Reporting Guide
for Cisco Unified ICM/Contact Center Enterprise & Hosted
8.0(1)

December 2011

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0833
Table of Contents

Preface .. 1
 Purpose .. 1
 Audience ... 1
 Organization .. 1
 Related Documentation ... 2
 Product Naming Conventions .. 3
 Conventions .. 4
 Obtaining Documentation and Submitting a Service Request ... 5
 Documentation Feedback ... 5

Part 1. Understanding Call Center Reporting ... 7

1. Reporting in Unified ICM/CC ... 9
 What Reporting Application Will You Use? .. 9
 Will You Use Custom Reports? .. 10

2. Reporting Data .. 13
 Real Time Data .. 13
 Historical and Interval Data .. 14
 Configuring Intervals .. 16
 Configuration Data ... 18
 Call Detail Data ... 18
 Database Tables that hold Reporting Data ... 19

3. Why Report Data Can Differ .. 23
 ACD and Unified ICM Reports ... 23
 Real-time and Historical Reports .. 24
 Interval Boundaries ... 24
 Skill Group and Enterprise Skill Group Reports .. 25
 Call Type and Skill Group/Service Reports .. 25
 Reports that Show Base and Sub- Skill Groups ... 26

4. System Architecture and Reporting .. 27
 Central Controller .. 28
 Peripherals and Peripheral Gateways .. 29
 Peripherals in Unified CC Deployments ... 31
 Administration & Data Servers and Administration Clients .. 32
 Historical Data Server ... 33
 Cisco Unified Communications Manager (Unified CC) .. 35
 Reporting Servers ... 35
 Unified IC Servers ... 35
 WebView Servers ... 35
 Agent/Supervisor Desktops ... 36
 Voice Response Units .. 36

5. The Importance of Configuration and Scripting ... 39
 Configuration .. 39
 Naming Conventions in Configuration .. 40
 Scripting ... 40
 Scripting on the ACD (Unified ICM) .. 41
 Handling Unexpected Scripting Conditions ... 41
Part 2. Reporting Entities and Reporting Concepts

6. Agents
 Agent States
 How Agent States are Calculated in Reports
 Agent States and Skill Groups
 Agent State and Task State Relationship
 Agent State Hierarchy for Chat Media Routing Domain
 Reports that Show Agent States
 Agent Logout Reason Codes
 Reports that show Agent Logout Reason Codes
 Agent Not Ready Reason Codes
 Reports that show Agent Not Ready Reason Codes
 Agent Reporting for Outbound Option Campaigns
 Reports that show Agent and Skill Group Activity on Outbound Option Dialing Campaign Calls
 Agent Task Handling
 Types of Tasks
 Task Times
 Agent Routability and Availability for Multichannel Tasks
 Reports that show Agent Task Handling
 Agent Utilization: Full-Time Equivalents and Percent Utilization
 Reports that show Percent Utilization and FTE metrics
 Configuration for Agent Reporting
 Enabling Agent Reporting
 Configuring Agent Data Distribution
 Autoconfiguring Agents
 Enabling Agent State Trace
 Configuring Agent Not Ready Reason Codes
 Configuring Agent Logout Reason Codes

7. Skill Groups
 Enterprise Skill Groups
 Base Skill Groups and Sub-Skill Groups
 The Default Skill Group
 The Role of the Default Skill Group in Reporting
 How New Calls Increment Default Skill Group Statistics
 How Agent to Agent Dialing Increments the Default Skill Group Statistics
 How Transferred and Conferenced Calls Increment the Default Skill Group
 Reporting on Skill Group Operations
 Reports that Show Skill Group Operations
 Reporting on Agent Activity in Skill Groups
 Reports that Show Agent Skill Group Activity
 Skill Group Reporting for Outbound Option Campaigns
 Reports that show Skill Group Activity on Outbound Option Dialing Campaign Calls
 Configuring Skill Groups
 Configuring Skill Groups
 Configuring Enterprise Skill Groups
 Adding an Agent to a Skill Group

8. Agent Teams and Supervisors
 About Agent Teams and Supervisors
 Reporting on Agent Teams
 Reporting on Supervisor Action
Supervisor and Emergency Assist for Existing Call (Unified IC).................................81
About Supervisor Assist and Emergency Assist Reporting (Unified CC)........................82
Barge-In (Unified IC)..82
Intercept (Unified IC)...82
Reports that show information on Agent Teams..82
Configuring Agent Teams and Supervisors...83
Configuring Agent Teams...83
Configuring an Agent to be a Supervisor...83
Selecting or Changing the Team's Primary Supervisor...83

9. Average Speed of Answer (ASA)..85
 How ASA is Calculated..86
 ASA for the Agent and Skill Group..87
 Reports that show ASA for Agents..87
 ASA for Call Types and Services..88
 Reports that show ASA for Call Type and Service...88

10. Redirection on No Answer...89
 Best Practices for RONA..89
 RONA for Unified SCCE and for the IPCC System PG..90
 Reports that Show RONA Metrics...91
 Configuring RONA..91
 Configuring Redirection on No Answer Calls with IP IVR...91
 Configuring Redirection on No Answer Calls with Unified CVP..................................92

11. Call Types and Services..93
 Call Type and Service Type Reports...93
 Call Types..94
 Best Practices for Call Types ...94
 Changing Call Types..96
 Enterprise Routing and Enterprise Reporting for Calls (Unified ICM)......................97
 Call Type Reporting..98
 Call Type Reporting and Outbound Option Campaigns..99
 Call Type Reports in a Parent/Child Deployment...99
 How Calls that Encounter Error Conditions Affect Call Type Reporting................100
 How Calls that Have a Bad Label Affect Call Type Reporting................................100
 How Calls that Experience Redirection on No Answer with IP IVR Affect Call Type Reporting..100
 How Calls that Experience Redirection on No Answer with CVP Affect Call Type Reporting..101
 How Calls that Terminate Label Node and Route to Non-Monitored Devices Affect Reporting..102
 Reports that Show Call Type Data..102

Bucket Intervals (Unified IC)...103
Reports that Show Bucket Intervals..103
Configuring Call Types and Bucket Intervals...104
 Configuring a Call Type...104
 Defining Bucket Intervals..104
 Setting the System Bucket Interval..105
 Setting Bucket Intervals for Specific Call Types..105

Services..105
 Service Members..106
 Enterprise Services (Unified ICM). ..106
 Service Reports...106
 Reports that Show Service Data..107
 Configuring Services and Service Members..108
12. Service Levels..109
 About Service Levels..109
 Service Level Threshold..110
 Service Level Type..110
 Service Level at the Call Type..111
 Service Level at the Skill Group...111
 Service Level at the Peripheral VRU Service (Unified ICM - Aspect Only)............113
 Best Practices for Service Levels..115
 Reports that show Service Level...115
 Configuring Service Levels...116
 Configuring the System Information Service Level for Call Types........................116
 Configuring the Service Levels for Specific Call Types..117
 Service Level Relationships: Media Routing Domain, Peripheral, and Skill Groups 117
 Configuring the Service Level for the Media Routing Domain..............................119
 Configuring the Service Level for a Peripheral..119
 Configuring the Service Level for Skill Groups...120
 Configuring the Service Level for an Aspect VRU...121

13. Short Calls, Abandoned Calls, and Overflow Calls...123
 Short Calls..123
 Abandoned Short Calls..124
 Answered Short Calls..124
 Reports that show Short Calls..124
 Configuring Short Calls for Call Types..125
 Configuring Answered Short Calls for Skill Groups...125
 Abandoned Calls...126
 How Calls that Abandon Affect Call Type Reporting..126
 How Abandoned Short Calls Affect Call Type Reporting...127
 Reports that show Abandoned Calls...127
 Overflow...128
 Reports that Show Overflow..128

14. Outbound Option..131
 Reporting on Outbound Option Campaign Effectiveness......................................132
 Reporting on Agent Performance for Outbound Option Dialing Campaign Calls.....132
 Campaign Query Rule Reporting..133
 Reports that show Campaign Effectiveness...134
 Dialer Reporting..135
 Reports that show Dialer Data...135
 Import Rule Reporting...135
 Reports that show Import Rule Data...136

15. Transfers and Conferencing ...137
 Reporting on Agent Call Transfers and Conferences...137
 Transfers and Conferences Using ACD/Dialed Numbers (Unified ICM)...............138
 How Database Fields Are Affected by Transfers and Conferences......................138
 How Types of Calls are Affected by Transfer and Conference.............................139
 How Skill Groups are Affected by Transfer and Conference..................................139
 Reports that show Agent Transfers and Conferences..142
 About Transfers and Conferences...142
Part 3. Special Reporting Environments

18. Reporting in a MultiChannel Environment

19. Reporting in a Contact Center Gateway (Parent/Child) Deployment

Part 4. Reporting Implications of Data Loss and Component Failover

20. Reporting Implications of Data Loss and Component Failover

Part 5. Peripheral Gateway Processes

21. Peripheral Gateway Processes
Part 6. Routing and Queuing

22. About Routing and Queuing

23. Network Queuing and Reporting

24. Routing in Various Unified ICM Deployments

Appendix A. Unified ICM/CC Report Templates
List of Figures

Figure 1: Setting Reporting Interval in PG Explorer...16
Figure 2: Setting Reporting Interval in System Information..17
Figure 3: Central Controller..28
Figure 4: Peripheral and Peripheral Gateway..30
Figure 5: Administrative Workstation..33
Figure 6: Agent State and Task State Relationship...49
Figure 7: Agent State Hierarchy in Skill Group and MRD..50
Figure 8: Enable Agent Reporting...65
Figure 9: Agent Data Distribution..66
Figure 10: Agent Auto-Configuration..67
Figure 11: Agent State Trace..67
Figure 12: Reason Code List...69
Figure 13: Logout Non-Activity Time..70
Figure 14: Adding Agent to Skill Group..78
Figure 15: RONA Setting in Configuration Manager..91
Figure 16: MRD Hierarchy Example 1: Service level threshold at the MRD...118
Figure 17: MRD Hierarchy Example 2: Changing the Peripheral...118
Figure 18: MRD Hierarchy Example 3: Changing the Skill Group..119
Figure 19: VRU Reporting Options...151
Figure 20: Sample Routing Script for Information Gathering and Queuing...152
Figure 21: Call Type Data for Calls that Abandon after Call Type is Changed...153
Figure 22: Call Type Data for Calls that Abandon before Call Type is Changed...153
Figure 23: MultiChannel Options..164
Figure 24: Parent/Child Deployment..170
Figure 25: Child Skill Group/Parent Service..180
Figure 26: Data Mapping Between Unified CCE child and Unified ICME parent..183
Figure 27: Network VRU in a Gateway Deployment...213
Figure 28: Deployment with Enterprise Routing..220
Figure 29: Sample Script for Enterprise Routing..222
Figure 30: Script Example for Agent Level Routing...228
Figure 31: Sample Script for Hybrid Routing..233
Preface

Purpose

Welcome to the Reporting Guide for Cisco Unified Intelligent Contact Management and Unified Contact Center. This guide explains how to interpret reporting data that is stored in, and retrieved from, the Cisco Unified ICM/Contact Center database. This guide also helps you understand the importance of planning, configuration, and scripting for accurate reporting data.

Audience

This guide is written for anyone who uses WebView or Cisco Unified Intelligence Center (Unified IC) to generate reports from the stock Cisco reporting templates. Stock templates are Cisco templates that are installed with the reporting application, that are populated from the Unified ICM/CC database, and that are qualified by Cisco Systems, Inc.

Contact center supervisors and administrators who are responsible for configuring and scripting Unified ICM will also find this guide useful.

Organization

This guide is organized into parts as follows:

<table>
<thead>
<tr>
<th>This Part</th>
<th>Explains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1: Understanding Call Center Reporting (page 7)</td>
<td>The reporting applications offered for Unified ICM/CCE/CCH</td>
</tr>
<tr>
<td></td>
<td>Custom reporting: what it is and how it can affect performance</td>
</tr>
<tr>
<td>This Part</td>
<td>Explains</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>This Part</td>
<td>Types of reporting data: real-time, historical, configuration, and call detail</td>
</tr>
<tr>
<td></td>
<td>Reasons reporting data can differ when you compare reports</td>
</tr>
<tr>
<td></td>
<td>System Architecture and reporting</td>
</tr>
<tr>
<td></td>
<td>The importance of configuration and scripting</td>
</tr>
<tr>
<td>Part 2: Reporting Entities and Concepts (page 43)</td>
<td>Defines key reporting entities and how they are presented in reports</td>
</tr>
<tr>
<td>Part 3: Special Reporting Environments (page 161)</td>
<td>Multichannel reporting</td>
</tr>
<tr>
<td></td>
<td>Parent/Child reporting</td>
</tr>
<tr>
<td>Part 4: Reporting Implications of Data Loss and Component Failover (page 185)</td>
<td>Explains the data flow from the Logger to the Historical Data Server</td>
</tr>
<tr>
<td></td>
<td>Advises on preventing data loss.</td>
</tr>
<tr>
<td></td>
<td>Lists possible points of failure</td>
</tr>
<tr>
<td>Part 5: Peripheral Gateway Processes (page 197)</td>
<td>Describes four processes on the Peripheral Gateway</td>
</tr>
<tr>
<td>Part 6: Routing and Queuing (page 205)</td>
<td>Explains routing and queuing on Unified ICM</td>
</tr>
<tr>
<td>Appendix A: Unified ICM/CC Report Templates (page 237)</td>
<td>Lists all Unified ICM/CC report templates, with WebView and Unified IC equivalencies as of Release 8.0(1)</td>
</tr>
</tbody>
</table>

Related Documentation

Documentation for Cisco Unified ICM/Contact Center Enterprise & Hosted, as well as related documentation, is accessible from Cisco.com at: http://www.cisco.com/cisco/web/psa/default.html.

Related documentation includes the documentation sets for Cisco CTI Object Server (CTI OS), Cisco Agent Desktop (CAD), Cisco Agent Desktop Browser Edition (CAD-BE), Cisco Unified Contact Center Management Portal, Cisco Unified Customer Voice Portal (CVP), Cisco Unified IP IVR, Cisco Unified Intelligence Center, and Cisco Support Tools. The following list provides more information.

- For documentation for the Cisco Unified Contact Center products mentioned above, go to http://www.cisco.com/cisco/web/psa/default.html, click Voice and Unified Communications, then click Customer Collaboration, and then click Cisco Unified Contact Center Products or Cisco Unified Voice Self-Service Products, then click the product or option you are interested in.
Product Naming Conventions

In this release, the product names listed in the table below have changed. The New Name (long version) is reserved for the first instance of that product name and in all headings. The New Name (short version) is used for subsequent instances of the product name.

Note: This document uses the naming conventions provided in each GUI, which means that in some cases the old product name is in use.

<table>
<thead>
<tr>
<th>Old Product Name</th>
<th>New Name (long version)</th>
<th>New Name (short version)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IPCC Enterprise Edition</td>
<td>Cisco Unified Contact Center Enterprise</td>
<td>Unified CCE</td>
</tr>
<tr>
<td>Cisco System IPCC Enterprise Edition</td>
<td>Cisco Unified System Contact Center</td>
<td>Unified SCCE</td>
</tr>
<tr>
<td>Cisco IPCC Hosted Edition</td>
<td>Cisco Unified Contact Center Hosted</td>
<td>Unified CCH</td>
</tr>
<tr>
<td>Cisco Intelligent Contact Management (ICM) Enterprise Edition</td>
<td>Cisco Unified Intelligent Contact Management Enterprise</td>
<td>Unified ICME</td>
</tr>
<tr>
<td>Cisco Intelligent Contact Management (ICM) Hosted Edition</td>
<td>Cisco Unified Intelligent Contact Management Hosted</td>
<td>Unified ICMH</td>
</tr>
<tr>
<td>Cisco CallManager/Cisco Unified CallManager</td>
<td>Cisco Unified Communications Manager</td>
<td>Unified CM</td>
</tr>
</tbody>
</table>
Conventions

This manual uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Boldface font is used to indicate commands, such as user entries, keys, buttons, and folder and submenu names. For example:</td>
</tr>
<tr>
<td></td>
<td>• Choose Edit > Find.</td>
</tr>
<tr>
<td></td>
<td>• Click Finish.</td>
</tr>
<tr>
<td>italic font</td>
<td>Italic font is used to indicate the following:</td>
</tr>
<tr>
<td></td>
<td>• To introduce a new term; for example: A skill group is a collection of agents who share similar skills</td>
</tr>
<tr>
<td></td>
<td>• For emphasis; for example: Do not use the numerical naming convention</td>
</tr>
<tr>
<td></td>
<td>• A syntax value that the user must replace; for example: IF (condition, true-value, false-value)</td>
</tr>
<tr>
<td></td>
<td>• A book title; for example: Refer to the Cisco CRS Installation Guide</td>
</tr>
<tr>
<td>window font</td>
<td>Window font, such as Courier, is used for the following:</td>
</tr>
<tr>
<td></td>
<td>• Text as it appears in code or that the window displays; for example: <html><title>Cisco Systems,Inc. </title></html></td>
</tr>
<tr>
<td></td>
<td>• Navigational text when selecting menu options; for example: ICM Configuration Manager > Tools > Explorer Tools > Agent Explorer</td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets are used to indicate the following:</td>
</tr>
<tr>
<td></td>
<td>• For arguments where the context does not allow italic, such as ASCII output</td>
</tr>
<tr>
<td></td>
<td>• A character string that the user enters but that does not appear on the window such as a password</td>
</tr>
</tbody>
</table>
Obtaining Documentation and Submitting a Service Request

For information about obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.

Documentation Feedback

You can provide comments about this document by sending an email message to the following address:

ccbu_docfeedback@cisco.com

We appreciate your comments.
Part 1: Understanding Call Center Reporting

Topics:

- Reporting Applications (page 9)
- Reporting Data (page 13)
- System Architecture and Reporting (page 27)
What Reporting Application Will You Use?

Unified ICM/CCE/CCH offers two reporting applications—Unified Intelligence Center (Unified IC) and WebView.

Until Release 7.5(1), WebView was the only reporting application for Unified ICM and Unified CC. In Release 7.5(1), Cisco introduced Unified IC, which will eventually replace WebView.

WebView is a legacy reporting product that will have limited ongoing development. It offers more than 200 report templates. To modify these templates, you must install a third-party application.

Unified IC is a web-based interface that provides stock "all fields" templates - templates that contain all database fields. You can match the WebView templates and can also "save as" and redesign the stock reports by changing the order and the names of columns and by presenting the information graphically as gauges and charts. You can also import additional templates. The premium version of Unified IC comes with a native Report Designer tool for designing new templates.

Appendix A (page 237) contains the list of all templates and identifies the Unified IC templates that correspond to WebView templates.

Reporting Application Installation

• During Web Setup for Unified ICM, you have the option to add a WebView component, to enter the hostname or IP address where the HDS and WebView databases reside, and to enable the WebView database.

If you plan to use both WebView and Unified IC applications as a transition strategy, or if you intend to use WebView only, make the selections indicated during Web Setup to add the WebView component, referring to Web Setup online help for clarification.
If you do not plan to use WebView, you do not need to create a WebView component during Web Setup for Unified ICM.

• Unified IC is a separate installation and is not an option in Unified ICM Web Setup.

If you plan to use both Unified IC and WebView or if you plan to use Unified IC only, you must obtain the Unified IC installation DVD. Contact your Cisco Support Provider for assistance.

Note: For information on capacity guidelines for using both WebView and Unified IC, refer to the [Unified Intelligence Center Hardware and Software Specification (Bill of Materials)](http://www.cisco.com/en/US/products/ps9755/products_user_guide_list.html).

Will You Use Custom Reports?

To determine whether you require custom templates, decide what data you need. Then compare your needs with the data available through the WebView and Unified IC stock report templates as listed in Appendix A (page 237).

What is a custom template?

• If you use WebView, a custom template is any template that is developed with the InfoMaker tool.

• If you use Unified IC, a custom template is:

 – A new template that users with the Report Definition Designer user role have developed, or

 – A stock template for which the Report Definition Designer has done a 'save as' and has altered the SQL.

Note:

• You can design report templates and change the SQL queries of existing templates only if you have the Unified IC Premium license and the Report Designer user role.

• Your Cisco Support provider cannot assist you with custom templates.

Custom templates can affect performance:

Custom templates that include the same types of data provided by the stock reports might not impact database or reporting application performance. However, a resource-intensive customization that processes detailed or application-specific data can decrease performance.

For example, no stock Cisco reports contain the call detail data (page 18) that is stored in the Route_Call_Detail and Termination_Call_Detail tables. To report on this data, you must create
custom templates, and reports that process detail data always decrease the performance of the database and of the reporting applications.
Will You Use Custom Reports?
Reporting Data

Unified ICM manages high volumes of call data, which are processed on the Central Controller. This section explains how reporting data are replicated in the system and are presented in reports.

This chapter contains the following topics:

- Real Time Data, page 13
- Historical and Interval Data, page 14
- Configuration Data, page 18
- Call Detail Data, page 18
- Database Tables that hold Reporting Data, page 19

Real Time Data

In real-time, each Peripheral Gateway (PG) (page 29) passes current status information to Unified ICM software. This current (real-time) data, which is kept in CallRouter memory, includes data about agents, skill groups, services, call types, trunk groups, and other entities.

Every 10 seconds (by default), the CallRouter forwards the current, in-memory data to the Distributor Administration & Data Server, where it is stored on a number of real-time tables in the local Administration & Data Server databases and then distributed to the Administration Clients. Old real-time data is constantly overwritten by new real-time data. No history is kept.

Note: In WebView, the default refresh rate is 15 seconds.

Real-time data moves from the Peripheral Gateways to the CallRouter to the local database on the Administration & Data Server.

Real-time data is stored in tables in data fields that reflect four time increments, as described below.
Real-time Data

Time Increments

<table>
<thead>
<tr>
<th>Half</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Half" values contain a value for the current half-hour. Real-time half-hour values are not affected by Interval configuration. That is, if you set the historical reporting interval to 15 minutes, the Half values in real-time tables represent the current half-hour time period falling between xx:00:00 and xx:29:59, or xx:30:00 and xx:59:59. For example, if it is currently xx:18:33, the CallsOfferedHalf column in the Call_Type_Real_Time table contains a value that reflects the first 18 minutes and 33 seconds of the specific half-hour. When a new half-hour begins, at time (xx:00:00 or xx:30:00), the database element is reset to zero.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Now</td>
<td>"Now" contains a snapshot of the activity at a particular instant (the last check). For example, Unified ICM software tracks CallsQNow, which is the number of calls currently in queue for a service or route. When a call is answered, the CallsQNow count is reduced immediately by one (-1) because the call has left the queue. This change is seen at the next real-time update for reports that query for that value.</td>
</tr>
<tr>
<td>To5</td>
<td>The "To5" values track data on a rolling five-minute basis. The rolling five-minute data employs a "sliding" five-minute window. The To5 data is updated every ten seconds in the database.</td>
</tr>
<tr>
<td>Today</td>
<td>To arrive at values for "Today", Unified ICM software adds the values at the end of each interval since midnight. It also counts the values for the current half-hour. At the end of each half hour, half-hour data (for example CallsOfferedHalf) is summed into the Today data. At midnight, the real-time Today count is cleared in the database. Midnight is defined using the time of the peripheral.</td>
</tr>
</tbody>
</table>

Historical and Interval Data

Unified ICM stores some historical data in *Half_Hour* tables and other historical data in *Interval* tables. Interval tables contain either half-hour or fifteen-minute summaries (but not both), based on Interval flags set in Configuration Manager. See Configuring Intervals (page 16).

<table>
<thead>
<tr>
<th>Historical Data</th>
<th>Description</th>
</tr>
</thead>
</table>
| Interval (30- or 15-minute, based on configuration) | Some, but not all, Half_Hour tables now have an equivalent Interval table. For those Half-Hour tables with corresponding Interval tables, the Half_Hour tables still appear in the database but they are no longer populated.

For Unified IC only (and not WebView) seven of these Interval tables are populated by either half-hour or fifteen-minute data, based on configuration. See Configuring Intervals (page 16).

Note:
- Two Interval tables—Dialer_Interval and Campaign_Query_Rule Interval—always contain 30-minute data.
- Fifteen-minute intervals are not supported for Outbound Option.
<table>
<thead>
<tr>
<th>Historical Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fields in these Interval tables are no longer appended by ToHalf. For example, the Agent_Half_Hour table has a field named AvailTimeToHalf. In the Agent_Interval table, that field is named AvailTime. Interval tables are:</td>
</tr>
<tr>
<td></td>
<td>• Agent_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Agent_Skill_Group_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Peripheral_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Service_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Skill_Group_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Call_Type_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Call_Type_Skill_Group_Interval (15 or 30)</td>
</tr>
<tr>
<td></td>
<td>• Campaign_Query_Rule_Interval (30)</td>
</tr>
<tr>
<td></td>
<td>• Dialer_Interval (30)</td>
</tr>
<tr>
<td>Note:</td>
<td>15-minute intervals are supported for Unified IC only. They are not supported by WebView. Even if you define 15-minute intervals in Configuration Manager, WebView uses database views to pull 30-minute data from the Half-Hour tables into the WebView report templates.</td>
</tr>
<tr>
<td></td>
<td>• If you need to report on 15-minute intervals, use Unified IC for reporting.</td>
</tr>
<tr>
<td></td>
<td>• By default, data is captured in 30-minute intervals.</td>
</tr>
</tbody>
</table>

| Half Hour | Those Half_Hour tables that do not have Interval tables are populated for *completed* half-hour intervals, and the data fields are stored in the database with the extension "ToHalf" (for example, Application_Gateway_Half_Hour.ErrorsToHalf). These elements contain a value for a completed half-hour interval. The completed interval is the time period falling between xx:00:00 and xx:29:59, or xx:30:00 and xx:59:59. For example, it is now 15:50:00. An error occurred at 15:47:00. The half-hour interval reported on right now is for the 15:00:00 to 15:29:59 interval. The error that occurred at 15:47:00 will be written to the database at 16:00:00, when the 15:30:00 to 15:59:59 half-hour interval is complete. |
Historical Data

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples of Half_Hour tables that do not have corresponding Interval tables are:</td>
</tr>
<tr>
<td>• Application_Gateway_Half_Hour</td>
</tr>
<tr>
<td>• Campaign_Half_Hour</td>
</tr>
<tr>
<td>• Trunk_Group_Half_Hour</td>
</tr>
<tr>
<td>• Route_Half_Hour</td>
</tr>
</tbody>
</table>

Five-minute

The five-minute data include many of the same data elements as found in the real-time data. Every five minutes, the CallRouter copies the real-time data to the five-minute tables in the Central Database. In this way, a “snapshot” of the real-time data can be kept in the Central Database and used as historical data.

Currently, WebView uses only one historical five-minute table: Routing_Client_Five_Minute. Unified IC does not use this table.

Note: Enabling five-minute data can have a substantial performance impact on your system. Before you enable reporting on five-minute data, consider the performance impact.

Configuring Intervals

Reporting interval configuration is done in two Configuration Manager screens (PG Explorer and System Information).

- **The PG Explorer Tool** has a Reporting Interval field that affects the following five tables: Agent, Agent_Skill_Group, Skill_Group, Service, and Peripheral.

![Figure 1: Setting Reporting Interval in PG Explorer](image)

When you change this tool from the default (30) to 15, data starts to be written to the interval tables every 15 minutes. (You cannot pick and choose among the five - for example, you cannot set Agent to 30 and Skill_Group to 15.)
The PG Explorer configuration for Interval reporting has the Time Source option to use Central Controller time or ACD time. The option to use ACD time is limited to 30-minute data and to certain ACD types, as explained in the Configuration Manager online help for PG Explorer.

- **The System Information tool** has a Reporting Interval field that affects these two tables: Call_Type and the new Call_Type_Skill_Group.

To access this tool, select **Configuration Manager > Miscellaneous Tools > System Information**.

![Figure 2: Setting Reporting Interval in System Information](image)

When you change the setting in this tool from the default (30) to 15, data starts to be written to the Call_Type and Call_Type_Skill_Group Interval tables every 15 minutes.

You can set the PG Explorer Tool to 15 and the System Information Tool to 30, or vice versa.

If you change the Reporting Interval from 15 to 30 or vice versa, data is not written to the corresponding tables until the next 30-minute interval starts. So if you change it at 11:13, data is written to the appropriate tables beginning at 11:30.

Note:
- Fifteen-minute reporting requires Unified IC. WebView does not support 15-minute reporting.
• Although the database contains a Campaign_Query_Rule table, there is no interval configuration for it and no data is written to it. All 30-minute data is written to the Campaign_Query_Rule_Half_Hour table.

Configuration Data

Configuration tables define the entities and entity names that are defined in Configuration Manager. They contain EnterpriseName fields that associate the key values in the historical tables with the text labels that are used in reports.

Examples of configuration tables are the Agent, Agent Team, Skill Group, and Call Type tables. For example, adding a new Agent Team in Configuration Manager, adds an EnterpriseName for that team in the Agent Team database table.

Configuration Data and Routing Scripts (page 39) are created and edited on the Administration & Data Server, stored on the Administration & Data Server database, replicated to the Central Database, and then to other Administration & Data Servers.

Call Detail Data

There are two database tables that store call detail, as described below:

• Route Call Details

For every call routing request it handles, the Router records detailed data about the call and how it was routed to a peripheral by Unified ICM. This route call detail data (RCD record) is stored in the Route_Call_Detail table.

RCD data is written to the database when the script ends. Non-routed calls, such as direct dials, transfers, and conferences, have no RCD records.

You can use the data in the Route_Call_Detail table to see the starting point of the call. For example, you can see the ANI, any CEDs entered, and the type of request made. A typical Route_Call_Detail record might describe a call that originated with a Pre-Routing (page 207) request, had an ANI of 9785551000 and CED such as an account number. In addition, route call detail tells you how long the call was held in a enterprise queue.

• Termination Call Detail

A detailed termination call detail data (TCD record) is written for each call that arrives at a peripheral (provided the proper monitoring is enabled for the peripheral).

The TCD record is written after the call segment terminates and the after-call work is complete.

Specifically, the CallRouter creates the Termination_Call_Detail record when it receives a “ClosedCallInd” message from the Open Peripheral Controller (OPC). OPC generates the ClosedCallInd message when a call is terminated (that is, when any after-call work associated with the call has completed, or when a call that was not connected to an agent is terminated).
For example, typical Termination_Call_Detail data might show that the call was an Inbound ACD Call, that it was handled by a particular Skill Group; and that a particular agent handled the call. The Termination_Call_Detail record also describes the call’s final disposition (that is, how the call terminated; abandoned in network, disconnect/drop, abandoned delay, and so forth).

There can be many TCDs created per call, and it is possible for a call to have TCDs records but no RCD records

The Termination_Call_Detail table includes records that indicate which TCDs were used to create the Call Type and the Call Type Skill Group reports.

Although Call Detail records are stored in the Route_Call_Detail and Termination_Call_Detail tables, none of the standard (stock) reports retrieve data from these two tables for performance reasons. See Will You Use Custom Reports? (page 10)

Note: These two detail tables can become very large. You must extract the data from the HDS into your own custom database on a separate server (one that is not used for other Unified ICM/CC components). Use only DBDateTime (date and time of the record that was written to the HDS database) to perform the extraction. The tables on the custom database can be indexed according to the custom reporting needs.

To use Call Detail data in reports, you must create custom reports that populate from your custom database.

Database Tables that hold Reporting Data

All report data is pulled from tables and rows in the Unified ICM/CC database. Many fields are direct database values, as reflected in their displayed column names in the reports.

For example:

- The direction of the active task on which the agent is currently working is derived from Agent_Real_Time.Direction.

- The number of calls to the trunk group that abandoned in queue since midnight is derived from Trunk_Group_Real_Time.CallsAbandonedToday.

Other report data fields are less obvious—either because they represent calculated values, because the same data-entity name is used in multiple contexts, or because they are calling database values whose names are not clearly indicative.

Calculated Fields. Many report values are the result of calculated fields. For example, in reports that present Skill Group Real Time activity, the Average Active Time (AAT) is calculated as follows: Skill_Group_Real_Time.HandledCallsTalkTimeTo5 /Skill_Group_Real_Time.CallsHandledTo5. Refer to the WebView online help and to the Unified Intelligence Center Report Template Guide for details on the calculated fields.
Fields Used in Many Tables and Context. Examples are the fields Deleted, Description, and EnterpriseName, which appear in many tables.

The Database Schema Handbook also lists field values such as Agent State values and Call Disposition flags.

Database tables that store reporting data:

- Agent
- Agent_Event_Detail
- Agent_Half_Hour (used for WebView)
- Agent_Interval (used for Unified IC)
- Agent_Logout
- Agent_Real_Time
- Agent_Skill_Group_Half_Hour (used for WebView)
- Agent_Skill_Group_Interval (used for Unified IC)
- Agent_Skill_Group_Real_Time
- Agent_State_Trace
- Agent_Team
- Agent_Team_Member
- Application_Gateway
- Application_Gateway_Half_Hour
- Application_Path_Real_Time
- Business_Entity
- Call_Type
- Call_Type_Half_Hour (used for WebView)
- Call_Type_Interval (used for Unified IC)
- Call_Type_Real_Time
• Call_Type_Skill_Group_Half_Hour (used for WebView)
• Call_Type_Skill_Group_Interval (used for Unified IC)
• Enterprise_Service
• Enterprise_Service_Member
• Enterprise_Skill_Group
• Enterprise_Skill_Group_Member
• Campaign
• Campaign_Query_Rule
• Campaign_Query_Rule_Half_Hour
• Campaign_Query_Rule_Real_Time
• Controller_Time
• Dialer
• Dialer_Half_Hour (used for WebView)
• Dialer_Interval (used for Unified IC)
• Dialer_Real_Time
• Dialer_Port_Real_Time
• Import_Rule
• Import_Rule_History
• Logical_Interface_Controller
• Master_Script
• Media_Routing_Domain
• Network_Trunk_Group
• Network_Trunk_Group_Half_Hour
• Network_Trunk_Group_Real_Time
• Peripheral
• Peripheral_Half_Hour (used for WebView)
• Peripheral_Interval (used for Unified IC)
Database Tables that hold Reporting Data

- Peripheral_Real_Time
- Person
- Physical_Interface_Controller
- Query_Rule
- Reason_Code
- Route
- Route_Half_Time
- Route_Real_Time
- Routing_Client
- Routing_Client_Five_Minute
- Script
- Script_Queue_Real_Time
- Service
- Service_Array
- Service_Array_Member
- Service_Half_Hour (used for WebView)
- Service_Interval (used for Unified IC)
- Service_Member
- Service_Real_Time
- Skill_Group
- Skill_Group_Half_Hour used for WebView)
- Skill_Group_Interval (used for Unified IC)
- Skill_Group_Real_Time
- Trunk_Group
- Trunk_Group_Half_Hour
- Trunk_Group_Real_Time
Why Report Data Can Differ

This section explains how and why data can differ in reports.

This chapter contains the following topics:

- ACD and Unified ICM Reports, page 23
- Real-time and Historical Reports, page 24
- Interval Boundaries, page 24
- Skill Group and Enterprise Skill Group Reports, page 25
- Call Type and Skill Group/Service Reports, page 25
- Reports that Show Base and Sub-Skill Groups, page 26

ACD and Unified ICM Reports

Data collected and presented on Unified ICM reports to measure customer experience and agent performance is expected to differ from data collected and presented in the ACD reports. This is also the case for parent/child reporting in a Contact Center Gateway deployment (page 169).

Unified ICM reports give an enterprise-wide view of all your call centers. ACD reports are specific to a particular call center. For most accurate data, report at the source.

Here are some of the reasons that cause variations:

- Differences due to timing and transmission delays. All times computed in Unified ICM reports, such as various state transitions, are based upon event arrival time at Unified ICM Central Controller, not on the actual event occurrence on the ACD. Network transmission delays cause variations in reported times between reporting data seen on Unified IC/WebView reports and ACD reports.

- Differences in supported concepts and terminology. Differences in supported concepts and the way that similar concepts are implemented can cause variations in the data available to measure agent performance and customer experience.
For example, while Unified ICM and an ACD might both support the concept of agent states, the ACD might not support as many state options as Unified ICM software. In addition, some similarly named agent states might not have the same definition on both systems.

- **Differences in configuration.** Differences in configuration on the ACD and the Configuration Manager can lead to discrepancies in reporting. If devices are not configured in Configuration Manager or if they are configured with different settings than on the ACD, reports might not track certain statistics at all or might report different metrics.

- **Different methods of measuring and storing data.** Unified ICM and the ACD might differ in the way in which data segments are defined and counted. One example is how the individual agent’s time is measured and stored in relation to how that agent’s time spent in a conference call is measured and stored.

- **Different methodologies for sampling data.** For example, Unified ICM and the ACD might differ as to when an event is considered to have started and to have ended.

- **Differences in terminology and in the definitions of data elements.** On the surface, naming conventions might appear to be the same but, in fact, are not. For example, Unified ICM and the ACD might use different criteria to evaluate what constitutes an ‘offered call’.

Refer to the *ACD Supplement Guides* for details.

Real-time and Historical Reports

Counts in real-time data (for example `CallsHandledTo5`) do not match up with counts in the historical interval records (for example, `CallsHandled`) because the real-time data is moved to the historical database at the end of each half-hour interval.

Consider this example: at 8:55 a call comes into the contact center and is answered by an agent.

- The real-time count for `CallsAnswered` increases by one (+1).
- Between 8:55 and 9:00, the real-time data shows the answered call.
- The answered call does not populate the half-hour data until 9:00, when the 8:00 to 8:29:59 interval ends.

Interval Boundaries

Counts that would typically match up for a day, such as `CallsOffered` and `CallsHandled`, might not always match up over specific half-hour or quarter-hour intervals. This is because the counts for some data elements might be increased across boundaries.

Consider this example: at 8:55, a call comes in to the contact center and is answered by an agent. The agent completes the call at 9:05.
In the historical database, the call is counted as offered in the 8:30:00 to 8:59:59 interval.

The call is counted as handled in the 9:00:00 to 9:29:59 interval.

If you run a report for the 9:00:00 to 9:29:59 interval, it appears that tasks handled does not equal tasks offered for the interval.

You also might notice that tasks offered does not equal task abandoned + tasks handled for a half-hour interval. Tasks offered reflects the number of calls and tasks that were offered to agents in this interval, while tasks handled and tasks abandoned might include calls that were offered in the last interval and completed in this interval. Some historical report templates group statistics into "Completed Tasks" to indicate that the statistics represent all calls and tasks that completed in this half-hour interval.

In general, half-hour boundary issues are reduced if you run daily reports. However, if your contact center runs 24 hours a day, you might still notice discrepancies for the 11:30:00 to 11:59:59 and 12:00:00 to 12:29:59 intervals.

Skill Group and Enterprise Skill Group Reports

You can expect double counting in Enterprise Skill Group reports when a call is queued to multiple skill groups and those skill groups are associated with the same Enterprise Skill Group.

See also Skill Groups (page 71).

Call Type and Skill Group/Service Reports

Do not compare Call Type reports to Skill Group or Service reports. Skill Group and Service reports might have statistics for calls that were routed directly to the ACD and not routed by Unified ICM.

Certain statistics are computed differently when Enterprise queue are used. See About Routing and Queuing (page 207).

In Unified ICM with ACD environments, services define call treatment. All skill groups belong to specific services and, therefore, skill group data rolls up to the service. Reports for services provide call treatment information for all of the skill groups assigned to those services.

Call Type reports in Unified ICM primarily provide call routing statistics and contain no other call handing statistics, unless they used translation routing. You might notice that data for a Call Type and the skill group(s) related to the Call Type through a routing script do not match. If a skill group is used in multiple scripts, reporting for that skill group includes data for all of the Call Types to which it is assigned. If a Call Type routes to multiple skill groups, data for the Call Type is distributed among those skill groups.
Reports that Show Base and Sub-Skill Groups

Some ACDs available to Unified ICM support the concept of prioritized skill groups (sub-skill groups). For these ACDs, Configuration Manager supports this concept and allows you to distinguish priority levels (primary, secondary, and so forth) of a base Skill Group.

The Configuration Guide for Cisco Unified ICM/Contact Center Enterprise and Hosted Guide lists these ACDs.

When sub-skill groups are configured, Unified ICM configuration creates a base skill group for these sub-skills. If sub-skill groups exist, when you generate a report from the Agent By Skill Group and Skill Group By Peripheral categories, select the sub-skill groups (and not the base skill groups) from the Skill Groups item-selection list.

If you select both the base skill group and the corresponding sub-skill groups from the Skill Groups item-selection list, the reports will show data for both base and sub skill groups, making the report summaries incorrect. (The data in the base skill group is a roll up of data from the sub-skills.)

If no sub-skill groups are configured, then select the base skill group from the Skill Groups item-selection list.

For Skill Group By Enterprise reports, you must determine which skill groups to include in the Enterprise skill group. If you configured sub-skill groups from several peripherals or from different media, group only the sub-skill groups into the Enterprise Skill Group and not both base and sub-skill groups.

Note: Sub-skill groups are not supported for Unified CC.
System Architecture and Reporting

Cisco Unified ICM software distributes incoming telephone calls and web-initiated requests to skill-appropriate, available agents across multiple contact centers.

It does this by tracking activity on all monitored devices. This includes tracking the current call handling state of each agent, the number of agents in a particular state, and the time that agents spend in these states.

Unified ICM also collects data about the call status and activity at each contact center, such as the number of calls in progress, the number of calls in queue, calls handled, and how calls were routed.

These collected data, which are essential to intelligent enterprise routing, are also made available for enterprise-wide reporting of agent performance, customer experience, and system operations.

This chapter provides a high-level overview of the system components that make up the Unified ICM/CC architecture and explains how those components are relevant for routing and reporting.

Note: For clarity, the content and illustrations in this chapter describe the interaction of logical components. They do not represent physical models, which are typically provisioned in a duplexed manner.

This chapter contains the following topics:

- Central Controller, page 28
- Peripherals and Peripheral Gateways, page 29
- Administration & Data Servers and Administration Clients, page 32
- Historical Data Server, page 33
- Cisco Unified Communications Manager (Unified CC), page 35
- Reporting Servers, page 35
- Agent/Supervisor Desktops, page 36
- Voice Response Units, page 36
The Central Controller serves as the clearinghouse for routing and reporting data. It does this by receiving route requests, making routing decisions, and monitoring data messages about what is happening in the system.

The Central Controller is installed on one or more servers and comprises three major components: the CallRouter (Router), the Logger, and the Central Database.

Note: The CallRouter, the Logger, and the Central Database can be installed on the same computer—or—the CallRouter can be installed on one computer, and the Logger/Central Database can be installed on another computer. The Logger and the Central Database are always co-located on the same computer.

- CallRouter (Router)

 The CallRouter receives notification from a routing client (such as a Network Interface Controller or a Peripheral Gateway) that a call is in need of some form of routing. It then executes a user-defined routing script that specifies how the routing client is to handle the call.

 These routing scripts are created on the Administration & Data Server, are replicated and stored in the Central Database, and are loaded into CallRouter program memory.

 In addition to receiving routing requests, the CallRouter receives messages from all Peripheral Gateways (page 29) that monitor real-time status events in the network.

 These messages update the system's current representation of agents and system resources. Awareness of the current status of these resources is essential to the routing scripts.
The CallRouter serves as a real-time server by immediately forwarding this data directly to the Administration & Data Server so that it is available to appear in reports. The CallRouter also writes records to the Central Database on the Logger.

• **Logger and Central Database**

The **Logger** receives data from the CallRouter (such as detail messages about calls and summary messages that have been computed by the Peripheral Gateways) and serves as the interface between the CallRouter and the SQL Server database manager.

The following data-management processes occur at the Logger:

- Data is written first to temporary tables.
- Data is then written to actual tables on the Central Database.
- Historical records on the Central Database are replicated to the **Historical Data Servers** (page 33) on one or more Administration & Data Servers.

The **Central Database** serves as a buffer where data is committed to quickly support the performance of the CallRouter. The Central Database stores the following data:

- Configuration data, as entered and changed on the Administration & Data Server
- Routing scripts, as entered and changed on the Administration & Data Server
- Summary historical data (**page 14**) passed from the CallRouter
- Termination and CallRouter call detail data (**page 18**)

The Central Controller Database stores no real-time data.

Peripherals and Peripheral Gateways

The Central Controller obtains the routing and reporting data that it processes by communicating with each network **peripheral**.

A peripheral is a device (such as an ACD, a PBX, or an IVR) that receives calls that have been routed by Unified ICM software. A peripheral can also distribute calls or non-voice media contacts.

The Central Controller communicates with each peripheral through a monitoring node called the **Peripheral Gateway (PG)**.

Each peripheral requires a connection to a PG, and Unified ICM software has unique PGs for each device it supports. There are PGs that connect to Voice Response Units (VRUs). There are Media Routing PGs, used to send routing requests from multichannel options that are integrated into the system.
There are also specific PGs that connect to ACDs.

For example:

- The Definity ECS PG connects to an Aspect and Avaya ACD, respectively, for enterprise routing and reporting.

- The IPCC Gateway is the PG used for enterprise routing and reporting to a Cisco IP-ACD such as Unified CC and Unified IPCC Express.

- The ARS PG connects to an ACD/PBX. This deployment allows for enterprise queuing and agent-level routing.

If multichannel options have been integrated into the system, the configuration also includes Media Routing Peripheral Gateways (MR PGs) used to send routing requests from the multichannel applications to Unified ICM/CC software.

Note: Unified ICM is not supported with Outbound Option.

A single Media Routing Peripheral Gateway (MR PG) can support multiple applications; you configure a separate PIM for each application.

It is important to understand the type of peripheral gateway used in your deployment (page 219). In real-time, the CallRouter receives performance and monitoring information from each PG every few seconds. The CallRouter holds this data in memory and uses it to make routing decisions. This real-time information is constantly overwritten in the CallRouter memory by new data.

The illustration below shows a Unified ICM, and the peripheral is an ACD.

Figure 4: Peripheral and Peripheral Gateway
Processes on the PG interpret messages on the peripheral and provide data to Unified ICM as follows:

- By extracting status information from the peripheral through the peripheral’s proprietary CTI interface,
- By normalizing that information and converting it into the format that Unified ICM uses,
- By forming database objects (Call object, Agent objects, Routing objects, and so forth) from the information, and
- By passing the normalized data to the CallRouter.

These processes are detailed in Peripheral Gateway Processes (page 199).

Peripherals in Unified CC Deployments

In Unified CC deployments that use the Generic PG (which allows multiple peripherals of different types to reside inside of the same PG), or separate PGs for Unified CM and the VRU, the Unified CM and VRU appear as separate peripherals to the software. Each time a task switches between the Unified CM and the VRU peripherals, it appears as a new task to the system.

From a reporting perspective, this has an impact on how and when data is collected:

- A call that comes into the Unified CM, is then transferred to the VRU, and then back to an agent looks like three separate tasks (calls). A Termination_Call_Detail is written for each call.
- A call that is queued to a skill group and later answered by an agent is not considered as offered to a skill group until the call is answered.

In a Unified CC deployment with an IPCC System PG (including the Unified SCCE deployment), the IPCC System PG consolidates the Unified CM and VRU peripherals into a single peripheral. In this case, each time a task switches between the Unified CM and the VRU peripheral, the task appears as a single task to the Unified CC system.

In this deployment, data is collected as follows:

- A call that comes into the Unified CM, is then transferred to the VRU, and then back to an agent looks like a single call to the Unified ICM/CCE/CCH software. A single Termination_Call_Detail is written.
- A call is considered as offered to a skill group when the call is queued to a skill group.
Administration & Data Servers and Administration Clients

Administration & Data Server

The data that is available for reports is determined by the role selected at setup for the Administration & Data Server. The Administration & Data Server was formerly named the *Distributor Admin Workstation (AW)*.

Depending on the setup selection, the Administration & Data Server can capture some or all of the following:

- Real Time data
- Historical data
- Configuration data
- Detail Data Store (DDS)

A DDS comprises:

- Call Detail data (Termination Call Detail and Route Call Detail for custom reporting)
- Support for additional indexes for the System Call Trace tool
- Call Variable data
- Agent State Trace data

Unified ICM software can support multiple Administration & Data Servers.

Administration Client

The Administration Client - formerly named the *Client AW* - allows you to access the Configuration Manager tools without installing a full Administration & Data Server with databases. The Administration Client must point to an Administration & Data Server.

The Administration Client is typically installed on a laptop or personal desktop where installation of a full Administration & Data Server is not desirable. There is a separate, small installer for the Administration Client, which provides a configuration utility specific to the Administration Client.
An Historical Data Server (HDS) is required if you plan to use historical reports. The Historical Data Server (HDS) must reside on an Administration & Data Server.

The HDS is enabled at setup and created using the ICMDBA tool.

Note that, as a fault-tolerant strategy, two Administration & Data Servers are typically set up at a site as HDS machines, each with its own HDS database.

Depending on your selection at setup, the HDS can contain only historical data (page 14) or both historical data and call detail data (page 18) forwarded from the Logger.

This historical data is not accessed directly, but rather through views that exist in the local Administration & Data Server database. To retrieve information for historical reports, the reporting application connects to the Administration & Data Server where the HDS resides.

Follow these guidelines to ensure that your Historical Data Server is configured to meet reporting needs:

- **Decide how many Historical Data Servers you require.**

 The number of Historical Data Servers that you configure depends on how long the HDS will take to back up and on your reporting demands. If you are storing large amounts of data, backup might take several hours. If you want to run reports while the HDS is backing up, configure at least one additional HDS to use to run reports.

 For Unified SCCE deployments, the required number of HDSs are installed automatically for your selected deployment.
• **Determine the type(s) of HDS, based on the deployment size and the role of the Administration & Data Server (page 32).**

• **Determine the size of the HDS.**

The size of the database depends on the size of your configuration and on how long you want to retain data.

Note: In Unified SCCE deployments, the HDS size is configured automatically during installation. During configuration, you determine how long you want to retain reporting data before it is purged automatically from the databases. Data beyond the configured retention time is purged automatically each day at 12:30PM.

Configuration that impacts the size of the HDS includes the number of call types, skill groups, agents, skills per agent, routing clients, trunk groups, services, peripherals, scripts, calls routed daily, and calls terminated daily.

The larger the configuration, the bigger the HDS must be to store data. For example, the historical call type database tables store data for each call type for each five minute and 15- or 30-minute interval.

The amount of time that you want to retain data on the HDS also affects database size. Decide how long you want to retain reporting data before it is automatically purged from the databases. Data beyond the configured retention time is purged each day at 12:30 PM.

You can use the Database Administration (ICMDBA) tool to estimate the sizes of your databases. The tool prompts you for your configuration information and the amount of time that data is retained in the databases.

• **Determine how you want to back up the HDS.**

You can back up the HDS either while the HDS is running or while it is offline (generally when the contact center is closed or during a time with low call volume).

Performing a backup during peak hours while the HDS is running can impact performance, especially if you are backing up a large amount of data. While the HDS database is being backed up, new data from the Logger is stored in the transaction log. If the transaction log reaches maximum capacity before the HDS has completed the backup, updates to the database stop until an administrator manually empties the log.

It is preferable to back up at a regularly scheduled time when the contact center is not busy. You can also take the HDS offline and perform a backup. However, the HDS is not available for reporting when it is offline. If you plan to back up the HDS database while offline, you might want to configure a secondary HDS to use for reporting during the backup interval.

• **Determine the HDS backup schedule and the number of days for which data is retained on the Logger.**

You can configure the number of days for which data is stored in the Logger Central Database and the HDS.
The Logger stores data for less time than the HDS. For example, you might store two weeks of data on the Logger and a year of data on the HDS. Configure the amount of time that data is stored on the Logger in relation to the schedule for HDS backups to ensure that you do not lose data in the event that the HDS goes offline.

See also: Data Flow from Logger to Historical Data Server (page 187).

Cisco Unified Communications Manager (Unified CC)

For the Unified CC environment, Cisco Unified Communications Manager (Unified CM) provides features comparable to those of a traditional PBX system to Voice over IP telephony devices such as Cisco IP phones and VoIP gateways.

Unified CM handles the switching requirements of the Unified Contact Center system and allows deployment of voice applications and the integration of telephony systems with Intranet applications.

Reporting Servers

Unified IC Servers

Depending on the deployment model, there might be from one to eight Unified IC servers.

The Unified IC web server application on the Unified IC server(s) is configured to connect to a Unified ICM/CCE Administration & Data Server and to populate reports with the databases on that data source.

To select and generate reports, reporting users log in to the Unified IC web application from their browser.

WebView Servers

The WebView server consists of components that enable it to retrieve user-specified items from the databases and to display that data in one of several hundred reporting templates offered in the WebView application.

In a standard deployment, a single WebView server is installed co-resident with the Administration & Data Server. In a large-customer deployment, multiple WebView servers can be installed on separate machines.

Regardless of the deployment model, the WebView server is configured at installation to point to, and to retrieve real-time and historical reporting data from, the databases on the Administration & Data Server.
To select and generate reports, reporting users (who are typically supervisors and contact center managers) log in to the WebView application from a browser on their WebView client workstation.

Agent/Supervisor Desktops

Unified ICM supports two server-based CTI solutions that provide desktops for contact center agents and supervisors. These are Cisco CTI Object Server (CTI OS) and Cisco Agent/Supervisor Desktop (CAD).

Certain settings must be configured on the Agent Desktops to match corresponding settings configured in Configuration Manager.

An example of Agent Desktop settings that must synchronize with Configuration Manager settings are Logout and Not Ready reason codes—if they are supported for the ACD.

Voice Response Units

Voice Response Units (VRUs) are computers that run Interactive Voice Response telephony applications.

Your enterprise might implement one or more types of IVR applications on a VRU platform to serve several purposes:

- **Information gathering.** The IVR prompts for certain information through DTMF digit or ASR (Automatic Speech Recognition) collection. The information is used in the routing decision and is passed to the agent desktop.

- **Self service.** The IVR prompts for and provides certain information to the caller, such as account balance. The entire call transaction might take place within the VRU.

- **Queuing.** The VRU serves as the queue point by playing announcements or music to the caller until an agent is available.

VRUs can be integrated into Unified ICM software in several ways: at an enterprise (network) level, as a premise-based VRU for an ACD, or as a Virtual VRU on an ACD/PBX if that feature is supported on the ARS PG. The way in which a VRU is integrated into Unified ICM systems affects the flow of call processing and determines the type of data Unified ICM can collect from the IVR.

For example, a Network VRU provides data used in call routing, monitoring, and reporting. Only Service Control VRUs can be used as Network VRUs. A Service Control VRU is a VRU that implements the Service Control Interface protocol. The Service control protocol allows the VRU to utilize ICM to control call treatment and queuing. Example: provides the capability of executing VRU scripts as commanded by the ICM. A VRU that has an interface only to the ACD has more limited capabilities.
Because VRUs support different features and behave differently, reporting data is affected by the type of VRU you have deployed in your system.

See also:

Network Queuing and Reporting (page 213)

Reporting on VRU Applications (page 150)
Chapter 5

The Importance of Configuration and Scripting

You can report on contact center data as soon as the System Administrator has (1) completed configuration and has (2) created routing scripts, in that order.

Configuration Data and Routing Scripts (page 39) are created and edited on the Administration & Data Server, stored on the Administration & Data Server database, replicated to the Central Database, and then to other Administration & Data Servers.

This chapter contains the following topics:

• Configuration, page 39
• Scripting, page 40

Configuration

Open the Configuration Manager from the Cisco Unified CCE Tools folder on your desktop to enter and update information about the entities that are part of your enterprise.

Configured entities are stored as records in the Central Controller database tables. These include agents, call types, devices, PGs, services and service members, skill groups, and translation routes.

For error-free routing and accurate reporting, it is crucial to configure all peripheral targets—that is, any and all destinations to which a call can be sent. Reports show no data for devices that are not configured and monitored.

Changes and additions that you make in Configuration Manager are immediately applied to the Central Database on the Logger and are copied to all local databases.
Naming Conventions in Configuration

Before configuring the system, consider how you want to name the reporting entities that you will be configuring—such as peripherals, skill groups, and agents.

The configured names for these entities appear in the Webview and Unified IC user interfaces as selection criteria for filtering reports. They are selected from Value Lists and Collections in Unified IC and as Items in WebView.

Use meaningful naming conventions to help reporting users interpret and locate the appropriate report selection items. For example, append the same prefix for all items associated with a particular site and use descriptive text to identify call types.

Scripting

After your configuration is defined, create routing scripts using the Script Editor. Unified ICM software uses these routing scripts to determine the best destination for a call by assessing the current call center activity that is extracted and forwarded by the PGs. The call flow defined in the script determines the data that is gathered for reporting.

Routing scripts contain instructions that:

• Examine the call information provided by the routing client and use that information to classify the call as a particular call type.

• Determine the best destination for the call.

• Direct the call to an appropriate routing target; for example, to an individual agent, to a skill group, or to an appropriate announcement.

• Post-route transfers and conferences.

Routing scripts are a representation of your business rules. You can create a specific set of scripts to be executed for each call type, such as Sales or Support. For more granular reports, you might want to create multiple scripts; for example, you might create a script for initial call classification and also create scripts that route calls that are sent to particular services or skill groups on different ACDs.

You can also schedule different scripts to be used at different times of the day or different days of the week and year for each call type, and you can use dialed numbers to direct calls to scripts that handle transfers.

Routing script data are stored in the Central Controller database. Scripting changes that you make are applied to the local database, immediately update the Central Database on the Logger, and are copied to all local databases. You cannot alter scripts directly. Instead, you create and maintain routing scripts with the Script Editor, one of the tools on the Administration & Data Server.

Scripting on the ACD (Unified ICM)

Refer to your ACD Supplement Guide for any modifications you need to make in your ACD scripts. For example, you might need to modify your ACD scripts to include SEND INFO commands that notify Unified ICM when a call state transition occurs.

Also, ensure that the script the ACD follows to route the call to the appropriate agent takes into account the Services and the Service Members (skill groups) that are configured in Unified ICM.

Handling Unexpected Scripting Conditions

Decide whether you want calls that encounter unexpected scripting conditions to be counted as default-routed or as errors.

If you want the calls to count as default-routed:

- Plan to configure default labels for each dialed number. When a call is routed to a default label, the call is added to the count of default routed calls for the call type. If the call cannot be routed and a default label is not assigned, the call is counted as an error.

- Also, plan to include a Termination Node with Termination type of default label for all scripts in which there is some unexpected input (else condition).

In all scripts, account for failure by creating a path for calls that encounter unexpected conditions. You might want to route these calls to voicemail, an announcement, or a busy signal.
Part 2: Reporting Entities and Reporting Concepts

Topics:

• Agents (page 45)
• Skill Groups (page 71)
• Agent Teams and Supervisors (page 79)
• Average Speed of Answer (ASA) (page 85)
• Redirection on No Answer (page 89)
• Call Types and Services (page 93)
• Service Levels (page 109)
• Short Calls, Abandoned Calls, and Overflow Calls (page 123)
• Outbound Option (page 131)
• Transfers and Conferencing (page 137)
• Operational Reporting (page 145)
• IVR / VRU Self Service (page 149)
Agents

A call center agent is the person who handles incoming or outgoing customer calls for a business. An agent is associated with a peripheral and is a member of one or more skill groups. Agents might also be organized into teams. Mobile agents who connect to the call center by phone and VPN are treated like any other agents.

Reporting on agents can assist with measuring performance, determining incentives, and identifying training needs.

Agent names are retrieved from the Person and Agent tables as follows:

For Agents and Skill Groups: The last and first name from Person.

For Agent Team: The agent's last name and first name from Person and agent's skill target ID from Agent.

This chapter contains the following topics:

- Agent States, page 45
- Agent Logout Reason Codes, page 51
- Agent Not Ready Reason Codes, page 53
- Agent Reporting for Outbound Option Campaigns, page 56
- Agent Task Handling, page 56
- Agent Utilization: Full-Time Equivalents and Percent Utilization, page 63
- Configuration for Agent Reporting, page 64

Agent States

Agent states are determined from an agent’s activity within a skill group. Agent state is recorded in numerous database tables and is presented in reports as both a number (Not Ready) and as a percentage (% Not Ready).
You can monitor agent states in real-time to view current agent activity. You can also review past performance data to identify trends in agent states. For example, historical reports can show how much time an agent spends in Not Ready state, which indicates whether the agent is adhering to the schedule.

Note: For Unified ICM, agent state data is forwarded from the peripheral. Agent states reported by the ACD might not be equivalent to agent states reported by Unified ICM. And for some ACDs, certain Agent States might not be applicable at all. For example, an ACD might support the Work Ready state but not the Work Not Ready state. See the appropriate ACD Supplement Guide for information on ACD Agent State definitions and how they correspond to Unified ICM Agent States.

Note also that information for some states is different for the chat MRD. This table highlights these differences.

Table 1: Agent States that Appear in Reports

<table>
<thead>
<tr>
<th>State in Skill Group</th>
<th>Description for all MRDs except chat</th>
<th>Description for chat MRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/Talking</td>
<td>The agent is working on a task or a call in this skill group. For agents who handle non-voice tasks, this state is reported as Active. For agents who handle voice-tasks, this state is reported as Talking.</td>
<td>The agent is working on one or more chat requests associated with this skill group. For these agents, the state is reported as Active.</td>
</tr>
<tr>
<td>Work Ready</td>
<td>The agent is performing wrap-up work for a call or task in this skill group. If the agent is handling a voice call, the agent enters Not Active state when wrap is complete. If the agent is handling a non-voice task, the agent might enter Not Active or Not Ready state when wrap up is complete.</td>
<td>The agent is performing wrap-up work for a task associated with this skill group. The agent is not in the Active state with respect to a task associated with this skill group.</td>
</tr>
<tr>
<td>Work Not Ready</td>
<td>The agent is performing wrap-up work for a call in this skill group. The agent enters Not Ready state when wrap up is complete.</td>
<td>The agent is performing wrap-up work for a call in this skill group. The agent enters Not Ready state when wrap up is complete.</td>
</tr>
<tr>
<td>Paused/Hold</td>
<td>For agents who handle non-voice tasks, the state is reported as Paused. For agents who handle voice tasks, the state is reported as Hold. For agents handling Outbound Option calls, the Hold state indicates that the agent has been reserved for a call because the Outbound Dialer puts on the agent on hold while connecting the call.</td>
<td>The agent is Paused with respect to a chat task associated with this skill group.</td>
</tr>
<tr>
<td>State in Skill Group</td>
<td>Description for all MRDs except chat</td>
<td>Description for chat MRD</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Reserved</td>
<td>The agent has been offered a call or task associated with the skill group. For voice calls, agents are Reserved when their phones are ringing. Agents handling Outbound Option calls are never placed in Reserved state; the Outbound Option Dialer puts the agent on hold when reserving him/her for a call.</td>
<td>The agent is not in Active, Work Ready, or Paused state in this skill group. The agent has been offered one or more tasks associated with this skill group.</td>
</tr>
<tr>
<td>Busy Other</td>
<td>The Agent is Active, Work Ready, Reserved, or on Hold/Paused in another skill group in the same MRD.</td>
<td>The agent is not in Active, Work Ready, Reserved, or Paused state with respect to a task associated with this skill group. The agent is in Active, Work Ready, Reserved, or Paused in another skill group in the same MRD.</td>
</tr>
<tr>
<td>Not Active</td>
<td>The agent is not working on any task or call associated with this skill group.</td>
<td>The agent is not working on any task or call associated with this skill group.</td>
</tr>
<tr>
<td>Not Ready</td>
<td>The agent is not available to be assigned a task. If an agent is Not Ready in one skill group, the agent is Not Ready in all skill groups within the same Media Routing Domain.</td>
<td>The agent is not available to be assigned a task. If an agent is Not Ready in one skill group, the agent is Not Ready in all skill groups within the same Media Routing Domain.</td>
</tr>
</tbody>
</table>

How Agent States are Calculated in Reports

Agent States are presented in many reports as percentages.

Table 2: Calculations for Agent State Percentages

<table>
<thead>
<tr>
<th>Table.Field</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Active</td>
<td>Agent_Skill_Group_Interval.TalkInTime + Agent_Skill_Group_Interval.TalkOutTime +</td>
</tr>
</tbody>
</table>
Agent States and Skill Groups

Agents can belong to multiple skill groups in a Media Routing Domain. When an agent is handling a task that was routed to a skill group, the agent is Active in that skill group.

- For Unified ICM/CC routed calls or transferred Unified ICM-routed calls that use the dialed number, the active skill group is the skill group to which the task was queued.

- For direct incoming calls or transferred Unified ICM/CC routed calls that do not use the dialed number, the active skill group is the default or first skill group defined for the agent.

- For direct incoming calls or transferred routed calls on the ACD, the active skill group is the first skill group defined for the agent or the skill group assigned by the ACD.

- For new outgoing calls (AgentOutCalls or InternalCalls) or transferred outbound calls, the active skill group is either the ACD-picked skill group or the first skill group defined for the agent.

If you are reporting on agents who handle chat tasks (and who can work on more than one task at a time), gather agent state information from both the Available in MRD and Agent State columns.

Calculation

<table>
<thead>
<tr>
<th>Table Field</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%BusyOther</td>
<td>Agent_Skill_Group__Interval.BusyOtherTime / Agent_Skill_Group__Interval.LoggedOnTime</td>
</tr>
<tr>
<td>%Hold</td>
<td>Agent_Skill_Group__Interval.HoldTime / Agent_Skill_Group__Interval.LoggedOnTimeTime</td>
</tr>
<tr>
<td>%NotActive</td>
<td>Historical: Agent_Skill_Group__Interval.AvailTime / Agent_Skill_Group__Interval.LoggedOnTime</td>
</tr>
<tr>
<td>%Reserved</td>
<td>Agent_Skill_Group__Interval.ReservedStateTime / Agent_Skill_Group__Interval.LoggedOnTime</td>
</tr>
<tr>
<td>%Not Ready</td>
<td>Agent_Skill_Group__Interval.NotReadyTime / Agent_Skill_Group__Interval.LoggedOnTime</td>
</tr>
</tbody>
</table>
The agents' state in the active skill group dictates their state in other skill groups in the Media Routing Domain to which they belong, as follows:

- If the agent is Active, Work Ready, Reserved, or Hold/Paused in one skill group in the MRD, the agent state is Busy Other for all other skill groups in the MRD.
- If the agent is Not Ready in one skill group in the MRD, the agent is Not Ready in all skill groups in the MRD.

See also Reporting in a MultiChannel Environment (page 163).

Agent State and Task State Relationship

Agent state times are reported on interval boundaries regardless of whether or not the call or task is finished. Call and task state times are reported only when the task ends. The call/task ends when wrap up is complete.

The following figure illustrates the correlation between agent state and call state for a voice call. The agent reserve time includes the time it took the call to arrive at the agent’s phone or desktop (network time) as well as the amount of time that the call rang on the agent’s phone or waited on the agent’s desktop (offer/ring time).

Figure 6: Agent State and Task State Relationship

If the interval boundary ends when the call is ringing on the agent’s phone, the reserved time for the agent includes the network time and part of the ring time. At the next interval, the remaining ring time is reported in the reserved time of the agent. However, the call’s time does not appear on a report until wrap up has been completed on the call.

Agent State Hierarchy for Chat Media Routing Domain

Agent state on a task determines the agent state in a skill group, and agent state in a skill group determines agent state in the MRD. For example, if an agent is Active on a call for Skill Group A, then the agent state is Active in Skill Group A, and the agent state is Active for the MRD to which Skill Group A belongs.
However, agents handling chat tasks can work on more than one task in the same skill group, and more than one skill group can belong to a MRD. In this case, a state hierarchy is used to determine how the agent's state in the skill group and in the MRD is reported.

The agent state hierarchy is:

1. Active
2. Work Ready
3. Paused
4. Reserved
5. Busy Other (for different skill groups in the same MRD)
6. Not Active

Consider the following diagram:

Figure 7: Agent State Hierarchy in Skill Group and MRD

In the above diagram, an agent belongs to two skill groups in the chat MRD and is configured to work on up to six simultaneous chat tasks in each MRD.

In the first skill group, the agent is working on three tasks, and the agent's states for those tasks are Work Ready, Reserved, and Paused. Work Ready is the state reported for the agent at the skill group level, because Work Ready is higher than Reserved and Paused in the state hierarchy.

In the second skill group, the agent is working on two tasks, and the agent's states for those tasks are Active and Reserved. Active is the state reported for the agent at the skill group level, because Active is higher than Reserved in the state hierarchy.

For the chat MRD, the agent's state is Active because Active is higher than Work Ready in the hierarchy.
Reports that Show Agent States

These are some reports that show information on Agent State:

- Unified IC Agent Team State Counts Real Time
- Unified IC Real Time All Fields
- Unified IC Historical All Fields
- WebView agtper20 (Agent Peripheral Real Time Report)
- WebView agent20 (Agent Real Time Report) and agent 06 (Agent State Trace Detail By Events Report)
- WebView agent23 (Agent Performance Summary Half Hour Report) and agent24 (Agent Performance Summary Daily Report)
- WebView agteam 20 (Agent Team Real Time Report) and agteam32 (Agent Team State Counts Real Time Report)

See also Report Templates (page 237).

Agent Logout Reason Codes

Agent Logout Reason codes are defined in the agent desktop software and appear in historical reports as their numeric equivalent, with no text code. For example, if reason code 1 equals "end of shift" and the agent selects that reason for logging out, the report displays "1".

In addition to the codes configured at the desktop, some codes are generated automatically when the agent is logged out by the software. The table below describes these predefined Logout Reason codes, which are available for both Unified ICM and Unified CC.

Note: Check your ACD Supplement Guide to make sure that Agent Logout Reasons codes are supported for your ACD.

See also:

Configuring Agent Logout Reason Codes (page 69)

<table>
<thead>
<tr>
<th>Predefined Logout Reason Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>The agent reinitialized due to peripheral restart.</td>
</tr>
<tr>
<td>-2</td>
<td>The PG reset the agent, normally due to a PG failure.</td>
</tr>
<tr>
<td>-3</td>
<td>An administrator modified the agent's extension while the agent was logged in.</td>
</tr>
</tbody>
</table>
Predefined Logout Reason Code Description

<table>
<thead>
<tr>
<th>Predefined Logout Reason Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50002</td>
<td>A CTI OS component failed, causing the agent to be logged out. This could be due to closing the agent desktop application, heartbeat time out, a CTI OS Server failure, or a CTI OS failure.</td>
</tr>
<tr>
<td>50003</td>
<td>The agent was logged out because the ACD reported the agent's device as out of service.</td>
</tr>
<tr>
<td>50004</td>
<td>The agent was logged out due to agent inactivity as configured in agent desk settings.</td>
</tr>
<tr>
<td>50020</td>
<td>The agent was logged out when his/her skill group assignment dynamically changed.</td>
</tr>
<tr>
<td>50030</td>
<td>The agent was logged out when his or her skill group assignment dynamically changed on the Administration & DataServer.</td>
</tr>
<tr>
<td>50040</td>
<td>The mobile agent was logged out because the call failed.</td>
</tr>
<tr>
<td>50042</td>
<td>The mobile agent was logged out because the phone line disconnected when using nailed connection mode.</td>
</tr>
<tr>
<td>20001</td>
<td>The agent's state was changed to NOT READY.</td>
</tr>
<tr>
<td>20002</td>
<td>Forces the logout request; for example, when Agent A attempts to login to Cisco Agent Desktop and Agent B is already logged in under that agent ID, Agent A is asked whether or not to force the login.</td>
</tr>
<tr>
<td></td>
<td>If Agent A answers yes, Agent B is logged out and Agent A is logged in. Reports would then show that Agent B logged out at a certain time with a reason code of 20002 (Agent B was forcibly logged out).</td>
</tr>
<tr>
<td></td>
<td>Note: Cisco Unified Mobile Agent is the only exception, where CAD will not allow you to log out a login name/ID that is already in use.</td>
</tr>
<tr>
<td>20003</td>
<td>Not Ready for logout.</td>
</tr>
</tbody>
</table>

Reports that show Agent Logout Reason Codes

These are some reports that contain information on Agent Logout reason codes:

- Unified IC Agent Real Time All Fields
Agent Not Ready Reason Codes

There are reports that show the codes agents select when entering Not Ready state, that calculate the percentage of time spent in the Not Ready state, and that show specific Not Ready reasons based on the time range you specify.

These reports help you identify whether agents are taking the appropriate number of breaks and whether their breaks are the appropriate length.

Some reports display both the text of the reason code (if configured) and the corresponding number. For example, if an agent enters Not Ready state and selects "Break" as the reason code, and if you have configured text for this code in Configuration Manager, reports display "Break [1]". Other reports display the numeric Not Ready reason code only.

If an agent's total login session is not included in the specified time range (for example, the agent was still logged in at the end of the time range), an asterisk (*) appears next to the agent's name in the report to indicate that data for that agent is not complete for the range.

For Unified CC, in addition to Not Ready reason codes that you define, there are predefined Not Ready reason codes for situations in which the agent is made Not Ready automatically by the software. The following table describes these predefined Not Ready reason codes. There are no predefined Not Ready Reason codes for Unified ICM.

Table 3: Predefined Not Ready Reason Codes for Unified CC

<table>
<thead>
<tr>
<th>Predefined Not Ready Reason Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50001</td>
<td>The CTI OS client disconnected, logging the agent out. Note: This reason code is converted to a 50002, so 50001 does not display in the agent log out records.</td>
</tr>
<tr>
<td>50002</td>
<td>A CTI OS component failed, causing the agent to be logged out. This could be due to closing the agent desktop application, heartbeat time out, a CTI OS Server failure, or a CTI OS failure.</td>
</tr>
<tr>
<td>50003</td>
<td>Agent was logged out because the Unified CM reported the device out of service.</td>
</tr>
<tr>
<td>Predefined Not Ready Reason Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>50004</td>
<td>Agent was logged out due to agent inactivity as configured in agent desk settings.</td>
</tr>
<tr>
<td>50005</td>
<td>For a Unified CCE deployment where the Multi Line Agent Control is enabled in the peripheral, and the Multi Line Agent Behavior is configured to impact agent state, the Agent will be set to not ready with this code while talking on a call on the Non ACD line.</td>
</tr>
<tr>
<td>50010</td>
<td>The agent did not receive multiple consecutive calls routed to him/her. The system makes the agent Not Ready automatically so that additional calls are not routed to the agent. By default, the number of consecutive calls missed before the agent is made Not Ready is 2.</td>
</tr>
<tr>
<td>50020</td>
<td>Agent was logged out when the agent's skill group dynamically changed on the Administration & Data Server.</td>
</tr>
<tr>
<td>50030</td>
<td>If an agent is logged in to a dynamic device target that is using the same dialed number (DN) as the PG static device target, the agent is logged out.</td>
</tr>
<tr>
<td>50040</td>
<td>Mobile agent was logged out because the call failed.</td>
</tr>
<tr>
<td>50041</td>
<td>Mobile agent state changed to Not Ready because the call fails when the mobile agent's phone line rings busy.</td>
</tr>
<tr>
<td>50042</td>
<td>Mobile agent was logged out because the phone line disconnected while using nailed connection mode.</td>
</tr>
<tr>
<td>50041</td>
<td>The agent's state was changed to Not Ready because the call fails when the agent's phone line rings busy.</td>
</tr>
<tr>
<td>32767</td>
<td>The agent's state was changed to Not Ready because the agent did not answer a call and the call was redirected to a different agent or skill group.</td>
</tr>
<tr>
<td>20001 - applicable if you are using the Cisco Agent Desktop</td>
<td>Places the agent in the Not Ready state first before forcefully logging them off.</td>
</tr>
<tr>
<td>20002 - applicable if you are using the Cisco Agent Desktop</td>
<td>Forces the logout request; for example, when Agent A attempts to log in to Cisco Agent Desktop and Agent B is already logged in under that agent ID, Agent A is asked whether or not to force the login. If Agent A answers yes, Agent B is logged out and Agent A is logged in. Reports would then show that Agent B logged out at a certain time with a reason code of 20002 (Agent B was forcibly logged out).</td>
</tr>
<tr>
<td>20003 - applicable if you are using the Cisco Agent Desktop</td>
<td>Not Ready for logout. If not already in the Logout state, request is made to place agent in the Not Ready state. Then logout request is made to log the agent out.</td>
</tr>
<tr>
<td>Supervisor Not Ready</td>
<td>This code is reserved.</td>
</tr>
</tbody>
</table>
Predefined Not Ready Reason Code | Description
--- | ---
Supervisor Logout | This code is reserved.
-1 | Agent reinitialized (used if peripheral restarts).
-2 | PG reset the agent, normally due to a PG failure.
-3 | An administrator modified the agent's extension while the agent was logged in.

By default, predefined Not Ready reason codes do not have associated textual reason codes. They appear as numbers in reports. If you want to see a textual code for these Not Ready reason codes, enter the predefined Not Ready reason code into the Reason Code List tool with the related text. For example, you might want to label the 32767 Not Ready reason code "Redirection on No Answer".

Note:
- To report on Not Ready reason codes, ensure that the reporting of agent event detail data is enabled on the PG with the Cisco Unified CM peripheral. This is enabled by default.
- For Unified ICM deployments, check your *ACD Supplement Guide* to make sure that Not Ready Reasons codes are supported for your ACD.

See also:

Configuring Agent Not Ready Reason Codes (page 68)

Reports that show Agent Not Ready Reason Codes

These are some of the reports that contain information on Not Ready codes and the time spent as Not Ready:

- Unified IC Agent Skill Group Real Time All Fields
- Unified IC Agent Skill Group Historical All Fields
- WebView agent30 (Agent Not Ready Summary Report) and agent31 (Agent Not Ready Detail Report)
- WebView agtper23 (Agent Peripheral Performance Summary Half Hour Report)
- WebView agteam24 (Agent Team Performance Summary Daily Report)

See also Report Templates (page 237).
Agent Reporting for Outbound Option Campaigns

For agent reporting per campaign, Outbound Option provides report templates that accurately represent the outbound agent activity for a contact center, including information grouped by skill group.

Reports that show Agent and Skill Group Activity on Outbound Option Dialing Campaign Calls

These are some of the reports that show agent activity per campaign:

- WebView agtskg06: Outbound Option (Blended Agent) Status
- WebView agtskg10: Outbound Option (Blended Agent) Predictive and Progressive Calls Detail Performance
- WebView agtskg11: Outbound Option (Blended Agent) Preview Call Detail Performance
- WebView agtskg12: Outbound Option (Blended Agent) Reservation Call Detail Performance

See also

Skill Group Reporting for Outbound Agent Campaigns (page 76).

Outbound Option

Report Templates (page 237).

Agent Task Handling

Agents can receive and place many different types of tasks. There are reports that show you what kind of tasks agents are handling and how well they are handling them. For example, there are reports that display statistics for calls placed, received, transferred, and conferenced, and there are reports that indicate how many calls were rerouted when the agent failed to answer the call.

Types of Tasks

Tasks can be internal or external, incoming or outgoing.

- **Internal tasks** are calls made to an agent from another person on the same ACD (for Unified ICM) or on the same cluster (for Unified CC).

- **External tasks** are calls that are placed off-switch, tasks that go through a voice gateway or Media Routing PG, or tasks that are routed to an agent from a person on a different ACD or cluster. For example, calls from the call center to customers are considered external.
• **Incoming tasks** are tasks that an agent receives. Chat, email, and Blended Collaboration task are always incoming.

• **Outgoing tasks** are calls that an agent places. For example, if a customer calls an agent, the call is incoming for the agent. If an agent calls a supervisor, the call is outgoing for the agent.

For voice calls only, agents can also transfer calls, receive transferred calls, place consultative calls, and engage in conference calls.

The following table describes the tasks that an agent can receive and place and how those tasks are reported.

Table 4: Types of Tasks

<table>
<thead>
<tr>
<th>Type of task</th>
<th>Description</th>
<th>Reported As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming direct/internal</td>
<td>Incoming Direct Tasks are tasks that come directly to the agent’s extension. These calls can be either internal (agent or device on same ACD) or within the network to another switch. Examples of this kind of call include calls that are directly transferred by another agent without going through a script and calls that resulted from agent-to-agent calling. Data for these calls are stored in the InternalCallsRcvd fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Internal In</td>
</tr>
<tr>
<td>Outgoing external</td>
<td>These are calls initiated by agents from their extension that are placed off-switch or pass through a voice gateway. Outgoing External Tasks are always voice tasks. Consult, conference out, and transfer out calls are counted as outgoing external calls if they are placed off-switch or to remote agent extensions at another site. Agent-to-Agent dialing is outgoing external for the agent initiating the call if the call has to be placed off-switch to get to the destination agent. Data for these calls are stored in the AgentOutCalls fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>External Out Tasks</td>
</tr>
<tr>
<td>Outgoing internal</td>
<td>These are calls initiated by agents from their extension to another extension within the ACD or to another ACD within the network. Outgoing Internal Tasks are always voice tasks. Consult, conference out and transfer out calls are counted as outgoing internal calls if they are placed to another device. The device could be another agent line or any other extensions to the VRU. Agent-to-Agent calls are outgoing internal for the agent initiating the call if the destination agent is on the same ACD as the source agent.</td>
<td>Internal Out Tasks</td>
</tr>
<tr>
<td>Type of task</td>
<td>Description</td>
<td>Reported As</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICM-routed/ACD calls</td>
<td>All calls that are routed by the ACD to the agent. Outbound Option calls are considered Unified ICM-routed/incoming calls. Data for these calls are stored in the CallsHandled fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Tasks Handled</td>
</tr>
<tr>
<td></td>
<td>Note that Tasks Handled includes all ACD calls and ICM-routed calls, including calls that are transferred and conferenced, and consultative calls. Tasks Handled provides a high level view of routed tasks. Other report columns such as Transfer In and Conf Out provide more details about how the task was handled.</td>
<td></td>
</tr>
<tr>
<td>Transferred in</td>
<td>Calls that are transferred to an agent. Both incoming and outgoing calls can be transferred to an agent. Note: For blind transfers in Unified CC with an IPCC System PG, this field is updated when the call that was blind transferred to an IVR is subsequently transferred to another agent and the agent answers the call. Data for these calls are stored in the TransferredIn fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Transfer In</td>
</tr>
<tr>
<td></td>
<td>For this call scenario, this field is not updated in Unified CC without an IPCC System PG which supports only IP-IVR. This field is updated when an IPCC System PG which supports Unified CVP is used in Unified CC.</td>
<td></td>
</tr>
<tr>
<td>Transferred out</td>
<td>Calls that are transferred from an agent. An agent can transfer both incoming and outgoing calls. Data for these calls are stored in the TransferredOut fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Transfer Out</td>
</tr>
<tr>
<td>Consultative</td>
<td>Calls in which an agent consulted with another agent or supervisor while having another call on hold. Data for these calls are stored in the ConsultativeCalls fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Cons Out</td>
</tr>
<tr>
<td>Conference in</td>
<td>Incoming calls that are conferenced. Data for these calls are stored in the ConferencedInCalls fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Conf In</td>
</tr>
<tr>
<td>Type of task</td>
<td>Description</td>
<td>Reported As</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Conference out</td>
<td>Outgoing calls that are conferenced. Data for these calls are stored in the ConferencedOutCalls fields of the Agent_Skill_Group_Interval historical database table.</td>
<td>Conf Out</td>
</tr>
</tbody>
</table>

Task Times

For each type of task that an agent can place, the amount of time that the agent spent working on that task is recorded in the Agent_Skill_Group_Interval database table, as follows:

- **Unified ICM routed tasks and ACD routed tasks** - The time for these tasks begins when the agent answers the task and ends when the agent completes wrap up. The time is stored in the HandledCallsTime field.

- **Incoming direct tasks** - The time for these tasks begins when the agent answers the task and ends when the task disconnects. The time is stored in the InternalCallsRcvdTime field.

- **External outgoing tasks** - The time for these tasks begins when the agent initiates the task and ends when the task disconnects. The time is stored in the AgentOutCallsTime field.

- **Outgoing internal tasks** - The time for these tasks begins when the agent initiates the task and ends when the task disconnects. The time is stored in the InternalCallsTime field.

- **Transferred in tasks** - The time for these tasks begins when the agent answers the transferred task and ends when the task disconnects. The time is stored in the TransferredInCallsTime field.

- **Transferred out tasks** - The time for these tasks begins when the agent activates the transfer button and ends when the transfer is complete. The time is stored in the InternalCallsTime field.

- **Consultative tasks** - The time for these tasks begins when the agent activates the transfer button and ends when the target agent answers and the held task is restored (drop consultative call) or consult party drops. The time is stored in the ConsultativeCallsTime field.

- **Conferenced in tasks** - The time for these tasks begins when the agent answers the task and ends when the task disconnects. The time is stored in the ConferenceInCallsTime field.

- **Conferenced out tasks** - The time for these tasks begins when the agent activates the conference button and ends when the agent disconnects from the conference call and the supervisor drops out of the call. The time is stored in the ConferenceOutCallsTime field.
You might notice overlapping data in your reports for the amount of time for different types of calls. This happens because incoming tasks, such as ACD routed tasks and calls directly to an agent, can be Transferred In and Conferenced In. Both incoming calls and outgoing calls placed by agents can be Transferred Out and Conferenced Out. The total time for the incoming or outgoing call includes transfer and conference time.

Note: Agents can transfer and conference incoming calls both in and out. However, they can transfer and conference outgoing calls out only. This means that if an agent transfers an outgoing task to another agent, it is still considered an outgoing task.

Agent Routability and Availability for Multichannel Tasks

The ability for Unified ICM to route a call or multichannel task to an agent depends on the agent's routability and availability within the MRD of the call or task.

Routability

Routability refers to whether Unified ICM or the Unified EIM or Unified WIM is configured to assign tasks to the agent. For example, your system might be configured to allow Unified WIM to select an agent to handle a task. In this case, Unified ICM gathers reporting data for those tasks, but does not perform the routing. If Unified ICM is configured to assign the task, it both routes and reports on the task.

An agent might be in Routable or Not Routable mode for each MRD to which he belongs.

For voice calls, Unified ICM is always configured to route the call. Therefore, the agent is always Routable.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routable</td>
<td>Unified ICM is configured to assign tasks to the agent.</td>
</tr>
<tr>
<td>Not Routable</td>
<td>Unified EIM and Unified WIM are configured the assign tasks to the agent.</td>
</tr>
</tbody>
</table>

Availability

While Routability determines whether the CallRouter is allowed to assign tasks for this MRD, the agent's availability determines whether the agent is capable of handling new tasks.

WebView and Unified IC reports contain fields indicating agents' availability in the MRD.

The following table describes the criteria that determine whether the agent is Available or Not Available.

<table>
<thead>
<tr>
<th>An agent is Available (eligible to be assigned a task in an MRD) if he is:</th>
<th>An agent is Not Available (not eligible to be assigned a task in an MRD) if he is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is in any state other than the Not Ready state for this MRD.</td>
<td>In Not Ready state.</td>
</tr>
</tbody>
</table>
An agent is Not Available (not eligible to be assigned a task in an MRD) if he is:

- Is not working on a non-interruptible task in another MRD.

Note: Only email tasks are interruptible, meaning that Unified ICM can assign the agent another task while he is working on an email. Voice calls, chat sessions, and Blended Collaboration sessions cannot be interrupted.

- Has not reached the maximum task limit.

For voice, email and Blended Collaboration MRDs, the task limit is always one task. For email and chat MRDs, the task limit is customized through the Unified WIM administration application.

An agent is Available (eligible to be assigned a task in an MRD) if he is:

- Working on a voice, chat, or email task.

- Has reached his maximum task limit.

Therefore, an agent is:

- **ICM-available** if he is Routable and Available for the MRD. This means that the agent can be routed a task by Unified ICM.

- **Application-available** if he is Not Routable and Available for the MRD. This means that the agent can be routed a task by the Unified EIM or Unified WIM.

Consider the following call/task scenarios and how they affect agent mode and availability.

Table 5: Scenario 1: Not Routable - Chat, then Voice

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into two MRDs, chat and voice. The agent is not routable in the chat MRD. The agent is assigned a task in the chat MRD by the Unified WIM.</td>
<td>Unified ICM does not assign a task to the agent from the Voice MRD, since the agent is working on a non-interruptible task in the chat MRD. The agent is Not Available in Voice.</td>
</tr>
</tbody>
</table>

Table 6: Scenario 2: Not Routable - Voice then email

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into two MRDs, chat and voice. The agent is not routable in the email MRD. The agent is assigned a call in the Voice MRD.</td>
<td>Unified ICM does not assign email tasks to the agent. The agent is Not Available in the email MRD. Email tasks can still be placed in the agent's personal queue in this scenario by the Unified EIM. Email tasks might also be sent to the agent's queue as a result of a customer responding to an email from the agent. See the Cisco Unified E-Mail Interaction Manager documentation for complete information on routing email tasks.</td>
</tr>
</tbody>
</table>
Table 7: Scenario 3: Not Routable - Voice then Chat

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into two MRDs, chat and voice.</td>
<td>Unified WIM does not assign chat tasks to the agent. The agent is Not Available in chat.</td>
</tr>
<tr>
<td>The maximum task limit for the agent in this MRD is 1.</td>
<td></td>
</tr>
<tr>
<td>The agent is not routable in the chat MRD.</td>
<td></td>
</tr>
<tr>
<td>The agent is assigned a call in the Voice MRD.</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Scenario 4: Routable - Maximum task limit

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into a chat MRD (maximum task limit for the agent in this MRD is 6).</td>
<td>Unified ICM continues to assign tasks to the agent until the agent has reached his maximum task limit. The agent is ICM-Available in the chat MRD, even though the agent is Active on a task.</td>
</tr>
<tr>
<td>The agent is routable in the chat MRD.</td>
<td></td>
</tr>
<tr>
<td>The agent is assigned a task in the chat MRD.</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Scenario 5: Routable (busy on non-interruptible task)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into two MRDs, chat and voice.</td>
<td>Unified ICM does not assign a chat task to the agent, since the agent is working on a non-interruptible task in the voice MRD. The agent is Not Available in the chat MRD even though the agent is Not Active in chat skill groups.</td>
</tr>
<tr>
<td>The agent is routable in the chat MRD.</td>
<td></td>
</tr>
<tr>
<td>The agent is assigned a voice call in the voice MRD.</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Scenario 6: Routable (busy on interruptible task)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The agent is logged into two MRDs, email and voice.</td>
<td>Unified ICM can assign a voice call to the agent, since the agent is working on an interruptible task in the email MRD. The agent is ICM-Available in Voice MRD.</td>
</tr>
<tr>
<td>The agent is routable in the email MRD.</td>
<td></td>
</tr>
<tr>
<td>The agent is assigned a task in the email MRD</td>
<td></td>
</tr>
</tbody>
</table>

Reports that show Agent Task Handling

These are some of the reports that contain information on Not Ready codes and the time spent as Not Ready:

- Unified IC Agent Historical All Fields
- WebView agent21 (Agent Task Summary Half Hour Report)
Agent Utilization: Full-Time Equivalents and Percent Utilization

Because agents can work on multiple media and in multiple skill groups, they typically do not spend all of their time handling tasks for a single skill group. Determining staffing needs based on agents whose time is divided among skill groups and media can be difficult.

Report templates provide two types of statistics that give you a better view of how agents are being utilized and how many full-time agents would be required to handle the amount of work performed during an interval for a particular skill group.

These statistics are:

- % Utilization (percent utilization)
- FTE (full-time equivalent)

Percent utilization (% Utilization in reports) is computed in reports by dividing the total time agents spend handling calls in a skill group by the total time agents were ready to handle tasks. To calculate the time that an agent was ready, the system subtracts the Not Ready time from the total time that agents were logged on. Percent utilization shows you how well agents are being utilized within a skill group. For example, if the agent spent 20 minutes of the log on duration handling calls and was available to handle calls for 40 minutes, the percent utilization is 50%.

The **full-time equivalent** (FTE in reports) is the number of full-time agents that would be required to perform the work done during that interval for a skill group. To calculate the FTE, the system divides the total time that work was performed by the total time in the interval. For example, if agents spent a total of 3 hours (180 minutes) handling tasks during a interval (30 minutes), the FTE for task handling during the interval is 180 minutes/30 minutes, which equals 6 full-time persons. This means that if all agents handled tasks full-time, the work could have been done by 6 agents.

Reports also provide FTE values based on an 8 hour shift calculation. It is assumed that agents work an 8 hour shift for the day. To calculate the FTE, the system divides the total time that work was performed by 8 hours. For example, if agents spent a total of 48 hours (2880 minutes) handling tasks during an 8 hour work shift (480 minutes), the FTE for task handling during the interval is 2880 minutes/480 minutes, which equals 6 full-time persons. This means that if all agents handled tasks full-time, the work could have been done by 6 agents.

Note: If you select a report interval that is less than 8 hours, the value will be lower than expected.
Reports that show Percent Utilization and FTE metrics

These are some of the reports that contain operational information on Percent Utilization and FTE:

- Unified IC Enterprise Skill Group Historical All Fields
- Unified IC Peripheral Skill Group Historical All Fields Report
- Unified IC Peripheral Skill Group Real Time All Fields Report
- WebView perskg04 (ICM Rolling 5-minute Peripheral Skill Group Status Report)
- WebView perskg08 (FTE for Peripheral Skill Groups Half Hour Report)

See also Report Templates (page 237).

Configuration for Agent Reporting

Enabling Agent Reporting

For Unified ICM and Unified CC, viewing agent data in reports is a configurable option. If you intend to use Unified IC or WebView to generate agent reports, you must enable agent reporting in Configuration Manager. You must also identify the Administration & Data Server to which the agent data is sent.

For Unified ICM and for a Parent/Child deployment, you might prefer to use ACD reports for agent activity, or your ACD might not support Unified ICM agent reporting. In that case, do not enable agent reporting in Unified ICM.

For Unified SCCE, the agent reporting option is enabled by default and cannot be disabled.

To view agent data in reports:

1. From the Configuration Manager, select Tools > Explorer Tools > PG Explorer.
2. Click Retrieve and select the peripheral.
3. Click the Agent Distribution tab.
4. Check Enable Agent Reporting.
5. If you intend to report on for Agent Not Ready reason codes ensure that Agent Event Detail is checked.

See Configuring Agent Not Ready Reason Codes (page 68).
Figure 8: Enable Agent Reporting

Note:

- When Agent reporting is enabled, Auto Configuration (page 66) automatically becomes enabled. If you disable Agent auto-configuration, Agent reporting automatically becomes disabled. However, enabling Agent auto-configuration does not automatically enable Agent reporting.

- Agent Reporting without auto-configuration is NOT supported. Unified ICM does not support Agent Reporting on manually-configured agents.

Configuring Agent Data Distribution

The flow of agent data from a specific peripheral is called an agent distribution. You can define just the agent distributions you want and where you want that data delivered.

You can enable or disable an agent distribution at any time. For example, you can stop the flow of all agent real-time data to a distributor when you are not viewing real-time agent reports.

You can enable or disable an agent distribution at any time. This means you can stop the flow of all agent real-time data to a distributor when you are not viewing real-time agent reports.

To configure agent data distribution:

1. From the Configuration Manager, select Tools > Explorer Tools > PG Explorer.

2. Click Retrieve and select the peripheral.

3. In the Agent Distribution panel, select the Administration & Data Server site to which the agent report data is to be distributed.

4. What data do you want? Check boxes to specify whether you want both real time and historical data, only real time data, only historical data, or neither.
Autoconfiguring Agents

Autoconfiguration is mandatory for agent reporting. When Agent reporting is enabled, Agent auto-configuration becomes enabled. If you disable Agent auto-configuration, Agent reporting automatically becomes disabled.

When autoconfigure agents is enabled, agents are 'noticed' by the PIM when they sign on and are dynamically created in Unified ICM database.

To enable the Autoconfigure Agents option:

1. From the Configuration Manager, select Explorer Tools > PG Explorer.
2. Click Retrieve and select the peripheral.
3. Click the Advanced tab.
4. Check Agent auto-configuration.
Enabling Agent State Trace

This option allows you to track every state an agent passes through. You might do this if you have concerns about the productivity or performance of one or more agents. It is an option you enable on a per-agent basis, and enabling it can impact system performance.

Perform these steps to enable the agent state trace option, which tracks every state an agent passes through:

1. From the Configuration Manager, select Tools > Explorer Tools > Agent Explorer.
2. Click Retrieve and select the agent.
3. Click the Advanced tab.
4. Check Agent state trace.

Note: Enabling agent state trace for many agents can impact system performance and database sizing, as the option causes more records to be written to the database. If you notice a
performance problem, consider disabling agent state trace or enabling it for certain agents only.

Configuring Agent Not Ready Reason Codes

There are reports that show the reason codes that agents select when entering the Not Ready state. These reports help you identify whether agents are taking the appropriate number of breaks and whether their breaks are the appropriate duration.

In addition to Agent Not Ready reason codes that you define, Unified Contact Center uses predefined Not Ready reason codes for situations in which the agent is automatically made Not Ready by the software. The table that lists these predefined Not Ready reason codes is documented in Chapter 4 (page 53).

Note: Unified ICM does not use these predefined Agent Not Ready Reason codes.

Configure the Not Ready Reason codes both in the Configuration Manager and on the agent desktop software (CTI OS or Cisco Agent Desktop).

- The codes configured in Configuration Manager are the enterprise-level codes that appear in WebView/Unified IC reports.

- The codes configured on the desktop software are the codes that the agent selects when entering Not Ready state. To avoid confusion and to interpret reports consistently, configure reason codes to have the same meaning in Configuration Manager that they have in the agent desktop software.

The Configuration Manager allows you to specify alphanumeric reason codes and their numeric equivalent. For example, you might configure Break and Lunch reason codes with numeric values of 1 and 2, respectively. Both the number and the text appear in reports.

To configure agent Not Ready Reason codes

1. Configure the Not Ready reason codes in the agent desktop software (CTI OS or Cisco Agent Desktop).

2. Using the exact same reason codes as in the desktop software, configure the Not Ready reason codes in Configuration Manager.

To do this, from Configuration Manager, select Tools > List Tools > Reason Code List.

Note: Use this tool to enter Not Ready Reason Codes with text descriptions. If no text descriptions are configured, then the reports that show Not Ready reasons display the numeric code only.
3. Ensure that Agent Event Detail is enabled on the PG.

To do this:

– From Configuration Manager, select **Tools > Explorer Tools > PG Explorer.**

– Retrieve and select the PG.

– Click the **Agent Distribution** tab.

– Check that **Agent event detail** is already enabled. If it is not, then enable it.

See also Reporting on Agent Not Ready Reason Codes (page 53).

Configuring Agent Logout Reason Codes

Agent Logout Reason codes are defined in the agent desktop software (CTI OS or Cisco Agent Desktop) and appear in historical reports as their numeric equivalent, with no text code. For example, if reason code 1 equals "end of shift" and the agent selects that reason for logging out, the report displays "1".

In addition to the codes configured at the desktop, some codes are generated automatically when the agent is logged out by the software. These automatic codes are listed in Chapter 5 (page 51).
The only configuration for Agent Logout Reason codes in Configuration Manager is the setting for logout non-activity time.

To configure Logout non-activity time:

1. From Configuration Manager, click **Tools > List Tools > Agent Desk Settings List**.

2. Click **Retrieve**. Then select an existing code, or click **Add** to define a new one.

3. On the **Attributes** tab, enter a value in seconds for **Logout non-activity time**. This is the number of seconds an agent can be inactive while in the not ready state before the system software logs out the agent. This can be from 10 seconds to 7200 seconds (2 hours). A blank entry will disable the timer.

 ![Figure 13: Logout Non-Activity Time](image)

 See also [Reporting on Agent Logout Reason Codes](page 51).
Skill Groups

A skill group is a collection of agents at a single contact center who share a common set of competencies that equip them to handle the same types of requests. Some examples of skill groups are a collection of agents who speak a specific language or who can assist callers with billing questions.

Each skill group belongs to a Media Routing Domain.

An agent can be a member of zero, one, or more skill groups (depending on the peripheral) up to a maximum specified in the Cisco Unified Contact Center Enterprise Solution Reference Network Design (SRND) document.

To monitor agent performance, you can report on agents individually or you can report on all of the agents in one or more skill groups.

You can generate reports for skill groups that show agent activity (for example, the number of agents talking, available, or in wrap-up for a particular skill group).

In addition to generating Agent Skill Group reports, you can also use Skill Group reports to monitor operational performance. For example, you might want to see how a skill group is performing compared to other skill groups or to see if calls are being distributed evenly by your routing scripts and configuration.

You can also report on skill groups as a whole to see how one skill group is performing compared to other skill groups. You might use this level of reporting, for example, to see if calls are being distributed evenly by your routing scripts and configuration.

See also:

- Configuring Skill Groups and Enterprise Skill Groups (page 77)
- Reporting on Skill Group Operations (page 74)
- Reporting on Agent Activity in Skill Groups (page 75)
This chapter contains the following topics:

- Enterprise Skill Groups, page 72
- Base Skill Groups and Sub-Skill Groups, page 72
- The Default Skill Group, page 72
- Reporting on Skill Group Operations, page 74
- Reporting on Agent Activity in Skill Groups, page 75
- Skill Group Reporting for Outbound Option Campaigns, page 76
- Configuring Skill Groups, page 77

Enterprise Skill Groups

An Enterprise Skill Group is a configured entity that serves to group a collection of skill groups on different peripherals.

For example, you may have a skill group called Boston_Sales on one peripheral and a skill group called NewYork_Sales on another peripheral. You could create an Enterprise skill group called Enterprise_Sales.

In a Unified ICM environment, configuring Enterprise Skill Groups allows you to report on skill groups across all ACDs, thus providing an enterprise view.

If you are using a Cisco Contact Center Gateway deployment, in which Unified Contact Center acts as an IP ACD to a parent Unified ICM system, decide which skill groups on the Unified Contact Center system are to be grouped into enterprise skill groups as the parent level.

Note: If you group skill groups into an Enterprise skill group, you will see double-counting of some metrics in your reports.

Base Skill Groups and Sub-Skill Groups

For Unified CC deployments, you can configure only one type of skill group: base skill groups.

Creating sub-skill groups was supported in earlier releases but are being phased out and are no longer configurable for agent-based routing in Unified CC.

For Unified ICM, established sub-skill configurations in place for Unified ICM/TDM-based ACDs will be supported to facilitate controlled customer phase-out.

Refer to the Administration Guide for Cisco Unified Contact Center Enterprise & Hosted for instructions on manually removing sub-skill groups.

The Default Skill Group

The default skill group acts as a bucket to capture information about voice calls and non-voice tasks.
You do not have to create a default skill group - one is automatically created when you establish MRD/Peripheral Gateways pairs. The default skill group has a peripheral number of 0.

The Role of the Default Skill Group in Reporting

The default skill group acts as a bucket to capture information in these situations:

- For calls that are not routed by Unified ICM routing script.
- If a skill group is not specified in a routing script.
- If the Agent-to-Agent node is used in a routing script for agent-to-agent dialing.
- When the Queue to Agent node queues a task to an agent and the agent is not logged into the skill group specified in the Queue to Agent node.

Using a default skill group helps to:

- Ensure the agent/skill group reports balance with the service and call type reports, since service and call type reports include only Unified ICM-routed calls, and to
- Isolate/identify non-ICM-routed calls within the agent and skill group report.

Statistics for the default skill group are affected by different types of calls, including new calls, agent-to-agent-dialing, and transferred and conferenced calls.

You do not have to create a default skill group - one is automatically created when you establish MRD/Peripheral Gateways pairs. The default skill group has a peripheral number of 0.

If you deploy Multichannel options in Unified ICM system, default skill groups are created for each Media Routing Domain that is configured. Refer to Reporting in a MultiChannel Environment (page 163) section for more information about Multichannel options.

How New Calls Increment Default Skill Group Statistics

Call statistics for all new outbound and incoming direct calls are incremented for the default skill group as follows:

- AgentOutCalls for external outbound calls

 Note: When an agent makes an outbound call as part of a consult call, the call is not attributed to the Default Skill Group. It is attributed to the skill group for the consulting agent on the original call.

- InternalCalls for the internal outbound calls

- InternalCallRcvd for the direct incoming calls
Note: CallsHandled is not incremented for the default skill group, since the default skill group
not be referenced in any script.

How Agent to Agent Dialing Increments the Default Skill Group Statistics

Agent-to-Agent dialing using the Agent-to-Agent node in the script also affects the default skill
group. OutgoingExternal or OutgoingInternal are incremented for the default skill group of the
agent initiating the agent-to-agent call. The default skill group InternalCallsReceived is
incremented for the default skill group of the agent receiving the agent-to-agent call.

How Transferred and Conferenced Calls Increment the Default Skill Group

The default skill group is also affected by transferred and conferenced calls. If Agent A transfers
or conferences an ICM/IPCC routed call to another agent directly without using a script,
OutgoingExternal or OutgoingInternal for Agent A are incremented against the skill group of
the ICM-routed call. However, IncomingDirect calls for Agent B is incremented against the
default skill group.

However, if the agent (Agent A) transfers or conferences an ICM/IPCC routed call to a dialed
number that accesses a transfer or conference script that has an Agent-to-Agent node,
OutgoingExternal or OutgoingInternal for the Agent A is incremented for the skill group of the
ICM/IPCC routed call. Incoming Direct calls for agent B are incremented for the default skill
group.

The default skill group will also be incremented for emergency and supervisor assist calls when
there is no existing call.

Reporting on Skill Group Operations

A skill group is a collection of agents at a single contact center who share a common set of
competencies and can handle the same types of requests. Each skill group belongs to a Media
Routing Domain and (in a Unified ICM environment) is also a Service Member.

Use the Skill Group templates to gain insight into operations, to see how one skill group is
performing compared to other skill groups, and to track whether calls are being distributed
evenly by your routing scripts and configuration.

Report on Skill Groups as follows:

• In a Unified ICM environment, you can select and report on data for Base Skill Groups only,
 when sub-skill group are configured.

 Note: If you have configured sub-skill groups, data from sub-skill groups automatically rolls
 up into base skill groups.

• You can report on skill groups associated with a specific single peripheral in the contact
center enterprise.
You can report on call statistics by agent skill group assignments

You can report on Enterprise Skill Groups. An enterprise skill group is a collection of skill groups, mapped across multiple peripherals.

If you group skill groups into an enterprise skill group, you can see double-counting of some metrics in your reports.

Note that for agents in more than one skill group, you can also use the Agent by Skill group templates as a tool for monitoring agent performance.

Reports that Show Skill Group Operations

These are some of the reports that contain operational information on Skill Groups

- Unified IC Enterprise Skill Group Historical All Fields
- Unified IC Enterprise Skill Group Real Time All Fields
- Unified IC Peripheral Skill Group Historical All Fields
- Unified IC Peripheral Skill Group Real Time All Fields
- WebView perskg20 (ICM Peripheral Skill Group Status Real Time Report)
- WebView perskg29 (Peripheral Skill Group Logout Real Time Report)
- WebView perskg22 (ICM Peripheral Skill Group Task Summary Daily Report)
- WebView entskg22 (ICM Enterprise Skill Group Task Summary Daily Report)
- WebView entskg06 (Enterprise Skill Group Performance Half Hour Report)

See also Report Templates (page 237).

Reporting on Agent Activity in Skill Groups

A skill group is a collection of agents at a single contact center who share a common set of competencies that equip them to handle the same types of requests. Some examples of skill groups are a collection of agents who speak a specific language or who can assist callers with billing questions.

An agent can be a member of zero, one, or more skill groups (depending on the peripheral) up to a maximum specified in the Cisco Unified Contact Center Enterprise Solution Reference Network Design (SRND) document.

You can generate reports for skill groups that show agent activity (for example, the number of agents talking, available, or in wrap-up for a particular skill group).
In addition to generating Agent Skill Group reports, you can also use Skill Group reports to monitor operational performance. For example, you might want to see how a skill group is performing compared to other skill groups or to see if calls are being distributed evenly by your routing scripts and configuration.

See also:

• Reporting on Skill Group Operations (page 74)

Reports that Show Agent Skill Group Activity

These are some reports that show information on Agents by Skill Group:

• Unified IC Agent Skill Group Real Time All Fields
• Unified IC Agent Skill Group Historical All Fields
• WebView agtskg20: ICM Agent Skill Group Real Time
• WebView perskg39: Peripheral Skill Group Logout Real Time
• agtskg21: Agent Skill Group Summary Half Hour
• agtskg03: Agent Skill Group Media Status Logout Report

See also Report Templates (page 237).

Skill Group Reporting for Outbound Option Campaigns

For skill group reporting per campaign, Outbound Option provides report templates that accurately represent the skill group activity for a contact center.

Skill Group reports provide information on agent activity for outbound and inbound agents.

If the same skill group is used for both inbound and outbound, then the campaign consolidated reports will provide a consolidated overview of business activity for both inbound and outbound calls.

Reports that show Skill Group Activity on Outbound Option Dialing Campaign Calls

These are some of the reports that show skill group activity per campaign:

• Perskg11: Outbound Option (Blended Agent) Statistics By Skill Group Report
• Perskg12: Outbound Option (Blended Agent) Task Detail Performance In Skill Groups Half Hour Report
Configuring Skill Groups

To configure a Skill Group:

1. From Configuration Manager, select **Tools > Explorer Tools > Skill Group Explorer**.

2. When the Skill Group Explorer window appears, click **Add** to create a new Skill Group, or click **Retrieve** and select an existing Skill Group.

3. Complete the configuration fields on all tabs.

Configuring Enterprise Skill Groups

To configure an Enterprise Skill Group:

1. From Configuration Manager, select **Tools > List Tools > Enterprise Skill Group List**.

2. When the Enterprise Skill Group List window appears, click **Add** to define a new Enterprise Skill Group or click **Retrieve** and select an existing one.

3. On the **Attributes** tab, click **Add** to add Skill Groups as members.

Adding an Agent to a Skill Group

Planning for agent reporting also involves planning how you want to group agents into skill groups.

Unified ICM and Unified CC impose a default limit on the number of skill groups to which a single agent can be assigned. This limit is defined in the Cisco Unified Contact Center Enterprise Solution Reference Network Design (SRND). You can define your own default limit, which can be lower than system default.

To add an agent to a Skill Group:

1. From the Configuration Manager, select **Tools > Explorer Tools > Agent Explorer**.
2. Click **Retrieve** and select the agent.

3. Click the **Skill Group Membership** tab.

4. Click **Add** to select a Skill Group.

Figure 14: Adding Agent to Skill Group
Agent Teams and Supervisors

This chapter contains the following topics:

- About Agent Teams and Supervisors, page 79
- Reporting on Agent Teams, page 80
- Reporting on Supervisor Action, page 80
- Configuring Agent Teams and Supervisors, page 83

About Agent Teams and Supervisors

An agent team is an organizational tool that is configured to reflect the reporting structure in a contact center. Agent teams are peripheral-specific: all agents on a team and the supervisor(s) for the team must reside on the same peripheral. An individual agent can be assigned to one team only.

Supervisors are agents who are configured to have supervisor status. With this status, they can generate reports and view data for their team(s) and the agents on their teams. A supervisor can be a supervisor for any number of teams and can be both a supervisor and a member of an agent team. When Supervisors attempt to generate a report for teams other than the teams they supervise, they see an error message indicating that they are not authorized to run the report.

Agents who are specified as supervisors in the Agent Explorer tool and who are also created as Users in the User List tool are treated as supervisors when they log into WebView or Unified IC and are restricted as such.

Note: For Unified ICM deployments, you might prefer to use your ACD configuration to designate supervisors.

Supervisory features apply only to Unified CCE voice contact. They are not available for Unified ICM and they are not available on Unified CC for agents using Media Routing Domains (MRDs) other than voice.
Supervisory features include:

- Supervisor and emergency assist: Allows agents to activate supervisor assist or emergency assist buttons on their desktop.
- Barge-In: Allows a supervisor to conference into an agent call from his or her desktop.
- Intercept: Allows a supervisor to intercept (take over) a call from his or her desktop.

See also:

- Reporting on Agent Teams (page 80).
- Reporting on Supervisor Action (page 80)
- Configuring Agent Teams (page 83)

Reporting on Agent Teams

Report on agent teams to monitor the performance of a particular team. Supervisors can report on the agents in teams that they supervise.

Teams are peripheral-specific. That is, all agents on a team and the supervisor(s) for the team must reside on the same peripheral. An individual agent can be assigned to one team only.

Supervisors are a special type of agents who have been configured in the Configuration Manager with limited reporting privileges to see information in the Agent report categories, and within those categories, to see data for only those agents on teams that they supervise.

You can select 0 or 1 primary supervisor for an agent team, and you can select multiple secondary supervisors for each team. Each supervisor can be a supervisor for multiple teams.

Note: In order to use Agent Team reports, you must configure teams and supervisors in Configuration Manager. The team structure you choose is up to you. You might prefer to use your ACD configuration. You might also prefer to use your ACD reports to monitor agent teams.

See also:

- Configuring Agent Teams and Supervisors (page 83).

Reporting on Supervisor Action

Agent team supervisors can take advantage of supervisory features available on their desktops. These features include Supervisor Assist, Emergency Assist, Barge-In and Intercept. There are two kinds of Supervisor and Emergency Assist: existing call and no call.

If you are using Unified ICME as the VRU, data is not captured for Barge in or Intercept calls.
Note: These supervisory features are not available to agents using MRDs other than Voice.

WebView reports display data for agent and supervisor use of these features. You might use this data to identify training needs.

Supervisor and Emergency Assist for Existing Call (Unified IC)

For Unified CC, you can enable Supervisor Assist and Emergency Assist.

Agents can activate supervisor assist or emergency assist buttons on their desktop when they need special assistance from the primary or secondary supervisor assigned to their team.

Note: Blind transfer is not supported for Supervisor Assist and Emergency Assist.

Follow these guidelines to ensure that you are able to obtain accurate and useful data from these features:

- Plan to configure skill groups for supervisors handling Supervisor Assist and Emergency Assist requests. For example, you might configure one skill group for the primary and secondary supervisors of each agent team. This way, you can direct requests to these skill groups and report on Supervisor and Emergency Assist call activity for these skill groups.

- Plan to create call types and configure dialed numbers that map to the created call type.

- Run scripts that direct the requests to the appropriate supervisor skill group. In the script, first target the primary supervisor and then, if you have configured secondary supervisors, queue to secondary supervisors.

If consult is selected as an option on the agent desktop settings for supervisor or emergency assist: if the agent is on a call when he or she activates either the Supervisor or Emergency Assist feature on her/his desktop, the CTI software activates the conference key on behalf of the agent’s phone and call the supervisor using the Supervisor or Emergency Assist script. (This example assumes the emergency or supervisor assist script has an Agent-to-Agent node to find a supervisor. See Configuration and Scripting Considerations for Reporting on Supervisor Action.) The supervisor answers the call and consults privately with the agent. The following fields are incremented within the Agent Skill Group and Skill group tables.

Table 11: Existing Call: Consultative

<table>
<thead>
<tr>
<th>Fields incremented for Agent’s skill group to which the call was routed</th>
<th>Fields incremented for Supervisor’s default skill group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsHandled, InternalCall, SupervisorAssistCalls/EmergencyAssist</td>
<td>InternalCallsRcvd</td>
</tr>
</tbody>
</table>

For the agent, the call is reported in Tasks Handled and either Sup Assist or Emergency report fields. For the supervisor, the call is reported in Tasks Handled report fields.

Note: During the consultation, the supervisor can decide to barge-in to the call using the supervisor desktop Barge-In feature.
About Supervisor Assist and Emergency Assist Reporting (Unified CC)

For Unified CC, you can enable Supervisor Assist and Emergency Assist.

Barge-In (Unified IC)

When the supervisor activates the Barge-in feature from his or her desktop, the agent’s desktop completes a conference to the supervisor so that the supervisor can join into the conversation with the call. The following fields are incremented for both the agent and the supervisor when the barge-in feature is activated in the agent skill group and skill group tables.

Note: If you have deployed Unified ICME as the VRU, data is not gathered for Barge-In.

Table 12: Supervisor Barge-In

<table>
<thead>
<tr>
<th>Fields incremented for Agent's skill group to which the call was routed</th>
<th>Fields incremented for Supervisor's default skill group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsHandled, InternalCalls, BargeInCalls</td>
<td>BargeInCalls, InternalCallsRcvd</td>
</tr>
</tbody>
</table>

For the agent, the call is reported in Tasks Handled and Barge In report fields. For the supervisor, the call is reported in Tasks Handled and Barge In report fields.

Intercept (Unified IC)

If the supervisor decides to intercept (take over) the call, the supervisor activates the Intercept button on his or her desktop. This causes the agent to be dropped out of the conference, thereby allowing the supervisor to take over the call. The following fields are incremented during the intercept operation for both the agent skill group and skill group tables.

Note: If you have deployed Unified ICME as the VRU, data is not gathered for Intercept.

Table 13: Supervisor Intercept

<table>
<thead>
<tr>
<th>Fields incremented for Agent's skill group to which the call was routed</th>
<th>Fields incremented for Supervisor's default skill group</th>
</tr>
</thead>
<tbody>
<tr>
<td>InterceptCalls</td>
<td>InterceptCalls</td>
</tr>
</tbody>
</table>

For the agent, the call is reported in the Intercept report field. For the supervisor, the call is reported in the Intercept report field.

Reports that show information on Agent Teams

These are some of the reports that contain information on Agent Teams

- Unified IC Agent Team Real Time All Fields
Configuring Agent Teams and Supervisors

Configuring Agent Teams

To add an agent team or to add agent members to an existing team:

1. From Configuration Manager, click **Tools > List Tools > Agent Team List**.
2. Click **Retrieve**. Then select an existing team, or click **Add** to define a new one.
3. Work in the appropriate tabs to configure attributes, to add members, and to assign a supervisor.

Configuring an Agent to be a Supervisor

To configure a selected agent to be a supervisor:

1. From Configuration Manager, click **Tools > Explorer Tools > Agent Explorer**.
2. Click **Retrieve** and select the agent.
3. Click the **Supervisor** tab.
4. Check Supervisor Agent.

Maintain supervisor data from **Tools > List Tools > Supervisor List**.

Selecting or Changing the Team’s Primary Supervisor

A team can have one primary supervisor and an unlimited number of secondary supervisors.

To review and change the primary supervisor for a team:

- From Configuration Manager, click **Tools > List Tools > Agent Team List**.

See also Report Templates (page 237).
• Click **Retrieve** and select the team.

• Select the agent who is the primary supervisor from the Primary Supervisor dropdown.
Average Speed of Answer (ASA)

Average Speed of Answer (ASA), also called Average Answer Wait Time, is the sum of the time that all incoming tasks to the service waited before being answered. This includes delay time, queue time, and ring time.

Answer Wait time starts when the call enters the queue and is set at these levels: Agent, Skill Group, Call Type, and Service.

At the agent and skill group levels, the ASA metric is useful for monitoring agent and skill group performance.

At the Call Type and Service levels, the ASA metric provides insight into how callers experience the system and how quickly calls are being answered.

For Agents: The agent's average speed of answer in HH:MM:SS (hour, minutes, seconds) is calculated by dividing the total time that callers spent in queue and while the call was ringing at the agent’s desktop before the task is answered by the number of calls that the agent answered.

For Call Types: The average answer wait time from when first queue to skill group or LAA select node was executed for this call to when this call was answered. This is an important measure of service quality because the time can vary, even over the course of one day, due to call volumes and staff levels.

For Routes: The average answer wait time, for all tasks offered to the route during the interval waited before being answered.

For Services:

(Hist) The average answer wait time for all tasks offered to the route during the interval waited before being answered.

(RT) The average speed of answer for all tasks associated with the service during the last five minutes waited before being answered.
For Skill Groups: The skill group's average speed of answer in HH:MM:SS (hour, minutes, seconds) calculated from the time spent by callers when placed in queue and ringing at the agent’s desktop before the task is answered divided by the number of tasks answered.

This chapter contains the following topics:

- How ASA is Calculated, page 86
- ASA for the Agent and Skill Group, page 87
- ASA for Call Types and Services, page 88

How ASA is Calculated

Calculations for Answer Wait Time (ASA) differ based on the type of system associated with the reporting object.

<table>
<thead>
<tr>
<th>Table.Field</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call_Type_Interval</td>
<td>Call_Type_Interval.AnswerWaitTime/Call_Type_Interval.CallsHandled</td>
</tr>
<tr>
<td>Call_Type_Skill_Group_Interval</td>
<td>Call_Type_Skill_Group_Interval.AnswerWaitTime / Call_Type_Skill_Group_Interval.CallsAnswered</td>
</tr>
<tr>
<td>Route_Real_Time.AvgSpeedAnswerTo5</td>
<td>N/A</td>
</tr>
<tr>
<td>Route_Half_Hour</td>
<td>Route_Half_Hour.AnswerWaitTimeToHalf/Route_Half_Hour.CallsAnsweredToHalf</td>
</tr>
<tr>
<td>Service_Real_Time</td>
<td>Service_Real_Time.AnswerWaitTimeTo5/Service_Real_Time.CallsAnsweredTo5</td>
</tr>
<tr>
<td>Service_Interval.AvgSpeedToAnswer</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Calculations for Answer Wait Time (ASA) differ based on the type of system associated with the reporting object (Unified CC, Unified ICM, or Unified SCCE). The table below shows the calculations. X means the value is included in the calculation.
ASA for the Agent and Skill Group

Agent. The ASA is calculated for the agent at the PG level.

The internal queuing time is sent to the PG by Unified ICM when an agent becomes available for the call. The PG adds up the internal queue time, ring time and network time and adds that into AnswerWaitTime in the agent skill group table. AnswerWaitTime is then divided by the CallsAnswered for the agent.

Skill Group. The ASA is calculated for the skill group at the PG level.

For Unified ICM Enterprise Queuing, the time spent in the enterprise queue is not used in the calculation of AnswerWaitTime. The calculation includes the ACD queue time only.

For ACD queuing, the queue time is reported by the PG based on events receive from the ACD.

Consider this example:

- A call is queued at Skill Group X.
- At Time T, the call is then queued at Skill Group Y at time T+30 seconds.
- An additional 10 seconds transpire before the call is answered by an agent at Skill Group Y.

In this case, the internal queuing time will be 40 seconds. This is the total length that the call has been queued even though it was only queued at Skill Group Y for 10 seconds.

The agent’s PG adds the internal queue time, ring time, network time to create the total AnswerWaitTime for the call and adds it to AnswerWaitTime in the skill group table. AnswerWaitTime is then divided by CallsAnswered within the skill group table to arrive at the ASA for the skill group.

Reports that show ASA for Agents

These are some reports that show ASA statistics for Agents and Skill Groups:
ASA for Call Types and Services

The Call Type ASA is calculated as AnswerWaitTime divided by CallsAnswered.

Call Type ASA is applicable only when calls are translation routed and includes time spent in the Enterprise Queue as well as time spent in the ACD queue.

ASA for the Service is computed based on the AnswerWaitTime as reported from the peripheral. This includes the time spent on the ACD after the call was offered up until the time the call was answered. If an Enterprise Queue is used, ASA reported for the service does not include time spent in the Enterprise Queue.

Reports that show ASA for Call Type and Service

These are some reports that contain ASA statistics for Call Types and Services:

• Unified IC Call Type Historical All Fields

• WebView caltyp20: Call Type Real Time Report

• WebView caltyp21: Call Type Half Hour

• WebView persvc07: Peripheral Service Tasks, Averages and Service Levels Real Time Report

• WebView entsvc08: Task and Agent Status Real Time Report

See also Report Templates (page 237).
Redirection on No Answer

The Redirection on No Answer (RONA) feature ensures that if an agent does not answer a call within a configurable amount of time, the call is assigned to a different skill group or agent. The original agent is made Not Ready with a reason code of 32767 so that additional calls are not routed to that agent.

For agent reporting, you can see how many calls experienced RONA through the Redirect No Answer report field in agent and skill group reports. A high number of RONA calls for an agent might indicate that the agent is not responding quickly enough to incoming calls. If multiple agents have a high number of reroute on RONA, it might indicate that the Ring No Answer time is too low.

For Call Type reporting, the Calls RONA database field is updated for the call type when a call redirects on no answer. In Call Type reports, these calls are grouped into the "Other" category.

See also:
RONA and Call Type Reporting (page 100)

This chapter contains the following topics:

• Best Practices for RONA, page 89
• RONA for Unified SCCE and for the IPCC System PG , page 90
• Reports that Show RONA Metrics, page 91
• Configuring RONA, page 91

Best Practices for RONA

Follow these guidelines to obtain accurate and useful data from Redirection on No Answer situations:

• Decide and configure how long a call is to ring before being redirected to a new agent or skill group.
When deciding this, consider how RONA calls are to affect the Service Level. If you want RONA calls to adversely affect the Service Level, the amount of time the call is allowed to ring before being redirected must be above the Service Level threshold time.

- Decide and configure what number is dialed to redirect calls that are not answered by agents within the ring no answer time. You configure the ring no answer dialed number in the Agent Desk Settings tool in Configuration Manager.

- Plan to create a separate call type for RONA situations and to associate this call type with the ring no answer dialed number.

Using a separate call type enables you to redirect calls that are not answered to a script that queues the calls at a higher priority. It also enables you to report on activity for the RONA call type. Viewing data for this call type helps you gain insight into the number of calls that redirect on no answer and to see how the calls are finally handled.

- Plan to create a separate script that is associated with the RONA call type.

In the Redirection on No Answer Script, queue the calls at a higher priority. The call variables set in the first script are carried over into the second script and you can use these variables if you choose.

Within the routing script, plan to enable the Target Requery option in the routing script. Target Requery is available from the Queue, Queue to Agent, Label, Select, and RouteSelect nodes.

Change the call type in the script after the requery and create a path for calls that are required within the script.

RONA for Unified SCCE and for the IPCC System PG

Redirection on No Answer calls update Peripheral tables (Peripheral_Real_Time and Peripheral_Interval) differently in Unified CCE environments than in Unified CCE deployments with IPCC System PG and in Unified SCCE deployments.

Consider this example:

An incoming ACD call is sent to an agent, but the agent does not answer it. The call RONAs to an IVR (queued to a skill group), and is answered later by another agent.

In a Unified CCE deployment that does not use the IPCC System PG (with or without Unified CVP support), the CallsOffered fields (CallsOffered and CallsOfferedToday in Peripheral_Interval and Peripheral_Real_Time) are updated three times:

- When the call first arrives, the Peripheral CallsOffered metrics for the CallManager peripheral are incremented.
- When the call is first sent to the IVR, the metrics for the IVR peripheral are incremented.
- When the call is sent to the IVR, the metrics for the IVR peripheral are incremented.
In Unified CCE with the IPCC System PG and in Unified SCCE deployments, this metric is updated only when the call first arrives.

This feature is implemented differently depending on whether you are installing Unified IP-IVR or Unified CVP as the VRU for your system.

Reports that Show RONA Metrics

For Unified ICM, Redirection on No Answer metrics are reported directly from the ACD.

For Unified CC, the following reports contain information on Agent RONA:

- WebView agtskg07: Agent Task Analysis
- WebView agtskg26: Agent Skill Group Consolidated Daily
- WebView agteam24: Agent Team Performance Summary Daily

See also Report Templates (page 237).

Configuring RONA

For Unified ICM, RONA is configured on the ACD and is not supported for the ARS PG.

For Unified CCE, RONA is configured on the Agent Desk Settings List.

Configuring Redirection on No Answer Calls with IP IVR

If you are installing Unified IP_IVR as the VRU, the Redirection on No Answer time and dialed number settings are configured in Agent Desk Settings List in Configuration Manager.

Figure 15: RONA Setting in Configuration Manager
Configuring Redirection on No Answer Calls with Unified CVP

If you are implementing Redirection on No Answer and have deployed Unified CVP as the VRU, the Redirection on No Answer feature is configured in Agent Desk Settings in Configuration Manager and in Unified CVP.

- Configure Agent Desk Settings Ring no answer time in Configuration Manager. This time determines when the agent is made Not Ready so that additional calls are not assigned to the agent.

- Configure the Unified CVP Ring No Answer timeout in the Unified CVP Voice Browser Administration application. This timer will be used to requery the call if the call is not answered.

Configure Unified CVP Ring NoAnswer timeout to be approximately 2 seconds more (longer) than the Ring no answer time configured in Agent Desk Settings.

The Unified CVP Ring No Answer timeout should also be less than 30 seconds because the Central Controller waits up to 30 seconds for a response to arrive from Unified CVP. If the response is not received within 30 seconds, the call fails.
Chapter 11

Call Types and Services

This chapter contains the following topics:

• Call Type and Service Type Reports, page 93
• Call Types, page 94
• Call Type Reporting, page 98
• Bucket Intervals (Unified IC), page 103
• Configuring Call Types and Bucket Intervals, page 104
• Services, page 105
• Configuring Services and Service Members, page 108

Call Type and Service Type Reports

Key Statistics Provided by Service and Call Type reports include:

• Average Speed of Answer (ASA)

• Number of calls received, handled, and abandoned

• How long callers waited in queue

• Number of calls queued for an available agent

• Whether Service Level objectives are being met

• Whether the caller had to be transferred

• Number of callers that heard a busy signal

• Number of calls that encountered an error
Although skill group and agent reports provide many of these same metrics — such as ASA, Avg. Handle Time, abandons, redirects, and calls handled — the Call Type and Service reports show these metrics in a format that gives a more complete picture of the customer experience and helps you review statistics organized by application.

Call Types

A call type is a category of incoming call. Based on the call type, the CallRouter selects the routing script that ultimately sends the call to an appropriate agent. Each call type has a schedule that determines which routing script or scripts are active for that call type at any time.

Call types are also the highest level reporting entity and are peripheral-independent.

There are two classes of call types: voice (phone calls) and non-voice (for example, email and text chat).

- Voice call types are categorized initially by the dialed number (DN) and, optionally, by the caller-entered digits (CED) and the calling line ID (CLID).

- Non-voice call types are categorized initially by the Script Type Selector and, optionally, Application String 1 and Application String 2.

Creating call types that correlate to the type of service the caller wants and changing call types during the script result in reporting statistics that reflect the customer's experience.

Note: Configuring a separate call type for each type of call treatment that you offer can eliminate the need for most custom reporting.

Note:

- Call types cannot span ACDs and PGs. This means that if your system uses both Unified ICM/CC components and legacy ACDs, you must create separate call types for the ACDs and the Unified ICM/CC components.

- The software allows routing that can offer calls simultaneously to multiple skill groups. The Call_Type_Skill_Group_Interval table, introduced in Release 8.0(1), records details for call types associated specific skill groups. Reports generated from this table show how scripts routed the calls, as well as the calls associated with a skill group that encountered errors, that abandoned, that RONA-ed, and so forth.

Best Practices for Call Types

Consider the call types you need to create to meet your reporting needs and configure a separate call type for each type of call treatment that you want to offer.

Based on the deployment model, scripting, queuing, and on whether or not calls are translation-routed, you can define call types to:
• Provide enterprise-wide routing statistics for the call center, such as the number of calls to be routed to different peripherals or the number of calls that encounter routing errors.

• Group calls to report on certain types of activity that occur within the contact center. For example, you might create separate call types for calls that redirect on no answer (RONA) or calls that are transferred to another agent.

• Report on statistics for a self-service VRU application.

Do you want to configure a separate call type associated with call transfers and conferences?

Doing so enables you to direct the transfer to a different routing script.

See Transfers and Conferences (page 137).

Do you plan to report on individual transactions within Network VRU Self-Service or Information Gathering applications?

If so, you might configure a separate call type for each transaction.

Do you want to separate Information Gathering VRU metrics from queue metrics?

If so, you might configure a separate call type for queuing.

Do you plan to use Outbound Option?

If so, create a separate call type for Outbound Option calls. Outbound Option uses a routing script in addition to a physical call to reserve agents. The call type real-time and half-hour reports contain data that pertains only to reservation calls and do not include reporting information for any outbound calls.

See also: Outbound Option (page 131).

Do you want to configure a separate call type associated with Redirection on No Answer (RONA) situations?

This enables you to direct calls that Ring No Answer to a routing script designed for this situation and to report on this Redirection on No Answer call type to see how calls that redirect on no answer are eventually handled.

See RONA (page 91)

Do you want to configure a separate call type associated with the Supervisor and Emergency assist script for each agent team?

This enables you to direct the assistance request to the Supervisor and Emergency Assist routing script which can assign the request to the primary or secondary supervisor for that agent's team. You can use call type reports to view data for supervisor assistance calls.

See Supervisor Assist and Emergency Assist Reporting (Unified CC) (page 82).

Do you want to determine the Service Level for call types?
Service Level indicates how well you are meeting your goal for answering calls.

You can configure the Service Level setting individually for each call type or set a global Service Level for all call types.

See Service Level (page 109).

Do you want to configure abandoned short calls to filter out calls that abandon very quickly?

If you want to use abandoned short calls, configure the call type Abandon Wait Time in Configuration Manager. Calls that abandon within the Abandon Wait Time are reported as short calls.

If you do not want to use abandoned short calls, leave the Abandon Wait Time field blank.

See Short Calls (page 123).

Do you want to define "bucket intervals" for reporting on answered and abandoned calls for the call type (Unified CC)?

These "bucket intervals" appear in call type reports that display the number of calls answered and abandoned for each interval and are useful for monitoring when calls are abandoning or being answered.

See Bucket Intervals (page 103).

Changing Call Types

Call type can be changed throughout the life of a call to direct the call to a new routing script or to gather report metrics for different legs or transactions.

Reasons for changing the call type within a routing script include the following:

• In a Self-Service network VRU application script, you might change the call type at specific points in the script to indicate that a transaction has been completed.

For example, if the customer is calling a bank and successfully checks his or her account balance using a Self-Service script, you might want to change the call type to indicate that the account balance transaction has completed and a new transaction has begun. In this case, you would create a call type for each transaction on which you want to report.

• You might change the call type when a call enters a queue at the end of an Information Gathering VRU application in order to separate Information Gathering and queuing metrics. In this case, you would create call types associated with the Information Gathering applications and call types associated with queuing.

The service level threshold timer at the call type starts as soon as the call enters the call type that has a service level defined. When the service level timer expires, the service level is applied to the current call type associated with the call.
If a call type is changed using the Requalify or Call type nodes, then the service threshold timer is reset.

Service levels are defined only for call types associated with scripts that use the Queue To and LAA Select nodes.

Note that if you use Unified CVP, the call type changes depending on the following factors:

- When you use a single CVP, the TCD record for each leg of the call is associated with the last call type.
- When you use multiple CVPs and VRUs, the controlling VRU (for example, CVP1) receives the updated call type in the last connect message. The call type of CVP2 is the same as the call type associated when the agent had received the call.
- When you use the Capture (CAP) Micro-application, different TCD rows with multiple call types are populated.
- When a call is abandoned in a queue, the call type is not changed.

Enterprise Routing and Enterprise Reporting for Calls (Unified ICM)

When Unified ICM receives a route request for a call, it first determines the call type, finds the script currently scheduled for that call type, and routes the call to the desired destination (for example, to a service, skill group, agent, or announcement).

The call type can be changed throughout the life of a call to direct the call to a new routing script and to gather report metrics for different legs or transactions. For more information on changing the call types, see the section Changing Call Types (page 96).

For legacy ACDs where Unified ICM software is used for Enterprise Routing, consider the following to ensure that your reports contain correct and relevant metrics:

- Ensure all calls are routed by Unified ICM software.
- Deploy a Service Control VRU to provide treatment and to queue calls in the enterprise while waiting for an available agent in a skill group. Queue calls to skill groups in Unified ICM (Enterprise queuing) for all call centers. Avoid using ACD queues (site queues).
- Use Translation Routes for routing calls to the legacy ACD. Always use translation routing when routing calls between ACDs.
- Once the call is routed and is terminated on the legacy ACD, have no treatment at the ACD.
- Avoid having agents transfer calls directly to other agent stations or agent IDs. Instead, use post routing capabilities to provide treatment and queuing for transferred calls.
- Avoid handling Redirection on No Answer (RONA) situations on the ACD, where possible. Instead, use post-routing capabilities to have the RONA calls routed by Unified ICM.
Call Type Reporting

The use of Call Type reports is based on the business need for your enterprise and is determined by how you plan to use the functionality provided by Unified ICM software.

Call Type reporting provides full customer experience in Unified CC, similar to Service reporting in Unified ICM.

Call Type reports can be used for the following purposes:

- Calls answered by agents
- Calls abandoned at the VRU
- Calls that abandon while en-route to an agent or while being offered to an agent’s phone
- Short calls
- Calls that are given busy, ring, default routed or network routed treatment
- Calls that go to another call type within a routing script using the Call Type or Requalify node
- Calls that abandon en-route to the VRU
- Calls that have a bad label
- Calls that re-route on no answer from the agent’s phone
- Calls that terminate the script using the Label node to a non-monitored device, such as voice mail
- Cradle-to-grave reporting for call handling statistics when calls are translation routed
- Reporting on calls grouped for the purposes of global call treatment
- Reporting on Enterprise Queuing statistics
- Providing enterprise wide routing statistics for your Call Center, such as the number of calls routed to different peripherals and the number of calls that encountered routing errors
- Reporting on statistics for a self-service VRU application, if a Network VRU is deployed
- Reporting on certain activities such as calls that are transferred, provided Call Types are configured for those activities
Call Type Reporting and Outbound Option Campaigns

The call type is an Unified CC concept that maps a route point dialed number to a routing script. It is also a very useful reporting object for the enterprise to describe all calls that traversed a specific routing script. The call type mostly applies to inbound traffic in the call center because the Dialer does not use the routing script when placing outbound calls. However, Outbound Option does use routing scripts to reserve agents and to transfer calls to the IVR, so that it can provide some insight into how calls are being routed.

Since Outbound Option uses a routing script along with a physical call to reserve agents, the Call Type real-time and half-hour reports contain data for Outbound Option reservation calls. It is important to note that this call type data pertains only to reservation calls and does not include reporting information for any outbound calls. To eliminate any confusion regarding Call Type reporting, create a separate call type for Outbound Option routing scripts.

See also: Outbound Option (page 131).

Call Type Reports in a Parent/Child Deployment

Call Type reports on the Unified ICME parent help to determine the following:

• Number of calls received by the call type to be routed to different peripherals (example: Multiple Unified CCE children, or different ACDs)

• Number of calls routed to different peripherals (example: Multiple children, or different ACDs)

• Number of calls that encountered routing errors

However, there are a limited number of scenarios where Call Type reports might be used to measure customer experience at the parent:

• If you are using translation routing at the parent, then certain Call Type reports might be useful in measuring customer experience associated with those translation routed calls.

• If you are using a network VRU at the parent for network queuing or network prompting, then the Call Type reports are useful to provide information on the calls handled by the VRU applications and also provide the queuing statistics. In a Contact Center Gateway deployment if you are queuing the calls at the network, then use Call Type reports on the parent to report on the queuing statistics. The number of calls queued and the network queue time is not available at the child. For more details, refer to the section Network Queuing and Reporting (page 213).
How Calls that Encounter Error Conditions Affect Call Type Reporting

The way call errors increment the database depends on whether the call abandons en-route to the VRU/ICM/IPCC scripts and or abandons en-route to agents:

- Calls that abandon en-route to the VRU/ICM/IPCC scripts are calls that abandon in the network while they are being sent to the VRU. An example of this is if a call abandons while it is being sent to the VRU from a CTI Route point in Communications Manager. These calls increment the ErrorCount column in the Call_Type tables.

 If the caller abandons within the Abandon Wait Time set for the call type, calls that abandon en-route to the VRU might be counted as short calls, instead of as errors. See the next section for more information on abandoned short calls.

 If an on-premise VRU is used, then the probability of calls abandoning en-route to the VRU is very low.

- Calls that abandon en-route to agents are calls that encounter an error when the call is at the agent desktop. This call is counted as part of the AgentErrorCount in the Call_Type tables.

 The Calls Error field in call type reports is a calculated field that combines both error columns. For example, the Calls Error field in the Call Type Historical All Fields report is derived from Call_Type_Interval.IncompleteCalls + Call_Type_Interval.AgentErrorCount.

How Calls that Have a Bad Label Affect Call Type Reporting

A bad label refers to an incorrectly configured label or missing label. It is always good practice to define a default label, so that calls that do encounter an incorrectly configured label can at least go to the default label and get handled as well as get accounted for in the call type report.

Labels might be configured incorrectly in the following ways:

- The label specified in the script node might not exist on the routing client: In this case, label specified in the script node might not exist on the routing client.

- The label points to the wrong agent: In this case, the pre-call message is sent to one agent, but the actual call is sent to a different agent. This call is reported as an incomplete call.

 If the node does not define a label, the call encounters error conditions and is reported as an error.

How Calls that Experience Redirection on No Answer with IP IVR Affect Call Type Reporting

Redirection on No Answer calls are calls that redirect off the agent’s phone because the ring time exceeds the Ring No Answer timer defined in the agent desktop settings. For Redirection on No Answer situations, you configure a separate call type and routing script to be used if agents do not answer ringing calls within the ring no answer time. In the Redirection on No
Answer script, you queue the call at a higher priority so that the call does not fall to the bottom of the queue.

In a Unified CC environment, Redirection on No Answer situations increment call type statistics as follows:

- For the initial call type, CallsOffered is incremented. When the call redirects, the CallsRONA field is incremented.

- For the Redirection on No Answer call type, CallsOffered is incremented as well as fields related to the completion of the call. For example, if the call is handled then the CallsHandled field is incremented.

Because CallsOffered is incremented twice for the call, use a different call type for Redirection on No Answer calls to ensure that the call does not peg the same call type twice.

In call type reports, these calls are grouped into the "Other" column. You can also view a count of Redirection on No Answer calls in agent and skill group reports.

How Calls that Experience Redirection on No Answer with CVP Affect Call Type Reporting

The Redirection on No Answer feature, configured in Agent Desk Settings in the Configuration tool and in CVP, ensures that when an agent does not answer a call, the call is taken away from the agent after a specified number of seconds and re-assigned to another agent or requeued. Redirection on No Answer is also used to change the agent state to Not Ready when a call is rerouted from the agent's phone. When the Ring No Answer time in the Agent Desk Settings expires, Unified ICM/CC software makes the agent unavailable for routing requests. When the Unified CVP Ring No Answer timeout expires, the call is re-queried for routing to a different skill group or agent. You configure the Unified CVP Ring No Answer timer to be approximately 2 seconds longer than the Agent Desk Settings Ring no answer time so that the agent is made Not Ready before the call is requeried. If the agent is not made unavailable first, the script might reassign the call to the same agent.

Note: The Unified CVP Ring No Answer timeout must be less than 30 seconds because the Central Controller waits up to 30 seconds for a response from the Unified CVP. If the response is not received within 30 seconds, the call fails.

Because the Ring No Answer time and Unified CVP Ring No Answer timeout are several seconds apart, it is possible that the call will continue to ring on the agent's phone after the agent is made Not Ready. If the agent answers the phone in this brief interval, the context of the call will not be reported and reports will show that the agent went directly into Active state from Not Ready state.

You can configure the routing script to handle Redirection on No Answer situations in two ways: the script can change the call type when the calls is requeried, or the script can continue to use the same call type.

The manner in which you script for Redirection on No Answer affects the report data that you see, as follows:
• If you change the call type, CallsOffered, CallsRequeried, and OverflowOut is updated for the initial call type. CallsOffered and fields related to the completion of the call, such as CallsHandled, are incremented for the second call type.

Using two call types enables you to identify Redirection on No Answer occurrences in call type reports. For example, if you create a specific call type for use in Redirection on No Answer situations, then you can see whether calls are redirecting by monitoring the calls offered to that call type. You can also see whether the Flow Out field is incremented for other call types.

• If you do not change the call type, CallsOffered and fields related to the completion of the call, such as CallsHandled, are incremented. FlowOut is not incremented. You will not be able to tell without looking at agent or skill group reports whether calls are redirecting on no answer. (You could write a custom report to see values for CallsRequeried.)

Note: Because the Unified CVP application performs a requery to redirect the call to a different agent or skill group instead of branching to another script, the CallsRONA field is not incremented for the call type.

How Calls that Terminate Label Node and Route to Non-Monitored Devices Affect Reporting

The Label node is used to divert a call to voice mail or web attendant or some other device that is not monitored by Unified ICM/CC because of digits collected by the caller during a voice menu or due to some other conditions. These calls are counted as RoutedNonAgent and appear in the "Other" column of call type reports.

Note: Use a Unified ICM/CC routing scripting script, not a VRU script, to route calls to non-monitored devices. If you use the VRU script, calls are reported as abandoned at the call type.

Reports that Show Call Type Data

These are some reports that contain call type data:

• Unified IC Call Type Abandon/Answer Distribution Historical

• Unified IC Call Type Historical All Fields

• Unified IC Call Type Real Time All Fields

• WebView caltyp04: Call Type Service Levels Real Time Report

• WebView caltyp21: Call Type Half Hour Report

• WebView caltyp37: Call Type Service Level Abandons Daily Report

See also Report Templates (page 237).
Bucket Intervals (Unified IC)

Bucket Intervals allow you to track data for calls abandoned or answered within specific time increments (for example, between 0 and 8 seconds, or under 60 seconds). Bucket Intervals are associated with call types and can be set for the system as a whole and for individual call types. Local settings override those set at the system level.

Service Level tells you what percentage of calls are being answered within a certain time, but does not tell you how closely to the Service Level calls are being answered or abandoned. Call type intervals provide additional insight into how long callers are waiting before their calls are answered or before they abandon.

For example, if your Service Level is two minutes, you might want to set up intervals for 30 seconds, one minute, 80 seconds, 120 seconds, 180 seconds, 210 seconds, and 240 seconds. Using these intervals, you can see whether calls are being answered in the thirty seconds after the Service Level Threshold of 180 seconds or if most are waiting a full minute longer to be answered.

The intervals also give you insight into how long callers are willing to wait before abandoning. Perhaps many callers do not abandon until two minutes past the Service Level. This might indicate that your Service Level goal can be modified.

To avoid reporting inconsistencies, only modify Bucket Interval settings at specific time boundaries (that is, end of day, week, or month). Ensure that no one is running reports for the intervals that you are changing when you modify the boundaries.

Unified CCE ships with a single System default Bucket Interval whose boundaries (increments) are: 8, 30, 60, 90, 120, 180, 300, 600, and 1200 (in seconds).

Reports that Show Bucket Intervals

These are some reports that contain bucket interval data:

- Unified IC: Call Type Abandon/Answer Distribution Historical
- Unified IC: Call Type Historical All Fields Report
- WebView: caltyp31 (Call Type Abandon/Answer Distribution by Half Hour Report) and caltyp32 (Call Type Abandon/Answer Distribution Report)
- WebView: caltyp33 (Call Type Abandon/Answer Cumulative Distribution by Half Hour Report) and caltyp34 (Call Type Abandon/Answer Cumulative Distribution Report)

See also Report Templates (page 237).
Configuring Call Types and Bucket Intervals

Configuring a Call Type

To configure a call type:

1. From the Configuration Manager, select **Tools > List Tools > Call Type List**.

2. Click **Retrieve**. Then select an existing call type, or click **Add** to define a new one.

3. Complete fields in the Attribute field as follows:
 - **Name**: Enter a unique enterprise name for the call type.
 - **Customer**: Select the Instance from the dropdown list.
 - **Service Level Threshold**: To override the system-level threshold, check the Override box; then enter the number of seconds for the Service Level threshold for this call type.
 - **Service Level Type**: Check the Override box. Then choose from the dropdown to specify how abandoned calls are to be handled in the service-level calculation.
 - **Bucket Intervals**: Check the Override box. Then choose the Bucket Interval.
 - **Description**: Enter a description for the call type.

Use a Unified ICM/CC routing scripting script, not a VRU script, to route calls to non-monitored devices. If you use the VRU script, calls are reported as abandoned at the call type.

See **Configuring Short Calls for Call Types (page 125)** for considerations for configuring short calls for Unified IC.

Defining Bucket Intervals

Before you can assign a Bucket Interval (either as the new global default or to a particular Call Type) you must create its definition. To define a Bucket Interval:

Step 1 In the Configuration Manager, select **Tools > List Tools > Bucket Intervals List**.

Step 2 Click **Retrieve** and then click **Add**.

Step 3 In the Add Name field, enter a name for the interval.

Step 4 In the Upper Bounds fields, add up to nine successive increments to measure, in seconds.
Setting the System Bucket Interval

To reset the default system-level Bucket Interval for your Unified CCE system:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Configuration Manager, select Tools > Miscellaneous Tools > System Information. Select the Bucket Intervals list, select the interval you want to use.</td>
</tr>
<tr>
<td>2</td>
<td>Click Save.</td>
</tr>
</tbody>
</table>

Setting Bucket Intervals for Specific Call Types

To configure Bucket Intervals for specific Call Types, which override the global level setting:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Configuration Manager, select Tools > List Tools > Call Type list.</td>
</tr>
<tr>
<td>2</td>
<td>Click Retrieve.</td>
</tr>
<tr>
<td>3</td>
<td>Select the Call Type whose Bucket Interval you want to set.</td>
</tr>
<tr>
<td>4</td>
<td>From the Bucket Intervals list, select the interval you want to use.</td>
</tr>
<tr>
<td>5</td>
<td>Click Save.</td>
</tr>
</tbody>
</table>

Services

For Unified ICM deployments, a service refers to a particular type of processing required by the caller. Services are configured to map to an application on the peripheral that provides the service. For example, a Service on Unified ICM might map to an Application on Aspect or to a VDN on Avaya.

Every call routed to a peripheral must have an associated peripheral Service. The application on the peripheral provides the call treatment, and Service reports are used to measure the customer experience across peripheral services.

A single peripheral might have several services defined such as Sales, Technical Support, and Customer Accounts.

You can determine the service level for a service as well as how abandoned calls impact the service level.
In an Unified CCE environment, calls are routed through IVRs rather than services. Therefore most service reports are not applicable in an Unified CCE environment. However, for both a Unified ICM environment and a Unified CCE environment, use the historical IVR peripheral service reports and the historical IVR trunk group reports for measuring the performance of your IVRs.

Service Members

For Unified ICM, each Service has one or more skill groups whose members can provide the service. These skill groups are “Service Members”. A skill group can be associated with (that is, can be a member of) more than one service.

Service and Service Members assist in tracking how scripts on an ACD are routing calls.

It is important to configure Service Members in Configuration Manager to accurately reflect their scripting in the ACD.

The system records calls that were offered to a service member, abandoned by that skill group, and reported against another skill group. (Call_Type_Skill_Group.CallsReportedAgainstAnother).

Enterprise Services (Unified ICM)

An Enterprise Service is a collection of services on different peripherals.

While an individual service is associated with a specific peripheral, an Enterprise Service can span several services from different peripherals in the contact center.

Creating and reporting on Enterprise Services gives contact center managers a consolidated measure of customer experience across similar services configured in different ACD peripherals distributed throughout the contact center.

Note: Avoid queuing to multiple services on the same or on several peripherals. Instead, configure and queue to Enterprise Services.

See Configuring Enterprise Services (page 108).

Service Reports

In Unified ICM, a service is an ACD concept that identifies a particular type of processing that the caller requires and defines the call treatment. For example, in the contact center for a software company, callers having questions about installing software would be directed to the Technical Support service.

In a Unified ICM environment, calls are routed to services or skill groups at the ACD. All skill groups belong to specific services and, therefore, skill group data rolls up to the service.

Reports for services provide call treatment information for all of the skill groups assigned to those services, and service reports are useful to measure customer experience data for which call treatment is done on the ACD.
In a Unified CC environment, calls are routed through IVRs. Most Unified ICM service reports are therefore not applicable in an Unified CC environment.

The service reports that are relevant for both Unified ICM and for Unified CC are the Peripheral Service reports that display data pertaining to IVR services.

For Unified CC, use Service reports only to report on IVR status and activity. Use Call Type reports for the most complete view of the customer's experience and to ensure that your system is performing optimally.

Reports that Show Service Data

These are some reports that present service data.

For Unified ICM environments, there are two categories of service reports:

- Peripheral Services (Services)

 This is a service that is tied to a specific peripheral (ACD). A single peripheral might have several services defined, such as Sales, Technical Support, and Customer Accounts.

- Enterprise Services

 This is a collection of services from several peripherals across an enterprise.

 Reports include:

 - Unified IC Enterprise Service Historical All Fields
 - WebView persvc01 - persvc008
 - WebView entsvc reports

For Unified CC environments, service reports include:

- Unified IC Peripheral Service Real Time
- Unified IC Peripheral Service Historical All Fields
- WebView persvc20: Peripheral Service for IVR Queue Half Hour Report
- WebView persvc24: Peripheral Service Agent Half Hour Report
- WebView persvc27: Peripheral Service Real Time All Fields Report
Configuring Services and Service Members

To configure a Service and its associated routes, peripheral targets, and labels:

1. From the Configuration Manager, select Tools > Explorer Tools > Service Explorer.
2. Click Retrieve. Then select an existing Service, or click Add to define a new one.
3. Complete the Service and Advanced tabs to define the properties of the selected service.
4. Complete the Service Member tab to add and delete the Skill Groups as service members.

Note: It is important to configure Service Members in Configuration Manager to accurately reflect their scripting in the ACD. If the configuration is not correct, certain service statistics will not be reflected correctly.

Configuring Enterprise Services

To configure an Enterprise Service:

1. From the Configuration Manager, select Tools > List Tools > Enterprise Service List.
2. When the Enterprise Service List window appears, in the Select filter data box, select the filters you want and click Retrieve.

 This enables the Add button.
3. Complete the Attributes tab.
Service Levels

Service Levels help you set and measure goals for answering calls. Service Levels are configurable; you can define them in different ways, depending on the kind of information you want them to provide.

You can configure:

- Default System Information Service level threshold and type settings for all Call Types.
- Specific service level threshold and type settings for an individual Call Type (to independently override the System Information level settings for that Call Type).
- Service level threshold and type settings for the Media Routing Domain.
- Specific Service level threshold and type settings for a peripheral that is associated with an MRD.
- Specific Service level threshold and type settings for a skill group that is associated with a peripheral.
- Service level threshold and type settings for the Peripheral VRU (Aspect ACD only)

This chapter contains the following topics:

- About Service Levels, page 109
- Configuring Service Levels, page 116

About Service Levels

All calls that have a service level event within a specified period are considered as service level calls offered for that period. This differs from a call’s offered value, which counts each call at the time it is first offered to the service.
Note: Service Level is not affected for calls that are neither answered nor abandoned within the Service Level time. For example, calls that encounter an error condition or are sent to non-monitored devices (using the label node) within the Service Level threshold do not affect the Service Level.

Two important configuration parameters contribute to the calculation of Service Level:

- **Service level threshold (page 110)** - the number of seconds you set as a goal to treat a call. To calculate the Service Level for a period of time, Unified ICM software determines the number of calls that have had a Service Level event within that interval.
- **Service level type (page 110)** - the manner in which calls that abandon affect the Service Level.

Service Level Threshold

The Service level threshold is the number of seconds you set as a goal for connecting a call with an agent.

For example, your goal might be to answer 80% of calls within two minutes. In this case, you would set the Service level threshold to 120 seconds. Reports show you the percentage of calls that are answered within that time threshold, enabling you to see whether you are meeting your goal.

A Service level threshold of 0 seconds means that no service level event will be set for the call; it will not be treated as a service-level call.

Service Level Type

Service level type determines how calls that abandon before the Service level threshold impact the Service Level calculation.

Service level type is presented as three options in the Configuration Manager: positively, negatively, or not at all.

- **Abandoned calls positively impact**

Some contact centers want abandoned calls to positively impact the Service Level. These contact centers consider a call abandoned within the Service level threshold time a treated call. Abandoned calls are considered to positively impact the Service Level.

- **Abandoned Calls negatively impact**

Other contact centers might consider only those calls answered within the Service level threshold time as treated calls. For these contact centers, the Service Level is detrimentally affected by calls that abandon within the Service Level time. Abandoned calls negatively impact the Service Level.

- **Ignore Abandoned Calls**
Others might choose to exclude the abandoned calls from the Service Level calculation (Abandoned Calls Ignored).

The calculations for Service Level are based on the Service level type defined for the Service Level configuration. They are described in the following table.

Table 14: Formulas for Service Level Type

<table>
<thead>
<tr>
<th>Service Level Type</th>
<th>Formula Used to Determine Service Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore Abandoned Calls</td>
<td>For Call Type and service: ServiceLevelCalls/(ServiceLevelCallsOffered - ServiceLevelAband)</td>
</tr>
<tr>
<td>Positive impact of abandoned calls</td>
<td>For Call Type and service: (ServiceLevelCalls + ServiceLevelAband) / (ServiceLevelCallsOffered)</td>
</tr>
<tr>
<td>Negative impact of abandoned calls</td>
<td>For Call Type and service: ServiceLevelCalls/ (ServiceLevelCallsOffered)</td>
</tr>
</tbody>
</table>

For an example of how Service level type is calculated, consider the following call counts:

- **Answered within Service level threshold (ServiceLevelCalls)** = 70 calls
- **Abandoned within Service level threshold (ServiceLevelAband)** = 10 calls
- **Exceeded Service level threshold (ServiceLevelCallsOffered – (ServiceLevelCalls + ServiceLevelAband))** = 20 calls
- **Total Service Level events (ServiceLevelCallsOffered)** = 100 calls

For these call counts, the Service Level is calculated for each Type as follows:

<table>
<thead>
<tr>
<th>For this Service Level Type:</th>
<th>The service level calculation is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Calls ignored</td>
<td>70/ (100-10)=77%</td>
</tr>
<tr>
<td>Abandoned Calls negatively impact</td>
<td>70/100=70%</td>
</tr>
<tr>
<td>Abandoned calls positively impact</td>
<td>(70 + 10)/100=80%</td>
</tr>
</tbody>
</table>

Leave the Abandon Wait Time field blank if you prefer to *not* track Abandoned Calls.

Service Level at the Call Type

For measuring overall customer experience, the Call Type provides the most insight into overall call treatment and how callers are experiencing the system.
The service level threshold timer at the call type starts as soon as the call enters the call type that has a service level defined. When the service level timer expires, the service level is applied to the current call type associated with the call.

Only Call Types that are associated with scripts that use the Queue To and LAA Select nodes define service levels. If a call type is changed using the Requalify or Call type nodes, then the service threshold timer is reset.

There are four service level events that can occur for the call type:

- The call is answered by an agent before the Service level threshold expires. In this case, the ServiceLevelsCallsOffered and ServiceLevelCalls database fields are incremented.

- The call abandons while in the VRU (prompt or queue) or at the agent’s phone before the Service Level threshold expires. In this case, the ServiceLevelCallsOffered and ServiceLevelAband database fields are incremented.

- The call redirects on no answer before the Service level threshold expires. In this case, the ServiceLevelCallsOffered and ServiceLevelRONA database field is incremented.

- The Service level threshold timer expires. Example: the call reaches the Service level threshold without being answered by an agent or abandoned. In this case, the ServiceLevelCallsOffered database field is incremented.

If calls encounter an error before the Service level threshold expires, the ServiceLevelError database field is incremented, but ServiceLevelOffered is not incremented. If the call encounters an error after the Service level threshold expires, ServiceLevelOffered is incremented.

Unified ICM/CCE/CCH gathers metrics for calls that RONA (if you are using IP IVR as the VRU) and for several types of errors at the call type. You could write a custom report to exclude these from call type Service Level.

To exclude calls that RONA:

- To exclude only calls that redirect on no answer before the Service level threshold expires, adjust the ServiceLevelCallsOffered by excluding the ServiceLevelRONA calls. In this example, abandoned calls have a negative impact.

 ServiceLevel = ServiceLevelCalls / (ServiceLevelCallsoffered – ServiceLevelRONA)

- To exclude all calls that redirect on no answer irrespective of the Service level threshold then adjust the ServiceLevelCallsOffered by excluding all RONA calls. In this example, abandoned calls have a negative impact.

 ServiceLevel = ServiceLevelCalls / (ServiceLevelCallsoffered – CallsRONA)

To exclude errors from your Service Level calculation

- Adjust the ServiceLevelCallsOffered by excluding error calls. Adjusted SL Offered calls = SL Offered calls – (Total Error calls - ServiceLevelError)
For example, if abandoned calls have Negative Impact, \(\text{ServiceLevel} = \frac{\text{ServiceLevelCalls}}{(\text{ServiceLevelCallsOffered} - (\text{AgentErrorCount} + \text{ErrorCount} - \text{ServiceLevelError}))} \)

Service Level at the Skill Group

At the skill group level, the service level metric is useful for monitoring agent and skill group performance. The service level threshold timer at the skill group starts as soon as the call is queued to a skill group.

Note: By default, the Service level threshold for a Skill Group is set to the default value of that Skill Group’s peripheral. You can manually select a Skill Group in Configuration Manager and change its setting from that of the peripheral to another value.

There are five service level events that can occur for the skill group:

- The call is answered by an agent before the Service level threshold expires. In this case, the ServiceLevelsCallsOffered and ServiceLevelCalls database fields are incremented for the skill group that answered the call. If the call is queued to more than one skill group, then ServiceLevelsCallsOffered and ServiceLevelCallsDequeued database fields are incremented for the other skill groups.

- The call is dequeued from a skill group before the Service Level threshold expires. In this case, ServiceLevelsCallsOffered and ServiceLevelCallsDequeued database fields are incremented. Calls may be dequeued using Cancel Queue node, when they are de-queued from the skill group to be routed to a different skill group.

- The call abandons while in the VRU (queue) or at the agent’s phone before the Service level threshold expires. In this case, the ServiceLevelCallsOffered and ServiceLevelAband database fields are incremented.

- The call redirects on no answer before the Service Level threshold expires. In this case, the ServiceLevelCallsOffered and ServiceLevelRONA database field is incremented.

- The Service level threshold timer expires. Example: the call reaches the Service level threshold without being answered by an agent or abandoned. In this case, the ServiceLevelCallsOffered database field is incremented.

Calls can queue to more than one skill group depending on your scripting, and Service Level metrics are updated for each skill group to which a single call queues.

It is important to understand how Service Levels are impacted in such cases.

- If a call is queued to more than one skill group and then the call is answered before the Service Level threshold expires ServiceLevelsCallsOffered and ServiceLevelCalls database fields are incremented for the skill group that answered the call. For the other skill groups ServiceLevelsCallsOffered and ServiceLevelCallsDequeued database fields are incremented.

- If a call is queued to more than one skill group and the call abandons in queue before the Service level threshold expires then ServiceLevelsCallsOffered and ServiceLevelCallsAband
database fields are incremented for all the skill groups. This will have a negative or positive impact on Service Levels in all the skill groups depending on how you have decided to treat abandon calls for Service Level calculations in your configuration for the individual skill groups.

- If a call is queued to more than one skill group and the call abandons in queue after the Service level threshold expires then ServiceLevelsCallsOffered database field is incremented for all the skill groups. This will adversely affect your Service Level.

- If a call is queued to more than one skill group and the call abandons after it was routed to a skill group (example: Abandon while ringing at the agent) before the Service level threshold expires, ServiceLevelCallsOffered and ServiceLevelCallsAband database fields are incremented for the skill group that had the abandon, while other skill groups have ServiceLevelCallsOffered and ServiceLevelCallsDequeued database fields incremented.

Unified ICM/CCE/CCH gathers metrics for calls that RONA (if you are using IP IVR as the VRU) and for several types of errors at the skill group. You could write a custom report to exclude these from skill group Service Level.

To exclude calls that RONA:

- If you would like to exclude only calls that redirect on no answer before the Service level threshold expires, adjust the ServiceLevelCallsOffered by excluding the ServiceLevelRONA calls. In this example, abandoned calls have a negative impact.

\[
\text{ServiceLevel} = \frac{\text{ServiceLevelCalls}}{(\text{ServiceLevelCallsoffered} - \text{RouterCallsDequeued} - \text{ServiceLevelRONA})}
\]

- If you would like to exclude all calls that redirect on no answer irrespective of the Service level threshold then adjust the ServiceLevelCallsOffered by excluding all RONA calls. In this example, abandoned calls have a negative impact.

\[
\text{ServiceLevel} = \frac{\text{ServiceLevelCalls}}{(\text{ServiceLevelCallsoffered} - \text{RouterCallsDequeued} \text{CallsRONA})}
\]

If you want to remove errors from SLCallsOffered, you can use this formula in a custom report: SLCallsOffered – (Errors – SLErrors).

Service Level at the Peripheral VRU Service (Unified ICM - Aspect Only)

Note: Service Level at the Peripheral VRU is configurable for the Aspect ACD only.

The service level threshold timer at the VRU service starts as soon as the call arrives at the VRU service.

There are three service level events that can occur for the peripheral VRU service:

- Call is routed to an agent before service level timer expires. In this case the ServiceLevelCallsOffered and ServiceLevelCalls database fields are incremented.
• Call abandons while in the VRU before service level timer expires. In this case the ServiceLevelAband and ServiceLevelCallsOffered database fields are incremented.

• Service level threshold timer expires. In this case the ServiceLevelCallsOffered database field is incremented.

The VRU Service does not detect abandons that happen at the peripheral agent service, so these will not be part of the service level for the VRU service. The VRU service does not detect when the call is physically answered by the agent; it only knows when the call is routed to the agent.

Best Practices for Service Levels

Consider these guidelines when configuring and scripting service level:

• Service level time begins as soon as the call enters a Call Type. Set up Call Types scripts specifically to collect queue and agent statistics such that service level time begins once a call is queued to a skill group. Define service levels only for Call Types that point to a script that includes a Queue to Skill Group Node.

• Set up one Call Type to collect statistics prior to the queue (that is, the initial Call Type designated for the script via Call Type mapping).

• Set up other Call Types used specifically to collect queue and agent statistics.

• In your routing scripts, include the Requalify or Call Type nodes to submit the call to the Call Type used to collect queuing information.

• Skill group and service level metrics are updated for each skill group to which a single call queues. Service Levels could be adversely affected if calls abandon within or outside the service level threshold in such cases. Consider queuing to a single skill group if you include abandons in your Service Level calculations and do not want abandons to affect Service Levels adversely.

If you follow these guidelines, the first Call Type to which the call was initially mapped will gather statistics before the call is queued to the skill group. The script will then pass the call to the Call Type set up specifically to collect information after the call is queued to the skill group.

Reports that show Service Level

These are some reports that contain Abandon statistics for Call Types and Services:

• Unified IC: Peripheral Service Historical All Fields Report

• Unified IC: Peripheral Service Real Time All Fields Report

• WebView caltyp04: Task Type Service Level Real Time Report

• WebView persvc08: Agent and Task Status Real Time Report
Configuring Service Levels

Service Level is set in six configurable windows in Configuration Manager, which you can define in different ways depending on the kind of information you want it to provide.

- **System Level (page 116)**
- **Call Types (page 116)**
- **Media Routing Domain (page 119)**
- **Peripheral (page 119)**
- **Skill Group (page 120)**
- **VRU (page 121)**

See also:

Reporting on Service Level (page 109)

Configuring the System Information Service Level for Call Types

Service Levels are set at the System Information level for all call types. To view or change the default system-level settings for all Call Types:

Step 1
In the Configuration Manager, select **Tools > Miscellaneous Tools > System Information**.

Step 2
Specify a value for Service level threshold in seconds.

The default is 20 seconds.

Step 3
Select the Service level type.

The options are: Abandoned Calls have Negative Impact, Abandoned Calls have Positive Impact, and Ignore Abandoned Calls.

The default is **Ignore Abandoned Calls**.

Step 4
Click **Save**.
Configuring Service Levels for Specific Call Types

To configure Service Levels for specific Call Types, which override the System Information settings:

Step 1
In the Configuration Manager, select **Tools > List Tools > Call Type Lists**.

Step 2
Click **Retrieve**.

Step 3
Select the Call Type whose service level you want to set.

Step 4
For Service level threshold, check the box to the right of the field to override the default from the System Information (20 seconds).

Specify a Service level threshold value in seconds for this Call Type.

Step 5
For Service level type, check the box to the right of the field to override the default.

Select from *Ignore Abandoned Calls*, *Abandoned Calls have Negative Impact*, and *Abandoned Calls have Positive Impact*.

Step 6
Click **Save**.

See also [Service Level at the Call Type](page 111).

Service Level Relationships: Media Routing Domain, Peripheral, and Skill Groups

Service Level setting for MRDs, Peripherals, and Skill Groups are hierarchical and are interpreted as follows:

- **MRD** - is the highest level. It is set in **Configuration Manager > Tools > List Tools > Media Routing Domain**.

 The default settings for the MRD are Service level threshold = 30 seconds and Service level type = Ignore Abandoned Calls. Ignore Abandoned Calls is the only value, and it is protected.

- **Peripheral** - is set in **Configuration Manager > Tools > List Tools > Service Level Threshold List**.

 The default settings for a Peripheral are taken from its MRD. You can override them.

- **Skill Group** - is set in **Configuration Manager > Explorer Tools > Skill Group Explorer > Advanced tab**.

 The default settings for Skill Group are taken from its peripheral. You can override them.

This example explains the configuration.
1. The MRD has two Peripherals. Each Peripheral has two Skill Groups. The Service level threshold for the MRD is set to the default of 30 seconds. By default, the Service level thresholds for both Peripherals is 30 seconds, and the Service level thresholds for all four Skill Groups is 30 seconds.

Figure 16: MRD Hierarchy Example 1: Service level threshold at the MRD

2. If you change the Service level threshold of Peripheral 1 to 20 seconds, the Service level thresholds of Skill Groups 1 and 2 become 20 seconds.

The Service level thresholds of Skill Groups 3 and 4 remain at 30 seconds.

Figure 17: MRD Hierarchy Example 2: Changing the Peripheral

3. If you want the Service level threshold of Skill Group 1 to be 45 seconds, you can independently configure Skill Group 1 to have a Service level threshold of 45 seconds.
Configuring the Service Level for the Media Routing Domain

To configure the Service Level settings for the Media Routing Domain:

- **Step 1**: In the Configuration Manager, select **Tools > List Tools > Media Routing Domain List**.
- **Step 2**: Select the Routing Domain with the service level you want to modify.
- **Step 3**: Click **Retrieve**.
- **Step 4**: Select the MRD that has the Service level you want to set.
- **Step 5**: Specify a value in seconds for Service level threshold. *The default is 30 seconds.*
- **Step 6**: Service level type is protected and always shows *Ignore Abandoned Calls*.
- **Step 7**: Click **Save**.

Configuring the Service Level for a Peripheral

To configure Service Level settings for a Peripheral:

- **Step 1**: In the Configuration Manager, select **Tools > List Tools > Service Level Threshold List**.
- **Step 2**: Click **Retrieve** to populate the list with the Peripherals.
- **Step 3**: Select the Peripheral that has the Service Level you want to modify.
- **Step 4**: Specify a value for Service level threshold. The default is inherited from the MRD.
Your options are to:

• Retain the default from the MRD.

• Check the Override MRD default box to unprotect the value and enter a new value in seconds for the Peripheral Service level threshold.

Step 5

For Service level type, check the box to override the default. Select from *Abandoned Calls have Negative Impact*, *Abandoned Calls have Positive Impact*, and *Ignore Abandoned Calls*.

For a non-Unified CCE/CCH peripheral and a voice media routing domain, select from *Abandoned Calls have Negative Impact*, *Abandoned Calls have Positive Impact*, and *Ignore Abandoned Calls*. For other media routing domains, only *Ignore Abandoned Calls*, and it is protected.

Step 6

Click **Save**.

Configuring the Service Level for Skill Groups

To configure Service Level settings for a Skill Group:

Step 1

In the Configuration Manager, select **Explorer Tools > Skill Group Explorer**.

Step 2

Click **Retrieve**.

Step 3

Select the Skill Group and click the Advanced tab.

Step 4

The service level threshold defaults to that of the Peripheral.

Your options are to:

• Keep the Service level threshold setting of the Peripheral.

• Check the Override Peripheral default box to unprotect the value and enter a new value in seconds for the Skill Group Service level threshold.

Step 5

The service level type defaults to that of the Peripheral.

Your options are to:

• Keep the setting of the Peripheral.

• From the dropdown, change to: *Abandoned Calls have Negative Impact*, *Abandoned Calls have Positive Impact*, or *Ignore Abandoned Calls*.

Step 6

Click **Save**.
Configuring the Service Level for an Aspect VRU

To configure Service Level settings for an Aspect VRU:

Step 1
In the Configuration Manager, select **Explorer Tools > PG Explorer**.

Step 2
Click **Retrieve**.

Step 3
Select and expand the PG.

Step 4
Select the peripheral and click the Peripheral tab.

For all peripherals except Aspect, the Peripheral Service Level Type field is protected and shows *Calculated by Call Center*.

For Aspect, choose the type of calculation to be performed by default. You can override the default for each individual service.
Short Calls, Abandoned Calls, and Overflow Calls

This chapter contains the following topics:

- Short Calls, page 123
- Abandoned Calls, page 126
- Overflow, page 128

Short Calls

A short call is a call that is either abandoned very quickly or answered and terminated very quickly. By defining what you believe to be a short call, you can filter out from reporting metrics those calls that did not stay in the system long enough to be considered and counted as events.

The Abandoned Call Wait timer, set at the peripheral, defines the threshold under which the abandoned call will not be counted. If the abandoned threshold is lower than the service level threshold, the call will not affect the Service level. If call wait time is higher than this threshold, the call is counted as Offered.

The Answered Short Call threshold, also set at the peripheral, defines the time under which the call will not be counted as answered and will not impact agent performance.

If you plan to use Short Calls to filter out false abandons or to detect when calls are answered and terminated too quickly to be considered handled, consider the following:

- You can configure abandoned short calls globally for all call types.
- You can configure abandoned short calls for the peripheral. These are tracked for the services that are configured for that peripheral.
- You can choose not to count any abandoned calls as short calls regardless of how quickly they abandon.
You can choose how abandoned calls affect the Service Level—negatively, positively, or not at all.

You can configure answered short calls for agents and skill groups.

You cannot configure answered short calls for call type.

You can choose not to count any answered calls as short calls regardless of how quickly they terminate.

Note: The concept of Short Calls applies to the Voice media class only.

Abandoned Short Calls

A call is considered abandoned if it abandons after the value set for the Abandon Call Wait time threshold. This is set globally.

If the call abandons before the Abandon Call Wait Time threshold, the call is reported as a short call.

Abandoned short calls affect reporting because they update the CallsOffered field but not the CallsAbandon field.

Answered Short Calls

Answered short calls reflect when a caller hangs up quickly if no agent answers the phone.

Answered short calls are reported for skill groups and agent skill groups.

The short call timer starts when the agent answers the call, and the CallsAnswered metric is updated for these calls.

The ShortCalls fields within the Skill_Group_Interval and Agent_Skill_Group_Interval tables are incremented if the Talk Time is less than the Answered short call threshold configured for the peripheral. The call is reported both as handled and as a short call.

If auto-answer is enabled for the agent, and if there are a high number of short calls within a certain interval, reporting on short calls can be used to determine which agents were not at their station when a call was automatically answered. This assumes that the caller hangs up quickly when there is no agent on the phone.

Reports that show Short Calls

A number of All Fields Reports contain a Short Tasks column to enable you to track calls that are offered but are neither handled nor abandoned.

These are some of the reports that contain operational information on short calls:

• Unified IC Agent Historical All Fields Report
Short Calls

Configuring Short Calls for Call Types

For Call Types, you can configure Abandoned Short Calls only. Call Types do not allow support configuration for Answered Short Calls.

To configure Abandoned Short Calls for Call Types, complete the following steps:

Step 1 In the Configuration Manager, select Tools > Miscellaneous Tools > System Information.

Step 2 Set Abandoned Call Wait Time to a value, in seconds. This value indicates the length of calls to be considered abandoned. Calls abandoned before the Abandoned Call Wait Time are NOT considered abandoned. To not track abandoned calls, leave the field blank.

Step 3 Click Save.

Configuring Answered Short Calls for Skill Groups

To configure Answered Short Calls for Skill Groups, complete the following steps:

Step 1 In the Configuration Manager, select Tools > Explorer Tools > PG Explorer.

Step 2 Click Retrieve to retrieve the list of PGs.

Step 3 Under a PG, select the peripheral that you want to modify.

Step 4 Select the Advanced tab.

Step 5 Set Answered Short Calls Threshold to a value (in seconds).

Step 6 Click Save.

Repeat steps 3 through 5 for additional PGs/periipherals, as desired.

See also Report Templates (page 237).
Abandoned Calls

A call is considered abandoned if the caller hangs up before being connected to an agent. This includes situations where the caller hangs up while he or she is queued and waiting at the VRU (CVP or IVR). A high number of abandoned calls might be an indication that callers are waiting in the queue for too long.

Service reports provide cumulative statistics for all abandoned calls. Call Type reports provide additional visibility on where calls are abandoning.

Note: If a call abandons before the Abandon Call Wait Time threshold, it is considered a Short Call. For example, if you configure the abandoned call wait time for 10 seconds, and a caller disconnects at nine seconds, that call is a short call—it is not considered offered or abandoned.

See Short Calls (page 123).

How Calls that Abandon Affect Call Type Reporting

There are three types of abandon metrics: abandon at the VRU (prompt or self service), abandon in queue, and abandon at the agent.

Unified ICM/CC tracks the abandon counts for each of these abandon types separately. The time spent by these abandoned calls before abandoning is also tracked.

The value represented by the Aban column on the Call Type reports provides total abandon count for the call type, which includes calls that abandoned while at the VRU (prompting or self service), calls that abandon in queue, and calls that abandoned while ringing at the agent's phone or en route to the agent's phone. This is derived from the TotalCallsAband database field.

Reports also provide average time spent by these abandoned calls in the Avg Aban Delay Time field. This field represents the average delay time of all abandoned calls that ended in this call type during the current interval. This is derived from Call_Type_Interval.CallDelayAbandTime / Call_Type_Interval.TotalCallsAband.

To separate information gathering and queuing statistics, you can also determine the time spent by a call only in the call type where the call abandoned. This is tracked in the CTDelayTotalAbanTime database field. This includes only the time spent in the call type where the call abandoned and not all call types.

Consider this example:

- A call spends 30 seconds in the information gathering call type, "Info_Call_Type".
- The script then changes the call type to the queuing call type say Queue_Call_Type and the call is queued.
- After 15 seconds waiting in queue the call is abandoned.
In this case the total time spent by the call before abandoning will be 45 seconds. However the time spent by the call in the “Queue_Call_Type” where the call abandoned will be 15 seconds. The Call Type statistics for the “Queue_Call_Type” will be updated as follows:

Queue_Call_Type

- CallDelayAbandTime = 45 seconds
- CTDelayTotalAbanTime = 15 seconds.

Note: You could write custom reports to able to report on the different abandons and the time spent by these abandons. To determine the counts and the time associated with the abandoned calls, for calls in the script, or at the VRU (prompt or Self service), subtract Agent Abandons and Queue abandons from Total Abandons.

How Abandoned Short Calls Affect Call Type Reporting

A short call at the call type is a call that abandons within the call type's Abandon Wait Time threshold. By defining what you believe to be a short call, you can filter out those calls that you believe did not stay in the system long enough to be counted as a real call. You can define short calls for call types and services. Note that short calls are configured globally for all call types.

The short call timer starts as soon as the route request is received for the call. The CallsOffered field is updated when the route request is received. If the call abandons within the Abandon Wait Time threshold, the ShortCalls field is updated, but the number of calls abandoned is not updated. Since the call type is the highest level reporting entity, calls that abandon at the VRU or at the agent's phone can also be considered short calls at the call type if they abandon within the call type's Abandon Wait Time threshold.

If you do not want to count any abandoned calls as short calls regardless of how quickly they abandon, you can disable abandoned short calls by leaving the Abandon Wait Time field for the Call Type blank.

Reports that show Abandoned Calls

These are some reports that contain Abandon statistics for Call Types and Services:

- Unified IC: Enterprise Service Historical All Fields
- Unified IC: Peripheral Service Historical All Fields
- WebView entsvc03: Effect of Abandoned Tasks on Enterprise Service Levels Report
- WebView persvc07: Peripheral Service Tasks, Averages and Service Levels Real Time Report
- WebView persvc04: Peripheral Service Tasks Trend Analysis Real Time Report
- WebView caltyp05: Analysis of Calls Half Hour Report
Overflow

The software keeps counts of the number of calls moved out of each service or route (overflowed out) and moved into each service or route (overflowed in).

Overflow Out is incremented when the one of the following occurs:

- The call type associated with the current call is changed through use of a Call Type or Requalify node.
- The call is sent to a label using a label node.
- The call is redirected.

When a call is redirected, the PIM no longer can receive events for the call and has no way of referencing or tracking the call.

For example, the call might have been redirected to a non-Unified ICM monitored device and then returned to the switch with a different call ID.

The Unified ICM generates the termination call detail record with only the data originally tracked for the call. Calls marked as Redirected are counted as Overflow Out calls in the Unified ICM service and route tables.

- The call was not default-routed, and the label was not a ring, busy, or announcement label.
- The call hit a release node

In Unified CCE, to more accurately reflect call status, CallDisposition is set to 15 (Redirected) instead of 4 (Abandon Delay) in the following cases:

When a call leaves a CTI route point to be sent to IVR.

When the agent transfers call to another skill group, no agent is available, and the call is sent to IVR

Reports that Show Overflow

These are some of the reports that contain operational information on Overflow Out situations:

- Unified IC Call Type Historical /Call Type Daily All Fields
- Unified IC Call Type Real Time
- Unified IC Peripheral Service Real Time
- WebView routes08: Route Real Time All Fields Report

For the complete list of templates, see Report Templates (page 237).
• WebView caltyp35: VRU Calls Analysis Half Hour Report

See also Report Templates (page 237).
Outbound Option

The Cisco Outbound Option application provides outbound dialing functionality along with the existing inbound capabilities of Cisco Unified Contact Center Enterprise. This application enables the contact center to dial customer contacts and direct contacted customers to agents or IVRs. The ability for agents to handle both inbound and outbound contacts offers a way to optimize contact center resources.

Outbound Option features include:

- Cisco Internet Protocol Contact Center (Unified CCE) compatible dialer
- Campaign management
- Inbound/outbound blending
- Predictive, Progressive, and Preview dialing modes
- Real-time and historical reports
- Personal callback
- Call Progress Analysis (CPA) for answering machine, fax/modem, and answering machine terminating tone detection
- Transfer to Interactive Voice Response (IVR)
- Sequential dialing
- Cisco IP Contact Center Agent re-skilling
- Abandoned and Retry call settings
- Campaign Prefix Digits for dialed numbers
- Outbound Option support on Cisco CC Hosted
Refer to the Outbound Option Guide for Cisco Unified Contact Center Enterprise & Hosted for details.

This chapter contains the following topics:

- **Reporting on Outbound Option Campaign Effectiveness**, page 132
- **Reporting on Agent Performance for Outbound Option Dialing Campaign Calls**, page 132
- **Campaign Query Rule Reporting**, page 133
- **Dialer Reporting**, page 135
- **Import Rule Reporting**, page 135

Reporting on Outbound Option Campaign Effectiveness

Use the templates in the Outbound Option reporting category to generate reports for campaigns, query rules used in those campaigns, Outbound Option record imports, and Outbound Option Dialer activity.

This chapter describes the Outbound Option reports that are supported in the WebView reporting tool. Unified IC will support Outbound Option in a future release.

In the WebView interface, Outbound Option templates display when you check the ICM Templates checkbox, but generated reports will be blank. You need to check IPCC Templates.

All Outbound Option reports are voice-only reports and can be used in Unified CC, and Unified SCCEnvironments.

Reporting on Agent Performance for Outbound Option Dialing Campaign Calls

Outbound Option, functionality that is automatically enabled at setup, provides automatic outbound dialing capability.

The Outbound Option Dialer, which places outbound calls to customers and connects these calls with agents, assigns and connects calls differently than regular Unified ICM Enterprise routing. Report data for agents handling Outbound Option calls therefore differs from data for agents handling typical voice calls and multichannel tasks.

To interpret agent data for Outbound Option tasks, you need to understand how Outbound Option reserves agents, reports calls that are connected to agents, and handles calls dropped by customers before the calls are connected.

When the Outbound Dialer initiates a call to a customer, it reserves the agent assigned to handle the call by placing a reservation call to the agent and changing the agent's state to Hold. This reservation call is reported as a Direct In call to the agent.

For typical voice calls, the agent is placed into Reserved state when Unified ICM software reserves the agent to handle a call; the agent's state is reported as Reserved. For Outbound Option calls, reports show the agent in Hold state when reserved for a call and the time that agent spends reserved is reported as Hold Time.
When the customer answers the call, the Outbound Option Dialer transfers the call to an agent. The call is now reported as a Transfer In call to the agent. When the customer call is transferred to the agent, the reservation call is dropped by the Dialer and classified as Abandon on Hold. For more information regarding Outbound Option termination call detail records, see the *Outbound Option Guide for Cisco Unified Contact Center Enterprise & Hosted*.

The abandoned call wait time, set in the Campaign Configuration screen, determines how calls are reported if the caller hangs up. Calls are counted in the Customer Abandon field in both Real-time and Historical campaign query templates only if the customer hangs up before the abandoned call wait time is reached.

See Also

Agent Reporting for Outbound Option Campaigns (page 56)

Skill Group Reporting for Outbound Option Campaigns (page 76)

Campaign Query Rule Reporting

The Campaign Query rule reports are the most useful reports for measuring the effectiveness of a given campaign and can also be used for Agent and IVR campaigns.

These reports show you what is happening in each campaign, including the number of calls closed, number of customers contacted, average talk time, and average wrap-up time for each query in a campaign.

There are two categories of campaign query rule reports:

- One category of reports indicates the number of records closed, those in Pending state, and total records in the query rule’s dialing list.

 For example, the camqry20 report, Campaign Consolidated Half Hour Report, shows the overall view of how the system is running and can be used for troubleshooting reasons why agents are idle.

- A second category of reports provides different views into the call result activity. It breaks down call results into about a dozen categories.

 For example, the camqry14/15 reports, show the breakdown of attempts (in percentage) of each campaign for the selected time period.

The query rule call activity and pending record reports are available as campaign rollups for multiple query rules within a campaign.

There are also consolidated reports available, which blend campaign call activity reporting information with skill group performance reports to give a better overall view of the business activity. These reports provide a rough overview of agent activity, average time between calls, abandon rate, and so forth. Because these reports combine data from different reporting engines in a single report, there are a few caveats that are described in the reports themselves.
Observe the following guidelines when using the campaign reports:

- **Campaign Manager Restart**
 - When the Campaign Manager restarts, there will be some data loss.
 - Campaign Real Time reports capture call results since the last Campaign Manager restart only.
 - Campaign Real Time reports describe how many records are left in the campaign dialing list.
 - Campaign and Dialer Half Hour reports provide call result counts since the last Campaign Manager restart in the half hour that it restarts.
 - Dialer utilization fields in the Dialer Half Hour report will be unaffected, although the Half Hour record might be missing if the Campaign Manager was inactive during the half-hour boundary. When the Dialer restarts only the Dialer Utilization fields will be affected; therefore, the Dialer Utilization will only capture port status since the Dialer restarted during that half hour. Some records might be left in an active state for a short period of time after the Dialer or Campaign Manager restarts, but the Campaign Manager has a mechanism to reclaim those records.

- **Transfer to IVR**

 The campaign and query rule call activity reports display accurate call activity for calls that are not transferred to IVR. Calls transferred to IVR will simply be counted as being transferred to an IVR, but the campaign and query rule activity reports will not display what occurred after the call was sent to the IVR. If calls are queued and transferred back to an agent, they will be treated as new inbound calls in the reports.

See also:

- Campaign Query Rule Templates (page 246).
- Call Type Reporting and Outbound Option Campaigns (page 99)

Reports that show Campaign Effectiveness

These are some of the reports that information on dialer ports:

- WebView camqry12: Summary of Attempts per Campaign Half Hour Report
- WebView camqry22: Campaign Consolidated Detailed Half Hour Report
- WebView camqry16: Summary of Attempts per Query Rule Within Campaign Half Hour Report
- WebView camqry03: Valid Campaign Dialing Times Real Time Report
Dialer Reporting

You can report on campaigns on a higher level using the Dialer templates. These reports provide information on how the ports are utilized during a campaign, which helps in determining whether the number of dialer ports effectively supports the number of agents and size of the campaign.

Each campaign is associated with a dialer. By reporting on a dialer, you can view the statistics that span all of the campaigns associated with the dialer. These reports show the number of customers dialed, the number of calls that were not answered, the number of calls that were abandoned, and detection of busy, voice, answering machine, and SIT Tones.

See also: Dialer and Dialer Port Templates (page 248).

Reports that show Dialer Data

These are some of the reports that information on dialer ports:

• WebView dialer01: Dialer Real Time Report
• WebView dialpr01: Dialer Port Status Real Time Report

Import Rule Reporting

Outbound Option reports also enable you to view the success of record importation. Using the Import Rule templates, you can monitor whether records being added successfully (good records) or are failing (bad records). Also, you can monitor how long it takes to import the records so that you can plan for future record importation.

The same import rule reports are used for Do Not Call and Contact List imports. The reports display an historical view of when imports were done, the number of records imported, and the number of records that were considered invalid due to length constraints or improper formatting.

For contact list imports, the reports also provide insight into the number of contacts that were assigned with the default time zone information for the campaign, as well as the number of contacts that were actually imported into the dialing list after the query rule and format validation was performed.

The following information is available in the Import Rule reports:

• Number of successful, unsuccessful, and total records imported by time range
• Current import status

See also Report Templates (page 237).
See also: Import Rule Templates (page 248).

Reports that show Import Rule Data

These are some of the reports that contain information on importing records:

- WebView imprul01: Import Status Real Time Report
- WebView imprul10: Import Rule Report

See also Report Templates (page 237).
Transfers and Conferencing

This chapter contains the following topics:

- Reporting on Agent Call Transfers and Conferences, page 137
- About Transfers and Conferences, page 142
- Configuration and Scripting for Transfers and Conferences, page 143

Reporting on Agent Call Transfers and Conferences

Voice calls can be transferred or conferenced. Non-voice tasks, such as email, chat, and Blended Collaboration tasks cannot be transferred and conferenced.

Transfer can be either blind or consultative, and is supported only for agents within the ACD. A *blind transfer* is a transfer in which the agent transfers the call to another agent without first ensuring that another agent is available. A *consultative transfer* is a transfer in which an agent places the call on hold, calls the receiving agent to discuss the transfer and then transfers the call to the agent. Consultative transfer is not supported when Unified CVP is used as the VRU.

Note: Depending on your call center’s configuration, when you place a consultative transfer to another agent, the transfer may appear on that agent’s desktop as an inbound call. This is normal behavior.

It is best to discourage direct agent-to-agent transfers. Instead, use ACD numbers to transfer to a Skill Group and application service. This enables tracking of these calls and provides you with the ability to report on how calls were eventually handled. You can also post route calls to Unified ICM, which allows you to transfer calls to agents on other ACD sites and to be able to report on those calls.

See also:

- About Transfer and Conference Reporting (page 142)
- Configuration and Scripting for Conferences and Transfers (page 143)
Transfers and Conferences Using ACD/Dialed Numbers (Unified ICM)

Transfers and Conferences are can be handled at the ACD, with ACD queuing, or through Unified ICM using ACD/Dialed Numbers, with Enterprise queuing.

For ACD and local queuing, reporting statistics are accurate when the agent uses an ACD number and the script on the ACD queues and sends the call.

TransferOut or ConferenceOut is incremented for the source agent and TransferIn or ConferenceIn is incremented for the target agent.

For Enterprise Queuing, when the agent activates the transfer or conference button and selects a number to which to transfer or conference the call, the dialed number is sent to the CallRouter from the agent's PG. This dialed number determines the Call Type, which in turn selects the transfer routing script. Unified ICM script must include a Queue to Skill Group node that references the appropriate skill group based on the dialed number to which the call is to be queued.

If an agent is available in the selected skill group, a message is sent to the source agent's PG, containing a label or dialable number. The PG transfers the call from the source agent’s phone to the target agent using the label returned from the Central Controller. For these types of transfers and conferences, TransferOut or ConferenceOut is incremented for the source agent and TransferIn or ConferenceIn is incremented for the target agent.

If no agents are available for a transfer in the selected skill group, the CallRouter sends the source agent's PG the label to forward the call to the VRU. For these types of transfers and conferences, TransferOut or ConferenceOut is incremented for the source agent. However, TransferIn or ConferenceIn is incremented for the target agent when the VRU eventually routes the call to the target agent only in Unified CC with an IPCC System PG and in Unified SCCE deployments. This is also applicable when IPCC System PG with Unified CVP is used in Unified CC and in Unified SCCE deployments.

How Database Fields Are Affected by Transfers and Conferences

Transfers and conferences affect fields in the Agent_Skill_Group_Interval database table.

The TransferIn field is incremented for the target agent if all of the following conditions are true:

- The call was transferred (blind or consultative) by an agent to a Unified ICM Call Type script or to an application script on the ACD that checks for agent availability
- For blind transfers only, an agent within the same peripheral was available at the time that the transfer was initiated.

The ConferenceIn field is incremented for the target agent receiving the conference call if all of the following conditions are true:
The call was conferenced by an agent to a Unified ICM Call Type script or to an application script on the ACD that checks for agent availability.

An agent within the same peripheral was available at the time that the conference was initiated.

The TransferOut field is incremented for the agent initiating either a blind or consultative transfer when the initiating agent disconnects from the transfer.

The Conference Out field is incremented for the agent initiating a conference when the initiating agent disconnects from the conference.

The ConsultativeCalls field is incremented for the initiating agent when the consultative call disconnects and wrap-up is complete. Note that consultative transfer is not supported for systems using Unified CVP as the VRU and therefore this field is never incremented if you are using Unified CVP.

Note: If you are using Unified CVP as the VRU, the transfer can be performed through a network transfer. If the network transfer is used, the TransferIn and TransferOut fields do not display data for these transfers.

How Types of Calls are Affected by Transfer and Conference

The following table describes the fields that are incremented in the Agent_Skill_Group_Interval database table when different types of calls are transferred and conferenced.

<table>
<thead>
<tr>
<th>Type of Call</th>
<th>How the call is affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing internal</td>
<td>The InternalCall field is incremented for the source agent that initiates a transfer or conference operation if the target agent is on the same ACD as the source agent. This field is incremented after the call is disconnected.</td>
</tr>
<tr>
<td>Incoming direct/incoming internal</td>
<td>The InternalCallsRcvd field is incremented for the target agent that completes a transfer or conference if the agent dialed the target agent directly (that is, does not access a routing script). This field is incremented after the call is disconnected.</td>
</tr>
<tr>
<td>Outgoing external</td>
<td>The AgentOutCalls field is incremented for the source agent who completes a transfer or conference to an external destination. This field is incremented after the call is disconnected.</td>
</tr>
<tr>
<td>ACD Calls</td>
<td>The CallsHandled field is incremented for the target agent if the call is sent to the agent via an ACD routing script. This field is incremented against the skill group to which the routing script queued the call. This field is incremented after the call disconnects and wrap-up is completed.</td>
</tr>
</tbody>
</table>

How Skill Groups are Affected by Transfer and Conference

The skill group for which transfer and conference data is reported depends on how the original call was placed.
The transfer or conference is reported for the ACD-picked skill group if the original call is a direct call, placed to the agent's extension. For example, if an agent received a call directly to his extension and then transferred the call, the transfer is reported for the ACD-picked skill group of both the agent who initiated the transfer and agent who received the transfer.

The transfer or conference is reported for the skill group to which the call was routed if the original call was routed via an ACD routing script to a specific skill group. For example, if an agent in the Sales skill group received a Sales call and then transferred the call, the transfer out is reported for the Sales skill group. The transfer in is reported for the skill group of the agent who received the transfer.

The following scenarios further explain how database fields are incremented for different types of transfers and conferences.

Call Scenario 1: Blind Transfer of ACD calls - agent is not available

In this example, agent A is presented with an ACD call for skill group Y. Agent A selects skill group X via the ACD number (which accesses a script) and initiates and completes a blind transfer. The InternalCalls and TransferOut fields are then incremented for Agent A against skill group Y.

After wrap-up is completed, the CallsHandled field is incremented for agent A against skill group Y. Since there are no agents available in skill group X, the call queues on the ACD. When agent B in skill group X becomes available, the ACD routes the call to agent B. Agent B answers the call and the call disconnects and wrap-up is complete.

<table>
<thead>
<tr>
<th>Fields incremented for Agent A against skill group Y</th>
<th>Fields incremented for Agent B against skill group X</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsHandled, InternalCall, TransferOut</td>
<td>CallsHandled, TransferIn</td>
</tr>
</tbody>
</table>

For agent A, the call is reported in the TasksHandled, Internal Out, and TransferOut report fields. For agent B, the call is reported in the Tasks Handled report fields.

Call Scenario 2: Consultative Transfer of an ACD call-agent available

In this example, agent A is presented with an ACD call for skill group Y. Agent A selects skill group X via the ACD number and initiates a transfer. The script on the ACD realizes that Agent B is available and requests that agent A’s PG initiate a transfer to agent B on behalf of Agent A’s phone. Agent B answers the transferred call. After consulting with Agent B, Agent A completes the transfer. The InternalCall and TransferOut fields are then incremented for Agent A against the skill group Y. After wrap-up is completed, the CallsHandled field is incremented for agent A against skill group Y.

Agent B now talks to the caller. When the call disconnects and wrap-up is completed, CallsHandled and TransferIn are incremented for Agent B against skill group X.

<table>
<thead>
<tr>
<th>Fields incremented for Agent A against skill group Y</th>
<th>Fields incremented for Agent B against skill group X</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsHandled, InternalCall, TransferOut, Hold</td>
<td>CallsHandled, TransferIn</td>
</tr>
</tbody>
</table>
For agent A, the call is reported in Tasks Handled, Internal Out, Transfer Out, and Incoming Hold and/or All Hold report fields. For agent B, the call is reported in Tasks Handled and Transfer In report fields.

Call Scenario 3: Consultative Conference of a Direct Call

In this example, a direct call comes into agent A's ACD extension.

Agent A selects skill group X via the ACD number and initiates a conference. The script on the ACD realizes that Agent B is available and requests that agent A's PG initiate a conference to agent B on behalf of Agent A's phone. Agent B answers the conferenced call. After consulting with Agent B, Agent A completes the conference.

Agent A disconnects from the conference. The InternalCalls and ConferenceOut and InternalCallsRcvd fields are then incremented for Agent A against the ACD-picked skill group.

Agent B or the caller disconnects. InternalCallsRcvd and Conference Out are incremented against the ACD-picked skill group for agent B.

<table>
<thead>
<tr>
<th>Fields incremented for Agent A against ACD-picked skill group</th>
<th>Fields incremented for Agent B against skill group X</th>
</tr>
</thead>
<tbody>
<tr>
<td>InternalCallsRcvd, InternalCall, ConferenceOut, Hold</td>
<td>CallsHandled, ConferenceIn</td>
</tr>
</tbody>
</table>

For agent A, the call is reported in Tasks Handled, Internal Out, Conf Out, and All Hold (Internal Hold) in report fields. For agent B, the call is reported in Tasks Handled and Conf In report fields.

Call Scenario 4: Consultative Call

In this example, agent A is presented with an ACD call for skill group Y.

Agent A selects skill group X via the dialed number and initiates a consult. The script that uses the LAA select node for skill group X realizes that Agent B is available and requests that agent A's PG initiate a conference to agent B on behalf of Agent A's phone. Agent B answers the consult call. After consulting with Agent B, Agent A activates the Reconnect button, which disconnects Agent B and Agent A resumes talking to the caller.

Agent A disconnects from the call. After wrap-up is completed, CallsHandled and Consultative Calls field are incremented for agent A against skill group Y.

<table>
<thead>
<tr>
<th>Fields incremented for Agent A against skill group Y</th>
<th>Fields incremented for Agent B against skill group X</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsHandled, InternalCall, ConsultativeCall, Hold</td>
<td>CallsHandled</td>
</tr>
</tbody>
</table>

For agent A, the call is reported in Tasks Handled, Internal Out, Cons Out, and Incoming Hold and/or All Hold report fields. For agent B, the call is reported in Tasks Handled report fields.
Reports that show Agent Transfers and Conferences

These are some of the reports that contain information on Agent Transfers and Conferences:

- Unified IC: Agent Historical All Fields
- WebView agent05: Agent Task Detail Performance
- WebView agtper21: Agent Peripheral Task Summary Half Hour
- WebView agteam26: Agent Team Consolidated Daily

See also Report Templates (page 237).

About Transfers and Conferences

Unified ICM/CC supports transfers and conferences directly to agents and also to skill groups.

For Unified CC, if you are planning to allow agents to transfer and conference calls, follow these guidelines to obtain accurate and useful data from transfers and conferences:

- Configure the dialed numbers with associated route points for transfer and conference to agents and skill groups.

- Plan to create a separate script for transfers that use the dialed numbers you configured. In the initial script, change the call type such that when the call is transferred, it is directed to the transfer script. Having a separate script allows you to track data across call types and skill groups, instead of the agent's default skill group.

For Unified ICM, call transfers and conferencing can be accomplished in two ways.

- The agent can manually transfer the call to another agent or can conference in another agent by dialing that agent's extension directly on the ACD.

- The agent can use the ACD number to access a routing script on the ACD or can optionally post-route the call to Unified ICM.

The latter method is preferable, since Unified ICM will be able to track the transferred calls and how they are handled across the enterprise. This also provides the ability to transfer the call to another ACD site.

It is best to discourage direct agent-to-agent transfers, as one has to rely on the ACD for skill group and service assignment for the purposes of reporting. In situations where you are handling transfers and conferences on the ACD itself, use the ACD number to control how transfers are reported.

Note: Unified ICM will be unaware of a direct transfer if the agent extension is not configured.
If you are planning to provide for transfers and conference calls using post-routing, follow these guidelines to obtain accurate and useful data:

• Configure the ACD number to post-route the call to Unified ICM.

• Consider creating separate scripts for transfer and conference scenarios if you are post-routing all transfers and conferences.

• Plan to create a separate script for transfers on Unified ICM that uses the dialed numbers you configured. Having a separate script on the ACD or on Unified ICM allows you to track data across all known skill groups.

 Note: If you do not do this, the skill group affected by reporting statistics is unknown, and results are unpredictable.

 Note: Refer to your *ACD Supplement Guide* for any restrictions that might affect the transfers and conferencing. For example, some ACDs do not support blind transfers.

See also:

Reporting on Agent Call Transfers and Conferences (page 137)

Configuration and Scripting for Transfers and Conferences

Follow these guidelines when configuring and scripting for transfers and conferences to skill groups:

• Configure the dialed numbers in the Configuration Manager.

 From the Configuration Manager, select **Tools > List Tools >Dialed Number / Script Selector List**.

• Create new call types or identify existing call types and associate the call types with the Dialed Numbers.

• Create a routing script for transferring to skill groups that includes a Queue to Skill Group node. This script ensures that transferred and conferenced calls are queued to the correct skill group.

• Associate the call type with the routing script.
Operational Reporting

This chapter contains the following topics:

- Application Gateways and Application Paths, page 145
- Routes and Routing Clients, page 145
- Translation Routes, page 146
- Trunks and Trunk Groups, page 147

Application Gateways and Application Paths

An Application Gateway is an optional Unified ICM feature that allows Unified ICM to query host systems that are running other contact center applications and to base routing decisions on the results obtained from the query. You can pass data to the application and receive data in return, which you can then examine and use for routing decisions.

Before you can use these nodes in a script, you must first configure the gateways. The application gateway requires connection information to communicate with the external application. You perform this task using the Configuration Manager. Within the Configuration Manager, select Tools > List Tools > Application Gateway List.

WebView has report categories for Application Paths and Application Gateways.

See also: Application Gateway, Application Path, and Script Queue Templates (page 243).

Routes and Routing Clients

A route is a value that a routing script returns. This value maps to a service and specific target at a peripheral. It represents the destination for a call and the type of service to be offered to the caller.
Translation Routes

Unified ICM converts the route to a label and sends the label to the routing client. The routing client then delivers the call to a specific trunk group and DNIS. The peripheral is responsible for recognizing the trunk group and DNIS and delivering the call to the appropriate target.

A routing client is an entity that sends routing requests to Unified ICM software, seeking a destination (route) for a call. A routing client typically corresponds to a subsystem within an interexchange carrier or to a peripheral (ACD, VRU, PBX) that is performing Post-Routing.

To configure routes, use the Configuration Manager’s Route Bulk tool to create multiple routes. To create individual routes, use the Configuration Manager’s explorer tool appropriate for the route target.

To configure routing clients, from the Configuration Manager menu, select Tools > Explorer Tools > NIC. Click the Routing Client tab.

WebView has report categories for you can use to report on many types of call statistics for routes, such as the number of calls in progress, calls in queue, or calls handled (either in real-time or over a specified period of time).

See also:

Route Templates (page 250)
Routing Client Templates (page 251)

Translation Routes

Translation routes are used to transfer a call from one routing client to another and retain the details about call tracking, call data and cradle to grave reporting. They form an intermediate destination which is allocated when a script sends a call from a source routing client to a destination. After the call reaches the destination, the translation route is available for reuse as the route is not busy for the entire duration of the call.

Consider whether you want to implement Translation Routing. Translation Routing allows you to:

• Do cradle-to-grave reporting.
• Transfer call data between sites when using Cisco CTI.
• Track calls between sites.
• Use Call Type reporting more effectively, as certain call type statistics are not available if you do not do translation routing.

There are two Translation Route reports in the WebView application that show Translation Routes statistics and status by half hour.

See also:
Translation Route Templates (page 263)

Trunks and Trunk Groups

Every peripheral has one or more associated trunk groups, with each trunk group containing one or more physical trunks.

You configure trunks and trunk groups with the Configuration Manager.

Note: Not all ACDs support trunk configuration. If your ACD does, make sure the PG is accurately configured in Configuration Manager. For the ICM software to properly monitor ACD calls, all individual trunks and their corresponding Trunk Group assignments must be configured in the ICM database.

You can report on data such as the number of trunks in service, number of trunks idle, and the time during which all trunks in a trunk group were simultaneously busy (All Trunks Busy).

These are some of the reports that contain operational information on Trunk Groups:

- Unified IC IVR Ports Performance Historical Report
- WebView nettrk01: Network Trunk Group Status Real Time Report
- WebView trkgrp04: Trunks Real Time All Fields Report
- WebView trkgrp11: Trunk Group Performance Half Hour Report
- WebView trkgrp23: IVR Ports Performance Half Hour Report

See also Report Templates (page 237).
Trunks and Trunk Groups
Chapter 17

IVR / VRU Self-Service

This chapter contains the following topics:

- About VRUs, page 149
- Reporting on VRU Applications, page 150
- Best Practices for Reporting on VRUs, page 157

About VRUs

What is a VRU?

A VRU, or Voice Response Unit, also called an Interactive Voice Response Unit (IVR), is a telecommunications device that plays recorded announcements and responds to caller-entered touch-tone digits. A VRU can also be equipped with Automatic Speech Recognition (ASR) or Text-to-Speech (TTS) capabilities.

In Unified ICM terms, the VRU is a device that corresponds to a peripheral and is integrated by means of a PG. A typical configuration consists of a VRU and a PG (or two PG’s if duplexed).

A Network VRU supports Unified ICM software’s service control interface. A Unified ICM routing script can divert a call to a Network VRU and instruct the VRU to perform specific processing before Unified ICM software determines the final destination for the call. There are multiple Network VRU types, and they are explained in the Scripting and Media Routing Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted.

There are two VRUs supported by Unified ICM/CC: Cisco Customer Voice Portal (CVP) and Cisco IP-IVR. Because these VRUs support different features and behave differently, reporting data is affected by the type of IVR you have deployed in your system.

In Unified SCCE deployments, ARI deployments, and Unified Contact Center deployments that use the IPCC System PG, both IP-IVR and Unified CVP are supported.

Uses for VRUs
Your enterprise might implement one or more types of VRU applications to provide initial call treatment and enterprise queuing.

These VRU applications can be used as follows:

- **In Self-Service** applications, the customer can obtain information through a series of VRU prompts, and the entire transaction occurs within the VRU. For example, if the customer calls a bank, the Self-Service application might prompt the user for his or her account number and password and then provide abilities to check account balance, review recent payments, modify PIN numbers, and so forth.

- **In Information Gathering** applications, the VRU prompts the caller for certain information, such as which department he or she wants to reach, and then uses the information in the routing decision and might pass the information to the agent desktop.

- The VRU is also used to **enterprise-queue** calls while a customer waits for an available agent. During queuing, the VRU might be configured to play music on hold or perform a VRU application.

Reporting on VRU Applications

You can use a VRU for a number of different purposes, including queuing, customer self-service, and information gathering.

Reporting Impact of Type of VRU

The types of VRU applications that you use in your Enterprise determine what report data you should monitor.

For example:

- If your VRU performs queuing only, you might want to see how long callers waited in queue and the number of callers who abandoned while queued.

- If your VRU is used for Self-Service, you might want to see how many successful transactions occurred in the Self-Service application and whether the caller was transferred to an agent from the application.

- If you are using an Information Gathering application, you might want to see how many callers opted out of the digit collection to be transferred directly to an agent.

Reporting Impact of PG Setup Choices

When you select a VRU on the Peripheral Gateway Properties page during PG Setup, certain VRU Reporting options affect the data available for reporting:

- **Event Feed**
If you select this option, the VRU PG does not generate real-time trunk and service data update and does not write Termination Call Detail records for each SCI dialogue. The VRU PG still generates real-time peripheral data update.

- **Service Control**

This option is selected by default. This option allows the VRU PG to generate real-time peripheral, trunk and service data update, and write one or more Termination Call Detail records for each SCI dialogue.

Selecting this option also enables the **Queue Reporting checkbox**. If this box is unchecked, the only events generated for SCI dialogues are Delivered and Cleared and the only call statistic calculated is total call time. If this box is checked, the PG will also generate Queue events. Calculated call statistics will then include queue times and abandons in queue, as well as total call time.

The Service Control option with Queue Reporting checked generates the most data.

Figure 19: VRU Reporting Options

See also: The chapter on VRUs in the Scripting and Media Routing Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted

Self-Service, Information Gathering, and Queuing VRU Applications

Information Gathering VRU applications are used to decide what skill group to queue the call to by walking the caller through a series of voice prompts. The Caller Entered Digits (CED) are passed back from the VRU to be used within the routing script, to decide the optimal skill group to answer the call.

You must be able to determine the following from an IVR service used for information gathering:
• How many calls traversed the application
• How long each call remained in the information gathering application
• How many calls disconnected before being routed to an agent
• How many calls were eventually routed to agents

Several applications can reside on the same VRU PG. Self-Service and queuing can reside on the same VRU PG, and Information Gathering and queuing can reside on the same VRU PG. This means that all of the applications on that PG belong to the same VRU service.

The VRU service cannot be changed once the call is sent to the VRU. However, the Call Type can be changed with the Requalify or Call Type node. In the following script, the Call Type is changed via the Call Type node once it has been queued to separate Information Gathering (CollectDigits) and queuing.

Although a service level can be defined for both Call Types, it is better to define a service level for the Call Type that has the Queue to Skill Group node in it.

Calls that disconnect while in the Self-Service or Information Gathering application are considered abandoned calls since both Service Control and Queue reporting must be turned on for VRU Queuing applications. However, you can extract queuing metrics from information-gathering metrics by defining a separate Call Type for each, and then changing the Call Type in the routing script.

Note: If the VRU performing Self-Service does not also provide queuing, you can enable Service Control reporting and disable the Queue reporting checkbox (see page 150). If the caller opts to speak to an agent, then the Self-Service VRU transfers the call to the IP-IVR or CVP that performs queuing, and the call does not appear abandoned from the Self-Service application. This means that the call is considered answered when received by the VRU, not offered. When the call ends, it is counted as handled. If you implement this configuration, reports show the number of calls that were answered and terminated, and time spent on terminated calls.

The following illustration shows how a call moves from the Information Gathering application to the queuing applications.
In this example, 20 seconds will be used to calculate ASA and decide the service level instead of 50 seconds (30+20 seconds).

Figure 21: Call Type Data for Calls that Abandon after Call Type is Changed

![Figure 21: Call Type Data for Calls that Abandon after Call Type is Changed](image)

Note that if the call abandons before being requalified to the Call Type that handles queuing, the Call Abandon Wait time is not reset. Therefore, the Abandon Wait time for the information gathering Call Type starts when the call enters the first Call Type, and ends when the call abandons, as illustrated below:

Figure 22: Call Type Data for Calls that Abandon before Call Type is Changed

![Figure 22: Call Type Data for Calls that Abandon before Call Type is Changed](image)

The following table illustrates how some basic metrics are broken up at the Call Type and the IVR Service.

Table 15: Self-Service and Information Gathering Application Metrics

<table>
<thead>
<tr>
<th>Report Metric</th>
<th>Call Type</th>
<th>VRU Service</th>
<th>Skill Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandon Wait Time</td>
<td>Starts when a call first enters a Call Type and ends when it abandons.</td>
<td>Starts when the call enters the service.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Average Speed of Answer (ASA)</td>
<td>Starts at the first Queue to Skill Group node in the routing script.</td>
<td>Starts at the first Queue to Skill Group node in the routing script.</td>
<td>Starts at the first Queue to Skill Group node in the routing script.</td>
</tr>
</tbody>
</table>
Monitoring Self-Service and Information Gathering Application Progress

You might determine the effectiveness of a Self-Service application in several ways:

- Monitoring the effectiveness of the application as a whole. For example, you might only want to monitor whether a customer's need was satisfied through the VRU application and that the caller did not need to be transferred to an agent.

- Monitoring the effectiveness of individual transactions within the application. For example, in a banking application a customer might have the ability to perform multiple transactions, such as account lookup, obtaining balance information, and learning about recent payments. You might want to see which of these transactions was used and whether the caller successfully completed the transaction.

- Monitoring failure cases in which a system error, such as a failed database lookup, caused the caller to be transferred by an agent instead of continuing through the VRU application.

Similarly, you might determine the effectiveness of an Information Gathering application in several ways:

- Monitoring whether the caller used the system prompts to be routed to an appropriate resource or used a failout path, such as pressing "0", to be routed directly to an agent.

- Monitoring failure cases in which system errors, such as a failed database lookup, caused the caller to be transferred to an agent instead of continuing through the digit collection prompts for more appropriate routing.

The VRUProgress Variable

VRU applications are unique among call center applications in that the reports need to describe events that are application-specific, using application-specific terminology. Such reports vary widely from one customer to another and from one VRU application to another. Some customers only need to know how many VRU calls were satisfactorily handled by their VRU applications; others would like to track the usage and success rates of specific transactions within their VRU applications. Still others are interested in the actual series of activities performed by a specific caller and even the content of data collected or delivered.

The definition of a successfully handled call varies as well. In some cases a single transaction constitutes success. In others, each individual transaction has its own success criteria, and there might be several gradations of success. For example, some customers want to differentiate between calls in which no transactions were completed before transferring to an agent and calls in which one or more transactions were completed before transferring to an agent.
The system provides tools that customers can use as needed to meet these requirements

- The VRUProgress variable in the CallRouter call object
- Seven VRUProgress rollup buckets in the Call_Type_Interval table
- Reporting templates for reporting on Call_Type_Interval VRUProgress statistics
- A VRUProgress field in the Route_Call_Detail table

The following table describes the VRUProgress variables that you can use in your VRU script applications and how they map to report columns.

These VRUProgress variables map to columns that appear in VRU Activity reports, enabling you to see how many calls were counted for each variable per Call Type. You can use this data to modify applications if needed. For example, if you see that many callers are experiencing error conditions that cause a forced transfer you could correct the function of that node. If you see that many callers are opting to be transferred to an agent before being handled by the application, you might want to add functionality to the application.

<table>
<thead>
<tr>
<th>Variable Setting in Script</th>
<th>Show in Reports as</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not a VRU call - does not appear in reports</td>
<td>Indicates that this call is not a VRU call. It is the default value.</td>
</tr>
<tr>
<td>1</td>
<td>VRU Unhandled</td>
<td>Indicates that the caller's needs have not been met at this point in the application.</td>
</tr>
<tr>
<td>2</td>
<td>VRU Handled</td>
<td>Indicates that the caller's needs have been met by this point in the application. For example, the caller successfully received an account balance.</td>
</tr>
<tr>
<td>3</td>
<td>VRU Assisted</td>
<td>Indicates that this call was transferred to an agent after the caller's needs were met with the application. For example, the caller successfully received account information and then requested to speak to an agent for a different reason or for additional information not available through automatic means.</td>
</tr>
<tr>
<td>4</td>
<td>VRU Opt Out Unhandled</td>
<td>Indicates that the call was transferred to an agent at the caller's request before the caller's needs were met by the application. For example, the caller pressed "0" to be transferred to an agent before performing automated transactions or while in the process of completing a transaction.</td>
</tr>
<tr>
<td>5</td>
<td>VRU Scripted Transfer</td>
<td>Indicates that the call was transferred to an agent as part of the application design. For example, after the caller checked an account balance the application transferred the caller to agent to discuss new account options. Another example is that after a caller entered digits to request a particular type of service the call was transferred to an available agent to handle the request.</td>
</tr>
</tbody>
</table>
Variable Setting in Script | Show in Reports as | Description
---|---|---
6 | VRU Forced Transfer | Indicates that the caller was transferred to an agent because of a system error. For example, a failure at a particular node in the application could lead to the call being transferred to the agent.
7 | VRU Other | Indicates that the call disposition does not match any of the other VRUProgress variables.

You can use the VRUProgress variable to indicate the final VRU status at the end of the application or to indicate changes in VRU status through the different transactions in the application.

The VRUProgress variable is associated with a specific Call Type. If you want to report only the final status of the call, then you can use a single Call Type in the application and set the VRUProgress variable at any point in the application. Note that while you can change the VRUProgress variable throughout the application, only the final status is reported for the Call Type. The value of the VRUProgress variable is written to the database when the routing script terminates. You can report on the VRU status of the application as a whole using the Call Type VRU Activity reports by monitoring statistics for the Call Type associated with the script.

If you want to report on individual transactions within the application, change the VRUProgress variable and then the Call Type at the end of each transaction. You should have a different Call Type for each transaction with a related VRUProgress variable. This ensures that the value of the VRUProgress variable is captured for that particular transaction, not just at the end of the routing script. The value is written to the database for the Call Type associated with that transaction when the Call Types changes. You can report on individual transactions using the Call Type VRU Progress reports by monitoring statistics for the Call Types associated with those transactions.

Capturing Script Application Data (Unified CVP only)

If you have deployed Unified CVP as the VRU in your Enterprise system, you can use two advanced features to gather additional details about calls' progress through Self-Service and Information Gathering applications: Capture microapplication and metadata ECC variable. The details provided by these microapplication can be used only in custom reports; standard reports do not provide this information.

The Capture microapplication enables you to cause a Termination_Call_Detail (TCD) record to be written at any point in the script. This record includes information such as the current call variables, CallRouter call keys, date and time, caller entered digits, and metadata ECC variables.

The metadata ECC variable captures high level details about a call's progress through a script, including whether the caller is using voice or digit dialing, percent confidence for Automatic Speech Recognition, number of attempts a user made before entering a prompt successfully, number of timeouts, number of invalid entries, microapplication duration, and the routing script used. This information is written to TCD records. If you plan to use the metadata ECC variable, you must configure the ECC variables in Configuration Managers.
Using the VRUProgres variable, the Capture microapplication, and the metadata ECC variable microapplication together in a script provides you with the ability to monitor details about the transactions performed by the caller and the VRU application's interface to caller. For example, you could use the Capture microapplication to create a TCD each time the VRUProgres variable changes in the script. The TCD is written for that particular point in the application, which includes the information gathered by the metadata ECC variable. A custom report could show how many callers experienced timeouts at different points in the application, how many attempts callers made before successfully completing a transaction, and how long it took a caller to complete each transaction. This data could indicate problems with the VRU application. You could also run a custom report on an individual call to see how a particular caller used the application and whether s/he encountered difficulties.

Reports that show VRU Metrics

These are some of the reports that show metrics for VRU applications:

- Unified IC IVR Ports Performance Historical Report
- WebView caltyp35: VRU Calls Analysis Half Hour Report
- WebView periph06: VRU Peripheral Capacity Report
- WebView persvc20: Peripheral Service for IVR Queue Half Hour Report

See also Report Templates (page 237).

Best Practices for Reporting on VRUs

Follow these guidelines when configuring Self-Service applications, Information Gathering applications, and queue applications:

- If you have Self-Service or Information Gathering IVR applications and want to separate self-service and digit collection metrics from queuing metrics, plan to change the call type in the routing script before the call is queued. This ensures that you can report on both the self-service/digit collection section of the call and the queuing section of the call using Call Type reports.

- Plan to enable Service Control and Queue Reporting at the VRU peripheral if you want to report on VRU applications, services, queuing, and trunk groups.

- Determine the Service Level for the VRU peripheral.

 If the peripheral type is not Aspect, the Service Level default to Calculated by Call Center.

 If the peripheral type is Aspect, choose the type of calculation to be performed by default. You can override the default for each individual service.
• Use the VRUProgress variable in the Set node of the routing script to indicate the status of the call at different points in the routing script. You can set the status to VRU unhandled, VRU handled, VRU assisted, VRU opt out unhandled, VRU script handled or VRU forced transfer.

For each transaction in the VRU Self-Service or Information Gathering application for which you plan to change the VRUProgress variable, create a separate call type. In the script, change the call type when a call reaches the end of a transaction and then change the VRUProgress variable. This enables you to report on each transaction separately using the Call Type VRU Activity reports.

• Optionally, if you are using Unified CVP as your VRU and want to perform advanced custom reporting on VRU application details, configure the following:

 – Capture microapplication, which you can include in a script to trigger the creation of a TCD record at any point in a routing script. Configure the Capture microapplication as a VRU script; execute the application using the RunExternalScript node. You must name the script "CAP" or "CAP, xxx", where xxx is any string that makes the script name unique. (For example CAP, bankingApplication).

 – Metadata ECC variable microapplication, which collects high-level details about the script application. Configure an ECC variable in the Expanded Call Center Variables configuration tool. The variable length should normally be 62 bytes but can be as low as 21 bytes to save space.

 – Use these microapplications in your scripts to trigger TCD creation at points in the script for which you want to capture data, such as when a transaction completes. Using the metadata ECC variable in conjunction with theCapture microapplication enables you to capture additional details about the performance of the script and the customer's experience for each point in the script for which a TCD record is created.

• There might be cases when a call is not queued, but instead sent to the agent directly (via the LAA Select node) from the VRU. Ensure the VRU PG is configured correctly to ensure that such a call is considered answered at the VRU service rather than abandoned.

 To do this, set the Configuration Parameter to /ASSUME_ANSWERED.

• If you are using IP-IVR as the VRU, set the Configuration parameter in the VRU PG record to /ASSUME_ANSWERED to ensure that calls sent from the VRU to an agent without being queued are reported as Answered.

 With this parameter, calls are counted as successfully connected as soon as the Connect message is sent to the VRU. This prevents calls from being counted as abandoned when a VRU fails to send an Event Report / Answered message in response to a Connect message.

• Configure services with peripheral IDs that match the information sent from the VRU.

 The peripheral ID that you enter depends on whether you are using IP-IVR or Unified CVP as the VRU.
If you are using IP-IVR, you configure a service with a peripheral ID that matches the ID you entered in CRS Application Administration as the post routing ID. Remember the post routing ID that you configure for use when creating services.

If you are using Unified CVP, the peripheral ID that you enter depends on the VRU type.

If Unified CVP is a routing client that handles new calls (VRU type 5), the peripheral service ID should be 1.

If Unified CVP receives pre-routed calls (for example, VRU types 2, 3, 7, or 8), the peripheral service ID should be 2.
Part 3: Special Reporting Environments

Reporting in a MultiChannel Environment (page 163)

Reporting in a Contact Center Gateway (Parent/Child)Deployment (page 169)
Reporting in a MultiChannel Environment

The ability to support online channels such as email, web collaboration, and web chat are a major part of customer interaction. Unified ICM reporting provides data on task and agent activity for multichannel options, including Cisco Unified E-Mail Interaction Manager (Unified EIM) and Cisco Unified Web Interaction Manager (Unified WIM), if they are deployed in your Unified ICM system.

To interpret report data correctly, you need to understand how Media Routing Domains and Media Classes are used, how agent availability and routability is determined, and the differences in report data for voice tasks and non-voice tasks.

This chapter contains the following topics:

- MultiChannel Options, page 163
- Media Classes and Media Routing Domains, page 164
- MultiChannel Reporting Data, page 165
- Reporting Templates for Multichannel Applications, page 167

MultiChannel Options

When Unified EIM and Unified WIM tools are included in a Unified ICM system, agents can be configured to handle email messages and online chat sessions in addition to voice calls.

Unified EIM enables organizations to intelligently route and process inbound emails, webform inquiries, faxes, and letters.

Unified WIM provides agents with a comprehensive set of tools for serving customers in real-time. It enables call center agents to provide immediate personalized service to customers through text chat messaging and page-push abilities. Agents can also use Unified WIM to assist customers while on the phone, by navigating through web pages that the customer is currently browsing.
When present in the system, these multichannel options are responsible for sending the incoming task request to Unified ICM software for agent or skill group selection through the MR PG (which is used for routing) and an Agent PG (which sends agent status and activity to the Central Controller and places the selected agent into session with the task).

This is the flow of events when Unified EIM and Unified WIM receive a request:

- The MultiChannel option sends the task information to the Central Controller for routing purposes.
- The Central Controller returns an agent and skill group.
- The MultiChannel option pushes the task to the agent.
- If no agent is available, the task queues logically at the Unified WIM or in the queue of the Unified WIM until the agent becomes available. Because the task does not involve voice, physical queuing is not needed.

This architecture is illustrated in the following diagram.

![Diagram](image-url)

Figure 23: MultiChannel Options

Media Classes and Media Routing Domains

A **Media Class** represents a combination, or a single instance, of media that are to be treated as a single concept for routing by Unified ICM software.

Media Classes include:

- Voice, which includes incoming and outgoing phone calls. Voice also includes Web Callback and Delayed Callback through the Unified WIM.
MultiChannel Reporting Data

Unified ICM databases store information about agent activity and tasks routed by Unified ICM, including tasks that are submitted by Unified EIM or Unified WIM. Reports contain a Media field, when appropriate, to identify the MRD of each task included in the report.

The following table describes major differences between voice and non-voice tasks in reports. Non-voice tasks include chat, email, and Blended Collaboration.

Table 16: Report Data for Multi-Channel Options

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Data for Voice Tasks</th>
<th>Data for Non-Voice Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task direction</td>
<td>Task direction can be both incoming (agent receives call) and outgoing (agent places call). Note that calls placed by Cisco Outbound Option appear as incoming calls because of the manner in which the Outbound Option Dialer places calls between agents and customers.</td>
<td>Task direction is always incoming, and values of report fields pertaining to outgoing non-voice tasks are set to null.</td>
</tr>
<tr>
<td>Type of Data</td>
<td>Data for Voice Tasks</td>
<td>Data for Non-Voice Tasks</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Session ownership changes</td>
<td>The ownership of a voice task can change through the life of the call. Agents can transfer the call or conference in another agent.</td>
<td>Non-voice tasks do not change session ownership. These tasks cannot be transferred or conferenced and supervisors cannot barge into or intercept the task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note that while it is possible for a Unified WIM agent to allow another agent to join a session and then drop the session, leaving the second agent and the caller in session together, this is not the same as a voice call transfer. Unified ICM software interprets this as two different sessions, one for the original agent and one for the second agent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, while Unified EIM agents can forward messages to other agents, this is not the same as a voice call transfer. Unified ICM interprets messaging forwarding as two different sessions, one for the original agent and one or the receiving agent.</td>
</tr>
<tr>
<td>Short calls</td>
<td>Voice calls are considered to be short calls if they disconnect within the time boundaries defined in the Agent Desk Settings for short tasks.</td>
<td>The Unified EIM and Unified WIM do not enable administrators to configure a short task time boundary. Therefore, non-voice tasks are not reported as short tasks, even if they disconnect within the short task time defined in Agent Desk Settings. Values of report fields pertaining to short calls are set to zero.</td>
</tr>
<tr>
<td>Multiple tasks</td>
<td>Agents can handle one voice task at a time. Agents can handle a voice task and an email task simultaneously. Email is an interruptible MRD and agents handling email tasks can be interrupted with a voice call. Reports show the agent as Active for both the email and voice task.</td>
<td>Agents might be configured to handle multiple non-voice tasks, such as chat, at the same time. If an agent is engaged in several non-voice tasks, the reports contain data for each of the tasks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These tasks might be from multiple skill groups. For instance, because email is an interruptible MRD, an agent can be working on an email tasks while also working on a task or call in any other medium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, an agent might be working on three chat sessions, each from a different skill group. Note that task duration fields are also affected in reporting. For instance, the half-hour duration fields might have a value greater than 30 minutes for non-voice tasks.</td>
</tr>
<tr>
<td>Service Level</td>
<td>You determine which Service Level type you want to use for voice tasks and this setting affects the reporting data.</td>
<td>The Service Level for non-voice tasks is always set to "ignore abandoned calls". The Service Level setting affects the Service Level data in reports for non-voice tasks.</td>
</tr>
</tbody>
</table>
Although Unified ICM reporting applications offer templates that report on multichannel skill groups, agents, and tasks, reports generated from these templates do not contain details regarding specific events that transpire during a Unified EIM or Unified WIM task. For example, Unified ICM report templates show that an agent handled a chat task, but do not provide the text of a sent chat message. Similarly, these reports show than an agent is currently Active on an email task, but do not show the number of emails received by an agent.

Multichannel applications have separate reporting tools, available through the applications, that provide application-specific details about the sessions. These are some of the reports that contain operational information on activity in the Media Routing Domain:

- Unified IC Agent Real Time All Fields
- Unified IC Agent Historical All Fields
- WebView agent04; agent20
- WebView engskg05; perskg08

See also Report Templates (page 237).
Chapter 18: Reporting in a MultiChannel Environment

Reporting Templates for Multichannel Applications
Chapter 19

Reporting in a Contact Center Gateway (Parent/Child) Deployment

This section describes reporting in a Contact Center Gateway deployment—a deployment in which a Unified CCE system functions as an ACD 'child' with respect to a Unified ICME 'parent'. It explains the relationship between the parent and child and the data that are transmitted from the child to the parent.

Note:

- For details on the Contact Center Gateway deployment, including installation and configuration, refer to the *Cisco Contact Center Gateway Deployment Guide*.
- Notes indicate those functions that require both the Parent and the Child to be at Release 8.0.

In this deployment, the parent is the Unified ICME. Although the child can be a Unified CCE, Unified CCX, or Unified SCCE system, this section assumes that the child is a Unified CCE system.

Note: For information on reporting with a Unified CCX child and a Unified ICME Parent, refer to the [Cisco Unified Contact Center Express documentation](http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_user_guide_list.html).

The relationship between parent and child is as follows:

- **Parent.** The parent is the system that serves as the network or enterprise routing point. The parent uses the Gateway PG to communicate to the CTI server on the child.

 - The parent knows the child as an ACD (Automatic Call Distributor), similar to any other ACD in the enterprise.

 - The parent can have more than one child and can route between children.

 - The child can receive calls routed from the parent but is not aware of any other peripherals attached to the parent.
Understanding Parent/Child Reporting

- **Child.** The child is the system that is set up to function as an ACD. The child uses the IPCC System PG to communicate with the parent.

- **The System PG.** The child uses the IPCC System PG to communicate through the CTI layer interface to the parent. The IPCC System PG combines the VRU peripheral(s) and the Call Manager peripheral so that all events appear to come from a single peripheral and to have a single PeripheralCallKey. This allows ACD-like ingress to agent continuity in the call flow with a single call ID.

![Figure 24: Parent/Child Deployment](image)

The addition of the Cisco Contact Center Gateway PGs does not affect the reports on the ACD level; parent reports can be run and accurately reflect the state of their respective systems.

However, the data that the child system feeds to the parent through Cisco Contact Center Gateway do not always correlate, and are not always intended to correlate, on both systems. This affects the reports on the enterprise level. In some instances, discrepancies are due to timing; in others, they occur because the Cisco Contact Center Gateway does not populate certain database fields. See Mapping Data between the Child and the Parent (page 183).

This chapter contains the following topics:

- Understanding Parent/Child Reporting, page 170
- Services at the Parent and Call Types at the Child, page 179

Understanding Parent/Child Reporting

This section provides information to help you understand the differences between reporting on the parent and reporting on the child.

As a best practice, whenever possible, **report at the source**; that is, at the call site where the activity is happening and where the data is generated. Use site (child) reporting for ACD activities such as agent-level reporting. Use parent reporting for cross-site, enterprise level reporting.

Things to keep in mind:
• **Agent Level Reporting.** To scale the parent optimally across the enterprise, disable agent-level reporting at the parent. Agent-level reporting is always enabled at the child.

Agent level reporting can be enabled at the parent but increases the load on the PG and the Central Controller and limits the total number of agents in Unified ICME to around 8,000 for all PGs.

• **Call Types.** Call Types at the child are mapped to Services at the parent. See Services at the Parent and Call Types at the Child (page 179). Do not have call types that span peripherals at a child site that has more than a single System PG. This causes service counts on the parent to be different than Call Type reports on the child. Use unique call types per system PG where possible.

• **Configuration** is simplified by autoconfiguration (page 176).

• **Enterprise Queue Time.** The EnterpriseQueueTime field in the child Termination_Call_Detail table reflects the duration for which a call was queued at the parent. This field is not available to child scripts and is not used in any other calculation at the child or in any of the standard reports. However, users who look at this field in the database have a better sense for the Customer Experience as to queue time.

Note: Both Parent and Child must be at Release 8.0.

• **Multichannel.** The reporting data collected is voice only (no enterprise-wide multichannel). Both the parent and the child can use multichannel independently. The parent and child cannot use each other's resources.

• **Network consultative transfer** is not possible in a parent/child deployment.

• **Outbound.** There is no enterprise-wide outbound option reporting in a parent/child environment. Both the parent and the child can use Outbound Option independently. The parent and child cannot use each other's resources.

• **Scripting** is consistent with traditional PGs, not Unified CCE. Scripts use Longest Available Agent (LAA) and Minimum Expected Delay (MED) and target services and skill groups, not agents.

• **RONA and RNA** Redirect on No Answer (RONA_ is defined and Ring No Answer (RNA) is handled at the ACD level (at the child).

 – RNA is defined as Ring No Answer handled by Unified CVP, generally at the parent or enterprise level and allows enterprise-wide consideration when a ring no answer event occurs. RNA is possible only when queuing is done with Unified CVP at the parent.

 – RONA only allows consideration of resources at the site (unless the call is post-routed to the parent, in which case the parent is unaware of the ring no answer condition).

 – As a best practice, do not use both child RONA and parent RNA. Pick one or the other and be consistent. RNA is preferable when Unified CVP is the enterprise routing platform.

• **RNA handling when a call is redirected:** If a call is queued at the parent Unified CVP and translation-routed to the child and is later pulled back by the parent CVP and sent to another
child or to the same child, when the original child requires the call, then the parent sends RNA information to the original child as a TCD record that shows the appropriate disposition (Redirected) and not the disposition of Abandoned.

Note: Both Parent and Child must be at Release 8.0.

• Routing

- Avoid sending calls from one child to another without parent involvement. Cradle-to-grave tracking is lost if you do this.

- Do not bounce calls. That is, do not queue the call locally at the child and periodically post-route the call to the parent to check if another resource is available. Leave the call queued at the parent or at the child.

- Use translation routes to all children. This allows parent-to-child call data exchange and cradle to grave reporting.

- All normal ACD functionality is supported: pre-routing, re-routing with translation routing, and post-routing. Third-party call control on the parent is the exception.

- Routing to the child is to peripheral targets (skill groups, service), as for all legacy PGs.

- The child can send remote route requests to the parent for post routes and translation routes, provided that Permit Application Routing is checked on the Dialed Number. Remote routing takes priority over local routing if the parent exists is connected and the PG registers for control. This allows backup local scripts to take over if the parent is unavailable.

• Queuing

- If queuing is done at the parent, the child call center does not have access to the queue time for some calculations such as AHT.

- CTI clients connect to the child's CTI and do not see calls queued by the parent; for example, with Unified CVP.

• Supervisors and supervisory activity and statistics are not reported at the parent. The parent is aware of the activities but does not know the reason for them; for example, an intercept is seen as a transfer.

• Third party call control. There is no third-party call control through CTI. Agent desktops are connected to the child only.

• Unified CVP at the child is supported but is discouraged. As no queuing statistics are reported, since Unified CVP is on a peripheral other than the System PG.

• Variables. Full variable passing is done between parent and child. You can send/receive call variables 1–10 and ECC variables. Filtering is available to control data passing in each direction if necessary.

• VRU call events are not reported at the parent and do not appear in parent reports.
Differences between Unified ICME Parent and Unified CCE Child Reporting

If you compare data at the parent with data at the child over intervals, you are likely to find differences. This section lists some reasons why data collected and presented in reports run at the parent can differ from data collected and presented in reports run at the child:

- **Differences due to transmission delays** can cause variations between reporting data seen on reports run at the parent and at the child. All times computed on the parent, such as various state transitions, are based upon event arrival time in the parent, not on their actual event occurrence on the child.

- **Differences based on Central Controller Time or ACD Time.** Prior to this release, call type data was written to Call Type tables on Central Controller time. Other data (service, skill group, agent) was written to the respective tables based on Peripheral time. You now have the option to configure reporting intervals on either Central Controller time or on ACD (Peripheral) Time. See Configuring Intervals (page 16).

 To continue with existing Parent-Child behavior, select ACD (Peripheral) Time. With this selection, Call Type/Skill Group data at the parent might not be consistent with itself. However, Skill Group counts at the parent and the child should match.

 If your selection is Central Controller time, then the Call_Type/Skill_Group data at the parent should match. However, Skill Group counts at the Parent and at the Child might not match as they might no longer be synchronized.

 Note: Both Parent and Child must be at Release 8.0.

- **Differences in supported concepts at the parent and child** can cause variations. Certain concepts are only supported at the parent or only at the child. Therefore, certain agent performance and customer experience statistics might only be available at the parent or at the child. For example, Skill Group Service Levels are supported in the child but not the parent.

- **Differences in implementation of similar concepts in the parent and child.** For example, to measure the Service Level experienced by incoming callers, reporting users at the parent would use Service Level statistics on Service Reports, whereas while reporting users at the child would use Service Level statistics on Call Type Reports.

 Note: For more information, see Services at the Parent and Call Types at the Child (page 179).

- **Differences in configuration of parent and child systems.** Although autoconfiguration minimizes this issue, discrepancies between child and parent configurations can lead to reporting differences.

 The following are some examples:

 - **Short Calls:**
Abandoned Short Calls: For call types and services, you configure only abandoned short calls. Answered short calls are not reported for call types and services. On the parent, if the “Abandon Wait Time threshold” for services is not configured to be the same as the Aban Wait Time threshold in the global settings for Call Types on the child system, discrepancies can arise between abandon counts on the two systems. A call might be considered as abandoned on the parent and as a Short Call on the child and vice versa.

Answered Short Calls: Answered short calls can also cause a difference in reporting. Answered short calls apply to the skill group and the agent skill group database tables. The short call timer starts when the agent answers the call. CallsAnswered is updated for these calls. However, the ShortCalls fields within the skill group and agent skill group tables are also incremented. It is important to ensure that the “Answered Short Call threshold” configured on the Contact Center Gateway Peripheral on the parent matches the “Answered Short Call threshold” configured on the IPCC System peripheral configured on the child.

Agent Reporting: If you decide to use the parent system to report on agents, consider the following configurations.

Ensure that the Agent reporting is enabled on the Contact Center Gateway peripheral on the parent and identify the Administration & Data Server on the Agent Distribution list when configuring the IPCC Enterprise Gateway peripheral. If these configurations are not done, then reporting on the parent system does not show any agent data.

If you plan to use Agent Team reports, configure Agent Teams and the Agent Team Members on the parent to match those on the child systems.

If you plan to report on Not Ready reason Codes on the parent system, configure the following on parent:

a. Configure the Not Ready reason codes in the by entering numeric and text value for each reason code. For example, if you want Not Ready reason code 1 to equal Break, enter 1 for the Reason Code and Break for Reason Code Text. These codes need to match and must be identical as configured on the child system.

b. Ensure that agent event detail is enabled on the IPCC Enterprise Gateway PG that is configured to talk to the IPCC System PG on the child.

Mapping of Call Types and Services: The Call Types on the child are autoconfigured as Services on the parent. However Call Types are not specific to peripherals, whereas, Services are.

If you have a child that has two or more IPCC System PGs (peripherals), ensure that you have not configured call types that span these two peripherals. If you configure a Call Type that spans peripherals on the child, these are configured as two services on the parent system, one for each peripheral. Hence, a single call type on the child maps to two different Services (on two different peripherals) on the parent, resulting in reporting differences.
Reporting Applications in a Parent/Child Environment

Both Unified IC and WebView provide real-time and historical reports for agents, skill groups, services, and call types. These reports can be used to manage agents, measure customer experience, and monitor call center operations.

When using WebView:

- To run enterprise-wide reports at the parent, always select the ICM Templates check box in each report category. Leave the IPCC Templates check box unchecked.

- To run reports at the parent to measure customer experience, use “ICM Templates” in the Services category.

- To run reports at the child to measure customer experience, use “IPCC Templates” in the Call Type category.

Unified IC does not distinguish between ICM Templates and IPCC Templates.

Parent/Child Deployment Models

The following table provides a brief outline of reporting on the parent and child systems for two common parent/child deployment models.

| Table 17: Reporting Options, IPCC Enterprise Gateway Deployment Model |
|-------------------|-------------------|-------------------|-------------------|
| Deployment Model | Parent Reporting | Child Reporting | Caveats |
| One parent with one or more children, each with an IPCC System PG | The parent has its own reporting components: an Historical Data Server, an Administrative & Data Server, and a reporting application (WebView or Unified IC). Regional or call center managers who use WebView must use WebView "ICM Templates" on the parent for enterprise-wide reporting across multiple Unified CCE with IPCC System PG children. Unified IC does not distinguish between ICM and CCE (IPCC) templates. | Each child system has its own individual reporting components: an Historical Data Server, an Administrative & Data Server, and a reporting application (WebView or Unified IC). Local site-level supervisors and call center managers who use WebView must use WebView "IPCC Templates" on each Unified CCE with an IPCC System PG child for local agent performance and customer experience measurement. Unified IC does not distinguish between ICM and CCE (IPCC) templates. | The Agent and Skill Group reports on the parent do not reflect reporting statistics for the Outbound Option dialer and Multimedia (Email, chat and Blended Collaboration) tasks that are handled by agents in the child. Reports do not reflect Outbound Dialer Campaign or Dialer statistics that are reported on the child. |
| Note: The parent treats each child as a separate ACD. | | | |
Caveats

<table>
<thead>
<tr>
<th>Deployment Model</th>
<th>Parent Reporting</th>
<th>Child Reporting</th>
<th>Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple parents connected to a single child system through individual IPCC System PGs; for example, multiple Outsourcers sending calls from their parent to a single child (Provider).</td>
<td>Each parent has its own reporting components. For example, each Outsourcer has its own individual parent with its own reporting application (WebView or Unified IC). An Outsourcer that uses WebView for reporting must select "ICM Templates" in WebView to see information on the call it sends to the child (Provider). Each parent can only see reporting information that is associated with its own IPCC Enterprise Gateway PG.</td>
<td>The receiving child (Unified CCE) system has its an Historical Data Server, Administrative & Data Server, and reporting application (WebView or Unified IC) and provides reporting on agent performance and customer experience on calls routed to the Unified CCE child from multiple Unified ICME parents.</td>
<td>In this deployment the child Unified CCE System has two peripherals (IPCC System PGs) each talking to different Unified ICME parents. Note: The child must not set up call types that span the two peripherals.</td>
</tr>
</tbody>
</table>

Caveat for Unified SCCE:

- When Unified SCCE is used as a child with Unified CVP, Unified SCCE cannot see the state of calls queued to the child, and therefore cannot report on them. Any Service or Skill Group statistics field that is related to calls queued on the ACD is not valid.

 For example, SkillGroupRealTime.CallsQueuedNow is never populated. Any function that depends on queue statistics to properly function cannot be used for the gateway peripheral. As an example: Minimum Expected Delay is not accurate since it does not consider queue time on the Unified CVP peripheral.

Autoconfiguration from the Child to the Parent

The PG supports autoconfiguration of basic configuration data from the child to populate tables on the parent. Autoconfiguration is enabled by default in the Peripheral tab of the PG Explorer and takes effect when the PG is started.

Once initial autoconfiguration is complete and configuration rules are updated, additional changes on the child are sent up to, and are applied dynamically to, the parent. During subsequent connections, configuration keys are checked so that only changes are updated.

When records are deleted on the child, they are marked as 'deletable' on the parent but are not actually deleted.

Do not confuse Cisco Contact Center Gateway peripheral autoconfiguration with agent autoconfiguration.

- Peripheral autoconfiguration is a check box on the main Peripheral tab. It is greyed out for all but the gateway PGs.
Agent autoconfiguration is a check box option available on the Advanced tab in the PG Explorer.

You must ensure that Agent autoconfiguration is disabled so that the IPCC Enterprise Gateway PG can function properly using Peripheral auto-configuration.

Note: With autoconfiguration on, you cannot alter any of the active configuration on the parent.

These are the tables on the parent that receive configuration data from the child:

1. **Agent/Person**
2. **Skill Group**

 Note: Default skill groups on the child, which are non-viewable, are created as real skill groups on the parent. Activity done in the default skill group on the child shows up in these real skill groups on the parent.

3. **Service** (*Call Types* on the child are configured as Services on the parent.)
4. **Peripheral Monitor**

If *any* error occurs during autoconfiguration, the keys on the parent are not updated. The Unified CCE PIM continues to upload the entire child configuration to compare it every time it is started until no configuration errors are encountered.

Autoconfiguration does not provide complete configuration for Unified ICME software. You must configure some elements manually at the parent, such as:

- Dialed numbers
- Scripts
- Peripheral targets
- Routes
- Device targets
- Agent desk settings
- Agent teams
- Supervisors
- Service members

To configure service members for any given service, examine the script for a call type on the child and note to what skill groups the script offers the call. On the Unified CCE parent, make these skill groups service members of that Service.
Naming Conventions for Mapping on the Parent

Mapping is the method that Contact Center Gateway uses to manage data that the child system delivers to a parent system during the autoconfiguration process.

Unified ICME uses naming conventions to assist users in tracking data mapping between parent and child systems.

As a best practice, limit the number of characters in the names of agents, skill groups and call types on the child system. When these names are passed to the parent during autoconfiguration, the software configures the name as \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+\((\text{Child})\text{Skill_Group.PeripheralName}\). If the configured name exceeds 32 characters, it is automatically truncated, and the name of the skill group, agent, or call type on the child is replaced with a number on the parent. This means that you cannot find the name in reports run on the Unified ICME system.

The following list provides the mapping naming convention syntax descriptions for each data entity and uses the example of a Peripheral.EnterpriseName value of CCE1:

- **Skill Group**

 Default syntax (under 32 characters): \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+(\text{Child})\text{Skill_Group.PeripheralName}\)

 Example: CCE1.Sales

 Fallback syntax (over 32 characters): \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+(\text{Child})\text{Skill_Group.PeripheralNumber}\)

 Example: CCE1.5001

- **Service**

 Default syntax: \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+(\text{Child})\text{Call_Type.Name}\)

 Example: CCE1.TECH_SUPPORT_CT

 Fallback syntax: \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+(\text{Child})\text{Call_Type.CallTypeID}\)

 Example: CCE1.5009

- **Agent**

 Default syntax: \((\text{Parent})\text{Peripheral.EnterpriseName} +\)."+(\text{Child})\text{Agent.LastName} +\)."+(\text{Child})\text{Agent.FirstName}\)

 Example: CCE1.Smith.Jane

 Note: Duplicates are avoided by a suffixed numeral. If a child has two agents with identical names, differentiated enterprise names are generated. (Example: CCE1.Jones.John and CCE1.Jones.John.1)
Services at the Parent and Call Types at the Child

Most data entities on a child map to corresponding entities on the parent and are mapped by their corresponding peripheral fields. However, there is one important exception: for reporting purposes, *Call Types* on the child map to *Services* on the parent. That is, when autoconfiguration occurs, data from the *Call Type tables* on the child populate the *Service tables* on the parent.

Note: The parent continues to process the Call Type data it owns using the "traditional" method, that is, by populating the Call Type tables with Call Types configured on the parent.

About Call Types and Services

On both the parent and the child, Call Type is the first-level category by which data is determined about the contact and a script is associated with the Call Type. On the child, when a contact of a certain Call Type is received, the associated script runs to determine the appropriate Skill Group to route the call to. However, on the parent, when a contact of a certain Call Type is received, the associated script runs to determine the appropriate Service to which to route the call.

The following figure illustrates this difference. Note that this diagram does not show translation routing.
Understanding Similar Data Concepts in Child Call Type and Parent Service Database Tables

This section describes the relationship between customer experience data available at the parent and at the child.

At the child, service level data is collected and presented in Call Type and Skill Group database tables and reports.

In a parent, service level data is only collected and reported in Service database tables and reports.

In addition to these differences, in a Unified CCE child, you can also use scripting to change call types in order to capture certain statistics. In such scripts, when a call changes call types, the old call type Service Level timer stops and the Service Level timer associated with the new call type starts. However, the Service Level timer for Services on the Unified ICME parent is not stopped and reset.

Note:

- Due to this timing issue, do not compare ServiceLevel field values in Call_Type_Interval/Real_Time tables on the child with the ServiceLevel field values in Service_Interval/Real_Time tables at the parent.

- "Similar concept" in this discussion means "closest in meaning"; it does not imply an absolute match.

Due to reasons discussed in "Differences between Unified ICME Parent and Unified CCE Child Reporting" (page 173), the data collected and presented in Service database tables and Services reports at the parent is expected to vary from data collected and presented on Call Type database...
tables and Call Type reports on the child. Although the two data sets are not expected to be an exact match, in some cases, the customer can look at a specific data field in the Services table at the parent and see a corresponding data field in Call Type table in the child that is similar in meaning.

Note:

- Data fields that are not listed in these tables are either not mappable (that is, although they might be populated on a parent system, they have no corresponding value on the child system) or not available (that is, they are null or zero on the parent.)

- There are no corresponding fields or tables in the child for the parent Service_Five_Minute table.

- When Unified SCCE is used as a child with Unified CVP, Unified SCCE cannot see the state on calls queued to the child, and therefore cannot report on them. Any Service or Skill Group statistics field that is related to calls queued on the ACD is not valid. For example, SkillGroupRealTime.CallsQueuedNow are never populated. Any function that depends on queue statistics to properly function cannot be used for the gateway peripheral. As an example: Minimum Expected Delay is not accurate since it does not consider queue time on the Unified CVP peripheral.

Table 18: Service and Call Type Data Mapping

<table>
<thead>
<tr>
<th>Parent: Service_Interval</th>
<th>Child: Call_Type_Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnswerWaitTime</td>
<td>AnswerWaitTime</td>
<td>See Note 2.</td>
</tr>
<tr>
<td>AvgDelayQ</td>
<td>AvgRouterDelayQ</td>
<td>Network queuing data is not available at the child level.</td>
</tr>
<tr>
<td>CallsAnswered</td>
<td>CallsAnswered</td>
<td></td>
</tr>
<tr>
<td>CallsHandled</td>
<td>CallsHandled</td>
<td></td>
</tr>
<tr>
<td>CallsOffered</td>
<td>CallsOffered</td>
<td></td>
</tr>
<tr>
<td>DelayQAbandTime</td>
<td>DelayQAbandTimeHalf</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>HandleTime</td>
<td>HandleTimeHalf</td>
<td></td>
</tr>
<tr>
<td>HoldTime</td>
<td>HoldTimeToHalf</td>
<td></td>
</tr>
<tr>
<td>OverflowOut</td>
<td>OverflowOutHalf</td>
<td></td>
</tr>
<tr>
<td>SkillTargetID</td>
<td>No direct map</td>
<td>The PeripheralNumber of this service in the Service table maps to the CallTypeID in the child table.</td>
</tr>
<tr>
<td>TalkTime</td>
<td>TalkTimeHalf</td>
<td></td>
</tr>
<tr>
<td>TimeZone</td>
<td>TimeZone</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Any condition on the child causing the call to terminate while in queue is documented in this field in the database schema. (The child Call Type reports have more granularity with regard to "error" calls, etc.)

Note 2: When Unified SCCE is used as a child with Unified CVP, this field does not reflect time in queue at the child.
Table 19: Service Real Time Data Mapping

<table>
<thead>
<tr>
<th>Parent: Service Real Time</th>
<th>Child: Call Type Real Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Wait Time Half</td>
<td>Answer Wait Time Half</td>
<td>See Note 2.</td>
</tr>
<tr>
<td>Answer Wait Time To 5</td>
<td>Answer Wait Time To 5</td>
<td>See Note 2.</td>
</tr>
<tr>
<td>Answer Wait Time Today</td>
<td>Answer Wait Time Today</td>
<td>See Note 2.</td>
</tr>
<tr>
<td>Avg Delay QA To 5</td>
<td>Avg Router Delay QA To 5</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>Avg Delay Q Now</td>
<td>Avg Router Delay Q Now</td>
<td>—</td>
</tr>
<tr>
<td>Calls Aband Q Half</td>
<td>Router Calls Aband Q Half</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>Calls Aband Q To 5</td>
<td>Router Calls Aband Q To 5</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>Calls Aband Q Today</td>
<td>Router Calls Aband Q Today</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>Calls Answered Half</td>
<td>Calls Answered Half</td>
<td>—</td>
</tr>
<tr>
<td>Calls Answered To 5</td>
<td>Calls Answered To 5</td>
<td>—</td>
</tr>
<tr>
<td>Calls Answered Today</td>
<td>Calls Answered Today</td>
<td>—</td>
</tr>
<tr>
<td>Calls Handled Half</td>
<td>Calls Handled Half</td>
<td>—</td>
</tr>
<tr>
<td>Calls Handled To 5</td>
<td>Calls Handled To 5</td>
<td>—</td>
</tr>
<tr>
<td>Calls Handled Today</td>
<td>Calls Handled Today</td>
<td>—</td>
</tr>
<tr>
<td>Calls Offered Half</td>
<td>Calls Offered Half</td>
<td>—</td>
</tr>
<tr>
<td>Calls Offered To 5</td>
<td>Calls Offered To 5</td>
<td>—</td>
</tr>
<tr>
<td>Calls Offered Today</td>
<td>Calls Offered Today</td>
<td>—</td>
</tr>
<tr>
<td>Delay QA Aband Time To 5</td>
<td>Delay QA Aband Time To 5</td>
<td>See Note 1 and Note 2.</td>
</tr>
<tr>
<td>Handle Time Half</td>
<td>Handle Time Half</td>
<td>—</td>
</tr>
<tr>
<td>Handle Time To 5</td>
<td>Handle Time To 5</td>
<td>—</td>
</tr>
<tr>
<td>Handle Time Today</td>
<td>Handle Time Today</td>
<td>—</td>
</tr>
<tr>
<td>Hold Time Half</td>
<td>Hold Time Half</td>
<td>—</td>
</tr>
<tr>
<td>Hold Time To 5</td>
<td>Hold Time To 5</td>
<td>—</td>
</tr>
<tr>
<td>Hold Time Today</td>
<td>Hold Time Today</td>
<td>—</td>
</tr>
<tr>
<td>Redirect No Ans Calls Half</td>
<td>Calls RONA Half</td>
<td>—</td>
</tr>
<tr>
<td>Redirect No Ans Calls To 5</td>
<td>Calls RONA To 5</td>
<td>—</td>
</tr>
<tr>
<td>Redirect No Ans Calls Today</td>
<td>Calls RONA Today</td>
<td>—</td>
</tr>
<tr>
<td>Talk Time Half</td>
<td>Talk Time Half</td>
<td>—</td>
</tr>
<tr>
<td>Talk Time To 5</td>
<td>Talk Time To 5</td>
<td>—</td>
</tr>
<tr>
<td>Talk Time Today</td>
<td>Talk Time Today</td>
<td>—</td>
</tr>
</tbody>
</table>
Note 1: Any condition on the child causing the call to terminate while in queue is documented in this field in the database schema. (The child Call Type reports have more granularity with regard to "error" calls, etc.)

Note 2: When Unified SCCE is used as a child with Unified CVP, this field does not reflect time in queue at the child.

Mapping Data between the Child and the Parent

When the child maps a Call Type to a parent Service, the following attributes are passed from the Call_Type table to the Service table:

- The CallTypeID in the Call_Type table on the child system maps to the PeripheralNumber in the Service table on the parent.
- The EnterpriseName in the Call_Type table on the child maps to the PeripheralName in the Service table on the parent.

You can use this mapping process to locate the corresponding Service records on the parent for a call type record on the child.

The figure that follows shows an example of data mapping.

Figure 26: Data Mapping Between Unified CCE child and Unified ICME parent

In the figure:

1. On the child, the record in the Call_Type_Interval table you are interested in has a CallTypeID value of 5000.

2. On the parent, you would search the Service table for a Service with a PeripheralNumber field that matches the CallTypeID on the child (5000).

3. The SkillTargetID for that Service is 6000.

4. Using the SkillTargetID value (6000), look up the corresponding record in any of the Service Tables (for example, Service_Interval, Service_Real_Time).
Chapter 19: Reporting in a Contact Center Gateway (Parent/Child) Deployment

Services at the Parent and Call Types at the Child
Part 4: Reporting Implications of Data Loss and Component Failover

Topics:

• Data Flow from Logger to Historical Data Server (page 187)
• Preventing Data Loss from Logger and HDS Failure (page 189)
• Data Loss from PIM Failure (page 192)
• Other Possible Points of Failover (page 192)
Chapter 20

Reporting Implications of Data Loss and Component Failover

The Cisco Unified ICM uses sophisticated techniques in gathering and storing data. Due to the complexity of the system, the amount of data being gathered, the diversity of devices and peripherals, and the complex processes involved, it is possible that historical reports might present inconsistent data.

Although these reporting inconsistencies are confusing, most can be traced to temporary effects caused by time lags between the processes involved and nature of the data itself.

This chapter identifies and explains common conditions that lead to temporary and permanent inconsistencies in historical data. It discusses the potential effect of system failover on data that appears in reports and offers guidance on how to guard against data loss.

This chapter contains the following topics:

- Data Flow from Logger to Historical Data Server, page 187
- Preventing Data Loss from Logger and HDS Failure, page 189
- Data Loss from PIM Failure, page 192
- Other Possible Points of Failover, page 192

Data Flow from Logger to Historical Data Server

Assuming a full-duplex, fault tolerant implementation, data is sent from CallRouter A to Logger A and from CallRouter B to Logger B.

The Logger Central Database forwards (replicates) historical data to corresponding historical tables on the Historical Database Server in summary intervals. These data populate the historical interval and daily reports.
Two Administration & Data Servers are typically set up as HDS machines. A similar fault-tolerant strategy applies to the HDS—when the primary HDS fails, the Administration Client automatically switches over to use the backup HDS.

Each Historical Data Server (HDS) is connected to a single Logger.

Understanding Recovery and Replication

Recovery Keys

The recovery key is the base key for all historical data tables. This key is always incremented by 1 before a new record is inserted into any historical table.

In a duplex configuration, the Logger that finishes initializing first is designated the primary Logger (although both the Loggers are always active and working in parallel). The recovery key is always initialized by the primary Logger. The recovery key is based on the current GMT date and time and always has a value greater than any previous value generated. This helps the recovery process to keep the Loggers in sync.

The replication process may have a latency of about one to five minutes because the Logger replicates data table-by-table on the HDS.

Temporary Tables

Each historical table on the Logger Central Database has two corresponding temporary tables that act as buffers to incoming historical data. As they have minimal indexes, the temporary tables speed up the process of inserting data into the corresponding actual table in the Logger Central Database.

Recovery Process

As the incoming historical data is written to the corresponding temporary tables by the Logger, the Recovery process reads the data from the temporary tables and performs a bulk insert operation of up to 2000 records into the actual historical tables.

In a duplex configuration, the recovery process keeps the historical data on the two Loggers in sync, using the Recovery Keys. The historical data between the Loggers is synced directly using actual tables; temporary tables are not used by the recovery process.

Replication

The Replication process is responsible for replicating data that has been committed to the Logger Central database to the HDS database.

The Replication mechanism consists of two processes: the Replication Server Process that runs on the Logger and the Replication Client Process that runs on the Distributor on which HDS has also been installed.

The Replication Client sends a request to the Replication Server requesting historical data that have associated Recovery Keys higher than those currently on corresponding historical table. The Replication server sends the requested data back as a set of 2000 records each time.
The Replication server reads the historical data from the actual tables on the Logger and sends it to the Replication Client which writes the historical data to the actual corresponding tables in the HDS database. Temporary tables are not used to replicate the data from the Logger to the HDS.

Possible Points of Delay or Inconsistency

If the Logger connected to the HDS goes offline, the HDS does not connect to a different Logger. For example, if the HDS is connected to Logger B and Logger B fails, the HDS does not connect to Logger A. When Logger B comes back up, it recovers data from Logger A and begins to receive current historical information. Once the Logger has recovered all of the data from Logger A, it begins to replicate this data to the HDS.

If reports are run from this HDS for recent intervals while the Logger is offline or while the Logger is in the process of recovering or replicating data, you might not see data for those intervals in reports. This is temporary, and you will see the data once the replication process for the tables used by the reports is complete. If you are using a fault-tolerant system with two HDS Administration & Data Servers, you can run reports using the backup HDS while the primary HDS is not receiving data.

If the HDS goes offline and you are using a fault-tolerant system with two HDS Administration & Data Servers, you can run reports using the backup HDS. When the HDS comes back up, it recovers data from the last HDS data backup and also replicates data from the Logger for the most recent data not available in the backup.

The recovery data replication is faster than regular Logger-HDS data replication. Once the HDS has recovered to its typical Logger-HDS latency of one to five minutes, data replication proceeds as usual.

If you are not using a fault-tolerant system, you will not see data in historical reports until the HDS is restored. You might also notice missing data as the replication process is in progress. This is temporary and you will see the data once the replication process for the tables utilized by the reports is complete.

Preventing Data Loss from Logger and HDS Failure

Data loss manifests as 'data holes', which are one or more missing records in an historical database table.

There are two types of data loss: temporary and permanent:

• A temporary data hole can happen during the Logger recovery process. For example, LoggerA goes down, then comes back up and contacts LoggerB to synchronize and recover historical data that was written while it was down.

While this recovery process is going on, the reporting database on Logger A up may have temporary data holes, which will be filled when the recovery process completes.
• A permanent data hole can happen during an Emergency Purge. For example, there can be permanent data loss if an emergency purge deletes records on one Logger that have not been sent to the other Logger or to the HDS.

It is possible to monitor and tune Unified ICM to minimize the occurrence of data loss.

Fault Tolerance

One way to protect your system is to follow Best Practices for duplexed Unified ICM fault tolerance, as presented in the Administration Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted.

Data Retention and Backups

Another way to safeguard against loss is to configure the amount of time that data is stored on the Logger Central Database and in the HDS in relation to the schedule for HDS backups.

The Central database stores data for less time than the HDS. For example, you might store two weeks of data on the Logger and a year of data on the HDS.

When the HDS recovers after going offline, it retrieves all of the data on the Logger for the interval for which data is missing from the backup. You must manually restore the rest of the data from the last HDS backup.

The amount of data retained on the Logger should cover, at a minimum, the time period between HDS backups. For example, if the Logger stores data for two weeks, then you need to back up at least every other week to ensure that you can recover all historical data.

CPU Utilization

It is possible that the process on one of the Loggers is slow because of space issues or an overload of the SQL Server. In this situation, the data on the Logger with the slower SQL Server will lag in persistence of the historical data with respect to the other Logger. This causes the HDS on the corresponding side to lag as well.

As a consequence, if both the sides have an HDS set up and the same reports are run from both HDSs, the reports might differ. This is usually a temporary inconsistency, since the condition that causes the SQL server process to slow might be remedied. Autogrowing of the database and load conditions often remediate. The Loggers and the HDSs eventually catch up and are in sync. Running the reports later will result in consistent reports.

However, if the database server runs out of disk space, the situation is quite serious and might cause data to be out of sync for a longer duration until the problem is remedied. A permanent loss of data can occur when data is purged from the peer Logger and never replicated on the slower side.

Scheduled Purge and Retention Settings on Loggers

The goal of the scheduled purge is to free up database space by purging the oldest data.

There are several reasons for data loss during a scheduled purge:
• **Retention Settings on Loggers**

Data inconsistencies and permanent data loss can occur if the number of days to retain the data differs on the Loggers.

Assume that LoggerA is set to retain 7 days' worth of data, while LoggerB is set to retain 15 days worth of data.

If LoggerB is down for 6 days, a temporary data discrepancy exists when it is brought back up, until the Recovery process synchronized the data from Logger A. However, if Logger B is down for 10 days, when it comes back up, it can synchronize only the last 7 days worth of data, based on LoggerA's retention setting. Three days are lost permanently from LoggerB.

Note that the data might be lost from the system permanently, if the historical data was copied to the HDS database associated with LoggerA. Although this appears as a discrepancy in the reports that are run from HDS servers that connect to side B, the system is functioning in a predictable manner. This can be considered as an issue of perception.

To avoid this situation, make sure that the retention settings are the same on both Loggers are the same.

• **Scheduled Purge and Peripheral Gateway Failure**

If multiple Peripheral Gateways (PGs) are configured, and if one of the PG goes down for a brief period, then it is possible to lose historical data permanently.

Assume that there are three Peripheral Gateways (PGs) in the system and that one goes down for a day and then comes back online. When that PG comes back online, it sends historical data for activity that occurred prior to it going offline.

If the scheduled purge mechanism activates and determines that the oldest one hour of data needs to be purged, it is possible that the purge will delete data that was sent by the PG after it came online but before it was replicated to the HDS.

Permanent data loss can occur the HDS is down and the scheduled purge on the Logger deletes data that has not yet been replicated to the HDS.

Emergency Purge

The emergency purge mechanism is triggered when the Logger Central Database becomes full or reaches a configured threshold size. Its objective is to free up space by purging data from the historical tables so that the database has more free space than the allowed minimum.

The emergency purge goes through each historical table in a predefined order one at a time and purges one hour's worth of data from the table. As data is purged from each historical table, a check is made to verify if the free space is more than the minimum threshold value. Once adequate space has been recovered, the emergency purge procedure stops. Otherwise, it continues through to the next historical table and keeps looping as necessary.
Data Loss from PIM Failure

The Peripheral Interface Manager (PIM) is the process on the Peripheral Gateway responsible for the actual connection to the peripheral and for normalizing the CTI interface on behalf of Unified ICM.

If a PIM fails, if the link between the PIM and the ACD goes down, or if the ACD goes down, then all of the reporting data that has been gathered for the peripheral associated with the PIM is deleted.

The state of all agents on that peripheral is set to logged out and is reported as such to the CallRouter.

The CallRouter has no way of determining what was going on at the ACD while the PIM was out of contact with the ACD. When the PIM reconnects to the ACD, the ACDS do not send the PIM sufficient information to allow the recording of accurate historical reporting data for the interval(s) in which the disconnect took place.

Note when the PIM reconnects to the ACD, most ACDs do pass information to the PIM about each agent’s state and duration in that state. While this is not enough to allow accurate historical reporting data to be recorded, it is enough to allow the CallRouter to make accurate call routing decisions.

When the PG is duplexed, either the Side A or Side B PIM is active for each peripheral. If one side loses connection, the other comes up and activates.

Other Possible Points of Failover

Peripheral Gateway/CTI Manager Service Fail-over

If the agent’s PG shuts down or the CTI Manager service shuts down, the agent is momentarily logged out. The agent might be logged in again automatically once the backup PG or CTI Manager comes into service. The agent Media Logout Status reports for the agent, agent skill group, agent team, and agent peripheral show a logout reason code of 50002.

<table>
<thead>
<tr>
<th>Table 20: Agent State Before and After Peripheral Gateway/CTI Manager Service Fail-over</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent State at Fail-Over</td>
</tr>
</tbody>
</table>

Data Loss from PIM Failure

Permanent loss of historical data can occur if the emergency purge removes historical data that has not yet made it to an HDS and has also not replicated to the peer Logger that is 'down' or in the recovery process.

Database used percentage is displayed as a normal status message in the replication process every few minutes. You can occasionally monitor this value to make sure that it does not grow too often or too fast. Emergency purge occurs when the percentage used is greater than the configured value (usually 90%).
Agent Desktop/CTI OS Server Fail-over

If the agent desktop (CTI OS or Cisco Agent Desktop) shuts down or loses communication with CTI OS Server, or if the CTI OS Server shuts down, the agent is logged out of all Media Routing Domains supported by the peripheral that has lost communication with Unified ICM software.

The agent is logged in again automatically when one of the following occurs:

- The agent desktop comes back up or resumes communication with CTI OS Server
- The agent is connected to the backup CTI server

The agent Media Logout Status reports for the agent, agent skill group, agent team, and agent peripheral show a logout reason code of 50002.

The state to which the agent reverts after fail-over depends on the agent's state when the fail-over occurred, as described in the following table.

<table>
<thead>
<tr>
<th>Agent State after Fail-over</th>
<th>Agent State at Fail-Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Not Ready</td>
<td>Not Ready</td>
</tr>
<tr>
<td>Available, if in Available state before the call. Otherwise, the agent reverts to Not Ready.</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 21: Agent State Before and After Agent Desktop/CTI OS Server Fail-over

Application Instance/MR PG Fail-over

If the connection between the Application Instance and MR PG shuts down or either component shuts down, the Central Controller discards all pending NEW_TASK requests received from the application.
The Application Instance waits for the connection to be restored and continues to send messages regarding existing tasks and new tasks assigned by the Application Instance to the Agent PG CTI server. When the connection, MR PIM, or Application Instance is restored, the Application Instance resends any pending NEW_TASK requests for which it has not received a response from the Central Controller. The tasks that are assigned to the agent by the Application Instance while the connection is down and completed before the connection is restored do not appear in reports.

Note: If the Application Instance shuts down, this also affects Agent PG CTI server connections.

If the connection between the MR PIM and the Central Controller shuts down or the Central Controller shuts down, the MR PIM sends a ROUTING_DISABLED message to the Application Instance that causes the Application Instance to stop sending routing requests to the Central Controller.

Any request sent while the connection is down is rejected with a NEW_TASK_FAILURE message. The Application Instance continues to send messages regarding existing tasks and new tasks assigned by the Application Instance to the Agent PG CTI server.

When the connection or Central Controller is restored, the MR PIM sends the Application Instance a ROUTING_ENABLED message that causes the Application Instance to start sending routing requests to the Central Controller again. The tasks that are assigned to the agent by the Application Instance while the connection is down and completed before the connection is restored do not appear in reports. If the connection between the Central Controller and the MR PG fails, the CallRouter deletes all pending new tasks. When the connection is restored, the application connected to MR PG will resubmit all the tasks.

Note: If the Central Controller shuts down, this also affects the application instance/Agent PG CTI server interface.

Application Instance/Agent PG CTI Server/ PIM Fail-over

If the connection between the Application Instance and Agent PG CTI server shuts down or either component shuts down, agents stay logged in. Tasks remain for a time, based on the task life attribute of the MRD. If the task life expires while the connection is down, tasks are terminated with the disposition code of 42 (DBCD_APPLICATION_PATH_WENT_DOWN).

Note: For the email MRD, agents are not logged out automatically when the Agent PG CTI server or connection to CTI server shuts down. Instead the email Manager continues to record agent state and assign tasks to agents. When the connection is restored, the email Manager sends the updated agent state information on the peripherals serviced by the Agent PG CTI server to the CTI server, which sends the information to Unified ICM software. The software attempts to recreate historical data and corrects current agent state. If the connection or Agent PG CTI server is down for more than the time limit configured for the MRD, reporting on tasks might be ended prematurely and restarted with the connection is reestablished.

The application instance can assign tasks to agents while the connection or CTI server is down and, if the connection to the MR PG is up, can continue to send routing requests to the central controller and receive routing instructions. However, no reporting data is stored for the tasks while the connection is down. Also, any tasks that are assigned and completed while the connection or CTI server is down do not appear in reports. If the connection between the Agent
PG CTI server and the CallRouter shuts down or if the CallRouter shuts down, the application instance continues to send messages to the CTI server and agent activity is tracked. However, this information is not sent to the CallRouter until the connection or the CallRouter is restored, at which time the cached reporting information is sent to the central controller.

Note: If the central controller shuts down, this also affects the application instance/MR PG interface.

If the PIM shuts down, voice media routing is unavailable for agents associated with the PIM. However, the Central Controller can continue to assign non-voice tasks to agents associated with the PIM, and the CTI server can continue to process messages and requests about agents associated with the PIM for non-voice Media Routing Domains. When the connection is restored, voice media routing is available again.
Chapter 20: Reporting Implications of Data Loss and Component Failover

Other Possible Points of Failover
Part 5: Peripheral Gateway Processes

The information in this Appendix supplements the discussion of Peripheral Gateways (page 29) in the System Architecture chapter.

• The Peripheral Interface Manager (PIM) (page 199)
• The Open Peripheral Controller (OPC) (page 200)
• Event-Based and Aggregate-Based Reporting (page 202)
Peripheral Gateway Processes

This chapter contains the following topics:

- Peripheral Gateway Processes, page 199
- Computer Supported Telephony Application Message Example, page 200
- Two Models of Reporting (Unified ICM), page 202

Peripheral Gateway Processes

Four processes on the Peripheral Gateway are critical to reporting: the Peripheral Interface Manager (PIM), the Message Delivery System (MDS), the Open Peripheral Controller (OPC), and the Peripheral Gateway Agent process (PG Agent).

Peripheral Interface Manager

The Peripheral Interface Manager (PIM) manages communication between the PG and the peripherals themselves (ACDs, IVRs). The PIM’s main function is to convert peripheral-specific events and requests to an Unified ICM-compatible peripheral data stream.

The PIM supplies the Open Peripheral Controller (OPC) with Computer-Supported Telephony Application (CSTA) call event reporting messages. These messages form the basis of real-time monitoring and historical reporting. The OPC process receives the CSTA messages from the PIM and uses them to construct the actual real-time and historical routing and reporting data.

Message Delivery Service

The Message Delivery Service (MDS) manages all data flow between Unified ICM processes within the PG. The MDS notifies connected processes of errors detected during a data flow request. In addition, it plays a key role in keeping duplexed components (such as Loggers) synchronized.
Open Peripheral Controller

The Open Peripheral Controller (OPC) is the process that takes real-time data and events from the PIM and presents these data to the CallRouter. The OPC process forms the database objects the CallRouter needs to route calls and to monitor real-time activity on the peripheral. These include call objects, agent objects, Service objects, Peripheral device objects, routing objects, and skill groups.

To interface with the PIM, OPC uses the **OPC Interface**. The OPC Interface provides a standard communication interface between OPC and the various types of PIMs.

The OPC process outputs the data it receives from the PIM in the form of OPC Interface (OPCI) messages, which OPC uses to track the state transition of monitored calls and agents. The OPCI messages are based on ECMA Standard Protocol for Computer-Supported Telephony Application (CSTA). They also include additional components and interfaces to support real-time data feeds or other call control interfaces needed for an ACD.

Open Peripheral Interface Data Elements

To interface with the Central Controller Agent, OPC uses the Open Peripheral Interface (OPI).

The Open Peripheral Interface (OPI) defines the objects that control the flow of OPCI messages from OPC to the CallRouter. Each table in the Central Database has a set of fields that the CallRouter uses to make its routing decisions. OPI defines tags for each of those fields.

As elements change based on events and updates from the ACD, OPC informs the CallRouter of the changed values based on table type, tag, and value. OPC sends to the Router only those data elements that have changed in value. Types of OPI data elements reported to the CallRouter are Now, Half, and Today.

See Real Time Data (page 13) for a discussion of these data elements.

PG Agent

The PG Agent process is responsible for controlling the flow of OPI messages from OPC to the CallRouter. It manages all message traffic between the Peripheral Gateway and the Agent Process on the CallRouter, which is called the Central Controller Agent (CC Agent). The protocol used between the two agent processes is the Device Management Protocol (DMP).

Computer Supported Telephony Application Message Example

To illustrate how Computer Supported Telephony Application (CSTA) messages from the PIM are translated into OPI data elements, it might help to examine one CSTA message: **CSTAEstablished**.

Several OPC state transitions occur when OPC receives this message. The CSTAEstablished event indicates that a call has been answered by a device (that is, an agent, trunk, or voice port).
When OPC receives this event, the following OPC state transitions take place:

- **If the call was Queued**, several database elements and call objects are changed:
 - The count for CallsQNow is reduced by one (-1).

 CallsQNow is a database element for services and routes that tracks the number of calls currently in queue at the peripheral.

 - The call object used to track the CallsQNow and CallQNowTime data elements is removed from the Call Queued object for the service and/or route associated with the call.

 CallsQNowTime is a database element that records the time in seconds that all calls currently in queue to the service or route have spent in the queue.

 - The CallsLeftQTo5 data element for the service and/or route associated with the call is increased by one (+1).

 CallsLeftQ is a database element that provides the total number of calls to the service or route that were removed from queue during the current five-minute interval. CallsLeftQ is also used to calculate expected delay.

 - LocalQTime is written in the Termination_Call_Detail table.

 LocalQTime is the time in seconds that the call was in the local queue at the peripheral. The Termination_Call_Detail record contains information about how each call was handled at a peripheral. It is generated for each call that arrives at a peripheral (provided the proper monitoring is enabled for the peripheral).

- **If there is a Call Alert event**, the amount of time the call spent ringing is added to the Call object for RingTime in the Termination_Call_Detail record.

 RingTime is the number of seconds that the call spent ringing at the agent’s teleset before being answered.

- **If the answering device is an agent**, the following data elements and call objects are changed:
 - The AgentsTalking data element for the service and/or route associated with the call is increased by one (+1).

 AgentsTalking is a service and route database element that provides a count of the number of service agents currently in one of several talking states.

 - The call is associated with the agent and the agent is placed in the TalkingIn state on behalf of the call. This increases by one (+1) the count for TalkingIn for the skill group associated with the call the agent is handling.

 TalkingIn is a database element for skill groups that provides a count for the number of agents in the skill group currently talking on inbound calls.

 - The parameters used to calculate the database element AvgSpeedAnswer are modified.
AvgSpeedAnswer is a service and route data element. It provides the average AnswerWaitTime for all calls to the service or route (that is, the average time that all calls to the service or route had to wait before being answered). The calculation for AvgSpeedAnswer is AnswerWaitTime / CallsAnswered.

- The CallsAnsweredHalf (in the real-time database tables) and CallAnsweredTo5 (in the five-minute tables), are increased by one (+1).
- The AnswerWaitTime for the call is added and written to the database.

AnswerWaitTime is the elapsed time from when the call was offered at the peripheral to when it was answered. It includes any RingTime, LocalQTime, and DelayTime (all from the Termination_Call_Detail records) associated with calls.

- RingTime, LocalQTime, and DelayTime are added to AnswerWaitTimeTo5.
- TalkTime for the call begins to be monitored.

TalkTime is a service completed call time data element. It is populated with TalkTime and HoldTime from the Termination_Call_Detail record for the call. The value is not updated in the database until any after-call work associated with the call is completed.

Two Models of Reporting (Unified ICM)

The PIM is responsible for general monitoring functions that include accessing data on the peripheral regarding agent groups, service, routes, trunk groups, and agents.

The level of data provided by the PIM is determined by the types of CTI links available on the peripheral. The PIM can retrieve ACD statistics by using an event-based CTI feed, an aggregate data CTI feed, or both. In general, an event-based CTI feed provides more data and capabilities than an aggregate data CTI feed.

Event-Based Reporting

An event-based PIM (for example, the Aspect Event Link PIM) connects to a CTI link that provides call events and agent state events.

Event-based PIMs base their data on agent and call state transitions reported from the ACD. These PIMs convert CTI events received from the switch to CSTA-based OPC API messages, which can then be forwarded to OPC. The OPC constructs the routing and monitoring data from these events.

Aggregate-Based Reporting

Some aggregate-data PIMs connect to CTI links that provide aggregate skill group, service, and route statistics. The aggregate-data PIM works by polling the ACD for certain data supported
over the switch vendor’s CTI link. The aggregate PIM reports to OPC those data components that are required to build the OPI data elements.

When the PIM detects a change, it updates OPC, which informs the CallRouter of the changed values. ACD-specific data is supported by a passed-through API defined in the OPC interface. OPC sends the data to the CallRouter to be stored in the Central Database. Pass-through data requires that the database define the table format of the records.
Two Models of Reporting (Unified ICM)
Part 6: Routing and Queuing

- About Routing and Queueing (page 207)
- Network Queueing and Reporting (page 213)
- Routing in Various Unified ICM Deployments (page 219)
This chapter presents basic routing concepts. It also explains the two types of queuing models for reporting and how they affect reporting metrics.

This chapter contains the following topics:

- About Routing, page 207
- About Queuing, page 209

About Routing

When Unified ICM software receives a routing request, it determines the appropriate destination for the call by executing routing scripts.

These scripts use real-time information about activity at the contact centers to find the destination best able to handle the call. You can monitor how the system is handling calls and can make changes to the scripts when needed, using the Script Editor.

A destination (called a routing target) can be a network target such an announcement or a ring, or a skill target such as an agent, a skill group, or a service. Once these targets are defined in the Configuration Manager, they can be specified in the routing script.

Pre-Routing

Pre-routing is a routing decision that is executed before the call terminates at the call center. With pre-routing, the Network Interface Controller (NIC) receives the route request from the IntereXchange Carrier (IXC) and passes the call information along to Unified ICM software.

Unified ICM bases pre-routing decisions on real-time data gathered by the PGs at the call center sites. Unified ICM then runs the appropriate script that defines how the call is to be routed.

A pre-routing request therefore determines the initial destination for a call.
Post-Routing

Post-routing is a routing decision made after the call has initially been processed at a VRU or call center. Post routing enables Unified ICM to process calls when an ACD, VRU, or PBX generates a route request via the PG.

Unified ICM executes scripts to process the route request and return the destination address. This directs the ACD/PBX to send the call to an agent, skill group, service or Call Type in the same call center or at a different call center. In making a post-routing decision, Unified ICM software can use all the same information and scripts used in pre-routing.

A post-routing is sent by the peripheral to refine the original route or redirect the call.

Note: Your *ACD Supplement Guide* describes the features of Unified ICM post-routing available with the ACD, as well as any considerations you should be aware of when using post-routing or Translation Routing on the PG.

Translation Routing

Translation routing is the term used when additional information is sent along with a call. This is necessary because the carrier can deliver *voice,* but has no way to deliver *data* to the peripheral.

Unified ICM software works with the PG to deliver the call to the final destination on the peripheral and to ensure that the appropriate information collected for the call is also delivered to the agent’s desktop.

Once the data is delivered to the peripheral, the PG receives back information about which agent the call will be sent to.

You define Translation Routes with the Configuration Manager, using the Translation Route Wizard.

Note: Refer to your *ACD Supplement Guide* to see if your ACD supports translation routing and for any considerations you should be aware of when using translation routing on the PG.

Translation routing is always used when a call moves from one peripheral to another. A call can also be translation routed from the network.

- The term ICM TranslationRoute is used when calls are translation routed to a peripheral that is an ACD.

- The term TranslationRouteToVRU is used when calls are translation routed to a peripheral that is a VRU.

Translation routing plays a significant role in the accuracy of reporting and allows for ‘cradle-to-grave’ call tracking and reporting. Some reporting metrics gathered for Call Types and skill groups are applicable only if calls are translation-routed.
Skills Based Routing

Skills based routing is a routing decision whereby a call is routed to the skill group that has agents with the appropriate expertise.

About Queuing

Queued calls are calls that are being held until an agent is available.

Unified ICM software calculates a number of call center metrics based on the time spent in queues.

It is important to understand the two models of queuing and how queuing affects reporting metrics.

ACD Queuing

ACD queues are used to queue calls on a targeted ACD and are controlled by the ACD.

Unified ICM might route a call to the ACD, based on knowledge gathered by the Peripheral Gateways (PGs) that a certain skill group or service at that ACD is best suited to answer the call.

Once the call arrives at the ACD, if an agent is not available, the ACD queues the call to the skill group. Optionally a call can be queued to a skill group on the ACD during agent transfers or resulting from a call treatment provided on the ACD.

Enterprise Queuing

Enterprise queues are controlled by Unified ICM using the Service Control Interface (SCI), irrespective of the telephony platform chosen to queue the call.

In this model, calls are held at a “network-level” VRU that has an enterprise view of available agents, based on the skill groups and services configured for the peripheral.

The following telephony platforms are supported for Enterprise queuing:

- Cisco Voice Portal and Cisco IP-IVR, when connected to Unified ICM by a VRU PG
- A third-party VRU that supports service control and is connected to Unified ICM by a VRU PG
- A VRU at the TDM Network that supports service control and is connected to Unified ICM by a NIC
• For deployments where Unified ICM provides integration to an ACD for agent level routing using the ARS PG, the ACD itself is used as the telephony platform that queues the call as directed by the ICM.

Enterprise queues are an efficient way of routing a call in your enterprise network and are also a cost-effective way to save on toll charges before terminating a call on the ACD.

How Calls Offered and Calls Queued are Incremented

The Skill_Group_Real_Time database tracks calls offered and calls queued in separate fields.

Therefore, there is no double counting of calls queued and offered at the ACD and calls queued and offered at the network.

Reporting Considerations when using an Enterprise Queue

The use of enterprise queues affects Call Type, Skill Group, and Service reporting.

The reporting metrics that are affected include queued metrics, answered metrics, service level metrics, and abandoned metrics.

The reporting of these metrics is also affected by whether or not the call was translation-routed (page 207) when sent to an ACD.

Notes

• Some reporting metrics for skill groups and call types are applicable only if calls are translation routed.

• Translation routing plays a significant role in the accuracy of reporting. Some reporting metrics gathered for Call Types and skill groups are applicable only if calls are translation routed. Calls can be translation routed either to a VRU Peripheral or to an ACD.

• Translation routing is primarily applicable when Unified ICM software is used for Enterprise Routing to traditional ACDs and Cisco Unified System Contact Center. This includes deployments connected to legacy ACDs using any supported TDM PG such as Aspect PG and deployments connected to Cisco Unified System Contact Center using IPCC Gateway PG. Translation Routing enables Unified ICM for cradle to grave reporting.

• For deployments where Unified ICM provides integrations to an ACD for Enterprise Routing the following is true:
 – Unified ICM system reports on ACD queue metrics.
 – When Unified ICM software is used to provide initial call treatment and/or enterprise queuing, Unified ICM software reports on enterprise queue metrics. However once the call is routed to an ACD the ACD may queue the call. In this case, Unified ICM software reports on both enterprise queue and ACD queue metrics.
Unified ICM system uses a Service Control VRU as the telephony platform for enterprise queuing.

- Reporting is the same whether Unified ICM script uses a Send To VRU node or a Translation Route To VRU node.

Call Type Metrics

When a call is translation-routed:

- The AnswerWaitTime, ASA, and Service Level include both the time spent in the Enterprise queue and the time spent in the ACD queue.

 The measurement of AnswerWaitTime for a call begins when the call is queued. The measurement of Service Level begins when the call arrives at the routing script or when its Call Type is changed.

 This means that if self-service is performed on a call before the call is queued to an agent, the routing script must be set up to change the Call Type when self-service is completed. Otherwise, the time spent in self-service will negatively impact the Service Level.

- Abandoned statistics are classified in three ways:

 - Calls that abandoned while ringing at the agent desktop.

 - Calls that abandoned in an Enterprise queue while waiting for an available agent.

 - Total number of calls that abandoned. This includes calls that abandoned in a VRU (prompting), calls abandoned in both Enterprise queue and ACD queue, and calls that abandoned at the agent.

 Note: Although the total abandons includes calls that abandoned at the ACD, there is no separate count for only those calls that abandoned at the ACD.

When a call is not translation-routed:

- The Call Type Abandoned metrics allow you to determine the number of calls that abandoned in an enterprise queue while waiting for an available agent and the number of calls that were abandoned while in self-service.

 However, they do not allow you to determine the number of calls that were abandoned after they left the VRU and before an agent answered them.

- The Call Type Answered metrics will always be zero and are not applicable.

- The Call Type Service Level metrics are not applicable.

Skill Group Metrics

When a call is translation-routed:
• The Skill Group \textit{Answered} metrics only include time spent in the ACD queue.

\textbf{When a call is not translation-routed:}

• The Skill Group \textit{Queued} metrics are applicable.

• The Skill Group \textit{Abandoned} metrics allow you to determine the number of calls that abandoned in an enterprise queue while waiting for an available agent, but they do not allow you to determine the number of calls that were abandoned after they left the VRU and before an agent answered them. The ACD report shows calls that abandoned after they arrived at the ACD.

• The Skill Group \textit{Answered} metrics do not include any time spent in the enterprise queue and therefore are not applicable.

Note that none of the skill group metrics include time spent in self-service, or calls that ended during self-service. A call is not associated with a skill group until it is queued, and a call is queued after self-service is complete.

\textbf{Service Metrics}

If a Service Control VRU is used for VRU application, the Service metrics can be used to provide performance measures for the VRU service. The type of VRU and configuration determines the information and usefulness of the metrics reported for the VRU service.

The metrics reported for Unified ICM Services defined for the ACD peripherals do not include any time spent in the enterprise queue. Hence the service metrics are not useful when using an enterprise queue.
Chapter 23

Network Queuing and Reporting

The existence of a network VRU in a Unified ICME or a Unified CCE deployment affects Unified ICME/Unified CCE Call Type and Skill Group reporting.

How a call is sent to the VRU does not affect reporting; that is, it does not matter if the Unified ICM script used a Send To VRU node or a Translation Route To VRU node.

Figure 27: Network VRU in a Gateway Deployment

This chapter explains the Call Type metrics and Skill Group metrics and uses the terms:

ICM-TR to denote a Unified ICME system in which all calls *are translation routed* when sent to an ACD,

and

ICM-Not-TR to denote a Unified ICME system in which some or all calls *are not translation routed* when sent to an ACD, we explain here the Call Type metrics and Skill Group metrics.
The Call Type and Skill Group reporting metrics that are affected by the existence of a network VRU, include *queued* metrics, *at VRU* metrics, *answered* metrics, *service level* metrics, and *abandoned* metrics.

Network VRU and Call Type Metrics

All of the Call Type metrics apply to both Unified CCE and Unified ICME. In Unified ICME systems, Answer Wait Time, ASA, and Service Level include both the time spent in the network queue and the time spent in the ACD queue.

For both Unified CCE and Unified ICME, the measurement of Answer Wait Time for a call begins when the call is *queued*. The measurement of Service Level begins when the call *arrives* at the routing script, or when its call type is *changed*. This means that if self-service is performed on a call before the call is queued to an agent, the routing script must be set up to change the call type of the call when self-service is completed. Otherwise, the time spent in self-service negatively impacts the Service Level.

With regard to ICM-Not-TR systems, the Call Type queuing and at-VRU metrics are the same as for Unified CCE and ICM-TR. The Call Type abandoned metrics allow you to determine the number of calls that were abandoned while queued in the CallRouter, but they do not allow you to determine the number of calls that were abandoned while in self service, nor the number of calls that were abandoned after they leave the VRU and before an agent answers them. The Call Type answered metrics are always zero. The Call Type Service Level metrics are meaningless and can be ignored.

Note: When Unified SCCE is used as a child with Unified CVP, Unified SCCE cannot see the state on calls queued to the child, and therefore cannot report on them. Any Service or Skill Group statistics field that is related to calls queued on the ACD are not valid. For example, SkillGroupRealTime.CallsQueuedNow are never populated. Any function that depends on queue statistics to properly function cannot be used for the gateway peripheral. As an example: Minimum Expected Delay is not accurate since it does not consider queue time on the Unified CVP peripheral.

The following table shows the fields in the Call_Type_Real_Time table that affect reporting metrics by metric category:

Table 22: Call_Type_Real_Time Table and Reporting Metrics

<table>
<thead>
<tr>
<th>Queued Metrics</th>
<th>At VRU Metrics/ Answered Metrics</th>
<th>Service Level Metrics</th>
<th>Abandoned Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvgRouterDelayQHalf</td>
<td>At VRU:</td>
<td>ServiceLevelAbandHalf</td>
<td>CallDelayAbandTimeHalf</td>
</tr>
<tr>
<td>AvgRouterDelayQNow</td>
<td>CallsAtVRUNow</td>
<td>ServiceLevelAbandTo5</td>
<td>CallDelayAbandTimeTo5</td>
</tr>
<tr>
<td>AvgRouterDelayQTo5</td>
<td>Answered:</td>
<td>ServiceLevelAbandToday</td>
<td>CallDelayAbandTimeToday</td>
</tr>
<tr>
<td>AvgRouterDelayQToday</td>
<td>AnsweredWaitTimeHalf</td>
<td>ServiceLevelCallsHalf</td>
<td>CTDelayAbandTimeHalf</td>
</tr>
<tr>
<td>CallsLeftQTo5</td>
<td>AnswerWaitTimeTo5</td>
<td>ServiceLevelCallsTo5</td>
<td>CTDelayAbandTimeTo5</td>
</tr>
<tr>
<td>CallsAtVRUNow</td>
<td>AnswerWaitTimeToday</td>
<td>ServiceLevelCallsToday</td>
<td>CTDelayAbandTimeToday</td>
</tr>
</tbody>
</table>
The following table shows the fields (by metric category) in the Call_Type_Interval table that affect reporting metrics:

Note: When Unified SCCE is used as a child with Unified CVP, Unified SCCE cannot see the state on calls queued to the child, and therefore cannot report on them. Any Service or Skill Group statistics field that is related to calls queued on the ACD is not valid. For example, SkillGroupRealTime.CallsQueuedNow is never populated. Any function that depends on queue statistics to properly function cannot be used for the gateway peripheral. As an example: Minimum Expected Delay is not accurate since it does not consider queue time on the Unified CVP peripheral.

Table 23: Call_Type_Interval Table and Reporting Metrics

<table>
<thead>
<tr>
<th>Queued Metrics</th>
<th>At VRU Metrics/ Answered Metrics</th>
<th>Service Level Metrics</th>
<th>Abandoned Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>RouterCallsQNow</td>
<td>CallsAnsweredHalf</td>
<td>ServiceLevelCallsOfferedHalf</td>
<td>DelayAgentAbandTimeHalf</td>
</tr>
<tr>
<td>RouterCallsQNowTime</td>
<td>CallsAnsweredTo5</td>
<td>ServiceLevelCallsOfferedTo5</td>
<td>DelayAgentAbandTimeTo55</td>
</tr>
<tr>
<td>RouterLongestCallQ</td>
<td>CallsAnsweredToday</td>
<td>ServiceLevelCallsOfferedToday</td>
<td>DelayAgentAbandTimeToday</td>
</tr>
<tr>
<td>RouterQueueCallsHalf</td>
<td>CallsAtAgentNow</td>
<td>ServiceLevelHalf</td>
<td>DelayQAbandTimeHalf</td>
</tr>
<tr>
<td>RouterQueueCallsTo5</td>
<td>CallsAnsweredToday</td>
<td>ServiceLevelTo5</td>
<td>DelayQAbandTimeTo5</td>
</tr>
<tr>
<td>RouterQueueCallsToday</td>
<td>ServiceLevelToday</td>
<td>DelayQAbandTimeToday</td>
<td></td>
</tr>
<tr>
<td>RouterQueueWaitTimeHalf</td>
<td>ServiceLevelHalf</td>
<td>DelayQAbandTimeHalf</td>
<td>RouterCallsAbandQHalf</td>
</tr>
<tr>
<td>RouterQueueWaitTimeTo5</td>
<td>ServiceLevelTo5</td>
<td>DelayQAbandTimeTo5</td>
<td>RouterCallsAbandQTo5</td>
</tr>
<tr>
<td>RouterQueueWaitTimeToday</td>
<td>ServiceLevelToday</td>
<td>DelayQAbandTimeToday</td>
<td>RouterCallsAbandQToday</td>
</tr>
<tr>
<td>ServiceLevelCallsQHeld</td>
<td></td>
<td></td>
<td>RouterCallsAbandToAgentHalf</td>
</tr>
<tr>
<td>TotalCallsAbandHalf</td>
<td></td>
<td></td>
<td>RouterCallsAbandToAgentTo5</td>
</tr>
<tr>
<td>TotalCallsAbandTo5</td>
<td></td>
<td></td>
<td>RouterCallsAbandToAgentToday</td>
</tr>
<tr>
<td>TotalCallsAbandToday</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Queued Metrics

<table>
<thead>
<tr>
<th>RouterQueueCallType Limit</th>
<th>At VRU Metrics/ Answered Metrics</th>
<th>Service Level Metrics</th>
<th>Abandoned Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answered:</td>
<td></td>
<td>ServiceLevel</td>
<td>CTDelayAbandTime</td>
</tr>
<tr>
<td>AnsInterval1 - AnsInterval10</td>
<td>AnswerWaitTime</td>
<td></td>
<td>DelayAgentAbandTime</td>
</tr>
<tr>
<td>AnswerInterval</td>
<td>CallsAnswered</td>
<td></td>
<td>DelayQAbandTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RouterCallsAbandQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RouterCallsAbandToAgent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TotalCallsAband</td>
</tr>
</tbody>
</table>

For additional information on the Call_Type_Real_Time and Call_Type_Interval table fields, see the *Database Schema Handbook for Cisco Unified ICM/Contact Center Enterprise & Hosted, Release 7.5.*

Network VRU and Skill Group Metrics

Note: When Unified SCCE is used as a child with Unified CVP, Unified SCCE cannot see the state on calls queued to the child, and therefore cannot report on them. Any Service or Skill Group statistics field that is related to calls queued on the ACD is not valid. For example, SkillGroupRealTime.CallsQueuedNow are never populated. Any function that depends on queue statistics to properly function cannot be used for the gateway peripheral. As an example: Minimum Expected Delay is not accurate since it does not consider queue time on the CVP peripheral.

All of the skill group metrics apply to both Unified CCE and ICM-TR. However, the Answer Wait Time and ASA metrics do not include the time spent in the network queue, while the Service Level metrics do.

For ICM-Not-TR systems, the Skill Group queuing and at-VRU metrics are the same as for Unified CCE and ICM-TR. The Skill Group abandoned metrics allow you to determine the number of calls that abandoned while queued to the CallRouter, but they do not allow you to determine the number of calls that abandoned after they left the VRU and before an agent answered them. The Skill Group answered metrics are always zero. The Skill Group Service Level metrics are meaningless and can be ignored.

Note: None of the Skill Group metrics include time spent in self-service or calls that ended during self-service because a call is not associated with a skill group until it is queued, and a call is queued after self-service is complete.

The following table shows the fields (by metric category) in the Skill_Group_Real_Time table that affect reporting metrics:
Table 24: Skill_Group_REAL_Time Table and Reporting Metrics

<table>
<thead>
<tr>
<th>Queued Metrics</th>
<th>At VRU Metrics/Answered Metrics</th>
<th>Service Level Metrics</th>
<th>Abandoned Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsQueuedNow</td>
<td>At VRU:</td>
<td>ServiceLevelTo5</td>
<td>RouterCallsAbandQTo5</td>
</tr>
<tr>
<td>LongestCallQ</td>
<td>None.</td>
<td>ServiceLevelCallsTo5</td>
<td>RouterCallsAbandToAgentTo5</td>
</tr>
<tr>
<td>RouterCallsQNow</td>
<td>Answered:</td>
<td>ServiceLevelCallsAbandTo5</td>
<td></td>
</tr>
<tr>
<td>RouterLongestCallInQ</td>
<td>AnswerWaitTimeTo5</td>
<td>ServiceLevelCallsDequeuedTo5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CallsAnsweredTo5</td>
<td>ServiceLevelErrorTo5</td>
<td></td>
</tr>
</tbody>
</table>

The following table shows the fields (by metric category) in the Skill_Group_Interval table that affect reporting metrics:

Table 25: Skill_Group_Interval Table and Reporting Metrics

<table>
<thead>
<tr>
<th>Queued Metrics</th>
<th>At VRU Metrics/Answered Metrics</th>
<th>Service Level Metrics</th>
<th>Abandoned Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallsQueued</td>
<td>At VRU:</td>
<td>ServiceLevel</td>
<td>AbandonRingCalls</td>
</tr>
<tr>
<td>RouterQueueCalls</td>
<td>None.</td>
<td>ServiceLevelCalls</td>
<td>AbandonRingTime</td>
</tr>
<tr>
<td></td>
<td>Answered:</td>
<td>ServiceLevelCallsAband</td>
<td>RouterCallsAbandQ</td>
</tr>
<tr>
<td></td>
<td>AnswerWaitTime</td>
<td>ServiceLevelCallsDequeued</td>
<td>RouterCallsAbandToAgent</td>
</tr>
<tr>
<td></td>
<td>CallsAnswered</td>
<td>ServiceLevelError</td>
<td></td>
</tr>
</tbody>
</table>

For additional information on the Skill_Group_REAL_Time and Skill_Group_Interval table fields, see the *Database Schema Handbook for Cisco Unified ICM/Contact Center Enterprise & Hosted.*
Understanding Different Unified ICM Deployments

Unified ICM reports help to monitor operational effectiveness, customer experience and contact center agent performance across your enterprise.

In order to effectively run your call center using the data provided by enterprise reports, it is important to understand the different Unified ICM Enterprise deployments.

The Peripheral Gateway component in a Unified ICM system is used to interface with peripherals at the different call centers in your enterprise.

The capabilities provided by the ICM software when connected to a traditional TDM PG to a legacy TDM ACD differ from the capabilities provided by a Gateway PG, and ARS PG, and a CallManager PG.

Unified ICM can be deployed with different types of Peripheral Gateways to meet the call center needs in your enterprise.

- Deployments with Enterprise Routing (page 220)
- Deployments with Agent Level Routing (page 226)
- Deployments with Hybrid Routing (page 230)
Deployments with Enterprise Routing

In this deployment, Unified ICM is configured with Peripheral Gateways (PGs) that can connect to legacy ACDs using any of the supported TDM PGs (Aspect, Avaya and so forth) as well as the CCE Gateway PGs.

When Unified ICM is configured with these types of PGs, the call treatment and queuing (ACD queuing) is provided by the ACD. That is, it is the ACD that controls the queuing and chooses the agent required to handle the call.

Unified ICM software is primarily used for intelligent call routing to sites and consolidated reporting for these ACDs. Optionally Unified ICM software can be used to provide initial call treatment and/or enterprise queuing (Enterprise queue). In this case the call is routed to a site when an agent becomes available.

The ACD offers the call to agents based on skill definitions on the ACD. If an agent is not available, the ACD queues the call (in the ACD queue) and then directs the call when an agent becomes available.

This illustration shows a Unified ICM system connected to two PGs for legacy ACDs and to a network VRU.

Figure 28: Deployment with Enterprise Routing

- When calls are routed to an ACD, call treatment is provided on the ACD and the ACD controls the queuing.
- Network VRU1 can be any Service Control VRU that can be used to provide initial call treatment and serve as the telephony platform for queuing calls across all call center ACDs. VRU1 can also be used for information gathering and self-service.
Routing and Scripting

In this deployment, Unified ICM software uses real-time reporting statistics gathered from the different peripherals (ACDs) to make routing decisions to route calls to the ACD at a site that is best suited to answer the call.

The following routing capabilities can be provided in this deployment.

• **Site Based Routing:** Unified ICM software, using ICM routing capabilities, can use real-time reporting statistics gathered from the different peripherals (ACDs) to make routing decisions to route calls to the ACD at a site that is best suited to answer the call.

 Site selection can be scripted using real-time Service and Skill Group metrics provided by the Peripheral Gateway (PG).

 Several metrics can be used to make the selection such as Agent availability, CallsInProgress, and Minimum Expected Delay (MED) calculation.

 Note: Unified ICM scripts provide a predefined MED (Minimum Expected Delay) calculation that can be used only with ICM Services.

• **Agent Level Routing:** Not Supported.

A typical script used to route calls in this deployment is illustrated and explained below.

About this script:

• The script is associated with a Call Type. The example is shown for an enterprise that has two sites (Boston and New York), each running a call center.

• The call center at either site can provide call treatment to handle “Support” calls. “Support” is configured as a Service in Unified ICM.

• Both call centers have agents trained to handle calls for either “Laptop Support” or “Server Support”. These are configured as Skill Groups in Unified ICM. The relationship of the Service to Skill Groups is configured as Service Members in Unified ICM.

• The Boston call center has an Avaya ACD (peripheral) connected with an Avaya PG, and New York call center has an Aspect ACD (peripheral) connected with the Aspect PG. Service and Skill Groups are configured for each peripheral in Unified ICM.
The script illustrated above shows an example of pre-routing and ACD queuing, processed as follows:

1. The script is associated with a Call Type to route Support calls.

2. The script uses caller entered digits (CED) to determine the skill group (Laptop Support or Server Support) required to handle the call and/or the Service treatment (Support) required by the caller.

3. The script uses the LAA (longest available agent) node to look for an available agent across the enterprise who can handle the call.

 Unified ICM software routes the call to the call center site that has an available agent. The ACD at that site picks an agent and assigns the call.

4. If an agent is not available, the script uses the MED (Minimum Expected Delay) node to select a site that can handle the call with minimum delay.

 Once the site with the least expected wait time is selected, the call is routed to the ACD at that site.

 After the call arrives on the ACD, call treatment is provided by the ACD. If an agent is available, the ACD assigns the call to that agent.

 If an agent is not available, the ACD will queue the call to skill group to wait for an available agent.

Reporting Considerations

This section is an overview of reporting categories to use to meet the reporting needs for your enterprise in this deployment.

Two key factors that affect reporting are:
Are you using ACD queuing or Enterprise queuing?

Are you using Translation Routing to route calls to the ACD?

The information is therefore presented based in four scenarios:

Scenario One: Calls are Queued on the ACD and are not Translation Routed. (page 223)

Scenario Two: Calls are Queued on the ACD and are Translation Routed. (page 224)

Scenario Three: Calls are Enterprise Queued and are not Translation Routed. (page 224)

Scenario Four: Calls are Enterprise Queued and are Translation Routed. (page 225)

Scenario One: Calls are Queued on the ACD and are not Translation Routed

For Enterprise reporting, use the following report categories:

- Use Enterprise Service reports for an enterprise view of reporting statistics for the application.
- Use Enterprise Skill Group reports for enterprise view of reporting statistics routed to a particular skill group.

This table shows other report categories and the statistics they provide.

<table>
<thead>
<tr>
<th>Report Focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Before the call is routed to the ACD</td>
<td>Call Type</td>
<td>Number of calls routed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls received</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls that encountered an error or received default treatment</td>
</tr>
<tr>
<td>After the call is routed to the ACD, calls queued on the ACD</td>
<td>Peripheral Service Enterprise Service</td>
<td>Queue Statistics (ACD Queue)</td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RONA</td>
</tr>
<tr>
<td>After the call is answered by agent</td>
<td>Peripheral Service Enterprise Service</td>
<td>ASA</td>
<td>Calls handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg. Handle Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transfers</td>
</tr>
</tbody>
</table>
Scenario Two: Calls are Queued on the ACD and are Translation Routed

The report categories to use are the same as for **Scenario One (Calls Queued on the ACD that are not Translation Routed)** (page 223), with the additional statistics available for Call Type (Cradle to Grave):

<table>
<thead>
<tr>
<th>Report Focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>After the call is routed to the ACD, calls queued on the ACD</td>
<td>Call Type</td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td>After the call is answered by agent</td>
<td>Call Type</td>
<td>ASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg. Handle Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg. Talk Time</td>
</tr>
</tbody>
</table>

Note: Call Types cannot report on queued metrics for calls queued on the ACD (ACD queue), such as the number of calls queued on the ACD.
Scenario Three: Calls are Enterprise Queued and are not Translation Routed

For Enterprise reporting, use the following report categories:

- Use Enterprise Service reports for an enterprise view of some reporting statistics for the application.
- Use Call Type and Enterprise Skill Group reports for an enterprise view of queued and abandon in queue statistics for the application and skill group respectively.
- Use Enterprise Skill Group reports for enterprise view of reporting statistics when routed to a particular skill group.

Skill Group and Agent reporting are the same as for Scenario One (Calls Queued on the ACD that are not Translation Routed) (page 223).

This table shows other report categories and the statistics they provide.

<table>
<thead>
<tr>
<th>Report Focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Before the call is routed to the ACD, queued in the enterprise</td>
<td>Call Type</td>
<td>Number of calls routed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls received</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls that encountered an error</td>
</tr>
<tr>
<td></td>
<td>After the call is routed to ACD</td>
<td>Peripheral Service</td>
<td>Enterprise Queue Statistics and Abandon in Enterprise Queue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterprise Service</td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td>After the call is answered by the agent</td>
<td>Peripheral Service</td>
<td>RONA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterprise Service</td>
<td></td>
</tr>
</tbody>
</table>

Note: Skill Groups report on Enterprise queue statistics.

Also see Reporting Considerations when using an Enterprise Queue (page 210).

Scenario Four: Calls are Enterprise Queued and are Translation Routed

For Enterprise reporting, use the following report categories:

- Use Call Type reports for enterprise view of reporting statistics for the application.
• Use Call Type and Enterprise Skill Group reports for enterprise view of queued and abandon in queue statistics for the application and skill group respectively.

• Use Enterprise Skill Group reports for enterprise view of reporting statistics when routed to a particular skill group.

Skill Group and Agent reporting are the same as for Scenario One (Calls Queued on the ACD that are not Translation Routed) (page 223).

This table shows other report categories and the statistics they provide.

<table>
<thead>
<tr>
<th>Report Focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Before the call is routed to the ACD, queued in the enterprise</td>
<td>Call Type</td>
<td>Number of calls routed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls received</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls that encountered an error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Queue Statistics and Abandon in Queue</td>
</tr>
<tr>
<td>After the call is routed to the ACD</td>
<td>Call Type</td>
<td>Abandons</td>
<td>Service Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: RONA calls are reported on services and are not available for Call Types.</td>
</tr>
<tr>
<td>After the call is answered by agent</td>
<td>Call Type</td>
<td>Calls Handled</td>
<td>Avg Handled Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASA</td>
</tr>
</tbody>
</table>

Note: Skill Groups report on Enterprise queue statistics.

Also see Reporting Considerations when using an Enterprise Queue (page 210).

Deployments with Agent Level Routing

In this deployment, Unified ICM is configured with ARS PGs (Agent Routing Service Peripheral Gateways) to provide the Agent Routing Integration (ARI) to an ACD/PBX.

When Unified ICM is connected with this type of PG to an ACD/PBX, the call treatment and queuing (Enterprise queuing) is provided by Unified ICM software.
The call treatment is done through the use of Call Types and associated scripts. It is Unified ICM in this case that controls queuing and chooses the agent required to handle the call. Unified ICM software provides the ACD functionality and the ACD itself becomes a simple PBX that connects a call to an agent as directed by the CallRouter.

In the illustration below, Unified ICM is connected with two ACDs using ARS PGs. In this deployment Unified ICM software always controls the queuing; hence the enterprise queue statistics are affected. The ACD is used as the telephony platform to queue the calls.

The Network VRU1 can be any Service Control VRU that can be used to provide initial call treatment and serve as the telephony platform for queuing calls across all call center ACDs. VRU1 can also be used for information gathering and self-service. There might also be a premise-based VRU or a Virtual VRU at the ACD/PBX.

In that case, the premise-based VRU or Virtual VRU are also controlled by the Service Control Interface (SCI) of the ISAGI protocol so that Unified ICM retains control of the queuing.

For additional information on ARS PGs, see the ARI Deployment Guide for Cisco Unified Intelligent Contact Management Enterprise & Hosted.

Routing and Scripting

The following routing capabilities can be provided in this deployment:

- **Site Based Routing**: Unified ICM software, using Unified ICM routing capabilities, can use real-time reporting statistics gathered from the different peripherals (ACDs) to make routing decisions to route calls to the site that is best suited to answer the call.

 Site selection can be scripted using real time Skill Group metrics only provided by the Peripheral Gateway (PG). Several metrics can be used to make the selection such as Agent availability, CallsInProgress, CallsInQ, and Avg.HandleTime.
Note: A custom formula using real-time skill group metrics in the ICM scripts is required to calculate the expected wait time for site selection.

- **Agent Level Routing:** Unified ICM software has the ability to route a call directly to an agent. It is also possible to queue a call for an agent, using the "Queue to Agent" node in the script. It is Unified ICM software that chooses the agent for handling the call.

A typical script used to route calls in this deployment is illustrated and explained below.

About this script:

- The script is associated with a Call Type. The example shows an enterprise that has two sites—Boston and New York—each running a call center.
- The call center at each site can provide call treatment to handle "Support" calls. "Support" is configured as a Service in the ICM.
- The call center has agents that are skilled to handle calls for either "Laptop Support" or "Server Support". These are configured as Skill Groups in the ICM.
- Both call centers have ARS PG connections to the Avaya ACD.

The script above is used for the following:

1. The script is associated with a Call Type to route support calls. In this example, treatment for support calls is provided by Call type and the associated script.
2. The script uses Caller entered digits (CED) to determine the skill group (Laptop Support or Server Support) required to handle the call.
3. The script uses the LAA (longest available agent) node to look for an available agent across the enterprise who can handle the call.

Once an available agent is found across the two call centers, Unified ICM selects the agent and provides instructions to the routing client to direct the call to the agent.

4. If an agent is not available, the script instructs Unified ICM software to translation route the call to the VRU and queue the call.

5. When an agent becomes available, Unified ICM selects the agent and provides instructions to the routing client (VRU) to direct the call to the agent.

Reporting Considerations

In this deployment, all queued calls are controlled by Unified ICM (Enterprise queue) and all calls are translation routed.

The table below defines the report categories to use to meet the reporting needs for your enterprise.

Enterprise Reporting

- Use Call Type reports for an enterprise view of reporting statistics for the application, including queue statistics.

- Use Enterprise Skill Group reports for an enterprise view of reporting statistics when calls are routed to a particular skill group, including queue statistics.

<table>
<thead>
<tr>
<th>Report focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Before call is routed to an agent</td>
<td>Call Type</td>
<td>Number of calls routed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls that encountered an error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Queue Statistics and Abandons.</td>
</tr>
<tr>
<td>After call is routed to an agent</td>
<td>Call Type</td>
<td>Abandons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redirection on No Answer (RONA)</td>
<td></td>
</tr>
<tr>
<td>After call is answered by an agent</td>
<td>Call Type</td>
<td>ASA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls Handled</td>
<td></td>
</tr>
</tbody>
</table>
Deployments with Hybrid Routing

In this deployment, Unified ICM includes both TDM PGs for Enterprise Routing to legacy ACDs as well as Cisco Call Manager PGs and ARS PGs (Agent Routing Service Peripheral Gateways) to provide the Agent Routing Integration (ARI) to an ACD/PBX such as Avaya.

<table>
<thead>
<tr>
<th>Report focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skill Group</td>
<td>Calls routed to a skill group</td>
<td>Peripheral Skill Group & Enterprise Skill Group</td>
<td>Queue Statistics</td>
</tr>
<tr>
<td></td>
<td>Queued calls</td>
<td></td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td>After call is answered by an agent</td>
<td>Peripheral Skill Group & Enterprise Skill Group</td>
<td>RONA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Levels</td>
</tr>
<tr>
<td>Agent Info</td>
<td></td>
<td></td>
<td>ASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.TalkTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.HandleTime</td>
</tr>
<tr>
<td>Agents</td>
<td>Agent Info</td>
<td>Agent by individual, team, peripheral or skill group</td>
<td>Agent’s current state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration in a state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agents logged out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.Talk Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.Handle Time</td>
</tr>
</tbody>
</table>
Routing and Scripting

The manner in which you configure and script your Unified ICM system in this deployment greatly affects the accuracy and usefulness of your reporting metrics. This section assumes that calls are shared and routed across call centers for the application and are managed the same way.

Follow these guidelines for configuring and scripting Unified ICM to ensure that your reports display correct and relevant metrics for your "hybrid" contact center implementation.

Guidelines:

1. Ensure all calls are routed by Unified ICM software.

2. Deploy a Service Control VRU to provide treatment and to queue calls in the enterprise while waiting for an available agent in a skill group.

 In other words queue calls to skill groups in Unified ICM (Enterprise queuing) for all call centers. Avoid using ACD queues.

3. For legacy ACDs where Unified ICM software is used for Enterprise Routing consider the following:
 - Ensure all calls are routed by Unified ICM software
 - Use Translation Routes for routing calls to the legacy ACD. Always use translation routing when routing calls between ACDs.
 - Once the call is routed by Unified ICM and is terminated on the legacy ACD, make sure no treatment occurs at the ACD.
Avoid having agents transfer calls directly to other agent stations or agent IDs. Instead, use post routing capabilities to have Unified ICM provide treatment and queuing for transferred calls.

Avoid handling Redirection on No Answer (RONA) situations on the ACD. Instead use post routing capabilities to have the RONA calls routed by Unified ICM.

4. Plan for Call Type Reporting. This includes:

- Configure a separate call type for each type of treatment offered. For example: Create a separate call type for treating Support calls and Sales calls across all ACDs in your call centers.

- If you want to separate Information Gathering VRU metrics from queue metrics, configure a separate call type for queuing.

- Configure a separate call type associated with Redirection on No Answer situations. This enables you to direct calls that Ring No Answer to a routing script designed for this situation. This also enables you to use Call Type reports to report on this Redirection on No Answer and to see how calls that redirect on no answer are eventually handled.

- Configure a separate call type associated with call transfers. This enables you to direct the transfer to a different routing script.

5. Create a custom formula using skill group metrics for site selection based on expected delay. This is required as the predefined MED (Minimum Expected Delay) calculation provided by Unified ICM scripts are not applicable for Agent Level Routing configurations.

6. Configure Enterprise Skill Groups for Enterprise Skill Group reporting. Avoid grouping skill groups from the same peripheral into an Enterprise Skill Group.

A typical ICM script used to route calls in this deployment is shown below.

In this example:

- The enterprise that has two sites (Boston and New York) each running a call center.

- A Call Type is defined that is associated with the routing script. This Call Type is used to define the treatment provided by the call centers.

- The call treatment to handle “Support” calls is provided by Unified ICM software through the call type and script association.

- The call center at each site has agents who are skilled to handle calls for either “Laptop Support” or “Server Support”. These are configured as Skill Groups in the ICM.

The Boston call center has an Avaya ACD (peripheral) connected with an ARS PG. The New York call center has an Aspect ACD (peripheral) connected with an ACD PG.

- Skill Groups are configured for each peripheral in the ICM.
The script above is used for the following:

1. The script is associated with a Call Type to route support calls. The call type is used to define the treatment provided by the call centers.

2. The script uses Caller entered digits (CED) to determine the skill group (Laptop Support or Server Support) required to handle the call.

3. The script uses the LAA (longest available agent) node to look for an available at a particular call center. In this case the call may have arrived at Boston call center, and you prefer to look for an available agent from that call center first.

4. If an agent is not available, the script uses the LAA (longest available agent) node to look for an available agent across the enterprise.

5. If an agent is not available, the script instructs the ICM software to translation route the call to the VRU and queue the call (Enterprise queuing).

6. Depending on the call center where there is an available agent the ICM software does the following:

 - If an agent is available at the New York call center, the call routes to the Aspect ACD. The ACD at the site then picks an agent and assigns the call.

 - If an agent is available at the Boston (ARS) call center, Unified ICM software selects the agent and provides instructions to the routing client (VRU) to direct the call to the agent.
Reporting Considerations

In order to get accurate and useful reporting metrics in this type of deployment, it is important to consider several factors that affect reporting as discussed in the reporting consideration sections for Enterprise Routing (page 222) and for Agent Level Routing (page 229).

Some of these factors include:

- Two reporting models used to provide reporting statistics for the application: Services are used for Enterprise Routing and Call Types for Agent Level Routing.

- The use of a Service Control VRU in your deployment to provide initial call treatment and enterprise queuing when sharing queues (skill groups) across call centers. This entails queuing calls to skill groups waiting for an available agent across your enterprise.

- The reporting on queuing statistics—ACD queues and Enterprise queues.

- The use of the Translation Routing mechanism to route calls to legacy ACDs for enterprise routing. This allows for call types to be used to provide reporting statistics for the application (Cradle to Grave). Translation Routing is implicit with Agent Level Routing.

- Routing scripts set up for your call center operations.

The table below defines the report categories to use to meet the reporting needs for your enterprise.

Enterprise Reporting

- Use Call Type reports for an enterprise view of reporting statistics for the application, including queue statistics.

- Use Enterprise Skill Group reports for an enterprise view of reporting statistics when calls are routed to a particular skill group, including queue statistics.

<table>
<thead>
<tr>
<th>Report focus</th>
<th>Reporting Statistics Needed</th>
<th>Report Template</th>
<th>Key Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Before call is routed to an agent</td>
<td>Call Type</td>
<td>Number of calls routed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of calls that encountered an error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Queue Statistics and Abandons.</td>
</tr>
<tr>
<td></td>
<td>After call is routed to an agent</td>
<td>Call Type</td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Level</td>
</tr>
<tr>
<td>Report focus</td>
<td>Reporting Statistics Needed</td>
<td>Report Template</td>
<td>Key Statistics</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Redirection on No Answer (RONA)</td>
</tr>
<tr>
<td></td>
<td>After call is answered by an agent</td>
<td>Call Type</td>
<td>ASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transfers</td>
</tr>
<tr>
<td>Skill Group</td>
<td>Calls routed to a skill group</td>
<td>Peripheral Skill Group & Enterprise Skill Group</td>
<td>Queue Statistics</td>
</tr>
<tr>
<td></td>
<td>Queued calls</td>
<td></td>
<td>Abandons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RONA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Levels</td>
</tr>
<tr>
<td></td>
<td>After call is answered by an agent</td>
<td>Peripheral Skill Group & Enterprise Skill Group</td>
<td>ASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.TalkTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.HandleTime</td>
</tr>
<tr>
<td></td>
<td>Agent Info</td>
<td>Peripheral Skill Group & Enterprise Skill Group</td>
<td>Full Time Equivalent Agents (FTE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percent Utilization.</td>
</tr>
<tr>
<td>Agents</td>
<td>Agent Info</td>
<td>Agent by individual, team, peripheral or skill group</td>
<td>Agent’s current state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration in a state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agents logged out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calls Handled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.Talk Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.Handle Time</td>
</tr>
</tbody>
</table>

For additional information on reporting in a hybrid environment, see the *ARI Deployment Guide for Cisco Unified Intelligent Contact Management Enterprise & Hosted*.
Unified ICM/CC Report Templates

This appendix lists all report templates available in WebView Release 8.0(1) and Unified IC Release 8.0(1).

Additional Unified IC templates will be made available incrementally on the Cisco Collaboration Tools Developers' Forum. (http://wwwin-forums.cisco.com/forum.jspa;jsessionid=B57D37A3F352AF86A70631C6BD974482?forumID=2711&start=0)

Agent (page 238)

Application Gateway (page 243)

Call Type (page 243)

Outbound Option (page 245)

Peripheral (page 249)

Route (page 250)

Routing Client (page 251)

Service (page 251)

Skill Group (page 256)

Trunk Group (page 261)

Translation Route (page 263)
Agent Templates

Agent reports provide metrics that enable supervisors and call center managers to monitor real-time agent activity and review historical agent performance.

The Agent Reports category in WebView has four subcategory options. Each subcategory provides the same types of data, organized appropriately to subcategory option you chose.

The Unified IC has fewer agent templates than WebView. Unified IC agent templates are based on the WebView "all fields" templates. Unified IC gives you the flexibility to hide and move columns to build an agent report customized to your reporting needs.

In WebView, there are subcategories of Agent Templates:

- **Agent by Agent** (page 238)
- **Agent by Peripheral** (page 239)
- **Agent by Skill Group** (page 240)
- **Agent by Team** (page 242)

See also: Agent Templates for Outbound Option Campaigns (page 245)

Agent by Agent

Use Agent By Agent reports to view current activity for an individual agent or to measure an individual agent's performance trends.

<table>
<thead>
<tr>
<th>WebView</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent20: Agent Real Time</td>
<td>R</td>
<td>Current agent states for selected agents.</td>
<td>Agent Real Time All Fields</td>
</tr>
<tr>
<td>agent28: Agent Real Time</td>
<td>R</td>
<td>All the report data available from the Agent_Real_Time table. ICM software generates Agent_Real_Time records for each agent. This report is for online viewing or for exporting to Excel. It is not formatted for printing.</td>
<td>Agent Real Time All Fields</td>
</tr>
<tr>
<td>agent03: Agent MediaLogout Status</td>
<td>H</td>
<td>Logon duration and logout date and time for each agent.</td>
<td>—</td>
</tr>
<tr>
<td>agent04: Agent Task Detail Activity</td>
<td>H</td>
<td>Agent task detail activity on incoming, outgoing, and internal tasks, callback messages, and wrap-up work.</td>
<td>—</td>
</tr>
<tr>
<td>WebView</td>
<td>Historical or Real-Time</td>
<td>Description</td>
<td>Unified IC Template Equivalent</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>agent05: Agent Task Detail Performance</td>
<td>H</td>
<td>Agent task detail performance on abandoned, assistance, hold, and conference tasks.</td>
<td>—</td>
</tr>
<tr>
<td>agent06: Agent State Trace Detail By Events</td>
<td>H</td>
<td>Agent states and task detail events for agents with agent state trace enabled. Displays data on the event that changed an agent's state, the new agent state, and the reason for the state change.</td>
<td>—</td>
</tr>
<tr>
<td>agent21: Agent Task Summary Half Hour</td>
<td>H</td>
<td>Agent task summary for selected agents, organized by the selected half hour(s).</td>
<td>Agent Historical All Fields</td>
</tr>
<tr>
<td>agent22: Agent Task Summary Daily</td>
<td>H</td>
<td>Agent task summary for selected agents, organized by the selected day(s).</td>
<td>—</td>
</tr>
<tr>
<td>agent23: Agent Performance Summary Half Hour</td>
<td>H</td>
<td>Agent state summary for selected agents, organized by the selected half hour(s).</td>
<td>Agent Historical All Fields</td>
</tr>
<tr>
<td>agent24: Agent Performance Summary Daily</td>
<td>H</td>
<td>Agent state summary for selected agents, organized by the selected day(s).</td>
<td>—</td>
</tr>
<tr>
<td>agent25: Agent Consolidated Half Hour</td>
<td>H</td>
<td>Agent activity and performance for all the agents connected to the selected peripheral(s) during the selected interval(s).</td>
<td>Agent Historical All Fields</td>
</tr>
<tr>
<td>agent26: Agent Consolidated Daily</td>
<td>H</td>
<td>Agent half-hour activity and performance for all the agents connected to the selected peripheral(s) during the selected day interval(s).</td>
<td>—</td>
</tr>
<tr>
<td>agent27: Agent Half Hour All Fields</td>
<td>H</td>
<td>All the report data available from the Agent_Skill_Group_Interval table. ICM software generates Agent_Skill_Group_Interval records for each logged on agent. This report is for online viewing or for exporting to Excel. It is not formatted for printing.</td>
<td>Agent Historical All Fields</td>
</tr>
<tr>
<td>agent30: Agent Not Ready Summary</td>
<td>H</td>
<td>An overall summary of the not ready status of selected agents in a given time period.</td>
<td>—</td>
</tr>
<tr>
<td>agent31: Agent Not Ready Detail</td>
<td>H</td>
<td>Summary details of the not ready status of selected individual agent sessions in a given time period.</td>
<td>Agent Not Ready Detail</td>
</tr>
</tbody>
</table>

Agent by Peripheral

Use these templates to view current activity for agents on a common peripheral or to measure/compare agents’ performance trends for a common peripheral.
<table>
<thead>
<tr>
<th>WebView</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>agtper20: Agent Peripheral Real Time</td>
<td>R</td>
<td>Table of real time Agent Statistics by Peripheral</td>
<td>—</td>
</tr>
<tr>
<td>agtper28: Agent Peripheral Real Time All Fields</td>
<td>R</td>
<td>Table of Agent real time statistics by Peripheral</td>
<td>—</td>
</tr>
<tr>
<td>agtper03: Agent Peripheral Media Logout Status</td>
<td>H</td>
<td>Table showing logon duration, logout date-time for each agent by peripheral.</td>
<td>—</td>
</tr>
<tr>
<td>agtper04: Agent Peripheral Task Detail Activity</td>
<td>H</td>
<td>Table of agent call detail activity on incoming, outgoing, internal calls and callback messages by peripheral.</td>
<td>—</td>
</tr>
<tr>
<td>agtper05: Agent Peripheral Task Detail Performance</td>
<td>H</td>
<td>Table of agent call detail performance on abandon, assistance, hold and conference calls by peripheral.</td>
<td>—</td>
</tr>
<tr>
<td>agtper21: Agent Peripheral Task Summary Half Hour</td>
<td>H</td>
<td>Table of Call Statistics for Agent by Peripheral by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>agtper22: Agent Peripheral Task Summary Daily</td>
<td>H</td>
<td>Table of Call Statistics for Agent by Peripheral by Day</td>
<td>—</td>
</tr>
<tr>
<td>agtper23: Agent Peripheral Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Agent Statistics by Peripheral by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>agtper24: Agent Peripheral Agent Performance Summary Daily</td>
<td>H</td>
<td>Table of Agent Statistics by Peripheral by Day</td>
<td>—</td>
</tr>
<tr>
<td>agtper25: Agent Peripheral Consolidated Half Hour</td>
<td>H</td>
<td>Table of Consolidated Call and Agent Statistics by Peripheral by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>agtper26: Agent Peripheral Consolidated Daily</td>
<td>H</td>
<td>Table of Consolidated Call and Agent Statistics by Peripheral by Day</td>
<td>—</td>
</tr>
<tr>
<td>agtper27: Agent Peripheral Historical All Fields</td>
<td>H</td>
<td>Table of all fields for Agent by Peripheral by Half Hour</td>
<td>—</td>
</tr>
</tbody>
</table>

Agent by Skill Group

Generate Agent By Skill Group reports to view current activity for agents in a skill group or to measure and compare agent performance trends for a skill group.

<table>
<thead>
<tr>
<th>WebView</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>agtskg06: Outbound Option (Blended Agent)</td>
<td>R</td>
<td>Status Table that shows agent activity. Specifically, if the agent is handling an Outbound Option Call.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg20: Agent Skill Group</td>
<td>R</td>
<td>Real Time Table showing current agents within a specified skill group</td>
<td>—</td>
</tr>
<tr>
<td>agtskg28: Agent Skill Group Real Time All Fields</td>
<td>R</td>
<td>Table showing all fields available from the Skill_Group_Real_Time table.</td>
<td>Agent Skill Group Real Time All Fields</td>
</tr>
<tr>
<td>WebView</td>
<td>Historical or Real-Time</td>
<td>Description</td>
<td>Unified IC Template Equivalent</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>agtskg03: Agent Logout</td>
<td>H</td>
<td>Status Table showing logon duration, logout date-time for each agent by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg04: Agent Task Detail Activity</td>
<td>H</td>
<td>Table of agent call detail activity on incoming, outgoing, internal calls and callback messages by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg05: Agent Task Detail Performance</td>
<td>H</td>
<td>Table of agent call detail performance on abandon, assistance, hold and conference calls by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg07: Agent Task Analysis</td>
<td>H</td>
<td>Table showing analysis of all the calls handled by an agent in a skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg10: Outbound Option (Blended Agent) Predictive and Progressive Calls Detail Performance</td>
<td>H</td>
<td>Table of Outbound Option call detail performance on predictive and progressive calls by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg11: Outbound Option (Blended Agent) Preview Call Detail Performance</td>
<td>H</td>
<td>Table of Outbound Option call detail performance on preview calls by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg12: Outbound Option (Blended Agent) Reservation Call Detail Performance</td>
<td>H</td>
<td>Table of Outbound Option task detail performance on reservation calls by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg21: Agent Skill Group Task Summary Half Hour</td>
<td>H</td>
<td>Table showing incoming and outgoing call counts and call treatments in half hour increments.</td>
<td>Agent Skill Group Historical All Fields</td>
</tr>
<tr>
<td>agtskg22: Agent Skill Group Task Summary Daily</td>
<td>H</td>
<td>Table showing daily totals for incoming and outgoing call counts and call treatments.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg23: Agent Skill Group Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Agent Performance Statistics by Skill Group by Half Hour</td>
<td>Agent Skill Group Historical All Fields</td>
</tr>
<tr>
<td>agtskg24: Agent Skill Group Performance Summary Daily</td>
<td>H</td>
<td>Table of Agent Performance Statistics by Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>agtskg25: Agent Skill Group Consolidated Half Hour</td>
<td>H</td>
<td>Table showing call statistics and agent time allocations by interval.</td>
<td>Agent Skill Group Historical All Fields</td>
</tr>
<tr>
<td>agtskg26: Agent Skill Group Consolidated Daily</td>
<td>H</td>
<td>Table showing daily totals for call statistics and agent time allocations by skill and agent.</td>
<td>—</td>
</tr>
<tr>
<td>agtskg27: Agent Skill Group Historical All Fields</td>
<td>H</td>
<td>Table showing all fields available from the Agent_Skill_Group_Interval table.</td>
<td>Agent Skill Group Historical All Fields</td>
</tr>
<tr>
<td>agtskg30: Agent Skill Group</td>
<td>R</td>
<td>Real Time Table showing current agents within a specified skill group.</td>
<td>Agent Skill Group Real Time All Fields</td>
</tr>
</tbody>
</table>
Agent by Team

Use these reports to view current activity for agents in a team or to measure and compare agent performance trends for a team.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>agteam02: Agent Skill Group Status</td>
<td>R</td>
<td>Table showing current logon date time, state and last state change for agents in a team by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>agteam20: Agent Team Real Time</td>
<td>R</td>
<td>Table of Agent Real Time Statistics.</td>
<td>Agent Team Real Time All Fields</td>
</tr>
<tr>
<td>agteam28: Agent Team Real Time All Fields</td>
<td>R</td>
<td>Table of Agent Real Time Statistics by Agent Team</td>
<td>Agent Team Real Time All Fields</td>
</tr>
<tr>
<td>agteam29: Agent Team Skill Group Assignment Real Time</td>
<td>R</td>
<td>Table showing the number of skill groups assigned to the agents for a given team.</td>
<td>—</td>
</tr>
<tr>
<td>agteam32: Agent Team State Counts Real Time</td>
<td>R</td>
<td>Table showing number of agents in each state for a given team.</td>
<td>—</td>
</tr>
<tr>
<td>agteam03: Agent Logout Status</td>
<td>H</td>
<td>Table showing logon duration, logout date-time for each agent by team.</td>
<td>—</td>
</tr>
<tr>
<td>agteam04: Agent Task Detail Activity</td>
<td>H</td>
<td>Table of agent call detail activity on incoming, outgoing, internal calls and callback messages by team.</td>
<td>—</td>
</tr>
<tr>
<td>agteam05: Agent Task Detail Performance</td>
<td>H</td>
<td>Table of agent call detail performance on abandon, assistance, hold and conference calls by team.</td>
<td>—</td>
</tr>
<tr>
<td>agteam21: Agent Team Task Summary Half Hour</td>
<td>H</td>
<td>Table of Call Statistics for Agent by Agent Team by Half Hour</td>
<td>Agent Team Historical All Fields</td>
</tr>
<tr>
<td>agteam22: Agent Team Task Summary Daily</td>
<td>H</td>
<td>Table of Call Statistics for Agent by Agent Team by Day</td>
<td>—</td>
</tr>
<tr>
<td>agteam23: Agent Team Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Agent Performance Statistics by Agent Team by Half Hour</td>
<td>Agent Team Historical All Fields</td>
</tr>
<tr>
<td>agteam24: Agent Team Performance Summary Daily</td>
<td>H</td>
<td>Table of Agent Performance Statistics by Agent Team by Day</td>
<td>—</td>
</tr>
<tr>
<td>agteam25: Agent Team Consolidated Half Hour</td>
<td>H</td>
<td>Table of Consolidated Call and Agent Statistics by Agent Team by Half Hour</td>
<td>Agent Team Historical All Fields</td>
</tr>
<tr>
<td>agteam26: Agent Team Consolidated Daily</td>
<td>H</td>
<td>Table of Consolidated Call and Agent Statistics by Agent Team by Day</td>
<td>—</td>
</tr>
<tr>
<td>agteam27: Agent Team Historical All Fields</td>
<td>H</td>
<td>Table of all fields for Agent by Agent Team by Half Hour</td>
<td>Agent Team Historical All Fields</td>
</tr>
</tbody>
</table>
Application Gateway, Application Path, and Script Queue Templates

The Application Gateway allows Unified ICM to query host systems that are running other contact center applications.

The Application Gateway is implemented by a node in the Script Editor. A routing script that contains an Application Gateway node can query an application running on a host system to obtain data to use in call routing. Unified ICM software can then base subsequent routing decisions on the results obtained from the query.

Use these templates to generate reports on such data as the number of query requests issued to a host system and the delay involved in making queries.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>agteam33: Agent Team Incoming/Outgoing Task Durations With Agent Detail Half Hour</td>
<td>H</td>
<td>Table of task durations for Incoming and Outgoing tasks handled by Agents in a Team by Half Hour.</td>
<td>—</td>
</tr>
<tr>
<td>agteam34: Agent Team Incoming/Outgoing Task Durations With Agent Detail Daily</td>
<td>H</td>
<td>Table of task durations for Incoming and Outgoing tasks handled by Agents in a Team by Day.</td>
<td>—</td>
</tr>
<tr>
<td>agteam35: Agent Team Incoming/Outgoing Task Durations Half Hour</td>
<td>H</td>
<td>Table of task durations for Incoming and Outgoing tasks handled by Agent Teams by Half Hour.</td>
<td>—</td>
</tr>
<tr>
<td>agteam36: Agent Team Incoming/Outgoing Task Durations Daily</td>
<td>H</td>
<td>Table of task durations for Incoming and Outgoing tasks handled by Agent Teams by Day.</td>
<td>—</td>
</tr>
</tbody>
</table>

Call Type Templates

These reports show statistics for the Call Types defined in the system.
<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>caltyp01: Call Type Status</td>
<td>R</td>
<td>Table that shows routing and script data on Call Types defined in the system.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp02: Call Type Counts</td>
<td>R</td>
<td>Stacked bar graph that tracks busy and default routed calls for Call Types for the current day.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp04: Call Type Service Levels</td>
<td>R</td>
<td>Bar graph of service levels since the end of last 5 minute and half-hour intervals, and since midnight.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp20: Call Type Real Time</td>
<td>R</td>
<td>Table summary of Call Type real time fields.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp24: Call Type Real Time All Fields</td>
<td>R</td>
<td>Table summary of all real time fields.</td>
<td>Call Type Real Time All Fields</td>
</tr>
<tr>
<td>caltyp25: Call Type Queue Status</td>
<td>R</td>
<td>Stacked Bar Graph of the number of tasks in queue within service level and tasks in queue outside service level.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp26: Call Type Tasks Offered Over Half Hour</td>
<td>R</td>
<td>Bar chart of tasks offered to CallTypes since the end of the last interval.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp27: Call Type Queue Delay Status Real Time</td>
<td>R</td>
<td>Bar graph of time (in seconds) for average delay in queue, longest call in queue, and ASA over last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp28: Call Type Queue Tasks Status Now Real Time</td>
<td>R</td>
<td>Bar graph of number of tasks in queue, tasks at VRU, and tasks with agents.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp05: Analysis of Tasks Half Hour</td>
<td>H</td>
<td>Table of analysis of routing and queuing details of calls during interval.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp21: Call Type Half Hour</td>
<td>H</td>
<td>Table summary of half-hour Call Type activity.</td>
<td>Call Type Historical All Fields</td>
</tr>
<tr>
<td>caltyp22: Call Type Daily</td>
<td>H</td>
<td>Table daily summary of all Call Type activity.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp23: Call Type Historical All Fields</td>
<td>H</td>
<td>Table summary of all half-hour fields.</td>
<td>Call Type Historical All Fields</td>
</tr>
<tr>
<td>caltyp31: Call Type Abandon/Answer Distribution by Half Hour Report</td>
<td>H</td>
<td>Gives overview in separate time intervals of the distribution of answered and abandoned calls during the selected time period, summarized by the half hour interval.</td>
<td>Call Type Abandon/Answer Distribution Historical</td>
</tr>
<tr>
<td>caltyp32: Call Type Abandon/Answer Distribution Report</td>
<td>H</td>
<td>Gives an overview in separate daily intervals of the distribution of answered and abandoned calls.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp33: Call Type Abandon/Answer Cumulative Distribution by Half Hour Report</td>
<td>H</td>
<td>Gives an overview in cumulative intervals and by half-hour summary of when and how many calls are being answered and abandoned.</td>
<td>—</td>
</tr>
<tr>
<td>caltyp35: VRU Call Type Analysis Half Hour</td>
<td>H</td>
<td>Table that shows aggregate behavior of calls to VRU applications by half hour</td>
<td>—</td>
</tr>
</tbody>
</table>
Outbound Option Templates

The Outbound Option is an application that provides outbound dialing functionality along with the existing inbound capabilities of Unified ICM software. With the Outbound Option, contact centers can be configured for automated outbound activities. This option allows agents who are not busy with inbound calls to perform outbound calls, thereby maintaining high agent productivity. All Outbound option reports are voice-only reports.

Subcategories for Outbound Option Templates are:

- Agent Templates for Outbound Option (page 245)
- Campaign Query Rule (page 246)
- Dialer and Dialer Port (page 248)
- Import Rule (page 248)
- Skill Group Templates for Outbound Option (page 249)

Agent Templates for Outbound Option

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agtskg06: Outbound Option (Blended Agent)</td>
<td>R</td>
<td>Generates a table that shows Outbound Option agent activity related to Outbound Option calls.</td>
<td>—</td>
</tr>
<tr>
<td>Status Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agtskg10: Outbound Option (Blended Agent)</td>
<td>H</td>
<td>Generates a table that shows agent daily performance for Outbound Option predictive calls, by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>Predictive and Progressive Tasks Detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Report</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outbound Option Templates

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agtskg11: Outbound Option (Blended Agent) Preview Task</td>
<td>H</td>
<td>Generates a table that shows agent daily performance for Outbound Option preview calls, by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>Detail Performance Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agtskg12: Outbound Option (Blended Agent) Reservation</td>
<td>H</td>
<td>Generates a table that shows agent daily performance for Outbound Option reservation calls, by skill group.</td>
<td>—</td>
</tr>
<tr>
<td>Task Detail Performance Report</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Campaign Query Rule

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>camqry01: Call Counts Of Query Rule Within Campaign</td>
<td>R</td>
<td>Table that shows each Query Rule within a Campaign.</td>
<td>—</td>
</tr>
<tr>
<td>camqry02: Call Counts per Campaign Real Time</td>
<td>R</td>
<td>Table that shows the current status of all campaigns records.</td>
<td>—</td>
</tr>
<tr>
<td>camqry03: Valid Campaign Dialing Times</td>
<td>R</td>
<td>Table that shows the dialing status of each Campaign</td>
<td>—</td>
</tr>
<tr>
<td>camqry04: Valid Query Rule Dialing Times</td>
<td>R</td>
<td>Table that shows the dialing status of a Campaign and its Query Rules</td>
<td>—</td>
</tr>
<tr>
<td>camqry05: Call Summary Count Of Query Rule Within Campaign</td>
<td>R</td>
<td>Table that shows each Query Rule within a Campaign.</td>
<td>—</td>
</tr>
<tr>
<td>camqry06: Call Summary Count per Campaign</td>
<td>R</td>
<td>Real Time Table that shows the current status of all campaigns records.</td>
<td>—</td>
</tr>
<tr>
<td>camqry10: Call Counts of Query Rule Within Campaign Half Hour</td>
<td>H</td>
<td>Table by half hour that shows each Query Rule within a Campaign.</td>
<td>—</td>
</tr>
<tr>
<td>camqry11: Summary of Call Counts per Campaign Half Hour</td>
<td>H</td>
<td>Table by half hour that shows the current status of all campaigns records.</td>
<td>—</td>
</tr>
<tr>
<td>camqry12/13: Summary of Attempts per Campaign Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the number of calls attempted, closed, and rejected by the agent, the number of calls answered and unanswered by the customer, and the number of calls abandone to IVR in a campaign for the selected time period for Outbound Option campaigns.</td>
<td>—</td>
</tr>
</tbody>
</table>

Reporting Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted 8.0(1)
<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>camqry14/15: Breakdown of Attempts (%) per Campaign Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the number of calls not answered, canceled, number of customers contacted, number of calls abandoned by the agent and abandoned to IVR, the number of call backs requested by the customer and the number of contacts that encountered network errors in a campaign for the selected time period for Outbound Option campaigns.</td>
<td>—</td>
</tr>
<tr>
<td>Camqry16/17: Summary of Attempts per Query Rule Within Campaign Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the number calls closed, rejected by the agent, the number of calls answered and not answered by the customer, the number of calls abandoned by the agent or abandoned to IVR, and the total of calls attempted for in a campaign for the selected time period for Outbound Option campaigns.</td>
<td>—</td>
</tr>
<tr>
<td>Camqry18/19: Breakdown of Attempts (%) per Query Rule Within Campaign Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the number of calls canceled by the agent, number of calls abandoned by the agent and abandoned to IVR, the number of call backs requested by the customer the number of contacts that encountered network errors in a campaign for the selected time period for Outbound Option campaigns.</td>
<td>—</td>
</tr>
<tr>
<td>camqry20/21: Campaign Consolidated Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the average wrap up time, average handling time, average talk time, total number of calls attempted, number of calls closed, number of customers contacted and the number of calls abandoned by the agent and abandoned to IVR in a campaign for the selected time period for Outbound Option campaigns. This report combines the campaign data with skill group data to show how the calls are being treated for this campaign.</td>
<td>—</td>
</tr>
<tr>
<td>camqry22/23: Campaign Consolidated Detailed Half Hour Report/Daily Report</td>
<td>H</td>
<td>Table that shows the breakdown of completed calls (outbound calls, inbound calls and/or calls transferred to the campaign's skill group) for the selected campaigns and their skill groups for the selected time period.</td>
<td>—</td>
</tr>
</tbody>
</table>
Dialer and Dialer Port

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>dialer01: Dialer Real Time</td>
<td>R</td>
<td>Generates a real-time table that shows contact, busy, voice, answering machine, and SIT Tone detection for each dialer. Table that shows contacts, busy, voice, answer machine, SIT Tone, detects for each dialer.</td>
<td>—</td>
</tr>
<tr>
<td>dialer10: Status of each Dialer Half Hour</td>
<td>H</td>
<td>Generates an historical table by half-hour that shows contact, busy, voice, answering machine, and SIT Tone detection for each dialer.</td>
<td>—</td>
</tr>
<tr>
<td>dialpr01: Dialer Port Status Real Time</td>
<td>R</td>
<td>Displays Dialer status on a port-by-port basis used for troubleshooting. If this report does not display any records, this indicates the data feed is disabled by default.</td>
<td>—</td>
</tr>
<tr>
<td>dialer11/dialer 12: Dialer Capacity Half Hour</td>
<td>H</td>
<td>For Unified CC only: Displays Dialer idle and all ports busy information, as well as average reservation call time and average customer attempt times.</td>
<td>—</td>
</tr>
</tbody>
</table>

Import Rule

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>imprul01: Import Status Real Time</td>
<td>R</td>
<td>Generates a real-time table that shows the number of successful, unsuccessful, and total records imported, or to be imported.</td>
<td>—</td>
</tr>
<tr>
<td>imprul10: Import Rule</td>
<td>H</td>
<td>Generates an historical table that shows the number of successful, unsuccessful, and total records imported by time range. The Total Records column indicates the total number of records available in the import file.</td>
<td>—</td>
</tr>
</tbody>
</table>
Skill Group Templates for Outbound Option

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perskg11: Outbound Option (Blended Agent) Statistics By Skill Group Report</td>
<td>R</td>
<td>Generates a table that shows all skill groups and their associated Outbound Option status.</td>
<td>—</td>
</tr>
<tr>
<td>Perskg12: Outbound Option (Blended Agent) Task Detail Performance In Skill Groups Half Hour Report</td>
<td>H</td>
<td>Generates a table by half-hour that shows Outbound Option counts for agents signed on, handle, talk, and hold states.</td>
<td>—</td>
</tr>
</tbody>
</table>

Peripheral Templates

Use the peripheral reports to measure the performance of switch-specific hardware and software status and some types of call and agent information.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>periph01: Peripheral Real Time</td>
<td>R</td>
<td>Table of switch status, call and agent status, and service levels (for use with all peripheral types).</td>
<td>—</td>
</tr>
<tr>
<td>periph02: Switch Node Software Status Display Real Time</td>
<td>R</td>
<td>Table that shows ATB, calls in progress, SWT TRMS and DIGroups status (for Galaxy ACDs only).</td>
<td>—</td>
</tr>
<tr>
<td>periph03: Time Switch Node Hardware Status Display Real Time</td>
<td>R</td>
<td>Table of data on processor, data receive, control, and switch clock status (for Galaxy ACDs only).</td>
<td>—</td>
</tr>
<tr>
<td>periph04: Peripheral Real Time All Fields</td>
<td>R</td>
<td>Table of all fields Peripheral Real Time Statistics.</td>
<td>—</td>
</tr>
</tbody>
</table>
Route Templates

Use these templates to report on many types of task statistics for routes, such as the number of tasks in progress, tasks in queue, or tasks handled (either in real-time or over a specified period of time).

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>routes01: Route Queue</td>
<td>R</td>
<td>Bar graph of time (in seconds) for delays in queue, longest call in queue, and ASA over last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>Delay Status Real Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes02: Route Status Real</td>
<td>R</td>
<td>Bar graph showing the number of calls in progress versus the number of calls in queue.</td>
<td>—</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes03: Effect of Abandoned</td>
<td>R</td>
<td>Table of calls offered, handled, abandoned, and the effect of abandoned calls on service levels.</td>
<td>—</td>
</tr>
<tr>
<td>Tasks on Route Service Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes04: Route Tasks Trend</td>
<td>R</td>
<td>Table of call counts and service levels (since end of last 5-minute and half-hour intervals, and since midnight).</td>
<td>—</td>
</tr>
<tr>
<td>Analysis Real Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes05: Route Tasks Offered</td>
<td>R</td>
<td>Pie chart of the distribution (percentage) of calls offered to routes (since end of the last half-hour interval).</td>
<td>—</td>
</tr>
<tr>
<td>Over Half Hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes06: Route Service</td>
<td>R</td>
<td>Bar graph of service levels since the end of the last 5-minute and half-hour intervals, and since midnight.</td>
<td>—</td>
</tr>
<tr>
<td>Levels Real Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes07: Route Tasks,</td>
<td>R</td>
<td>Table that shows call counts, queue status, and service levels in real-time and for the last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>Averages and Service Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes08: Route Real Time</td>
<td>R</td>
<td>Table showing all fields available from the Route_Real_Time table.</td>
<td>—</td>
</tr>
<tr>
<td>All Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>routes11: Tasks Analysis of</td>
<td>H</td>
<td>Table of call count daily totals, queue delay time daily totals, and service level daily averages.</td>
<td>—</td>
</tr>
<tr>
<td>Routes Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WebView Template | Historical or Real-Time | Description | Unified IC Template Equivalent
---|---|---|---
routes12: Tasks Analysis of Routes Half Hour | H | Table of call count and queue delay time half-hour totals, and service level half-hour totals. | —
routes13: Route Historical All Fields | H | Table showing all fields available from the Route_Interval table. | —

Routing Client Templates

A routing client is an entity that sends routing requests to the Unified ICM system. Routing clients typically correspond to a subsystem within the interexchange carrier (IXC) or to a peripheral (ACD or PBX) that is performing Post-Routing.

Use the routing client reports to report on statistics for the different routing clients defined in your ICM system, such as the maximum delay of route responses to the routing client for a specified interval.

rtecli11: Routing Client Performance	H	Table report that shows routing client requests/responses for the current five-minute interval.	Unified IC Template Equivalent
rtecli11: Routing Client Performance Report | H | Shows current routing client performance | —
rtecli12: Routing Client Historical All Fields | H | Routing Client Historical All Fields Report | —

Service Templates

Enterprise

WebView Template	Historical or Real-Time	Description	Unified IC Template Equivalent
entsvc01: Enterprise Service Queue Delay Status Real Time | R | Bar graph of time (in seconds) for delays in queue, longest task in queue, and ASA over last 5 minutes. | —
entsvc02: Enterprise Service Status Real Time | R | Stacked bar graph of the number of tasks on which agents are talking and the number of tasks in queue. | —
entsvc03: Effect of Abandoned Tasks on Enterprise Service Levels | R | Table of tasks offered, handled, abandoned, and the effect of abandoned tasks on service levels. | —
entsvc04: Enterprise Service Tasks Trend Analysis Real Time | R | Table of task counts and service levels (since end of last 5-minute and half-hour intervals, and since midnight). | —
<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>entsvc05: Enterprise Service Tasks Offered Over Half Hour</td>
<td>R</td>
<td>Pie chart of the percentage distribution of tasks offered since the end of the last interval.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc06: Enterprise Service Levels Real Time</td>
<td>R</td>
<td>Bar graph of service levels since the end of the last 5-minute and half-hour intervals, and since midnight.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc07: Enterprise Service Tasks, Averages and Service Levels Real Time</td>
<td>R</td>
<td>Table that shows task counts, queue status, and service levels in real-time and for the last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc08: Task and Agent Status Real Time</td>
<td>R</td>
<td>Table that shows task and queue status in real-time where service/skillgroup mapping is available.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc09: Service Array Tasks, Averages and Service Levels Real Time</td>
<td>R</td>
<td>Table that shows Service Array task counts, queue status, and service levels in real-time and for the last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc23: Enterprise Service Real Time All Fields</td>
<td>R</td>
<td>Table summary of all real time enterprise service fields</td>
<td>—</td>
</tr>
<tr>
<td>entsvc11: Tasks Analysis of Enterprise Services Daily</td>
<td>H</td>
<td>Table of task count daily totals, queue delay time daily totals, and service level daily averages.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc12: Tasks Analysis of Enterprise Services Half Hour</td>
<td>H</td>
<td>Table of task count and queue delay time half-hour totals, and service level half-hour totals.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc13: Enterprise Service Tasks Offered Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks offered per day.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc14: Enterprise Service Tasks Handled Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks handled per day.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc15: Enterprise Service Tasks Abandoned Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks abandoned per day.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc16: Enterprise Service History Daily</td>
<td>H</td>
<td>Line graph of tasks abandoned, handled, and offered per day (for use with a single enterprise service).</td>
<td>—</td>
</tr>
<tr>
<td>entsvc17: Enterprise Service Tasks Offered Half Hour</td>
<td>H</td>
<td>Overlapped bar graph showing the distribution (number) of tasks offered at a half-hour sample rate.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc18: Enterprise Gate Analysis Half Hour</td>
<td>H</td>
<td>Table report that shows historical task handling data for a collection of gates.</td>
<td>—</td>
</tr>
</tbody>
</table>
###为企业服务历史数据提供模板

WebKit模板	**历史或实时**	**描述**	**统一IC模板等效**
entsvc24: 企业服务历史数据所有字段 | H | 表示所有历史企业服务字段 | 企业服务历史数据所有字段

Peripher

<table>
<thead>
<tr>
<th>WebKit模板</th>
<th>历史或实时</th>
<th>描述</th>
<th>统一IC模板等效</th>
</tr>
</thead>
</table>
persvc01: 外围服务队列延迟状态实时 | R | 柱状图展示队列中任务的平均等待时间，最长任务的等待时间和ASA在过去的5分钟内。 | — |
persvc02: 外围服务状态实时 | H | 靠叠柱状图展示正在通话的代理人数量和队列中的任务数量。 | — |
persvc03: 丢失任务对外围服务的影响 | R | 表示任务的数量、处理的数量、丢失的数量，以及丢失任务对服务水平的影响。 | — |
persvc04: 外围服务任务趋势分析实时 | R | 表示任务的数量和服务水平（自上一次5分钟和15分钟、30分钟间隔以来以及自午夜以来）。 | — |
persvc05: 外围服务任务日度数 | R | 饼状图表示自上一次间隔以来的任务数量的百分比分布。 | — |
persvc06: 外围服务等级实时 | R | 柱状图展示自上一次5分钟和半小时间隔以来，以及自午夜以来的服务水平。 | — |
persvc07: 外围服务任务平均值和服务水平实时 | R | 表示任务和队列状态的实时显示，其中服务/技能组映射可用。 | — |
persvc08: 任务和代理状态实时 | R | 表示队列中的任务数量。 | — |
persvc27: 外围服务实时所有字段 | R | 表示所有实时外围服务字段。 | 外围服务历史数据所有字段
persvc13: 外围服务任务每日 | H | 重叠柱状图显示每日任务的数量。 | — |
persvc14: 外围服务任务处理每日 | H | 重叠柱状图显示每日任务处理的数量。 | — |
<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>persvc15: Peripheral Service Tasks Abandoned Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks abandoned per day.</td>
<td>—</td>
</tr>
<tr>
<td>persvc16: Peripheral Service History Daily</td>
<td>H</td>
<td>Line graph of tasks abandoned, handled, and offered per day (for use with a single peripheral service).</td>
<td>—</td>
</tr>
<tr>
<td>persvc17: Peripheral Service Tasks Offered Half Hour</td>
<td>H</td>
<td>Overlapped bar graph showing the distribution (number) of tasks offered at a half-hour sample rate.</td>
<td>—</td>
</tr>
<tr>
<td>persvc18: Peripheral Gate Analysis Half Hour</td>
<td>H</td>
<td>Table that shows half-hour status information for a Rockwell Galaxy gate (ICM peripheral service).</td>
<td>—</td>
</tr>
<tr>
<td>persvc20: Peripheral Service for IVR Queue Half Hour</td>
<td>H</td>
<td>Table summary of IVR half-hour service activity.</td>
<td>—</td>
</tr>
<tr>
<td>persvc21: Peripheral Service IVR Queue Daily</td>
<td>H</td>
<td>Table summary of daily activity in the IVR service.</td>
<td>—</td>
</tr>
<tr>
<td>persvc22: Peripheral Service IVR Self-Service Half Hour</td>
<td>H</td>
<td>Table summary of IVR half-hour self-service activity.</td>
<td>—</td>
</tr>
<tr>
<td>persvc23: Peripheral Service IVR Self-Service Daily</td>
<td>H</td>
<td>Table summary of daily IVR self-service activity.</td>
<td>—</td>
</tr>
<tr>
<td>persvc24: Peripheral Service Agent Half Hour</td>
<td>H</td>
<td>Table summary of agent task activity.</td>
<td>—</td>
</tr>
<tr>
<td>persvc25: Peripheral Service Agent Daily</td>
<td>H</td>
<td>Table summary of daily agent task activity</td>
<td>—</td>
</tr>
<tr>
<td>persvc26: Peripheral Service Historical All Fields</td>
<td>H</td>
<td>Table summary of all peripheral service fields.</td>
<td>Peripheral Service Historical All Fields</td>
</tr>
</tbody>
</table>

Service Array

Typically, service arrays are defined in instances where you have similar peripheral services connected to multiple Voice Recognition Units (VRUs) which all share the same trunk group. By grouping the services of multiple VRUs into a service array, you can send calls to a single target and let the network deliver the call to any of the services defined in the service array.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>entsvc01: Enterprise Service Queue Delay Status Real Time</td>
<td>R</td>
<td>Bar graph of time (in seconds) for delays in queue, longest task in queue, and ASA over last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>WebView Template</td>
<td>Historical or Real-Time</td>
<td>Description</td>
<td>Unified IC Template Equivalent</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>entsvc02: Enterprise Service Status Real Time</td>
<td>R</td>
<td>Stacked bar graph of the number of tasks on which agents are talking and the number of tasks in queue.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc03: Effect of Abandoned Tasks on Enterprise Service Levels</td>
<td>R</td>
<td>Table of tasks offered, handled, abandoned, and the effect of abandoned tasks on service levels.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc04: Enterprise Service Tasks Trend Analysis Real Time</td>
<td>R</td>
<td>Table of task counts and service levels (since end of last 5-minute and 15- or 30-minute intervals, and since midnight).</td>
<td>—</td>
</tr>
<tr>
<td>entsvc05: Enterprise Service Tasks Offered Over Half Hour</td>
<td>R</td>
<td>Pie chart of the percentage distribution of tasks offered since the end of the last interval.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc06: Enterprise Service Levels Real Time</td>
<td>R</td>
<td>Bar graph of service levels since the end of the last 5-minute and half-hour intervals, and since midnight.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc07: Enterprise Service Tasks, Averages and Service Levels Real Time</td>
<td>R</td>
<td>Table that shows task counts, queue status, and service levels in real-time and for the last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc08: Task and Agent Status Real Time</td>
<td>R</td>
<td>Table that shows task and queue status in real-time where service/skillgroup mapping is available.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc09: Service Array Tasks, Averages and Service Levels Real Time</td>
<td>R</td>
<td>Table that shows Service Array task counts, queue status, and service levels in real-time and for the last 5 minutes.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc23: Enterprise Service Real Time All Fields</td>
<td>R</td>
<td>Table summary of all real time enterprise service fields</td>
<td>—</td>
</tr>
<tr>
<td>entsvc11: Tasks Analysis of Enterprise Services Daily</td>
<td>H</td>
<td>Table of task count daily totals, queue delay time daily totals, and service level daily averages.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc12: Tasks Analysis of Enterprise Services Half Hour</td>
<td>H</td>
<td>Table of task count and queue delay time half-hour totals, and service level half-hour totals.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc13: Enterprise Service Tasks Offered Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks offered per day.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc14: Enterprise Service Tasks Handled Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks handled per day.</td>
<td>—</td>
</tr>
<tr>
<td>entsvc15: Enterprise Service Tasks Abandoned Daily</td>
<td>H</td>
<td>Overlapped bar graph that shows the number of tasks abandoned per day.</td>
<td>—</td>
</tr>
</tbody>
</table>
WebView Template | **Historical or Real-Time** | **Description** | **Unified IC Template Equivalent**
--- | --- | --- | ---
entsvc16: Enterprise Service History Daily | H | Line graph of tasks abandoned, handled, and offered per day (for use with a single enterprise service). | —
entsvc17: Enterprise Service Tasks Offered Half Hour | H | Overlapped bar graph showing the distribution (number) of tasks offered at a half-hour sample rate. | —
entsvc18: Enterprise Gate Analysis Half Hour | H | Table report that shows historical task handling data for a collection of gates. | —
entsvc24: Enterprise Service Historical All Fields | H | Table summary of all historical enterprise service fields | —

Skill Group Templates

Skill group reports provide performance metrics on a collection of agents who share a common set of skills, such as all agents who are skilled to handle English speaking callers.

Base Only

The base skill group reports are the same as the peripheral skill group reports, except that all base skill group tabular reports allow you to launch drill-down reports from within the current report window.

A drill-down report is a detailed sub-report from within the current report window.

WebView Template	**Historical or Real-Time**	**Description**	**Unified IC Template Equivalent**
perskg01: Peripheral Skill Group Status Real Time | R | Stacked bar graph showing numbers of agents in talking, idle, available, and wrap-up states. | —
perskg03: Peripheral Skill Group Agent State Status | R | Stacked bar graph showing the percentage of agents in available, idle, talking, and wrap-up states. | —
perskg04: ICM Rolling 5-minute Peripheral Skill Group Status | R | Rolling 5-minute table showing agent states in full-time equivalent (FTE) counts and the number of tasks queued. | —
perskg05: Peripheral Skill Group % Utilization of Ready Agents | R | Bar graph of percent utilization of agents (ratio between time logged on and time handling calls). | —
perskg11: Outbound Option (Blended Agent) Statistics | R | Table that shows all skill groups and their associated Outbound Option Stats. | —
<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>perskg14: IPCC Rolling 5-minute Peripheral Skill Group Status Report</td>
<td>R</td>
<td>Shows how many agents could be currently used to handle tasks in the selected peripheral skill group(s)</td>
<td>—</td>
</tr>
<tr>
<td>perskg20: ICM Peripheral Skill Group Status Real Time</td>
<td>R</td>
<td>Table of real time Peripheral Skill Group Statistics</td>
<td>—</td>
</tr>
<tr>
<td>perskg30: IPCC Rolling 5-minute Peripheral Skill Group Status Report</td>
<td>R</td>
<td>Shows the current status of the selected skill groups.</td>
<td>—</td>
</tr>
<tr>
<td>perskg28: Peripheral Skill Group Real Time All Fields</td>
<td>R</td>
<td>Table of all fields Skill Group Real Time Statistics</td>
<td>—</td>
</tr>
<tr>
<td>perskg29: Peripheral Skill Group Logout Real Time</td>
<td>R</td>
<td>Table of Logout Real Time Statistics for Skill Group</td>
<td>—</td>
</tr>
<tr>
<td>perskg08: FTE for Peripheral Skill Groups Half Hour</td>
<td>H</td>
<td>Table of half-hour FTE counts for agents signed on, idle, available, talking, and in wrap-up.</td>
<td>—</td>
</tr>
<tr>
<td>perskg09: Peripheral Skill Group Normalized Agent State</td>
<td>H</td>
<td>Stacked bar graph showing a normalized percentage of agent-states over specified range of time.</td>
<td>—</td>
</tr>
<tr>
<td>perskg12: Outbound Option (Blended Agent) Call Detail Performance in Skill Groups Half Hour</td>
<td>H</td>
<td>Table of half-hour outbound option counts for agents signed on, handle, talk and hold.</td>
<td>—</td>
</tr>
<tr>
<td>perskg21: ICM Peripheral Skill Group Task Summary Half Hour</td>
<td>H</td>
<td>Table of Call Statistics for Peripheral Skill Group by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>perskg22: ICM Peripheral Skill Group Task Summary Daily</td>
<td>H</td>
<td>Table of Call Statistics for Peripheral Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg23: ICM Peripheral Skill Group Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Peripheral Skill Group Statistics by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>perskg24: ICM Peripheral Skill Group Performance Summary Daily</td>
<td>H</td>
<td>Table of Peripheral Skill Group Statistics by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg25: ICM Peripheral Skill Group Consolidated Half Hour</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>perskg26: ICM Peripheral Skill Group Consolidated Daily</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg27: Peripheral Skill Group Historical All Fields</td>
<td>H</td>
<td>Table of all fields for Skill Group by Half Hour</td>
<td>—</td>
</tr>
</tbody>
</table>
WebView Template

<table>
<thead>
<tr>
<th>Skill Group</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>perskg32: IPCC Peripheral Skill Group Task Summary Daily Report</td>
<td>H</td>
<td>Shows the call activity for the selected skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>perskg33: IPCC Peripheral Skill Group Performance Summary Interval Report</td>
<td>H</td>
<td>Shows the half-hour performance of the selected skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>perskg34: IPCC Peripheral Skill Group Performance Summary Daily Report</td>
<td>H</td>
<td>Shows the daily performance of the selected skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>perskg35: IPCC Peripheral Skill Group Consolidated Half Hour Report</td>
<td>H</td>
<td>Shows the activity and the performance of the selected skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>perskg36: IPCC Peripheral Skill Group Consolidated Daily Report</td>
<td>H</td>
<td>Shows the daily activity and performance of the selected skill groups for the selected time period.</td>
<td>—</td>
</tr>
</tbody>
</table>

Enterprise

An enterprise skill group is a collection of peripheral skill groups. They can be from the same contact center or from several contact centers. All enterprise skill group tabular reports have drill-down reports available.

<table>
<thead>
<tr>
<th>Skill Group</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>entskg01: Enterprise Skill Group Status Real Time</td>
<td>R</td>
<td>Stacked bar graph showing numbers of agents in talking, idle, available, and wrap-up states.</td>
<td>—</td>
</tr>
<tr>
<td>entskg03: Enterprise Skill Group Agent State Status</td>
<td>R</td>
<td>Stacked bar graph showing the percentage of agents in available, idle, talking, and wrap-up states.</td>
<td>—</td>
</tr>
<tr>
<td>entskg04: ICM Rolling 5-minute Enterprise Skill Group Status</td>
<td>R</td>
<td>Rolling 5-minute grid showing agent states in full-time equivalent (FTE) counts and the number of tasks queued.</td>
<td>—</td>
</tr>
<tr>
<td>entskg05: Enterprise Skill Group % Utilization of Ready Agents</td>
<td>R</td>
<td>Bar graph of percent utilization of agents (ratio between time logged on and time handling calls).</td>
<td>—</td>
</tr>
<tr>
<td>entskg20/entskg30: Enterprise Skill Group Status Real Time</td>
<td>R</td>
<td>Table of real time Skill Group Statistics by Enterprise Skill Group</td>
<td>Enterprise Skill Group Real Time All Fields</td>
</tr>
<tr>
<td>entskg28: Enterprise Skill Group Real Time All Fields</td>
<td>R</td>
<td>Table of all fields Skill Group Real Time Statistics by Enterprise Skill Group</td>
<td>Enterprise Skill Group Real Time All Fields</td>
</tr>
<tr>
<td>WebView Template</td>
<td>Historical or Real-Time</td>
<td>Description</td>
<td>Unified IC Template Equivalent</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>entskg29: Enterprise Skill Group Logout Real Time</td>
<td>R</td>
<td>Table of Logout Real Time Statistics for Skill Group by Enterprise Skill Group</td>
<td>—</td>
</tr>
<tr>
<td>entskg06: Enterprise Skill Group Performance Half Hour</td>
<td>H</td>
<td>Table showing half-hour data on calls handled, calls made, and average agent times in handle, active, hold, and wrap-up.</td>
<td>—</td>
</tr>
<tr>
<td>entskg07: Enterprise Skill Group Performance Daily</td>
<td>H</td>
<td>Table of per-day FTE number of agents, calls counts, and average agent handling times for handle, active, hold and wrap-up.</td>
<td>—</td>
</tr>
<tr>
<td>entskg08: FTE for Enterprise Skill Groups Half Hour</td>
<td>H</td>
<td>Table of half-hour FTE counts for agents signed on, idle, available, talking, and in wrap-up.</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
<tr>
<td>entskg09: Enterprise Skill Group Normalized Agent State</td>
<td>H</td>
<td>Stacked bar graph showing a normalized percentage of agent-states over specified range of time.</td>
<td>—</td>
</tr>
<tr>
<td>entskg21: ICM Enterprise Skill Group Task Summary Half Hour</td>
<td>H</td>
<td>Table of Call Statistics for Skill Group by Enterprise Skill Group by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>entskg22: ICM Enterprise Skill Group Task Summary Daily</td>
<td>H</td>
<td>Table of Call Statistics for Skill Group by Enterprise Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>entskg23: ICM Enterprise Skill Group Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Skill Group Statistics by Enterprise Skill Group by Half Hour</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
<tr>
<td>entskg24: ICM Enterprise Skill Group Performance Summary Daily</td>
<td>H</td>
<td>Table of Skill Group Statistics by Enterprise Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>entskg25: ICM Enterprise Skill Group Consolidated Half Hour</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Enterprise Skill Group by Half Hour</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
<tr>
<td>entskg26: ICM Enterprise Skill Group Consolidated Daily</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Enterprise Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>entskg27: Enterprise Skill Group Historical All Fields</td>
<td>H</td>
<td>Table of all fields for Skill Group by Enterprise Skill Group by Half Hour</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
<tr>
<td>entsgk31: Unified CCE Skill Group Task Summary Half Hour Report</td>
<td>H</td>
<td>Shows the call activity for the selected enterprise skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>entsgk32:Unified CCE Skill Group Task Summary Daily Report</td>
<td>H</td>
<td>Shows the call activity for the selected enterprise skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>entsgk33: Unified CCE Skill Group Performance Summary Half Hour Report</td>
<td>H</td>
<td>Shows the performance of the selected enterprise skill groups for the selected time period.</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
</tbody>
</table>
Skill Group Templates

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>entsgk34: Unified CCE Skill Group Performance Summary Daily Report</td>
<td>H</td>
<td>Shows the performance of the selected enterprise skill groups for the selected time period.</td>
<td>—</td>
</tr>
<tr>
<td>entsgk35: Unified CCE Skill Group Consolidated Half Hour Report</td>
<td>H</td>
<td>Shows both the activity and the performance of the selected enterprise skill groups for the selected time period.</td>
<td>Enterprise Skill Group Historical All Fields</td>
</tr>
<tr>
<td>entsgk36: Unified CCE Skill Group Consolidated Daily Report</td>
<td>H</td>
<td>Shows both the daily activity and the performance of the selected enterprise skill groups for the selected time period.</td>
<td>—</td>
</tr>
</tbody>
</table>

Peripheral

A peripheral skill group is a skill group associated with a specific single peripheral (ACD, PBX, IVR) in the contact center enterprise. Peripheral skill group templates are the same templates as base skill group templates with one exception: they do not have drill-down reports available, while base skill group tabular templates do.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>perskg01: Peripheral Skill Group Status Real Time</td>
<td>R</td>
<td>Stacked bar graph showing numbers of agents in talking, idle, available, and wrap-up states.</td>
<td>—</td>
</tr>
<tr>
<td>perskg03: Peripheral Skill Group Agent State Status</td>
<td>R</td>
<td>Stacked bar graph showing the percentage of agents in available, idle, talking, and wrap-up states.</td>
<td>—</td>
</tr>
<tr>
<td>perskg04: ICM Rolling 5-minute Peripheral Skill Group Status</td>
<td>R</td>
<td>Rolling 5-minute table showing agent states in full-time equivalent (FTE) counts and the number of tasks queued.</td>
<td>—</td>
</tr>
<tr>
<td>perskg05: Peripheral Skill Group % Utilization of Ready Agents</td>
<td>R</td>
<td>Bar graph of percent utilization of agents (ratio between time logged on and time handling calls).</td>
<td>—</td>
</tr>
<tr>
<td>perskg11: Outbound Option (Blended Agent) Statistics</td>
<td>R</td>
<td>Table that shows all skill groups and their associated Outbound Option Stats.</td>
<td>—</td>
</tr>
<tr>
<td>perskg20/perskg30: ICM Peripheral Skill Group Status Real Time</td>
<td>R</td>
<td>Table of real time Peripheral Skill Group Statistics</td>
<td>Peripheral Skill Group Real Time All Fields</td>
</tr>
<tr>
<td>perskg28: Peripheral Skill Group Real Time All Fields</td>
<td>R</td>
<td>Table of all fields Skill Group Real Time Statistics</td>
<td>—</td>
</tr>
<tr>
<td>perskg29: Peripheral Skill Group Logout Real Time</td>
<td>R</td>
<td>Table of Logout Real Time Statistics for Skill Group</td>
<td>—</td>
</tr>
<tr>
<td>perskg08: FTE for Peripheral Skill Groups Half Hour</td>
<td>H</td>
<td>Table of half-hour FTE counts for agents signed on, idle, available, talking, and in wrap-up.</td>
<td>Peripheral Skill Group Historical All Fields</td>
</tr>
<tr>
<td>WebView Template</td>
<td>Historical or Real-Time</td>
<td>Description</td>
<td>Unified IC Template Equivalent</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>perskg09: Peripheral Skill Group Normalized Agent State</td>
<td>H</td>
<td>Stacked bar graph showing a normalized percentage of agent-states over specified range of time.</td>
<td>—</td>
</tr>
<tr>
<td>perskg12: Outbound Option (Blended Agent) Call Detail Performance in Skill Groups Half Hour</td>
<td>H</td>
<td>Table of half-hour outbound option counts for agents signed on, handle, talk and hold.</td>
<td>—</td>
</tr>
<tr>
<td>perskg21: ICM Peripheral Skill Group Task Summary Half Hour</td>
<td>H</td>
<td>Table of Call Statistics for Peripheral Skill Group by Half Hour</td>
<td>—</td>
</tr>
<tr>
<td>perskg22: ICM Peripheral Skill Group Task Summary Daily</td>
<td>H</td>
<td>Table of Call Statistics for Peripheral Skill Group by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg23/perskg33: Peripheral Skill Group Performance Summary Half Hour</td>
<td>H</td>
<td>Table of Peripheral Skill Group Statistics by Half Hour</td>
<td>Peripheral Skill Group Historical All Fields</td>
</tr>
<tr>
<td>perskg24: ICM Peripheral Skill Group Performance Summary Daily</td>
<td>H</td>
<td>Table of Peripheral Skill Group Statistics by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg25/perskg35: Peripheral Skill Group Consolidated Half Hour</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Half Hour</td>
<td>Peripheral Skill Group Historical All Fields</td>
</tr>
<tr>
<td>perskg26: ICM Peripheral Skill Group Consolidated Daily</td>
<td>H</td>
<td>Table of Consolidated Call and Skill Group Statistics by Day</td>
<td>—</td>
</tr>
<tr>
<td>perskg27: Peripheral Skill Group Historical All Fields</td>
<td>H</td>
<td>Table of all fields for Skill Group by Half Hour</td>
<td>Peripheral Skill Group Historical All Fields</td>
</tr>
</tbody>
</table>

Trunk Group Templates

In WebView, you can report on peripheral trunk group and network trunk group data, such as the number of trunks in service, number of trunks idle, and the time during which all trunks in a trunk group were simultaneously busy (All Trunks Busy).

A network trunk group is a group of trunks organized to reflect the routing client’s view of trunks. A network trunk group can map to one or more trunk groups.

A peripheral trunk group is a collection of trunks associated with a single peripheral. Often, the trunks in a peripheral trunk group are used for a common purpose.
Network

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>nettrk01: Network Trunk Group Status Real Time</td>
<td>R</td>
<td>Table that shows the status of trunks in selected network trunk groups.</td>
<td>—</td>
</tr>
<tr>
<td>nettrk02: Network Trunk Group Performance Real Time</td>
<td>R</td>
<td>Table that shows network trunk group status for the current interval.</td>
<td>—</td>
</tr>
<tr>
<td>nettrk03: Network Trunk Group Real Time All Fields</td>
<td>R</td>
<td>Table of all fields real time data for trunks in selected network trunk groups.</td>
<td>—</td>
</tr>
<tr>
<td>nettrk12: Network Trunk Group Report Half Hour</td>
<td>H</td>
<td>Table that shows half-hour historical data of trunks in selected network trunk groups.</td>
<td>—</td>
</tr>
<tr>
<td>nettrk13: Network Trunk Group Historical All Fields</td>
<td>H</td>
<td>Table of all fields data for trunks in selected network trunk groups by Half Hour</td>
<td>—</td>
</tr>
</tbody>
</table>

Peripheral

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>trkgrp01: All Trunks Busy Real Time</td>
<td>R</td>
<td>Bar graph of the time (in seconds) that all trunks were busy since the end of the last half-hour interval.</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp02: Trunks Idle & In Service Real Time</td>
<td>R</td>
<td>Overlapped bar graph of the current number of idle trunks versus the current number of in-service trunks.</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp03: Trunk Group Status Real Time</td>
<td>R</td>
<td>Table showing counts of trunks in-service, trunks idle, and time in seconds that all trunks are busy</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp04: Trunks Real Time All Fields</td>
<td>R</td>
<td>Table of all fields real time data for trunk groups.</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp20: All Ports Busy Real Time</td>
<td>R</td>
<td>Shows current amount of activity on IVR ports</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp21: IVR Posts Idle & In Service Real Time</td>
<td>R</td>
<td>Shows IVR port usage</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp22: IVR Ports Status & Real Time</td>
<td>R</td>
<td>Shows the status of IVR ports.</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp11: Trunk Group Performance Half Hour</td>
<td>H</td>
<td>Table of half-hour counts of trunks in-service, trunks idle, and the seconds that all trunks were busy.</td>
<td>—</td>
</tr>
<tr>
<td>trkgrp12: Trunks Historical All Fields</td>
<td>H</td>
<td>Table of all fields data for trunk groups by Half Hour.</td>
<td>IVR Ports Performance Historical</td>
</tr>
</tbody>
</table>
Translation Route Templates

Translation routes are used to transfer a call from one routing client to another and retain the details about call tracking, call data and cradle to grave reporting. They form an intermediate destination which is allocated when a script sends a call from a source routing client to a destination. After the call reaches the destination, the translation route is available for reuse as the route is not busy for the entire duration of the call.

Translation routes use a 'pool' of DNIS's. These DNIS service as the intermediate targets of the calls on each possible destination. For any given translation route, one pool is used. The size of this pool is set by using a formula defined in the ICM documentation. If the pool is too large, ACD or VRU resources are wasted (These numbers are PSTN exposed). If the pool is too small, few calls are lost as these calls cannot be sent when the entire pool is in use.

<table>
<thead>
<tr>
<th>WebView Template</th>
<th>Historical or Real-Time</th>
<th>Description</th>
<th>Unified IC Template Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>trkgrp23: IVR Ports Performance Half Hour</td>
<td>H</td>
<td>Shows the performance of IVR ports for the selected time period.</td>
<td>IVR Ports Performance Historical</td>
</tr>
<tr>
<td>trroute11/trroute12: Translation Route Counts Half Hour Report/ Daily Report</td>
<td>H</td>
<td>Displays the maximum number of routes used in a translation route, average and maximum time taken to complete a translation route, the average number of routes in use, the number of PG time-outs, the number of configuration errors encountered during the translation route and the number of translation routes occurred during the selected time period.</td>
<td>—</td>
</tr>
</tbody>
</table>
Index

15-minute data...14
abandoned calls...126
abandoned short calls...96, 123, 124, 125, 127
ACD
 ACD queuing...209
 ACD reports...23
 ACD routing scripts...41
 ACD Supplement Guides...41
 and agent reporting...64
Administration & Data Server...32, 33
Administration Client...32
agent
 availability...60
 Logout Reason codes...69
 Not Ready Reason codes...68
 routability...60
 skill group membership...77
 utilization...63
agent desktops...36
 agent desktop fail-over...193
agent distribution
 configuring...65
agent logout reason codes...51
 configuration...70
 predefined...51
Agent Logout Reason codes...69
agent not ready reason codes...53
agent PG fail-over...194
agent PIM fail-over...194
agent reporting...45
 agent RONA statistics...89
 enabling...64
 from ACD...64
templates...238
agent states
 and skill groups...48
 and tasks...49
 hierarchy...49
 list of...46
 Outbound Option...132
 reporting on...45
agent state trace
 about...67
 configuring...67
agent task handling, reporting on...56
agent teams...79
aggregate-based reporting...202
answered short calls...123, 124
 configuring for skill groups...125
application gateway
 reports...145
templates...243
application path
 reports...145
templates...243
ASA
 agent...87
 reporting...88
autoconfiguration
 with IPCC Enterprise Gateway...177
autoconfigure agents
 configuring...66
backups...33
Barge-in...82
blind transfer...137
bucket intervals
 for system...105
CAD....36
calculated fields....19
call detail data
 in custom reports....10
callrouter....28
call type
 templates....243
call type, abandon....126
call type, abandoned short calls....127
call type, abandons en-route to VRU....100
call type, calls with bad label....100
call type, non-monitored devices....102
call type, RONA....100, 101
call type and skill group data, comparing records....25
call type reports....98
call types
 changing....96
 changing call types....97
 configuration....104
 planning....94
campaigns
 reporting....133
 reporting templates....133
central controller....28
central database....29
Cisco Customer Voice Portal (CVP)....149
Cisco IP-IVR....149
Cisco Unified E-Mail Manager....163
Cisco Unified Intelligence Center....1
Cisco Unified Web Interaction Manager....163
Client AW....32
conferences
 and agent reporting....137
 and call metrics....139
 and database fields....138
 configuration....143
 planning....142
configuration
 configuration data....18, 39
 interval reporting....16
 naming conventions....40
configuration, reporting entities
 naming convention....40
Configuration Manager....39
configuring
 Service Level for a Peripheral....119
 Service Level for Aspect VRU....121
 Service Level for Media Routing Domain....119
 Service Level for Skill Group120
 Service Levels for specific call types....117
 System Information Service Level for call types....116
consultative transfer....137
CTI Manager Service fail-over....192
CTI OS....36
CTI OS Server fail-over....193
custom reports....10, 19
custom templates....10
CVP....156
data
 15-minute....14
 call detail....18
 call dispositions....20
 configuration....18
 half....14
 historical....14
 interval....14
 now....14
 real-time....13
 report fields calculations....20
 To5....14
Database Schema Handbook....20
database tables
 Database Schema Handbook....20
 interval tables....14
 reporting....19
 temporary tables....188
data concepts
 similarities, Unified CCE child/Unified ICME
 Parent....180
data holes....189
data retention....190
default routing....41
default skill group data, agent to agent dialing....74
default skill group data, conferences....74
default skill group data, new calls....73
default skill group data, transfers....74
default skill group reporting....73
Default Skill Group Reporting....72
Dialer
 reporting templates....135
distributor AW....32
Emergency Assist....81
emergency assist, planning for reporting....82
enable agent reporting
 configuration....64
enterprise queuing....209, 210
enterprise routing....97
enterprise services....107
 configuration....108
 templates....251
enterprise skill groups
 configuration....77
 templates....258
event-based reporting....202
fail-over
agent desktop fail-over....193
application instance fail-over....193, 194
fail-over, effect on reporting....187
logger and HDS....189
MR PG fail-over....193
PGs....192
PIM failure....192
fault tolerance....190
full-time equivalents reporting....63
half data (real-time)....14
half-hours boundaries, impact on reporting....24
HDS....33
 and historical data....187
 backup of....33
 HDS fail-over....189
historical data....14, 29, 33, 187
Import Rule
 reporting templates....135
Imprule01 report....248
Imprule10 report....248
Intercept82
interval data....14
 and parent....173
 time source....17
intervals
 configuring....16
 database tables....14
IVRs....36
logger....29, 34
 and historical data....187
 logger fail-over....189
mapping
 between Unified CCE child and Unified ICME
 parent....179
 naming conventions for Agent....178
 naming conventions for Service....178
naming conventions for Skill Group...178
naming conventions on the Unified ICME parent...178
naming convention syntax...178
Media Classes...164
Media Routing Domains...164
Media Routing Peripheral Gateways...30
metric categories
for reporting...214
MRDs...165
multichannel
and agent availability...60
and short calls...166
architecture...164
environments...163
options...163
report data...165
service level in...166
tasks...165
network queuing and reporting
Call Type metrics...213
Skill Group metrics...216
Not Ready Reason codes...68
configuring...68
Now data...14
OPC...200
OPI...200
Outbound Option...132
templates...245
overflow out...128
parent and child relationship
Unified CCE child...170
Unified CCX child...169
Unified ICME parent...169
percent utilization reporting...63
peripheral gateways...29 Peripheral Gateways...29
peripherals...29
templates...249
Unified CC deployments...31
peripheral services
templates...253
peripheral skill groups
templates...260
PGs...29
fail-over...192
processes...199
PIMs
fail-over...192
post-routing...208
predefined Not Ready reason codes...53
pre-routing...207
purges...190
queuing...209
ACD...209
enterprise...209, 210
real-time and historical data, comparing records...24
real-time data...13
recovery keys...188
Redirection on No Answer tasks, IP-IVR...91
replication...188
report comparison
ACD and WebView reports...23
base and sub-skill groups...26
call type and skill group/service...25
half-hour boundary issues...24
real-time boundary issues...24
real-time and historical boundary issues...25
report fields
calculations...20
Database Schema Handbook...20
<table>
<thead>
<tr>
<th>Reporting Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted 8.0(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>overflow out.</td>
</tr>
<tr>
<td>template reference guides.</td>
</tr>
<tr>
<td>reporting</td>
</tr>
<tr>
<td>agent.</td>
</tr>
<tr>
<td>call type configuration.</td>
</tr>
<tr>
<td>campaign.</td>
</tr>
<tr>
<td>Campaign.</td>
</tr>
<tr>
<td>differences between Unified ICME parent and Unified CCE child.</td>
</tr>
<tr>
<td>effect of network VRU on.</td>
</tr>
<tr>
<td>Import Rule.</td>
</tr>
<tr>
<td>managing agents.</td>
</tr>
<tr>
<td>measuring customer experience.</td>
</tr>
<tr>
<td>skill group.</td>
</tr>
<tr>
<td>understanding Unified ICME reporting.</td>
</tr>
<tr>
<td>reporting applications.</td>
</tr>
<tr>
<td>reporting data</td>
</tr>
<tr>
<td>comparing.</td>
</tr>
<tr>
<td>database tables.</td>
</tr>
<tr>
<td>data purges and retention.</td>
</tr>
<tr>
<td>delay and inconsistency.</td>
</tr>
<tr>
<td>entities.</td>
</tr>
<tr>
<td>flow from logger to HDS.</td>
</tr>
<tr>
<td>in fail-overs.</td>
</tr>
<tr>
<td>reporting levels</td>
</tr>
<tr>
<td>at the ACD (child).</td>
</tr>
<tr>
<td>at the Unified ICME (parent).</td>
</tr>
<tr>
<td>reporting models.</td>
</tr>
<tr>
<td>reporting templates</td>
</tr>
<tr>
<td>and multichannel applications.</td>
</tr>
<tr>
<td>Unified IC and WebView.</td>
</tr>
<tr>
<td>report selections.</td>
</tr>
<tr>
<td>report templates</td>
</tr>
<tr>
<td>agent.</td>
</tr>
<tr>
<td>application gateway and application path.</td>
</tr>
<tr>
<td>call type.</td>
</tr>
<tr>
<td>enterprise services.</td>
</tr>
<tr>
<td>enterprise skill groups.</td>
</tr>
<tr>
<td>Outbound Option.</td>
</tr>
<tr>
<td>peripheral.</td>
</tr>
<tr>
<td>peripheral services.</td>
</tr>
<tr>
<td>peripheral skill groups.</td>
</tr>
<tr>
<td>route.</td>
</tr>
<tr>
<td>routing client.</td>
</tr>
<tr>
<td>script queue.</td>
</tr>
<tr>
<td>skill group.</td>
</tr>
<tr>
<td>translation route.</td>
</tr>
<tr>
<td>trunk group.</td>
</tr>
<tr>
<td>RONA.</td>
</tr>
<tr>
<td>route call detail data (RCD).</td>
</tr>
<tr>
<td>router.</td>
</tr>
<tr>
<td>routes</td>
</tr>
<tr>
<td>templates.</td>
</tr>
<tr>
<td>routes and routing clients reports.</td>
</tr>
<tr>
<td>routing enterprise.</td>
</tr>
<tr>
<td>routing clients templates.</td>
</tr>
<tr>
<td>routing scripts.</td>
</tr>
<tr>
<td>Script Editor.</td>
</tr>
<tr>
<td>scripting.</td>
</tr>
<tr>
<td>on the ACD.</td>
</tr>
<tr>
<td>unexpected conditions.</td>
</tr>
<tr>
<td>script queue templates.</td>
</tr>
<tr>
<td>service array</td>
</tr>
<tr>
<td>report templates.</td>
</tr>
<tr>
<td>templates.</td>
</tr>
<tr>
<td>service control VRUs.</td>
</tr>
<tr>
<td>service level.</td>
</tr>
</tbody>
</table>
service level threshold....110
service level type....110
service level type110
voice and non-voice tasks....166
VRU service....114
Service Level....96
Service Level, call type....111
Service Level, skill group....113
service level reporting....109
service levels
 configuring....116
 in multichannel environments....166
service reports....106
services
 configuration....108
 planning....105
short calls
 configuring....123
 in multichannel environments....166
voice and non-voice tasks....166
short calls, abandoned....123
short calls, answered....123
skill groups
 agent activity in....71, 75
 and agent states....48
 and transfers, conferences....139
configuration....77
planning....72
reporting on skill group operations....74
reporting templates....76
skill group agent reporting....71, 75
skills based routing....209
templates....256
skills based routing....209
stock templates....1. 9
sub-skill groups....26, 72
supervisor action80
Supervisor Assist....81
supervisor assist, planning for reporting82
supervisors....79
system architecture....27
Administration & Data Server....32
agent and supervisor Desktops....36
central controller....28
HDS....33
logger....29
multichannel architecture....164
peripherals and PGs....29
router....28
Unified IC Servers....35
VRUs....36
WebView Server....35
tasks
direction in multichannel environment....165
task states....49
task times....59
task types....56
voice and non-voice....165
templates
custom....10
stock....1. 9
Template Reference Guide....237
Unified IC....9
WebView....9
termination call detail data (TCD)....18
To5 data....14
transfers
 and call metrics....139
 and database fields....138
between agents....137
blind and consultative..137
configuration..143
planning..142
translation routing..97, 208, 210
planning..146
trunk group templates..261
trunks and trunk groups..147
unexpected conditions..41
Unified Communications Manager ..35
Unified IC..9
and 15-minute data..14
custom templates..10
Unified IC Servers..35
voice response units..36
VRU Progress variables..155
VRUs..36
CVP..156
enterprise..209
information gathering ..151
planning..149
queuing..151
self-service..151
service control..36, 212
VRU application reporting..150
WebView..9
and 15-minute data..14
custom templates..10
templates..237
WebView Server..35