Cisco Unified ICM
ACD Supplement for
VRU Peripheral Gateway

February 2010

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (64387)
Fax: 408 526-4100
Contents

Preface.. vi

1. Overview ... 9
 1.1. ICM/VRU Configuration ... 10
 1.2. VRU Interface Requirements ... 10
 1.3. Hardware and Software Requirements ... 10
 1.4. Supported Unified ICM Features .. 11
 1.5. Unsupported Unified ICM Features ... 11

2. VRU Service Control Interface ... 13

3. VRU Time Synchronization Interface .. 15

4. Older VRU Interface Features ... 17
 4.1. Event Data Feed ... 18
 4.2. Call Routing Interface .. 18
 4.3. Mixing SCI and EDF ... 18

5. VRU PG Installation Options ... 19
 5.1. Installation Options ... 20
 5.2. MIS Enabled checkbox ... 20
 5.3. VRU Reporting controls .. 20
 5.3.1. Event Feed choice .. 21
 5.3.2. Service Control choice .. 21

6. Unified ICM Configuration ... 23
 6.1. Peripheral ... 24
6.2. Peripheral Targets ... 24
6.2.1. Event Feed VRUs ... 24
6.2.2. Call Routing VRUs ... 25

6.3. Trunk Groups .. 25

6.4. Trunks ... 25

6.5. Services ... 25

6.6. Translation Routes .. 25

6.7. Routes ... 25

6.8. Routing Client .. 25

6.9. Labels ... 26

6.10. Network Trunk Groups .. 26

6.11. Service Arrays .. 27

6.12. Maintaining Your Configuration ... 27

7. VRU Programming Considerations ... 29

7.1. VRU Script Timeout .. 30

7.2. Translation Routing ... 30
 7.2.1. SCI ... 30
 7.2.2. CRI with EDF ... 30
 7.2.3. CRI without EDF .. 31

Index .. Index-1
Figures

Figure 1: Configuration... 10
Figure 2: Installation Options .. 20
Figure 3: Network Trunk Groups .. 26
Preface

Purpose

This document provides configuration information specific to the VRU Peripheral Gateway (PG). The VRU PG implements the Unified ICM/VRU Interface Protocol (hereafter called VRU Interface). The VRU PG allows Cisco Systems, end users, VRU vendors, and other parties to integrate various telephony devices (hereafter called VRU) into Unified ICM. It is not within the scope of this document to address the specifics of any particular VRU that was integrated. This document provides information that may be generally applied to any VRU connected to Unified ICM through the VRU PG.

Audience

This document is intended for system managers. The reader should understand Unified ICM functions as described in the Installation and Setup Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted, Configuration Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted, and Scripting and Media Routing Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted. The reader is also assumed to have specific knowledge of the VRU Interface, as well as specific knowledge about one or more VRU Interface implementations.

Organization

Chapter 1, “Overview”

Provides an overview of the VRU interface, software and hardware requirements.

Chapter 2, “VRU Service Control Interface”

Describes the Service Control Interface that is used to control a VRU.

Chapter 3, “Time Synchronization Interface”

Describes how the VRU can use the TSI to synchronize its internal clock with the VRU PG.

Chapter 4, “Old Interfaces of VRU”

Describes some of the older interfaces of the VRU.

Chapter 5, “VRU PG Installation Options”

Describes the installation options of the VRU PG.

Chapter 6, “Unified ICM VRU Configuration”

Describes the configuration details of the Unified ICM and the VRU PG.
Chapter 7, “VRU Programming Considerations”

Describes the programming considerations for the VRU PG.

Typographic Conventions

This manual uses the following conventions:

- **Boldface type** is used for emphasis; for example:
 Real-time information **is not** stored in the central database.

- **Italic type** indicates one of the following:
 - A newly introduced term; for example:
 A **skill group** is a collection of agents who share similar skills.
 - A generic syntax item that you must replace with a specific value; for example:
 IF (condition, true-value, false-value)
 - A title of a publication; for example:
 For more information see the *Installation and Setup Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted*.

- **Sans serif type with small caps** is used to represent keys on your keyboard; for example:
 Press the Shift key to select a range of items.

- An **arrow (→)** indicates an item from a pull-down menu. For example, the Save command from the File menu is referenced as File→Save.

Other Publications

For more information on Unified ICM, see the following documents:

- *Administration Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted*
- *Installation and Setup Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted*
- *Configuration Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted*
- *Scripting and Media Routing Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted*

For information on Cisco Network Applications Manager (NAM), see the following documents:

- *Product Description Guide for Cisco Unified ICM Hosted*
- *Setup and Configuration Guide for Cisco Unified ICM Hosted Edition*
- *Multiple-NAM Setup and Configuration Guide for Cisco Unified ICM Hosted*
Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Documentation Feedback

You can provide comments about this document by sending email to the following address: cebu_docfeedback@cisco.com

We appreciate your comments.
1. Overview

The VRU PG connects to each VRU via a TCP/IP connection. The VRU PG can run in simplex or duplex configurations.

In a duplex configuration, only the active side of the PG connects to the VRU. If the active side of a duplexed PG fails, the inactive side is activated, and a new connection to the VRU opens.
1.1. **ICM/VRU Configuration**

The typical configuration consists of a VRU system and a PG (or two PG’s if duplexed) on an Ethernet hub. Each VRU PG is capable of connecting 32 VRUs simultaneously.

![Configuration Diagram](image)

Figure 1: Configuration

Note: Bandwidth to the Central Controller is sufficient to support the number of VRUs connected. Contact your Cisco representative for a network analysis.

1.2. **VRU Interface Requirements**

The VRU PG requires a TCP/IP connection to the VRU. The VRU must provide an IP address and a TCP port number for the PG to connect to.

The VRU must implement the required interface defined in the document *Cisco Unified ICM/VRU Interface Specification*.

1.3. **Hardware and Software Requirements**

The VRU PG requires a 10-Megabit Ethernet or equivalent physical connection to the VRU. The VRU PG can communicate remotely with VRUs via a TCP/IP network. However, you must ensure that the network link between the PG and VRU system has the bandwidth to support the call load for VRU.
1.4. **Supported Unified ICM Features**

The VRU PG supports the following Unified ICM features:

- Pre-Routing
- Post-Routing
- Translation Routing
- Peripheral, Trunk Group and Service real time reporting
- Duplexed PG implementation

1.5. **Unsupported Unified ICM Features**

The VRU PG does not support features pertaining to Agents or Call Queuing. An SCI VRU allows the CallRouter to implement call queues without implementing the queues.
2. VRU Service Control Interface

A CallRouter uses the Service Control Interface (SCI) to control a VRU. The CallRouter can have the VRU play announcements and prompts, gather data from the caller, and route calls to destinations. This interface is required for in-network VRUs and for global call queues implemented in the CallRouter.

Because SCI allows the CallRouter to control the VRU, the CallRouter needs to know the capabilities and configuration of the VRU. This is encoded in a number called the VRU Type configured in the Router settings. See the "Network VRUs" chapter of the Scripting and Media Routing Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted for details on choosing and configuring the VRU Type for different applications.
3. VRU Time Synchronization Interface

The VRU can use the Time Synchronization Interface (TSI) to synchronize its internal clock with VRU PG clock, which is synchronized to the Unified ICM clock. As certain messages arrive from the VRU, the VRU PG compares VRU time stamp with Unified ICM time. Significant differences are periodically reported to the VRU via the TSI.

The messages that contain the current VRU time:

- SCI: INIT_SERVICE_CONTROL_VRU, VRU_STATUS
- EDF: INIT_DATA_END_EVENT, VRU_STATUS_EVENT

Warning: The Time Synchronization Interface should not be used on any VRU which is connected to a PG and is being used as Unified ICM Time Source (Router registry key "Router \ CurrentVersion \ Configuration \ Time \ Source"). This can cause a time feedback loop that can result in system time to fluctuate.
4. Older VRU Interface Features

The Service Control Interface feature replaces several earlier interface features that are still supported for backward compatibility with the following older VRUs:

- Event Data Feed (EDF)
- Call Routing Interface (CRI)
4.1. Event Data Feed
The VRU uses EDF feature to provide real-time events to Unified ICM. Unified ICM will accumulate call time statistics and write Termination Call Detail records for each call.

4.2. Call Routing Interface
The VRU uses CRI feature to send route requests to the CallRouter. Each route request triggers a routing script, which returns a route response. Typically, the route response is to direct the call to a new destination. However, the script triggered by the route request can perform any decision-making or data-gathering task (such as a database lookup) and return the result in a route response. You can use this as a standalone interface. However, this is generally used in conjunction with the EDF.

4.3. Mixing SCI and EDF
A VRU can support both SCI and EDF. This capability is provided as a migration path from legacy EDF applications to SCI. The VRU can deliver some calls under EDF (send a "delivered" event) and the others under SCI (send a "New Call" or "Request Instruction" message). If the VRU is not able to determine which mode to use based on data available when the call is delivered, it must start the call under EDF (send a "delivered" event) and later use SCI "New Dialogue" message to convert EDF call to an SCI dialogue.
5. VRU PG Installation Options

This chapter describes the options available during the installation of a VRU PG.
5.1. Installation Options

Following are the installation options available in the VRU PG:

![Peripheral Gateway Component Properties](image)

Figure 2: Installation Options

5.2. MIS Enabled checkbox

MIS is used to transfer the call variables between an ACD and associated EDF/CRI VRU. Check the box to use MIS.

5.3. VRU Reporting controls

Select one of the two options:
- Event Feed
- Service Control

Note: The names of these two options do not directly correspond to the VRU Interface features of similar name. The features that the VRU can support are restricted by the choice. But within those restrictions, the combination of features that the VRU chooses to support are left to the VRU and are received from the VRU when the VRU PG connects to it.
5.3.1. Event Feed choice

If this option is selected, VRU PG will not generate real-time trunk, update service data and write Termination Call Detail records for every SCI dialogue. VRU PG still generates real-time peripheral data update. If the Service Control Interface is used as a standalone, VRU peripheral data is initialized based on the Init_Service_Ctrl_VRU message during the SCI initialization. If Service Control Interface is used along with EDF interface, VRU peripheral data is initialized by messages in EDF interface.

5.3.2. Service Control choice

Selecting this option allows the VRU PG to generate real-time peripheral, trunk and service data update, and write one or more Termination Call Detail records for each SCI dialogue. For Service Control Interface, VRU peripheral data is always initialized based on Init_Service_Ctrl_VRU message during the SCI initialization, even if Service Control Interface is used alone, or combined with other interface.

Selecting this option also enables the Queue Reporting checkbox.

Queue Reporting checkbox

If this box is unchecked, the only events generated for SCI dialogues are Delivered and Cleared, and the only call statistic calculated is total call time.

If this box is checked, the PG will generate Queue events. Calculated call statistics will include queue times and abandons in-queue time, and total call time.
6. Unified ICM Configuration

In Unified ICM terms, the VRU itself corresponds to a peripheral. Unified ICM treats all contact center devices (e.g., ACDs, PBXs, IVR systems) as peripherals.

To properly configure and maintain Unified ICM database, you need to understand the relationship between the objects configured in the VRU, and the Unified ICM database, relationship of the field in the VRU message, and the attribute of objects in Unified ICM database.

Some mappings are described in this chapter. For example, a Unified ICM Trunk Group Peripheral Number corresponds to the Trunk Group ID value in the VRU messages.

Note: Different VRU vendors may use different object names; refer to the document from the VRU vendor for detailed object mapping. This chapter also provides information specific to configuring a VRU PG using the Configuration Manager's PG Explorer tool.
6.1. Peripheral

The Unified ICM Peripheral corresponds to the VRU. The following values can be used in any combination in the Peripheral Configuration Parameter for the Peripherals configured with the VRU PG:

- "/BTTELSIS": Send a single-byte pad message, after any message with odd length is sent to the VRU, and read a single-byte message, after any message with odd length is received from the VRU. The default action is to block or read pad messages.

- "/ZEROTRUNKS": Tell the Unified ICM to set the available trunk count to zero if the VRU PG goes out of service.

- "/FILTERVARS": Send only the call variables changed by Unified ICM to the VRU, since the last time the call variables were sent to or received from the VRU. The default action is to send all non-null call variables to the VRU.

- "/ASSUME_ANSWERED": Count calls as successfully connected as soon as the Connect message is sent to the VRU. This will prevent calls from being counted as abandoned when a VRU fails to send an Event Report / Answered message in response to a Connect message.

- "/TYPE_3_TALK_TIME": This value is used to support customers who might be relying on the old behavior that when Service Control Queue Reporting is enabled, VRUPIM treat the call arrived at Type 3 or Type 7 VRU for self-service as in Talking state and the TalkTime in TCD is the time the call spent at VRU. The new behavior is to treat calls arriving at Type 3 and Type 7 VRUs the same as Type 2 and Type 8 VRUs and the TalkTime in TCD is not incremented for self-service call at VRU when Service Control Queue Reporting is enabled.

6.2. Peripheral Targets

A Peripheral Target is a network target identified by a Trunk Group and DNIS that terminates on the VRU. For EDF, a Peripheral Target must be configured for all DNIS and Trunk Group(s) through which an incoming call arrives. Peripheral Targets used for Translation Routes can be most easily built with the Translation Route Wizard.

6.2.1. Event Feed VRUs

All Trunk Group/DNIS combinations that are in any way connected with the handling of any incoming VRU call should be configured in the Unified ICM as a Peripheral Target to ensure complete call monitoring. Those calls that do not map to a valid Peripheral Target are associated with the Service defined in the Delivered or Originated call event. If neither mapping fits, the call is associated with the Peripheral’s Default Route as defined in the Peripheral Configuration Table. If a Default Route is not defined, the PG will log an event.
The OPC Registry variable "MapPeripheralTargetsWithoutTrunkGroup" must be set to the default value of zero for Event Data Feed VRUs.

6.2.2. Call Routing VRUs

Configuration of all Trunk Group/DNIS combinations as Peripheral Targets is not essential. However, Peripheral Targets necessary for Post Routing / Translation Routing must still be configured.

The OPC Registry variable "MapPeripheralTargetsWithoutTrunkGroup" must be changed to 1 for Call Routing-only VRUs.

6.3. Trunk Groups

The Trunk Group Peripheral Number corresponds to the Trunk Group ID value in VRU messages. No special configuration information is required for Trunk Groups for the VRU PG. The trunk count is obtained dynamically from the VRU and should not be configured. The VRU PG does not use the Trunk Group Extension.

6.4. Trunks

Incoming calls are identified according to the individual trunk or port that the call occupies. However, there is no need to configure individual trunks in Unified ICM; the identification of trunks is handled automatically by the VRU and the VRU PG.

6.5. Services

The Service Peripheral Number corresponds to the Service ID value in VRU messages.

6.6. Translation Routes

No special configuration considerations apply.

6.7. Routes

A Route is one or more Peripheral Targets. A Peripheral Target is a network target identified by a Trunk Group and DNIS that terminates on the VRU. A Peripheral Target is equivalent to the combination of DNIS and the Trunk Group(s) through which the incoming calls arrive.

6.8. Routing Client

The VRU PG supports post routing and can therefore be considered a Routing Client. To configure a Routing Client for the VRU, select the VRU Peripheral's "Routing Client" Tab in PG Explorer and set the Client Type to "VRU" through Configuration Manager.
6.9. Labels

The format of label strings sent to the VRU in a Route Select, Connect, Temporary Connect, or Connect-to-Resource message is not dictated by the Unified ICM. The VRU is responsible for interpreting the label and acting upon it; this interpretation may vary from one VRU implementation to another.

For labels of type BUSY, RING, and DEFAULT the label type configured in the Unified ICM is passed to the VRU in Route Select and Connect messages. Other label types are marked as type NORMAL. The VRU may use the label type (where available), in addition to the label itself, to determine how to process the response.

6.10. Network Trunk Groups

Unified ICM supports a configuration in which several VRUs share a single Network Trunk Group. In this configuration, the physical VRUs combine to give the appearance of a single “virtual” VRU with increased capacity. Since the network can deliver a call on any trunk in the Network Trunk Group, the call may arrive on any of the VRUs sharing the Network Trunk Group. For this reason, all the VRUs sharing the Network Trunk Group should perform identical call processing.

Configure one Network Trunk Group for the “virtual” VRU. Then, for each physical VRU, configure the Trunk Group(s) on that peripheral. Set the Network Trunk Group for each peripheral Trunk Group to be the Network Trunk Group for the “virtual” VRU.

Note that all Peripheral Targets associated with any of the VRUs are defined in terms of the Network Trunk Group. It is therefore not possible
to route calls to an individual VRU in this configuration. Calls may be routed to the “virtual” VRU; you cannot predict which physical VRU will actually receive the call. Monitoring of call activity on either the “virtual” VRU or any of the physical VRUs can be done by examining the data for the Network Trunk Group or the peripheral Trunk Group, respectively. All physical VRUs that comprise a “virtual” VRU must be connected to the same VRU PG.

6.11. Service Arrays

A Service Array is similar to a Network Trunk Group but aggregates Services instead of Trunk Groups.

In a “virtual” VRU, each physical VRU must be configured and programmed to perform the same call processing. This implies that each physical VRU must have the same Service(s) configured. However, because of the shared Network Trunk Group, the Unified ICM cannot target a call for a Service on a specific VRU within a “virtual” VRU. Instead, a Service Array is used for this purpose. A Service Array defines a “virtual” Service on a “virtual” VRU, and may be used as a Skill Target in a Unified ICM routing script.

To configure a Service Array:
1. Configure a Service for every physical VRU in the “virtual” VRU.
2. Create a Service Array.
3. Add the Services configured for the physical VRUs as members of the Service Array.

Note: It is required to have one Service from each VRU in the “virtual” VRU that is a member of the Service Array.

For example, suppose the 3 VRUs in the diagram above can service “Sales” callers and “TechSupport” callers. Six services would be configured; for example: VRU_1.Sales, VRU_2.Sales, VRU_3.Sales, VRU_1.TechSupport, VRU_2.TechSupport, and VRU_3.TechSupport. Then, two Service Arrays would be configured; for example: VRUSales and VRUTechSupport. VRUSales would include VRU_1.Sales, VRU_2.Sales, and VRU_3.Sales as members. VRUTechSupport would include VRU_1.TechSupport, VRU_2.TechSupport, and VRU_3.TechSupport as members.

6.12. Maintaining Your Configuration

It is preferred that changes made to your configuration be accomplished first on the VRU, then on the Unified ICM Configuration. This will ensure that the PG sees the configuration updates on the VRU systems.
7. VRU Programming Considerations

This chapter describes the programming considerations for the VRU environment.
7.1. **VRU Script Timeout**

When the CallRouter encounters a Run VRU Script node in a routing script, it sends a Run VRU Script request to a Service Control VRU and starts a timer. If the Script Result response does not arrive from the VRU before the timer expires, the CallRouter will take the failure path from the Run VRU Script node and continue processing. The VRU PG and the VRU are not notified of the timeout.

The default timeout value is 3 minutes but the value can be configured for each Network VRU Script. The timeout value should be set higher than the longest that the VRU script is expected to execute.

7.2. **Translation Routing**

When a VRU is the target of a translation route, the call arrives at the VRU with a DNIS reserved for translation routing. This DNIS must be presented to Unified ICM so that the arriving call can be associated with the existing call context information. How the DNIS is presented to the Unified ICM depends on the interface feature being used.

7.2.1. **SCI**

When a translation-routed call arrives at the VRU, the VRU must recognize the call as being a translation route connection and send a Request Instruction message to the VRU PG. The Request Instruction message must include whatever Correlation ID, DNIS, and/or "Called Number" values arrived with the call. The identifying data allows the CallRouter to associate the message with a waiting CallRouter Script.

7.2.2. **CRI with EDF**

When a translation-routed call arrives at the VRU, the VRU must issue a Delivered Event as it would for any arriving EDF call. The Delivered Event associates the VRU-assigned call ID with the new call and specifies the DNIS that arrived with the call. After recognizing the DNIS as a translation-route DNIS, the VRU must issue a Route Request Event to obtain the data associated with the call. The Route Request Event must specify the call ID that was in the Delivered Event.

Warning: The Dialed Number in the Route Request Event must NOT match any configured Dialed Number. For clarity we recommend that the string "TRANSLATION_ROUTE" be used for the Dialed Number.

The Unified ICM uses the call ID in the Route Request Event to find the DNIS that was in the Delivered Event message, and uses that DNIS to find the call context information associated with the call. The VRU PG delivers the associated call context information to the VRU in a Route Select message.
7.2.3. **CRI without EDF**

When a translation-routed call arrives at the VRU, the VRU must recognize the DNIS as a translation-route DNIS and issue a Route Request Event to obtain the call context information associated with the call. The VRU must specify the call ID of the Route Request Event as a NULL ID value (FFFFFFFE hex) and must give the DNIS value in the “DialedNumber” field.

Unified ICM uses the DNIS supplied in the “DialedNumber” field of the Route Request Event to find the call context information associated with the call. The VRU PG delivers the associated call context information to the VRU in a Route Select message.
Index

C
Call Routing Interface, 18, 25, 26
configuration, 17, 18, 21, 33, 34, 35

D
duplex configuration, 17

E
EDF, 23, 25, 26, 28, 29, 38
emergency, xi
Event Data Feed, 25, 26, 33
Event Feed, 28, 29, 32

I
Unified ICM feature support, 19
installation, 27

L
Labels, 34

N
Network Trunk Groups, 34

P
Peripheral, 32, 33, 34
Peripheral Targets, 32, 33, 34
Product Documentation, ix

Q
Queue Reporting, 29, 32

R
route requests, 26
Routing Client, 33

S
SCI, 21, 23, 26, 29, 38
Security, x
Service Arrays, 35
Service Control, 21, 25, 28, 29, 32, 38
Service Control Interface, 21, 25, 29
Service Request, xii
Services, 33, 35
Severity, xii

T
Translation Routes, 33
TSI, 23