to new S-GW is sent with RNC U FTEID.</td>
</tr>
</tbody>
</table>

New SRNS with S-GW Change and Direct Data Transfer

The new SGSN sends a Create Session Request with DTF flag set and no user plane FTEID to the new S-GW. The new SGSN sends the SGW S12U FTEID received in the Create Session Response in Relocation Request to the Target RNC. The new SGSN sends the RNC S12U FTEID received in a Relocation Request Ack to the new S-GW in a Modify Bearer Request.
The table below includes detailed behaviors for New SRNS scenarios.

New SRNS with S-GW Change and Indirect Data Transfer

Indirect Data Transfer (IDFT) during a new SGSN SRNS happens during E-UTRAN-to-UTRAN connected mode IRAT handover. See the figure below for a detailed call flow.
The table below includes detailed behaviors for New SRNS scenarios.
Table 16. New SRNS Behaviors

<table>
<thead>
<tr>
<th>Target RNC DT Status</th>
<th>Direct Forwarding</th>
<th>S-GW Relocation</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>No</td>
<td>No</td>
<td>Relocation Request with SGW S12U FTEID received in Forward Relocation Request. SGSN includes RNC U FTEID in Forward Relocation Response. RNC U FTEID is also sent in Modify Bearer Request with DTF flag set.</td>
</tr>
<tr>
<td>Supported</td>
<td>Yes</td>
<td>No</td>
<td>Relocation Request with SGW S12U FTEID received in Forward Relocation Request. In Forward Relocation Response RNC U FTEID is included. And in Modify Bearer Request RNC U FTEID is sent and DTF flag is set.</td>
</tr>
<tr>
<td>Supported</td>
<td>No</td>
<td>Yes</td>
<td>Create Session Request with DTF flag set and no user plane FTEID. Relocation Request is sent is SGW S12U FTEID received in Create Session Response. Even if SGW sent S4U FTEID in CSR Response we will internally treat that as S12U FTEID and continue the relocation. Create Indirect Data Forwarding Tunnel Request is sent with RNC FTEID received in Relocation Request Acknowledge. In Forward Relocation Response SGW DL U FTEID received in Create IDFT response is sent. Modify Bearer Request is sent with DTF set and RNC U FTEID.</td>
</tr>
<tr>
<td>Supported</td>
<td>Yes</td>
<td>Yes</td>
<td>Create Session Request with DTF flag set and no user plane FTEID. Relocation Request is sent is SGW S12U FTEID received in Create Session Response. Even if SGW sent S4U FTEID in CSR Response we will internally treat that as S12U FTEID and continue the relocation. In Forward Relocation Response RNC FTEID is sent and Modify Bearer Request is sent with DTF flag set and RNC U FTEID.</td>
</tr>
</tbody>
</table>

Old SRNS with Direct Data Transfer

This scenario includes SRNS relocation between two SGSNs and hence IDFT is not applicable. Data will be forwarded between the source and target RNCs directly. Forward Relocation Request is sent with S12U FTEID.
The table below includes detailed behaviors for Old SRNS.

Old SRNS with Indirect Data Transfer

Indirect Data Transfer (IDFT) during Old SGSN SRNS happens during UTRAN-to-E-UTRAN connected mode IRAT handover. A Forward Relocation Request is sent with SGW S12U FTEID.
How It Works

Direct Tunnelling for the S4-SGSN

Figure 39. Old SRNS with Indirect Data Transfer

Table 17. Old SRNS Behaviors

<table>
<thead>
<tr>
<th>Source RNC DT Status</th>
<th>Direct Forwarding</th>
<th>S-GW Relocation</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>No</td>
<td>No</td>
<td>Forward Relocation Request is send with SGW S12 U FTEID. If peer is MME, IDFT is applied. Then a Create Indirect Data Forwarding Tunnel Request is sent with User plane FTEID received in the Forward Relocation Response. This will be the eNB user plane FTEID. The SGW DL forwarding user plane FTEID received in the Create Indirect Data Forwarding Tunnel Response is sent in the Relocation Command.</td>
</tr>
<tr>
<td>Supported</td>
<td>Yes</td>
<td>No</td>
<td>Forward Relocation Request is sent with SGW S12 U FTEID. The eNB / RNC user plane FTEID received in the Forward Relocation Response is sent in the Relocation Command.</td>
</tr>
</tbody>
</table>
Network Initiated Secondary PDP Context Activation

The S-GW sends a Create Bearer Request for Network Initiated Secondary PDP Context Activation with the SGW S12U FTEID. This FTEID is sent in a RAB Assignment Request to the RNC. The RNC S12U FTEID received in the RAB Assignment Response is sent to the S-GW in a Create Bearer Response.

![Network Initiated Secondary PDP Context Activation Diagram](image)

Figure 40. Network Initiated Secondary PDP Context Activation

PGW Init Modification when UE is Idle

If UE is in IDLE state and PGW Init Modification is received, the SGSN sends the first MBR. Upon getting PGW Init Modification in Idle State, the SGSN queues the PGW Init Modification and feeds a Downlink Data Notification internally. This sets up all RABs (using old QoS) and sends a Modify Bearer Request. When the Downlink Data Procedure is completed, the queued PGW Init Modification is processed.
Limitations

During an intra RAU, intra SRNS or Service Request triggered by RAB establishment, if a few RABs fail the Modify Bearer Request the SGSN will mark those RABs as bearers to be removed. Under current specifications, it is not possible to send a Modify Bearer Request with a few bearers having S12U FTEIDs and a few bearers not having U-FTEIDs.

There is an ongoing CR at 3GPP to allow such Modify Bearer Requests and the S-GW should send DDN when it gets downlink data for the bearers that did not have U-FTEIDs. If this CR is approved, the SGSN will support (in a future release) sending a partial set of bearers with S12U FTEID and some bearers without any U-FTEID.

Standards Compliance

The Direct Tunnel complies with the following standards:

- 3GPP TS 23.060 version 10 sec 9.2.2 – General Packet Radio Service (GPRS); Service description
- 3GPP TS 29.274 v10.5.0 – 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C)
Configuring Direct Tunnel on an S4-SGSN

Configuration of a GTP-U direct tunnel (DT) requires enabling DT both in a call control profile and for the RNC.

Important: Direct tunneling must be enabled at both end points to allow direct tunneling for the MS/UE.

Enabling Setup of GTP-U Direct Tunnel

The SGSN determines whether a direct tunnel can be setup and by default the SGSN does not support direct tunnel. The following configuration enables a GTP-U DT in a call control profile:

```
config

call-control-profile <profile_name>

direct-tunnel attempt-when-permitted

end
```

Enabling Direct Tunnel to RNCs

SGSN access to radio access controllers (RNCs) is configured in the IuPS service. Each IuPS service can include multiple RNC configurations that determine communications and features depending on the RNC. By default, DT functionality is enabled for all RNCs.

The following configuration sequence enables DT to a specific RNC that had been previously disabled for direct tunneling:

```
config

context <ctxt_name>

iups-service <service_name>

rnc id <rnc_id>

   default direct-tunnel

end
```

Notes:

- An IuPS service must have been previously created, and configured.
- An RNC configuration must have been previously created within an IuPS service configuration.
- Command details for configuration can be found in the *Command Line Interface Reference.*
Verifying the Call-Control Profile Configuration

Use the following command to display and verify the direct tunnel configuration for the call-control profiles:

```
show call-control-profile full name <profile_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified call-control profile.

Call Control Profile Name = ccprofile1
...
Re-Authentication : Disabled
Direct Tunnel : Not Restricted
GTPU Fast Path : Disabled
..

Verifying the RNC Configuration

Use the following command to display and verify the direct tunnel configuration in the RNC configuration:

```
show iups-service name <service_name>
```

The output of this command displays all of the configuration, including direct tunnel for the specified IuPS service.

IService name : iups1
...
Available RNC:

<table>
<thead>
<tr>
<th>Rnc-Id</th>
<th>Direct Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Restricted</td>
</tr>
</tbody>
</table>
Monitoring and Troubleshooting Direct Tunnel

show subscribers sgsn-only

The output of this command indicates whether Direct Tunnel has been established.

```
show subscribers sgsn-only full all
```

Username: 123456789012345
Access Type: sgsn-pdp-type-ipv4 Network Type: IP
Access Tech: WCDMA UTRAN
NSAPI: 05 Context Type: Primary
Context initiated by: MS
Direct Tunnel : Established

show gmm-sm statistics sm-only

The output of this command indicates the number of total active PDP contexts with direct tunnels.

```
show gmm-sm statistics sm-only
```

Activate PDP Contexts:

```
Total Actv PDP Ctx:

3G-Actv Pdp Ctx: 1  2G-Avtv Pdp Ctx: 0
Gn Interface: 1  Gn Interface: 0
S4 Interface: 1  S4 Interface: 0
Total Actv Pdp Ctx:

with Direct Tunnel: 1
```

Direct Tunnel Bulk Statistics

Currently there are no bulk statistics available to monitor the number of PDP contexts with Direct Tunnel.
Bulk statistics under the EGTPC schema are applicable for both Direct Tunnel and Idle Mode Signalling Reduction (ISR) [3G and 2G]. The following statistics track the release access bearer request and response messages which are sent by the SGSN to the S-GW upon Iu or RAB release when either a direct tunnel or ISR is active:

- tun-sent-relacbearreq
- tun-sent-retransrelacbearreq
- tun-recv-relacbearresp
- tun-recv-relacbearrespDiscard
- tun-recv-relacbearrespaccept
- tun-recv-relacbearrespdenied

The following bulkstats under EGTPC schema track Downlink Data Notification (DDN) Ack and failure messages between the S-GW and the SGSN when either direct tunnel or ISR is active:

- tun-recv-dlinknotif
- tun-recv-dlinknotifDiscard
- tun-recv-dlinknotifNorsp
- tun-recv-retransdlinknotif
- tun-sent-dlinknotifackaccept
- tun-sent-dlinknotifackdenied
- tun-sent-dlinkdatafail

For complete descriptions of these variables, see the EGTPC Schema Statistics chapter in the *Statistics and Counters Reference*.
With the introduction of this feature, the SGSN now supports limited use of event data records (EDRs). This chapter details the SGSN’s event logging feature, with the use of EDRs, which is intended to facilitate subscriber-level troubleshooting. This feature is relevant for StarOS™ Release 12.0 (and higher) software supporting SGSN services within GPRS and UMTS networks.

This chapter provides the following information:

- Feature Description
 - Feature Overview
 - Events to be Logged
 - Event Record Fields
 - EDR Storage
 - Architecture
 - Limitations
- Configuration
Feature Description

Feature Overview

At any one time, the SGSN handles a large number of mobile stations (MS). In order to efficiently troubleshoot any issue for a single subscriber, it is necessary to know the events that have happened for that subscriber. Prior to this event logging feature, the SGSN did not support a debugging method that was event-based per subscriber.

The debugging framework will allow operators to troubleshoot problems related to a particular IMSI. The event logging feature will capture procedure-level information per subscriber. Upon completing a procedure, either successfully or unsuccessfully, the SGSN generates a procedure-summary or event report logging the event.

The SGSN uses the event reports to generate event data record (EDR) files comprised of logged information in comma-separated ASCII values - CSV format. The SGSN sends one ASCII formatted CSV record per line. The CSV records are stored in a file and are optionally compressed before sending to an external server. The storage space in the ASR5K is limited so the CSV records need to be SFTed to an external server periodically. The transfer of the CSV record file from the SGSN and to the external server can be based on configurable PULL or PUSH models. In case of PUSH, the time-interval can be configured at the SGSN.

Events to be Logged

The following subscriber events will be logged:

- Attaches
- Activation of PDP Context
- Routing Area Update (RAU)
- Inter-SGSN RAU (ISRAU)
- Deactivation of PDP Context
- Detaches
- Authentications
- PDP Modifications

Event Record Fields

The EDRs include the following information in CSV format.

Important: If particular information is not relevant or is unavailable for the procedure being logged, then the field is left blank.
<table>
<thead>
<tr>
<th>Field #</th>
<th>Field Content</th>
<th>Field Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>header-field-1</td>
<td>Number from 1 to 512.</td>
</tr>
<tr>
<td>2</td>
<td>header-field-2</td>
<td>Number from 0 to 4294967295.</td>
</tr>
<tr>
<td>3</td>
<td>time</td>
<td>Format: YYYY-MMM-DD+HH:MM:SS</td>
</tr>
<tr>
<td>4</td>
<td>event-identity</td>
<td>Enumeration: Attach(0); Activate(1); LOCAL-RAU (2); NEW-ISRAU (3); OLD-ISRAU (4); Deactivation (5); Detach (6); Authentication (7); Modification (8).</td>
</tr>
<tr>
<td>5</td>
<td>result</td>
<td>Enumeration: Success (0); Reject (1); Aborted (2).</td>
</tr>
<tr>
<td>6</td>
<td>radio type</td>
<td>Enumeration: UTRAN (0); GERAN (1).</td>
</tr>
<tr>
<td>7</td>
<td>ATT type</td>
<td>Enumeration: GPRS-only; Comb.</td>
</tr>
<tr>
<td>8</td>
<td>RAU type</td>
<td>Enumeration: GPRS-only (0); Comb (1); Comb-IMSI-Attach(2); Periodic (3).</td>
</tr>
<tr>
<td>9</td>
<td>intra-RAU type</td>
<td>Enumeration: 2G -> 3G (-); 3G -> 2G (1); 2G -> 2G [Diff Serv] (2); 3G -> 3G [Diff Serv] (3); Local 2G (4); Local 3G (5).</td>
</tr>
<tr>
<td>10</td>
<td>origin-of-deactivation</td>
<td>Enumeration: HLR (0); GGSN (1); LOCAL (2); MS (3).</td>
</tr>
<tr>
<td>11</td>
<td>cause-prot-indicator</td>
<td>Enumeration: GMM(0); GSM(1).</td>
</tr>
<tr>
<td>12</td>
<td>gmm-cause/gsm-cause</td>
<td>Number between 0 and 255 to identify failure cause code. Refer to the 3GPP TS 24.008 specification, sections 10.5.5.14 (GMM cause codes) and 10.5.6.6 (SM cause codes) for an up-to-date listing.</td>
</tr>
<tr>
<td>13</td>
<td>disc-reason</td>
<td>Number 0 to 500 identifies Cisco proprietary detailed reason for session failure. To see the explanation for the SGSN-only disconnect reasons, see Cisco ASR 5000 Series Statistics and Counters Reference.</td>
</tr>
<tr>
<td>14</td>
<td>RAI</td>
<td>Routing area identifier in the format: ddd-ddd-xxxx-xx (d = decimal; x = hex).</td>
</tr>
<tr>
<td>15</td>
<td>Cell ID or SAI</td>
<td>One or the other, depends whether the event is generated in 3G or 2G. An integer between 0 and 65535.</td>
</tr>
<tr>
<td>16</td>
<td>SAC</td>
<td>Service area code, an integer between 0 and 65535.</td>
</tr>
<tr>
<td>17</td>
<td>MSISDN</td>
<td>Mobile subscriber’s ISDN number consisting of 7 to 16 digits.</td>
</tr>
<tr>
<td>18</td>
<td>IMSI</td>
<td>Unique international mobile subscriber identity comprised of 1 to 15 digits.</td>
</tr>
<tr>
<td>19</td>
<td>P-TMSI</td>
<td>The packet-temporary mobile subscriber identity, an integer between 1 and 4294967295.</td>
</tr>
<tr>
<td>20</td>
<td>IMEISV</td>
<td>Unique 16 digit integer that indicates the IMEI with the software version to identify the equipment identity retrieval type.</td>
</tr>
<tr>
<td>21</td>
<td>HLR-number</td>
<td>16 digit integer that identifies a specific HLR.</td>
</tr>
<tr>
<td>22</td>
<td>APN-size</td>
<td>Number 1 to 128.</td>
</tr>
<tr>
<td>23</td>
<td>APN</td>
<td>Dotted alphanumeric string, typically includes the network identifier or the operator identifier to identify the access point node (APN).</td>
</tr>
<tr>
<td>24</td>
<td>GGSN IP</td>
<td>dotted string</td>
</tr>
</tbody>
</table>
Feature Description

Field Description

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field Content</th>
<th>Field Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Old SGSN IP</td>
<td>dotted string</td>
</tr>
<tr>
<td>26</td>
<td>Old RAI</td>
<td>Routing area identifier in the format: ddd-ddd-xxxx-xx (d = decimal; x = hex)</td>
</tr>
<tr>
<td>27</td>
<td>Number of PDP contexts transferred</td>
<td>Number from 1 to 11.</td>
</tr>
<tr>
<td>28</td>
<td>Number of PDP contexts dropped</td>
<td>Number from 1 to 11.</td>
</tr>
<tr>
<td>29</td>
<td>Requested QoS</td>
<td>Hex-digits. Refer to TS 24.008 for encoding.</td>
</tr>
<tr>
<td>30</td>
<td>Negotiated QoS</td>
<td>Hex-digits. Refer to TS 24.008 for encoding.</td>
</tr>
<tr>
<td>31</td>
<td>SGSN-IP-address</td>
<td>dotted string</td>
</tr>
</tbody>
</table>

The following table contains the availability of each field in each of the different event types:

- Type 1 - Attach
- Type 2 - Activate
- Type 3 - Local RAU
- Type 4 - New-ISRAU
- Type 5 - Old-ISRAU
- Type 6 - Deactivation
- Type 7 - Detach
- Type 8 - Authentication
- Type 9 - Modification

Table 19. Occurrence of Fields in Various Event Types

<table>
<thead>
<tr>
<th>Field</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
<th>Type 7</th>
<th>Type 8</th>
<th>Type 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMGR_NUMBER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SEQUENCE_NO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIME</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EVENT-IDENTITY</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RESULT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RADIO-TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ATT-TYPE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAU-TYPE</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRA-RAU TYPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Type 1</td>
<td>Type 2</td>
<td>Type 3</td>
<td>Type 4</td>
<td>Type 5</td>
<td>Type 6</td>
<td>Type 7</td>
<td>Type 8</td>
<td>Type 9</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>ORIGIN-OF-DEACTIVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CAUSE-PROT-INDICATOR</td>
<td>C4</td>
<td>C5</td>
<td>C4</td>
<td>C4</td>
<td>C4</td>
<td>C5</td>
<td>C4</td>
<td>C4</td>
<td>C5</td>
</tr>
<tr>
<td>GMM-CAUSE / GSM-CAUSE</td>
<td>C4</td>
<td>C5</td>
<td>C4</td>
<td>C4</td>
<td>C4</td>
<td>C5</td>
<td>C4</td>
<td>C4</td>
<td>C5</td>
</tr>
<tr>
<td>DISC-REASON</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td>RAI</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSISDN</td>
<td>C3</td>
<td>X</td>
<td>X</td>
<td>C3</td>
<td>X</td>
<td>X</td>
<td>C3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IMSI</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(PTMSI)</td>
<td>C3</td>
<td>X</td>
<td>X</td>
<td>C3</td>
<td>X</td>
<td>X</td>
<td>C3</td>
<td>C3</td>
<td>X</td>
</tr>
<tr>
<td>IMEISV</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
</tr>
<tr>
<td>HLR-NUMBER</td>
<td>C3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C3</td>
<td>C3</td>
<td>X</td>
</tr>
<tr>
<td>APN-SIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGSN-IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C3</td>
</tr>
<tr>
<td>OLD-SGSN-IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OLD-RAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NO-OF-PDP-TRANSFERRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NO-OF-PDP-DROPPED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Requested-QoS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negotiated-QoS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self SGSN IP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
- **C1:**
 - event disc-reason will be empty for successful attach/new-rau/local-rau/activation/modification procedures.
 - disc-reason will be included for all old-rau/detach/deactivation.
 - disc-reason will be available for rejected/aborted attach/new-rau/local-rau/activation/modification procedures.
- **C2:** cell ID for 2G, SAC for 3G
- **C3:** information provided if available
- **C4:**
• attach/new-rau/local-rau/detach will have reject case if an attach-reject or accept was sent with the cause value.
• for authentication, only sync and mac failures will be logged if they are present - otherwise, the value will be left blank.

• C5:
 • cause is present only for activate-reject or modify-reject
 • deactivation will always have a cause
 • activate-accept might have a cause sent (e.g., single address bearers only allowed)

EDR Storage

The EDRs are stored in CSV format on an external server. The external server relieves the SGSN of the storage overhead and the post-processing overhead while the SGSN continues to perform call processing.

Architecture

The primary components of the feature architecture include:

• Session Manager (SessMgr) - reports events to the CDRMOD
• CDRMOD - stores EDR file in RAMDisk
• HardDisk Controller - transfers EDR files from RAMDisk to hard disk

Limitations

The reliability of event generation is limited by the CDRMOD framework, specifically:

• Any SessMgr death will result in the loss of event records that are not yet released to the CDRMOD.
• Any death of the CDRMOD proclet will result in the loss of records that are not yet written to the RAMDisk.
• Any reboot of the chassis will result in the loss of records that are not yet flushed to the hard disk or to an external server.
• In the case of overload of the CDRMOD, the SessMgr will ignore event records when its queue is full.
• The IMSI of the subscriber should be available while generating the EDR. Procedures which couldn't be associated with any particular IMSI will not generate EDRs, for example, the inter-SGSN-RAU being rejected because of its inability to contact the old-SGSN.
Configuration

The following commands enable the SGSN to log GMM/SM events in EDR files for 3G services:

configure

context <ctx_name>

sgsn-service <srvc_name>

[default | no] reporting-action event-record

Where:

• [default | no] - disables the logging function.

The following commands enable the SGSN to log GMM/SM events in EDR files for 2G services:

config

context <ctx_name>

gprs-service <srvc_name>

[default | no] reporting-action event-record

Where:

• [default | no] - disables the logging function.

The following commands access the EDR module configuration mode commands to enable the operator to configure logging and file parameters and to configure file-transfer parameters.

config

context <ctx_name>

[no] edr-module active-charging-service

Where:

• no - disables the configured EDR logging and file parameters for the services in the context.

[default | no] cdr [push-interval | push-trigger | remove-file-after-transfer | transfer-mode | use-harddisk]

Where:

• cdr - configures the EDR transfer parameters
• default - restores default parameter values
• no - disables the configuration

[default | no] file [charging-service-name | compression | current-prefix | delete-timeout | directory | edr-format-name | exclude-checksum-record |
field-separator | file-sequence-number | headers | name | reset-indicator |
rotation | sequence-number | storage-limit | time-stamp | trailing-text | trap-on-file-delete | xor-final-record

Where:

- **file** - configures file creation properties for the records
- **default** - restores the default file creation properties
- **no** - disables the configuration
Chapter 10
Idle Mode Signalling Reduction on the S4-SGSN

This chapter describes the Idle Mode Signaling Reduction (ISR) feature and its implementation and use on the ASR 5000 S4-SGSN.

- Feature Description
- How ISR Works
- Configuring Idle-Mode-Signaling Reduction
- Monitoring and Troubleshooting the ISR Feature

Important: A separate feature license is required to enable the ISR feature. Contact your Cisco representative for licensing information.
Feature Description

The Idle mode signaling reduction (ISR) feature on the S4-SGSN provides a mechanism to optimize and/or reduce signaling load during inter-RAT cell-reselection in idle mode (that is, in the ECM-IDLE, PMM-IDLE, and GPRS-STANDBY states). It is a mechanism that allows the UE to remain simultaneously registered in a UTRAN/GERAN Routing Area (RA) and an E-UTRAN Tracking Area (TA) list. This allows the UE to make cell reselections between E-UTRAN and UTRAN/GERAN without having to send any TAU or RAU requests, as long as the UE remains within the registered RA and TA list.

ISR is a feature that reduces the mobility signalling and improves the battery life of UEs. ISR also reduces the unnecessary signalling with the core network nodes and air interface. This is important especially in initial deployments when E-UTRAN coverage will be limited and inter-RAT changes will be frequent.

The benefit of the ISR functionality comes at the cost of more complex paging procedures for UEs, which must be paged on both the registered RA and all registered TAs. The HSS also must maintain two PS registrations (one from the MME and another from the SGSN).

Important: The Gn/Gp SGSN does not support ISR functionality.

Relationships

The ISR feature on the S4-SGSN is related to:

- ISR must be enabled on the peer MME and SGW nodes.
- The SGSN must be configured with the following:
 - 2G Service + S4 Support
 - 3G Service + S4 Support
 - 2G + 3G Services + S4 Support

Important: If the S4-SGSN is configured to support both 3G and 2G services, it is recommended to enable both 2G and 3G ISR functionality. This ensures that for the ISR activated subscribers, inter-RAT routing area updates between 2G and 3G preserve the ISR status if there is no SGW relocation.
How ISR Works

ISR requires special functionality in both the UE and the network (i.e. in the SGSN, MME, SGW and HSS) to activate ISR for a UE. The network can decide for ISR activation individually for each UE. ISR support is mandatory for E-UTRAN UEs that support GERAN and/or UTRAN and optional for the network. Note that the Gn/Gp SGSN does not support ISR functionality.

ISR is not activated on Attach. ISR can only be activated when a UE first registers in a RA on an SGSN and then registers in a TA on an MME or vice-versa. It is an inherent functionality of the mobility management (MM) procedures to enable ISR activation only when the UE is able to register via E-UTRAN and via GERAN/UTRAN. For example, when there is no E-UTRAN coverage there will be also no ISR activation. Once ISR is activated it remains active until one of the criteria for deactivation in the UE occurs, or until the SGSN or the MME indicate ISR is no longer activated during an update procedure, i.e. the ISR status of the UE has to be refreshed with every update.

When ISR is activated this means the UE is registered with both the MME and the SGSN. Both the SGSN and the MME have a control connection with the SGW. The MME and the SGSN are both registered at the HSS. The UE stores mobility management parameters from the SGSN (for example, P-TMSI and RA) and from the MME (for example, GUTI and TAs). The UE stores session management (bearer) contexts that are common for E-UTRAN and GERAN/UTRAN accesses. In an idle state the UE can reselect between E-UTRAN and GERAN/UTRAN (within the registered RA and TAs) without any need to perform TAU or RAU procedures with the network. the SGSN and MME store each other's address when ISR is activated.

The S4 SGSN supports the following scenarios for 2G ISR:

- ISR activation by SGSN on new SGSN RAU from MME
- ISR activation on SGSN in old SGSN RAU to MME
- Ready to standby state transition triggered Release Access Bearer Request to SGW
- Downlink data notification from SGW:
 - Downlink data notification UE responds to SGSN
 - Downlink data notification no response from UE
- Stop paging indication
- UE initiated detach for ISR activated subscriber under GERAN
- UE initiated detach under EUTRAN/MME initiated detach or Detach notification from MME
- SGSN initiated detach for ISR activated subscriber
- HSS/HLR initiated detach for ISR activated subscriber
- ISR deactivation due to delete bearer request with ISR deactivation cause
- ISR deactivation due to last PDN connection deletion (SGSN/UE/PGW/HSS/HLR-initiated)
- ISR deactivation due to SGW change
- ISR-deactivation due to context transfer between same Node types(S4 SGSN to and from S4 SGSN)
- Intra-RAU without SGW change for ISR-activated subscriber
- Inter-GPRS service RAU without SGW change for ISR-activated subscriber
- Intra-SGSN inter-system handover from 2G to 3G without SGW change for ISR activated subscriber
- Intra-SGSN inter-system handover from 3G to 2G without SGW change for ISR activated subscriber
The following scenarios are supported for 3G ISR:

- ISR activation by 3G SGSN on new 3G SGSN RAU from MME
- ISR activation by 3G SGSN on old 3G SGSN RAU to MME
- ISR activation by 3G SGSN on new 3G SGSN SRNS relocation from MME (Connected mode IRAT handover from MME to SGSN)
- ISR activation by 3G SGSN on old 3G SGSN SRNS relocation to MME (Connected mode IRAT handover from SGSN to MME)
- Iu release triggered Release Access Bearer Request to SGW
- Downlink data notification from SGW:
 - Downlink data notification UE responds to SGSN
 - Downlink data notification no response from UE
- Stop paging indication
- UE initiated detach for ISR activated subscriber under UTRAN
- UE initiated detach under EUTRAN/MME initiated detach or Detach notification from MME
- SGSN initiated detach for ISR activated subscriber
- HSS/HLR initiated detach for ISR activated subscriber
- ISR deactivation due to delete bearer request with ISR deactivation cause
- ISR deactivation due to last PDN connection deletion (SGSN/UE/PGW/HSS/HLR-initiated)
- ISR deactivation due to SGW change
- ISR-deactivation due to context transfer between same Node types (S4 SGSN to and from S4 SGSN)
- Intra-RAU without SGW change for ISR-activated subscriber
- Intra-SRNS without SGW change for ISR activated subscriber

Limitations

There are no known limitations to the 2G ISR feature.

For the 3G SGSN, if an ISR is already active between the SGSN and an MME and the system receives a relocation required towards an eNodeB served by the same ISR associated with the MME, the S4-SGSN first tears down the existing S3 tunnel and will initiate a forward relocation request on a new tunnel. If the procedure completes successfully, ISR association would be continued on the new tunnel. However, if the relocation is cancelled then the tunnel is lost and the ISR is deactivated.

Call Flows

This section provides various call flows that illustrate the primary procedures used for the ISR feature:

2G ISR Activation by the S4-SGSN

The following illustration shows the ISR activation procedure when initiated by the S4-SGSN for a 2G subscriber.
Note the following major procedural functions:

- E-URTRAN attach at the MME.
- A Routing Area Update is sent to the SGSN.
- The SGSN sends a Context Request to the MME upon receiving the RAU Request. If the MME supports ISR, it will set the ISRSI bit in the Context Response message.
- Upon receiving the Context Response from the MME, the GMM sets the ISRAI flag if ISR is already activated for the subscriber or if all of following conditions are satisfied:
 - The UE is EPC-capable.
 - ISR is enabled in the configuration.
 - The peer node is the MME.
 - The peer node has indicated that ISR is supported in the Context Response message.
- The SGSN will not activate ISR if there is change in SGW. So, the SGSN will be setting the 'ISRAI' bit in the Modify Bearer Request/Context Ack message provided there is no change in SGW and all of above conditions in the previous bullet point are satisfied.
- If the SGSN also monitors the SGSN-MME-Separated flag in the Update location Response or the Separation Indicator in Update Location Ack - ULA Flags IE to activate ISR for subscriber and ISR status is marked deactivated if not indicated by HLR/HSS.
- The SGSN sends a RAU accept with update type RA updated and ISR activated or combined RA/LA updated and ISR activated depending on the update request.
- The SGSN sends a Periodic RAU timer to the UE in a RAU accept message and also a GERAN/UTRAN Deactivate ISR timer (T3323) timer value to the UE. Parallel to the periodic RAU timer, the SGSN starts its mobile reachability timer (MNR timer) which is configurable. The default is 4 minutes greater than the periodic RAU timer. The UE is expected to contact the SGSN again within the mobile reachability timer duration either by sending a periodic RAU or some other signalling. If the UE fails to contact the SGSN during this timer, SGSN will start the implicit detach timer which by default is 4 minutes greater than T3323 timer. The implicit detach timer value is also configurable at the SGSN. If the UE fails to contact even within this implicit detach timer, then the SGSN will locally detach the UE and will send a Detach Notification with cause Local detach to the MME so that ISR gets deactivated at the MME.
2G ISR Activation by the MME

The following illustration shows the ISR activation procedure when initiated by the MME for a 2G subscriber. Note the following major procedural functions:

- Context request from MME.

- The SGSN sends a Context Response to the MME with the 'ISRSI' bit set provided all of following conditions are satisfied:
 - The UE is EPC-capable.
 - The UE is ISR-capable.

Figure 42. ISR Activation on the S4-SGSN

The following illustration shows the ISR activation procedure when initiated by the MME for a 2G subscriber.
• The ISR is enabled by configuration.
• The peer node is an MME.

• If the old node is an old S4-SGSN, the MME sends a Context Acknowledge (ISR Activated) message to the old SGSN.

• Unless ISR Activated is indicated by the MME, the old S4-SGSN marks in its context that the information in the Gateways is invalid. This ensures that the old S4-SGSN updates the Gateways if the UE initiates a RAU procedure back to the old S4-SGSN before completing the ongoing TAU procedure. If ISR Activated is indicated to the old S4-SGSN, this indicates that the old S4-SGSN shall maintain its UE context including authentication quintets and stop the inter-SGSN handover procedure guard timer (2G). When the UE is initially attached, the SGSN started the Mobile Reachability Timer (MNR timer). This timer value is slightly larger than the Periodic RAU Timer value given to the UE by SGSN. The default is 4 minutes longer. The UE is expected to contact SGSN through a periodic RAU or some other signalling message within this timer. If the UE did not contact SGSN within this timer, the S4-SGSN shall start the implicit detach timer with a slightly larger value than the UE’s GERAN/UTRAN Deactivate ISR timer (T3323). The implicit detach timer value is also configurable at the SGSN. If the UE fails to contact even within this implicit detach timer, then the SGSN will locally detach the UE and will send a Detach Notification with cause *Local detach* to the MME so that ISR is deactivated at the MME.

• When ISR Activated is not indicated and an inter-SGSN handover procedure guard timer expires, the old SGSN deletes all bearer resources of that UE. As the Context Acknowledge from the MME does not include any S-GW change, the S4 SGSN does not send any Delete Session Request message to the S-GW.
Standards Compliance

The 2G ISR feature complies with the following standards:

- **TS 23.060** version 10: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2.

- **TS 23.272** version 10: Universal Mobile Telecommunications System (UMTS); LTE; 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3.

- **TS 29.274** version 10: Universal Mobile Telecommunications System (UMTS); LTE; 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3.
Configuring Idle-Mode-Signaling Reduction

This section describes how to configure ISR on the S4-SGSN.

Configuring 2G ISR

Configuring 2G ISR includes creating a call-control-profile with ISR enabled for GPRS, and configuring an implicit-detach-timeout in the configured GPRS service on the S4-SGSN.

```plaintext
config

   call-control-profile name

       idle-mode-signaling-reduction access-type gprs

    end

config

   context plmn_name

       gprs-service gprs_service_name

       gmm implicit-detach-timeout value

    end
```

Notes:
- Where `call-control-profile name` specifies the name of the call-control-profile in which 2G ISR functionality is to be configured.
- `gprs` enables 2G ISR functionality.
- Alternatively, `remove idle-mode-signaling-reduction access-type gprs` can be used to disable 2G ISR functionality.
- `context plmn_name` is the name of the public land mobile network context in which the GPRS (2G) service is configured.
- `gprs-service gprs_service_name` specifies the name of the configured GPRS (2G) service for which you want to configure the implicit-detach-timeout value.
- `gmm implicit-detach-timeout value` specifies the implicit detach timeout value to use for 2G ISR. Valid entries are from 240 to 86400 seconds. The default value is 3600 seconds.

Verifying the 2G ISR Configuration

This section describes how to verify the 2G ISR configuration.

To verify that 2G ISR and the gmm implicit-detach-timeout is configured:

```plaintext
show configuration
```
Configuring Idle-Mode-Signaling Reduction

...

 call-control-profile name
 idle-mode-signaling-reduction access-type gprs

....

 context context_name
 gmm T3323-timeout value
 gmm implicit-detach-timeout value

To verify that 2G ISR is enabled in the call-control-profile:

 show call-control-profile full name cc-profile-name

...

Treat as PLMN : Disabled
Idle-Mode-Signaling-Reduction (ISR) for UMTS : Disabled
Idle-Mode-Signaling-Reduction (ISR) for GPRS : Enabled
Location Reporting for UMTS : Disabled

...

Configuring 3G ISR

Configuring 3G ISR includes creating a call-control-profile with ISR enabled for UMTS, and configuring an implicit-detach-timeout in the configured SGSN service on the S4-SGSN.

 config

 call-control-profile cc-profile-name
 idle-mode-signaling-reduction access-type umts
 end

 config

 context context_name
 sgsn-service sgsn_service_name
 gmm T3323-timeout mins
 end

Notes:
- `idle-mode-signaling-reduction access-type umts` enables 3G ISR in the call-control-profile.

- `gmm t3323-timeout mins` specifies the amount of time, in minutes, the UE should wait after the Periodic RAU timer (t3312 timer) expiry before deactivating ISR. Valid entries are from 1 to 186. The default is 54.

Verifying the 3G ISR Configuration

This section describes how to verify the 3G ISR configuration.

To verify that 3G ISR is enabled and the gmm T3323 timeout is configured:

```
show configuration
...

call-control-profile name

  idle-mode-signaling-reduction access-type umts

... context context_name

  gmm T3323-timeout value

...
```

To verify that 3G ISR is enabled in the call-control-profile:

```
show call-control-profile full name cc-profile-name
...

Treat as PLMN:Disabled

Idle-Mode_Signaling-Reduction (ISR) for UMTS:Enabled
...
```
Monitoring and Troubleshooting the ISR Feature

This section provides information on how to monitor the ISR feature and to determine that it is working correctly.

ISR Show Command(s) and Outputs

This section provides information regarding show commands and/or their outputs in support of the ISR feature.

show subscribers gprs-only full

This command provides information that indicates whether ISR is activated for 2G subscribers, provides the MME tunnel endpoint ID being used for the ISR-activated 2G subscriber, and the IP address of the MME associated with the ISR-activated 2G subscriber.

- ISR-Activated: (True or False)
- MME Ctrl Teid: (MME Control Tunnel Endpoint Identifier)
- MME IP Address: (IP address of MME)

show subscribers sgsn-only full

This command provides information that indicates whether ISR is activated for 3G subscribers, provides the specific S3 tunnel on the MME being used for this ISR-activated subscriber, and the IP address of the MME associated with the ISR-activated 3G subscriber.

- ISR-Activated: (True or False)
- MME Ctrl Teid: (MME Control Tunnel Endpoint Identifier)
- MME IP Address: (IP address of MME)

show s4-sgsn statistics (2G ISR)

The output of this command provides information on the various reasons for deactivations of ISR-activated 2G subscribers:

- 2G Intra RAU with SGW Relocation
- Detach Notification from MME to 2G
- 2G MS Initiated Detach
- 2G Cancel Location from HSS/HLR
- 2G Local Admin Detach
- 2G Implicit Detach Timer Expiry

show s4-sgsn statistics (3G ISR)

The output of this command tracks the number of ISR deactivations due to various reasons for a 3G ISR-activated subscriber:
- 3G Intra RAU with SGW Relocation
- 3G NW Initiated Detach
 - 3G MR IDT Expiry
- 3G MS Initiated Detach
- 3G Cancel Location from HSS/HLR
- 3G SRNS Abort
- 3G Local Admin Detach
- 3G SGW Change During SRNS

show gmm statistics (2G ISR)

The output of this command indicates the total of currently activated 2G ISR subscribers:

- ISR Activated Subscribers:
 - 2G Intra RAU with SGW Relocation

show gmm statistics (3G ISR)

The output of this command tracks the number of currently ISR-activated 3G subscribers:

- ISR Activated Subscribers:
 - 3G-ISR-Activated
Chapter 11
ISR with Circuit Switched Fallback

This chapter describes the ISR with Circuit Switched Fallback feature (CSFB), and provides detailed information on the following:

- ISR with CSFB - Feature Description
- Call Flows
- Relationships to Other Features
- Relationships to Other Products
- How it Works
- ISR CSFB Procedures
- Standards Compliance
- Configuring ISR with Circuit Switched Fallback
- Monitoring and trouble-shooting the CSFB feature
ISR with CSFB - Feature Description

Idle-mode Signaling Reduction (ISR) feature allows the UE to move between LTE and 2G/3G without performing Tracking Area (TA) or Routing Area (RA) updates once it has been activated. A prerequisite for ISR activation is that the UE, SGSN, MME, Serving GW and HSS all support ISR. At the first attach to the network, ISR is not activated. ISR can only be activated when the UE has first been registered in an RA on 2G/3G and then registers in a TA or vice versa.

If the UE first registers on GERAN/UTRAN and then moves into an LTE cell, the UE initiates a TA update procedure. In the TA update procedure, the SGSN, MME and Serving GW communicate their capabilities to support ISR, and if all the nodes support ISR, the MME indicates to the UE that ISR is activated in the TAU accept message.

Circuit-Switched Fallback (CSFB) is an alternative solution to using IMS and SRVCC to provide voice services to users of LTE. The IMS is not part of the solution, and voice calls are never served over LTE. Instead, the CSFB relies on a temporary inter-system that switches between LTE and a system where circuit-switched voice calls can be served.

The ISR feature must be enabled for the CSFB feature to work, the ISR feature is a license controlled feature.

The LTE terminals 'register' in the circuit switched domain when powered and attaching to LTE. This is handled through an interaction between the MME and the MSC-Server in the circuit-switched network domain over the SGs interface.

Consider the following scenarios:

- Voice calls initiated by the mobile user: If the user makes a voice call, the terminal switches from a LTE system to a system with circuit-switched voice support. Depending on where the UE latches on after completion of the voice call:
 - The packet-based services that are active on the end-user device at this time are handed over and continue to run in a system with circuit-switched voice support but with lower data speeds.

 OR

 - The packet-based services that are active on the end-user device at this time are suspended until the voice call is terminated and the terminal switches back to LTE again and the packet services are resumed.

- Voice calls received by the mobile user: If there is an incoming voice call to an end-user that is currently attached to the LTE system, the MSC-Server requests a paging in the LTE system for the specific user. This is done through the SGs interface between the MSC Server and the MME. The terminal receives the page, and temporarily switches from the LTE system to the system with circuit-switched voice support, where the voice call is received. Once the voice call is terminated, the terminal switches back to the LTE system.
Call Flows

To support CS fallback, existing procedures are modified and some additional CS fallback specific procedures added to the EPS. Additions are done to the "Attach" and "TA update" procedures which activate an interface called the SGs. This interface is between the MME and MSC. It is used by the MSC to send paging messages for CS calls to the UE on the LTE system.

Example of a CS fallback call

Figure 44. CS Fallback Call

Table 20. Steps in a CS fallback call

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The MSC receives an incoming voice call and sends a CS page to the MME over a SGs interface.</td>
</tr>
<tr>
<td>2.</td>
<td>The MME uses the TMSI (or IMSI) received from the MSC to find the S-TMSI (which is used as the paging address on the LTE radio interface).</td>
</tr>
<tr>
<td>3.</td>
<td>The MME forwards the paging request to the eNodeB in the TAs where the UE is registered. The eNodeBs perform the paging procedures in all the cells in the indicated TAs.</td>
</tr>
<tr>
<td>4.</td>
<td>The paging message includes a special CS indicator that informs the UE that the incoming paging is for a terminating CS call.</td>
</tr>
</tbody>
</table>
On receiving the paging message, the UE performs a service request procedure which establishes the RRC connection and sends a Service Request to the MME. The Service Request message includes a special CS Fall-back indicator that informs the MME that the CS fallback is required.

This triggers the MME to activate the bearer context in the eNodeB with an indication to perform fallback to GERAN or UTRAN.

The eNodeB selects a suitable target cell, by triggering the UE to send measurements on the neighbour cells, and initiates a handover or cell change procedure. The selection between handover or cell change procedure is based on the target cell capabilities and is configured in the eNodeB.

After a handover or cell change procedure, the UE detects the new cell and establishes a radio connection and sends a page response to the MSC, through the target RAN.

When the page response arrives at the MSC, a normal mobile terminated call setup continues and CS call is activated towards the UE.

The CS fallback is primarily supports voice calls but it also supports other CS services. In the case of SMS services the UE need not switch to other radio interfaces. The UE can remain on LTE and still send and receive SMSes. The SMS messages are tunnelled between the UE and the MSC through the MME NAS signalling and the SGs interface.

When ISR is activated the UE is simultaneously registered at both SGSN and MME. So any paging for CS services occurs at both the SGSN and the MME. In a network if ISR is activated for an UE and CSFB is used in the network, the SGSN has to support additional call flows.
Relationships to Other Features

The CS Fallback feature is inter-works with the Idle Mode Signaling Reduction (ISR) feature. The CS Fallback feature is primarily for the EPS, but at the SGSN, it plays a role in deciding when the ISR feature should be activated or de-activated at the SGSN.
Relationships to Other Products

To enable ISR for subscriber peer nodes, the MME and SGW must support ISR functionality.
How it Works

Listed below are the scenarios where ISR with CSFB is impacted by the SGSN, these scenarios are applicable to both 2G and 3G when ISR is enabled:

1. The ISR is de-activated (by not sending ISR active status indication in RAU Accept message sent to UE) in the following cases:
 - The SGSN will not send the ISR activated indication at combined RAU/LAU procedure (As per 3GPP TS23.272, section 4.3.5 ,release 11.2)
 - When the UE sends a combined RAU and LAU to a S4-SGSN, the SGSN checks the "Combined EPS/IMSI Attach Capability" bit in the "MS Network Capability" IE received. If that bit indicates CSFB and/or SMS over SGs is enabled for this UE, then the SGSN de-activates the ISR by not indicating the "ISR Activated" status in RAU Accept message sent to the UE. The SGSN in a CSFB/SMS over SGs configuration never indicates "ISR Activated" in combined RAU procedures for CSFB/SMS over SGs enabled UEs.

2. If CS Paging Indication is received from MME for an ISR activated subscriber, the SGSN pages to the subscriber indicating that the paging is for a CS call. When a Mobile Terminating call arrives at the MSC/VLR (via the G-MSC) for a UE that is camped on an E-UTRAN (ISR is active and the SGs interface is active between MSC and MME), the MSC/VLR sends a Page Request (SGsAP-PAGING-REQUEST) to the MME.
 As ISR is active and the UE is in ECM_IDLE state, the MME forwards the CS paging message received from the MSC/VLR to the associated SGSN. The MME gets the SGSN information in the regular ISR activation process. The MME builds a "CS Paging Indication" message, which is a GTPv2 message, from the SGsAP-PAGING_REQUEST to the correct SGSN. The SGSN receives the CS Paging Indication message from the MME, and sends paging messages to RNS/BSSs. This information is described in detail in 3GPP TS 23.060.

4. When the SGSN sends an UE Activity Notification message over the S3 interface, if the MME sends an Alert MME Notification earlier for the same subscriber and the SGSN detects any UE activity (like Iu connection established and so on).

5. Handling the problem of Mobile Terminated voice calls getting dropped due to NULL SGs or SGs association at MSC/VLR, when the implicit detach timer expires at MME. In this case, the flag "EMM Combined UE Waiting" is set at the SGSN, this ensures waiting for a combined procedure (Combined RAU). A Combined RAU is forced if we receive a normal periodic RAU (non-combined) by sending an IMSI Detach request to UE. When a MME detaches the UE locally from E-UTRAN (due to PTAU timer expiry and no contact with UE at E-UTRAN till the implicit detach timer expiry at MME) it sends a Detach Notification with cause "local detach" to the SGSN. The SGSN sets the "EMM Combined UE Waiting" flag if UE is CSFB capable and this flag will be reset only after combined RAU is received.
ISR CSFB Procedures

CS Paging Procedure

The call flow below depicts a CS Paging example:

![CS Paging Diagram](image)

Table 21. Steps in a CS Paging Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A Mobile Terminating call arrives at MSC/VLR (via the G-MSC) for a UE which is camped on E-UTRAN.</td>
</tr>
<tr>
<td>2.</td>
<td>If the ISR is active and the SGs interface is active between MSC and MME, then the MSC/VLR sends a Page Request (SGsAP-PAGING-REQUEST) to the MME.</td>
</tr>
<tr>
<td>3.</td>
<td>As ISR is active and the UE is in ECM_IDLE state, the MME forwards the CS paging message received from the MSC/VLR to the associated SGSN. The MME receives the SGSN information in the regular ISR activation process. The MME builds a "CS Paging Indication" message, which is a GTPv2 message, from the SGsAP-PAGING_REQUEST to the correct SGSN.</td>
</tr>
<tr>
<td>4.</td>
<td>The SGSN receives the CS Paging Indication message from the MME, and sends paging messages to RNS/BSSs.</td>
</tr>
<tr>
<td>5.</td>
<td>The RNS/BSS forwards the CS Paging Indication message to the UE.</td>
</tr>
<tr>
<td>6.</td>
<td>The CS fallback or Cell re-selection process progresses.</td>
</tr>
<tr>
<td>7.</td>
<td>Once the process is complete, the UE sends a CS Paging response to the RNS/BSS.</td>
</tr>
<tr>
<td>8.</td>
<td>The RNS/BSS forwards the CS Paging Response to the MSC/VLR.</td>
</tr>
</tbody>
</table>

For detailed information on CS paging procedure refer to 3GPP TS 23.060.
Alert and UE Notification Procedure

The call flow below depicts an Alert and UE Notification scenario:

1. The MSC/VLR requests the MME to report activity from a specific UE. The MSC/VLR sends a SGsAP Alert Request (IMSI) message to the MME where the UE is currently attached to an EPS network. On receiving the SGsAP Alert Request (IMSI) message, the MME sets a Non-EPS Alert Flag (NEAF). If NEAF is set for an UE, the MME informs the MSC/VLR of the next activity from that UE (and the UE is both IMSI and EPS attached) and clears the NEAF.

2. If ISR is activated for this UE, an "Alert MME Notification" message (GTPv2) is created based on above SGs message and sent on the S3 interface by the MME to the associated SGSN, in order to receive a notification when any activity from the UE is detected.

3. The SGSN sends an "Alert MME Acknowledge" and sets the SSAF flag, the "Alert MME Acknowledge" is a GTPv2 message to the MME in response to the Alert MME Notification message.

4. If any UE Activity is detected (UE is active, after an Iu connection is established), the SGSN sends a "UE Activity Notification message" to the MME over the S3 interface.

ISR De-activation Procedure

When the UE wants to perform a combined RAU/LAU, the SGSN verifies the "combined EPS/IMSI attach capability" bit in MS Network Capability and if it indicates that CSFB and/or SMS over SGs is enabled, then the SGSN de-activates ISR. The SGSN does not indicate that ISR is activated in the RAU Accept message.

Detach Procedures for CSFB Capable UEs

If the MME clears a subscriber then SGs association with the MSC is closed and leads to a drop of voice calls from the MSC. To avoid this issue a few changes are done in SGSN to establish the Gs association between the MSC and the SGSN on ISR de-activation.

If "Detach Notification" is received from the MME with Detach Type set as "Local Detach" and if the UE supports EMM Combined procedures then, the SGSN sends an IMSI Detach request to the UE and sets the "EMM Combined UE Waiting" flag.

If the SGSN then receives a Periodic RAU Request and the flag "EMM Combined UE Waiting" is set, an IMSI Detach is sent to the UE in order to ensure that next time the UE performs a Combined RAU. This enables Gs association between the SGSN and the MSC/VLR and the MT voice calls are not lost.

If the SGSN receives a Combined RAU Request when the flag "EMM Combined UE Waiting" is set, then this flag is cleared and Gs association is activated.
MS Initiated Last PDN De-activation Procedure

The MS initiated last PDN de-activation procedure is listed below:

1. The SGSN sends a DSR with OI=1, the cause not set to ISR deactivated.
2. PDP is deleted from the SGW and the PGW.
3. In SGSN all PDPs are de-activated. The S4 association is cleared.
4. In SGW all PDPs are de-activated. Both the S4 and S11 associations at the SGW are cleared.
5. The MME continues to retain the S11 tunnel.
6. Both the SGSN and MME retain the ISR and S3 tunnel active. The active S3 tunnel serves incoming voice calls if SGs association is retained at the MME.
7. If MME has a SGs association and if periodic TAU timer from UE expires, the MME performs the following actions:
 - The MME starts an implicit detach timer. If voice call is received at MSC/VLR when this timer is running then:
 1. The MSC/VLR sends a SGs page to the MME.
 2. The MME sends an S3 page to the SGSN.
 3. The SGSN pages the UE with the "CN Domain Indicator = CS domain", and if the UE responds to the page by doing a cell re-selection to CS domain, the MSC/VLR stops paging.
 4. The voice call is completed.
 - If the implicit detach timer expires:
 • The MME sends an EPS Detach Notification (IMSI detach) to the MSC/VLR.
 • The MME sends a Detach Notification with cause "Local detach" to the SGSN (Refer to 3GPP TS 23.272v10.08, section 5.3.2 point no. 3).
 • If the UE is "combined EPS/IMSI attach capable" (as derived from MS Network capability) and if ISR is active, the SGSN sends an IMSI detach request to the UE on receiving Detach Notification with cause "local detach".
 • The SGSN sets a flag called "EMM Combined UE waiting" (Refer to 3GPP TS 23.272v10.08, section 5.5)
 • If the IMSI detach request reaches the UE, the UE performs a Combined RAU, the "EMM Combined UE waiting" flag is cleared at the SGSN and Gs association is established between SGSN and MSC/VLR. ISR is deactivated at the UE.
 • If the IMSI detach request does not reach the UE, then on next signaling from the UE based on the "EMM Combined UE waiting" flag being set, following action is taken:
 If an UE performs a periodic RAU or NAS Service Request, then the UE is forced to do an IMSI detach so that the UE does a Combined RAU again to establish Gs association.

PGW Initiated Last PDN De-activation Procedure

Listed below are the sequence of events which occur, if an UE is "combined EPS/IMSI attach capable" and the last PDN is de-activated due to PGW initiated de-activation or HSS initiated de-activation:

1. The SGW forwards the DBR to both the SGSN and the MME.
2. Both MME and SGSN de-activate the PDN, and locally de-activate ISR (Refer to 3GPP TS 23.401 v10.08, section 5.4.4.1 (Note 2 and 3) and 3GPP TS 23.060 v10.801, section 9.2.4.3B).
3. The MME need not send a Detach Notification to the SGSN.
4. Consider the scenario, where the SGSN is aware that it is a PGW initiated last PDN de-activation, the UE is "combined EPS/IMSI attach capable" (as derived from MS Network capability) and ISR was active earlier, the SGSN performs the following actions:
 • If the UE is in a PMM-CONNECTED state at the SGSN, then SGSN sends an IMSI detach request. The SGSN sets a flag called "EMM Combined UE waiting". If the UE receives this IMSI detach request, it performs a combined RAU into SGSN and at that point the Gs association is established and the "EMM Combined UE Waiting" flag is cleared by the SGSN.
If the UE is in an IDLE state at the SGSN, then the SGSN pages the UE to deliver the PDP de-activation request. If paging fails, the SGSN sets the "EMM Combined UE Waiting" flag. When this UE performs a combined RAU to SGSN at a later time or attaches to the SGSN, this flag is cleared.

5. If the UE is in an E-UTRAN coverage area then, the MME detaches the UE and the UE is re-attached to the network. If the UE is not in an UTRAN/GERAN coverage area, then the SGSN pages the UE prior to sending IMSI detach. This paging request fails.

6. If the UE does not receive an E-UTRAN detach request or a paging request from the SGSN, and at a later point if the UE returns to the SGSN with a periodic RAU / NAS Service Request, then the SGSN performs the following:
 - The "EMM Combined UE waiting" flag is set, this forces the UE to perform a IMSI detach so that the UE does a Combined RAU again to establish a Gs association.

7. If the UE receives the IMSI detach request sent in step (4), the UE performs a Combined RAU to establish Gs association. On receiving a Combined RAU, the SGSN clears the "EMM Combined UE waiting" flag.
Standards Compliance

The Idle mode signaling reduction complies with the following standards:

- 3GPP TS 23.060, version 10
- 3GPP TS 23.401, version 10
- 3GPP TS 23.272, version 10
- 3GPP TS 29.274, version 10
Configuring ISR with Circuit Switched Fallback

The following commands are used to configure 3G paging cause for CSFB:

```plaintext
config

context <context_name>

iups-service <iups_service_name>

rnc id <rnc_id>

[default | no ] ranap paging-cause-ie mme-signalling < paging_cause_value >

end
```

Where:

- The command `ranap paging-cause-ie mme-signalling < paging_cause_value >` is used to set the Paging Cause IE value for paging from MME due to Circuit Switch Fallback (CSFB). Listed below are the paging cause values which can be set:
 - 0 - Terminating conversational call
 - 1 - Terminating streaming call
 - 2 - Terminating interactive call
 - 3 - Terminating background call
 - 4 - Terminating low priority signaling
 - 5 - Terminating high priority signaling
- The default command resets the specific parameters value to default. In this case it is set to “5 - Terminating high priority signaling”.
- The no form of the command suppresses the Paging Cause IE so that it is not included in responses to Paging Requests.
Monitoring and trouble-shooting the CSFB feature

The configuration can be verified by executing the show command `show iups-service`, the following parameter is displayed on executing the command:

- MME-Signalling : Terminating Low Priority Signalling (4)

The show command `show subscriber sgsn-only full all` has been updated to include a display for “SSAF” and “Emm_combined_ue_waiting” flags. The new parameters are displayed as below:

- SSAF : False
- EMM Combined UE Waiting Flag : False
LoCation Services (LCS) on the MME and SGSN is a 3GPP standards-compliant feature that enables the system (MME or SGSN) to collect and use or share location (geographical position) information for connected UEs in support of a variety of location services.

This chapter describes the basic LCS functions available on the SGSN and include:

- Location Services - Feature Description
- How Location Services Works
- Configuring Location Services (LCS) on the SGSN
- Monitoring and Troubleshooting the LCS on the SGSN
Location Services - Feature Description

The Location Services (LCS) feature enables the EPC MME and the GPRS/UMTS SGSN to use the SLg (MME) or Lg (SGSN) interface which provides the mechanisms to support specialized mobile location services for operators, subscribers, and third party service providers. Use of this feature and the SLg/Lg interface is license controlled.

The location information is reported in standard geographical co-ordinates (longitude and latitude) together with the time-of-day and the estimated errors (uncertainty) of the location of the UE. For external use, the location information may be requested by and reported to a client application associated with the UE, or a client within or attached to the core network. For internal use, the location information can be utilized by the SGSN for functions such as location assisted handover or to support other features.

Location information is intended to be used for:

- location-based charging (e.g., home-location billing, roaming-location billing),
- location-based services (e.g., lawful interception, emergency calls),
- positioning services offered to the subscribers (e.g., mobile yellow pages, navigation applications on mobiles), and
- by the operator for service provider services such as network planning and enhanced call routing.
How Location Services Works

The SGSN LCS responsibilities center around UE subscription authorization and managing LCS positioning requests. The LCS functions of the SGSN are related to charging and billing, LCS co-ordination, location request, authorization and operation of the LCS services.

When using the Iu interface, before the SGSN can request location information of a target UE from the radio access network (RAN), an Iu signaling connection must have been established between the SGSN and the RAN. The SGSN sends a Location Request message to the RAN. The RAN determines the location of the target UE related to this Iu signaling connection and sends a Location Report to the SGSN over the same Iu signaling connection. On the Iu interface, only one location request for a geographic location estimate can be ongoing at any time.

Only one location request can be ongoing at any time.

The operation begins with a LCS Client requesting location information for a UE from the LCS server. The LCS server will pass the request to the LCS functional entity (SGSN) in the core network. The LCS functional entity (SGSN) in the core network then:

1. verifies that the LCS Client is authorized to request the location of the UE or subscriber;
2. verifies that location services are supported by the UE;
3. establishes whether it (the MME/SGSN) is allowed to locate the UE or subscriber, for privacy or other reasons;
4. establishes which network element in the radio access network (GERAN or UTRAN or E-UTRAN) should receive the Location Request;
5. requests the access network (via the A, Gb, Iu or S1 interface) to provide location information for an identified UE, with indicated QoS;
6. receives information about the location of the UE from the Access Network and forward it to the Client;
7. sends appropriate accounting information to an accounting function.

Relationship to Other SGSN Functions

The Location Services feature utilizes several of the existing SGSN functionalities:

- Mobility Management module
- MAP Service module

Architecture

The MME is accessible to the Gateway Mobile Location Center (GMLC) via the SLg interface.
The SGSN is accessible to the GMLC via the Lg interface.
The SGSN informs the HLR/HSS regarding the LCS capabilities of UE in GPRS (2G) or UMTS (3G) networks. The SGSN may include the IP address of the V-GMLC associated with the SGSN in the MAP_UPDATE_GPRS_LOCATION message during Attach and ISRAU procedures.

Limitations

Currently, SGSN support is limited to:

1. A single location request at a time for the target UE. Concurrent location requests are not supported.
2. Only provide Subscriber Location messages with the id as IMSI are supported.

Flows

Flows

Location Services call flows are standards compliant for the SGSN.
Figure 48. 2G Mobile Terminating Location Request
Standards Compliance

The SGSN’s Location Services feature complies with the following standards:

- TS 3GPP 23.271, v9.6.0
- TS 3GPP 24.030, v9.0.0
- TS 3GPP 24.080, v9.2.0
- TS 3GPP 25.413, v9.8.0 (sections 8.19.2 and 8.20.2)
- TS 3GPP 29.002, v9.7.0
Configuring Location Services (LCS) on the SGSN

This section provides a high-level series of steps and the associated configuration examples to configure Location Services on the 2G or 3G SGSN—or for both.

The commands could be issued in a different order, but we recommend that you follow the outlined order for an initial LCS configuration. All listed configuration steps are mandatory unless otherwise indicated.

Important: For all the required configuration commands to be available and to implement the configuration, the SGSN must have loaded the license for the Lg interface.

Step 1 Enable Location Services on the SGSN.

Step 2 Identify the GMLC (in the MAP service) to which the SGSN connects for LCS access to the external LCS client.

Step 3 Configure the MAP service’s M1 timer.

Important: Step 3 is not mandatory but it is recommended.

Step 4 Create a location services configuration and associate the MAP service.

Step 5 Fine-tune LCS configuration per UE by defining LCS-related restrictions.

Step 6 Associate the location services configuration with the appropriate SGSN - GPRS (2G) service and/or UMTS (3G) service.

Step 7 Associate the location services configuration with an operator policy.

Step 8 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide.

Step 9 Verify the configuration for each component by following the instructions provided in the Verifying the Feature Configuration section.

Enabling LCS

Location Services functionality is enabled globally for the SGSN.

```
config
  sgsn-global
    location-services
  end
```

Notes:
- This command enables and ‘starts’ LCS on the SGSN.
This command also enables support for the Lg interface on the SGSN.
Using the ‘no’ keyword stops LCS.

Identifying the GMLC

Use the MAP service configuration to identify the GMLC to which the SGSN connects for LCS access to the external LCS client. We recommend that you also configure the MAP service’s M1 timer, however, this is option.

```
config
  context <context_name>
    map-service <map_service_name>
      gmlc { isdn E.164# | point-code <point_code> } gsn-address <ipv4_address> [ source-ssn <ssn> ]
      timeout m1 seconds
    end
end
```

Notes:
- Only one GMLC can be configured per MAP service.
- `isdn` is the 1-15 digit E.164 number that identifies the GMLC.
- `point-code` is the address for the GMLC in dotted-decimal ###.###.### or decimal ####### SS7 point-code format
- `gsn-address` is the IPv4 address for the GMLC
- `source-ssn` optionally identifies the source SSN value to be used.

Creating the Location Service Configuration

This set of configuration commands creates a location service configuration and associates the MAP service with the location service. Up to 16 separate location services can be created.

```
config
  context context_name
    location-service loc_serv_name
      associate map-service map_serv_name
    end
end
```

Notes:
- The SGSN supports a maximum of 16 location service configuration. It should be noted that this number, 16, is not part of the SGSN’s service configuration limit of 256.
- Associate the MAP Service configuration in which the GMLC is defined.

Fine-tuning the Location Service Configuration

Fine-tune the location service configuration per UE by defining LCS-related restrictions. The following commands will be used to configure the LCSN timer (location notification invoke procedures timer). Configuring the timer value is optional.

```
config
  context context_name
    location-service loc_serv_name
      timeout lcsn seconds
```

Notes:
LCSN timer range is 10 - 20 with a default of 15. seconds.
The following command is used to configure the UE available guard timer. Configuring this timer is optional.

```
config
  context context_name
    location-service loc_serv_name
      timeout ue-available-guard-timer ueagtimer_seconds
```

Notes:
This timer, set in seconds, is used to guard the packet-switched deferred location request (UE available event) procedures. It is an integer from 10 to 600. Default is 600.
The following command is used to configure area event invoke procedure timer. Configuring this timer is optional.

```
config
  context context_name
    location-service loc_serv_name
      timeout area-event-involve-timer aietimer_seconds
```

Notes:
This timer, set in seconds, is used to guard the area event invoke procedure. It is an integer from 10 through 20. Default is 15.
The following command is used to configure periodic event invoke procedure timer. Configuring this timer is optional.

```
config
  context context_name
    location-service loc_serv_name
```
timeout periodic-event-invoke-timer peitimer_seconds

Notes:
This timer, set in seconds, is used to guard the period location invoke procedure. It is an integer from 10 through 20. Default is 15.

Associating the Location Service Config with the SGSN

Location service functionality can be associated with either the 3G SGSN via commands in the SGSN Service configuration mode or with the 2G SGSN via commands in the GPRS Service configuration mode.
The following associates the location service configuration with a 3G SGSN:

config
 context context_name
 sgsn-service service-name
 associate location-service loc_serv_name

Notes:
- To associate with a 2G SGSN, enter the GPRS service configuration mode in place of the SGSN service configuration mode.

Associating the Location Service Config with an Operator Policy

Location service functionality can be associated with an operator policy to provide granular control.
The following associates the location service configuration with a call-control profile by IMSI and these CLIs will disable/enable Mobile Terminating, Mobile Originating and/or Network Induced location requests by access-type.

config
 call-control-profile ccprofile_name
 lcs-nt { allow | restrict } access-type { gprs | umts }

Notes:
- lcs-nt enables mobile-terminating location requests.
- replace lcs-nt with lcs-mo to enable the mobile-originating location requests, lcs-ni is not supported by SGSN.
- Default for the 3 lcs commands is allow

Verifying the LCS Configuration for the SGSN

View the location service configuration to verify the configurations created for the Location Service functionality, by using the following commands:
show location-service service { all | name loc_serv_name }

View the MAP configuration to verify the MAP configurations created for the Location Service functionality, by using the following commands:

show map-service { all | name map_serv_name }

View the call-control profile configuration to verify the configurations created for the Location Service functionality, by using the following commands:

show call-control-profile full name ccprof_name
Monitoring and Troubleshooting the LCS on the SGSN

Use the commands listed below to monitor and/or troubleshoot the operation of the Location Services on the SGSN.

- `show map statistics name map-service-name`
- `clear map statistics name map-service-name`
- `show gmm-sm statistics`
- `show subscribers sgsn-only summary`
- `show subscribers gprs-only summary`
- `show location-service service {all | name location-service-name }`
Chapter 13
MOCN for 2G SGSN

The SGSN has long supported Multi-Operator Core Network (MOCN) network sharing operations for the 3G SGSN. With Release 15.0, the SGSN now supports MOCN operations for 2G scenarios.

Important: The MOCN network sharing functionality now requires a feature license for both 2G and 3G network sharing scenarios. Contact your Cisco representative for licensing information.

This section includes the following 2G MOCN information:

- Feature Description
- How It Works
- Configuring 2G MOCN
- Monitoring and Troubleshooting 2G SGSN MOCN Support
Feature Description

A Public Land Mobile Network (PLMN) is uniquely identified by the combination of a mobile country code and a mobile network code (the PLMN-Id). Sharing of radio resource and network nodes requires a PLMN network to support more than one than one PLMN-Id.

GPP defines two different configurations for supporting network sharing based on the resources being shared.

Gate Core Network (GWCN) Configuration

In this configuration, the radio access network and some core network services are shared among different operators. Each operator has its own network node for GGSN, HLR etc, while sharing SGSN and MSC with the rest of the radio network. The figure below depicts a GWCN configuration.

Multi Operator Core Network (MOCN) Configuration

In this configuration, the radio network is shared among different operators, while each operator maintains its separate core network. The figure below depicts a MOCN configuration.
Relationships to Other Features

SGSN supports both MOCN and GWCN in 3G. GPRS. The MOCN feature can work with 3G network sharing. Inter-RAT from 3G to 2G in shared to non-shared area, and non-shared area to shared are supported.

To enable GPRS MOCN, the BSC also needs to support the GPRS MOCN. For “Supporting-MS”, the MS shall have the capability to select the network from the PLMN details shared by the BSC. Currently, the SGSN supports only “non-supporting MS”, thus the MS always selects the common PLMN.
How It Works

Automatic PLMN Selection in Idle Mode

This section briefly describes the normal PLMN selection procedure performed by MS along with modifications for network sharing.

Whenever MS is switched on or has just returned to network coverage after being out of coverage, it tries to select a network to register itself and receive network services. Traditionally, each network broadcasts its own PLMN-Id on common broadcast channels that are visible to all MSs in that area.

The MS starts by scanning for all the available radio networks in that area and creating an Available PLMN list. It then refers to the Equivalent PLMN list and Forbidden PLMN list (stored on its SIM) to prioritize the Available PLMN list. Once this prioritized PLMN list is available, the MS attempts registration with a PLMN based on priority.

With network sharing a single radio network is shared by more than one network operator. Information about the availability of multiple operators must be propagated to the MS so that it can correctly select a home or equivalent network from all available networks.

To advertise availability of multiple core network operators on a single radio network, broadcast information has been modified to contain a list of PLMN-Ids representing core network operators sharing the particular radio network. The traditional PLMN-Id broadcast by a radio network before network sharing support was available is known as a “common PLMN Id”.

An MS that does not support network sharing (a non-supporting MS) sees only the “common PLMN Id”, while an MS supporting network sharing (a supporting MS) is able to see the list of PLMN-Ids along with “common PLMN Id”.

A supporting MS is responsible for selecting an appropriate core network, while the RNC and SGSN will help select an appropriate core network for a non-supporting MS.

MOCN Configuration with Non-supporting MS

In this scenario, only the radio network is shared by different network operators while each operator manages its own SGSN and the rest of the core network. The MS does not support network sharing – it is unable to understand the modified broadcast information and would always choose the PLMN based on the advertised “common PLMN-Id”.

The SGSN performs the following steps:

1. Extract the subscriber’s IMSI.
 - If it is available, use IMSI in a BSSGP UL-UNITDATA message.
 - For inter-SGSN RAU and a P-TMSI Attach Request, retrieve the IMSI from the old SGSN or the MS by doing an Identity Procedure.

2. Based on the MCC-MNC from the IMSI, apply roaming control.

3. If the subscriber can be admitted in the SGSN, send a response message (Attach-Accept or RAU-Accept) with an Redirection-Completed IE via BSSGP UL-UNITDATA.

4. If the subscriber cannot be admitted in the SGSN, send a BSSGP DL-UNITDATA message to the BSC with a redirection indication flag set containing the reject cause, the attach reject message, and the original attach request message received from the UE. The IMSI is also included in the message.
Architecture

Redirection in GERAN with MOCN Configuration

The figure below illustrates the information flow for this configuration.

Figure 52. Information Flow for Redirection in GERAN (PS Domain)

1. Establish TBF
2a. LLC (foreign TLLi=X Attach Request)
2b. NRI of TLLi=X points to SGSN A
3. BSSGP UL-UNIDATA
 (TLLi=X, Attach Request, redirect attempt flag)
4. Identify Req
4. Identify Rsp (IMSI)
5a. BSSGP DL-UNIDATA
 (Attach Req, Attach Reject, redirection indicate, IMSI)
5b. BSC links TLLi=X to SGSN B
6. BSSGP UL-UNIDATA
 (Attach Request, redirect attempt flag, IMSI…)
7a. Send Authenticate Info
7b. Send Authenticate Info Ack
7c. Authentication and Ciphering Request:
 Uplink LLC frame NOT routed on NRI of TLLi=X
7c. Authentication and Ciphering Response:
10. Attach Accept
9. BSSCP DL-Unidata
 (Attach Accept, redirection completed…)
11. Attach Complete: New TLLi

1 Establish the TBF (Temporary Block Flow).
How It Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The BSC receives the LLC frame with foreign [or random] TLLI = X. The BSC works in a Shared RAN MOCN, and, therefore, forwards the message in a BSSGP UL-UNITDATA message with an additional redirect attempt flag set. The flag indicates that the SGSN shall respond to the attach request with a BSSGP DL-UNITDATA message providing when relevant a redirection indication flag set to inform the BSC that a redirection to another CN must be performed. The selection of a CN node is based on NRI (valid or invalid) or random selection. The mechanism defined for Gb-Flex in TS 23.236 [8] is used.</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN receives the BSSGP UL-UNITDATA message with the redirect attempt flag set. It then knows it may have to provide the BSC with a redirection indication flag set or a redirection completed flag set.</td>
</tr>
<tr>
<td>4</td>
<td>The SGSN needs the IMSI of the UE retrieves it either from the old SGSN or from the UE as in this example. By comparing the IMSI with the roaming agreements of the CN operator, SGSN A discovers that roaming is not allowed or that roaming is allowed but CS/PS coordination is required. The Attach procedure is aborted.</td>
</tr>
<tr>
<td>5a</td>
<td>A BSSGP DL-UNITDATA message is sent back to the BSC with a redirection indication flag set containing the reject cause, the attach reject message, and the original attach request message received from the UE. The V(U) shall also be included in the message. The IMSI is also included in the message. The BSC selects a SGSN B in the next step. The already tried SGSN A is stored in the BSC during the redirect procedure so that the same node is not selected twice.</td>
</tr>
<tr>
<td>5b</td>
<td>The BSC makes a short-lived binding between the TLLI = X and SGSN ID so that it points to SGSN B.</td>
</tr>
<tr>
<td>6</td>
<td>The BSC sends a new BSSGP UL-UNITDATA to the next selected SGSN B with the original attach request message (for CS/PS coordination the BSSGP UL-UNITDATA may also be sent back to the first SGSN depending on the outcome of the coordination). Redirect attempt flag is set and IMSI is included to avoid a second IMSI retrieval from the UE or old SGSN and to indicate that PS/CS domain coordination has been done in BSC (if enabled in BSC). The V(U) shall also be included in the message. The SGSN B receiving the message starts its attach procedure.</td>
</tr>
<tr>
<td>7</td>
<td>SGSN B does support roaming for the HPLMN of the IMSI; authentication is done and RAN ciphering is established. The value of V(U) in SGSN-B is set according to the received value from BSC. Uplink LLC frames are routed to SGSN B despite the NRI of the TLLI=X pointing to SGSN A.</td>
</tr>
<tr>
<td>8</td>
<td>SGSN B updates the HLR and receives subscriber data from HLR. Subscriber data allows roaming, and the SGSN B completes the attach procedure. This includes the assignment of a new P-TMSI with an NRI that can be used by BSC to route subsequent signalling between UE and the correct SGSN (Gb-Flex functionality).</td>
</tr>
<tr>
<td>9</td>
<td>A BSSGP DL-UNITDATA Attach accept message is sent to BSC with the Redirection Completed flag set. The BSC knows that the redirect is finished and can forward the Attach Accept message to the UE and clean up any stored redirect data. SGSN B is allowed to reset the XID parameter only after the Attach Request is accepted.</td>
</tr>
<tr>
<td>10</td>
<td>The Attach Accept is forwarded to the UE. The UE stores the P-TMSI with the Gb-Flex NRI to be used for future signalling, even after power off.</td>
</tr>
<tr>
<td>11</td>
<td>UE responds with an Attach Complete message (P-TMSI [re-]allocation if not already made in Attach Accept). The Attach Complete uses the new TLLI. After this, the BSS releases the binding between TLLI=X and SGSN B.</td>
</tr>
</tbody>
</table>

If the BSC finds no SGSNs to redirect to after receiving a BSSGP DL-UNITDATA message with the Redirection Indication flag set, it compares the cause code with cause codes from other BSSGP DL-UNITDATA messages it has previously received for this UE. A cause code ranking is done and the “softest” cause code is chosen. The corresponding saved Attach Reject message is returned to the UE.

Each CN node that receives a BSSGP UL-UNITDATA, runs its own authentication procedure. This may in some rare situations cause the UE to be authenticated more than once. However, the trust-model used is that one CN operator shall not trust an authentication done by another CN operator. This is not an optimal usage of radio resources, but given the rare occurrence of this scenario, the increased signalling is insignificant.

During the redirect procedure the BSC keeps a timer, which corresponds to the UE timer for releasing the RR connection (20 seconds). If the BSC when receiving a BSSGP DL-UNITDATA message with the Redirection Indication flag set finds that there is insufficient time for another redirect, further redirect attempts are stopped (for this...
Attach Request message). The UE will repeat its Attach Request four times (each time waiting 15 seconds before it re-establishes the RR connection for another try).

Standards Compliance

Support for 2G MOCN functionality on the SGSN complies with the following standards:

- 3GPP TS 23.251 – Network Sharing: Architecture and functional description
- 3GPP TS 40.018 version 10.7.0 Release 10 – BSSGP layer specification
- 3GPP TS 44.064 – Mobile Station - Serving GPRS Support Node (MS-SGSN); Logical Link Control (LLC) Layer Specification
- 3GPP TS 24.008 – Mobile radio interface Layer 3 specification; Core network protocols
Configuring 2G MOCN

For details about the commands listed below, refer to the Cisco ASR 5000 Command Line Interface Reference for the appropriate release.

GPRS MOCN Configuration

gprs-mocn

The SGSN mode gprs-mocn command enables or disables 2G MOCN support.

```
config
  sgsn-global
  gprs-mocn
end
```

Verifying gprs-mocn Configuration

From the Exec mode, run the show sgsn-mode command and look for the line:

```
Multi Operator Core NW (MOCN) : Enabled
```

Common PLMN-Id and List of PLMN Ids Configuration

plmn id

The following command sequence configures the common PLMN-Id and an optional list of dedicated PLMN-Ids in the GPRS service.

```
config
  context ctxt_name
    gprs-service gprs_srvc_name
      plmn id mcc mcc_id mnc mnc_id [ network-sharing common-plmn mcc mcc_id mnc mnc_id [ plmn-list mcc mcc_id mnc mnc_id [ mcc mcc_id mnc mnc_id ] + ] ]
end
```

Notes:

- + in the syntax above indicates that the mcc/mnc combination can be repeated as often as needed to define all PLMN-Ids needed in the list.
Verifying plmn id Configuration

From the Exec mode, run the `show gprs-service` command, including the `name` keyword to identify the specific GPRS service you configured above, and check the output for the following lines:

- `Network Sharing` : <Enabled/Disabled>
- `Common Plmn-id` : MCC: <mcc_id>, MNC: <mnc_id>
- `Local PLMNS:`
- `PLMN` : MCC: <mcc_id>, MNC: <mnc_id>

Network Sharing Configuration

`network-sharing cs-ps-coordination`

Next, the operator should configure cs-ps-coordination checking explicitly for homer or roamer subscribers and for the failure-code to be sent when the SGSN asks the BSC to perform CS-PS coordination.

The `network-sharing` command enables or disables the cs-ps-coordination check for `homer` or `roamer`. It is also used to set the failure code that will be sent while the SGSN is requesting the BSC to provide CS-PS coordination.

```
cfg
cnt <ctxt_name>
gprssrv <gprs_srvc_name>
et <gmm_cause>
end
```

Notes: Variations of the network sharing command can be used to adjust the CS-PS configuration.

- `network-sharing cs-ps-coordination` – enables/disables the cs-ps-coordination check.
- `network-sharing cs-ps-coordination failure-code` – sets the gmm cause value to be sent while cs-ps-coordination is required. This setting applies to both `homer` and `roamer`.
- `default network-sharing cs-ps-coordination` – sets the cs-ps-coordination parameters to default. By default, checking for cs-ps-coordination is enabled for homer and roamer. The default failure code is 0xE.

Verifying network-sharing Configuration

From the Exec mode, run the `show gprs-service` command, including the `name` keyword, and check the output for the following lines:

- `CS/PS Co-ordination homer` : <Enabled/Disabled>
CS/PS Co-ordination roamer : <Enabled/Disabled>
CS/PS Co-ordination failcode : <valid gmm cause>

network-sharing failure-code

The following command sequence sets the failure code that is used by GPRS MOCN if no failure cause is available when the SGSN sends an Attach/RAU Reject message

```plaintext
config
context ctxt_name
  gprs-service gprs_srvc_name
    network-sharing failure-code gmm-cause
end
```

Default network sharing failure-code is 7.

Verifying Failure Code Configuration

From the Exec mode, run the `show gprs-service name` command and look for the following line:

```
Network-sharing Failure-code : <gmm-cause>
```
Monitoring and Troubleshooting 2G SGSN MOCN Support

The output generated by the following show commands will assist you in monitoring and troubleshooting 2G SGSN MOCN support.

show sgsn-mode

From the Exec mode, run the `show sgsn-mode` command and look for the following line:

Multi Operator Core NW (MOCN) : <Enabled/Disabled>

This line indicates whether or not MOCN has been enabled.

show gprs-service name

From the Exec mode, run `show gprs-service name gprs-service-name` and check the output for the following lines:

CS/PS Co-ordination homer : <Enabled/Disabled>
CS/PS Co-ordination roamer : <Enabled/Disabled>
CS/PS Co-ordination failcode : <valid gmm cause>

The above lines display details regarding cs/ps coordination for homer and roamer, as well as the GMM cause to be sent in the Reject message when cs/ps coordination is required.

Network-sharing Failure-code : <gmm-cause>

The above line displays the GMM cause to be sent as a Reject cause only when no valid cause code was derived while sending the Reject message. This gmm-cause is used for non-cs/ps coordination Rejects.

Network Sharing : <Enabled/Disabled>
Common Plmn-id : MCC: <mcc_id>, MNC: <mnc_id>
Local PLMNS:

PLMN : MCC: <mcc_id>, MNC: <mnc_id>

The above lines display details about the GPRS service with MOCN enabled, including the configured common PLMN-id and the list of local PLMN Ids.

show gmm-sm statistics verbose

From the Exec mode, run `show gmm-sm statistics verbose` and look for the following lines:

GPRS MOCN Attach Statistics
Total Redirection Attempts Rcvd:

- Redirection attempts rcvd with bssgp imsi: <value>
- Redirection attempts rcvd without bssgp imsi: <value>

Total Redirection Completes Sent:

- Successful Redirection completes sent: <value>
- Failure Redirection completes sent: <value>

Total Redirection Indications Sent:

- Illegal PLMN: <value>
- Illegal LA: <value>
- No roaming: <value>
- No gprs PLMN: <value>
- No cell in LA: <value>
- CS/PS Coord Rqrd: <value>
- Others: <value>

GPRS MOCN RAU Statistics

Total Redirection Attempts Rcvd:

- Redirection attempts rcvd with bssgp imsi: <value>
- Redirection attempts rcvd without bssgp imsi: <value>

Total Redirection Completes Sent:

- Successful Redirection completes sent: <value>
- Failure Redirection completes sent: <value>

Total Redirection Indications Sent:

- Illegal PLMN: <value>
- Illegal LA: <value>
- No roaming: <value>
- No gprs PLMN: <value>
- No cell in LA: <value>
- CS/PS Coord Rqrd: <value>
Others: <value>
This chapter describes SGSN support for the Network Requested Secondary PDP Context Activation (NRSPCA) feature.

- Feature Description
- How It Works
- Configuring NRSPCA
- Monitoring and Troubleshooting the NRSPCA Feature
Feature Description

The SGSN supports Secondary PDP context activation by the network - NRSPCA.

3GPP TS 23.060 specifies two procedures for GGSN-initiated PDP Context Activation:

- **Network Requested PDP Context Activation** (NRPCA) is supported by SGSN but only for 3G access
- **Network Requested Secondary PDP Context Activation** (NRSPCA) is now supported by both Gn/Gp and S4 type SGSNs.

P-GW supports only the NRSPCA procedure. Network requested bearer control, used by P-GW and the SGSN, makes use of the NRSPCA procedure.

Benefits

NRSPCA allows the network to initiate secondary PDP context activation if the network determines that the service requested by the user requires activation of an additional secondary PDP context.

Network requested bearer control functionality is mandatory in EPC networks, requiring use of NRSPCA. With this feature S4-SGSN now supports network requested bearer control.

Relationships to Other Features

For NRSPCA on Gn/Gp SGSN, the sgtp-service configuration must include common IE flags in GTP messages.

Network requested activation must be enabled in the call-control profile.

NRSPCA must be supported on the GGSN used for the PDP session. SGSN indicates support of NRSPCA by setting the NRSN flag in the common flags IE of the Create PDP Context Request and the Update PDP Context Request/Response messages to GGSN.

For S4-SGSN, network requested activation must be enabled in the call-control profile.
How It Works

Gn/Gp SGSN

During PDP Context Activation Procedure the Bearer Control Mode (BSM) is negotiated. BCM is applicable to all PDP Contexts within the activated PDP Address/APN pair. It is either “MS_only” or “MS/NW”.

For “MS/NW” both the MS and the GGSN may request the creation of additional PDP contexts for the PDP Address/APN pair. The MS uses the Secondary PDP Context Activation Procedure, whereas the GGSN uses NRSPCA. When BCM is “MS_only”, the GGSN does not initiate NRSPCA.

The MS indicates support of Network Requested Bearer control through the Network Request Support UE (NRSU) parameter. Using the PCO IE during Primary PDP context Activation, NRSU is applicable to all PDP contexts within the same PDP address/APN pair. The SGSN indicates support of the Network Requested Bearer control to the GGSN through the Network Request Support Network (NRSN) parameter in common flags of the Created PDP Context Request during PDP activation.

During a new SGSN RAU, the new SGSN indicates the support by means of the NRSN parameter in Update PDP Context Request. If common flags are not included in the Update PDP Context Request message, or the SGSN does not indicate support of the Network Requested Bearer control (NRSN flag is not set), the GGSN, following a SGSN-Initiated PDP Context Modification (triggered by SGSN change), performs a GGSN-Initiated PDP Context Modification to change the BCM to “MS-Only” for all PDP-Address/APN-pairs for which the current BCM is “MS/NW”.

When BCM is “MS/NW”, the GGSN may trigger activation of secondary PDP context based on local configuration or on PCRF/PCEF direction.

Successful Activation for Gn/Gp SGSN

The call flow below illustrates the NRSPCA procedure for a successful activation.
Figure 53. Call Flow: Successful Network Requested Secondary Activation (Gn.Gp)

GGSN initiates secondary PDP activation by sending an Initiate PDP Context Activation Request (linked NSAPI, requested Qos, TFT, PCO, correlation-Id) to SGSN. The SGSN sends a Requested Secondary PDP Context Activation (linked Ti, Ti, Qos Requested, TFT, PCO) message to MS. The QoS Requested, TFT and PCO are transparently passed through the SGSN.

The TFT sent by the GGSN contains the uplink packet filters to be applied at the MS. The GGSN uses the Correlation-Id is to correlate the subsequent Secondary PDP Context Activation procedure with the Initiate PDP Context Activation Request. The SGSN includes this correlation-Id in the subsequent Create PDP Context Request to GGSN.

The MS sends an Activate Secondary PDP Context Request (linked Ti, Ti, NSAPI, PCO, QoS Requested). Linked Ti, Ti, Qos Requested will be the same as received in a previous message from SGSN. The TFT sent by the MS will contain the downlink packet filters to be applied at GGSN.

On receiving a successful response (Activate Secondary PDP Context Request), the SGSN sends an Initiate PDP Context Activation Response with cause as Accepted to the GGSN. Additionally the SGSN sends a Create PDP Context Request (correlation-Id, linked NSAPI, NSAPI, TFT, PCO) to the GGSN. After the GGSN responds with a Create PDP Response with cause Accepted, the SGSN completes the procedure by sending an Activate Secondary PDP Context Accept to the MS.

Unsuccessful Activation for Gn/Gp SGSN

After sending a Requested Secondary PDP Context Activation to the MS, the SGSN starts the T3385 radio interface retransmission timer. Upon expiry the SGSN resends the message a maximum of four retries. Upon the fifth expiry, the SGSN releases all allocated resources and sends an Initiate PDP Context Activation Response to the GGSN with cause as “MS is not GPRS responding”.

The MS may choose to reject the Secondary Activation by the network. In such cases, the MS sends a Requested Secondary PDP Context Activation Reject message with appropriate cause. The SGSN informs the GGSN by sending it an Initiate PDP Context Activation Reject message with an appropriate GTP cause mapped from SM (Session Management) cause. SM-to-GTP cause mapping is listed in the table below.
Table 22. SM-to-GTP Cause Mapping

<table>
<thead>
<tr>
<th>SM Cause</th>
<th>GTP Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>#26, Insufficient resources</td>
<td>#199, No resources available</td>
</tr>
<tr>
<td>#31, activation rejected, unspecified</td>
<td>#197, MS refuses</td>
</tr>
<tr>
<td>#40, feature not supported</td>
<td>#200, Service not supported</td>
</tr>
<tr>
<td>#41, semantic error in TFT operation</td>
<td>#215, semantic error in TFT operation</td>
</tr>
<tr>
<td>#42, syntactical error in TFT operation</td>
<td>#216, syntactical error in TFT operation</td>
</tr>
<tr>
<td>#43, unknown PDP context</td>
<td>#210, Context not found</td>
</tr>
<tr>
<td>#44, semantic error in packet filter(s)</td>
<td>#217, semantic error in packet filter(s)</td>
</tr>
<tr>
<td>#45, syntactical error in packet filter(s)</td>
<td>#218, syntactical error in packet filter(s)</td>
</tr>
<tr>
<td>#46, PDP context without TFT already activated</td>
<td>#221, PDP context without TFT already activated</td>
</tr>
<tr>
<td>#48, activation rejected, BCM violation</td>
<td>#227, BCM violation</td>
</tr>
<tr>
<td>#95 - protocol error</td>
<td>#197, MS refuses</td>
</tr>
</tbody>
</table>

Upon receipt of an Activate Secondary PDP Context Request or Requested Secondary PDP Context Activation Reject message, the SGSN stops the T3385 timer.

Figure 54. Call Flow: Unsuccessful Network Requested Secondary Activation (Gn/Gp)

The SGSN will reject the IPCA for the following conditions:

- Subscriber has switched to CS call with cause “GPRS connection suspended”.
- Old SGSN RAU/SRNS is ongoing with cause “MS is not GPRS responding”.
- IPCA Request is received when BCM is MS only with “BCM mode violation”.

Upon receipt of an Activate Secondary PDP Context Request or Requested Secondary PDP Context Activation Reject message, the SGSN stops the T3385 timer.
• The received Correlation Id is the same as that for another ongoing NRSPCA request for the same bundle with “Invalid Correlation Id”.
• Linked context is in deactivating state (collision case), with “context not found”.
• Failure conditions such as “memory allocation failure” are encountered with “No resources available”.
• An operator policy restriction causes IPCA Req to be rejected with the configured cause under the call-control profile.

The following table lists the GTP causes in the Initiate PDP Context Activation Response that will initiate SGSN rejects.

<table>
<thead>
<tr>
<th>GTP Cause</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>#225, Invalid Correlation Id</td>
<td>SGSN stores the Correlation Id until completion of Activation. It rejects the newer NRSPCA activation if the GGSN uses the same value for two NRSPCA activations (uniquely identified by sequence number).</td>
</tr>
<tr>
<td>#199, No resources available</td>
<td>Rejection is due to insufficient memory, the maximum number of temporary Ti allocations has been reached, or the NRSPCA procedure collides with a new SGSN RAU procedure.</td>
</tr>
<tr>
<td>#210, Context not found</td>
<td>Rejection occurs because the PDP bundle identified by a linked NSAPI does not have any active PDP context.</td>
</tr>
<tr>
<td>#197, GPRS connection Suspended</td>
<td>MS is in suspended state (CS call active).</td>
</tr>
<tr>
<td>#196, MS is not GPRS responding</td>
<td>Rejection occurs if the Request Secondary PDP Context Activation message times out (T3385 timer), no response to Paging, PPF flag is set to 0, or the NRSPCA procedure collides with an old SGSN RAU/SRNS, intra-SGSN intersystem/RAT RAU.</td>
</tr>
<tr>
<td>Configured GTP cause, or #200, Service not supported (default)</td>
<td>Rejection is based on operator policy.</td>
</tr>
<tr>
<td>#227, BCM violation</td>
<td>IPCA Request is received for a bundle with BCM set to MS only.</td>
</tr>
</tbody>
</table>

S4-SGSN

Successful Activation for S4-SGSN

A P-GW initiates a Secondary PDP activation by sending a Create Bearer Request (linked Bearer Identity, Bearer Ctx(s), PCO etc) to the S-GW. The S-GW then forwards the request to the S4-SGSN.

The Bearer Contexts contain Bearer level parameters such as TFT, Bearer level QoS, S5/8-U PGW FTeid, PCO, etc. The S-GW includes the S12-U SGW FTeid or S4-U SGW FTeid depending on whether an S12 or S4 interface is used. The S4-SGSN sends the Requested Secondary PDP Context Activation (linked Ti, Ti, Qos Requested, TFT, and PCO) message to MS.
Network Requested Secondary PDP Context Activation

How It Works

The QoS Requested, TFT and PCO are transparently passed through the S4-SGSN. The MS sends an Activate Secondary PDP Context Request (linked Ti, Ti, NSAPI, PCO, and QoS Requested). Linked Ti, Ti, Qos Requested will be as same as received in a previous message from the S4-SGSN. The TFT sent to MS may contain both the uplink and downlink packet filters.

On receiving a successful response (Activate Secondary PDP Context Request) in UMTS access, the S4-SGSN establishes RAB with the serving RNC and then sends a Create Bearer Response with Accepted cause to S-GW. For GPRS access, the RAB establishment is skipped.

The S4-SGSN includes the S4-U SGW FTeid (received in Create Bearer Request) in the Create Bearer Response to S-GW. S-GW uses this to correlate the Bearer Contexts in Response with that of Request. The S4-SGSN completes the procedure by sending an Activate Secondary PDP Context Accept to the MS.

A successful Network Requested Secondary PDP Context Activation Procedure is illustrated in the figure below.

![Figure 55. Call Flow: Successful Network Requested Secondary Activation (S4-SGSN)](image)

Unsuccessful Activation for S4-SGSN

After sending a Requested Secondary PDP Context Activation to the MS, the S4-SGSN starts the T3385 radio interface retransmission timer. Upon expiry the S4-SGSN resends the message, a maximum of four retries. Upon the fifth expiry, the S4-SGSN releases all allocated resources and sends a Create Bearer Response to the S-GW/P-GW with cause as “UE not responding”.

The MS may choose to reject a Secondary Activation by network. In such cases, the MS sends a Requested Secondary PDP Context Activation Reject message with an appropriate cause. S4-SGSN informs the SGW/PGW by sending a Create Bearer Response with an appropriate GTPv2 cause mapped from an SM cause as shown in the table below.

<table>
<thead>
<tr>
<th>SM Cause</th>
<th>GTPv2 Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>#26, Insufficient resources</td>
<td>#73, No resources available</td>
</tr>
</tbody>
</table>

Unsuccessful Activaton for S4-SGSN

After sending a Requested Secondary PDP Context Activation to the MS, the S4-SGSN starts the T3385 radio interface retransmission timer. Upon expiry the S4-SGSN resends the message, a maximum of four retries. Upon the fifth expiry, the S4-SGSN releases all allocated resources and sends a Create Bearer Response to the S-GW/P-GW with cause as “UE not responding”.

The MS may choose to reject a Secondary Activation by network. In such cases, the MS sends a Requested Secondary PDP Context Activation Reject message with an appropriate cause. S4-SGSN informs the SGW/PGW by sending a Create Bearer Response with an appropriate GTPv2 cause mapped from an SM cause as shown in the table below.

Table 24. SM Cause to GTPv2 Cause Mapping

<table>
<thead>
<tr>
<th>SM Cause</th>
<th>GTPv2 Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>#26, Insufficient resources</td>
<td>#73, No resources available</td>
</tr>
</tbody>
</table>
Upon receipt of an Activate Secondary PDP Context Request or Requested Secondary PDP Context Activation Reject message, the S4-SGSN stops the T3385 timer.

The S4-SGSN will reject a Create Bearer Request for the following conditions:

- Subscriber has switched to CS call with cause “Unable to page UE due to suspension”.
- A collision occurs with an old SGSN RAU/SRNS with cause “Temporarily rejected due to handover procedure in progress”.
- Linked context is in deactivating state (collision case) with “context not found”.
- A failure conditions such as ‘memory allocation failure” is encountered with “No resources available”.
- Operator policy restriction rejects the CBR Req with the configured cause under the call-control profile.
- PPF flag is cleared with cause “Unable to Page UE”.
- Paging failure or Request Secondary PDP activation request times out with cause “UE not responding”.

An unnecessarily NRSPCA procedure is illustrated in the figure below.
Limitations

Security function during NRSPCA procedure is not supported.

Standards Compliance

The NRSPCA feature complies with the following standards:

- 3GPP TS 23.060 version 10 – General Packet Radio Service (GPRS)
- 3GPP TS 24.008 version 10 – Mobile radio interface Layer 3 specification; Core network protocols
- 3GPP TS 29.060 version 10 – General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface
- 3GPP TS 29.278 version 10 – Customized Applications for Mobile network Enhanced Logic (CAMEL); CAMEL Application Part (CAP) specification for IP Multimedia Subsystems (IMS)
Configuring NRSPCA

Configuration of the NRSPCA feature requires:

- Enabling the common flags IE in SGTP service
- Including the NRSPCA feature in a specific call control profile

Sample NRSPCA Configuration

The first set of commands enables the common flags IE:

```
config
  context <context-name>
    sgtp-service <sgtp-service-name>
      gtpc send common-flags
    end
end
```

The second set of commands includes a new keyword (secondary) to configure NRSPCA in a call control profile.

```
config
  call-control-profile <profile_name>
    network-initiated-pdp-activation secondary access-type <gprs|umts> { all failure-code <failure_code> | location-area-list instance <instance> failure-code <failure_code> }
  end
```

NOTES:

- `remove` added to the command disables NRSPCA by removing the network-initiated-pdp-activation definition from the configuration.
- There is no default form of the command.

Verifying the NRSPCA Configuration

```
show sgtp-service name <sgtp-service-name>
```

```
Service name : <sgtp-service-name>
Service-Id : 3
Context : source
```
Network Requested Secondary PDP Context Activation

Configuring NRSPCA

Status : STARTED

Sending RAB Context IE : Enabled
Sending Common Flags IE : Enabled
Sending Target Identification Preamble : Disabled

show call-control-profile full name <cc-profile-name>

Call Control Profile Name = <cc-profile-name>

Accounting Mode (SGW) : None
Accounting stop-trigger (SGW) : Not configured

UMTS Secondary PDP Context Activation All : Allow
UMTS PDP Context Activation All Failure Code : 8
GPRS Nw Init Primary PDP Context Activation All : Allow
GPRS Nw Init Primary PDP Ctxt Activation All Failure Code : 200
GPRS Nw Init Secondary PDP Context Activation All : Allow
GPRS Nw Init Secondary PDP Ctxt Activation All Failure Code : 200
UMTS Nw Init Primary PDP Context Activation All : Allow
UMTS Nw Init Primary PDP Ctxt Activation All Failure Code : 200
UMTS Nw Init Secondary PDP Context Activation All : Allow
UMTS Nw Init Secondary PDP Ctxt Activation All Failure Code : 200
SRNS Intra All : Allow
Monitoring and Troubleshooting the NRSPCA Feature

- The `show subscriber sgsn-only/gprs-only full` command indicates whether or not the Secondary PDP context was network initiated. The last received BCM from the GGSN (applicable for Gn/Gp only) is also be displayed.

- Two new disconnect reasons have been introduced:
 - `sgsn-nrspca-actv-rej-by-ms` – MS sends a Request Secondary PDP Context Activation Reject message
 - `sgsn-nrspca-actv-rej-by-sgsn` – For all other cases where NRSPCA context activation does not complete successfully

- Additional counters have been added to session management statistics in the output of the `show gmm-sm statistics` command to represent the session management messages used by NRSPCA. Similarly, counters have been added to the tunnel management statistics in the output of the `show sgtpc statistics` command. These counters are described in the next section.

- For NRSPCA activation failures, the Abort statistics in the verbose mode of the `show gmm-sm statistics` or `show gmm-sm statistics sm-only` command outputs provide reasons for the failure. The various counters are described in next section.

- Network initiated flag in SCDRs will be set for NRSPCA PDP contexts. Note that network initiated flag is present in only a few dictionaries, such custom24, custom13, and custom6.

NRSPCA show Commands

The following `show` commands are available in support of the NRSPCA feature:

- `show gmm-sm statistics sm-only` – displays the Session Management messages exchanged for NRSPCA activation.
- `show sgtpc statistics` – displays the GTPC messages exchanged for NRSPCA activation.
- `show subscribers sgsn-only/gprs-only full` – indicates whether or not the Secondary PDP context was network initiated. Displays the last received BCM from the GGSN (applicable for Gn/Gp only).

show gmm-sm statistics sm-only

The following counters are included in the `show gmm-sm statistics sm-only` command output to support the NRSPCA feature. For detailed descriptions of these statistics, refer to the *ASR 5x00 Statistics and Counters Reference*.

<table>
<thead>
<tr>
<th>NRSPCA SM Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate Context Request</td>
</tr>
<tr>
<td>Actv-Request-Nrspca 3G-Actv-Request-Nrspca</td>
</tr>
<tr>
<td>Activate Context Request Retransmitted</td>
</tr>
<tr>
<td>3G-Secondary-Actv-Drop-Nrspca</td>
</tr>
</tbody>
</table>
NRSPCA SM Statistics

Activate Context Accept

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actv-Accept-Nrspca</td>
<td>2G-Actv-Accept-Nrspca</td>
</tr>
<tr>
<td>3G-Actv-Accept-Nrspca</td>
<td></td>
</tr>
</tbody>
</table>

Activate Context Reject

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actv-Reject-Nrspca</td>
<td>2G-Actv-Reject-Nrspca</td>
</tr>
<tr>
<td>3G-Actv-Reject-Nrspca</td>
<td></td>
</tr>
</tbody>
</table>

Network Initiated Secondary Activation Aborted (verbose only)

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G-NRSPCA-Abort-GTP-Suspend</td>
<td>2G-NRSPCA-Abort-GTP-Suspend</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Handoff</td>
<td>2G-NRSPCA-Abort-Handoff</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Max-Retry-Attempts</td>
<td>2G-NRSPCA-Abort-T3385-Expiry</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Paging-Expiry</td>
<td>2G-NRSPCA-Abort-Paging-Expiry</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Linked-Ctx-Deactv</td>
<td>2G-NRSPCA-Abort-Linked-Ctx-Deactv</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Linked-Ctx-Detach</td>
<td>2G-NRSPCA-Abort-Linked-Ctx-Detach</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Inter-RAT-Handoff</td>
<td>2G-NRSPCA-Abort-Inter-RAT-Handoff</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Iu-release</td>
<td>2G-NRSPCA-Abort-Iu-release</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-SRNS-Handoff</td>
<td>2G-NRSPCA-Abort-Ready-Tmr-Expiry</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Intra-RAU</td>
<td>2G-NRSPCA-Abort-Radio-Status</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Intra-SRNS</td>
<td>2G-NRSPCA-Abort-BVC-Block-Or-Reset</td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-RAB-Failure</td>
<td></td>
</tr>
<tr>
<td>3G-NRSPCA-Abort-Ctx-Deactv</td>
<td></td>
</tr>
</tbody>
</table>

Request Secondary Pdp Context Activation

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-Request-Sec-Pdp-Ctxt-Req</td>
<td>2G-Request-Sec-Pdp-Ctxt-Req</td>
</tr>
<tr>
<td>3G-Request-Sec-Pdp-Ctxt-Req</td>
<td></td>
</tr>
</tbody>
</table>

Retransmission

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-Request-Sec-Pdp-Ctxt-Req</td>
<td>2G-Request-Sec-Pdp-Ctxt-Req</td>
</tr>
<tr>
<td>3G-Request-Sec-Pdp-Ctxt-Req</td>
<td></td>
</tr>
</tbody>
</table>

Request Secondary Pdp Context Activation Reject

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-Request-Sec-Pdp-Ctxt-Reject</td>
<td>2G-Request-Sec-Pdp-Ctxt-Reject</td>
</tr>
<tr>
<td>3G-Request-Sec-Pdp-Ctxt-Reject</td>
<td></td>
</tr>
</tbody>
</table>

Request Secondary Pdp Context Activation Denied (verbose only)

<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G-Insufficient Resources</td>
<td>2G-Insufficient Resources</td>
</tr>
<tr>
<td>3G-Actv Rej Unspecified</td>
<td>2G-Actv Rej Unspecified</td>
</tr>
<tr>
<td>3G-Feature NotSupported</td>
<td>2G-Feature NotSupported</td>
</tr>
<tr>
<td>3G-Sem Err in TFT OP</td>
<td>2G-Sem Err in TFT OP</td>
</tr>
<tr>
<td>3G-Syntactic Err in TFT OP</td>
<td>2G-Syntactic Err in TFT OP</td>
</tr>
<tr>
<td>3G-Unknown Ctx</td>
<td>2G-Unknown Ctx</td>
</tr>
<tr>
<td>3G-Sem Err in Pkt Filter</td>
<td>2G-Sem Err in Pkt Filter</td>
</tr>
<tr>
<td>3G-Syntactic Err in Pkt Filter</td>
<td>2G-Syntactic Err in Pkt Filter</td>
</tr>
<tr>
<td>3G-Ctx No-Tf Already Activated</td>
<td>2G-Ctx No-Tf Already Activated</td>
</tr>
<tr>
<td>3G-Actv Rej BCM violation</td>
<td>2G-Actv Rej BCM violation</td>
</tr>
<tr>
<td>3G-Proto Err Unspecified</td>
<td>2G-Proto Err Unspecified</td>
</tr>
</tbody>
</table>

Request Secondary Pdp Context Activation Rejects Dropped
Network Requested Secondary PDP Context Activation

Monitoring and Troubleshooting the NRSPCA Feature

NRSPCA SM Statistics

| 3G-Request-Sec-Pdp-Ctxt-Rej-Dropped | 2G-Request-Sec-Pdp-Ctxt-Rej-Dropped |

Request Secondary Pdp Context Activation Aborted

3G-NRSPCA-Abort-Subs-Detach	2G-NRSPCA-Abort-Subs-Detach
3G-NRSPCA-Abort-Linked-Ctx-Deactv	2G-NRSPCA-Abort-Linked-Ctx-Deactv
3G-NRSPCA-Abort-Max-Retry-Attempts	2G-NRSPCA-Abort-Max-Retry-Attempts
3G-NRSPCA-Abort-Paging-Expire	2G-NRSPCA-Abort-Paging-Expire
3G-NRSPCA-Abort-Subs-Suspend	2G-NRSPCA-Abort-Subs-Suspend
3G-NRSPCA-Abort-Handoff	2G-NRSPCA-Abort-Handoff
3G-NRSPCA-Abort-Inter-RAT-Handoff	2G-NRSPCA-Abort-Inter-RAT-Handoff
3G-NRSPCA-Abort-Intra-RAU	2G-NRSPCA-Abort-Intra-RAU
3G-NRSPCA-Abort-Iu-release	2G-NRSPCA-Abort-Ready-Tmr-Expire
3G-NRSPCA-Abort-Intra-SRNS	2G-NRSPCA-Abort-Ready-SRNS-Handoff
3G-NRSPCA-Abort-RAB-Failure	2G-NRSPCA-Abort-RAB-Failure
3G-NRSPCA-Abort-Ctx-Deactv	2G-NRSPCA-Abort-Ctx-Deactv

Secondary Pdp Context Activation Request Ignored (verbose only)

| Total-Actv-Request-Nrspca-Ignored | 2G-Actv-Request-Nrspca-Ignored |
| 3G-Actv-Request-Nrspca-Ignored | |

show sgtpc statistics

The following counters are included in the show sgtpc statistics command output to support the NRSPCA feature. For detailed descriptions of these statistics, refer to the ASR 5x00 Statistics and Counters Reference.

Table 26. NRSPCA SGTPC Statistics

NRSPCA SGTC Statistics

| Initiate PDP Context Activation Request |
| Total IPCA Req | Retrans IPCA Req |
| Initial IPCA Req | |

Initiate PDP Context Activation Response:

Total Accepted	Retrans IPCA Rsp
Initial IPCA Rsp	
Total Denied	Retrans IPCA Rsp
Initial IPCA Rsp	

Initiate PDP Context Activation Response Not Sent (verbose only)

| Linked PDP deact coll | Retrans IPCA Req bef MS rsp |

Initiate PDP Context Activation Request Denied (verbose only)
NRSPCA SGTC Statistics

<table>
<thead>
<tr>
<th>IPCA Req Denied</th>
<th>Service Not Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Resources Available</td>
<td>Mandatory IE Incorrect</td>
</tr>
<tr>
<td>System Failure</td>
<td>Optional IE Incorrect</td>
</tr>
<tr>
<td>Mandatory IE Mis</td>
<td>Context not Found</td>
</tr>
<tr>
<td>Invalid Message Format</td>
<td>Syntactic Error in TFT</td>
</tr>
<tr>
<td>Semantic Error in TFT</td>
<td>Syntactic Error in Pkt Fltr</td>
</tr>
<tr>
<td>Semantic Error in Pkt Fltr</td>
<td></td>
</tr>
<tr>
<td>MS Not GPRS Responding</td>
<td>MS Refuses</td>
</tr>
<tr>
<td>Invalid Correlation Id</td>
<td>PDP without TFT already Active</td>
</tr>
<tr>
<td>BCM Violation</td>
<td>MS GPRS Suspended</td>
</tr>
<tr>
<td>Unknown cause</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 15
Operator Policy

The proprietary concept of an operator policy, originally architected for the exclusive use of an SGSN, is non-standard and currently unique to the ASR 5x00. This optional feature empowers the carrier with flexible control to manage functions that are not typically used in all applications and to determine the granularity of the implementation of any operator policy: to groups of incoming calls or to simply one single incoming call.

The following products support the use of the operator policy feature:

- MME (Mobility Management Entity - LTE)
- SGSN (Serving GPRS Support Node - 2G/3G/LTE)
- S-GW (Serving Gateway - LTE)

This document includes the following information:

- What Operator Policy Can Do
- The Operator Policy Feature in Detail
 - Call Control Profile
 - APN Profile
 - IMEI-Profile (SGSN only)
 - APN Remap Table
 - Operator Policies
 - IMSI Ranges
- How It Works
- Operator Policy Configuration
- Verifying the Feature Configuration
What Operator Policy Can Do

Operator policy enables the operator to specify a policy with rules governing the services, facilities and privileges available to subscribers.

A Look at Operator Policy on an SGSN

The following is only a sampling of what working operator policies can control on an SGSN:

- APN information included in call activation messages are sometimes damaged, misspelled, missing. In such cases, the calls are rejected. The operator can ensure calls aren't rejected and configure a range of methods for handling APNs, including converting incoming APNs to preferred APNs and this control can be used in a focused fashion or defined to cover ranges of subscribers.

- In another example, it is not unusual for a blanket configuration to be implemented for all subscriber profiles stored in the HLR. This results in a waste of resources, such as the allocation of the default highest QoS setting for all subscribers. An operator policy provides the opportunity to address such issues by allowing fine-tuning of certain aspects of profiles fetched from HLRs and, if desired, overwrite QoS settings received from HLR.

A Look at Operator Policy on an S-GW

The S-GW operator policy provides mechanisms to fine tune the behavior for subsets of subscribers. It also can be used to control the behavior of visiting subscribers in roaming scenarios by enforcing roaming agreements and providing a measure of local protection against foreign subscribers.

The S-GW uses operator policy in the SGW service configuration to control the accounting mode. The default accounting mode is GTPP, but RADIUS/Diameter and none are options. The accounting mode value from the call control profile overrides the value configured in SGW service. If the accounting context is not configured in the call control profile, it is taken from SGW service. If the SGW service does not have the relevant configuration, the current context or default GTPP group is assumed.
The Operator Policy Feature in Detail

This flexible feature provides the operator with a range of control to manage the services, facilities and privileges available to subscribers.

Operator policy definitions can depend on factors such as (but not limited to):

- roaming agreements between operators,
- subscription restrictions for visiting or roaming subscribers,
- provisioning of defaults to override standard behavior.

These policies can override standard behaviors and provide mechanisms for an operator to circumvent the limitations of other infrastructure elements such as DNS servers and HLRs in 2G/3G networks.

By configuring the various components of an operator policy, the operator fine-tunes any desired restrictions or limitations needed to control call handling and this can be done for a group of callers within a defined IMSI range or per subscriber.

Re-Usable Components - Besides enhancing operator control via configuration, the operator policy feature minimizes configuration by drastically reducing the number of configuration lines needed. Operator policy maximizes configurations by breaking them into the following reusable components that can be shared across IMSI ranges or subscribers:

- call control profiles
- IMEI profiles (SGSN only)
- APN profiles
- APN remap tables
- operator policies
- IMSI ranges

Each of these components is configured via a separate configuration mode accessed through the Global Configuration mode.

Call Control Profile

A call control profile can be used by the operator to fine-tune desired functions, restrictions, requirements, and/or limitations needed for call management on a per-subscriber basis or for groups of callers across IMSI ranges. For example:

- setting access restriction cause codes for rejection messages
- enabling/disabling authentication for various functions such as attach and service requests
- enabling/disabling ciphering, encryption, and/or integrity algorithms
- enabling/disabling of packet temporary mobile subscriber identity (P-TMSI) signature allocation (SGSN only)
- enabling/disabling of zone code checking
- allocation/retention priority override behavior (SGSN only)
• enabling/disabling inter-RAT, 3G location area, and 4G tracking area handover restriction lists (MME and S-GW only)

• setting maximum bearers and PDNs per subscriber (MME and S-GW only)

Call control profiles are configured with commands in the Call Control Profile configuration mode. A single call control profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet services cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following call control profile configuration rules should be considered:

• 1 (only one) - call control profile can be associated with an operator policy
• 1000 - maximum number of call control profiles per system (e.g., an SGSN).
• 15 - maximum number of equivalent PLMNs for 2G and 3G per call control profile
 • 15 - maximum number of equivalent PLMNs for 2G per ccprofile.
 • 15 - maximum number of supported equivalent PLMNs for 3G per ccprofile.
• 256 - maximum number of static SGSN addresses supported per PLMN
• 5 - maximum number of location area code lists supported per call control profile.
• 100 - maximum number of LACs per location area code list supported per call control profile.
• unlimited number of zone code lists can be configured per call control profile.
• 100 - maximum number of LACs allowed per zone code list per call control profile.
• 2 - maximum number of integrity algorithms for 3G per call control profile.
• 3 - maximum number of encryption algorithms for 3G per call control profile.

APN Profile

An APN profile groups a set of access point name (APN)-specific parameters that may be applicable to one or more APNs. When a subscriber requests an APN that has been identified in a selected operator policy, the parameter values configured in the associated APN profile will be applied.

For example:

• enable/disable a direct tunnel (DT) per APN. (SGSN)
• define charging characters for calls associated with a specific APN.
• identify a specific GGSN to be used for calls associated with a specific APN (SGSN).
• define various quality of service (QoS) parameters to be applied to calls associated with a specific APN.
• restrict or allow PDP context activation on the basis of access type for calls associated with a specific APN.

APN profiles are configured with commands in the APN Profile configuration mode. A single APN profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet processing cards and 2G, 3G, 4G, and/or dual access, the following APN profile configuration rules should be considered:

• 50 - maximum number of APN profiles that can be associated with an operator policy.
• 1000 - maximum number of APN profiles per system (e.g., an SGSN).
• 116 - maximum gateway addresses (GGSN addresses) that can be defined in a single APN profile.

IMEI-Profile (SGSN only)

The IMEI is a unique international mobile equipment identity number assigned by the manufacturer that is used by the network to identify valid devices. The IMEI has no relationship to the subscriber.

An IMEI profile group is a set of device-specific parameters that control SGSN behavior when one of various types of Requests is received from a UE within a specified IMEI range. These parameters control:

• Blacklisting devices
• Identifying a particular GGSN to be used for connections for specified devices
• Enabling/disabling direct tunnels to be used by devices

IMEI profiles are configured with commands in the IMEI Profile configuration mode. A single IMEI profile can be associated with multiple operator policies.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following IMEI profile configuration rules should be considered:

• 10 - maximum number of IMEI ranges that can be associated with an operator policy.
• 1000 - maximum number of IMEI profiles per system (such as an SGSN).

APN Remap Table

APN remap tables allow an operator to override an APN specified by a user, or the APN selected during the normal APN selection procedure, as specified by 3GPP TS 23.060. This atypical level of control enables operators to deal with situations such as:

• An APN is provided in the Activation Request that does not match with any of the subscribed APNs; either a different APN was entered or the APN could have been misspelled. In such situations, the SGSN would reject the Activation Request. It is possible to correct the APN, creating a valid name so that the Activation Request is not rejected.

• In some cases, an operator might want to force certain devices/users to use a specific APN. For example, all iPhone4 users may need to be directed to a specific APN. In such situations, the operator needs to be able to override the selected APN.

An APN remap table group is a set of APN-handling configurations that may be applicable to one or more subscribers. When a subscriber requests an APN that has been identified in a selected operator policy, the parameter values configured in the associated APN remap table will be applied. For example, an APN remap table allows configuration of the following:

• APN aliasing - maps incoming APN to a different APN based on partial string match (MME and SGSN) or matching charging characteristic (MME and SGSN).
• Wildcard APN - allows APN to be provided by the SGSN when wildcard subscription is present and the user has not requested an APN.
• Default APN - allows a configured default APN to be used when the requested APN cannot be used – for example, the APN is not part of the HLR subscription.
APN remap tables are configured with commands in the APN Remap Table configuration mode. A single APN remap table can be associated with multiple operator policies, but an operator policy can only be associated with a single APN remap table.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following APN remap table configuration rules should be considered:

- 1 – maximum number of APN remap tables that can be associated with an operator policy.
- 1000 – maximum number of APN remap tables per system (such as an SGSN).
- 100 – maximum remap entries per APN remap table.

Operator Policies

The profiles and tables are created and defined within their own configuration modes to generate sets of rules and instructions that can be reused and assigned to multiple policies. An operator policy binds the various configuration components together. It associates APNs, with APN profiles, with an APN remap table, with a call control profile, and/or an IMEI profile (SGSN only) and associates all the components with filtering ranges of IMSIs.

In this manner, an operator policy manages the application of rules governing the services, facilities, and privileges available to subscribers.

Operator policies are configured and the associations are defined via the commands in the Operator Policy configuration mode.

The IMSI ranges are configured with the command in the SGSN-Global configuration mode.

For planning purposes, based on the system configuration, type of packet processing cards, type of network (2G, 3G, 4G, LTE), and/or application configuration (single, combo, dual access), the following operator policy configuration rules should be considered:

- 1 – maximum number of call control profiles associated with a single operator policy.
- 1 – maximum number of APN remap tables associated with a single operator policy.
- 10 – maximum number of IMEI profiles associated with a single operator policy (SGSN only)
- 50 – maximum number of APN profiles associated with a single operator policy.
- 1000 – maximum number of operator policies per system (e.g., an SGSN); this number includes the single default operator policy.
- 1000 – maximum number of IMSI ranges defined per system (e.g., an SGSN).

Important: SGSN operator policy configurations created with software releases prior to Release 11.0 are not forward compatible. Such configurations can be converted to enable them to work with an SGSN running Release 11.0 or higher. Your Cisco Account Representative can accomplish this conversion for you.

IMSI Ranges

Ranges of international mobile subscriber identity (IMSI) numbers, the unique number identifying a subscriber, are associated with the operator policies and used as the initial filter to determine whether or not any operator policy would be applied to a call. The range configurations are defined by the MNC, MCC, a range of MSINs, and optionally the PLMN ID. The IMSI ranges must be associated with a specific operator policy.
IMSI ranges are defined differently for each product supporting the operator policy feature.
How It Works

The specific operator policy is selected on the basis of the subscriber’s IMSI at attach time, and optionally the PLMN ID selected by the subscriber or the RAN node's PLMN ID. Unique, non-overlapping, IMSI + PLMN-ID ranges create call filters that distinguish among the configured operator policies.

The following flowchart maps out the logic applied for the selection of an operator policy:

Figure 57. Operator Policy Selection Logic
Operator Policy Configuration

This section provides a high-level series of steps and the associated configuration examples to configure an operator policy. By configuring an operator policy, the operator fine-tunes any desired restrictions or limitations needed to control call handling per subscriber or for a group of callers within a defined IMSI range.

Most of the operator policy configuration components are common across the range of products supporting operator policy. Differences will be noted as they are encountered below.

Important: This section provides a minimum instruction set to implement operator policy. For this feature to be operational, you must first have completed the system-level configuration as described in the System Administration Guide and the service configuration described in your product’s administration guide.

The components can be configured in any order. This example begins with the call control profile:

Step 1 Create and configure a call control profile, by applying the example configuration presented in the Call Control Profile Configuration section.

Step 2 Create and configure an APN profile, by applying the example configuration presented in the APN Profile Configuration section.

Important: It is not necessary to configure both an APN profile and an IMEI profile. You can associate either type of profile with a policy. It is also possible to associate one or more APN profiles with an IMEI profile for an operator policy (SGSN only).

Step 3 Create and configure an IMEI profile by applying the example configuration presented in the IMEI Profile Configuration section (SGSN only).

Step 4 Create and configure an APN remap table by applying the example configuration presented in the APN Remap Table Configuration section.

Step 5 Create and configure an operator policy by applying the example configuration presented in the Operator Policy Configuration section.

Step 6 Configure an IMSI range by selecting and applying the appropriate product-specific example configuration presented in the IMSI Range Configuration sections below.

Step 7 Associate the configured operator policy components with each other and a network service by applying the example configuration in the Operator Policy Component Associations section.

Step 8 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide.

Step 9 Verify the configuration for each component separately by following the instructions provided in the Verifying the Feature Configuration section of this chapter.
Call Control Profile Configuration

This section provides the configuration example to create a call control profile and enter the configuration mode. Use the call control profile commands to define call handling rules that will be applied via an operator policy. Only one call control profile can be associated with an operator policy, so it is necessary to use (and repeat as necessary) the range of commands in this mode to ensure call-handling is sufficiently managed.

Configuring the Call Control Profile for an SGSN

The example below includes some of the more commonly configured call control profile parameters with sample variables that you will replace with your own values.

```
configure

call-control-profile <profile_name> >

   attach allow access-type umts location-area-list instance <list_id>

   authenticate attach

   location-area-list instance <instance> area-code <area_code>

   sgsn-number <E164_number>

end
```

Notes:
- Refer to the Call Control Profile Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

Configuring the Call Control Profile for an MME or S-GW

The example below includes some of the more commonly configured call control profile parameters with sample variables that you will replace with your own values.

```
configure

call-control-profile <profile_name> >

   associate hss-peer-service <service_name> s6a-interface

   attach imei-query-type imei verify-equipment-identity

   authenticate attach

   dns-pgw context <mme_context_name>

   dns-sgw context <mme_context_name>

end
```
Notes:

- Refer to the *Call Control Profile Configuration Mode* chapter in the *Command Line Interface Reference* for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

APN Profile Configuration

This section provides the configuration example to create an APN profile and enter the apn-profile configuration mode. Use the `apn-profile` commands to define how calls are to be handled when the requests include an APN. More than one APN profile can be associated with an operator policy. The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```
configure

apn-profile <profile_name>
  gateway-address 123.123.123.1 priority <1> (SGSN only)
  direct-tunnel not-permitted-by-ggsn (SGSN only)
  idle-mode-acl ipv4 access-group station7 (S-GW only)
end
```

Notes:

- All of the parameter defining commands in this mode are product-specific. Refer to the *APN Profile Configuration Mode* chapter in the *Command Line Interface Reference* for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

IMEI Profile Configuration - SGSN only

This section provides the configuration example to create an IMEI profile and enter the imei-profile configuration mode. Use the `imei-profile` commands to define how calls are to be handled when the requests include an IMEI in the defined IMEI range. More than one IMEI profile can be associated with an operator policy. The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```
configure

imei-profile <profile_name>
  ggsn-address 211.211.123.3
  direct-tunnel not-permitted-by-ggsn (SGSN only)
  associate apn-remap-table remap1
```
Notes:

- It is optional to configure an IMEI profile. An operator policy can include IMEI profiles and/or APN profiles.
- This profile will only become valid when it is associated with an operator policy.

APN Remap Table Configuration

This section provides the configuration example to create an APN remap table and enter the apn-remap-table configuration mode.

Use the `apn-remap-table` commands to define how APNs are to be handled when the requests either do or do not include an APN.

The example below includes some of the more commonly configured profile parameters with sample variables that you will replace with your own values.

```configure

apn-remap-table <table_name>

apn-selection-default first-in-subscription

wildcard-apn pdp-type ipv4 network-identifier <apn_net_id>

blank-apn network-identifier <apn_net_id> (SGSN only)

end
```

Notes:

- The `apn-selection-default first-in-subscription` command is used for APN redirection to provide “guaranteed connection” in instances where the UE-requested APN does not match the default APN or is missing completely. In this example, the first APN matching the PDP type in the subscription is used. The first-in-selection keyword is an MME feature only.
- Some of the commands represented in the example above are common and some are product-specific. Refer to the *APN-Remap-Table Configuration Mode* chapter in the *Command Line Interface Reference* for command details and variable options.
- This profile will only become valid when it is associated with an operator policy.

Operator Policy Configuration

This section provides the configuration example to create an operator policy and enter the operator policy configuration mode.

Use the commands in this mode to associate profiles with the policy, to define and associate APNs with the policy, and to define and associate IMEI ranges. Note: IMEI ranges are supported for SGSN only.

The example below includes sample variable that you will replace with your own values.

```configure

```
operator-policy <policy_name>

associate call-control-profile <profile_name>

apn network-identifier <apn-net-id_1> apn-profile <apn_profile_name_1>
apn network-identifier <apn-net-id_2> apn-profile <apn_profile_name_1>
imei range <imei_number> to <imei_number> imei-profile name <profile_name>
associate apn-remap-table <table_name>
end

Notes:

- Refer to the Operator-Policy Configuration Mode chapter in the Command Line Interface Reference for command details and variable options.
- This policy will only become valid when it is associated with one or more IMSI ranges (SGSN) or subscriber maps (MME and S-GW).

IMSI Range Configuration

This section provides IMSI range configuration examples for each of the products that support operator policy functionality.

Configuring IMSI Ranges on the MME or S-GW

IMSI ranges on an MME or S-GW are configured in the Subscriber Map Configuration Mode. Use the following example to configure IMSI ranges on an MME or S-GW:

configure
subscriber-map <name>
lte-policy

precedence <number> match-criteria imsi mcc <mcc_number> mnc <mnc_number> msin first <start_range> last <end_range> operator-policy-name <policy_name>
end

Notes:

- The precedence number specifies the order in which the subscriber map is used. 1 has the highest precedence.
- The operator policy name identifies the operator policy that will be used for subscribers that match the IMSI criteria and fall into the MSIN range.

Configuring IMSI Ranges on the SGSN

The example below is specific to the SGSN and includes sample variables that you will replace with your own values.
configure

sgsn-global

 imsi-range mcc 311 mnc 411 operator-policy oppolicy1
 imsi-range mcc 312 mnc 412 operator-policy oppolicy2
 imsi-range mcc 313 mnc 413 operator-policy oppolicy3
 imsi-range mcc 314 mnc 414 operator-policy oppolicy4
 imsi-range mcc 315 mnc 415 operator-policy oppolicy5
end

Notes:

- Operator policies are not valid until IMSI ranges are associated with them.

Associating Operator Policy Components on the MME

After configuring the various components of an operator policy, each component must be associated with the other components and, ultimately, with a network service.

The MME service associates itself with a subscriber map. From the subscriber map, which also contains the IMSI ranges, operator policies are accessed. From the operator policy, APN remap tables and call control profiles are accessed.

Use the following example to configure operator policy component associations:

configure

 operator-policy <name>

 associate apn-remap-table <table_name>

 associate call-control-profile <profile_name>

 exit

 lte-policy

 subscriber-map <name>

 precedence match-criteria all operator-policy-name <policy_name>

 exit

 exit

 context <mme_context_name>

 mme-service <mme_svc_name>

 associate subscriber-map <name>
Notes:

- The `precedence` command in the subscriber map mode has other `match-criteria` types. The `all` type is used in this example.

Configuring Accounting Mode for S-GW

The `accounting_mode` command configures the mode to be used for the S-GW service for accounting, either GTPP (default), RADIUS/Diameter, or None.

Use the following example to change the S-GW accounting mode from GTPP (the default) to RADIUS/Diameter:

```bash
configure

context <sgw_context_name>

sgw-service <sgw_srv_name>

accounting mode radius-diameter

end
```

Notes:

- An accounting mode configured for the call control profile will override this setting.
Verifying the Feature Configuration

This section explains how to display the configurations after saving them in a .cfg file as described in the System Administration Guide.

Important: All commands listed here are under Exec mode. Not all commands are available on all platforms.

Step 1 Verify that the operator policy has been created and that required profiles have been associated and configured properly by entering the following command in Exec Mode:

```
show operator-policy full name oppolicy1
```

The output of this command displays the entire configuration for the operator policy configuration.

[local]asr5x00# show operator-policy full name oppolicy1

Operator Policy Name = oppolicy1

Call Control Profile Name : ccprofile1
 Validity : Valid
APN Remap Table Name : remap1
 Validity : Valid
IMEI Range 711919739 to 711919777
IMEI Profile Name : imeiprof1
 Include/Exclude : Include
 Validity : Valid
APN NI homers1
APN Profile Name : apn-profile1
 Validity : Valid

Notes:
- If the profile name is shown as “Valid”, the profile has actually been created and associated with the policy. If the Profile name is shown as “Invalid”, the profile has not been created/configured.
- If there is a valid call control profile, a valid APN profile and/or valid IMEI profile, and a valid APN remap table, the operator policy is valid and complete if the IMSI range has been defined and associated.
Chapter 16
Quality of Service (QoS) Management for SGSN

This chapter describes the implementation of Quality of Service (QoS) related features and functionalities in SGSN.

- SGSN Quality of Service Management
- Quality of Service Attributes
- Quality of Service Attributes in Release 9798
- Quality of Service Attributes in Release 99
- Quality of Service Management in SGSN
- QoS Features
- QoS Management When UE is Using S4-interface for PDP Contexts
- QoS Handling Scenarios
- QoS Handling During Primary PDP Activation
- QoS Handling During Secondary PDP Activation
- MS Initiated QoS Modification
- HSS Initiated PDP Context Modification
- PGW Initiated QoS Modification
- ARP Handling
- Handling of ARP Values in Various Scenarios
- Mapping EPC ARP to RANAP ARP
- ARP configured in CC Profile
Quality of Service Management

The network associates a certain Quality of Service (QoS) with each data transmission in the GPRS packet mode. The QoS attributes are collectively termed as a “QoS Profile”. The PDP context stores the QoS Profile information. The QoS management is performed by using the PDP context management procedures, such as PDP context activation, modification and de-activation. QoS enables the differentiation between services provided.

SGSN Quality of Service Management

The SGSN applies an admission control function on each PDP context activation request. The function results in further processing of the request; that is, either negotiation of the QoS with the Mobile Subscriber (MS), or rejection of the PDP context activation request. The SGSN negotiates QoS with the MS when the level requested by the subscriber cannot be supported or when the QoS level negotiated from the previous SGSN cannot be supported at an inter-SGSN routing area update. The response to the mobile subscriber depends on the provisioned subscription data, the requested QoS, the QoS permitted by the Gateway node and the QoS permitted by the Radio Access Network.

Quality of Service Attributes

In an End-to-End Service the network user is provided with a certain Quality of Service, which is specified by a set of QoS attributes or QoS profile. The first list of attributes was defined in Release 97/98 of the 3GPP recommendations but these are now replaced by Release 99 3GPP recommendations. Many QoS profiles can be defined by the combination of these attributes. Each attribute is negotiated by the MS and the GPRS/UMTS/LTE network. If the negotiated QoS profiles are accepted by both parties then the network will have to provide adequate resources to support these QoS profiles.

In Release 97/98 recommendations, the PDP context is stored in the MS, SGSN and GGSN. It represents the relation between one PDP address, PDP type (static or dynamic address), the address of a GGSN that serves as an access point to an external PDN, and one Quality of Service (QoS) profile. PDP contexts with different QoS parameters cannot share the same PDP address. In Release 99 recommendations a subscriber can use more than one PDP contexts with different QoS parameters and share the same PDP address.

Quality of Service Attributes in Release 97/98

In Release 97/98 of the 3GPP recommendations, QoS is defined according to the following attributes:

- **Precedence Class**: This attribute indicates the packet transfer priority under abnormal conditions, for example during a network congestion load.

- **Reliability Class**: This attribute indicates the transmission characteristics. It defines the probability of data loss, data delivered out of sequence, duplicate data delivery, and corrupted data. This parameter enables the configuration of layer “2” protocols in acknowledged or unacknowledged modes.

- **Peak Throughput Class**: This attribute indicates the expected maximum data transfer rate across the network for a specific access to an external packet switching network (from 8 Kbps up to 2,048 Kbps).

- **Mean Throughput Class**: This attribute indicates the average data transfer rate across the network during the remaining lifetime of a specific access to an external packet switching network (best effort, from 0.22 bps up to 111 Kbps).
• **Delay Class**: This attribute defines the end-to-end transfer delay for the transmission of Service Data Units (SDUs) through the GPRS network. The SDU represents the data unit accepted by the upper layer of GPRS and conveyed through the GPRS network.

Quality of Service Attributes in Release 99

The attributes of GPRS QoS were modified in Release 99 of the 3GPP recommendations in order to be identical to the ones defined for UMTS.

The quality of service is a type “4” information element with a minimum length of “14” octets and a maximum length of “18” octets.

The Release 99 of 3GPP recommendations defines QoS attributes such as Traffic class, Delivery order, SDU format information, SDU error ratio, Maximum SDU size, Maximum bit rate for uplink, Maximum bit rate for downlink, Residual bit error ratio, Transfer delay, Traffic-handling priority, Allocation/retention priority, and Guaranteed bit rate for uplink and Guaranteed bit rate for downlink. The attributes are listed below:

- **Traffic Class**: Indicates the application type (conversational, streaming, interactive, background). Four classes of traffic have been defined for QoS:
 - **Conversational Class**: These services are dedicated to bi-directional communication in real time (for example, voice over IP and video conferencing).
 - **Streaming Class**: These services are dedicated to uni-directional data transfer in real time (for example, audio streaming and one-way video).
 - **Interactive Class**: These services are dedicated to the transport of human or machine interaction with remote equipment (for example, Web browsing, access to a server and access to a database).
 - **Background Class**: These services are dedicated to machine-to-machine communication; this class of traffic is not delay sensitive (for example, e-mail and SMS).

- **Delivery Order**: Indicates the presence of an in-sequence SDU delivery (if any).
- **Delivery of Erroneous SDUs**: Indicates if erroneous SDUs are delivered or discarded.
- **SDU Format Information**: Indicates the possible exact sizes of SDUs.
- **SDU Error Ratio**: Indicates the maximum allowed fraction of SDUs lost or detected as erroneous.
- **Maximum SDU Size**: Indicates the maximum allowed SDU size (from “10” octets up to “1,520” octets).
- **Maximum Bit Rate for Uplink**: Indicates the maximum number of bits delivered to the network within a period of time (from “0” up to “8,640” Kbps).
- **Maximum Bit Rate for Downlink**: Indicates the maximum number of bits delivered by the network within a period of time (from “0” up to “8,640” Kbps).
- **Residual Bit Error Ratio**: Indicates the undetected bit error ratio for each sub-flow in the delivered SDUs.
- **Transfer Delay**: Indicates the maximum time of SDU transfer for 95th percentile of the distribution of delay for all delivered SDUs.
- **Traffic-Handling Priority**: Indicates the relative importance of all SDUs belonging to a specific GPRS bearer compared with all SDUs of other GPRS bearers.
- **Allocation/Retention Priority**: Indicates the relative importance of resource allocation and resource retention for the data flow related to a specific GPRS bearer compared with the data flows of other GPRS bearers (this attribute is useful when resources are scarce).
Quality of Service Management for SGSN

Quality of Service Management

QoS management comprises of approximately “23” individual parameters. As part of QoS Management, the SGSN negotiates the MS requested QoS with the following during PDP context Activation and Modification procedures:

- Subscribed QoS
- Local QoS capping limit (if configured)
- QoS sent by GGSN in tunnel management messages
- QoS sent by RNC in RAB assignment messages (UMTS only)

Each negotiation is between QoS parameters of the two sets, and the resulting negotiated QoS will be the lower of the two. QoS negotiation for Secondary PDP contexts is same as Primary PDP context.

For more information see, 3GPP TS 24.008 (section 10.5.6.5 “Quality of Service”.

QoS Negotiation During an Activation Procedure

During an Activation procedure the MS requested QoS is negotiated with the subscribed QoS. Higher values are not valid in case of GPRS access, the SGSN restricts some of the QoS parameters during PDP activation in GPRS access. Listed below are the QoS parameters which are restricted in GPRS access:

- Maximum Bitrate (MBR) DL is capped to “472” kbps.
- Maximum Bitrate (MBR) UL is capped to “472” kbps.
- Peak Throughput (PR) is capped to “6” (“32000” octets/sec).
- Reliability class (RC) of “0x2”, “Unacknowledged GTP; Acknowledged LLC and RLC, Protected data” is not supported. In such cases, RC is over-ridden as “0x3”, “Unacknowledged GTP and LLC; Acknowledged RLC, Protected data”

The SDU Error ratio is capped in following cases:

- For Reliability Class “0x3”, the SDU error ratio is capped to “4” (1x10) if it exceeds a value of “4”, a value greater than “4” represents stringent error ratios.
- For Reliability Class greater than “0x3”, the SDU error ratio capped to “3” (1x10) if the value provided exceeds “4”.

• Guaranteed Bit Rate for Uplink: Indicates the guaranteed number of bits delivered to the network within a period of time (from “0” up to “8,640” Kbps).

• Guaranteed Bit Rate for Downlink: Indicates the guaranteed number of bits delivered to the network within a period of time (from “0” up to “8,640” Kbps).

• Maximum Bit Rate for Uplink (extended, octet 17): This field is an extension of the Maximum bit rate for uplink in octet “8”. The coding is identical to that of the Maximum bit rate for downlink (extended). It is used to signal extended Maximum bit rates in uplink (up to “256” Mbps)

• Maximum Bit Rate for Downlink (extended, octet 15): Used to signal extended bit rates for downlink delivered by the network (up to “256” Mbps). This attribute is supported in 3GPP Release 6 and beyond.

• Guaranteed Bit Rate for Uplink (extended, octet 18): This field is an extension of the Guaranteed bit rate for uplink in octet “12”. The coding is identical to that of the guaranteed bit rate for downlink (extended). Used to signal extended Guaranteed bit rates in uplink (up to “256” Mbps)

• Guaranteed Bit Rate for Downlink (extended, octet 16): Used to signal extended Guaranteed bit rates in downlink (up to “256” MBps). This attribute is supported in 3GPP Release 6 and beyond.
For more information see, 3GPP TS 23.107 (Table 6 “Rules for determining R99 attributes from R97/98 attributes”).

The QoS parameters are sent to GGSN in the Create PDP Context Request. On receiving a Create PDP Context Response, the QoS sent by GGSN is negotiated with the one sent by SGSN to GGSN. For GPRS access, this negotiated QoS is sent to the MS in Activate PDP Context Accept.

If the UE requests a subscribed traffic class, the SGSN defaults it to “Interactive” traffic class regardless of the configuration in the HLR subscription.

In a UMTS access scenario, the negotiated QoS is sent to RNC in RAB Assignment Request. By default, the SGSN includes Alternative Max Bit Rate with type set to “Unspecified”. This indicates to the RNC that it can further negotiate the QoS downwards if either the RNC/UE cannot support the QoS value sent. The RNC may downgrad the QoS based on its current load/capability and include it in RAB Assignment Response. The SGSN does QoS negotiation once more with received QoS from the RNC. This is used as the negotiated QoS of PDP context and is sent to the MS in Activate PDP context Accept. If the RNC has downgraded the QoS, the same will be informed to GGSN by means of an Update PDP context procedure.

QoS Negotiation During a Modification Procedure

The PDP Context Modification procedure can be MS initiated or Network initiated, it is used to change the current negotiated QoS. If it is a MS initiated PDP Context Modification procedure the QoS negotiation is similar to the QoS negotiation followed during an Activation procedure. The HLR or GGSN or SGSN (RNC in case of UMTS access) can perform a Network Initiated QoS modification.

For more information on “PDP Context Modification Procedure” see, 3GPP TS 24.008 section 6.1.3.3

HLR Initiated QoS Modification

The Subscription Information of a Subscriber may change due to the following:

- User action (The user may subscribe for a more premium service)
- Service provider action (The QoS is restricted on reaching download limits)

This change is relayed by the HLR to the SGSN through the Insert Subscription Data procedure. As per 3GPP TS 23.060 section 6.11.1.1 “Insert Subscriber Data procedure”, the SGSN negotiates the current QoS with new subscribed QoS and initiates a Network Initiated PDP modification procedure only in case of QoS downgrade. As part of this procedure, the GGSN (and RNC in case of UMTS access) is updated with the new negotiated QoS followed by the MS. If a failure occurs or no response is received from the MS for the Modify Request, the PDP context is deactivated.

The SGSN is compliant with 3GPP TS 23.060 Release 7 version. The specifications Release 8 and above specify a modified behavior when the UE is in a IDLE/STANDBY state. If the QoS is modified by the HLR when an UE is an IDLE/STANDBY state the PDP is de-activated. The SGSN is made compliant with this change to align its behavior with LTE elements like MME. Therefore the SGSN is compliant with both the Release 7 and Release 8 specifications.

GGSN Initiated QoS Modification

The GGSN may initiate a QoS Modification Request due to any of the following reasons:

- An External Trigger (PCRF)
- Current load or capability of the GGSN
- If the “No Qos negotiation” flag is set in the previous Tunnel Management Request from SGSN.

The SGSN negotiates this QoS with the subscription. The negotiated Qos is then sent to the UE in a Modify PDP Request. In an UMTS access scenario, the SGSN updates the new negotiated QoS to the RNC. The new negotiated Qos is then forwarded to the GGSN in response message.

SGSN Initiated QoS Modification

The SGSN initiated QoS Modification occurs during an Inter-RAT HO (2G to 3G / 3G or 2G), here the negotiated QoS in new access is different from the negotiated QoS in old access. The SGSN QoS initiated QoS Modification can also
Quality of Service Management

Quality of Service (QoS) Management for SGSN

Occur during a new SGSN ISRAU/SRNS procedure where the new negotiated QoS is different from the negotiated QoS received from the peer SGSN.

Whenever a UE performs an Intra or Inter SGSN HO, the SGSN receives the requested QoS, subscribed QoS and the negotiated QoS from the old access (during Intra SGSN HO) or from peer SGSN (during Inter SGSN HO). This requested QoS is then negotiated with the subscribed QoS. If the negotiated QoS is different from the received negotiated QoS, the SGSN initiates a network initiated QoS modification procedure to update the new negotiated QoS to the UE after completing the HO procedure.

RNC Initiated QoS Modification (UMTS access only)

In a RNC initiated QoS modification procedure the SGSN negotiates the QoS with the current negotiated QoS. In case of a downgrade, the SGSN updates the GGSN and MS with the new negotiated QoS.

For more information see, 3GPP TS 23.060 section 9.2.3.6 on “RAN-initiated RAB Modification Procedure”

No QoS Negotiation Flag

When the ‘No QoS Negotiation’ flag is set, the SGSN indicates to the GGSN not to negotiate the QoS. The “No QoS Negotiation” flag is set in the following scenarios:

- While sending Update PDP Context request during activation (Direct tunnel).
- During a service request for data with direct tunnel enabled for the subscriber, a UPCQ is initiated to inform the GGSN with the teid and the address of the RNC. This Update PDP context request has no negotiation bit set.
- Update PDP context request sent during preservation procedures.
- UPCQ sent to indicate establishment / removal of direct tunnel.
- Intra SGSN SRNS.
- Downlink data for the subscriber without active RABs and direct tunnel enabled for the subscriber, UPCQ is initiated to inform the GGSN of the teid and the address of the RNC. This Update PDP context request has “No QoS Negotiation” flag set.
- In all modification procedures (HLR, RNC, MS) if any other node other than the modifying entity has downgraded the QoS. For example, consider a HLR Initiated Modification procedure where the SGSN does the following signalling:
 - Initiates a UPCQ to inform the GGSN of the QoS change, GGSN sends a UPCR with same QOS as UPCQ.
 - Modify PDP context Request to MS, the MS sends a Modify PDP Accept.
 - RAB establishment request to the RNC, the RNC downgrades the QoS in the RAB assignment response.
 - The SGSN initiates a UPCQ to inform the GGSN of the new QoS sent in the previous step. This UPCQ will have no QoS negotiation bit set.
- If loss of Radio connectivity feature is enabled, then the Update PDP Context initiated to inform the GGSN that the MS is back in Radio Coverage will have the “No Qos Negotiation” bit set.
QoS Features

Traffic Policing

The SGSN can police uplink and downlink traffic according to predefined QoS negotiated limits fixed on the basis of individual contexts - either primary or secondary. The SGSN employs the Two Rate Three Color Marker (RFC2698) algorithm for traffic policing. The algorithm meters an IP packet stream and marks its packets either green, yellow, or red depending upon the following variables:

- **PIR**: Peak Information Rate (measured in bytes/second)
- **CIR**: Committed Information Rate (measured in bytes/second)
- **PBS**: Peak Burst Size (measured in bytes)
- **CBS**: Committed Burst Size (measured in bytes)

The following figure depicts the working of the TCM algorithm:

Figure 58. TCM Algorithm Logic for Traffic Policing

![TCM Algorithm Logic for Traffic Policing](image)

The policing function compares the data unit traffic with the related QoS attributes. Data units not matching the relevant attributes will be dropped or marked as not matching, for preferential dropping in case of congestion.

Procedure To Configure Traffic Policing:

This procedure is used to configure the actions governing the subscriber traffic flow. That is, if the flow violates or exceeds the configured, negotiated peak or committed data-rates. The SGSN performs traffic policing only if the command `qos rate-limit direction` is configured.

```
config

    apn-profile <profile_name>

    qos rate-limit direction { downlink | uplink } [ burst-size { auto-readjust [ duration seconds ] | bytes } ] [ class { background | conversational | interactive }
```
Quality of Service (QoS) Management for SGSN

```
traffic_priority | streaming } ] [ exceed-action { drop | lower-ip-precedence | transmit } ] [ gbr-qci [ committed-auto-readjust duration seconds ] ] [ non-gbr-qci [ committed-auto-readjust duration seconds ] ] [ violate-action { drop | lower-ip-precedence | transmit } ] ] +

exit
```

This command can be entered multiple times to specify different combinations of traffic direction and class.

The `remove` keyword can be used with the `qos rate-limit direction` command to remove the qos rate-limit direction entries from the configuration.

```
config

apn-profile <profile_name>

remove qos rate-limit direction { downlink | uplink } { burst-size { auto-readjust [ duration seconds ] | bytes } } [ class { background | conversational | interactive traffic priority | streaming } ] [ exceed-action { drop | lower-ip-precedence | transmit } ] [ gbr-qci [ committed-auto-readjust duration seconds ] ] [ non-gbr-qci [ committed-auto-readjust duration seconds ] ] [ violate-action { drop | lower-ip-precedence | transmit } ] ] +

exit
```

QoS Traffic Policing Per Subscriber

Traffic policing enables the operator to configure and enforce bandwidth limitations on individual PDP contexts for a particular traffic class. It deals with eliminating bursts of traffic and managing traffic flows in order to comply with a traffic contract.

The SGSN complies with the DiffServ model for QoS. The SGSN handles the 3GPP defined classes of traffic, QoS negotiation, DSCP marking, traffic policing, and support for HSDPA/HSUPA.

The per Subscriber traffic policing can be achieved by creating an operator policy for required subscribers (IMSI range) and associating the APN profile having the relevant qos-rate-limit configuration with the operator policy.

DSCP Marking and DSCP Templates

Differentiated Services Code Point specifies a mechanism for classifying and managing network traffic and providing Quality of Service (QoS) on IP networks. DSCP uses the 6-bit Differentiated Services Code Point (DSCP) field in the IP header for packet classification purposes. DSCP replaces the Type of Service (TOS) field.

The SGSN performs a DiffServ Code Point (DSCP) marking of the GTP-U packets according to the allowed-QoS to PHB mapping. The default mapping matches that of the UMTS to IP QoS mapping defined in 3GPP TS 29.208.

DSCP is standardised by the RFCs 2474 and 2475. DSCP templates contain DSCP code points for specific traffic types. DSCP is used to differentiate traffic types and the priority with which they should be allowed through the network. In MPC, DSCP templates are created and applied for signalling (2G/3G) and data traffic, where signalling takes precedence over the data plane. When signalling and data are sent through a single channel, critical signalling messages are adversely affected due to the queueing created by large chunks of data. With DSCP it is possible to have separate queues for signalling and data based on code point value and handle them based on relative precedence.

The SGSN supports DSCP marking of the GTP control plane messages on the Gn/Gp interface. This allows the QoS to be set on GTP-C messages, and is useful if Gn/Gp is on a less than ideal link. DSCP can also be configured at the NSEI level and this configuration has higher precedence over GPRS level configuration. DSCP marking is configurable through the CLI, with default being “Best Effort Forwarding”.

The following configuration procedures are used to configure DSCP marking parameters:
1. The IP command
The `ip` command is used to configure DSCP Marking which is used for sending packets of a particular 3GPP QoS class.

```
config

apn-profile <profile_name>


exit
```

To reset the values to the default configuration, use the following procedure:

```
config

apn-profile <profile_name>

   default ip { qos-dscp [ downlink | uplink ] | source-violation }

exit
```

The following procedure is used to disable IP QoS-DSCP mapping:

```
config

apn-profile <profile_name>

   no ip qos-dscp { downlink | uplink } [ background | conversational | interactive | streaming ] +

exit
```

2. DSCP template configuration mode commands
DSCP template configuration mode commands are used to configure DSCP marking for control packets and data packets for Gb over IP. Any number of DSCP templates can be generated in the SGSN Global configuration mode and then a template can be associated with one or more GPRS Services via the commands in the GPRS Service configuration mode.

The following configuration procedure is used to configure DSCP value for 3GPP QoS class downlink control packets:

```
config

context <context_name>

sgsn-global

   dscp-template<template_name>
```
Quality of Service (QoS) Management for SGSN

control-packet qos-dscp { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }

exit

The following command is used to configure the QoS DSCP value to "BE" (Best Effort):

```
config
context <context_name>
sgsn-global
dscp-template<template_name>
default control-packet
exit
```

The following configuration procedure is used to configure DSCP value for 3GPP QoS class downlink data packets:

```
config
context <context_name>
sgsn-global
dscp-template<template_name>
data-packet { background | conversation | interactive { priority1 | priority2 | priority3 } | streaming } qos-dscp { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }
exit
```

The following command is used to configure the QoS DSCP value to “BE” (Best Effort):

```
config
context <context_name>
sgsn-global
dscp-template<template_name>
default data-packet { background | conversation | interactive { priority1 | priority2 | priority3 } | streaming }
exit
```

3. The associate-dscp-template command
To associate a specific DSCP template with a specific service configuration (for example GPRS Service, IuPS Service, SGSN PSP Service) use the associate-dscp-template command.
GPRS Service Configuration Mode:

```bash
config
context <context_name>
gprs-service <service_name>
associate-dscp-template downlink template_name
exit
```

To disassociate a previously associated DSCP marking template:

```bash
config
context <context_name>
gprs-service <service_name>
no associate-dscp-template downlink
exit
```

IuPS Service Configuration Mode:

```bash
config
context <context_name>
iups-service <service_name>
associate dscp-template downlink dscp_template_name
exit
```

To disassociate a previously associated DSCP marking template:

```bash
config
context <context_name>
iups-service <service_name>
no associate dscp-template downlink
exit
```

SGSN PSP Configuration Mode:

```bash
config
context <context_name>
ss7-routing-domain <routing_domain_id> variant <variant_type>
```
associate { asp instance asp_num | dscp-template downlink template_name }

exit

To disassociate a previously associated DSCP marking template:

config

custom <custom_name>

ss7-routing-domain <routing_domain_id> variant <variant_type>

no associate [asp | dscp-template downlink]

exit

4. The peer-nsei command, to associate DSCP template for NSEI

By using this command, a specific DSCP marking template can be identified to be associated with the peer-NSE. The DSCP template must first be created with SGSN Global configuration mode and then defined with the commands in the DSCP Template configuration mode. The template provides a mechanism for differentiated services code point (DSCP) marking of control packets and LLC signaling messages on Gb interfaces. The DSCP marking feature enables the SGSN to perform classifying and managing of network traffic and to determine quality of service (QoS) for the interfaces to an IP network.

To associate a peer (remote) network service entity (NSEI) for a BSS with this GPRS service:

config

custom <custom_name>

gprs-service <service_name>

peer-nsei nse_id { associate dscp-template downlink template_name | lac lac_id rac rac_id | name peer_nsei_name | pooled }

exit

To remove the specified configuration from this peer-nsei configuration:

config

custom <custom_name>

gprs-service <service_name>

no peer-nsei nse_id { associate dscp-template downlink | lac lac_id rac rac_id | name | pooled }

exit

5. The gtpc command

To configure the DSCP marking to be used when sending GTP-C messages originating from the Session Manager and the SGTPC manager, use the following procedure:

config
context <context_name>

sgtp-service <service_name>

gtpc { bind address ipv4_address | dns-sgsn context context_name | echo-interval interval_seconds | echo-retransmission { exponential-backoff | [[min-timeout timeout_seconds] [smooth-factor smooth_factor] +] | timeout timeout_seconds } | guard-interval interval_seconds | ignore response-port-validation | ip qos-dscp dscp_marking | max-retransmissions max_retransmissions | retransmission-timeout timeout_seconds | send { common flags | rab-context | target-identification-preamble } }

exit

To reset the values to the default configuration, use the following procedure:

config

context <context_name>

sgtp-service <service_name>

default gtpc { echo-interval | echo-retransmission | guard-interval | ignore response-port-validation | ip qos-dscp | max-retransmissions | retransmission-timeout | send { common-flags | rab-context | target-identification-preamble } }

exit

The default value is “BE” (Best Effort).

Local QoS Capping

The QoS bit rate can be capped by the operator. The SGSN can be configured to limit the QoS bit rate parameter when the subscribed QoS provided by the HLR is lower than the locally configured value. Based on the configuration enabled, the SGSN can choose the QoS parameter configuration from the HLR configuration or from the local settings used in the APN profile. During session establishment the SGSN applies the lower of the two, that is either the HLR subscription or locally configured value.

The following procedure is used to configure the local Traffic Class (TC) parameters:

Important: To enable any of the values/features configured with this command, the qos prefer-as-cap configuration (also in the APN profile configuration mode) must be set to either local or both-hlr-and-local.

config

apn-profile <profile_name>

qos class { background | conversational | interactive | streaming } [qualif_option]

exit

To remove the previously defined TC parameters, use the following procedure:
config

 apn-profile <profile_name>

 remove qos class { background | conversational | interactive | streaming } [qualif_option]

 exit

To specify the operational preferences of QoS Parameters (specifically the QoS bit rates), use the following procedure:

config

 apn-profile <profile_name>

 qos prefer-as-cap { both-hlr-and-local | both-hss-and-local { local-when-subscription-not-available | minimum | subscription-exceed-reject } | hlr-subscription | local }

 exit

To remove all the previous configurations and reset the values to default, use the following procedure:

config

 apn-profile <profile_name>

 remove qos prefer-as-cap

 exit

QoS Management When UE is Using S4-interface for PDP Contexts

The SGSN uses the S4 interface with EPC network elements S-GW or P-GW. The QoS parameters used in the EPC network are different from the ones used in GPRS/UMTS network. For more information refer to the 3GPP TS 23.203 section 6.1.7.

EPC QoS Parameters

- **QoS Class Identifier (QCI):** The QCI is scalar that is used as a reference to node specific parameters that control packet forwarding treatment (for example, scheduling weights, admission thresholds, queue management thresholds, link layer protocol configuration and so on.) and that have been pre-configured by the operator owning the node (for example, eNodeB). The standardized characters associated with a standard QCI are listed below:
 - Resource Type (GBR or Non-GBR)
 - Priority
 - Packet Delay Budget
 - Packet Error Loss Rate
1. QCI table

<table>
<thead>
<tr>
<th>Packet Error</th>
<th>Resource Type</th>
<th>Priority</th>
<th>Packet Delay Budget (Note 1)</th>
<th>Packet Error Loss Rate (Note 2)</th>
<th>Example Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss Rate</td>
<td>1 (Note 3)</td>
<td>GBR</td>
<td>2</td>
<td>100 ms</td>
<td>Conversational Voice</td>
</tr>
<tr>
<td></td>
<td>2 (Note 3)</td>
<td>GBR</td>
<td>4</td>
<td>150 ms</td>
<td>Conversational Video (Live Streaming)</td>
</tr>
<tr>
<td></td>
<td>3 (Note 3)</td>
<td>GBR</td>
<td>3</td>
<td>50 ms</td>
<td>Real Time Gaming</td>
</tr>
<tr>
<td></td>
<td>4 (Note 3)</td>
<td>Non-GRB</td>
<td>5</td>
<td>300 ms</td>
<td>Non-Conversational Video (Buffered Streaming)</td>
</tr>
<tr>
<td></td>
<td>5 (Note 3)</td>
<td>Non-GRB</td>
<td>1</td>
<td>100 ms</td>
<td>IMS Signalling</td>
</tr>
<tr>
<td></td>
<td>6 (Note 4)</td>
<td>Non-GRB</td>
<td>6</td>
<td>300 ms</td>
<td>Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)</td>
</tr>
<tr>
<td></td>
<td>7 (Note 3)</td>
<td>Non-GRB</td>
<td>7</td>
<td>100 ms</td>
<td>Voice, Video (Live Streaming) Interactive Gaming</td>
</tr>
<tr>
<td></td>
<td>8 (Note 5)</td>
<td>Non-GRB</td>
<td>8</td>
<td>300 ms</td>
<td>Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)</td>
</tr>
<tr>
<td></td>
<td>9 (Note 6)</td>
<td>Non-GRB</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: A delay of 20 ms for the delay between a PCEF and a radio base station should be subtracted from the given PDB to derive the packet delay budget that applies to the radio interface. This delay is the average between the case where the PCEF is located “closer” to the radio base station (roughly 10 ms) and the case where the PCEF is located “far” from the radio base station, e.g., in case of roaming with home routed traffic (the one-way packet delay between Europe and the US west coast is roughly 50 ms). The average takes into account that roaming is a less typical scenario. It is expected that subtracting this average delay of 20 ms from a given PDB will lead to desired end-to-end performance in most typical cases. Also, note that the PDB defines an upper bound. Actual packet delays - in particular for GBR traffic - should typically be lower than the PDB specified for a QCI as long as the UE has sufficient radio channel quality.

NOTE 2: The rate of non-congestion related packet losses that may occur between a radio base station and a PCEF should be regarded to be negligible. A PELR value specified for a standardized QCI therefore applies completely to the radio interface between a UE and radio base station.

NOTE 3: This QCI is typically associated with a control or data channel service, i.e., a service where the SDF aggregate’s uplink / downlink packet filters are known at the point in time when the SDF aggregate is authorized. In case of E-UTRAN this is the point in time when a corresponding dedicated EPS bearer is established / modified.

NOTE 4: If the network supports Multimedia Priority Services (MPS) then this QCI could be used for the prioritization of non-real-time data (i.e. most typically TCP-based services/applications) of MPS subscribers.

NOTE 5: This QCI could be used for a dedicated “premium bearer” (e.g. associated with premium content) for any subscriber / subscriber group. Also in this case, the SDF aggregate’s uplink / downlink packet filters are known at the point in time when the SDF aggregate is authorized. Alternatively, this QCI could be used for the default bearer of a UE/EPD for “premium subscribers”.

NOTE 6: This QCI is typically used for the default bearer of a UE/EPD for non-privileged subscribers. Note that AMBR can be used as a “tool” to provide subscriber differentiation between subscriber groups connected to the same PDN with the same QCI on the default bearer.

- **APN AMBR:** The APN-AMBR limits the aggregate bit rate that can be provided across all Non-GBR PDP contexts of the same APN (for example, excess traffic may get discarded by a rate shaping function). Each of those Non-GBR PDP contexts can potentially utilize the entire APN AMBR (for example, when the other Non-GBR PDP contexts do not carry any traffic). The GBR PDP contexts are outside the scope of APN AMBR. The PGW enforces the APN AMBR in downlink. Enforcement of APN AMBR in uplink may be done in the UE and additionally in the PGW.

- **UE AMBR:** The UE AMBR limits the aggregate bit rate that can be provided across all Non-GBR PDP contexts of a UE (for example, excess traffic may get discarded by a rate shaping function). Each of the Non-GBR PDP contexts can potentially use the entire UE AMBR (for example, when the other Non-GBR PDP contexts do not
carry any traffic). The GBR (real-time) PDP contexts are outside the scope of UE AMBR. The RAN enforces the UE AMBR in uplink and downlink.

- **E-ARP**: The EPC uses Evolved ARP, which has priority level ranging from “1” up to “15”. Additionally, evolved ARP comprises of pre-emption capability and pre-emption vulnerability. The preemption capability information defines whether a bearer with a lower priority level should be dropped to free up the required resources. The pre-emption vulnerability information indicates whether a bearer is applicable for such dropping by a preemption capable bearer with a higher priority value.

For handover between UTRAN/GERAN and E-UTRAN, refer to 3GPP TS 24.101 “Annexure-E”. It defines the mapping rule between ARP and Evolved ARP during R99 QoS to EPS bearer QoS mapping and vice versa.

- **MBR**: Maximum Bit Rate indicates the maximum number of bits delivered to the network or by the network within a period of time. This parameter is as defined in GMM QoS Parameters. In EPC, these values are encoded as a “5” octet linear value but in GMM QoS it is a single octet or a two octet step wise value.

- **GBR**: Guaranteed Bit Rate indicates the guaranteed number of bits delivered to the network or by the network within a period of time. This parameter is as defined in GMM QoS Parameters. In EPC, these values are encoded as a “5” octet linear value but in GMM QoS it is a single octet or a two octet step wise value.

Subscription Types Supported by S4-GSN

1. **EPC Subscription**: If a subscriber has an EPC subscription, the QoS in subscription data is sent in the EPC format.

2. **GPRS Subscription**: If the subscriber does not have an EPC subscription, the QoS in subscription data is sent in R99/R5/R7 format.

QoS Mapping

The S4-GSN communicates the QoS parameters towards the S-GW and P-GW in EPC QoS. In UTRAN / GERAN access, the QoS carried over NAS messages to UE are in legacy GMM QoS R99/R5/R7 format (Refer to, 3GPP TS 24.008 section 10.5.6.5). However on the S4 / S5 / S16 / S3 interfaces the QoS is carried in EPC format (APN-AMBR, E-ARP and so on). A mapping is required between EPC QoS and GMM QoS, this mapping for EPS QoS to pre-release 8 QoS is defined in 3GPP TS 23.401, Annexure E.

Mapping Details

- **APN-AMBR** is mapped to **MBR** for non-GBR bearers.
- **Per bearer MBR and GBR** is mapped to **MBR and GBR** towards UE for GBR bearers.
- **For information on other mapping values refer to, 3GPP TS 23.203, table 6.1.7.**

Mapping is performed during the following scenarios:

- During Activate Accept (EPC QoS to GMM QoS)
- During Activation initiated Create Session Request (if GPRS subscription is used – GMM QoS to EPC QoS mapping)
- During S4-SGSN to Gn SGSN handover (EPC QoS to GMM QoS)
- During HLR / HSS initiated QoS modification (if GPRS subscription is used – GMM to EPC QoS towards SGW/PGW; towards UE EPC to GMM QoS – for both types of subscription)

Calculation on UE-AMBR

The S4-SGSN sets the value of UE-AMBR as follows:

\[
\text{Value of used UE-AMBR} = \text{Sum of APN-AMBRs of all active PDN connections for the given UE, limited or capped by the subscribed UE-AMBR.}
\]
For more information refer to, 3GPP TS 23.401, section 4.7.3.

To obtain E-ARP when GPRS subscription is used
To obtain E-ARP, configure ARP high and medium priority values at the Call Control Profile through the CLI command listed below:

```plaintext
qos gn-gp { arp high-priority priority medium-priority priority | pre-emption { capability { may-trigger-pre-emption | shall-not-trigger-pre-emption } | vulnerability { not-pre-emptable | pre-emptable } }
```

For more information refer to, 3GPP TS 23.401, Annexure E

To obtain QCI when GPRS subscription is used
The mapping information on obtaining QCI when GPRS subscription is used is listed in 3GPP TS 23.401 (table E.3) and 3GPP TS 23.203 (table 6.1.7).

QoS Mapping from SGSN to SGW/PGW
The QoS Mapping from SGSN to SGW/PGW can be depicted as follows:

![QoS Mapping from SGSN to SGW/PGW](image)

QoS Mapping from SGSN to UE/RNC
The QoS Mapping from SGSN to UE/RNC can be depicted as follows:
QoS Handling Scenarios

Listed below are various QoS handling scenarios and QoS Mapping for each of the scenarios:

Scenario-1:

Description of the scenario:
1. Attach is received from an EPC capable UE.
2. The HLR subscription does not have EPS subscription data. Only GPRS subscription is present.
3. Activate a PDP context with all QoS parameters set to “subscribed”.

QoS mapping for the scenario:

If S4 is the selected interface, then the subscribed MBR is mapped to APN AMBR. The EPS bearer QoS MBR is set to subscribed MBR (for conversational and streaming class bearers). For non-GBR bearers the EPS bearer QoS MBR is set to “0”. If the traffic class is conversational or streaming, then the EPS bearer QoS GBR is set to subscribed GBR.

A detailed list of mapping:
1. APN AMBR = Subscribed MBR
2. Bearer QoS – PVI = Taken from local policy [use call-control-profile qos gn-gp config]
3. Bearer QoS – PCI = Taken from local policy [use call-control-profile qos gn-gp config]
4. Bearer QoS – PL = Taken from local policy [use call-control-profile qos gn-gp config]
5. Bearer QoS – QCI = Mapped from subscribed traffic class
6. Bearer QoS – MBR UL and DL = Mapped from subscribed MBR + MBR-Extended for UL and DL
7. Bearer QoS – GBR UL and DL = Zero for interactive or background traffic. For streaming or conversational it is mapped from subscribed GBR + Ext.GBR UL / DL

References:
3GPP TS 23.401 Annexure E and 3GPP TS 29.274 section 8.15.

Scenario-2:

Description of the scenario:

The scenario is same as Scenario-1 described above, the only change being inclusion of sending activate accept to UE.

1. Attach is received from an EPC capable UE.
2. The HLR subscription does not have EPS subscription data. Only GPRS subscription is present.
3. Activate a PDP context with all QoS parameters set to “subscribed”.

QoS mapping for the scenario:

After the create session response is received from the S-GW, the following mapping shall be used to send the QoS towards UE:

1. Traffic Class = Mapped from QCI based on Table E.3 in 3GPP TS 23.401.
2. Delivery Order = Taken from local configuration [apn-profile --> qos --> class [traffic class] --> sdu --> delivery order]
3. Delivery of erroneous SDU = Taken from local configuration [apn-profile --> qos --> class [traffic class] --> sdu --> erroneous]
4. Maximum SDU Size = [apn-profile --> qos --> class [traffic class] --> sdu --> max size]
5. MBR Uplink = APN-AMBR-UL (if traffic class = interactive /background) or Bearer MBR-UL (if TC = streaming / conversational)
6. MBR DL = APN-AMBR-DL (if traffic class = interactive /background) or Bearer MBR-DL (if TC = streaming / conversational)
7. Residual BER = Taken from local config [apn-profile --> qos --> class [tc] --> residual-bit-error-rate]
8. SDU error ratio = Mapped based on Table 6.1.7 in 3GPP TS 23.203
9. Transfer delay = Mapped based on Table 6.1.7 in 3GPP TS 23.203
10. THP = Mapped from QCI based on Table E.3 in 3GPP TS 23.401
11. GBR UL = “0” for interactive or background class traffic. Mapped from Bearer QoS GBR UL for conversational or streaming traffic.
12. GBR DL = “0” for interactive or background class traffic. Mapped from Bearer QoS GBR DL for conversational or streaming traffic.
13. Signalling Indication = Mapped from QCI as per Table E.3 3GPP TS 23.401
14. Extended bit rates will be present if the mapped MBR / GBR exceeds “8640” Kbps

Scenario-3:

Description of the scenario:

1. Attach is received from an EPC capable UE
2. The HLR subscription does not have EPS subscription data. Only GPRS subscription data is present.
3. A primary PDP context is activated with all QoS parameters set to some requested values.

QoS mapping for the scenario:

1. Negotiate the requested QoS with subscribed QoS. Map the negotiated QoS as described in Scenario-1.
2. After receiving a Create Session Response, map the accepted EPS QoS to R99+ QoS as described in Scenario-2 and send the Activate accept.

Scenario-4:

Description of the scenario:

1. Attach is received from an EPC capable UE
2. The HLR subscription has EPS subscription data.
3. A PDP context is activated with all QoS parameters set to “Subscribed” values or some requested values.

QoS mapping for the scenario:

1. For every primary PDP context to an APN, the EPS subscribed QoS is used as is.
2. Once the EPS bearer is activated, the Activate PDP Accept is sent by mapping the accepted QoS value as described in Scenario-2.

Scenario-5:
Description of the scenario:
1. Attach is received from an EPC capable UE
2. The HLR subscription has EPS subscription data.
3. A secondary PDP context is activated with all QoS parameters set to “Subscribed” values.

QoS mapping for the scenario:
The SGSN sends a Bearer Resource Command with the following parameters:
1. Linked EPS Bearer ID = EPS bearer ID of linked Primary PDP
2. PTI = Transaction ID received from the MS (In MME, the received PTI is used in the NAS message as the PTI towards S-GW. But for the SGSN PTI is not there in the NAS message. The 3GPP TS is not clear on what the SGSN should send as PTI, therefore TI is sent.

Flow QoS:
1. QCI = Mapped from requested Traffic Class, if TC = conversational / streaming
2. MBR UL = APN-AMBR last received from P-GW for primary PDP activation
3. MBR DL = APN-AMBR last received from P-GW for primary PDP activation
4. GBR UL = APN-AMBR last received from P-GW for primary PDP activation
5. GBR DL = APN-AMBR last received from P-GW for primary PDP activation
6. Else, the values will be MBR UL = “0”, BR DL = “0”, GBR UL = “0”, GBR DL = “0”

References:
3GPP TS 23.401 Annexure E and 3GPP TS 29.274 (sections 8.15 and 8.16).

Scenario-6:
Description of the scenario:
1. Attach is received from an EPC capable UE
2. The HLR subscription has EPS subscription data.
3. A secondary PDP context is activated with all QoS parameters set to specified values.

QoS mapping for the scenario:
The SGSN sends a Bearer Resource Command with the following parameters:
1. Linked EPS Bearer ID = EPS bearer ID of linked Primary PDP
2. PTI = Transaction ID received from the MS (In MME, the received PTI is used in the NAS message as the PTI towards S-GW. But for the SGSN PTI is not there in the NAS message. The 3GPP TS is not clear on what the SGSN should send as PTI, therefore TI is sent.

Flow QoS:
1. QCI = Mapped from requested Traffic Class, if TC = conversational or streaming.
2. MBR UL = Requested MBR UL, MBR DL = Requested MBR DL
3. GBR UL = Requested GBR UL, GBR DL = Requested GBR DL or GBR UL = “0”, GBR DL = “0”

References:
3GPP TS 23.401 Annexure E and 3GPP TS 29.274 (sections 8.15 and 8.16)

Scenario-7:
Description of the scenario:
1. Attach is received from an EPC capable UE
2. The HLR subscription does not have EPS subscription data.
3. A secondary PDP context is activated with all QoS parameters set to “Subscribed”.

QoS mapping for the scenario:
The SGSN sends a Bearer Resource Command with the following parameters:

1. Linked EPS Bearer ID = EPS bearer ID of linked Primary PDP
2. PTI = Transaction ID received from the MS (In MME, the received PTI is used in the NAS message as the PTI towards S-GW. But for the SGSN PTI is not there in the NAS message. The 3GPP TS is not clear on what the SGSN should send as PTI, therefore TI is sent.

Flow QoS:

1. QCI = Mapped from requested Traffic Class, if TC= conversational or streaming
2. MBR UL = APN-AMBR-UL last obtained from P-GW for primary
3. MBR DL = APN-AMBR-DL last obtained from P-GW for primary
4. GBR UL = APN-AMBR-UL last obtained from P-GW for primary
5. GBR DL = APN-AMBR-UL last obtained from P-GW for primary
6. Else, MBR UL = “0”, MBR DL = “0”, GBR UL = “0”, GBR DL = “0”

Scenario-8:

Description of the scenario:

1. Attach is received from an EPC capable UE
2. The HLR subscription does not have EPS subscription data.
3. A secondary PDP context is activated with all QoS parameters set to valid requested values.

QoS mapping for the scenario:

Cap the requested QoS with the subscribed QoS. Then use the negotiated QoS as described below, the SGSN sends a Bearer Resource Command with the following parameters:

1. Linked EPS Bearer ID = EPS bearer ID of linked Primary PDP
2. PTI = Transaction ID received from the MS (In MME, the received PTI is used in the NAS message as the PTI towards S-GW. But for the SGSN PTI is not there in the NAS message. The 3GPP TS is not clear on what the SGSN should send as PTI, therefore TI is sent.

Flow QoS:

1. QCI = Mapped from requested Traffic Class, if TC= conversational or streaming
2. MBR UL = MBR-UL negotiated
3. MBR DL = MBR-DL negotiated
4. GBR UL = GBR-UL negotiated
5. GBR DL = GBR-DL negotiated
6. Else, MBR UL = “0”, MBR DL = “0”, GBR UL = “0”, GBR DL = “0”

Scenario-9:

Description of the scenario:

In-bound RAU or Forward Relocation Request for a subscriber, who was earlier attached on a Gn/Gp SGSN.

QoS mapping for the scenario:

1. APN-AMBR-UL = Subscribed MBR-UL
2. APN-AMBR-DL = Subscribed MBR-DL
3. Bearer QoS MBR = Negotiated MBR received from peer SGSNBearer QoS GBR = “0”, for Interactive or Background traffic classes and it is Negotiated GBR value for Conversational or Streaming traffic classes.
4. Bearer QoS - PVI = Use from Local Policy (use call-control-profile qos gn-gp configuration)
5. Bearer QoS - PCI = Use from Local Policy (use call-control-profile qos gn-gp configuration)
7. Bearer QoS - QCI = Mapped from negotiated traffic class.

References:

3GPP TS 23.401 Annexure E and 3GPP TS 23.060 v8.9.0 (section 6.9.1.2.2.a)
Scenario-10:

Description of the scenario:
Outbound RAU or Forward Re-location Request is sent towards a Gn/Gp SGSN.

QoS mapping for the scenario:
1. Subscribed QoS = Mapped from subscribed EPS QoS
2. Requested QoS = Return the MS requested value
3. Negotiated QoS = Mapped from the current EPS QoS
4. The mapping of EPS QoS to pre-release “8” QoS is as described in scenario-2.
5. When mapping subscribed EPS QoS to pre-release “8” MBR and GBR the following rules are applied:
 - MBR-UL = APN-AMBR-UL
 - MBR-DL = APN-AMBR-DL
 - GBR-UL / DL = “0” (for TC = interactive / background)
 - GBR-UL / DL = APN-AMBR-UL / DL (for TC = interactive / background)

Scenario-11:

Description of the scenario:
Initiating modify a PDP towards UE from SGSN (for instances of P-GW initiated QoS modification, HSS initiated modification and so on.)

QoS mapping for the scenario:
The current EPS QoS at SGSN is mapped to pre-release “8” QoS as described in Scenario-2.

QoS Handling During Primary PDP Activation

QoS Handling When EPS Subscription is Available

1. The subscribed APN-AMBR and ARP values are sent in Create Session Request to SGW or PGW.
2. The PGW can change the APN-AMBR value in Create Session Response.
3. The SGSN accepts the APN-AMBR value sent by the PGW. No further negotiation happens as described in 3GPP TS 23.060 section 9.2.2.1A, list item “d”.
4. In most cases the S4-SGSN does not perform any further QoS negotiation. (However, there is a special case of SGSN capping the bit rate sent to RAN at 16Mbps. This requirement will be supported in future releases).
5. The S4-SGSN maps the received APN-AMBR to MBR values as per the mapping table provided in 3GPP TS 23.203 Table 6.1.7 and 3GPP TS 23.401 Annex E.
6. The mapped MBR values are sent to the RNC in RAB assignment request and in Activate Accept to the UE.
7. In Release 14.0 local override of APN-AMBR / ARP based on CLI configuration is supported.

QoS Handling When Only GPRS Subscription is Available

1. The requested QoS from UE and the subscribed QoS are negotiated, the SGSN chooses the least of the two values as the negotiated output. If the requested QoS is the Subscribed QoS, the SGSN chooses the Subscribed QoS as is. If any local QoS capping is configured, the Negotiated QoS is the least of Requested QoS or Subscribed QoS capped by local values).
3. The Negotiated QoS is mapped to EPC QoS as per the mapping table in 3GPP TS 23.203 Table 6.1.7 and 3GPP TS 23.401 Annexure E.
4. The mapped values are sent in Create Session Request to the SGW or PGW.
5. The PGW is allowed to change the APN-AMBR value in Create Session Response.
6. The SGSN accepts the APN-AMBR value sent by the PGW. No further negotiation happens as described in 3GPP TS 23.060 section 9.2.2.1A, list item “d”.
7. The S4-SGSN maps the received APN-AMBR to MBR value as per the mapping table described in 3GPP TS 23.203 Table 6.1.7 and 3GPP TS 23.401 Annexure “E”.
8. The mapped MBR values are sent to the RNC in RAB assignment request and in Activate Accept to UE.

QoS Handling During Secondary PDP Activation

QoS Handling When EPS Subscription is Available

1. The Requested QoS is mapped to EPC QoS and sent in the Bearer Resource Command to the SGW or PGW.
2. If the traffic class requested is a non-GBR traffic class (interactive / background), the per bearer MBR / GBR values sent in Bearer Resource Command will all be zeroes.
3. The PGW sends a Create Bearer Request to the SGW or SGSN.
4. The SGSN sends a RAB assignment request to the RNC by mapping QoS as follows:
 • If the bearer is a non-GBR: The APN-AMBR is mapped to MBR values and GBR is set to “0”.
 • If the bearer is GBR: The MBR / GBR values received in Create Bearer Request are sent to RNC / UE in the Secondary Activate Accept.

QoS Handling When Only GPRS Subscription is Available

1. The Requested QoS from the UE and the Subscribed QoS are negotiated. The SGSN chooses the least of the two values as the negotiated output. If the Requested QoS is mentioned as the Subscribed QoS, then the SGSN chooses the Subscribed QoS as is, if local QoS capping is not configured.
2. The Requested QoS is mapped to the EPC QoS and sent in the Bearer Resource Command to the SGW or PGW.
3. If the traffic class requested is a non-GBR traffic class (interactive / background), the per bearer MBR / GBR values sent in Bearer Resource Command will all be zeroes.
4. The PGW sends a Create Bearer Request to SGW or SGSN.
5. The SGSN sends a RAB assignment request to the RNC by mapping QoS as follows:
 • If the bearer is non-GBR: The APN-AMBR is mapped to MBR values and the GBR value is set to “0”.
 • If the bearer is GBR: The MBR / GBR values received in the Create Bearer Request will be sent to RNC / UE in Secondary Activate Accept.

MS Initiated QoS Modification

- The MS sends a Modify PDP Context Request (TI, QoS Requested, TFT, and Protocol Configuration Options) message to the SGSN. Either QoS Requested or TFT or both may be included. The QoS Requested indicates the desired QoS profile, while the TFT indicates the TFT that is to be added or modified or deleted from the PDP context. Protocol Configuration Options may be used to transfer optional PDP parameters and/or requests to the PGW.
- The SGSN identifies the bearer modification scenario that applies and sends the Bearer Resource Command (TEID, LBI, PTI, EPS Bearer QoS (excluding ARP), TFT, EBI, RAT type, Protocol Configuration Options, serving network identity, CGI/SAI, User CSG Information, MS Info Change Reporting support indication, DL TEID and DL Address, DTI) message to the selected Serving GW.
An S4-based SGSN applies the BCM ‘MS/NW’ whenever the S4 is selected for a certain MS. The following table lists the details of MS-initiated EPS bearer modification, MS/NW mode:

1. MS-initiated EPS bearer modification, MS/NW mode

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>PDP context modification use case</th>
<th>Information provided by SGSN at S4 signalling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add TFT filters and increase QoS</td>
<td>QoS related to EPS Bearer, TFT filters added, TEID, EPS Bearer ID</td>
</tr>
<tr>
<td>2</td>
<td>Increase of QoS related to one or more TFT filter(s)</td>
<td>QoS related to EPS Bearer filters, Impacted TFT filters, TEID, EPS Bearer ID</td>
</tr>
<tr>
<td>3</td>
<td>Increase of QoS, TFT filters not specified</td>
<td>Not allowed in MS/NW mode</td>
</tr>
<tr>
<td>4</td>
<td>Add/remove TFT filters, no QoS change</td>
<td>TFT filters added/removed, TEID, EPS Bearer ID</td>
</tr>
<tr>
<td>5</td>
<td>Decrease QoS related to one or more TFT filter(s)</td>
<td>QoS related to EPS Bearer filters, Impacted TFT filters, TEID, EPS Bearer ID</td>
</tr>
<tr>
<td>6</td>
<td>Remove TFT filters and decrease QoS</td>
<td>QoS related to EPS Bearer, TFT filters removed, TEID, EPS Bearer ID</td>
</tr>
<tr>
<td>7</td>
<td>Decrease of QoS, TFT filters not specified</td>
<td>Not allowed in MS/NW mode</td>
</tr>
</tbody>
</table>

Note: Only the modified QCI and/or GBR parameters are forwarded by the SGSN.

- The S4-SGSN may assume that the BCM mode of a bearer is MS/NW there are instances where the BCM mode negotiated between UE and PGW can be “UE only”. In such cases, a UE sends a Modify PDP Request to the SGSN without a TFT. But SGSN cannot honor it in a R9 capable network since TAD is mandatory in BRC. In a R10 network, TAD is conditional optional on the S4 interface. Once the EGTP stack is upgraded to R10 compliance, the S4-SGSN honors PDP modification without TFT. For release 14.0, the SGSN rejects such PDP modifications.

- If the PDP modification is for non-GBR bearer, the SGSN sets the MBR and GBR values in Bearer Resource Command to “0”. If the PDP modification is for GBR bearer, then SGSN sets the MBR and GBR values in Bearer Resource Command to the requested values.

- The Serving GW Forwards the message to the PGW.

- If the request is accepted, the PGW Initiated Bearer Modification Procedure is invoked by the PGW to modify the EPS Bearer indicated by the TEID.

 - The PDN GW sends an Update Bearer Request (TEID, EPS Bearer Identity, PTI, EPS Bearer QoS, APN-AMBR, TFT, Protocol Configuration Options, Prohibit Payload Compression, MS Info Change Reporting Action, and CSG Information Reporting Action) message to the Serving GW. The Procedure Transaction Id (PTI) parameter is used to link this message to the Request Bearer Resource Modification message received from the Serving GW.

 - The Serving GW sends an Update Bearer Request (PTI, EPS Bearer Identity, EPS Bearer QoS, TFT, APN AMBR, Protocol Configuration Options, Prohibit Payload Compression, MS Info Change Reporting Action, CSG Information Reporting Action) message to the SGSN.

 - In Iu mode, radio access bearer modification may be performed by the RAB Assignment procedure. If the radio access bearer does not exist, the RAB setup is done by the RAB Assignment procedure.

 - The SGSN acknowledges the bearer modification by sending an Update Bearer Response (TEID, EPS Bearer Identity, DL TEID and DL Address, DTI) message to the Serving GW.
• The Serving GW acknowledges the bearer modification by sending an Update Bearer Response (TEID, EPS Bearer Identity) message to the PDN GW.

• The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns a Modify PDP Context Accept (TI, QoS Negotiated, Radio Priority, Packet Flow Id, and Protocol Configuration Options) message to the MS.

HSS Initiated PDP Context Modification

• The Home Subscriber Server (HSS) initiated PDP context modification procedure is used when the HSS decides to modify the subscribed QoS, where typically QoS related parameters are changed. The parameters that may be modified are UE-AMBR, APN-AMBR QCI and Allocation/Retention Policy.

• The HSS initiates the modification by sending an Insert Subscriber Data (IMSI, Subscription Data) message to the SGSN. The Subscription Data includes EPS subscribed QoS (QCI, ARP) and the subscribed UE-AMBR and APN AMBR.

• The S4-SGSN then updates the stored Subscription Data and acknowledges the Insert Subscriber Data message by returning an Insert Subscriber Data Ack (IMSI) message to the HSS and sends the Modify Bearer Command (EPS Bearer Identity, EPS Bearer QoS, APN AMBR) message to the S-GW. The S-GW forwards the Modify Bearer Command (EPS Bearer Identity, EPS Bearer QoS, APN AMBR) message to the P-GW. Note that the EPS Bearer QoS sent in the Modify Bearer Command does not modify the per bearer bit-rate. It is sent to carry only a change in the ARP/QCI received from subscription. Also, the Modify Bearer Command can be sent only for the default bearer (primary PDP) in a PDN connection.

• The P-GW modifies the default bearer of each PDN connection corresponding to the APN for which subscribed QoS has been modified. If the subscribed ARP parameter has been changed, the P-GW shall also modify all dedicated EPS bearers having the previously subscribed ARP value unless superseded by PCRF decision. The P-GW then sends the Update Bearer Request (EPS Bearer Identity, EPS Bearer QoS [if QoS is changed], TFT, APN AMBR) message to the S-GW.

• The S-GW sends the Update Bearer Request (EPS Bearer Identity, EPS Bearer QoS [if QoS is changed] APN-AMBR, TFT) message to the SGSN. On completion of modification S4-SGSN acknowledges the bearer modification by sending the “Update Bearer Response (EPS Bearer Identity)” message to P-GW via S-GW. If the bearer modification fails, the P-GW deletes the concerned EPS Bearer.

PGW Initiated QoS Modification

• The P-GW sends the Update Bearer Request (TEID, EPS Bearer Identity, EPS Bearer QoS, APN-AMBR, Prohibit Payload Compression, MS Info Change Reporting Action, CSG Information Reporting Action, TFT, and Protocol Configuration Options) message to the S-GW.
 - The TFT is optional and included in order to add, modify or delete the TFT related to the PDP Context. Protocol Configuration Options is optional.

• The S-GW sends the Update Bearer Request (TEID, EPS Bearer Identity, EPS Bearer QoS, APN-AMBR, Prohibit Payload Compression, MS Info Change Reporting Action, CSG Information Reporting Action, TFT, and Protocol Configuration Options) message to the SGSN.

• In Iu mode, radio access bearer modification may be performed by the RAB Assignment procedure.

• The SGSN selects Radio Priority and Packet Flow Id based on the QoS Negotiated, and sends a Modify PDP Context Request (TI, PDP Address, QoS Negotiated, Radio Priority, Packet Flow Id, TFT, and PCO) message to the MS. The TFT is included only if it was received from the P-GW in the Update Bearer Request message. Protocol Configuration Options are sent transparently through the SGSN.
The MS should accept the PDP context modification requested by the network if it is capable of supporting any modified QoS Negotiated as well as any modified TFT. For a successful modification the MS acknowledges by returning a Modify PDP Context Accept message. If the MS is incapable of accepting a new QoS Negotiated or TFT it shall instead de-activate the PDP context with the PDP Context Deactivation Initiated by MS procedure.

On receiving the Modify PDP Context Accept message, or on completion of the RAB modification procedure, the SGSN returns an Update PDP Context Response (TEID, QoS Negotiated) message to the S-GW.

The S-GW acknowledges the bearer modification to the P-GW by sending an Update Bearer Response (EPS Bearer Identity) message.

ARP Handling

Difference between Gn SGSN and S4 SGSN

In Create PDP Context response the GGSN sends \{1, 2, and 3\} as ARP value whereas the S-GW sends “15” value ARP in Create Session response. In Gn SGSN while sending the RAB assignment request, the Allocation retention priority values \{1, 2, and 3\} are mapped to “15” values so there is need of conversion from “3” values to “15” values.

In S4 SGSN, since the P-GW sends ARP in the “15” value range there is no need for conversion.

ARP values in Gn SGSN

According to GTPv1 3GPP TS 29.060 clause 7.7.34 Allocation/ Retention priority encodes each priority level defined in 3GPP TS 23.107 as the binary value of the priority level.

Quality of Service (QoS) Profile

The Quality of Service (QoS) Profile includes the values of the defined QoS parameters.

Octet “4” carries the Allocation/Retention priority octet that is defined in 3GPP TS 23.107. The Allocation/Retention priority octet encodes each priority level defined in 3GPP TS 23.107 as the binary value of the priority level.

The Allocation/Retention priority field is ignored by the receiver if:

- The QoS profile is pre-Release ’99.
- The QoS profile IE is used to encode the Quality of Service Requested (QoS Req) field of the PDP context IE.

Octet “5” the QoS Profile Data Field is coded according to the 3GPP TS 24.008 [5] Quality of Service IE, octets 3-m. The minimum length of the field QoS Profile Data is “3” octets, the maximum length is “254” octets.

The clause 11.1.6 “Error handling” defines the handling of the case when the sent QoS Profile information element has a Length different from the Length expected by the receiving GTP entity.
Figure 61. Quality of Service (QoS) Profile Information Element

<table>
<thead>
<tr>
<th>Oktects</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5-n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type = 135 (Decimal)</td>
</tr>
<tr>
<td></td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td>Allocation/Retention Priority</td>
</tr>
<tr>
<td></td>
<td>QoS Profile Data</td>
</tr>
</tbody>
</table>

Figure 62. Value Ranges for UMTS Bearer Service Attributes

<table>
<thead>
<tr>
<th>Traffic class</th>
<th>Conversational class</th>
<th>Streaming class</th>
<th>Interactive class</th>
<th>Background class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum bitrate (kbps)</td>
<td><= 256 000 (2)</td>
<td><= 256 000 (2)</td>
<td><= 256 000 (2)</td>
<td><= 256 000 (2)</td>
</tr>
<tr>
<td>Delivery order</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Maximum SDU size (octets)</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>SDU format information</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum SDU size (octets)</td>
<td>Yes/No/ - (6)</td>
<td>Yes/No/- (6)</td>
<td>Yes/No/- (6)</td>
<td>Yes/No/- (6)</td>
</tr>
<tr>
<td>Residual BER</td>
<td>510⁻³, 10⁻³, 510⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10⁻³, 10⁻⁴, 10⁻⁵, 10⁻⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOU error ratio</td>
<td>10⁻², 7*10⁻³, 10⁻³, 10⁻⁴, 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10⁻¹, 10⁻², 7*10⁻³, 10⁻³, 10⁻⁴, 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410⁻³, 10⁻⁴, 610⁻⁶ (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410⁻³, 10⁻⁴, 810⁻⁶ (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer delay (ms)</td>
<td>100-maximum value</td>
<td>300 (8) - maximum value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaranteed bit rate (kbps)</td>
<td><= 256 000 (2)</td>
<td><= 256 000 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic handling priority</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Allocation/Retention priority</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Source statistic descriptor</td>
<td>Speech/unknown</td>
<td>Speech/unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalling Indication</td>
<td></td>
<td></td>
<td></td>
<td>Yes/No (9)</td>
</tr>
<tr>
<td>Evolved Allocation/Retention priority</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Priority Level</td>
<td>1-15</td>
<td>1-15</td>
<td>1-15</td>
<td>1-15</td>
</tr>
<tr>
<td>- Pre-emption Capability</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>- Pre-emption Vulnerability</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>
ARP values in S4 SGSN

The behavior of ARP values in S4 SGSN is according to GTPv2 3GPP TS 29.274 clause 8.15.

Bearer Quality of Service (Bearer QoS)

Bearer Quality of Service (Bearer QoS) is transferred through the GTP tunnels. The sending entity copies the value part of the Bearer QoS into the Value field of the Bearer QoS IE.

Figure 63. Bearer Level Quality of Service (Bearer QoS)

Octet “5” represents the Allocation/Retention Priority (ARP) parameter. The meaning and value range of the parameters within the ARP are defined in 3GPP TS 29.212 [29]. The bits within the ARP octet are:

- Bit 1 - PVI (Pre-emption Vulnerability), see 3GPP TS 29.212[29], clause 5.3.47 Pre-emption-Vulnerability AVP.
- Bit 2 - Spare bit.
- Bits 3 up to 6 - PL (Priority Level), see 3GPP TS 29.212[29], clause 5.3.45 ARP-Value AVP. Priority Level encodes each priority level defined for the ARP-Value AVP as the binary value of the priority level.
- Bit 7 - PCI (Pre-emption Capability), see 3GPP TS 29.212[29], clause 5.3.46 Pre-emption-Capability AVP.
- Bit 8 - Spare bit.

Priority-Level AVP (All access types)

The values “1” up to “15” are defined, with value “1” as the highest level of priority.

Values “1” up to “8” should only be assigned for services that are authorized to receive prioritized treatment within an operator domain. Values “9” up to “15” can be assigned to resources that are authorized by the home network and thus applicable when a UE is roaming.

Pre-emption-Capability AVP

PRE-EMPTION_CAPABILITY_ENABLED (0)

This value indicates that the service data flow or bearer which is allowed to get resources that were already assigned to another service data flow or bearer with a lower priority level.
PRE-EMPTION_CAPABILITY_DISABLED (1)
This value indicates that the service data flow or bearer is not allowed to get resources that were already assigned to another service data flow or bearer with a lower priority level. This is the default value applicable if this AVP is not supplied.

Pre-emption-Vulnerability AVP
PRE-EMPTION_VULNERABILITY_ENABLED (0)
This value indicates that the resources assigned to the service data flow or bearer which can be pre-empted and allocated to a service data flow or bearer with a higher priority level. This is the default value applicable if this AVP is not supplied.

PRE-EMPTION_VULNERABILITY_DISABLED (1)
This value indicates that the resources assigned to the service data flow or bearer which shall not be pre-empted and allocated to a service data flow or bearer with a higher priority.

Handling of ARP Values in Various Scenarios

Gn + GPRS Subscription
The following CLI command is used to send RAB parameters in RAB Assignment request:

```
config

apn-profile <profile_name>

ranap allocation-retention-priority-ie subscription-priority priority class { { background | conversational | interactive | streaming } { not-pre-emptable | priority | queuing-not-allowed | shall-not-trigger-pre-emptable } + } +

exit
```

S4 + EPC subscription
For EPC subscription with S4 activation, ARP in RAB is filled from the Evolved ARP applied for the PDP context. The Evolved ARP applied is:

- Subscribed Evolved ARP if P-GW does not send any evolved ARP in Create Session Response.

Or

- Evolved ARP supplied by the P-GW.

S4+GPRS Subscription
For GPRS subscription with S4 activation, the ARP in RAB is filled from the Evolved ARP applied for the PDP context. The Evolved ARP applied is:

- Evolved ARP derived from the GPRS subscription using CLIs displayed below, when the P-GW does not send any Evolved ARP in Create Session Response:

```
config

call-control-profile <profile_name>
```
Mapping EPC ARP to RANAP ARP

The ARP values are defined as per 3GPP TS 29.212 clause 5.3.46 and 5.3.47 for the Core Network Side.

The following values are defined:

- **PRE-EMPTION_CAPABILITY_ENABLED (0)**

 This value indicates that the service data flow or bearer which is allowed to get resources that were already assigned to another service data flow or bearer with a lower priority level.

- **PRE-EMPTION_CAPABILITY_DISABLED (1)**

 This value indicates that the service data flow or bearer which is not allowed to get resources that were already assigned to another service data flow or bearer with a lower priority level. This is the default value applicable if this AVP is not supplied.

- **PRE-EMPTION_VULNERABILITY_ENABLED (0)**

 This value indicates that the resources assigned to the service data flow or bearer which can be pre-empted and allocated to a service data flow or bearer with a higher priority level. This is the default value applicable if this AVP is not supplied.

- **PRE-EMPTION_VULNERABILITY_DISABLED (1)**

 This value indicates that the resources assigned to the service data flow or bearer which shall not be pre-empted and allocated to a service data flow or bearer with a higher priority level.

For more information on ARP values and their definitions see, 3GPP TS 25.413 clause 9.2.1.3.

The ARP values defined are different on the RNC side and the Core Network side, the RAB assignment request is mapped according to the following table:

Table 27. RAB Assignment Request Mapping

<table>
<thead>
<tr>
<th>RAB parameters (ARP)</th>
<th>ARP values received from SGW (According to 3GPP TS 29.212 clause 5.3.46 and 5.3.47)</th>
<th>Mapping EPC ARP to RANAP ARP in RNC side (According to RANAP 3GPP TS 25.413 clause 9.2.1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-emption-Capability</td>
<td>PRE-EMPTION_CAPABILITY_ENABLED (0)</td>
<td>Pre-emption is triggered.</td>
</tr>
<tr>
<td>Pre-emption-Capability</td>
<td>PRE-EMPTION_CAPABILITY_DISABLED (1)</td>
<td>Pre-emption is not triggered.</td>
</tr>
<tr>
<td>Pre-emption-Vulnerability</td>
<td>PRE-EMPTION_VULNERABILITY_ENABLED (0)</td>
<td>Pre-emption is triggered.</td>
</tr>
</tbody>
</table>
ARP configured in CC Profile

The QoS configured in the Call Control Profile is used if the S4 interface is chosen for PDP activation, but the subscription does not have an EPS subscription. Therefore, GPRS subscription data (which uses QoS in pre-release 8 format), will be mapped to EPS QoS. The Allocation and Retention policy will be mapped to EPS ARP using the configuration in the Call Control Profile.

If the QoS mapping configuration is not used, the following default mappings are used:

- Default ARP high-priority value = 5.
- Default ARP medium-priority value = 10.
- Default pre-emption capability = shall-not-trigger-pre-emption.
- Default pre-emption vulnerability = not pre-emptable

The mapping is configured through the following CLI command:

```config
call-control-profile <profile_name>
qos { gn-gp | ue-ambr } qos gn-gp { arp high-priority priority medium-priority priority | pre-emption { capability { may-trigger-pre-emption | shall-not-trigger-pre-emption } | vulnerability { not-pre-emptable | pre-emptable } }
exit
```

The mapping of these configured values to EPC ARP is given in below, this table is present 3GPP TS 23.401:

<table>
<thead>
<tr>
<th>Release 99 bearer parameter ARP value</th>
<th>EPS bearer ARP priority value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>H + 1</td>
</tr>
<tr>
<td>3</td>
<td>M + 1</td>
</tr>
</tbody>
</table>

In the above table H = High-priority value configured and M = Medium-priority value.
Chapter 17
RIM Message Transfer from BSC or RNC to eNodeB

This chapter describes how the SGSN transfers RIM messages to/from an MME (eNodeB) via GTPv1 protocol. This chapter provides details about RIM messages transferred to/from an MME (eNodeB):

- Feature Description
- How It Works
- Configuring RIM Msg Transfer to or from eNodeB
- Monitoring and Troubleshooting RIM Msg Transfer
Feature Description

RIM message transfer is one of the standards-based RAN Information Management procedures supported by the SGSN.

RAN Information Management (RIM)

RIM procedures provide a generic mechanism for the exchange of arbitrary information between RAN nodes. The RAN information is transferred via the SGSN core network node(s). In order to make the RAN information transparent for the core network, the RAN information is included in a RIM container that shall not be interpreted by the core network nodes.

The RAN information is transferred in RIM containers from the source RAN node to the destination RAN node by use of messages. The SGSN independently routes and relays each message carrying the RIM container.

In pre-15.0 releases, the SGSN supported RIM messages from BSS/RNC to another BSS/RNC belonging to a different or the same SGSN over GTPv1 protocol. Now, the SGSN also supports transfer of RIM messages to/from an MME (eNodeB) via GTPv1 protocol.

The SGSN uses existing CLI to enable the RIM transfer functionality. Whether or not the RIM message goes from/to BSC/RNC to/from BSC/RNC or to/from eNodeB is determined by the addressing. To transfer RIM messages to the MME (eNodeB),

- requires RIM functionality be enabled for the SGSN.
- requires the DNS server be configured to respond to a TAI-based DNS query

OR

- requires the MME (eNodeB) address be added to the SGSN's Call Control Profile

Relationships to Other Feature or Products

For this feature to work properly, the peer-MME for the eNodeB must also support RIM message handling.
How It Works

RIM Addressing

All the messages used for the exchange of RAN information contain the addresses of the source and destination RAN nodes. An eNodeB is addressed by tracking area identity (TAI) + eNodeB Identity (enbId).

The source RAN node sends a message to its SGSN including the source and destination addresses. From the destination address, the SGSN shall decide whether or not it is connected to the destination RAN node. If the destination address is that of an eNodeB, then the SGSN uses the destination address to route the message, encapsulated in a GTPv1 message, to the correct MME via the Gn interface.

The MME connected to the destination RAN node decides which RAN node to send the message based on the destination address or the RIM routing address.

Call Flows - Transmitter of GTP RIM Msg

The following call flow illustrates how the SGSN behaves as the transmitter of GTP RIM messages.

In the above illustration, the RIM message is transferred to the peer SGSN as follows:

1. Upon receiving a RIM message from the network access BSS/RNC, the SGSN determines the RIM routing address type. If the message indicates that the target is an eNodeB, then SGSN searches for a locally configured MME address.
2. If a locally configured MME address is not available, then a DNS-SNAPTR query will be initiated to determine the MME address.
3. On receiving the DNS response and upon getting a valid MME address, an appropriate GTP API would be invoked.
4. On invocation of this API the GTP module will encode the RAN info relay message (as per TS 29.060) and dispatch the PDU to the peer MME.

Call Flows - Receiver of GTP RIM Msg

The following call flow illustrates how the SGSN behaves as the receiver of GTP RIM messages.

Figure 65. Receiving a GTP RIM Message

In this case, the SGSN has to decode the incoming GTP message correctly and forward the RIM message to the destination RNC/BSS.

1. SGSN would decode the received GTP RAN info relay message and construct a RANAP or BSSGP RIM message.
2. Appropriate actions would be taken to forward the RIM message to the destination RNC/BSS.

RIM Application

The RIM application processes the decoded RIM PDU from the access application. The routing area identifier (RAI) -- comprised of the mcc, mnc, rac -- is extracted from the destination address and is used to decide if the target routing area (RA) is local. If the RAI is locally available, the PDU is forwarded to either the RANAP or BSSGP stack based on the RIM routing address discriminator field.

The SGSN has a global list of local RAs. Each RA in turn has a list of RNCs and NSEIs that control it. If the destination RA is local, the list of NSEIs which serve the RAI is fetched. Each NSEI is searched for a matching cell id in the cellid-list. The PDU is then forwarded to the NSEI when signaling the BVCI.

If the RNC Id is in the destination cell identifier, then the IuPS service serving the local RAI is identified. The PDU is encoded in a RIM container and forwarded to the corresponding RANAP stack instance of that IuPS service.

If the eNodeB Id is in the destination cell identifier, then the PDU will be sent to the GTP app using the appropriate event.

The peer-MME address is resolved using the SGSN's local configuration or a DNS query for the TAI present in the destination address. For a successful DNS response, the PDU is encoded in a GTP RIM container and forwarded to the peer-MME. The SGTP service used will be the default SGTP service associated with the GPRS service or the SGSN.
service under which the source BSS/RNC was present. The RIM app drops a PDU if the DNS response fails. There will no retransmission or state-maintenance for the RIM PDU at the GTP-app.

Standards Compliance

The SGSN's RIM message transfer from/to eNodeB functionality complies with the following standards:

- 3GPP TS 29.060 version 11
- 3GPP TS 23.003 version 11
- 3GPP TS 25.413 version 11
- 3GPP TS 48.018 version 11
- 3GPP TS 24.008 version 11
Configuring RIM Msg Transfer to or from eNodeB

To enable successful RIM message transfer to/from an eNodeB, the following must be included in the SGSN's configuration:

- Configuring RIM functionality to work on SGSN
- Associating previously configured SGTP and IuPS services
- Configuring the peer-MME’s address, in *one or both* of two ways
 - Configuring the peer-MME address locally
 - Configuring the DNS server

Configuring RIM Functionality

The following command sequences are used to enable RAN information management (RIM) functionality on the SGSN. The order in which these two configurations are performed is not significant.

The first command sequence enables RIM for the entire SGSN (global level).

```
configure
  sgsn-global
    ran-information-management
  end
```

The second command sequence associates the RNC configuration, the part of the IuPS service configuration governing the SGSN communication with any RNC, needs to have the RIM functionality enabled.

```
configure
  context context_name
    iups-service service_name
      rnc id rnc_id
        ran-information-management
      end
```

Associating Previously Configured SGTP and IuPS Services

The SGTP service configuration is a mandatory part of the SGSN’s setup (refer to Configuring an SGTP Service in the SGSN Administration Guide), so an SGTP service configuration must already exist. The SGTP service is needed to send and/or receive GTPv1 protocol messages.

It is also a good idea to associate the IuPS service for the SGSN service to use for communication with the RAN.
The following illustrates the minimum configuration required to associate the SGTP and IuPS services for the RIM message transfers:

```
configure
  context context_name
    sgsn-service service_name
      associate sgtp-service service_name context context_name
    ran-protocol iups-service service_name
  end
```

Configuring the peer-MME's address - Locally

Use the Call Control Profile to define the peer-MME address. Use the tac keyword to configure the tracking area code (TAC) of the target eNodeB that maps to the peer-MME address. For RIM message transfer, you also need to configure the Gn interface. The following is an example of the configuration to use:

```
configure
  call-control-profile profile_name
    peer-mme tac tac_value prefer local address ip_address interface gn
  end
```

Where:

- `tac_value` can be an entry from 1 to 65535.
- `ip_address` is the standard format address for either IPv4 or IPv6.
- `gn` is the interface selection used for RIM message transfer.

Configuring the peer-MME's address - for DNS Query

If using a DNS query to determine the peer-MME RIM address, then the DNS server must be pre-configured to respond to a TAI-based DNS query in the following format: `tac-lb<TAC-low-byte>.tac-hb<TAC-high-byte>.tac.epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org`
Monitoring and Troubleshooting RIM Msg Transfer

The show command statistics illustrated below, can be used to monitor or troubleshoot this functionality. Note that the selected output is only a portion of the information displayed by the command.

```
show gmm-sm statistics verbose

show gmm-sm statistics verbose
...
Ranap Procedures:
  Direct Transfer Sent: 0  Direct Transfer Rcvd: 0

show gmm-sm statistics verbose | grep RIM

show gmm-sm statistics verbose | grep RIM
...
RIM Message Statistics:
RIM Messages dropped:
  due to RIM disabled in SGSN: 0  due to RNC not Capable: 0
  due to RIM Routing Address not present: 0  due to RNC does not exist: 0

show sgtpc statistics verbose

show sgtpc statistics verbose
...
RAN info Relay Msg:
Total messages received: 0  Total messages sent: 0
Total messages dropped: 0
  due to DNS failure: 0
  due to RIM disabled in SGSN: 0
  due to Invalid Routing Addr: 0
```
show bssgp statistics verbose

...

RIM Messages

RAN Information messages received
RAN Information messages transmitted
RAN Information Request messages received
RAN Information Request messages transmitted
RAN Information ACK messages received
RAN Information ACK messages transmitted
RAN Information Error messages received
RAN Information Error messages transmitted
RAN Information Appln Error messages received
RAN Information Appln Error messages transmitted

RIM messages dropped
 due to RIM disabled in SGSN
 due to destination BSC not RIM capable
 due to destination cell does not exist
 due to invalid destination address
Chapter 18
S4-SGSN Suspend-Resume Feature

This chapter describes the S4-SGSN Suspend/Resume feature and includes the following topics:

- Feature Description
- How it Works
- Configuring the S4-SGSN Suspend/Resume Feature
- Monitoring and Troubleshooting the S4-SGSN Suspend/Resume Feature
Feature Description

The S4-SGSN Suspend/Resume feature provides support for suspend/resume procedures from the BSS and a peer S4-SGSN.

When a UE is in a 2G coverage area wants to make a circuit switched voice call but the Class A mode of operation is not supported by the network, then the packet switched data session (PDP contexts) must be suspended before the voice call can be made. In this case, the BSS sends a Suspend Request to the SGSN. If the UE is already attached at that SGSN then the suspend request is handled via an intra-SGSN suspend/resume procedure. If the UE is not attached at the SGSN then the Suspend Request is forwarded to a peer SGSN/MME through GTPv2 and an inter-SGSN/SGSN-MME suspend procedure occurs. Once the UE completes the voice call, either the BSS sends a resume request to resume the suspended PDPs or the UE directly sends a Routing Area Update Request (RAU) in 2G which will be treated as an implicit resume.

The ability for a GPRS user to access circuit-switched services depends on the subscription held, the network capabilities, and the MS capabilities.

Suspension of GPRS Services

The MS sends a request to the network for the suspension of GPRS services when the MS or the network limitations make it unable to communicate on GPRS channels in one or more of the following scenarios:

1. A GPRS-attached MS enters dedicated mode and the support of the Class A mode of operation is not possible (for example, the MS only supports DTM and the network only supports independent CS and PS).
2. During CS connection, the MS performs a handover from Iu mode to A/Gb mode, and the MS or the network limitations make it unable to support CS/PS mode of operation, (for example, an MS in CS/PS mode of operation in Iu mode during a CS connection reverts to class-B mode of operation in A/Gb mode).
3. When an MS in class A mode of operation is handed over to a cell where the support of Class A mode of operation is not possible (for example, a DTM mobile station entering a cell that does not support DTM).

Relationships to Other Features

One of the following configurations must exist on the SGSN for the Suspend Resume feature to work properly on the S4-SGSN:

- 2G SGSN Service + S4-SGSN Support
- 3G SGSN Service + S4-SGSN Support
- 2G SGSN Service + 3G SGSN Service + S4-SGSN Support

Configuration procedures for the above deployments are available in the ASR 5000 Serving GPRS Support Node Administration Guide.
How it Works

S4-SGSN Suspend-Resume Feature

When a UE wants to make or receive a voice call via a GERAN circuit switched domain, and if the UE/BSS doesn't support DTM mode, then the BSS sends a Suspend Request to the SGSN to suspend any packet data transmission. This suspend request can be received on the same SGSN where a subscriber is already attached, or it can be received on an SGSN where the subscriber is not yet attached.

SGSN where subscriber is attached: The SGSN initiates an intra-SGSN suspend procedure and will have to suspend the data transmission all the way up to the PGW by sending a Suspend Request to the SGW/PGW. When the UE completes the CS call, it will resume the packet transmission. The BSS will send a Resume request in this case.

SGSN where subscriber is not yet attached: The SGSN initiates an inter-SGSN suspend procedure by sending a GTPv2 / GTPv1 Suspend Request to the peer SGSN/MME. The peer node will suspend the data transmission. When the UE completes the CS call, it may directly send a Routing Area Update request to the 2G SGSN to handover the packet switched contexts. The 2G SGSN will do a Context Request / Context Response / Context Ack procedure with the peer node and will send a Create Session Request (if SGW relocation occurs) or a Modify Bearer Request (if no SGW relocation occurs) to the SGW. The Modify Bearer Request at the PGW will be treated as an implicit Resume.

Limitations

The following are the known limitations for the S4-SGSN Suspend/Resume feature:

1. If a suspend request aborts an ongoing RAU triggered SGW relocation, the Create Session Request will be aborted and the PDN will be cleared. This is to avoid complexities in the state machine. If the system retained PDP, the system would have to recreate the tunnel towards the old SGW to PGW before sending the Suspend Notification. This would delay the Suspend procedure.

2. A Suspend Request from the default SGSN in a pool to the SGSN serving the NRI of the given PTMSI is not possible via the S16 interface due to a standards limitation. R10 specifications don't have a hop counter and UDP source port IEs in the Suspend Notification message and hence this limitation. This is corrected in R11 specifications. The S4-SGSN suspend will support this call flow only in later releases.

3. HSS initiated modification will be queued, if the Suspend preempts an HSS initiated modification while pending for an Update Bearer Request from the PGW. The queued procedure will be restarted in a subsequent procedure (RAU / Resume). Queued information will not be transferred to another RAT type, if a subsequent procedure changes the RAT type.

4. A Suspend Acknowledge with rejected cause will not be sent to the peer SGSN/MME when an inter-SGSN Suspend procedure is preempted by procedures such as RAU, Context Request, and Detach Request at the old SGSN. Suspend Acknowledge is not sent because it is very complex on the PMM-side to distinguish between two procedures as the PMM has the same state for both the inter-SGSN Suspend procedure and the inter-SGSN RAU procedure.

Call Flows

This section includes various diagrams that illustrate the Suspend/Resume call flow procedures, and the interface selection logic:

- Intra-SGSN Suspend Procedure with Resume as the Subsequent Procedure
• Intra-SGSN Suspend with Resume Procedure with Intra-RAU as Subsequent Procedure
• Inter-SGSN Suspend and Resume Procedure with Peer S4-SGSNMME
• New Inter-SGSN Suspend and Resume Procedure from BSS to 2G Gn-SGSN
• New SGSN Suspend and Resume Procedure with Peer Gn-SGSN as Old SGSN
• Interface Selection Logic for Inter-SGSN Suspend (New SGSN) Procedure
• Intra-SGSN Inter-System Suspend and Resume Procedure
• Inter-SGSN Inter-System Suspend and Resume Procedure

Intra-SGSN Suspend Procedure with Resume as the Subsequent Procedure

The intra-SGSN Suspend procedure with Resume as the subsequent procedure is illustrated in the following diagram.

- When a 2G SGSN receives a Suspend Request from the BSS and if the subscriber is already attached to the 2G SGSN, the PDPs shall be suspended. The SGSN then sends a Suspend Notification to the SGW, which subsequently is sent to the PGW to stop all data transmissions on non-GBR bearers.

- When a 2G SGSN receives a Resume Request from the BSS, and if the subscriber that is already suspended is attached to the 2G SGSN, the PDPs are resumed. The SGSN then sends a Resume Notification to the SGW, which subsequently is sent to the PGW to resume all data transmissions on non-GBR bearers.
Intra-SGSN Suspend with Resume Procedure with Intra-RAU as Subsequent Procedure

An Intra-SGSN Suspend procedure call flow with an Intra-SGSN RAU procedure as the subsequent procedure is shown in the following illustration.

- If there is no SGW change for the RAU request, then the 2G-SGSN sends a Resume Notification to the SGW and the SGW then sends a Resume Notification to the PGW to resume all data transmissions.
- If there is a SGW change for the RAU request, then the 2G-SGSN sends a Create Session request to the SGW and the SGW sends a Modify Bearer Request to the PGW to resume all data transmissions.
Inter-SGSN Suspend and Resume Procedure with Peer S4-SGSN/MME

The procedure for a new SGSN Suspend Request and Resume procedure with a peer S4-SGSN/MME is shown in the following diagram.

- When an S4-SGSN receives a Suspend Request from the BSS and if the subscriber is not attached to the 2G SGSN, the S4-SGSN will send a Suspend Notification to the peer S4-SGSN/MME.
- The new SGSN RAU is the Resume procedure after a new SGSN Suspend procedure has been completed. The SGSN sends a Create Session Request / Modify Bearer Request to the SGW which subsequently is sent to the PGW to resume all data transmissions on non-GBR bearers.
- When the Gn-SGSN receives a Suspend Request from the BSS and if the subscriber is not attached to the 2G SGSN, it sends a Suspend Notification to the peer Gn-SGSN / S4-SGSN/MME.
New Inter-SGSN Suspend and Resume Procedure from BSS to 2G Gn-SGSN

A new SGSN Suspend Request from the BSS to a 2G Gn-SGSN is shown in the following illustration.

- The new SGSN RAU is the Resume procedure after the new SGSN Suspend procedure has been completed. The Gn-SGSN sends an Update PDP Context Request to the GGSN which subsequently is sent to PGW to resume all data transmissions on non-GBR bearers.

- When the S4-SGSN receives a Suspend Request from the BSS and if the subscriber is not attached to the 2G SGSN and the peer is a Gn-SGSN, it sends a Context Request with Suspend header (GTPv1 Suspend Request) to the peer Gn-SGSN.
New SGSN Suspend and Resume Procedure with Peer Gn-SGSN as Old SGSN

The new SGSN Suspend procedure with a peer Gn-SGSN as the old SGSN is shown in the following illustration.

- The new SGSN RAU is the Resume procedure after the new SGSN Suspend procedure is completed. The SGSN sends a Create Session Request / Modify Bearer Request to the SGW which subsequently is sent to the PGW to resume all data transmissions on non-GBR bearers.
Interface Selection Logic for Inter-SGSN Suspend (New SGSN) Procedure

Interface selection logic to find the peer address during the Inter SGSN Suspend (New SGSN Suspend) procedure is explained in the flowing flow chart.
Figure 71. Interface Selection Logic for Inter-SGSN Suspend (New Suspend) Procedure

- Is EGTP Service Associated?
 - Yes: Proceed to the next step.
 - No: Exit the procedure.

- Is Local Address Available?
 - Yes: Proceed to the next step.
 - No: Exit the procedure.

- S16/S3 Interface available (if op policy forces S16/S3 selection)?
 - Yes: Proceed to the next step.
 - No: Exit the procedure.

- Perform SNAPTR Query x-3gpp-sgsn:x=s16 or x-3gpp-mme:x=s3 (based on target being one of):
 - MSE bit of target LAC
 - Configurable local MME group ID mapping

- DNS Response Successful?
 - Yes: Use S16/S3 Interface.
 - No: Proceed to the next step.

- Is DNS Result Cause SNAPTR_STATUS_NO_MATC HING NAPTR5?
 - Yes: Proceed to the next step.
 - No: Exit the procedure.

- Perform SNAPTR Query x-3gpp-sgsn:x=g3

- Use SGTP Service Using the G3 Address Obtained (No A Query)
 - Yes: Use SGTP Service and Initiate DNS A.
 - No: Reject Suspend Procedure.
Intra-SGSN Inter-System Suspend and Resume Procedure

The intra-SGSN Inter-System Suspend and Resume procedure is shown in the following illustration. In this case, the BSS sends a Suspend Request to the 2G part of the SGSN. The 2G SGSN will internally send the request to the 3G S4-SGSN where the PDPs are anchored. The PDP contexts are then suspended by 3G S4-SGSN as shown in the diagram.

The RAU is the Resume procedure after the 2G-3G Inter-System Intra-SGSN Suspend procedure is completed. The SGSN sends a Create Session Request / Modify Bearer Request / Resume Notification to the SGW which subsequently is sent to PGW to resume all data transmissions on non-GBR bearers.

Inter-SGSN Inter-System Suspend and Resume Procedure

The inter-SGSN inter-system Suspend and Resume procedure is shown in the following illustration. This describes the scenario when the suspend message is received in an SGSN that is different from the SGSN currently handling the packet data transmission and would be valid for at least the following cases:
• MS performs inter-system handover from Iu mode to A/Gb mode during CS connection and the SGSN handling the A/Gb mode cell is different from the SGSN handling the Iu mode cell, (that is. the 2G and 3G SGSNs are separated).

The RAU is the Resume procedure after the 2G-3G Inter-System Inter-SGSN Suspend procedure has completed. The SGSN sends a Create Session Request / Modify Bearer Request to the SGW which subsequently is sent to PGW to resume all data transmissions on non-GBR bearers.

• If there is no SGW change for the RAU request, then the 2G-SGSN sends a Modify bearer request to the SGW. The SGW then sends a MBR all the way up to the PGW if the RAT type / Serving network changes. Otherwise it will send the Resume Request to the PGW to resume all data transmissions.

• If there is a SGW change for the RAU request, then the 2G-SGSN sends a Create Session Request to the SGW and the SGW sends a Modify Bearer Request to the PGW to resume all data transmissions.
Standards Compliance

The Suspend/Resume feature on the S4-SGSN complies with the following standards:

- 3GPP TS 23.060 version 10.11.0 Release 10 - section 16.2.1; 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2 (Release 10)
• 3GPP TS 29.274 version 10.7.0 Release 10 - section 7.4; 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3 (Release 10)

• 3GPP TS 23.272 version 10.11.0 Release 10 - section 6.7 (No PS HO Support) 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Circuit Switched (CS) fallback in Evolved Packet System (EPS); Stage 2 (Release 10)
Configuring the S4-SGSN Suspend/Resume Feature

No configuration is required to enable the S4-SGSN Suspend/Resume Feature.
Monitoring and Troubleshooting the S4-SGSN Suspend/Resume Feature

This section provides information on the show commands and bulk statistics available to support the Suspend/Resume feature.

S4-SGSN Suspend and Resume Feature Show Commands

This section provides information regarding show commands available in support of the S4-SGSN Suspend/Resume feature.

show subscriber gprs-only full all

If the state field in the output of this command reads Suspended, it indicates that a subscriber has been moved from the Ready state to the Suspended state in 2G. Once this state change occurs, operators can use the show bssgp statistics and show egtpc statistics commands to view information on whether the Suspend procedure was successful or not.

Username: 123456789012345
Access Type: sgsn Network Type: IP
Access Tech: GPRS GERAN

callid: 00004e25 msid: 262090426000193

state: Suspended

connect time: Mon Jun 17 02:27:40 2013 call duration: 00h00m14s
idle time: 00h00m14s

User Location (RAI): 26209-4369-19 Cell Global Identity: 3
IMEI(SV): n/a

If the state field in the output of this command reads Ready, it indicates that a subscriber has moved from the Suspended state to the Ready state in 2G. For example:

Username: 123456789012345
Access Type: sgsn Network Type: IP
Access Tech: GPRS GERAN

callid: 00004e25 msid: 262090426000193

state: Ready

connect time: Mon Jun 17 02:27:40 2013 call duration: 00h00m14s
show subscriber sgsn-only full all

If the state field in the output of this command reads Idle, it indicates that a subscriber has moved from the Connected state to the Idle state in 3G. For example:

Username: 123456789012345
Access Type: sgsn
Access Tech: GPRS GERAN
callid: 00004e25
msid: 262090426000193

state: Ready

connect time: Mon Jun 17 02:24:05 2013
call duration: 00h00m23s
idle time: 00h00m12s
User Location (RAI): 26209-4660-18
Service Area Code: 1202
Serving PLMN: 26209
IMEI(SV): n/a

If the state field in the output of this command reads Idle, it indicates that a subscriber has moved from the Connected state to the Idle state in 3G. For example:

Username: 123456789012345
Access Type: sgsn
Access Tech: GPRS GERAN
callid: 00004e25
msid: 262090426000193

state: Connected

connect time: Mon Jun 17 02:24:05 2013
call duration: 00h00m23s
idle time: 00h00m12s
User Location (RAI): 26209-4660-18
Service Area Code: 1202
Serving PLMN: 26209
IMEI(SV): n/a
show bssgp statistics verbose

The output of this command tracks the number of BSSGP messages (BSS Suspend procedure) transmitted and received at the SGSN. It does not track the number messages between the BSS and the peer S4-SGSN or peer MME. The show egtpc statistics command is used to track EGTPC messages transmitted and received between the SGSN and a peer S4-SGSN or peer MME. Operators can check number of suspend ack messages received to identify successful suspend procedures. The number of suspend nack messages indicate unsuccessful suspend procedures.

<table>
<thead>
<tr>
<th>suspend messages received:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Sgn suspend message received:</td>
</tr>
<tr>
<td>Inter-Sgn suspend message received:</td>
</tr>
<tr>
<td>Inter-System suspend message received:</td>
</tr>
<tr>
<td>suspend ack messages transmitted:</td>
</tr>
<tr>
<td>Intra-Sgn suspend ack message transmitted:</td>
</tr>
<tr>
<td>Inter-Sgn suspend ack message transmitted:</td>
</tr>
<tr>
<td>Inter-System suspend ack message transmitted:</td>
</tr>
<tr>
<td>suspend nack messages transmitted:</td>
</tr>
<tr>
<td>Intra-Sgn suspend nack message transmitted:</td>
</tr>
<tr>
<td>Inter-Sgn suspend nack message transmitted:</td>
</tr>
<tr>
<td>Inter-System suspend nack message transmitted:</td>
</tr>
<tr>
<td>resume messages received:</td>
</tr>
<tr>
<td>resume ack messages transmitted:</td>
</tr>
<tr>
<td>resume nack messages transmitted:</td>
</tr>
</tbody>
</table>

show egtpc statistics

The output of this command tracks the number of Suspend EGTPC messages transmitted and received from or to a peer SGSN/ MME or SGW. The output also tracks the number of Resume EGTPC messages transmitted to SGW. Detailed descriptions of these counters are available in the ASR 5x00 Statistics and Counters Reference.
Table 30. show egtpc statistics Command Output for S4-SGSN Suspend/Resume Feature

<table>
<thead>
<tr>
<th>CS Fallback Messages:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend Notification:</td>
<td></td>
</tr>
<tr>
<td>Initial TX:</td>
<td>Initial RX:</td>
</tr>
<tr>
<td>Retrans TX</td>
<td>Discarded:</td>
</tr>
<tr>
<td>No Rsp RX:</td>
<td></td>
</tr>
<tr>
<td>Suspend Acknowledge:</td>
<td></td>
</tr>
<tr>
<td>Initial TX:</td>
<td>Initial RX:</td>
</tr>
<tr>
<td></td>
<td>Discarded:</td>
</tr>
</tbody>
</table>

Discarded:

Resume Notification

Initial TX:	Initial RX:
Retrans TX:	Discarded:
No Rsp RX:	
Resume Acknowledge:	
Initial TX:	Initial RX:
Discarded:	

show egtpc statistics verbose

The output of this command tracks the number of denied Suspend notification received and transmitted procedures.

- **Suspend Notification Denied TX** means Suspend notification was denied due to any of the errors listed in the table that follows.
- **Suspend Notification Denied RX** means a Suspend notification was received incorrectly from the peer S4-SGSN.

Detailed descriptions of these counters are available in the *ASR 5x00 Statistics and Counters Reference*.

Table 31. show egtpc statistics verbose Command Output for S4-SGSN Suspend/Resume Feature

<table>
<thead>
<tr>
<th>Suspend Notification Denied</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend Notification Denied TX</td>
<td>Suspend Notification Denied RX</td>
</tr>
<tr>
<td>Context not existent:</td>
<td>Context not existent:</td>
</tr>
<tr>
<td>Invalid message format:</td>
<td>Invalid message format:</td>
</tr>
<tr>
<td>Version not supported:</td>
<td>Version not supported:</td>
</tr>
<tr>
<td>Invalid length:</td>
<td>Invalid length:</td>
</tr>
<tr>
<td>Service not supported:</td>
<td>Service not supported:</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mandatory IE incorrect:</td>
<td>Mandatory IE incorrect:</td>
</tr>
<tr>
<td>Mandatory IE missing:</td>
<td>Mandatory IE missing:</td>
</tr>
<tr>
<td>System failure:</td>
<td>System failure:</td>
</tr>
<tr>
<td>No resources available:</td>
<td>No resources available:</td>
</tr>
<tr>
<td>Semantic error in TFT:</td>
<td>Semantic error in TFT:</td>
</tr>
<tr>
<td>Syntactic error in TFT:</td>
<td>Syntactic error in TFT:</td>
</tr>
<tr>
<td>Semantic error in Pkt Fltr:</td>
<td>Semantic error in Pkt Fltr:</td>
</tr>
<tr>
<td>Syntactic error in Pkt Fltr:</td>
<td>Syntactic error in Pkt Fltr:</td>
</tr>
<tr>
<td>Missing or unknown APN</td>
<td>Missing or unknown APN</td>
</tr>
<tr>
<td>GRE key not found:</td>
<td>GRE key not found:</td>
</tr>
<tr>
<td>Reallocation failure:</td>
<td>Reallocation failure:</td>
</tr>
<tr>
<td>Denied in RAT:</td>
<td>Denied in RAT:</td>
</tr>
<tr>
<td>Pref. PDN type unsupported:</td>
<td>Pref. PDN type unsupported:</td>
</tr>
<tr>
<td>All dynamic addr occupied:</td>
<td>All dynamic addr occupied:</td>
</tr>
<tr>
<td>UE ctx w/o TFT activated:</td>
<td>UE ctx w/o TFT activated:</td>
</tr>
<tr>
<td>Prot type not supported:</td>
<td>Prot type not supported:</td>
</tr>
<tr>
<td>UE not responding:</td>
<td>UE not responding:</td>
</tr>
<tr>
<td>UE refuses:</td>
<td>UE refuses:</td>
</tr>
<tr>
<td>Service denied:</td>
<td>Service denied:</td>
</tr>
<tr>
<td>Unable to page UE:</td>
<td>Unable to page UE:</td>
</tr>
<tr>
<td>No Memory:</td>
<td>No Memory:</td>
</tr>
<tr>
<td>User Auth Failed:</td>
<td>User Auth Failed:</td>
</tr>
<tr>
<td>Apn Access Denied:</td>
<td>Apn Access Denied:</td>
</tr>
<tr>
<td>Request Rejected:</td>
<td>Request Rejected:</td>
</tr>
<tr>
<td>Semantic error in TAD:</td>
<td>Semantic error in TAD:</td>
</tr>
<tr>
<td>Syntactic error in TAD:</td>
<td>Syntactic error in TAD:</td>
</tr>
<tr>
<td>Collision with Nw init Req:</td>
<td>Collision with Nw init Req:</td>
</tr>
<tr>
<td>UE page unable due to Susp:</td>
<td>UE page unable due to Susp:</td>
</tr>
<tr>
<td>Conditional IE missing:</td>
<td>Conditional IE missing:</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Apn Restr Type Incompatible:</td>
<td>Apn Restr Type Incompatible:</td>
</tr>
<tr>
<td>Invalid len Piggybacked msg:</td>
<td>Invalid len Piggybacked msg:</td>
</tr>
<tr>
<td>Invalid remote Peer reply:</td>
<td>Invalid remote Peer reply:</td>
</tr>
<tr>
<td>PTMSI signature mismatch:</td>
<td>PTMSI signature mismatch:</td>
</tr>
<tr>
<td>IMSI not Known:</td>
<td>IMSI not Known:</td>
</tr>
<tr>
<td>Peer not responding:</td>
<td>Peer not responding:</td>
</tr>
<tr>
<td>Data Fwding not supported:</td>
<td>Data Fwding not supported:</td>
</tr>
<tr>
<td>Fallback to GTPV1:</td>
<td>Fallback to GTPV1:</td>
</tr>
<tr>
<td>Invalid Peer:</td>
<td>Invalid Peer:</td>
</tr>
<tr>
<td>Temp Rej due to HO in prog:</td>
<td>Temp Rej due to HO in prog:</td>
</tr>
<tr>
<td>Unknown:</td>
<td>Unknown:</td>
</tr>
</tbody>
</table>

Resume Notification Denied

<table>
<thead>
<tr>
<th>Resume Notification Denied TX</th>
<th>Resume Notification Denied RX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context not existent:</td>
<td>Context not existent:</td>
</tr>
<tr>
<td>Invalid message format:</td>
<td>Invalid message format:</td>
</tr>
<tr>
<td>Version not supported:</td>
<td>Version not supported:</td>
</tr>
<tr>
<td>Invalid length:</td>
<td>Invalid length:</td>
</tr>
<tr>
<td>Service not supported:</td>
<td>Service not supported:</td>
</tr>
<tr>
<td>Mandatory IE incorrect:</td>
<td>Mandatory IE incorrect:</td>
</tr>
<tr>
<td>Mandatory IE missing:</td>
<td>Mandatory IE missing:</td>
</tr>
<tr>
<td>System failure:</td>
<td>System failure:</td>
</tr>
<tr>
<td>No resources available:</td>
<td>No resources available:</td>
</tr>
<tr>
<td>Semantic error in TFT:</td>
<td>Semantic error in TFT:</td>
</tr>
<tr>
<td>Syntactic error in TFT:</td>
<td>Syntactic error in TFT:</td>
</tr>
<tr>
<td>Semantic error in Pkt Fltr:</td>
<td>Semantic error in Pkt Fltr:</td>
</tr>
<tr>
<td>Syntactic error in Pkt Fltr:</td>
<td>Syntactic error in Pkt Fltr:</td>
</tr>
<tr>
<td>Missing or unknown APN</td>
<td>Missing or unknown APN</td>
</tr>
<tr>
<td>GRE key not found:</td>
<td>GRE key not found:</td>
</tr>
<tr>
<td>Realllocation failure:</td>
<td>Realllocation failure:</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Denied in RAT:</td>
<td>Denied in RAT:</td>
</tr>
<tr>
<td>Pref. PDN type unsupported:</td>
<td>Pref. PDN type unsupported:</td>
</tr>
<tr>
<td>All dynamic addr occupied:</td>
<td>All dynamic addr occupied:</td>
</tr>
<tr>
<td>UE ctx w/o TFT activated:</td>
<td>UE ctx w/o TFT activated:</td>
</tr>
<tr>
<td>Prot type not supported:</td>
<td>Prot type not supported:</td>
</tr>
<tr>
<td>UE not responding:</td>
<td>UE not responding:</td>
</tr>
<tr>
<td>UE refuses:</td>
<td>UE refuses:</td>
</tr>
<tr>
<td>Service denied:</td>
<td>Service denied:</td>
</tr>
<tr>
<td>Unable to page UE:</td>
<td>Unable to page UE:</td>
</tr>
<tr>
<td>No Memory:</td>
<td>No Memory:</td>
</tr>
<tr>
<td>User Auth Failed:</td>
<td>User Auth Failed:</td>
</tr>
<tr>
<td>Apn Access Denied:</td>
<td>Apn Access Denied:</td>
</tr>
<tr>
<td>Request Rejected:</td>
<td>Request Rejected:</td>
</tr>
<tr>
<td>Semantic error in TAD:</td>
<td>Semantic error in TAD:</td>
</tr>
<tr>
<td>Syntactic error in TAD:</td>
<td>Syntactic error in TAD:</td>
</tr>
<tr>
<td>Collision with Nw init Req:</td>
<td>Collision with Nw init Req:</td>
</tr>
<tr>
<td>UE page unable due to Susp:</td>
<td>UE page unable due to Susp:</td>
</tr>
<tr>
<td>Conditional IE missing:</td>
<td>Conditional IE missing:</td>
</tr>
<tr>
<td>Apn Restr Type Incompatible:</td>
<td>Apn Restr Type Incompatible:</td>
</tr>
<tr>
<td>Invalid len Piggybacked msg:</td>
<td>Invalid len Piggybacked msg:</td>
</tr>
<tr>
<td>Invalid remote Peer reply:</td>
<td>Invalid remote Peer reply:</td>
</tr>
<tr>
<td>PTMSI signature mismatch:</td>
<td>PTMSI signature mismatch:</td>
</tr>
<tr>
<td>IMSI not Known:</td>
<td>IMSI not Known:</td>
</tr>
<tr>
<td>Peer not responding:</td>
<td>Peer not responding:</td>
</tr>
<tr>
<td>Data Fwding not supported:</td>
<td>Data Fwding not supported:</td>
</tr>
<tr>
<td>Fallback to GTPV1:</td>
<td>Fallback to GTPV1:</td>
</tr>
<tr>
<td>Invalid Peer:</td>
<td>Invalid Peer:</td>
</tr>
<tr>
<td>Temp Rej due to HO in prog:</td>
<td>Temp Rej due to HO in prog:</td>
</tr>
</tbody>
</table>
show sgtpc statistics verbose

The output of this command tracks the number of SGSN Context Request transmitted and received message transmitted from the peer Gn-SGSN. It also tracks the number of SGSN Context Response messages transmitted and received from a peer Gn-SGSN.

Table 32. show sgtpc statistics Command Output for S4-SGSN Suspend/Resume Feature

<table>
<thead>
<tr>
<th>SGSN Context Request:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SGSN-Ctx-Req TX:</td>
<td>Total SGSN-Ctx-Req RX:</td>
</tr>
<tr>
<td>Initial SGSN-Ctx-Req TX:</td>
<td>Initial SGSN-Ctx-Req RX:</td>
</tr>
<tr>
<td>SGSN-Ctx-Req-TX(V1):</td>
<td>SGSN-Ctx-Req-RX(V1):</td>
</tr>
<tr>
<td>Suspend-Req-Hdr-TX:</td>
<td>Suspend-Req-Hdr-RX:</td>
</tr>
<tr>
<td>SGSN-Ctx-Req-TX(V0):</td>
<td>SGSN-Ctx-Req-RX(V0):</td>
</tr>
<tr>
<td>Retrans SGSN-Ctx-Req TX:</td>
<td>Retrans SGSN-Ctx-Req RX:</td>
</tr>
<tr>
<td>Ret-SGSN-Ctx-Req-TX(V1):</td>
<td>Ret-SGSN-Ctx-Req-RX(V1):</td>
</tr>
<tr>
<td>Ret-Suspend-Req-Header-TX:</td>
<td></td>
</tr>
<tr>
<td>Ret-SGSN-Ctx-Req-TX(V0):</td>
<td>Ret-SGSN-Ctx-Req-RX(V0):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SGSN Context Response:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SGSN-Ctx-Rsp TX:</td>
<td>Total SGSN-Ctx-Rsp RX:</td>
</tr>
<tr>
<td>Denied TX:</td>
<td>Denied RX:</td>
</tr>
<tr>
<td>Suspend-Rsp-Hdr-TX:</td>
<td>Suspend-Rsp-Hdr-Rx:</td>
</tr>
<tr>
<td>Accepted TX:</td>
<td>Accepted RX:</td>
</tr>
<tr>
<td>Initial SGSN-Ctx-Rsp TX:</td>
<td>Initial SGSN-Ctx-Rsp RX:</td>
</tr>
<tr>
<td>SGSN-Ctx-Rsp-TX(V1):</td>
<td>SGSN-Ctx-Rsp-RX(V1):</td>
</tr>
<tr>
<td>Suspend-Rsp-Hdr-TX:</td>
<td>Suspend-Rsp-Hdr-RX:</td>
</tr>
<tr>
<td>SGSN-Ctx-Rsp-TX(V0):</td>
<td>SGSN-Ctx-Rsp-RX(V0):</td>
</tr>
<tr>
<td>Retrans SGSN-Ctx-Rsp TX:</td>
<td>Retrans SGSN-Ctx-Rsp RX:</td>
</tr>
<tr>
<td>Ret-SGSN-Ctx-Rsp-TX(V1):</td>
<td>Ret-SGSN-Ctx-Rsp-RX(V1):</td>
</tr>
<tr>
<td>Ret-SGSN-Ctx-Rsp-TX(V0):</td>
<td>Ret-SGSN-Ctx-Rsp-RX(V0):</td>
</tr>
<tr>
<td></td>
<td>Decode Failure RX:</td>
</tr>
</tbody>
</table>
S4-SGSN Suspend and Resume Feature Bulk Statistics

The following statistics are included in various bulk statistics schema in support of the Suspend/Resume feature:

- **SGSN Schema**:
 - 2G-attach-fail-suspend-received
 - 2G-attach-fail-comb-suspend-received

For descriptions of these variables, see the *SGSN Schema Statistics* section in the *ASR 5x00 Statistics and Counters Reference*.

- **GPRS Schema**
 - bssgp-suspend-msg-rcvd
 - bssgp-suspend-ack-msg-sent
 - bssgp-suspend-nack-msg-sent
 - bssgp-resume-msg-rcvd
 - bssgp-resume-ack-msg-sent
 - bssgp-resume-nack-msg-sent

For descriptions of these variables, see *GPRS Schema Statistics* in the *ASR 5x00 Statistics and Counters Reference*.

- **EGTPC Schema**:
 - csfb-sent-suspendnotf
 - csfb-sent-retrans_suspendnotf
 - csfb-recv-suspendnotf
 - csfb-recv-suspendnotfDiscard
 - csfb-recv-suspendnotfnorisp
 - csfb-recv-retranssuspendnotf
 - csfb-sent-suspendack
 - csfb-sent-suspendackaccept
 - csfb-sent-suspendackdenied
 - csfb-recv-suspendack
 - csfb-recv-suspendackDiscard
 - csfb-recv-suspendackaccept
 - csfb-recv-suspenddenied
 - csfb-sent-resumenotf
 - csfb-sent-retransresumenotf
 - csfb-sent-resumeack
 - csfb-sent-resumeackaccept
 - csfb-sent-resumeackdenied
Monitoring and Troubleshooting the S4-SGSN Suspend/Resume Feature

- csfb-recv-resumeack
- csfb-recv-resumeackDiscard
- csfb-recv-resumeackaccept
- csfb-recv-resumedenied

For descriptions of these variables, see *EGTPC Schema Statistics* in the *ASR 5x00 Statistics and Counters Reference*.

- **SGTP Schema:**
 - sgtpc-sgsn-ctxt-req-v1-tx
 - sgtpc-sgsn-ctxt-req-v1-rx
 - sgtpc-sgsn-ctxt-req-accept-tx
 - sgtpc-sgsn-ctxt-req-accept-rx
 - sgtpc-sgsn-ctxt-req-accept-v1-tx
 - sgtpc-sgsn-ctxt-req-accept-v1-rx
 - sgtpc-sgsn-ctxt-req-denied-tx
 - sgtpc-sgsn-ctxt-req-denied-rx
 - sgtpc-sgsn-ctxt-ack-accept-tx
 - sgtpc-sgsn-ctxt-ack-accept-rx
 - sgtpc-sgsn-ctxt-ack-accept-v1-tx
 - sgtpc-sgsn-ctxt-ack-accept-v1_rx
 - sgtpc-sgsn-ctxt-ack-denied-tx

For descriptions of these variables, see *SGTP Schema Statistics* in the *ASR 5x00 Statistics and Counters Reference*.

Cisco ASR 5000 Serving GPRS Support Node Administration Guide
Chapter 19
SGSN Pooling

This chapter describes the SGSN Pooling feature and includes the following topics:

- Feature Description
- How it Works
- Configuring the SGSN Pooling feature
- Monitoring and Troubleshooting the SGSN Pooling feature
Feature Description

An SGSN pool is a collection of SGSNs configured to serve a common geographical area for a radio network. This common part is referred to as the SGSN pool service. SGSN Pooling is also referred to as Iu/Gb flex support based on if the access is 3G or GPRS respectively.

An SGSN pool provides a flexible and resource-efficient architecture with built-in network redundancy for the GPRS/UMTS packet core network. Each BSC/RNC has the ability to connect to all SGSNs in the pool. If any SGSN becomes unavailable, any terminal attached to that SGSN will be automatically re-routed to another SGSN in the pool by the BSC/RNC. This implies that the SGSN pool provides network level redundancy. SGSN failure is discovered by the BSCs/RNCs and the uplink traffic from the terminal is routed to another SGSN in the pool. The substituting SGSN orders the terminal to re-attach and re-activate any PDP contexts. Therefore service availability is maintained. Please note that all SGSNs in a pool are required to have the same capacity, feature sets and scalability and hence the same vendor, failing which might lead to varying subscriber experience across SGSNs.

In a pooled network, Inter-SGSN routing area updates (RAUs) are avoided and this provides a faster response time, compared to non-pooled networks. With SGSN pool for GPRS/UMTS, Inter-SGSN RAU is replaced by Intra-SGSN RAU, for terminals moving within the pool area. Intra-SGSN RAU provides reduced interruption time for data transfer, compared to Inter-SGSN RAU. Furthermore, due to the fewer Inter-SGSN RAUs, there is less signalling generated on the Gr interface.

When an UE connects to an SGSN in the pool, by Attach or Inter-SGSN RAU (ISRAU) procedures, the UE is allocated a Packet Temporary Mobile Subscriber Identity (P-TMSI) containing a Network Resource Identifier (NRI) identifying the SGSN. The BSC/RNC then identifies the SGSN from the NRI, and routes the user data to the correct SGSN. Load-sharing between the SGSN pool members is thus based on the NRI routing algorithm in the BSC/RNC. UEs that have not yet been assigned a P-TMSI, and MSs without matching NRI, are distributed among the pool members by the BSC/RNC according to the traffic distribution procedure. Once a UE has been allocated a P-TMSI, it stays connected to the same SGSN as long as it remains in the pool area. This period can be quite long, since MSs normally keep the P-TMSI even after power off.

A Basic Pool Structure

A basic SGSN pool structure is depicted in the diagram below:
Multiple SGSNs form a single logical entity called SGSN pool.

SGSN pools service areas larger than stand-alone SGSN service areas.

This set up is compatible with non-pool aware nodes and is transparent to the end-user.

Benefits of SGSN Pooling

1. **Increased Availability**: If one SGSN fails, another SGSN from the pool can substitute it. Any node can be taken out of a pool during maintenance.
2. **Increased Scalability**: More number of SGSN nodes can be added to the pool.
3. **Reduced Signalling**: Number of inter-SGSN routing area updates is reduced.

Pooling Requirements

Listed below are the requirements to support pooling:

1. The SGSN should support configuration of NRI and use that NRI in all the PTMSI issued.
2. If the SGSN is configured as a default SGSN, it should relay SGSN Context Request / Identification request received from peer SGSN (outside of pool) to SGSN (in pool) anchoring that subscriber anchoring SGSN in pool.
3. Support of non-broadcast RAI, null-NRI configurations to allow off-loading of self-SGSN and handle the off-loading of a peer SGSN.
How it Works

P-TMSI - NRI and Coding

Every SGSN is configured with one or several NRIs (O&M). One of these NRIs is part of every Packet temporary Mobile Subscriber identity (P-TMSI) which the SGSN assigns to an UE for connecting via pooled BSC/RNC. For non-pooled BSC/RNC SGSN sets all NRI bits to “0”. The P-TMSI allocation mechanism in the SGSN generates P-TMSIs which contain one of the configured NRIs in the relevant bit positions. A NRI has a flexible length up to “6” bits. The maximum number of SGSNs in a pool is limited to “63” (One NRI value reserved for NULL-NRI).

P TMSI is of length “32” bits, where the two top most bits are reserved and always set to “11”. The NRI field is included at the beginning of P TMSI starting at bit “23” and down up to bit “18”. The most significant bit of the NRI is located at bit “23” of the P TMSI regardless of the configured length of the NRI.

Once a subscriber attaches to a new SGSN, a new P-TMSI is allocated by the P-TMSI re-allocation procedure. That P-TMSI contains the NRI of the SGSN. This is also the case when an Inter-SGSN RA update or an Inter-System Change (IRAT) occurs.

Non-Broadcast LAC and RAC

The LAC and RAC information is made available by off-loading the SGSN to the UE in the GMM_ATTCH_ACCEPT/GMM_RAU_ACCEPT message along with the NULL-NRI in the P-TMSI. This value is different from the LAC and RAC that an UE receives from BSS/UTRAN as broadcast information. These parameters are set unique per SGSN node.

SGSN Address Resolution

The following kinds of SGSN address resolution can be identified:
1. Address resolution with NRI.
2. Address resolution without NRI.

Address Resolution with NRI

A NRI based look-up occurs in the following scenarios:
1. An Inter-SGSN RAU occurs within a pooled area. This could be due to one of the SGSNs offloading the subscribers or due to a Gb/ Iu link failure on one of the SGSNs.
2. An Inter-SGSN RAU occurs from a pooled to a non-pooled SGSN. The GTP_SGSN_CONTEXT_REQUEST is routed to the default SGSN in the pool. The default SGSN looks up for the Gn address of the member in the pool based on the NRI retrieved from the P-TMSI in the GTP_SGSN_CONTEXT_REQUEST message received. A local configuration of these entries has to be present in the SGSN Operator Policy.
3. When offloading is enabled, the nb-rai and null-nri of the SGSN which is being offloaded should be configured in the cc-profiles of other SGSN’s in the pool. Unless a entry is present, a periodic RAU will not be accepted in the other SGSN’s carrying that nb-rai and null-nri. A local configuration of these entries has to be present in the SGSN Operator Policy.
Address resolution without NRI
Address resolution without NRI is used for Inter-SGSN RAU between non-pooled areas or between multiple pools. In this case the SGSN context request is routes towards the default SGSN, which in turn relays the GTP message to the right SGSN based on the NRI value in the P-TMSI.

Refer to the configuration section for the procedure to “Configure an Operator Policy”.

Mobility Inside the Pool

The distribution of UEs in a pool is handled by the BSCs/RNCs.

1. The UE sends an Attach Request or a RA Update Request to a SGSN.
2. This request passes through the BSC/RNC.
3. The BSC/RNC uses the NRI to locate the SGSN.
4. Once the SGSN is located Gb/Iu connection is set up.

If the NRI from the UE is invalid or does not match any of the NRIs of the pool members, the request is directed to one of the pool members by the BSC/RNC. International Mobile Subscriber Identity (IMSI) attaches are also distributed among the SGSN pool members by the BSCs.

Once a P-TMSI containing the NRI of a pool member has been assigned to an UE, the UE stays attached to that pool member as long as it remains in that pool service area. The frequency of inter-SGSN RA updates decreases, as the UE can move over a greater geographical area for one SGSN.

Consider the scenario depicted in the diagram above:
1. A subscriber attached to SGSN-1 through RNC-1 moves under the coverage area of RNC-2, while being attached to SGSN-1. This results only in an Intra-SGSN RAU.

2. A subscriber attached to SGSN-1 through BSC-1 moves under the coverage area of BSC-2, while being attached to SGSN-1. This results only in an Intra-SGSN RAU.

Mobility Outside the Pool

When an UE leaves a pool service area and performs an Attach or a RA update to an SGSN outside the pool service area, the new SGSN cannot identify the old SGSN based on the old Routing Area Identity (RAI). Finding the address of the old SGSN is facilitated by a DNS query with RAI specified. First the new SGSN uses the RAI to identify the default SGSN in the pool. The new SGSN then fetches the subscriber data from the old SGSN and continues with the routing area update procedure.

![Mobility outside the pool diagram](image-url)

Consider the scenario depicted in the diagram above:

The subscriber movement can be traced through the numbers 1, 2, 3 and 4 in the diagram.

1. The SGSN-X is not pooled. The SGSN-X queries the DNS to identify the source SGSN from where the UE arrived to initiate a GTP_SGSN_CONTEXT_REQUEST.

2. The DNS responds back with the IP address of the default SGSN in the pool, which could be either SGSN-1 or SGSN-2 or both.

3. The address resolution is performed based on the LAC and RAC similar to other Inter-SGSN RAU.
4. The designated default SGSN relays the GTP message to the source SGSN in the pool, which is located using the NRI in the P-TMSI and hence the DNS query with NRI, LAC and RAC.

5. In the implementation above both SGSN-1 and SGSN-2 are designated as default SGSNs to load share the GTP signalling traffic.

6. For every LAC/RAC in the pooled areas the DNS resolves the query into two IP addresses pertaining to the Gn loopback addresses of SGSN-1 and SGSN-2 respectively.

MS Offloading

MS offloading is a procedure of offloading the subscribers from one SGSN in the pool to another SGSN within the same pool. Offloading is performed during the following scenarios:

1. The operator wants to carry out a scheduled maintenance.
2. The operator wants to perform a load re-distribution.
3. To avoid an overload.

Offloading has to be performed with minimum impact on the end users.

Types of MS Offloading:

1. Null-NRI based.
2. Target-NRI based.
3. IMSI based offloading

Null-NRI based Offloading

Null-NRI based offloading is carried out in the following three phases:

Phase - 1

1. UEs performing a RAU or Attach are moved to other SGSN in the pool.
2. When the SGSN receives the Routing Area Update or Attach request, it returns a new P-TMSI with the null-NRI, and non-broadcast LAC and RAC in the accept message.
3. A new Routing Area Update is triggered by setting the periodic routing area update timer to a sufficiently low value in the accept message.
4. The UE sends a new Routing Area Update, the BSC then routes this RAU to a new SGSN due to the presence of a null-NRI. The BSC uses a round robin mechanism to allocate an SGSN for this UE.

Phase - 2

1. All PDP context activation requests are rejected and the UEs are requested to detach and re-attach (Detach request sent from the network with cause code “reattach required”).
2. When the UEs re-attach, the SGSN moves them as described above in “Phase 1”, that is, by sending the null-NRI and non-broadcast LAC and RAC and triggering a periodic RAU update.

Phase - 3

This phase includes scanning through the remaining UEs and initiating a detach procedure for them. The UEs are requested to detach and re-attach, this results in the UEs moving as described in “Phase 1”.

UEs being moved from one SGSN can be stopped from registering to the same SGSN again by issuing a CLI command in BSCs connected to the pool. UEs moving into a pool area may also be stopped from registering into a SGSN being
off-loaded in the same manner. The move operation will not overload the network, as throttling is supported for both Attach and Inter SGSN RAU procedures.

Target-NRI based offloading

Target NRI based offloading was primarily introduced so that subscribers can be offloaded to a chosen SGSN. In the case of NULL-NRI based offloading there is no control on which SGSN the subscribers are offloaded to. SGSN offloads subscribers by assigning NB-RAI, stamping Target-NRI in PTMSI and reducing periodic routing area update timer during Attach/RAU accept messages.

IMSI-based offloading is carried in the following three phases:

IMSI based offloading

With Target-NRI based method of offloading though there is control on the SGSN to which the subscribers are offloaded, there is no control on the subscribers being offloaded to the SGSN. IMSI-based offloading enhancement allows the operator to choose the subscribers to be offloaded to a particular SGSN.

Phase -1

When a Attach accept or a RAU accept is issued, the offloading configuration is verified and if offloading is enabled, the corresponding NRI is issued (if it is not issued earlier). In case the specific IMSI based offloading configuration is configured, the configured target-nri is used. When offloading is enabled, if ptmsi allocation configuration is absent, a ptmsi is allocated to the subscriber in Attach/RAU accept.

Phase -2

On receiving an activation trigger from the MS, the subscriber is detached and the re-attach required is set to true. The MS will return an attach in due time, after which the MS is offloaded to another SGSN by setting the Target-NRI and NB-RAI appropriately.

Phase -3

The subscriber is cleared unconditionally and a detach is sent by setting the re-attach required to true. The subscriber is lost at this stage. In the next attach, the subscriber is offloaded to the configured SGSN.

For information on the procedure to configure MS-Offloading, refer to the section “Configuration of SGSN Pooling - Procedure to configure MS-Offloading”.

Iu/Gb Flex support over S16/S3 interface

SGSN Pooling support has been extended to S16/S3 interface. The enhancement also includes support for default SGSN functionality for $16/S3 interface as in the case of Gn interface. The peer SGSN in this case is a $4-SGSN. The incoming message (EGTP_CONTEXT_REQ/IDENTIFICATION_REQ) is received from a non-pooled SGSN, it is forwarded to the old-SGSN if the SGSN is configured as default SGSN. The SGSN in a pool is identified on the basis on NRI value and OLD- RAI value. The NRI value is extracted from PTMSI.

Backward compatibility and default SGSN functionality

If a default SGSN that is serving a pool-area receives EGTP signaling it resolves the ambiguity of the multiple SGSNs per RAI by deriving the NRI from the P-TMSI. The SGSN relays the EGTP signaling to the old SGSN identified by the NRI in the old P-TMSI unless the default SGSN itself is the old SGSN. For default-SGSN functionality to work, static IP address entries are mandatory in the call-control profile.

Messages are relayed by the Default-SGSN (Default SGSN functionality and pooling are enabled) in following cases:

- Pooled local RAI and non-local NRI
- Non-local RAI and Null-NRI
• Non-local RAI and Target-NRI

For “Non-local RAI and Null-NRI” and “Non-local RAI and Target-NRI” options, the NB-RAI of other SGSN is considered. It is non-local to the SGSN. No other configuration entries are present at the SGSN other than cc-profile entries.

Mobility Management

The MS performs RA Updates and Attachments, which result in a change of the serving SGSN. In these procedures the new SGSN requests MS specific parameters from the old SGSN. The default SGSN node uses the old RA together with the NRI to derive the signalling address of the old SGSN from its configuration data.

Address and TEID for the Control Plane

• The relaying SGSN forwards the Context Request message to the interface of the old SGSN. The incoming request can arrive over a S3 interface in case of MME or S3 in case of S4-SGSN. However the old RAI interface will be always S16.

• When the default-sgsn relays the message, if the UDP port number is absent in the request received, the default-sgsn adds the “UDP source port number” IE while relaying. This is applicable for both Context Request and Identification Request relay functionality.

• If in an Identification request message, “Address for control plane” is an optional IE. A SGSN within the same SGSN pool with the old SGSN receives the Identification request message it includes the old IP address of the received message in this optional parameter if this IE is not present and relays the message to the old SGSN.

• In cases where default-sgsn has to send a negative response, it sends the message to the IP as indicated in the “S3/S16 Address and TEID for Control Plane” IE and destination port set as indicated by “UDP source port number” IE.

• If an SGSN within the same SGSN pool with the old SGSN receives this message, the SGSN decrements the Hop Counter if this IE is present in the received message. Otherwise, the SGSN includes a Hop Counter with a configured value and relays the message to the old SGSN. This is applicable for both Context Request and Identification Request relay functionality.

For more information refer to 3GPP TS 29.274 (Table 7.3.5-1: Information Elements in a Context Request, Table 7.3.8-1: Information Elements in an Identification Request).

For information on procedure to configure Iu/Gb flex on S16/S3 interface refer to the section “Configuration of SGSN Pooling - Procedure to configure default SGSN (S16/S3 interface)”.

Standards Compliance

The SGSN Pooling feature complies with the following standards:

• 3GPP TS 23.236
• 3GPP TS 29.274
Configuring the SGSN Pooling feature

2G-SGSN pool configuration

Listed below are the pre-requisite CLI configurations that should be enabled to configure a 2G SGSN Pool:

1. 2G SGSN Pooling configuration is done under the GPRS service in the Gb context.
2. The NRI value, NRI length, Null-NRI value and non-broadcast LAC/RAC are configured for the GPRS service.
3. The GPRS service is capable of handling both pooled and non-pooled BSCs.

GPRS Service Configuration:

```
config
  context <context_name>
  gprs-service <service_name>
    peer-nsei <nse_id> pooled
      nri length nri_length { nri-value nri_value | null-nri-value null_nri_value non
      broadcast-lac lac_id rac rac_id [ nri-value value ]}
  exit
```

Notes:
- The above configuration must be repeated each time a BSC is added.
- The command `peer-nsei` is used to render a BSC as pooled or non-pooled.

3G-SGSN pool configuration

Listed below are the pre-requisite CLI configurations that should be enabled to configure a 3G SGSN pool:

1. 3G SGSN pooling configuration is done under the IuPS service in the Iu context.
2. The NRI value, NRI length, Null-NRI value and non-broadcast LAC/RAC are configured for the SGSN service.
3. The IuPS service is capable of handling both pooled and non-pooled RNCs.

IuPS Service Configuration

```
config
  context <context_name>
  iups-service <service_name>
    rnc id <rnc_id>
      pooled
```
exit

SGSN Service Configuration

config

 context <context_name>
 sgsn-service <service_name>
 nri length nri_length [nri-value nri_value | null-nri-value null_nri_value non-broadcast mcc mcc mnc mnc lac lac_id rac rac_id nri-value value] default nrino nri

To Configure a Default SGSN

This procedure is common to both 2G and 3G SGSN pooling configurations. The SGSN can be configured as a “default SGSN” in the pool under the SGTP service in the Gn context. This configuration is to be performed only once to render a SGSN as a “default SGSN”.

config

 context <context_name>
 sgtp-service <service_name>
 pool {default-sgsn | hop-counter count}

exit

Procedure to Configure a Default SGSN (S16/S3 interface)

The following CLI command under the eGTP Service Configuration mode is used to configure the default SGSN:

config

 context <context_name>
 egtp-service <service_name>
 pool {default-sgsn | hop-counter count}

exit

The default SGSN receives inbound SGSN context request messages and forwards it to the correct SGSN in the pool based on the NRI bits of the P-TMSI. If the incoming message EGTP_CONTEXT_REQ/IDENTIFICATION_REQ has the hop count IE, the default SGSN decrements the count by one and forwards it to the Old-SGSN. The hop count is not over written even if it is configured. If the hop count IE is missing with incoming message then the then hop count configured gets populated. If no value is configured the default value is chosen. The hop Counter prevents endless relaying of context/identification request. Each relaying SGSN keeps decrementing the hop-counter value if received from the peer-sgsn, otherwise the SGSN includes hop-counter IE. If default-sgsn receives request having hop counter “0”, it does not relay the request.

Procedure to Configure an Operator Policy

Step 1:
config

 operator-policy (default | name policy_name) [-noconfirm]

Step 2:

config

 call-control profile profile_name

 sgsn-address { nri nri | rac rac_id lac lac_id | rnc_id rnc_id } [nri nri] prefer
 { fallback-for-dns | local } address { ipv4 ip_address | ipv6 ip_address } interface { gn
 | s16 }

Procedure to Configure MS Offloading

The SGSN \texttt{offload} command is used to configure the MS offloading procedure.

The following CLI command (for phase 1 and phase 2 of offloading) is issued for each GPRS/SGSN service:

\texttt{sgsn offload \{ gprs-service service_name | sgsn-service service_name \} \{ activating \} \{ imsi imsi | nri-value nri_value | stop \{ imsi imsi | nri-value nri_value \} \} \} \{ connecting \} \{ nri-value nri_value | stop \{ imsi imsi | nri-value nri_value | target-nri target_nri \} \} \} \{ t3312-timeout seconds \{ nri-value nri_value | target-nri target_nri \} \} \} \{ target-nri target_nri \{ imsi imsi | target-count num_to_offload \} \}

Consider and SGSN node which was offloaded due to a maintenance requirement, once this SGSN is again operational it will not recover the subscribers attached before the maintenance occurred. In due course this SGSN will be leveraged, with subscribers moved from (partial offload) two or three most loaded SGSNs.
Monitoring and Troubleshooting the SGSN Pooling feature

SGSN Pooling Show Command(s) and/or Outputs

This section provides information regarding show commands and their outputs in support of the SGSN Pooling:

- `show subscribers sgsn-only/gprs-only full all`
- `show sgsn-pool statistics sgsn-service`
- `show sgsn-pool statistics gprs-service`
Chapter 20
SGSN Serving Radio Network Subsystem Relocation

This chapter describes the SGSN Serving Radio Network Subsystem Relocation (SRNS) feature, and provides detailed information on the following:

- Feature Description
- How it Works
- Configuring SRNS Relocation on the SGSN
- Monitoring and Troubleshooting SRNS Relocation
Feature Description

The SRNS relocation feature facilitates connected mode inter-RAT handovers between UTRAN (3G) networks or between UTRAN and EUTRAN (LTE) networks. The advantage of this feature is that the radio bearer establishment occurs before the actual handover at the target.

The Gn/Gp SGSN and S4-SGSN support inter- and intra-SGSN SRNS relocation to enable:

- Handovers of an MS from one RNC to another RNC
- Handovers of an MS from one RNC to an eNodeB

The S4-SGSN supports the optional setup of indirect data forwarding tunnels (IDFT) between the eNodeB and the RNC via the SGW during connected mode handovers. This allows the S4-SGSN to support connected mode handovers between the UTRAN and E-UTRAN networks across the S3 interface. IDFT is not supported on the SGSN across the Gn interface.

The SRNS Relocation feature is included with the base SGSN license. It does not require an additional feature license.

Relationships to Other Features

This section describes how the SRNS Relocation feature relates to other SGSN features.

- For an SGSN operating via the Gn/Gp interfaces, a 3G service (sgsn-service) must be configured and enabled before SRNS Relocation can be configured.
- For an S4-SGSN, both a 3G service (sgsn-service) and S4-SGSN support (egtp-service) must be configured before SRNS Relocation can be configured.
- If operators are using non-standard LAC ranges, then a network-global-mme-id-mgmt-db must be configured and associated with the sgsn-service.

For detailed instructions on configuring the above, refer to theCisco ASR 5000 Serving GPRS Support Node Administration Guide.
How it Works

SRNS Relocation on the SGSN (Gn/Gp)

On the Gn/Gp SGSN, the SRNS relocation feature is triggered by subscribers (MS/UE) moving from one RNS to another. If the originating RNS and destination RNS are connected to the same SGSN but are in different routing areas, the behavior triggers an intra-SGSN Routing Area Update (RAU). If the RNSs are connected to different SGSNs, the relocation is followed by an inter-SGSN RAU.

The following table describes the interface selection logic for the various types of SRNS relocation that can occur when the interface used for a subscriber is Gn for PDP contexts. Note that the Gn/Gp SGSN SRNS relocation selection logic is applicable in the following instances:

- An S4-SGSN is configured (both the S4 license and EGTP service are available), but a given subscriber uses the Gn interface for PDP contexts.
- Only the Gn/Gp interfaces are utilized on the SGSN. S4 support is not configured.

Table 33. Interface Selection Logic for SRNS Relocation on the SGSN Gn/Gp

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>RNC Release Compliance</th>
<th>Target Type Sent in Rel. Req.</th>
<th>LAC Configured as MME Group ID?</th>
<th>LAC MSB Set?</th>
<th>Peer Type?</th>
<th>DNS Query Type?</th>
<th>Interface IP Provided by DNS?</th>
<th>Interface Chosen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R8+</td>
<td>eNodeB</td>
<td>Not Applicable</td>
<td>Irrelevant</td>
<td>MME</td>
<td>When the Gn interface is used, the system maps the eNB ID to the RNC ID as follows: The MSB 12 bits of the 20 bit eNB ID is mapped to RNC ID. DSN A query with RNC ID FQDN is sent and Gn address is selected.</td>
<td>Gn</td>
<td>Gn</td>
</tr>
<tr>
<td>2</td>
<td>R8+</td>
<td>RNC</td>
<td>Not Applicable</td>
<td>Irrelevant</td>
<td>SGSN</td>
<td>DNS A Query with RNC ID FQDN</td>
<td>Gn</td>
<td>Gn</td>
</tr>
<tr>
<td>3</td>
<td>Pre R8</td>
<td>RNC</td>
<td>Irrelevant</td>
<td>Irrelevant</td>
<td>It is not important to a Gn SGSN if the peer is an MME or an SGSN. For a Gn SGSN, a peer MME is treated just like an SGSN</td>
<td>DNS A Query with RNC ID FQDN</td>
<td>Gn</td>
<td>Gn</td>
</tr>
</tbody>
</table>
SGSN (Gn/Gp) SRNS Relocation Call Flow Diagrams

This section provides call flow diagrams and process descriptions for the following SGSN Gn/Gp SRNS Relocation scenarios:

- Inter-SGSN (Gn/Gp) SRNS Relocation Call Flow
- Intra-SGSN (Gn/Gp) SRNS Relocation Call Flow

The Inter-SGSN (Gn/Gp) SRNS Relocation procedure is illustrated in the following diagram.
Figure 77. Inter-SGSN Gn/Gp SRNS Relocation Call Flow

Table 34. Inter-SGSN (Gn/Gp) SRNS Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>

Cisco ASR 5000 Serving GPRS Support Node Administration Guide
How it Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The source SRNC decides to perform/initiate SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to target RNC transparent container) to the old SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The old SGSN determines from the Target ID that an inter-SGSN SRNS relocation is required. A DNS A query is performed for the target RNC ID FQDN to obtain the target SGSN IP address. The old SGSN then sends a Forward Relocation Request to the new SGSN.</td>
</tr>
<tr>
<td>4</td>
<td>The new SGSN sends a Relocation Request message to the new RNC. At this point, radio access bearers have been established.</td>
</tr>
<tr>
<td>5</td>
<td>The new RNC sends a Relocation Request Response message to the new SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>When resources for the transmission of user data between the new RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and RAB Setup Information) is sent from the new SGSN to the old SGSN.</td>
</tr>
<tr>
<td>7</td>
<td>The old SGSN continues the relocation of SRNS by sending a Relocation Command message to the old RNC. The old SGSN sends the RAB setup information received in the Forward Relocation Response in a Relocation Command to the old RNC. This enables the old RNC to establish a data path with new RNC so that it can forward the data packets.</td>
</tr>
<tr>
<td>8</td>
<td>The old SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding.</td>
</tr>
<tr>
<td>9</td>
<td>Before sending the Relocation Commit the uplink and downlink data transfer in the source, the SRNC shall be suspended for RABs, which require a delivery order. The source RNC starts the data-forwarding timer. When the old SRNC is ready, the old SRNC triggers the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the new RNC over the Iur interface.</td>
</tr>
<tr>
<td>10</td>
<td>The target RNC sends a Relocation Detect message to the new SGSN when the relocation execution trigger is received.</td>
</tr>
<tr>
<td>11</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>12</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>The old SGSN sends a Forward Relocation Complete message.</td>
</tr>
<tr>
<td>14</td>
<td>The old SGSN sends a Forward Relocation Acknowledgement to the new SGSN, to signal to the new SGSN the completion of the SRNS relocation procedure.</td>
</tr>
<tr>
<td>15</td>
<td>Upon receipt of the Relocation Complete message, the CN switches the user plane from the old RNC to the new SRNC. The new SGSN sends Update PDP Context Request messages to the GGSN.</td>
</tr>
<tr>
<td>16</td>
<td>The GGSN sends Update PDP Context Response messages to the new SGSN.</td>
</tr>
<tr>
<td>17</td>
<td>The old SGSN sends an Iu Release Command message to the old RNC.</td>
</tr>
<tr>
<td>18</td>
<td>The old RNC sends an Iu Release Complete message to the old SGSN.</td>
</tr>
<tr>
<td>19</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>

The intra-SGSN Gn/Gp SRNS Relocation procedure is illustrated in the following figure.
Figure 78. Intra-SGSN Gn/Gp SRNS Relocation Call Flow

Table 35. Intra-SGSN (Gn/Gp) SRNS Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The source SRNC decides to perform/initiate SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The old RNC sends a Relocation Required message to the SGSN.</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN sends a Relocation Request message to the new RNC. At this point, radio access bearers have been established.</td>
</tr>
<tr>
<td>4</td>
<td>The new RNC sends a Relocation Request Acknowledgement message to the SGSN.</td>
</tr>
<tr>
<td>5</td>
<td>The SGSN sends a Relocation Command to the old RNC and the UE is detached from the old RNC and attached to the new RNC.</td>
</tr>
<tr>
<td>6</td>
<td>The old SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding.</td>
</tr>
<tr>
<td>7</td>
<td>Before sending the Relocation Commit the uplink and downlink data transfer in the source, the SRNC shall be suspended for RABs, which require a delivery order. The source RNC starts the data-forwarding timer. When the old SRNC is ready, the old SRNC triggers the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the new RNC over the Iur interface.</td>
</tr>
<tr>
<td>8</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>9</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>10</td>
<td>The new RNC sends a Relocation Detect message to the SGSN.</td>
</tr>
<tr>
<td>11</td>
<td>The SGSN sends a Relocation Complete message to the new RNC.</td>
</tr>
<tr>
<td>12</td>
<td>If Direct Tunnel was established during intra-SGSN SRNS relocation, the SGSN sends Update PDP Context Request messages to the GGSN.</td>
</tr>
<tr>
<td>13</td>
<td>If Direct Tunnel was established during intra-SGSN SRNS relocation, the SGSN sends Update PDP Context Response messages to the GGSN.</td>
</tr>
<tr>
<td>14</td>
<td>The SGSN sends an Iu Release Command to the old RNC.</td>
</tr>
<tr>
<td>15</td>
<td>The old RNC releases the Iu connection and sends a Release Complete message to the SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>

SRNS Relocation on the S4-SGSN

On the S4-SGSN, the SRNS relocation feature is triggered by subscribers (MS/UE) moving between an eNodeB and an RNC or between two RNCs.

If the originating and destination nodes are connected to the same S4-SGSN but are in different routing areas, the behavior triggers an intra-SGSN Routing Area Update (RAU).

If the nodes are connected to different S4-SGSNs, the relocation is followed by an inter-SGSN RAU. This RAU occurs over a RANAP direct transfer. As a result, it does not trigger Context Request/Context Response/Context Ack procedures with the old SGSN/MME. These procedures are otherwise performed during a normal SGSN RAU.

The GTPv2 protocol is used for SRNS relocation between two RNCs and between an eNodeB and an RNC.

In addition to supporting Inter-SGSN SRNS relocation across the Gn interface, the S4-SGSN supports SRNS relocation for the following scenarios across the S3 (S4-SGSN to MME) and S16 (S4-SGSN to S4-SGSN) interfaces:
- Inter-SGSN SRNS relocation over the S16 interface
- UTRAN-to-E-UTRAN connected mode Inter-RAT handover over the S3 interface
- E-UTRAN-to-UTRAN connected mode Inter-RAT handover over the S3 interface

As part of the SRNS relocation feature implementation on the S4-SGSN, the SGSN application also supports the gtpv2 (egtp) protocol for:

- Inter-SGSN SRNS relocations over the S16 interface
- MME - SGSN SRNS relocations over the S3 interface

S4-SGSN SRNS relocation interface selection logic is based on the following assumptions:

- If the egtp-service is configured, it is assumed the network is EPC capable and therefore must require a DNS SNAPTR.
- If the egtp-service is configured on the S4-SGSN, then for outbound SRNS relocation, the system always performs a DNS SNAPTR as follows:
 - x-S16 if the peer detected is another S4-GSN, or x-S3 if the peer detected is an MME (based on whether the target is an eNodeB/the MSB of the target LAC being 1, or, if a local MME group ID is configured).
 - x-gn if a local configuration for a peer SGSN or MME exists with a Gn address, or, if DNS SNAPTR returned a GN address.

If both DNS queries fail, the system rejects the SRNS relocation.

The following table describes the interface selection logic for the various types of SRNS relocation that can occur when the interface used for a subscriber is S4 for PDP contexts.

Table 36. Interface Selection Logic for S4-SGSN SRNS Relocation

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>RNC Release Compliance</th>
<th>Target Type Sent in Relocation Request</th>
<th>LAC Configured as MME Group ID?</th>
<th>LAC MSB Set?</th>
<th>Peer Type?</th>
<th>Type of DNS Query?</th>
<th>Interface IP Provided by DNS?</th>
<th>Interface Chosen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R8+</td>
<td>eNodeB</td>
<td>n/a</td>
<td>n/a</td>
<td>MME</td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and TAC FQDN</td>
<td>S3</td>
<td>S3</td>
</tr>
<tr>
<td>SI.No</td>
<td>RNC Release Compliance</td>
<td>Target Type Sent in Relocation Request</td>
<td>LAC Configured as MME Group ID?</td>
<td>LAC MSB Set?</td>
<td>Peer Type?</td>
<td>Type of DNS Query?</td>
<td>Interface IP Provided by DNS?</td>
<td>Interface Chosen?</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
<td>R8+</td>
<td>eNodeB</td>
<td>n/a</td>
<td>n/a</td>
<td>MME</td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and TAC FQDN</td>
<td>Gn</td>
<td>S3</td>
</tr>
<tr>
<td>3</td>
<td>R8+</td>
<td>RNC</td>
<td>n/a</td>
<td>n/a</td>
<td>SGSN</td>
<td>DNS SNAPTR w/ service type x-3gpp-sgsn:x-s16 and RNC ID FQDN</td>
<td>S16</td>
<td>S16</td>
</tr>
<tr>
<td>4</td>
<td>R8+</td>
<td>RNC</td>
<td>n/a</td>
<td>n/a</td>
<td>SGSN</td>
<td>DNS SNAPTR w/ service type x-3gpp-sgsn:x-s16 and RNC ID FQDN</td>
<td>Gn</td>
<td>Gn</td>
</tr>
<tr>
<td>5</td>
<td>Pre R8</td>
<td>RNC (A pre R8 RNC cannot send eNB as the target type. Currently, operators configure eNB ID to RNC ID mapping in such these pre R8 RNCs so that the SGSN receives an RNC ID that is actually mapped from the eNB ID)</td>
<td>Yes</td>
<td>Irrelevant</td>
<td>MME</td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and MME GI + MME Code FQDN</td>
<td>S3</td>
<td>S3</td>
</tr>
<tr>
<td>Sl.No</td>
<td>RNC Release Compliance</td>
<td>Target Type Sent in Relocation Request</td>
<td>LAC Configured as MME Group ID?</td>
<td>LAC MSB Set?</td>
<td>Peer Type?</td>
<td>Type of DNS Query?</td>
<td>Interface IP Provided by DNS?</td>
<td>Interface Chosen?</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>6</td>
<td>Pre R8</td>
<td>RNC</td>
<td>Yes</td>
<td></td>
<td>Irrelevant</td>
<td>MME</td>
<td>Gn</td>
<td>Gn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and MME GI + MME Code FQDN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pre R8</td>
<td>RNC</td>
<td>No</td>
<td>Yes</td>
<td>MME</td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and MME GI + MME Code FQDN</td>
<td>S3</td>
<td>S3</td>
</tr>
<tr>
<td>8</td>
<td>Pre R8</td>
<td>RNC</td>
<td>No</td>
<td>Yes</td>
<td>MME</td>
<td>DNS SNAPTR w/ service type x-3gpp-mme:x-s3 and MME GI + MME Code FQDN</td>
<td>Gn</td>
<td>Gn</td>
</tr>
<tr>
<td>9</td>
<td>Pre R8</td>
<td>RNC</td>
<td>No</td>
<td>No</td>
<td>SGSN</td>
<td>DNS SNAPTR w/ service type x-3gpp-sgsn:x-s16 and RNC ID FQDN</td>
<td>S16</td>
<td>S16</td>
</tr>
<tr>
<td>10</td>
<td>Pre R8</td>
<td>RNC</td>
<td>No</td>
<td>No</td>
<td>SGSN</td>
<td>DNS SNAPTR w/ service type x-3gpp-sgsn:x-s16 and RNC ID FQDN</td>
<td>Gn</td>
<td>Gn</td>
</tr>
</tbody>
</table>
IDFT Support During Connected Mode Handovers

The S4-SGSN supports the setup of indirect data forwarding tunnels (IDFT) between the eNodeB and the RNC via the SGW during connected mode handovers.

Once enabled, IDFT is employed under the following conditions:

- **If the SGSN is the old node:**
 - The target node to which the connected mode handover is initiated should be an eNodeB (i.e., the SGSN performs the handover to the MME).
 - The `enb-direct-data-forward` CLI setting is **not** configured as the source RNC configuration (in RNC Configuration Mode).

- **If the SGSN is the new node:**
 - The source node from which connected mode handover is initiated is an eNodeB (i.e., the MME is performing a handover to the SGSN).
 - The `enb-direct-data-forward` setting is **not** configured in the source RNC configuration (in RNC Configuration Mode).
 - The source MME indicated that it does not support direct forwarding via a Forward Relocation Request.

Important: If the target SGSN did **not** relocate to a new SGW, IDFT setup does not apply at the SGSN. The target SGSN sets up an indirect data forwarding tunnel with the SGW only if the SGW is relocated. If the SGW is not relocated, then it is the source MME that sets up the indirect data forwarding tunnel between source the eNodeB and target RNC through the SGW.

The following diagram illustrates the interface selection logic for S4-SGSN connected mode handovers.
Figure 79. Interface Selection Logic for S4-SGSN SRNS Connected Mode Handovers

Is EGTP Service Available?

No

Is Local Address Available?

Yes

Select S16/S3 interface (if op policy forces S16/S3 selection)?

No

Perform SNAPTR Query x-3gpp-sgsn:x=s16 or x-3gpp-mme:x=s3 (based on target being one of):
- RNC / eNB
- MSB bit of target LAC
- Configurable local MME group ID mapping

Yes

Is Local Address Available?

No

Yes

DNS Response Successful?

Use S16/S3 Interface

No

Perform SNAPTR Query x-3gpp-sgsn:x=g-n or x-3gpp-mme:x=g-n

Yes

Use SGTP Service Using the Gn Address Obtained (No A Query)

DNS Response Successful?

Reject SRNS Relocation
S4-SGSN SRNS Relocation Call Flow Diagrams

This section provides call flow diagrams for the following S4-SGSN SRNS relocation scenarios:

- Inter-S4-SGSN SRNS Relocation without SGW Relocation
- Inter-S4-SGSN Relocation with SGW Relocation
- Intra-S4-SGSN SRNS Relocation without SGW Relocation
- Inter-S4-SGSN Relocation with SGW Relocation
- S4-SGSN E-UTRAN to UTRAN Connected Mode Handover without SGW Relocation
- S4-SGSN UTRAN to E-UTRAN Connected Mode Handover with SGW Relocation Call Flow
- S4-SGSN Inter-SGSN SRNS Relocation with Hard Handover and SGW Relocation
Table 37. Inter-S4-SGSN SRNS Relocation without SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision is made to perform SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The old RNC sends a Relocation Required message to the old SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The old SGSN sends a Forward Relocation Request to the new SGSN.</td>
</tr>
<tr>
<td>4</td>
<td>The new SGSN performs SGW selection, but does not select a new SGW, as the subscriber is anchored at the same SGW as it was previously.</td>
</tr>
<tr>
<td>5</td>
<td>The new SGSN sends a Relocation Request message to the new RNC. At this point, Radio Access Bearers are established.</td>
</tr>
<tr>
<td>6</td>
<td>The new RNC sends a Relocation Request Acknowledgement to the new SGSN.</td>
</tr>
<tr>
<td>7</td>
<td>The new SGSN sends a Forward Relocation Response to the old SGSN. In this message, the old SGSN sends the RAB context information of the new RNC, which was obtained from the Relocation Request Ack message.</td>
</tr>
<tr>
<td>8</td>
<td>The old SGSN sends a Relocation Command to the old RNC. The old SGSN sends the new RNC RAB context information to the old RNC in the Relocation Command message so that old RNC can forward packets to the new RNC.</td>
</tr>
<tr>
<td>9</td>
<td>The old SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding.</td>
</tr>
<tr>
<td>10</td>
<td>Before sending the Relocation Commit the uplink and downlink data transfer in the source, the SRNC shall be suspended for RABs, which require a delivery order. The source RNC starts the data-forwarding timer. When the old SRNC is ready, the old SRNC triggers the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the new RNC over the Iur interface.</td>
</tr>
<tr>
<td>11</td>
<td>The new RNC sends a Relocation Detect message to the new SGSN.</td>
</tr>
<tr>
<td>12</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>13</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>The new RNC sends a Relocation Complete message to the new SGSN.</td>
</tr>
<tr>
<td>15</td>
<td>The new SGSN sends a Forward Relocation Notification Complete message to the old SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>The new SGSN sends a Forward Relocation Complete Ack message to the old SGSN.</td>
</tr>
<tr>
<td>17</td>
<td>The new SGSN sends a Modify Bearer Request to the SGW.</td>
</tr>
<tr>
<td>18</td>
<td>The SGW sends a Modify Bearer Response to the new SGSN.</td>
</tr>
<tr>
<td>19</td>
<td>The old SGSN sends an Iu Release Command message to the old RNC.</td>
</tr>
<tr>
<td>20</td>
<td>The old RNC sends an Iu Release Complete message to the old SGSN.</td>
</tr>
<tr>
<td>21</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>
Figure 81. Inter-S4-SGSN Relocation with SGW Relocation
Table 38. Inter-S4-SGSN Relocation with SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision is made to perform SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The old RNC informs the old SGSN that relocation is required by sending a Relocation Required message.</td>
</tr>
<tr>
<td>3</td>
<td>The old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message to the new SGSN.</td>
</tr>
<tr>
<td>4</td>
<td>The new SGSN performs SGW selection.</td>
</tr>
<tr>
<td>5</td>
<td>The new SGSN sends a Create Session Request to the new SGW with Indication Flags - Operations Indication bit = 0. The new SGW will not send a Modify Bearer Request to the PGW at this time.</td>
</tr>
<tr>
<td>6</td>
<td>The new SGW sends a Create Session Response to the new SGSN.</td>
</tr>
<tr>
<td>7</td>
<td>The new SGSN sends a Relocation Request to the new RNC. At this point radio access bearers are set up between the new RNC and the new SGSN.</td>
</tr>
<tr>
<td>8</td>
<td>The new RNC sends a Relocation Request Acknowledge message to the new SGSN.</td>
</tr>
<tr>
<td>9</td>
<td>The new SGSN sends a Forward Relocation Response message to the old SGSN. In this message, the old SGSN sends the RAB context information of the new RNC, which was obtained from Relocation Request Acknowledge message.</td>
</tr>
<tr>
<td>10</td>
<td>The old SGSN sends a Relocation Command to the old RNC. The old SGSN sends the new RNC RAB context information to the old RNC in the Relocation Command so that the old RNC can forward packets to the new RNC.</td>
</tr>
<tr>
<td>11</td>
<td>The old SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding.</td>
</tr>
<tr>
<td>12</td>
<td>Before sending the Relocation Commit the uplink and downlink data transfer in the source, the SRNC shall be suspended for RABs, which require a delivery order. The source RNC starts the data-forwarding timer. When the old SRNC is ready, the old SRNC triggers the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the new RNC over the Iur interface.</td>
</tr>
<tr>
<td>13</td>
<td>The new RNC sends a Relocation Detect message to the new SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>15</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>The new RNC sends a Relocation Complete message to the new SGSN.</td>
</tr>
<tr>
<td>17</td>
<td>The new SGSN sends a Forward Relocation Complete Notification message to the old SGSN.</td>
</tr>
<tr>
<td>18</td>
<td>The old SGSN sends a Forward Relocation Complete Ack message to the new SGSN.</td>
</tr>
<tr>
<td>19</td>
<td>The new SGSN sends a Modify Bearer Request message to the new SGW.</td>
</tr>
<tr>
<td>20</td>
<td>The SGW sends a Modify Bearer Request message to the PGW.</td>
</tr>
<tr>
<td>21</td>
<td>The PGW sends a Modify Bearer Response to the new SGW.</td>
</tr>
<tr>
<td>22</td>
<td>The SGW sends a Modify Bearer Response to the new SGSN.</td>
</tr>
<tr>
<td>23</td>
<td>The old SGSN sends a Delete Session Request to the old SGW.</td>
</tr>
</tbody>
</table>
How it Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>The old SGW sends a Delete Session Response to the old SGSN.</td>
</tr>
<tr>
<td>25</td>
<td>The old SGSN sends an Iu Release Command message to the old RNC.</td>
</tr>
<tr>
<td>26</td>
<td>The old RNC sends an Iu Release Complete message to the old SGSN.</td>
</tr>
<tr>
<td>27</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>

Figure 82. Intra-S4-SGSN SRNS Relocation without SGW Relocation

```
                   UE                   SRNC                   TRNC                   SGSN                   
                   ↓                       ↓                       ↓                       ↓
1 Decision to Perform SRNS Relocation → Relocation Required → Relocation Request → Relocation Request Ack
                                         ↓                             ↓                             ↓
                                           Relocation Command          Forward Data
                                           ↓                             ↓                             ↓
                                             RAN Mobility Information  RAN Mobility Information Confirm
                                           ↓                             ↓                             ↓
                                             Relocation Commit          Relocation Detect
                                           ↓                             ↓                             ↓
                                             Iu Release Command          Relocation Complete
                                           ↓                             ↓                             ↓
                                             Iu Release Complete          Routing Area Update
```

Cisco ASR 5000 Serving GPRS Support Node Administration Guide

430
Table 39. Intra-S4-SGSN SRNS Relocation without SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision is made to perform SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The old RNC sends a Relocation Required message to the SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN performs SGW selection, but does not select a new SGW, as the subscriber is anchored at the same SGW as it was previously.</td>
</tr>
<tr>
<td>4</td>
<td>The SGSN sends a Relocation Request message to the new RNC. At this point, radio access bearers have been established.</td>
</tr>
<tr>
<td>5</td>
<td>The new RNC sends a Relocation Request Acknowledgement message to the SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>The SGSN sends a Relocation Command to the old RNC and the UE is detached from the old RNC and attached to the new RNC.</td>
</tr>
<tr>
<td>7</td>
<td>The old SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding.</td>
</tr>
<tr>
<td>8</td>
<td>Before sending the Relocation Commit the uplink and downlink data transfer in the source, the SRNC shall be suspended for RABs, which require a delivery order. The source RNC starts the data-forwarding timer. When the old SRNC is ready, the old SRNC triggers the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the new RNC over the Iur interface.</td>
</tr>
<tr>
<td>9</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>10</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>11</td>
<td>The new RNC sends a Relocation Detect message to the SGSN.</td>
</tr>
<tr>
<td>12</td>
<td>The SGSN sends a Relocation Complete message to the new RNC.</td>
</tr>
<tr>
<td>13</td>
<td>The SGSN sends an Iu Release Command to the old RNC.</td>
</tr>
<tr>
<td>14</td>
<td>The old RNC releases the Iu connection and sends a Release Complete message to the SGSN.</td>
</tr>
<tr>
<td>15</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>
Figure 83. Intra-S4-SGSN Relocation with SGW Relocation
Table 40. Intra-S4-SGSN Relocation with SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision is made to perform SRNS relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The old RNC sends a Relocation Required message to the SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The SGSN selects a new SGW for the UE.</td>
</tr>
<tr>
<td>4</td>
<td>The SGSN sends a Create Session Request to the new SGW with Indication Flags - Operations Indication bit=0. The new SGW does not send a Modify Beater Request to the PGW at this time.</td>
</tr>
<tr>
<td>5</td>
<td>The new SGW sends a Create Session Response to the SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>The SGSN sends a Relocation Request to the new RNC. At this point, radio access bearers have been established.</td>
</tr>
<tr>
<td>7</td>
<td>The new RNC sends a Relocation Request Acknowledge message to the SGSN.</td>
</tr>
<tr>
<td>8</td>
<td>The SGSN sends a Relocation Command to the old RNC.</td>
</tr>
<tr>
<td>9</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>10</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>11</td>
<td>The new RNC sends a RAN Mobility Information message. This message contains UE information elements and CN information elements.</td>
</tr>
<tr>
<td>12</td>
<td>When the new SRNC receives the RAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC initiates the Relocation Complete procedure by sending the Relocation Commit message to the new SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>The new RNC sends a Relocation Detect message to the SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>The new RNC sends a Relocation Complete message to the SGSN.</td>
</tr>
<tr>
<td>15</td>
<td>The SGSN sends a Modify Bearer Request message to the new SGW.</td>
</tr>
<tr>
<td>16</td>
<td>The new SGW sends a Modify Bearer Request to the PGW.</td>
</tr>
<tr>
<td>17</td>
<td>The PGW sends a Modify Bearer Response to the new SGW.</td>
</tr>
<tr>
<td>18</td>
<td>The new SGW sends a Modify Bearer Response to the SGSN.</td>
</tr>
<tr>
<td>19</td>
<td>The SGSN sends a Delete Session Request to the old SGW.</td>
</tr>
<tr>
<td>20</td>
<td>The old SGW sends a Delete Session Response to the SGSN.</td>
</tr>
<tr>
<td>21</td>
<td>The SGSN sends an Iu Release Command to the old RNC.</td>
</tr>
<tr>
<td>22</td>
<td>The old RNC sends an Iu Release Complete message to the SGSN.</td>
</tr>
<tr>
<td>23</td>
<td>After the MS has finished the RNTI reallocation procedure, and if the new Routing Area Identification is different from the old one, the MS initiates the Routing Area Update procedure.</td>
</tr>
</tbody>
</table>
Table 41. S4-SGSN E-UTRAN to UTRAN Connected Mode Handover without SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The eNodeB determines that relocation is required and sends a Relocation Required message to the old MME.</td>
</tr>
<tr>
<td>2</td>
<td>The old MME sends a Forward Relocation Request message to the new SGSN.</td>
</tr>
<tr>
<td>3</td>
<td>The new SGSN performs SGW selection for the UE.</td>
</tr>
<tr>
<td>4</td>
<td>The new SGSN sends a Relocation Request message to the new RNC. At this time, radio access bearers are established.</td>
</tr>
<tr>
<td>5</td>
<td>The new RNC sends a Relocation Request Ack message to the new SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>The new SGSN sends a Forward Relocation Response to the old MME.</td>
</tr>
<tr>
<td>7</td>
<td>The old MME sends a Create Indirect Data Forwarding Tunnel Request message to the SGW (if IDFT is configured on the SGSN and MME).</td>
</tr>
<tr>
<td>8</td>
<td>The SGW sends a Create Indirect Data Forwarding Tunnel Response message to the old MME (if IDFT is configured on the SGSN and MME).</td>
</tr>
<tr>
<td>9</td>
<td>The old MME sends a Handover Command message to the eNodeB.</td>
</tr>
<tr>
<td>10</td>
<td>Downlink packets are sent from the SGW to the eNodeB.</td>
</tr>
<tr>
<td>11</td>
<td>Downlink packets are sent from the eNodeB to the SGW via Indirect Data Forwarding Tunnel (if IDFT is configured on the new SGSN and the old MME). Downlink packets then are sent from the SGW to the new SGSN, and finally, from the new SGSN to the new RNC.</td>
</tr>
<tr>
<td>12</td>
<td>The new RNC sends a Relocation Detect message to the new SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>The new RNC sends a Relocation Complete message to the new SGSN.</td>
</tr>
<tr>
<td>14</td>
<td>The new SGSN sends a Forward Relocation Complete Notification message to the old MME.</td>
</tr>
<tr>
<td>15</td>
<td>The old MME sends a Forward Relocation Complete Ack message to the new SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>The new SGSN sends a Modify Bearer Request message to the SGW.</td>
</tr>
<tr>
<td>17</td>
<td>The new SGW sends a Modify Bearer Request message to the PGW.</td>
</tr>
<tr>
<td>18</td>
<td>The PGW sends a Modify Bearer Response message to the SGW.</td>
</tr>
<tr>
<td>19</td>
<td>The new SGW sends a Modify Bearer Response message to the new SGSN.</td>
</tr>
<tr>
<td>20</td>
<td>After timer expiry, the old MME sends a Delete IDFT Tunnel Request to the SGW and deletes the IDFT tunnel.</td>
</tr>
</tbody>
</table>
Figure 85. S4-SGSN UTRAN to E-UTRAN Connected Mode Handover with SGW Relocation Call Flow

1. Relocation Required
2. Forward Relocation Request
3. Select SGW
4. Create Session Request
5. Create Session Response
6. Handover Request
7. Handover Request Ack
8. Create IDFT Request
9. Create IDFT Response
10. Forward Relocation Response
11. Create IDFT Request
12. Create IDFT Response
13. Relocation Command
14. Handover Complete
15. Forward Relocation Complete
16. Forward Relocation Complete Notification
17. Modify Bearer Request
18. Modify Bearer Response
19. Modify Bearer Request
20. Modify Bearer Response
21. Delete Session Request
22. Delete Session Response
23. Delete IDFT Request
24. Delete IDFT Request
Table 42. S4-SGSN UTRAN to E-UTRAN Connected Mode Handover with SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The old RNC determines that relocation is required for a UE and sends a Relocation Required message to the old SGSN.</td>
</tr>
<tr>
<td>2</td>
<td>The old SGSN sends a Forward Relocation Request message to the new MME.</td>
</tr>
<tr>
<td>3</td>
<td>The new MME performs the selection of a new SGW.</td>
</tr>
<tr>
<td>4</td>
<td>The new MME sends a Create Session Request message to the new SGW.</td>
</tr>
<tr>
<td>5</td>
<td>The new SGW sends a Create Session Response to the new MME.</td>
</tr>
<tr>
<td>6</td>
<td>The new MME sends a Handover Request message to the eNodeB. At this point radio access bearers are established.</td>
</tr>
<tr>
<td>7</td>
<td>The eNodeB sends a Handover Request Ack message to the new MME.</td>
</tr>
<tr>
<td>8</td>
<td>The MME sends an Indirect Data Forwarding Tunnel Request to the new SGW.</td>
</tr>
<tr>
<td>9</td>
<td>The new SGW sends an Indirect Data Forwarding Tunnel Response to the new MME. The new SGW sends the SGW DL data forwarding TEID to the MME in this message.</td>
</tr>
<tr>
<td>10</td>
<td>The new MME sends a Forward Relocation Response message to the old SGSN. The new MME forwards the SGW DL data forwarding TEID received in step 9 to the old SGSN in this message.</td>
</tr>
<tr>
<td>11</td>
<td>The old SGSN sends a Create IDFT Request to the old SGW. The old SGSN sends the SGW DL data forwarding TEID received in step 10 to the old SGW in this request. This enables the old SGW to setup an indirect forwarding path towards the new SGW.</td>
</tr>
<tr>
<td>12</td>
<td>The old SGW sends a Create IDFT Response to the old SGSN. The old SGW sends the SGW DL data forwarding TEID to the SGSN in this message. The SGSN will forward the re-forwarded downlink packets back to the old SGW to this TEID.</td>
</tr>
<tr>
<td>13</td>
<td>The old SGSN sends a Relocation Command to the old RNC. Downlink packets are then routed through the architecture in the following manner:</td>
</tr>
<tr>
<td></td>
<td>- PGW to old SGW</td>
</tr>
<tr>
<td></td>
<td>- Old SGW to old SGSN</td>
</tr>
<tr>
<td></td>
<td>- Old SGSN to old RNC</td>
</tr>
<tr>
<td></td>
<td>- Old RNC to old SGSN</td>
</tr>
<tr>
<td></td>
<td>- Old SGSN to old SGW</td>
</tr>
<tr>
<td></td>
<td>- Old SGW to new SGW</td>
</tr>
<tr>
<td></td>
<td>- New SGW to eNodeB</td>
</tr>
<tr>
<td>14</td>
<td>The eNodeB sends a Handover Complete message to the new MME.</td>
</tr>
<tr>
<td>15</td>
<td>The new MME sends a Forward Relocation Complete message to the old SGSN.</td>
</tr>
<tr>
<td>16</td>
<td>The old SGSN sends a Forward Relocation Complete Notification message to the new MME.</td>
</tr>
<tr>
<td>17</td>
<td>The new MME sends a Modify Bearer Request to the new SGW.</td>
</tr>
<tr>
<td>18</td>
<td>The new SGW sends a Modify Bearer Request to the PGW.</td>
</tr>
<tr>
<td>19</td>
<td>The PGW sends a Modify Bearer Response to the new SGW.</td>
</tr>
</tbody>
</table>
How it Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>The new SGW sends a Modify Bearer Response to the new MME.</td>
</tr>
<tr>
<td>21</td>
<td>After timer expiry, the old SGSN sends a Delete Session Request to the old SGW.</td>
</tr>
<tr>
<td>22</td>
<td>The old SGW sends a Delete Session Response to the old SGSN.</td>
</tr>
<tr>
<td>23</td>
<td>The old SGSN also sends a Delete IDFT Request to the old SGW.</td>
</tr>
<tr>
<td>24</td>
<td>Similar to the timer started at the old SGSN, the new MME also would have started a timer to guard the holding of the IDFT tunnel created there. Upon expiry of this timer, the new MME sends a Delete IDFT Request to the new SGW.</td>
</tr>
</tbody>
</table>
Figure 86. S4-SGSN Inter-SGSN Hard Handover and SGW Relocation (Part 1)
Figure 87. S4-SGSN Inter-SGSN Relocation with Hard Handover and SGW Relocation (Part 2)

Table 43. S4-SGSN Inter-SGSN Hard Handover with SGW Relocation Process Description

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision is made to initiate relocation.</td>
</tr>
<tr>
<td>2</td>
<td>The source RNC sends a Relocation Required message to the target RNC.</td>
</tr>
<tr>
<td>3</td>
<td>The old SGSN selects the new SGSN and sends a Forward Relocation Request message to the new SGSN.</td>
</tr>
<tr>
<td>4</td>
<td>The new SGSN sends a Create Session Request message to the new SGW.</td>
</tr>
<tr>
<td>5</td>
<td>The new SGW sends a Create Session Response back to the new SGSN.</td>
</tr>
<tr>
<td>6</td>
<td>The new SGSN sends a Relocation Request message to the new RNC.</td>
</tr>
<tr>
<td>7</td>
<td>The new RNC sends a Relocation Request Acknowledgement back to the new SGSN.</td>
</tr>
<tr>
<td>8</td>
<td>The new SGSN sends a Forward Relocation Response message to the old SGSN.</td>
</tr>
<tr>
<td>9</td>
<td>The old SGSN sends a Relocation Command to the old RNC.</td>
</tr>
<tr>
<td>10</td>
<td>The old RNC sends the RRC message to the UE. Upon reception of this message the UE will remove any EPS bearers for which it did not receive the corresponding EPS radio bearers in the target cell.</td>
</tr>
<tr>
<td>11</td>
<td>The old RNC sends a Forward SRNS Context message to the old SGSN.</td>
</tr>
<tr>
<td>12</td>
<td>The old SGSN sends a Forward Access Context Notification message to the new SGSN.</td>
</tr>
<tr>
<td>13</td>
<td>The new SGSN sends a Forward Access Context Acknowledge message to the old SGSN.</td>
</tr>
</tbody>
</table>
How it Works

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>The new SGSN sends a Forward SRNS Context message to the new RNC. At this point, the UE detaches from the old RNC and attaches to the new RNC.</td>
</tr>
<tr>
<td>15</td>
<td>The source RNC should start direct forwarding of downlink data from the source RNC towards the target RNC for bearers subject to data forwarding.</td>
</tr>
<tr>
<td>16</td>
<td>The UE sends an RRC message to the new RNC. Downlink packets forwarded from the old RNC can be sent to the UE. In addition, uplink packets can be sent from the UE, which are forwarded to the new SGW and then on to the PGW.</td>
</tr>
<tr>
<td>17</td>
<td>The new RNC sends a Relocation Complete message to the new SGSN.</td>
</tr>
<tr>
<td>18</td>
<td>The new SGSN then ends a Forward Relocation Complete Notification message to the old SGSN.</td>
</tr>
<tr>
<td>19</td>
<td>The old SGSN sends a Forward Relocation Complete Acknowledgement message to the new SGSN.</td>
</tr>
<tr>
<td>20</td>
<td>The new SGSN sends a Modify Bearer Request message to the new SGW for each PDN connection.</td>
</tr>
<tr>
<td>21</td>
<td>The new SGW sends a Modify Bearer Request message to the PGW.</td>
</tr>
<tr>
<td>22</td>
<td>The PGW sends a Modify Bearer Response message to the new SGW.</td>
</tr>
<tr>
<td>23</td>
<td>The new SGW sends a Modify Bearer Response message to the new SGSN. The PGW begins sending downlink packets to the new SGW, which then sends them to the new RNC, and then to the UE.</td>
</tr>
<tr>
<td>24</td>
<td>The UE initiates a Routing Area Update procedure. This RAU occurs on a RANAP Direct Transfer and therefore does not involve a Context transfer with the peer SGSN.</td>
</tr>
<tr>
<td>25</td>
<td>The old SGSN sends a Delete Session Request to the old SGW.</td>
</tr>
<tr>
<td>26</td>
<td>The old SGSN sends an Iu Release Command to the old RNC.</td>
</tr>
<tr>
<td>27</td>
<td>The old RNC then sends an Iu Release Complete message to the old SGSN.</td>
</tr>
<tr>
<td>28</td>
<td>The old SGW sends a Delete Session Response message to the old SGSN.</td>
</tr>
</tbody>
</table>

Standards Compliance

The SGSN SRNS Relocation feature complies with the following standards:

- **SGSN Gn/Gp SRNS Relocation**: 3GPP TS 23.060 V8.10.0 (2010-09): 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2 (Release 8)
- **S4-SGSN (S3/S16) SRNS Relocation**: 3GPP TS 23.060 V9.8.0 (2011-03): 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2 (Release 9)
- **MME to 3G SGSN Hard Handover and Relocation**: LTE; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (3GPP TS 23.401 version 9.8.0 Release 9)
Configuring SRNS Relocation on the SGSN

This section provides examples of how to configure the SRNS relocation feature on the SGSN. An optional configuration example is also provided for enabling IDFT.

Configuring the SRNS Relocation Feature

Configuring the SRNS Relocation feature includes creating a call-control-profile and then enabling intra- and/or inter-SGSN SRNS relocation via the Command Line Interface (CLI).

```plaintext
config
call-control-profile cc-profile name
  srns-intra all failure-code integer
  srns-inter all failure-code integer
end
config
context <context_name>
iups-service iups_service_name
  inter-rnc-procedures source-rnc-as-target
```

Notes:
- `cc-profile-name` is the name assigned to this call-control-profile
- `srns-intra all` enables intra-SGSN SRNS relocations for all location areas.
- `srns-inter all` enables inter-SGSN SRNS relocations for all location areas.
- `failure-code integer` specifies the failure code that applies to SRNS relocations.
- Optionally, operators can use the `restrict` and `allow` keywords to identify specific location areas where SRNS relocation will, or will not, occur. For detailed information on these optional keywords, refer to the Cisco ASR 5x00 Command Line Reference.
- `inter-rnc-procedures source-rnc-as-target`: Optional. Configures the SGSN to support SRNS relocation for those scenarios where the source RNC is behaving as the target RNC. The default is not to allow SRNS relocation in those scenarios.

Enabling IDFT (Optional, S4-SGSN Only)

To enable support of IDFT between the eNodeB and a specified RNC via the SGW during connected mode handovers on the S4-SGSN:

```plaintext
config
```
context <context_name>

iups-service <iups_service_name>

rnc id <rnc_id>

 no enb-direct-data-forward

end

Where:

- no enb-direct-data-forward enables the setup of IDFT between the eNodeB and the RNC via the SGW for connected mode inter RAT handovers. If IDFT is enabled, the SGSN/MME will send the IDFT request towards the SGW.

- To disable IDFT, enter the enb-direct-data-forward command.

Verifying the SRNS Feature Configuration

This section describes how to verify that SRNS feature configuration.

The following commands provide information on how the SRNS relocation feature is configured:

```
show call-control-profile full all
show call-control-profile full name cc-profile-name
```

The output of these commands includes the complete SRNS configuration for the specified Call Control Profile. For example:

```
[local]asr5x00# show call-control-profile name cc-profile-name
...
SRNS Intra All: Allow
SRNS Intra All Failure Code: 10
SRNS Inter All: Allow
SRNS Inter All Failure Code: 15
...
```

The following command provides information on how IDFT is configured:

```
show iups-service name service_name
```

The output of this command indicates whether IDFT is enabled or disabled for the RNC configuration. If the E-Node Direct Data Forwarding setting reads “Disabled,” then IDFT is enabled. If it reads “Enabled,” then IDFT is disabled.

```
[local]asr5x00# show iups-service name service-name
...
```
Available RNC:

..

E-NodeB Direct Data Forwarding : Disabled

..
Monitoring and Troubleshooting SRNS Relocation

This section provides information that assists operators in monitoring and troubleshooting the SRSN Relocation feature.

SRNS Bulk Statistics

The following statistics are included in the SGSN Schema in support of the SRNS Relocation feature. For detailed descriptions of these bulk statistics, refer to the *ASR 5x00 Statistics and Counters Reference*.

<table>
<thead>
<tr>
<th>Bulk Statistics Supporting SRNS Relocation Feature</th>
<th>SRNS Relocation Feature Bulk Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRNS-ctxt-req-sent</td>
<td>srs-ctxt-deny-ip-up-failure</td>
</tr>
<tr>
<td>SRNS-ctxt-rsp-rcvd</td>
<td>srs-ctxt-deny-reloc-alloc-expiry</td>
</tr>
<tr>
<td>SRNS-ctxt-req-tmr-expired</td>
<td>srs-ctxt-deny-reloc-failure-target-system</td>
</tr>
<tr>
<td>SRNS-ctxt-total-pdp-acc</td>
<td>srs-ctxt-deny-invalid-rdb-id</td>
</tr>
<tr>
<td>SRNS-ctxt-total-pdp-rej</td>
<td>srs-ctxt-deny-no-remaining-rab</td>
</tr>
<tr>
<td>SRNS-data-fwd-cmd-sent</td>
<td>srs-ctxt-deny-interaction-with-other-proc</td>
</tr>
<tr>
<td>srs-ctxt-deny-rab-preempt</td>
<td>srs-ctxt-deny-integrity-check-fail</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-overall-tmr-exp</td>
<td>srs-ctxt-deny-req-type-not-supported</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-prep-tmr-exp</td>
<td>srs-ctxt-deny-req-supereced</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-complete-tmr-exp</td>
<td>srs-ctxt-deny-rel-due-to-ue-sig-con-rel</td>
</tr>
<tr>
<td>srs-ctxt-deny-queuing-tmr-exp</td>
<td>srs-ctxt-deny-res-optimization-reloc</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-triggered</td>
<td>srs-ctxt-deny-req-info-unavail</td>
</tr>
<tr>
<td>srs-ctxt-deny-unable-to-est-reloc</td>
<td>srs-ctxt-deny-reloc-due-to-radio-reason</td>
</tr>
<tr>
<td>srs-ctxt-deny-unknown-target-rnc</td>
<td>srs-ctxt-deny-reloc-unsupport-target-sys</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-cancel</td>
<td>srs-ctxt-deny-directed-retry</td>
</tr>
<tr>
<td>srs-ctxt-deny-reloc-success</td>
<td>srs-ctxt-deny-radio-con-with-ue-lost</td>
</tr>
<tr>
<td>srs-ctxt-deny-cypher-algo-no-support</td>
<td>srs-ctxt-deny-rnc-unable-to-estab-all-rfcs</td>
</tr>
<tr>
<td>srs-ctxt-deny-conflict-cypher-info</td>
<td>srs-ctxt-deny-deciphering-keys-unavail</td>
</tr>
<tr>
<td>srs-ctxt-deny-failure-radio-if-proc</td>
<td>srs-ctxt-deny-dedicated-assist-data-unavail</td>
</tr>
<tr>
<td>srs-ctxt-deny-rel-utran-reason</td>
<td>srs-ctxt-deny-reloc-target-not-allowed</td>
</tr>
<tr>
<td>srs-ctxt-deny-utran-inactivity</td>
<td>srs-ctxt-deny-location-reporting-congestion</td>
</tr>
<tr>
<td>srs-ctxt-deny-time-crit-relocation</td>
<td>srs-ctxt-deny-reduce-load-in-serving-cell</td>
</tr>
</tbody>
</table>
Show Command Output Supporting the SRNS Relocation Feature

This section provides information regarding CLI show commands that provide output to support of the SRNS Relocation feature.

The following show commands are available in support of the SRNS Relocation feature on the SGSN and the S4-SGSN:

- `show s4-sgsn statistics all`
- `show gmm-sm statistics`

The following counters are included in the `show gmm-sm statistics` command output to support the SRNS Relocation feature. These statistics provide information on RAN application messages and the total number of attempted and successful SGSN Gn/Gp and S4-SGSN SRNS relocations. These totals are further subdivided by SRNS relocation type. Note that these statistics apply to the SGSN (Gn/Gp) and the S4-SGSN on the SGSN-RNC-UE interface side. For detailed descriptions of these statistics, refer to the *ASR 5x00 Statistics and Counters Reference*.

Table 45. GMM SM Statistics Supporting SRNS Relocation

<table>
<thead>
<tr>
<th>GMM SM Statistics Supporting SRNS Relocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANAP Procedures</td>
</tr>
</tbody>
</table>

Bulk Statistics Supporting SRNS Relocation Feature

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sms-ctx-deny-req-traffic-class-unavail</td>
<td>SMS context deny request for traffic class unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-req-max-bit-rate-unavail</td>
<td>SMS context deny request for maximum bit rate unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-req-max-bit-rate-dl-unavail</td>
<td>SMS context deny request for maximum bit rate down unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-req-max-bit-rate-ul-unavail</td>
<td>SMS context deny request for maximum bit rate up unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavail</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavail</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-verunsupported</td>
<td>SMS context deny for user plane version unsupported</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-ver-supported</td>
<td>SMS context deny for user plane version supported</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-ver-supported</td>
<td>SMS context deny for user plane version supported</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-ver-supported</td>
<td>SMS context deny for user plane version unsupported</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavail</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavail</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-verunsupported</td>
<td>SMS context deny for user plane version unsupported</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavail</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavail</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-ru-plane-versupported</td>
<td>SMS context deny for user plane version supported</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavail</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-dl-unavil</td>
<td>SMS context deny for GBR down link unavailable</td>
</tr>
<tr>
<td>sms-ctx-deny-gbr-ul-unavil</td>
<td>SMS context deny for GBR up link unavailable</td>
</tr>
</tbody>
</table>
GMM SM Statistics Supporting SRNS Relocation

<table>
<thead>
<tr>
<th>Relocation Required</th>
<th>Relocation Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relocation Request</td>
<td>Relocation Command</td>
</tr>
<tr>
<td>Relocation Failure</td>
<td>Relocation Request Ack</td>
</tr>
<tr>
<td>Relocation Cancel</td>
<td>Relocation Prep Failure</td>
</tr>
<tr>
<td>Relocation Detect</td>
<td>Relocation Cancel Ack</td>
</tr>
</tbody>
</table>

3G-SRNS Stats

<table>
<thead>
<tr>
<th>Attempted</th>
<th>Successful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SRNS</td>
<td>Total SRNS</td>
</tr>
<tr>
<td>Intra-SGSN SRNS</td>
<td>Intra-SGSN SRNS</td>
</tr>
<tr>
<td>Intra-SRNS UE involved</td>
<td>Intra-SRNS UE not involved</td>
</tr>
<tr>
<td>Intra-SRNS UE not involved</td>
<td>Inter-SGSN SRNS</td>
</tr>
<tr>
<td>Inter-SGSN SRNS</td>
<td>Inter-SGSN SRNS</td>
</tr>
<tr>
<td>Inter-SRNS UE involved (old SGSN)</td>
<td>Inter-SRNS UE not involved (old SGSN)</td>
</tr>
<tr>
<td>Inter-SRNS UE not involved (old SGSN)</td>
<td>Inter-SRNS UE not involved (new SGSN)</td>
</tr>
<tr>
<td>Inter-SGSN UE not involved (new SGSN)</td>
<td>Inter-SGSRNS UE involved (old SGSN with MME)</td>
</tr>
<tr>
<td>Inter-SGSRNS UE involved (old SGSN with MME)</td>
<td>Inter-SGSRNS UE involved (new SGSN)</td>
</tr>
<tr>
<td>Inter-SGSRNS UE not involved (new SGSN with MME)</td>
<td>Inter-SGSRNS UE not involved (new SGSN with MME)</td>
</tr>
</tbody>
</table>

The following counters are included in the `show s4-sgsm statistics all` command output in support of the SRNS Relocation feature. These statistics apply to the S4 interface network level. They provide information on the number and type of SRNS SGW relocations, SRNS procedure aborts, and IDFT packets and bytes sent to and from the SGW (if IDFT is enabled). For detailed descriptions of these statistics, refer to the `ASR 5x00 Statistics and Counters Reference`.

Table 46. Statistics Supporting S4-SGSN SRNS Relocation

<table>
<thead>
<tr>
<th>Statistics Supporting SRNS Relocation on the S4-SGSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGW Relocations</td>
</tr>
<tr>
<td>3G Intra SGSN SRNS Relocation</td>
</tr>
<tr>
<td>3G Inter SGSN SRNS Relocation (S16)</td>
</tr>
<tr>
<td>MME-SGSN SRNS Relocation (S3)</td>
</tr>
<tr>
<td>Procedure Abort Statistics</td>
</tr>
<tr>
<td>3G Intra SRNS Abort Due to Total CSR Failure</td>
</tr>
<tr>
<td>3G New SGSN SRNS Abort Due to Total CSR Failure</td>
</tr>
<tr>
<td>GTPU Statistics</td>
</tr>
<tr>
<td>IDFT packets to SGW</td>
</tr>
<tr>
<td>IDFT packets from SGW</td>
</tr>
<tr>
<td>IDFT bytes to SGW</td>
</tr>
<tr>
<td>IDFT bytes from SGW</td>
</tr>
</tbody>
</table>

Cisco ASR 5000 Serving GPRS Support Node Administration Guide
Chapter 21
Subscriber Overcharging Protection

Subscriber Overcharging Protection is a proprietary, enhanced feature that prevents subscribers in UMTS networks from being overcharged when a loss of radio coverage (LORC) occurs. This chapter indicates how the feature is implemented on various systems and provides feature configuration procedures. Products supporting subscriber overcharging protection include Cisco’s Gateway GPRS Support Node (GGSN) and Serving GPRS Support Node (SGSN).

The individual product administration guides provide examples and procedures for configuration of basic services. Before using the procedures in this chapter, we recommend that you select the configuration example that best meets your service model, and configure the required elements for that model, as described in the respective guide.

Important: Subscriber Overcharging Protection is a licensed Cisco feature. A separate feature license may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.

This chapter covers the following topics in support of the Subscriber Overcharging Protection feature:

- Feature Overview
- Overcharging Protection - GGSN Configuration
- Overcharging Protection - SGSN Configuration
Feature Overview

Subscriber Overcharging Protection enables the SGSN to avoid overcharging the subscriber if/when a loss of radio coverage (LORC) occurs.

When a mobile is streaming or downloading files from external sources (for example, via a background or interactive traffic class) and the mobile goes out of radio coverage, the GGSN is unaware of such loss of connectivity and continues to forward the downlink packets to the SGSN.

Previously, upon loss of radio coverage (LORC), the SGSN did not perform the UPC procedure to set QoS to 0kbps, as it does when the traffic class is either streaming or conversational. Therefore, when the SGSN did a Paging Request, if the mobile did not respond the SGSN would simply drop the packets without notifying the GGSN; the G-CDR would have increased counts but the S-CDR would not, causing overcharges when operators charged the subscribers based on the G-CDR.

Now operators can accommodate this situation, they can configure the SGSN to set QoS to 0kbps, or to a negotiated value, upon detecting the loss of radio coverage. The overcharging protection feature relies upon the SGSN adding a proprietary private extension to GTP LORC Intimation IE to messages. This LORC Intimation IE is included in UPCQ, DPCQ, DPCR, and SGSN Context Response GTP messages. One of the functions of these messages is to notify the GGSN to prevent overcharging.

The GGSN becomes aware of the LORC status by recognizing the message from the SGSN and discards the downlink packets if LORC status indicates loss of radio coverage or stops discarding downlink packets if LORC status indicates gain of radio coverage for the UE.

The following table summarizes the SGSN's actions when radio coverage is lost or regained and LORC overcharging protection is enabled.

Table 47. LORC Conditions and Overcharging Protection

<table>
<thead>
<tr>
<th>Condition</th>
<th>Triggered by</th>
<th>SGSN Action</th>
<th>LORC Intimation IE - private extension payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of radio coverage (LORC)</td>
<td>RNC sends Iu release request with cause code matching configured value</td>
<td>Send UPCQ to GGSN Start counting unsent packets/bytes Stop forwarding packets in downlink direction</td>
<td>No payload</td>
</tr>
<tr>
<td>Mobile regains coverage in same SGSN area</td>
<td>MS/SGSN</td>
<td>Send UPCQ to GGSN Stop counting unsent packets/bytes Stop discarding downlink packets</td>
<td>New loss-of-radio-coverage state and unsent packet/byte counts</td>
</tr>
<tr>
<td>Mobile regains coverage in different SGSN area</td>
<td>MS/SGSN</td>
<td>Send SGSN Context Response message to new SGSN Stop counting unsent packets/bytes</td>
<td>Unsent packet/byte counts</td>
</tr>
<tr>
<td>PDP deactivated during LORC</td>
<td>MS/SGSN</td>
<td>Send DPCQ to GGSN Stop counting unsent packets/bytes</td>
<td>Unsent packet/byte counts</td>
</tr>
<tr>
<td>Condition</td>
<td>Triggered by</td>
<td>SGSN Action</td>
<td>LORC Intimation IE - private extension payload</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PDP deactivated during LORC</td>
<td>GGSN</td>
<td>Send DPCR to GGSN Stop counting unsent packets/bytes</td>
<td>Unsent packet/byte counts</td>
</tr>
</tbody>
</table>
Overcharging Protection - GGSN Configuration

This section provides a high-level series of steps and the associated configuration examples for configuring the GGSN to support subscriber overcharging protection.

Important: This section provides the minimum instruction set to configure the GGSN to avoid the overcharging due to loss of radio coverage in UMTS network. For this feature to be operational, you must also implement the configuration indicated in the section Overcharging Protection - SGSN Configuration also in this chapter. Commands that configure additional function for this feature are provided in the Cisco ASR 5000 Command Line Interface Reference.

These instructions assume that you have already configured the system-level configuration as described in Cisco ASR 5000 System Administration Guide and the Cisco ASR 5000 Gateway GPRS Support Node Administration Guide.

To configure the system to support overcharging protection on LORC in the GGSN service:

Step 1 Configure the GTP-C private extension in a GGSN service by applying the example configurations presented in the GTP-C Private Extension Configuration section below.

Step 2 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Step 3 Verify configuration of overcharging protection on LORC related parameters by applying the commands provided in the Verifying Your GGSN Configuration section in this chapter.

GTP-C Private Extension Configuration

This section provides the configuration example to configure the GTP-C private extensions for GGSN service:

```
configure

    context <vpn_context_name>

    ggsn-service <ggsn_svc_name>

        gtpc private-extension loss-of-radio-coverage

    end
```

Notes:

- `<vpn_context_name>` is the name of the system context where specific GGSN service is configured. For more information, refer Cisco ASR 5000 Gateway GPRS Support Node Administration Guide.

- `<ggsn_svc_name>` is name of the GGSN service where you want to enable the overcharging protection for subscribers due to LORC.
Verifying Your GGSN Configuration

This section explains how to display and review the configurations after saving them in a .cfg file (as described in the Verifying and Saving Your Configuration chapter in this book) and how to retrieve errors and warnings within an active configuration for a service.

Important: All commands listed here are under Exec mode. Not all commands are available on all platforms.

These instructions are used to verify the overcharging protection support configuration.

Step 1 Verify that your overcharging support is configured properly by entering the following command in Exec Mode:

```
show ggsn-service name ggsn_svc_name
```

The output of this command displays the configuration for overcharging protection configured in the GGSN service `ggsn_svc_name`.

- Service name: `ggsn_svc1`
- Context: `service`
- Accounting Context Name: `service`
- Bind: `Done`
- Local IP Address: `192.169.1.1`
- Local IP Port: `2123`

... ...

GTP Private Extensions:
- Preservation Mode
- LORC State

Step 2 Verify that GTP-C private extension is configured properly for GGSN subscribers by entering the following command in Exec Mode:

```
show subscribers ggsn-only full
```

The output of this command displays the LORC state information and number of out packets dropped due to LORC.
Overcharging Protection - SGSN Configuration

This section provides a high-level series of steps and the associated configuration examples for configuring the SGSN to support subscriber overcharging protection.

Important: This section provides a minimum instruction set to configure the SGSN to implement this feature. For this feature to be operational, you must also implement the configuration indicated in the section Overcharging Protection - GGSN Configuration also in this chapter.

Command details can be found in the Cisco ASR 5000 Command Line Interface Reference.

These instructions assume that you have already completed:

- the system-level configuration as described in the *Cisco ASR 5000 System Administration Guide*,
- the SGSN service configuration as described in the *Cisco ASR 5000 Serving GPRS Support Node Administration Guide*, and
- the configuration of an APN profile as described in the Operator Policy chapter in this guide.

To configure the SGSN to support subscriber overcharging protection:

Step 1 Configure the private extension IE with LORC in an APN profile by applying the example configurations presented in the Private Extension IE Configuration section.

Important: An APN profile is a component of the Operator Policy feature implementation. To implement this feature, an APN profile must be created and associated with an operator policy. For details, refer to the Operator Policy chapter in this book.

Step 2 Configure the RANAP cause that should trigger this UPCQ message by applying the example configurations presented in the RANAP Cause Trigger Configuration section.

Step 3 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Step 4 Verify the SGSN portion of the configuration for overcharging protection on LORC related parameters by applying the commands provided in the Verifying the Feature Configuration section.

Private Extension IE Configuration

This section provides the configuration example to enable adding the private extension IE that will be included in the messages sent by the SGSN when a loss of radio coverage occurs in the UMTS network:

```plaintext
configure

    apn-profile <apn_profile_name>

        gtp private-extension loss-of-radio-coverage send-to-ggsn

    end
```
Note:

- `<apn_profile_name>` is the name of a previously configured APN profile. For more information, refer to the Operator Policy chapter, also in this book.

RANAP Cause Trigger Configuration

This section provides the configuration example to enable the RANAP cause trigger and define the trigger message value:

```plaintext
configure
  context <context_name>
    iups-service <iups_service_name>
      loss-of-radio-coverage ranap-cause <cause> end
```

Note:

- `<context_name>` is the name of the previously configured context in which the IuPS service has been configured.
- `<cause>` is an integer from 1 to 512 (the range of reasons is a part of the set defined by 3GPP TS 25.413) that allows configuration of the RANAP Iu release cause code to be included in messages. Default is 46 (MS/UE radio connection lost).

Verifying the Feature Configuration

This section explains how to display the configurations after saving them in a `.cfg` file as described in the Verifying and Saving Your Configuration chapter elsewhere in this guide.

Important: All commands listed here are under Exec mode. Not all commands are available on all platforms.

These instructions are used to verify the overcharging protection support configuration.

Step 1 Verify that your overcharging support is configured properly by entering the following command in Exec Mode:

```plaintext
show apn-profile full name apn_profile_name
```

The output of this command displays the entire configuration for the APN profile configuration. Only the portion related to overcharging protection configuration in the SGSN is displayed below. Note that the profile name is an example:

```
APN Profile name: apnprofile1
Resolution Priority: dns-fallback
...
...
Sending Private Extension Loss of Radio Coverage IE

To GGSN : Enabled
To SGSN : Enabled

Step 2 Verify the RANAP Iu release cause configuration by entering the following command in the Exec Mode:

```
show iups-service name <iups_service_name>
```

The output of this command displays the entire configuration for the IuPS service configuration. Only the portion related to overcharging protection configuration (at the end of the display) is displayed below. Note that the IuPS service name is an example:

```
Service name: : iups1
Service-ID: : 1
...
...
Loss of Radio Coverage
Detection Cause in Iu Release: 46
```
Chapter 22
Monitoring and Troubleshooting

Monitoring and troubleshooting the SGSN are not unrelated tasks that use many of the same procedures. This chapter provides information and instructions for using the system command line interface (CLI), primarily the `show` command, to monitor service status and performance and to troubleshoot operations.

The `show` commands used for monitoring and troubleshooting include keywords (parameters) that can fine-tune the output to produce information on all aspects of the system, ranging from current software configuration through call activity and status. The keywords, used in the procedures documented in this chapter, are intended to provide the most useful and in-depth information for monitoring the system. To learn about all of the keywords possible, refer to the Command Line Interface Reference. To learn about the details for the information in the `show` command outputs, refer to the Statistics and Counters Reference.

In addition to the CLI documented in this chapter, the system supports other monitoring and troubleshooting tools:

- SNMP (Simple Network Management Protocol) traps that indicate status and alarm conditions. Refer to the SNMP MIB Reference for a detailed listing of these traps.
- bulk statistics (performance data) which can be accessed in various manners. For a complete list of SGSN supported statistics, refer to the Statistics and Counters Reference. For information about configuring the formats for static collection, refer to the Command Line Interface Reference.
- threshold crossing alerts for conditions that are typically temporary, such as high CPU or port utilization, but can indicate potentially severe conditions. For information on threshold crossing alert configuration, refer to the Thresholding Configuration Guide.

The monitoring and troubleshooting procedures are organized on a task-basis with details for:

- Monitoring (information required regularly)
  - Daily – Standard Health Check
  - Monthly System Maintenance
  - Semi-Annual Check
- Troubleshooting (information required intermittently)
  - Overview of Possible Fault Types
  - Single and Mass Problem Scenarios
  - Reference Materials (information required infrequently)
Monitoring

This section contains commands used to monitor system performance and the status of tasks, managers, applications, and various other software components. Most of the procedure commands are useful for both maintenance and diagnostics.

There is no limit to the frequency that any of the individual commands or procedures can be implemented, however, the organization of tasks into three unique sets of procedures suggests a recommendation for minimal implementation:

- Daily – Standard Health Check
- Monthly System Maintenance
- Semi-Annual Check

Daily - Standard Health Check

The standard health check is divided into three independent procedures:

- Health Check - Hardware & Physical Layer
- Health Check - System & Performance
- Health Check - SGSN-Specific Status & Performance

Health Check - Hardware & Physical Layer

The first set of commands are useful for monitoring the hardware status for the entire system. The second set of commands check the status of hardware elements within the chassis and provide some verification of the physical layer status. The operational parameters for the hardware are included in the *Hardware Installation and Administration Guide*. Note that all hardware elements generate alarms in the case of failure.

Table 48. Hardware Status Checks

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All hardware problems generate alarms, the following checks can be replaced by reviewing the trap history.</td>
<td>show snmp trap history</td>
</tr>
<tr>
<td>Check the status of the PFUs. Output indicates the power level for the cards in the chassis. All active cards should be in an &quot;ON&quot; state.</td>
<td>show power chassis</td>
</tr>
<tr>
<td>Check the power status of an individual chassis.</td>
<td>show power all</td>
</tr>
<tr>
<td>View the status of the fan trays. In case of a fan problem, refer to your support contract to contact the appropriate service or sales representative.</td>
<td>show fans</td>
</tr>
<tr>
<td>View the LED status for all installed cards. All LEDs for active cards should be green.</td>
<td>show leds all</td>
</tr>
<tr>
<td>Checking the temperatures confirms that all cards and fan trays are operating within safe ranges to ensure hardware efficiency.</td>
<td>show temperature</td>
</tr>
</tbody>
</table>
**Table 49. Physical Layer Status Check**

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View mapping of the line cards-to-controlling application cards.</td>
<td>show card mappings</td>
</tr>
<tr>
<td>View a listing of all installed application cards in a chassis.</td>
<td>show card table</td>
</tr>
<tr>
<td>Determine if all required cards are in active or standby state and not offline. Displays include slot numbers, card type, operational state, and attach information.</td>
<td>show card table all</td>
</tr>
<tr>
<td>Display a listing of installed line cards with card type, state, and attach information. Run this command to ensure that all required cards are in Active/Standby state. No card should be in OFFLINE state.</td>
<td>show linecard table</td>
</tr>
<tr>
<td>View the number and status of physical ports on each line card. Output indicates Link and Operation state for all interfaces -- UP or down.</td>
<td>show port table all</td>
</tr>
<tr>
<td>Verify CPU usage and memory.</td>
<td>show cpu table</td>
</tr>
<tr>
<td></td>
<td>show cpu information</td>
</tr>
</tbody>
</table>

**Health Check - System & Performance**

Most of these commands are useful for both maintenance and diagnostics, and if the system supports a “combo” (a co-located SGSN and GGSN), then these commands can be used for either service.

**Table 50. System & Performance Checks**

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check a summary of CPU state and load, memory and CPU usage.</td>
<td>show cpu table</td>
</tr>
<tr>
<td>Check availability of resources for sessions.</td>
<td>show resources</td>
</tr>
<tr>
<td>session</td>
<td></td>
</tr>
<tr>
<td>Review session statistics, such as connects, rejects, hand-offs, collected in 15-minute intervals.</td>
<td>show session</td>
</tr>
<tr>
<td>counters historical</td>
<td></td>
</tr>
<tr>
<td>View duration, statistics, and state for active call sessions.</td>
<td>show session</td>
</tr>
<tr>
<td>duration</td>
<td></td>
</tr>
<tr>
<td>show session progress</td>
<td></td>
</tr>
<tr>
<td>Display statistics for the Session Manager.</td>
<td>show session</td>
</tr>
<tr>
<td>subsystem facility</td>
<td></td>
</tr>
<tr>
<td>sesmogr all</td>
<td></td>
</tr>
<tr>
<td>Check the amount of time that the system has been operational since the last downtime (maintenance or other). This confirms that the system has not rebooted recently.</td>
<td>show system</td>
</tr>
<tr>
<td>uptime</td>
<td></td>
</tr>
<tr>
<td>Verify the status of the configured NTP servers. Node time should match the correct peer time with minimum jitter.</td>
<td>show ntp status</td>
</tr>
<tr>
<td>Check the current time of a chassis to compare network-wide times for synchronisation or logging purposes. Ensure network accounting and/or event records appear to have consistent timestamps.</td>
<td>show clock</td>
</tr>
<tr>
<td>universal</td>
<td></td>
</tr>
<tr>
<td>View both active and inactive system event logs.</td>
<td>show logs</td>
</tr>
</tbody>
</table>
To Do This:                                      Enter This Command:

Check SNMP trap information. The trap history displays up to 400 time-stamped trap records that are stored in a buffer. Through the output, you can observe any outstanding alarms on the node and contact the relevant team for troubleshooting or proceed with SGSN troubleshooting guidelines.

show snmp trap history

Check the crash log. Use this command to determine if any software tasks have restarted on the system.

show crash list

Check current alarms to verify system status.

show alarm outstanding all
show alarm all

View system alarm statistics to gain an overall picture of the system's alarm history.

show alarm statistics

Daily - Health Check- SGSN-Specific Status and Performance

These commands are useful for both maintenance and diagnostics.

Table 51. SGSN-Specific Status and Performance Checks

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the status and configuration for the Iu-PS services. In the display, ensure the &quot;state&quot; is &quot;STARTED&quot; for the Iu interface.</td>
<td>show iups-service all</td>
</tr>
<tr>
<td>Check the configuration for the MAP services features and some of the HLR and EIR configuration. In the display, ensure the &quot;state&quot; is &quot;STARTED&quot; for the Gr interface.</td>
<td>show map-service all</td>
</tr>
<tr>
<td>Check the configuration for the SGSN services in the current context. In the display, ensure the &quot;state&quot; is &quot;STARTED&quot; for the SGSN.</td>
<td>show sgsn-service all</td>
</tr>
<tr>
<td>Check the SS7 Signalling Connection Control Part (SCCP) network configuration and status information, for example, check the state of the SIGTRAN. The display should show all links to all RNC/subsystem are available, as well as those toward the HLR.</td>
<td>show sccp-network all status all</td>
</tr>
<tr>
<td>Check the configuration and IDs for SS7 routing domains</td>
<td>show ss7-routing-domain all</td>
</tr>
<tr>
<td>Check the connection status on SS7 routes.</td>
<td>show ss7-routing-domain &lt;#&gt; routes</td>
</tr>
<tr>
<td>Snapshot subscriber activity and summary of PDP context statistics.</td>
<td>show subscribers sgsn-only</td>
</tr>
<tr>
<td>Check the configured services and features for a specific subscriber.</td>
<td>show subscribers sgsn-only full msid &lt;msid_number&gt;</td>
</tr>
</tbody>
</table>

Monthly System Maintenance

Depending upon system usage and performance, you may want to perform these tasks more often than once-per-month.
Table 52. Irregular System Maintenance

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for unused or unneeded file on the CompactFlash.</td>
<td><code>dir /flash</code></td>
</tr>
<tr>
<td>Delete unused or unneeded files to conserve space using the delete command.</td>
<td><code>delete /flash/&lt;filename&gt;</code></td>
</tr>
<tr>
<td>Synchronise the contents of the CompactFlash on both SMCs to ensure consistency between the two.</td>
<td><code>card smc synchronize filesystem</code></td>
</tr>
<tr>
<td>Generate crash list (and other &quot;show&quot; command information) and save the output as a tar file.</td>
<td><code>show support details &lt;to location and filename&gt;</code></td>
</tr>
<tr>
<td></td>
<td>- `[file: ]{/flash</td>
</tr>
<tr>
<td></td>
<td>- <code>tftp://[host[ :port# ]}{/directory] /file_name</code></td>
</tr>
</tbody>
</table>

If there is an issue with space, it is possible to remove alarm and crash information from the system - however, it is not recommended. Support and Engineering personnel use these records for troubleshooting if a problem should develop. We recommend that you request assigned Support personnel to remove these files so that they can store the information for possible future use.

Every 6 Months

We recommend that you replace the particulate air filter installed directly above the lower fan tray in the chassis. Refer to the Replacing the Chassis' Air Filter section of the Hardware Installation and Administration Guide for information and instruction to performing this task.

Table 53. Verify the Hardware Inventory

<table>
<thead>
<tr>
<th>To Do This:</th>
<th>Enter This Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a listing of all cards installed in the chassis with hardware revision, part, serial, assembly, and fabrication numbers.</td>
<td><code>show hardware card</code></td>
</tr>
<tr>
<td></td>
<td><code>show hardware inventory</code></td>
</tr>
<tr>
<td></td>
<td><code>show hardware system</code></td>
</tr>
<tr>
<td>View all cards installed in the chassis with hardware revision, and the firmware version of the on-board Field Programmable Gate Array (FPGAs).</td>
<td><code>show hardware</code></td>
</tr>
<tr>
<td></td>
<td><code>version board</code></td>
</tr>
</tbody>
</table>
Troubleshooting

Troubleshooting is tricky unless you are very familiar with the system and the configuration of the system and the various network components. The issue is divided into three groups intended to assist you with diagnosing problems and determining courses of action.

Problems and Issues

Table 54. Possible Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users cannot Attach to the SGSN - Attach Failure</td>
<td>Typically, the root cause is either a fundamental configuration error or a connection problem either on the system (the SGSN) or the network. Configuration changes may have been made incorrectly on either the SGSN or on the signalling network or access network equipment.</td>
</tr>
<tr>
<td>Users can Attach to the SGSN but cannot Activate a PDP Context.</td>
<td>In most cases, this type of problem is related either to an issue with the LAN connectivity between the SGSN and the DNS server or a general connectivity problem between the SGSN and a GGSN.</td>
</tr>
<tr>
<td>Users can Attach to the SGSN, they can Activate a PDP Context but data transfer isn’t happening.</td>
<td>The problem could be between the GGSN and an external server. The PDP Context indicates that the tunnel between the SGSN and the GGSN is intact, but the lack of data transfer suggests that external servers can not be reached.</td>
</tr>
<tr>
<td>Users can Attach to the SGSN, they can Activate a PDP Context but they encounter other problems.</td>
<td>Problems, such as slow data transfer or a session disconnect for an already established session, can be caused by congestion during high traffic periods, external network problems, or handover problems.</td>
</tr>
</tbody>
</table>

Troubleshooting More Serious Problems

You will see that the commands from the Daily Health Check section are also used for troubleshooting to diagnose problems and possibly discover solutions. And of course, your Support Team is always available to help.

Causes for Attach Reject

If an SGSN receives Attach Request messages but responds with Attach Rejects, then the reason might be found in one of the cause codes. These codes are included as attributes in the Reject messages and can be seen during monitoring with the following command:

```
monitor subscriber IMSI
```
Single Attach and Single Activate Failures

To troubleshoot an Attach or Activate problem for a single subscriber, you will need to begin with the subscriber’s MS-ISDN number. The attached flow chart suggests commands that should assist with determining the root of the problem:

**Figure 88. Troubleshooting Single Attach/Activate Failures**

- **PDP Dropped**
  - Start monitoring subscriber activity with RANAP (56) filter On
  - show subscriber sgsn-only full imsi 123456789012345

- **Analyze Cause Codes**
  - Problem with MS/UE
    - Contact user or ignore
  - Network or Service Problem
    - Contact Cisco TAC

Mass Attach and Activate Problems

The following flow chart is intended to help you diagnose the problem and determine an appropriate response:
Single PDP Context Activation without Data

In a situation where the subscriber has PDP Context Activation but data is going through, the following procedure will facilitate problem analysis. To begin, you must first obtain the subscriber’s MS-ISDN number.
Mass PDP Context Activation but No Data

In many cases, this type of problem is due to a change in the configuration: hardware, interface, routing. The following will suggest commands to help run down the problem:
Figure 91. Troubleshooting Missing Data for Multiple PDP Context Activation

1. PDP Context Activates but No Data Passes
   - Change context to Iu_Gr
   - Run `show ip interface summary` command
     - Check output for interface status
       - Down: Run `show card table` command to verify link status
         - Down: Run `show sgtptu statistics` command to check GTPU throughput
           - Down: Contact Cisco TAC
             - Offline
           - Up: GTPU Status?
             - Offline: Contact Cisco TAC
               - Offline
             - Active: Route Active?
               - Offline: Contact personnel responsible for IP routing
                 - Offline
               - Active

2. Up: Run `show ip route` command to check route activity
   - Route Active?
     - Offline: Contact personnel responsible for IP routing
       - Offline
     - Active

Notice: Page dimension includes 10% margin around the page.
Appendix A
Engineering Rules

This section provides SGSN-specific (2G, 3G, S4-SGSN related) common engineering rules or limit guidelines for the current release. These limits are hardcoded into the SGSN system and are not configurable. The limits are documented here because they should be considered prior to configuring an SGSN for network deployment.

Generic platform and system rules or limits can be found in the “Engineering Rules” appendix in the System Administration Guide.
**Service Rules**

The following engineering rules define the limits for the various services configured on the SGSN (system):

**Table 55. Service Rules for the SGSN**

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of (all) services (regardless of type) configurable per SGSN (system).</td>
<td>256</td>
<td>This limit includes the number of GPRS services, SGSN services, SGTP services, IuPS Services, and MAP Services.</td>
</tr>
<tr>
<td>Max. number of eGTP services supported by a GPRS/SGSN service.</td>
<td>1</td>
<td>When configured for S4-SGSN. The same eGTP service should be associated with both the GPRS and the SGSN service.</td>
</tr>
<tr>
<td>Max. number of HSS peer services supported by a single GPRS or SGSN service.</td>
<td>1</td>
<td>When configured for S4-SGSN.</td>
</tr>
<tr>
<td>Max. number of Gs services supported by a single GPRS or SGSN service.</td>
<td>1</td>
<td>Although the limit is 1 Gs Service configured per GPRS Service or SGSN Service, SGSN service can access multiple Gs Services using Operator Policies.</td>
</tr>
<tr>
<td>Max. number of MAP services supported by a single GPRS (2G) or SGSN (3G) service.</td>
<td>1</td>
<td>Although the limit is 1 MAP Service configured per GPRS Service or SGSN Service, the GPRS or SGSN service can access multiple MAP Services using Operator Policies.</td>
</tr>
<tr>
<td>Max. number of Gs services supported on an SGSN (system)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Maximum number of LACs per Gs service</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Max. number of MAP Service configurations supported by a single SCCP network.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max. number of SGTP services supported by a single GPRS or SGSN service.</td>
<td>1</td>
<td>Although the limit is 1 SGTP Service configured per GPRS Service or SGSN Service, the GPRS or SGSN service can access multiple SGTP Services using Operator Policies.</td>
</tr>
</tbody>
</table>
## SGSN Connection Rules

The following limitations apply to both 2G and 3G SGSNs.

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of entry authentication triplets (RAND, SRES, and KC and quintuplets stored per MM context)</td>
<td>5</td>
<td>5 (unused) + 5 (used) Triplets/Quintuplets</td>
</tr>
<tr>
<td>Maximum number of logically connected SMSCs</td>
<td>no limit</td>
<td>Limit would be based on the number of routes if directly connected. No limit if GT is used.</td>
</tr>
<tr>
<td>Maximum number of logically connected HLRs</td>
<td>no limit</td>
<td>Limit would be based on the number of routes if directly connected. No limit if GT is used.</td>
</tr>
<tr>
<td>Maximum number of logically connected EIRs</td>
<td>1</td>
<td>SGSN will be connected to only 1 EIR.</td>
</tr>
<tr>
<td>Maximum number of logically connected MSCs</td>
<td>see comment</td>
<td>System supports a max of 128 LACs per Gs service and a max of 12 Gs service.</td>
</tr>
<tr>
<td>Maximum number of concurrent PDP contexts per active user</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Maximum number of logically connected GGSNs per Gn/Gp interface</td>
<td>20000</td>
<td></td>
</tr>
</tbody>
</table>
| Maximum number of packets buffered while other engagement               | see comment | - Minimum of 2KB/subscriber.  
- Maximum of 10KB/subscriber -- if buffers are available in the shared pool*. (*SGSN provides a common buffer pool for 2G and 3G subscribers of 10M per session manager; buffers to be shared by all subscribers “belonging” to that session manager.)  
- Additional 2G subscriber buffer pool in BSSGP. |
| Maximum number of packets buffered in suspended state                   | see comment |                                                                                                                                          |
| Maximum number of packets buffered during RAU                          | see comment |                                                                                                                                          |
## Operator Policy Rules

The following engineering rules apply for the entire system when the system is configured as an SGSN.

The limits listed in the table below are applicable for an ASR 5000 running a standalone SGSN application on a PSC2/PSC3. Limits may be lower when using a PSC1 or in combo nodes, such as SGSN+GGSN.

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of Operator Policies</td>
<td>1000</td>
<td>Includes the 1 default policy.</td>
</tr>
<tr>
<td>Maximum number of Call-Control Profiles</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN Profiles</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of IMEI Profiles</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN Remap Tables</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN remap entries per APN Remap Table</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of IMSI ranges under SGSN mode</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of IMEI ranges per operator policy</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN profile associations per operator policy</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Maximum number of Call-Control Profiles per Operator Policy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN remap tables per Operator Policy</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Call-Control Profiles

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of equivalent PLMN for 2G and 3G</td>
<td>15</td>
<td>Mandatory to configure the IMSI range. Limit per call-control profile.</td>
</tr>
<tr>
<td>Maximum number of equivalent PLMN for 2G</td>
<td>15</td>
<td>Limit per call-control profile.</td>
</tr>
<tr>
<td>Maximum number of equivalent PLMN for 3G</td>
<td>15</td>
<td>Limit per call-control profile.</td>
</tr>
<tr>
<td>Maximum number of static SGSN addresses</td>
<td>256</td>
<td>Limit per PLMN.</td>
</tr>
<tr>
<td>Maximum number of location area code lists</td>
<td>5</td>
<td>Limit per PLMN.</td>
</tr>
<tr>
<td>Maximum number of LACs per location area code list</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Maximum number of allowed zone code lists</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Maximum number of allowed zone code lists</td>
<td>no limit</td>
<td>For Release 12.2</td>
</tr>
<tr>
<td>Maximum number of LACs per allowed zone code list</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Limits</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Maximum number of integrity algorithms for 3G</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maximum number of encryption algorithms for 3G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td><strong>APN Profiles</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of APN profiles</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of gateway addresses per APN profile</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
SS7 Rules

SS7 Routing

Table 56. SS7 Routing Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of SS7 routing domains supported by an SGSN</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Maximum number of SS7 routes supported by an SGSN</td>
<td>2048</td>
<td>This includes the self point code of the peer-server.</td>
</tr>
<tr>
<td>Maximum number of routes possible via a link-set</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>Maximum number of routes possible via peer-server</td>
<td>2048</td>
<td>This includes one route for the peer-server and 2047 indirect routes.</td>
</tr>
<tr>
<td>Maximum number of different levels of priority for link sets used in a single route set</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

SIGTRAN

Table 57. SIGTRAN Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of peer servers per LinkMgr</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Maximum number of peer servers per SS7RD</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Maximum number of PSPs per peer server</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Maximum number of ASPs per SS7RD</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Maximum number of SCTP endpoints per ASP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maximum number of SCTP endpoints per PSP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maximum number of SCTP endpoints per PSP (dynamically learnt)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Broadband SS7

Table 58. Broadband SS7 Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of MTP3 linksets</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Maximum number of MTP3 linksets per SS7RD</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Maximum number of MTP3 links per linkset</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Maximum number of MTP3 links per combined linkset</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>

SCCP

Table 59. SCCP Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of SCCP networks</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Maximum number of destination point codes (DPCs)</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>Maximum number of SSNs per DPC</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

GTT

Table 60. GTT Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of associated GTTs</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Maximum number of actions per association</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Maximum number of address maps</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>Maximum number of out-addresses per address map</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
SGSN Interface Rules

The following information relates to the virtual interfaces supported by the SGSN:

System-Level

Table 61. System Rules on the SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supported size for IP packets (data)</td>
<td>1480</td>
<td></td>
</tr>
<tr>
<td>Maximum recovery/reload time</td>
<td>17 mins.</td>
<td></td>
</tr>
</tbody>
</table>

3G Interface Limits

Table 62. 3G Interface Rules for SGSN

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of RNCs</td>
<td>See comment</td>
<td>Supports upto 256 directly connected RNC and 1024 indirectly connected through gateways.</td>
</tr>
<tr>
<td>Maximum number of RNCs controlling the same RA</td>
<td>no limit</td>
<td></td>
</tr>
<tr>
<td>Maximum number of GTPU addresses per SGTP service</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

2G Interface Limits

Table 63. 2G Interface Rules - Gb over Frame Relay

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of NSEs</td>
<td>2048</td>
<td>Limit is total of FR + IP</td>
</tr>
<tr>
<td>Maximum number of RAI s per SGSN</td>
<td>16K</td>
<td>16K is the recommended max RAI per SGSN, however, there is no hard limit imposed. Adding more RAIs may lead to memory issues.</td>
</tr>
<tr>
<td>Maximum number of RAI s per NSE</td>
<td>2.5K</td>
<td></td>
</tr>
</tbody>
</table>
### Engineering Rules

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of NSEs controlling the same RA</td>
<td>no limit</td>
<td></td>
</tr>
<tr>
<td>Maximum number of NSVCs per NSE</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Maximum number of BVCs per NSE</td>
<td>max / SGSN is 64000</td>
<td>Whether or not Gb Flex is enabled.</td>
</tr>
<tr>
<td>Maximum number of cell sites supported</td>
<td>64,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 64. 2G Interface Rules - Gb over IP

<table>
<thead>
<tr>
<th>Features</th>
<th>Limits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of NSEs</td>
<td>2048</td>
<td>Limit is total of FR + IP</td>
</tr>
<tr>
<td>Maximum number of Local NSVLs per SGSN</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Maximum number of Peer NSVLs per NSE</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Maximum number of RAIs per SGSN</td>
<td>16K</td>
<td>16K is the recommended max RAI per SGSN, however, there is no hard limit imposed. Adding more RAIs may lead to memory issues.</td>
</tr>
<tr>
<td>Maximum number of RAI per NSE</td>
<td>2.5K</td>
<td></td>
</tr>
<tr>
<td>Maximum number of NSE controlling the same RA</td>
<td>no limit</td>
<td></td>
</tr>
<tr>
<td>Maximum number of NSVCs per NSE</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Maximum number of BVCs per NSE</td>
<td>max / SGSN is 64000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of cell sites supported</td>
<td>64000</td>
<td></td>
</tr>
<tr>
<td>Maximum number of 802.1q VLANs per Gb interface</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>Maximum number of RAIs per SGSN</td>
<td>2.5K</td>
<td>2.5k is the recommended max RAI per SGSN, however, there is no hard limit imposed. Adding more RAIs may lead to memory issues.</td>
</tr>
</tbody>
</table>