Cisco Remote Silent Monitoring Installation and Administration Guide

Release 11.0(1)
August 26, 2015

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
Contents

Line DN to Simphone Device Association  4-7
Simphone BAT Tool Usage  4-8
Login Pool Simphone Setup  4-10
RSM User Group Creation  4-11
RSM Application User Creation  4-12
Agent Phone Device Setup  4-13
Supervisor Login Account Creation  4-13

CHAPTER  5  Installation  5-1

Patch Installation  5-1
RSM Server Installation  5-2
Configuration Manager  5-2
  Configuration Settings  5-3
VLEngine and PhoneSim Services  5-7
Directory Structure  5-7
Port Numbers Used  5-8
Environment Variables  5-8
Security Settings  5-9
  Host Level Security  5-9
  Network Level Security  5-10

CHAPTER  6  VRU Configuration  6-1

Continuous Monitoring of Agent Calls  6-3
  CVP Callflow  6-3
  IP IVR Callflow  6-3
IP IVR Integration  6-4
  Upload RSM Prompts  6-4
  IP IVR Integration (non-Unified ICME)  6-5
Contents

IP IVR Integration (Unified ICME) 6-7
CVP Integration 6-7
  Upload RSM Prompts 6-8
  CVP Call Flow Integration 6-8
Call Flow Deployment 6-10
Call Flow Troubleshooting 6-11
VXML Gateway Setup Notes 6-12
Disabling Supervisor Team Structure or User Authentication 6-13

CHAPTER 7 RSM Services 7-1
  RSM Enable, Check, Restart 7-1
  Removing RSM 7-2
    IP IVR Removal 7-2
    CVP Removal 7-3
    RSM Application Removal 7-4
    Unified ICME Removal 7-4
    Unified CM Removal 7-5

CHAPTER 8 Troubleshooting 8-1
  Log Files 8-1
  General Call Flow Issues 8-2
  VLEngine Runtime Issues 8-9
  PhoneSim Runtime Issues 8-14
    PhoneSim Log File Error Messages 8-15
    Fatal Error Messages 8-22

CHAPTER 9 Serviceability and Monitoring of RSM Components 9-1
  SNMP Agent 9-1
  RSM System CLI Setup 9-2
System CLI Commands  9-3

API Extensions  A-1
    JSP Suffix  A-1
    VLEngine HTTP API  A-2
        checkUserCredentials.jsp  A-2
        canMonitorAgentID.jsp  A-3
        getCallToMonitor.jsp  A-4
        getConvoInfo.jsp  A-6
        getAgentList.jsp  A-7
        proxyMonitorAgentForVRU.jsp  A-9
        determineAgentCluster  A-11
        initiateMonitorAgent  A-12
        testEngineServlet.jsp  A-13
    PhoneSim HTTP API  A-13
        monitorAgent.jsp  A-13

Registry Keys  B-1
    Changing RSM Registry Keys  B-2
    General Registry Keys  B-3
        Version  B-3
        NumClusterConfigs  B-3
        MaxNumRequests  B-3
        ProblemCallMinHolds  B-4
        ProblemCallMinDuration  B-4
        MaxStaleCallDuration  B-4
        SMTP_HostName  B-5
        SMTP_Port  B-5
        SMTP_SenderEmailAddress  B-5
<table>
<thead>
<tr>
<th>Configuration Key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP_Receiver EmailAddress1</td>
<td>B-6</td>
</tr>
<tr>
<td>SMTP_ReceiverEmailAddress2</td>
<td>B-6</td>
</tr>
<tr>
<td>SMTP_ReceiverEmailAddress3</td>
<td>B-6</td>
</tr>
<tr>
<td>SMTP_ReceiverEmailAddress4</td>
<td>B-7</td>
</tr>
<tr>
<td>VLEngine_LogLevel</td>
<td>B-7</td>
</tr>
<tr>
<td>PhoneSim_LogLevel</td>
<td>B-7</td>
</tr>
<tr>
<td>VLEngine_HostDataIP</td>
<td>B-8</td>
</tr>
<tr>
<td>VLEngine_HTTPListenPort</td>
<td>B-8</td>
</tr>
<tr>
<td>PhoneSim_HTTPListenPort</td>
<td>B-8</td>
</tr>
<tr>
<td>PhoneSim_RTSPListenPort</td>
<td>B-9</td>
</tr>
<tr>
<td>PhoneSim_AudioEncoding</td>
<td>B-9</td>
</tr>
<tr>
<td>PhoneSim_DoHTTPChunkedTransfers</td>
<td>B-9</td>
</tr>
<tr>
<td>PhoneSim_AudioBufferLenToVRU</td>
<td>B-10</td>
</tr>
<tr>
<td>PhoneSim_HostDataIP</td>
<td>B-10</td>
</tr>
<tr>
<td>CTIOS_TraceMask</td>
<td>B-10</td>
</tr>
<tr>
<td>CTIOS_AgentModeTraceMask</td>
<td>B-11</td>
</tr>
<tr>
<td>VLEngine_PassPrefix</td>
<td>B-11</td>
</tr>
<tr>
<td>Cluster Configuration Registry Keys</td>
<td>B-12</td>
</tr>
<tr>
<td>ClusterN_Name</td>
<td>B-12</td>
</tr>
<tr>
<td>ClusterN_MaxNumRequests</td>
<td>B-13</td>
</tr>
<tr>
<td>ClusterN_PeripheralID</td>
<td>B-13</td>
</tr>
<tr>
<td>ClusterN_JTAPI_UserName</td>
<td>B-13</td>
</tr>
<tr>
<td>ClusterN_JTAPI_Password</td>
<td>B-14</td>
</tr>
<tr>
<td>ClusterN_NumSimPhonesUsedForCTIOSAgentLogins</td>
<td>B-14</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_StartMACRange</td>
<td>B-14</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_StartLineNumRange</td>
<td>B-15</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_SIPTransport</td>
<td>B-15</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_CM1_HostName</td>
<td>B-15</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_CM1_Port</td>
<td>B-16</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_CM2_HostName</td>
<td>B-16</td>
</tr>
<tr>
<td>ClusterN_PhoneSim_CM2_Port</td>
<td>B-16</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CM1_HostName</td>
<td>B-17</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CM2_HostName</td>
<td>B-17</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS1_HostName</td>
<td>B-17</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS1_Port</td>
<td>B-18</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS2_HostName</td>
<td>B-18</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS2_Port</td>
<td>B-18</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS21_HostName</td>
<td>B-18</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS21_Port</td>
<td>B-19</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS22_HostName</td>
<td>B-19</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS22_Port</td>
<td>B-19</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS31_HostName</td>
<td>B-20</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS31_Port</td>
<td>B-20</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS32_HostName</td>
<td>B-20</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS32_Port</td>
<td>B-21</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS41_HostName</td>
<td>B-21</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS41_Port</td>
<td>B-21</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS42_HostName</td>
<td>B-22</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS42_Port</td>
<td>B-22</td>
</tr>
</tbody>
</table>
Preface

Purpose

This document provides complete installation, configuration, and administration information for Cisco Remote Silent Monitoring, an advanced telephony application which allows for real-time, phone-based monitoring of agents in the Cisco Unified Communications Manager (Unified CM) environment.

Audience

This document is intended to be read and used by system administrators who are proficient with Cisco’s Unified Communications Manager, Unified CCE, CVP, and IP IVR, and who possess basic to intermediate administration and installation capabilities.
Organization

The chapters in this guide are organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. &quot;System Overview&quot;</td>
<td>Provides an overview of RSM, from both a user and technical call flow level.</td>
</tr>
<tr>
<td>Chapter 2. &quot;System Requirements&quot;</td>
<td>Lists the hardware and software system requirements for RSM installation.</td>
</tr>
<tr>
<td>Chapter 3. &quot;Pre-Installation Tasks&quot;</td>
<td>Describes tasks that must be performed to target servers and Cisco environment before installation.</td>
</tr>
<tr>
<td>Chapter 4. &quot;Installation&quot;</td>
<td>Describes how to install RSM from the installation CD. Security recommendations are also provided.</td>
</tr>
<tr>
<td>Chapter 5. &quot;VRU Configuration&quot;</td>
<td>Describes RSM integration in both IP IVR and CVP VRU environments.</td>
</tr>
<tr>
<td>Chapter 6. &quot;RSM Services&quot;</td>
<td>Describes how to enable, check, and restart the two RSM services, VLEngine and PhoneSim, as well as how to remove RSM.</td>
</tr>
<tr>
<td>Chapter 7. &quot;Troubleshooting&quot;</td>
<td>Lists log files and describes case scenarios for troubleshooting issues.</td>
</tr>
<tr>
<td>Appendix A. &quot;API Extensions&quot;</td>
<td>Lists APIs used by the VLEngine and PhoneSim.</td>
</tr>
<tr>
<td>Appendix B. &quot;Registry Keys&quot;</td>
<td>Lists RSM configuration parameters, as stored in the Windows registry.</td>
</tr>
</tbody>
</table>

Obtaining Documentation, and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation, at:
Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS feeds are a free service.

Field Alerts and Field Notices

Cisco products may be modified or key processes may be determined to be important. These are announced through use of the Cisco Field Alerts and Cisco Field Notices. You can register to receive Field Alerts and Field Notices through the Product Alert Tool on Cisco.com. This tool enables you to create a profile to receive announcements by selecting all products of interest.

Log into http://www.cisco.com and then access the tool at http://www.cisco.com/cisco/support/notifications.html.

Documentation Feedback

To provide comments about this document, send an email message to the following address:

contactcenterproducts_docfeedback@cisco.com

We appreciate your comments.
System Overview

This chapter describes the Remote Silent Monitoring (RSM) system from both a user-level and a technical call flow overview. The following acronyms are used:

- VRU—Voice Response Unit
- IVR—Interactive Voice Response
- Unified CVP—Unified Customer Voice Portal
- CTI OS—Computer Telephony Integration Object Server
- JTAPI—Java Telephony Application Programming Interface
- RTSP—Real Time Streaming Protocol

RSM Overview

The RSM application allows for real-time phone-based monitoring of agents in Cisco’s Unified Contact Center Enterprise (Unified CCE) environment. In Unified CCE, RSM is installed on its own hardware. The RSM platform is installed on a Windows operating system as a single server instance, and a separate call flow script is hosted on an IP IVR or CVP (VRU) platform.

When a supervisor dials into the VRU node via a VoIP or a plain old telephone service (POTS) phone:

- The incoming call is routed to the call flow script;
- The script requests services and data from the RSM server, as per the caller’s input to system prompts;
• The script parses a response and provides data and voice stream to the caller.

RSM’s system prompts allow for the selection of random, newest, or problem call monitoring modes. Callers can also select the specific agents they want to monitor based on the Agent ID (or Peripheral ID) of the agent, or they can select from a list of currently active agents.

Call Flow

Call flow is distributed in the system via IP IVR and CVP scripts. These scripts provide core system functionality, and may be modified to better support specific system requirements.

Note

CRS Editor may be used to edit the IP IVR call flow script, and CVP Unified Call Studio may be used to edit the CVP call flow script.

Standard call flow script functionality is executed in the following manner:

• A caller dials in and is prompted to login to the system by entering their supervisor account agent ID and numeric password.

• The CTI OS API authenticates the login input, rejecting the attempt if the data is invalid. (The call flow script can use a different authentication back-end, or remove authentication altogether, as detailed in Chapter 5, VRU Integration.)

• Once logged in, the caller can request to listen to a specific agent on a real-time call.

• The Unified Communications Manager parses the request and instructs RSM to contact the agent’s phone.

• RSM contacts the appropriate Unified Communications Manager via JTAPI.

• A simulated supervisor phone (also known as simphone) on RSM calls the agent’s phone, patches in, and streams the voice data back to the caller through the VRU node, in real-time one-way listening mode.
If data is already being streamed to another caller for the selected agent, that same data stream is used, in lieu of creating a second data stream. Data is streamed only for agents currently being monitored.

### RSM Services

The RSM server runs two application instances, VLEngine and PhoneSim, which together provide RSM services to callers.

The VLEngine tracks the environment state and handles most of the requests from the call flow script (login authentication, agent listing, permissions required to monitor a call). The PhoneSim service manages the simulated phones.

### VLEngine

VLEngine runs on the Tomcat application server software, which provides servlet hosting. So, when a supervisor who is dialed into RSM interacts with the system, the call flow script makes HTTP requests for dynamic content from VLEngine servlets and then parses the appropriate output. Requests for static content, such as audio prompts, are also made to the VLEngine in certain cases. For example, for the CVP VXML script, and for some parts of the IP IVR script through the use of its VXML VoiceBrowser step.

VLEngine monitors all Unified CCE events via CTI OS, keeping dynamic, real-time track of those agents currently handling calls, as well as the skillgroup membership of those agents. So, for example, if an agent was previously not on a call when the caller first dialed in, but is now handling a call, that agent’s status is updated so they can now be monitored.

The Apache Tomcat server bundled with RSM has been modified for optimum security; as such, no additional configuration must need be made to Tomcat.
PhoneSim

PhoneSim device entries look and act exactly like hardware VoIP phones in the Unified Communications Manager environment; however, they are actually managed and controlled by the RSM server, mimicking a supervisor’s VoIP phone, and providing supervisor dial-in functionality.

So, when a supervisor inputs a request through RSM to monitor an agent, the system infers that it is streaming the monitored agent’s call data directly to the supervisor’s VoIP phone. In reality, the call is streamed to the PhoneSim service, which proxies it to the VRU node for playback to the dialed-in supervisor.

Note

PhoneSim is a standalone service and, as such, is not installed as a component of a larger application server (Tomcat). It includes its own simple HTTP server for handling an HTTP API call to start the monitoring of an agent.

Application Connectivity

The following diagrams illustrate the various configurations and connections that RSM has with the other contact center components.

RSM VLAN Configuration

Figure 1-1 on page 1-5 illustrates the basic network connectivity of the RSM server across a typical VLAN network. The diagram illustrates the various protocol interfaces between RSM and the rest of the system, as described.
**Figure 1-1 RSM VLAN Configuration**

**HTTP(S)**—Carrier protocol for requests into RSM, in standard URL form:

- `http://rsmserver:8080/vlengine/canMonitorAgentID?supervisorID=1101&agentID=1001&outputFormat=vxml`
As can be deduced, the first request is for the `checkUserCredentials` API call, the second is for the `canMonitorAgentID` call. Request parameters are passed via the GET method, and the HTTP response is either plain text or encapsulated in VoiceXML (as per the API call and outputFormat parameter, if applicable).

**RTSP**—CVP VRU call flow script makes a RTSP connection to the RSM PhoneSim service to request a monitoring session for the agent's call.

**CTI OS**—The RSM server makes several connections to CTI OS. One is a monitor mode connection, which receives platform events. The other connections are agent mode connections used to retrieve the list of agents on the supervisor's team, and to authenticate supervisor logins when standard authentication is utilized.

**JTAPI**—Requests to monitor phones are made via JTAPI. This requires a JTAPI application user to be defined on each Unified Communications Manager cluster, and associate it with all agent phones.

**RTP**—When a dialed-in supervisor monitors an agent, there is a monitoring call-in-progress from the built-in bridge (BiB) of the agent's phone to the RSM server. Signaling data for the call is routed through the Unified Communications Manager similar to any other call, and RTP traffic flows between the agent's phone and the RSM server. When RTSP is used to stream the monitoring call from the RSM server to VRU (CVP only), RTP traffic flows between RSM and CVP

---

**Note**

ODBC-ODBC (SQL Database) connectivity is currently not deployed for use with RSM. Data retrieval from a Cisco Unified Contact Center Enterprise (Unified CCE) database is therefore unavailable.

---

**Multi-site Deployment**

Figures 1-2 through 1-4 illustrate the network connectivity required for a multi-site deployment of two RSM servers in a Unified ICME environment, connected via a central private WAN.

The example organization has a centralized datacenter in Atlanta, with PSTN gateways into three international cities, London, Austin, and Mumbai.
Note: The model shown is for illustrative purposes only and is more complex than a typical RSM deployment.

As shown in Figure 1-2, the RSM server at the Atlanta datacenter handles monitoring requests from U.S.-based PSTN callers and personnel.

A single Active Directory server cluster serves as an LDAP directory service at the Atlanta datacenter.

Figure 1-2 RSM Configuration, Datacenter Site
As Figure 1-3 illustrates, the London-based RSM server handles monitoring requests from both UK- and India-based PSTN points, as well as London personnel.

The CVP servers in Atlanta and London both handle IVR requests.

*Figure 1-3  RSM Configuration, London Site*

Each RSM server can be connected to both CTI OS servers in the organization (Atlanta, London) so that agent state across the entire organization can be tracked from both servers.

Failover in the U.S. is from RSM server 1 to RSM server 2, and from RSM server 2 to RSM server 1 for London and Mumbai.
The Mumbai site handles IVR requests as a VXML-based voice browser, as shown in Figure 1-4.

*Figure 1-4  RSM Configuration, Austin and Mumbai Sites*
CHAPTER 2

System Requirements

System requirements for RSM are in the Unified CCE Compatibility matrix for Unified CCE Release 11.0(1) located at

Cisco Hardware and Software Requirements

In addition to the RSM requirements, ensure that the specifications for Cisco's Unified Communications Manager (Unified CM) and Unified CCE are also met before installing RSM. Refer to the Cisco Unified Contact Center Enterprise Design Guide document and Compatibility Matrix for Unified CCE for Release 11.0(1) located at

To determine which applications are compatible with Unified CM, refer to the Cisco Unified Contact Center Enterprise (Unified CCE) Compatibility Matrix, accessible from
Windows Platform Requirements

Listed below are the Windows OS requirements and the VMware requirements.

Windows OS Requirements

- VMWare ESXi 5.5
- 2 virtual CPU cores with 2.13 Ghz Reservation
- 4 GB virtual RAM
- One 100 GB virtual Disk
- One virtual NIC with both IPV4 and IPV6 enabled
- Windows 2012 R2 Standard Edition (Server with GUI)

VMware Requirements

- SCSI Controller Type should be "LSI Logic SAS" only
- Network Driver should be "VMXNET3" only
RSM 11.0(1) Upgrade

RSM 11.0(1) supports upgrade from the version 10.0(x).

- Ensure no log files or folders from "C:\CiscoRSM" are opened.
- Uninstall existing RSM 10.x version from Control Panel - Programs & Features Option in Windows 2008 R2.

**Note**
By design it was decided to leave the registry intact as the information is very limited in scope and any re-install later will allow the configuration to be re-used. Uninstall will not remove the registry keys for RSM configuration.

- If the virtual machine has SCSI Controller type as LSI Logic Parallel, change it to LSI Logic SAS. For more information, see Chapter, “Changing the SCSI Controller Type” section on page 3-3.
- Perform an in place upgrade of the OS platform from Windows 2008 R2 to Windows 2012 R2.

**Note**
Refer to the “Upgrade to Windows 2012 R2 Standard" section in the Cisco Unified Contact Center Enterprise Installation and Upgrade Guide, release 11.0(1), for more details on operating system upgrade.

- Once the upgrade is completed and system restarted, make sure the network card settings have both IPV4 and IPV6 dual stack enabled.
- Download the JTapi 32-bit client from 11.0 CM to upgrade the previous 10.0 version JTapi client. Refer to Chapter, “JTAPI Client Libraries Installation”
• Run the Cisco RSM 11.0(1) installer.

Changing the SCSI Controller Type

LSI Logic Parallel is not supported with Windows 2012. If the virtual machine has SCSI Controller type as LSI Logic Parallel, you must change it to LSI Logic SAS.

To change the SCSI Controller Type:

Step 1  Ensure the virtual machine is powered on.
Step 2  Add a new hard disk to the virtual machine. When choosing the Virtual Device Node, select \texttt{SCSI (1:0)} and hard disk size as \texttt{1MB}.

\begin{itemize}
  \item \textbf{Note} \quad When the new virtual disk is created, it creates a second virtual SCSI controller.
\end{itemize}

\begin{itemize}
  \item \textbf{Caution} \quad Do not click \texttt{OK} at this stage to confirm the changes.
\end{itemize}

Step 3  Select the second virtual SCSI controller, and then click \texttt{Change Type}.
Step 4  Select the \texttt{LSI Logic SAS} radio button, and then click \texttt{OK}.
Step 5  Click \texttt{OK} to confirm the changes.
Step 6  Log in to the virtual machine. The operating system automatically detects the new SCSI controller and adds the driver for LSI Logic SAS.

Step 7  In \texttt{Device Manager}, under \texttt{Storage controllers}, ensure that the controller is listed as \texttt{LSI Adapter SAS 3000 Series}.

Step 8  Power down the virtual machine.
Step 9  Remove the newly added virtual disk. Ensure that you select the \texttt{Remove from virtual machine} and delete files from disk option. Selecting this option purges the new disk from the data store. The controller is removed automatically.

Step 10 Change the first virtual controller to the \texttt{LSI Logic SAS setting}.
Step 11 Power on the virtual machine.
Step 12  Usually, Windows displays a message telling you to restart the virtual machine for the changes to take effect. If this message is not displayed, restart the virtual machine manually.
Pre-Installation Tasks

This chapter describes the modifications that must be made to the Cisco environment before RSM installation, specifically:

- Base system provisioning
- JTAPI client libraries installation
- Unified CM services enabling
- Simulated phones configuration
- Login pool simphone setup
- RSM user group creation
- RSM application user creation
- Supervisor login account creation
Base System Provisioning

RSM base OS installation is similar to a Peripheral Gateway (PG) installation. However, no persistent static routes to the router and logger need be entered, and any firewall setup must be done manually, as the Cisco Firewall Configuration Utility (CiscoICMfwConfig) does not currently support RSM.

If Windows firewall is used, ensure that the ports used by the VRU to communicate with RSM's VLEngine (8080/TCP) and PhoneSim (29001/TCP and 29554/TCP) are unblocked. (Refer to the “Security Settings” topic in Chapter 4, Installation, for more information.)

When provisioning the RSM server, ensure that the following guidelines are observed for the base system:

- Partition the hard drive as a single C: NTFS partition.
- Install RSM on its own dedicated server. Collocation of any other ICME component (or anything else) on the RSM server is not supported.
- Use Cisco approved anti-virus software. Note that all anti-virus software supported by Unified ICME is also supported by RSM.
- Run Microsoft's Baseline Security Analyzer (MBSA) on the server to view possible security improvements.
- Do not enable Windows automatic updates on the system, as the patch upgrade procedure for the RSM server must mirror those used for the Unified CCE and Cisco Unified ICME servers.

For additional guidelines on the base operating system, as well as services installation and configuration, refer to the Security Guide for Cisco Unified ICM/Contact Center Enterprise, located at http://www.cisco.com/en/US/products/sw/custcosw/ps1844/prod_technical_reference_list.html

JTAPI Client Libraries Installation

To install the JTAPI client libraries required to run RSM:

Step 1 Navigate to the Unified CM Administration web page.
Unified CM Services Enablement

Several Cisco-based services must be enabled for each Unified CM cluster used by RSM, as follows:

1. Log into the Serviceability Area of the Unified CM cluster.
2. Click Tools > Service Activation.
3. Enable the following services for each server in the cluster:
   - Cisco CTIManager
4. Repeat steps 1 through 3 for each cluster, as required.

Note: Usually, you may not need to configure the above steps as they are configured as part of Unified CCE installation.

Simulated Phones Configuration

Before installing RSM, you must determine how many simulated phones (also known as simphones) to assign to each Unified CM cluster. Each cluster must have simphones greater than or equal to the maximum number of agents that will be simultaneously monitored through RSM for the cluster.

In this section, you will:

- Configure the simphone device dependencies, creating a Unified CM group, RSM region, device pool, route partition, and calling search space;
- Create the simphone devices and assign MAC addresses;
• Add line DNs to the simphone devices.

The procedures describe how to create one simphone and its associated line DN. Additional simphones can be created by using Unified CM's super copy feature or by creating a batch file.

**Note**
You must be logged into the Admin interface of a Unified CM cluster before you can configure your simphones as described below.

### Simphone Device Dependencies

**To create a Unified CM group:**

1. Navigate to **System > Cisco Unified CM Groups**.
2. Click **Add New**.
3. Enter **RSMSimPhone** for the UCM group name, adding prefix or suffix naming conventions, if required (w_RSMSimPhone_3 for Western region three).
4. Assign the necessary Call Managers to the group. If you have more than one Call Manager in the cluster, select the subscribers to be part of the group but do not select the publisher.
5. Click **Save**.

**To create a simphone region:**

1. Navigate to **System > Region**.
2. Click **Add New**.
3. Enter **RSMSimPhone** for the region name, adding prefix or suffix naming conventions, if required.
4. Click **Save**.
5. Add relationships with agent phones to the regions in your environment. Note that calls between RSM simphones and agent phones can be G.711 u-law, G.711 a-law or G.729. Hence, the region can be configured for a maximum audio bit rate of 64Kbps (G.711) or 8Kbps (G.729).
To create a simphone device pool:

Step 1 Navigate to System > Device Pool.
Step 2 Click Add New.
Step 3 Enter RSMSimPhone for the device pool name, adding prefix or suffix naming conventions, if required.
Step 4 Select RSMSimPhone region from the Roaming Sensitive Settings > Region pull-down menu.
Step 5 Select the RSMSimPhone CallManager group from the Device Pool Settings > Cisco Unified Communications Manager Group pull-down menu.
Step 6 Enter the remaining parameters, as per your configuration (like date/time group, user locale and so on.)
Step 7 Click Save.

To create a simphone route partition:

Step 1 Navigate to Call Routing > Class of Control > Partition.
Step 2 Click Add New.
Step 3 Enter RSMSimPhone in the text box, adding prefix or suffix naming conventions, if required.
Step 4 Click Save.

To create a simphone calling search space:

Step 1 Navigate to Call Routing > Class of Control > Calling Search Space.
Step 2 Click Add New.
Step 3 Enter RSMSimPhone for the calling search space name, adding prefix or suffix naming conventions, if required.
Step 4 Select the route partition containing the agent phones that RSM will monitor from the Available Partitions selection box, and move them to the Selected Partitions selection box.
Simphone Device Creation

The MAC addresses you assign to your simphones must be part of a reserved range. The MAC addresses cannot be used by hardware devices, such as network interface cards (NICs).

The following procedures describe how to create simphone devices and add DN lines to them. You can also use Unified CM's BAT tool to automatically perform these tasks, if desired.

A MAC address of 00005E000001 (hexadecimal) is assigned for the first simphone, and subsequent simphones increment from this value (for example, 00005E000002, 00005E000003, and so on.). You may need to assign a different range of addresses if this range is currently being used. Any MAC address below 00005E is acceptable to use as the device name for a RSM simphone.

Note

Note that the address is in hexadecimal format; hence, the tenth phone address must be 00005E0000A, not 00005E00010.

So, if there are two RSM servers, the first server can use a range of 00005E000001 through 00005E000050, and the second server can use a range of 00005E000101 through 00005E000150, or 00005E110001 through 00005E110020, and so on.

To create simphone devices:

Step 1 Navigate to Device > Phone.
Step 2 Click Add New to create a new phone device.
Step 3 Select Cisco 7941 for the phone type, then click Next.
Step 4 Choose SIP for the device protocol, then click Next.
Step 5 The Phone Configuration page appears. Enter 00005E000001 for the MAC address.
Step 6 Enter the parameters as listed in Table 0-1. Click Save. The simphone device is created. Parameters not listed may be left to their default settings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Pool</td>
<td>RSMSimPhone</td>
</tr>
<tr>
<td>Phone Button Template</td>
<td>Standard 7941 SIP</td>
</tr>
<tr>
<td>Location</td>
<td>As per environment</td>
</tr>
<tr>
<td>Built-in Bridge</td>
<td>Off</td>
</tr>
<tr>
<td>Phone Personalization</td>
<td>Disabled</td>
</tr>
<tr>
<td>Allow Device Control through CTI</td>
<td>Yes</td>
</tr>
<tr>
<td>BLF Presence Group</td>
<td>Standard Presence Group</td>
</tr>
<tr>
<td>Device Security Profile</td>
<td>Cisco 7941 Standard Non-Secure SIP</td>
</tr>
<tr>
<td>SIP Profile</td>
<td>Standard SIP Profile</td>
</tr>
</tbody>
</table>

**Line DN to Simphone Device Association**

Each simphone device must have a line directory number (DN) created for it. In this procedure, a DN of 5040 is assigned to the first simphone device. Subsequent lines must have a range that is incrementally sequential (For example, 5041, 5042) and not used by another device.

**To add a line DN to a simphone device:**

- **Step 1** Click the **Line [1] - Add a new DN** link in the **Association Information** panel.
- **Step 2** Enter the parameters as listed in Table 0-2. Parameters marked with an asterisk (*) are optional; those not listed may be left to their default settings.
- **Step 3** Click **Save**. Your first simphone and its associated line DN is now configured.
Simphone BAT Tool Usage

Unified CM's BAT tool can be used to automatically create and add line DNs to your simphone devices, in lieu of the procedures above. This is a solid approach to consider if the number of simphones you need to create is large.

To do this, you must first import the comma-separated template (from either the RSM installation CD or installed instance of RSM), and then edit it, as applicable, in a spreadsheet application such as Microsoft Excel.

**To use the simphone BAT tool:**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Import the <em>rsmsimphones.csv</em> spreadsheet template file from either the RSM installation CD (located in the <code>extras</code> directory), or from the installed instance of RSM (located in the <code>C:\CiscoRSM\Extras</code> directory).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Open the file in a spreadsheet application, then add or remove rows in the file to match the number of simphone devices you need to create (default rows = 75).</td>
</tr>
</tbody>
</table>

### Table 0-2  Line DN Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory Number</td>
<td>5040</td>
</tr>
<tr>
<td>Route Partition</td>
<td>RSMSimPhone</td>
</tr>
<tr>
<td>CTI Control</td>
<td>Yes</td>
</tr>
<tr>
<td>Voice Mail Profile</td>
<td>No voicemail</td>
</tr>
<tr>
<td>Calling Search Space</td>
<td>RSMSimPhone</td>
</tr>
<tr>
<td>Presence Group</td>
<td>Standard Presence group</td>
</tr>
<tr>
<td>User Hold MOH Audio Source *</td>
<td>1-SampleAudioSource</td>
</tr>
<tr>
<td>Network Hold MOH Audio Source *</td>
<td>1-SampleAudioSource</td>
</tr>
<tr>
<td>Line1 on Device &lt;MAC ADDR&gt; Monitoring Calling Search Space (CSS)</td>
<td>RSM SimPhone</td>
</tr>
</tbody>
</table>
Step 3  If adding new rows, be sure to modify the data in the **Device Name** and **Directory Number 1** columns to increment sequentially from the previous row in the list for the columns (For example, 00005E000001, 00005E000002, 00005E000003, and so on, for the simphone MAC addresses, and 5040, 5041, 5042, and so on, for the line DNs).

Step 4  Verify that the **Device Pool**, **Partition 1**, **Line CSS 1** and **Monitoring Calling Search Space 1** settings are correct for your environment (refer to Tables 0-1 and 0-2, above). Note that no changes are required if you entered **RSMSimPhone** for the Simphone Device Pool, Partition, and CSS settings during your simphone configuration.

Step 5  Navigate to **Bulk Administration > Upload/Download Files**.

Step 6  Click **Add New**.

Step 7  Click **Browse** and navigate to the **rsmsimphones.csv** file, previously downloaded and modified.

Step 8  Choose **Phones** from the **Select The Target** pull-down menu.

Step 9  Select **Insert Phones - All Details** from the **Select Transaction Type** pull-down menu.

Step 10  Click **Save**. The file is uploaded to the system.

Step 11  Navigate to **Bulk Administration > Phones > Insert Phones**.

Step 12  Select **Insert Phones All Details**, and then select **rsmsimphones.csv** from the **File Name** pull-down menu.

Step 13  Enter **Insert RSMSimPhones** for the **Job Description**, and then select **Run Immediately**.

Step 14  Click **Submit**. The file is imported into the system.

Step 15  Navigate to **Bulk Administration > Job Scheduler**.

Step 16  Enter **Insert RSMSimPhones** in the **Find Jobs** text box. Ensure that **Description** is selected in the left pull-down menu, and that **begins with** is selected for the right pull-down menu.

Step 17  Click **Find**. The Insert RSMSimPhones job is now listed. Verify that the job status is either **Processing** or **Completed**.

Step 18  Once the job status is completed, review the phones you created by navigating to **Device > Phones**.

Step 19  Enter **SEP00005E** in the **Find Phone** textbox, then click **Find**.
Step 20  The simphone devices you created appear in the returned results.

**Login Pool Simphone Setup**

The first five simphone devices created for each cluster are automatically assigned to the VLEngine login pool. The login pool performs a test login to CTI OS when a caller is authenticated by RSM, to support the VLEngine authentication mechanism.

Since CTI OS logins are performed on these simphone devices, they must be associated with the pguser account on each Unified CM cluster. They must also have Cisco Unified ICME device targets created for them, as described below.

---

**Note**  Device target or Agent Targeting Rules (ATR) creation is required only for Unified CCE (Generic PG). You do not need to create device targets or ATR if you are using Cisco Unified System Contact Center Enterprise (Unified SCCE) or if the Cisco Unified CCE PG type is IPCC.

**Note**  Device Targets are deprecated from Unified CCE 9.0(1) onwards. For Unified CCE 9.0(1) and later, create the Agent Target Rules (ATR) instead. One ATR must be created for the login pool SimPhone extensions range.

---

**To associate a pguser:**

**Step 1**  Navigate to **User Management > Application User**.

**Step 2**  Click **Find** to display all application users. Locate then click the pguser account for your cluster.

**Step 3**  Select the first five simphone devices in the **Device Information > Available Devices** listbox.

**Step 4**  Click the down arrow above the box to move the devices to the **Controlled Devices** listbox. Click **Save**.
To create a Unified ICME device target:

Step 1 From the Admin Workstation (AW), click Start > All Programs > ICM Admin Workstation > Configuration Manager.

Step 2 Expand Tools, then expand Explorer Tools. Double-click Device Target Explorer.

Step 3 Click Retrieve to return a list of all existing device targets in the environment.

Step 4 Click (1) Add Device target. A blank Device Target section appears in the right side of the Device Target Explorer window.

Step 5 Enter the DN (extension number) of the first simphone line, in both the Name field and the Global address field.

Step 6 Enter /devtype CiscoPhone /dn xxxx in the Configuration parameters field, where xxxx is the DN value entered in step 5.

Step 7 Click Save. Repeat steps 5 and 6 for the remaining simphones in the VLEngine login pool. If the number of simphones associated with a cluster is less than five, you must modify the cluster's NumSimPhonesUsedForCTIOSAgentLogins RSM configuration parameter to reflect that number (default value is five.)

Tip Refer to Appendix B, Registry Keys, for information on how to modify RSM configuration parameters.

RSM User Group Creation

A RSM user group must be created for each cluster used by RSM. This provides the user with the necessary system permissions that would otherwise be available only to the CCM Super Administrator.

To add a RSM user group to a cluster:

Step 1 Navigate to User Management > User Settings > Access Control Group.

Step 2 Click Add New.

Step 3 Enter Remote Silent Monitoring in the Name field, then click Save.
Step 4 Navigate to **User Management > User Settings > Access Control Group**.

Step 5 Click **Find** to display all user groups.

Step 6 Click the **i** icon in the **Roles** column for the Remote Silent Monitoring group.

Step 7 Click **Assign Role to Group**. A new window appears.

Step 8 Click **Find** to display all group roles.

Step 9 Select the following roles:
- Standard CTI Allow Call Monitoring
- Standard CTI Allow Control of All Devices
- Standard CTI Enabled

Step 10 Click **Add Selected**. The User Group Configuration page reappears.

Step 11 Click **Save**.

---

**RSM Application User Creation**

An application user named **rsmuser** must be created on each Call Manager cluster for RSM. This user derives its permissions from the user group previously created. The rsmuser must be associated with all simphones in the cluster (with the exception of simphones in the login pool). It must also be associated with all agent phones that RSM can monitor.

Simphones in the login pool (the first five simphone devices) must be associated with the cluster’s pguser, while all other simphones not in the login pool are associated with the RSM application user.

**Note** Whenever a new non-login pool simphone or agent device is created, it must be associated with the RSM user.

To add a RSM application user to a cluster:

Step 1 Navigate to **User Management > Application User**.

Step 2 Click **Add New** to create a new application user.

Step 3 Enter **rsmuser** for the user ID.
Agent Phone Device Setup

When configuring an agent phone device to be monitored by RSM, ensure the following:

- Edit the device via the Cisco Unified CM Administration interface and enable the Built-In Bridge setting.
- Associate the device with the rsmuser, similar to the way it is associated with the pguser.
- If the Agent Phone device is configured for IPV6 Only, then make sure the Media Resource Group List (MRGL) setting in UCM Phone Device configuration, is not set to empty. For IPV6 only agent phone devices, a Media Termination Point (MTP) resource is required for RSM BiB based silent monitoring to work. Note that MRGL/MTP resource is not required for IPV4 only or Dual Stack (IPV4 and IPV6) phone devices.

Supervisor Login Account Creation

You must create a new account for each supervisor who will be using RSM, as per your current CTI OS supervisor/agent accounts.

If CTI OS authentication is used, separate supervisor agent accounts must be created in the Unified CCE environment, to allow dialed-in supervisors to log into the system.
Chapter       Pre-Installation Tasks

Supervisor Login Account Creation

Note

RSM requires numeric supervisor accounts so users can log in via the telephone. However, ICME supervisor agent accounts are also Active Directory user accounts, and there may be an Active Directory security policy that prevents numeric-only accounts. To resolve this issue, refer to Appendix B, Registry Keys, for information on how to modify the VLEngine_PassPrefix parameter.

To create a supervisor login account:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>From the Admin Workstation (AW), click Start &gt; All Programs &gt; ICM Admin Workstation &gt; Configuration Manager.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Expand Tools &gt; Explorer Tools.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Double-click Agent Explorer.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Retrieve to return a list of all existing agents in the environment.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click (1) Add Agent. A blank agent section appears in the right side of the Agent Explorer window.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click the Agent tab and enter the following:</td>
</tr>
<tr>
<td></td>
<td>a. First name and Last name of the supervisor;</td>
</tr>
<tr>
<td></td>
<td>b. Numeric Password of any length;</td>
</tr>
<tr>
<td></td>
<td>c. Value for AgentID (Peripheral number), as per the supervisor's login ID;</td>
</tr>
<tr>
<td></td>
<td>d. Select the Login Enabled checkbox.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click the Supervisor tab and enter the following:</td>
</tr>
<tr>
<td></td>
<td>a. Select the Supervisor Agent checkbox;</td>
</tr>
<tr>
<td></td>
<td>b. Select a Domain name as per the environment;</td>
</tr>
<tr>
<td></td>
<td>c. Login ID;</td>
</tr>
<tr>
<td></td>
<td>d. Password.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Click Save.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Add the supervisor to a team via the ICM Configuration Manager Agent Team List tool. If the supervisor is not added to a team, they will not be able to log in.</td>
</tr>
</tbody>
</table>
Note

RSM uses Cisco's Java-based CTI OS access library, security must be disabled on all CTI OS servers that it is configured to use. For more information, refer to the *CTI OS System Manager's Guide* for your Unified CCE release, located at: http://www.cisco.com/en/US/products/sw/custcosw/ps14/prod_installation_guides_list.html
Installation

This chapter describes how to install the RSM server from the installation CD. Information on environment variables, installed directory structure, ports used, and security settings is also provided.

The installer automatically enables the VLEngine and PhoneSim services to run at startup. Refer to Chapter 6, RSM Services, for information on how to enable, check, and restart these services.

An RSM release can be either a patch release or a full RSM server installation. Refer to the Cisco Remote Silent Monitoring Release Notes for your release to determine release instructions to follow and to see supported base install versions.

Note
Before you install RSM, you must first perform the pre-installation tasks, as described in Chapter 3.

Patch Installation

The patch installer does not support a full installation of RSM. It includes only those specific files and configurations that need to be updated or created for the patch. The patch installer is available from www.cisco.com.

Caution
During patch installation, the VLEngine and PhoneSim services are stopped then re-started once installation is complete. All monitoring sessions in progress are terminated and no new sessions can be initiated until installation is complete.
During installation, the patch installer will check the product version registry key to ensure that the base RSM installation is present on the server, and will then update the key to reflect the patch version. The patch installer creates a backup directory for all previous files, at C:\CiscoRSM\Backup_<prior version>, to facilitate rollback by the patch uninstaller, if required.

RSM Server Installation

The installer program installs the RSM application files, and the following dependencies:

- Apache Tomcat application server
- Java Service Wrapper

To install RSM on a Windows Server 2008 R2:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Partition your C: drive for 50G (minimum), in NTFS format.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Insert the RSM CD, navigate to the CD root, and run setup.exe.</td>
</tr>
<tr>
<td>Step 3</td>
<td>The RSM Setup Program starts. Follow the onscreen instructions to install RSM to the C:\CiscoRSM directory.</td>
</tr>
</tbody>
</table>

Configuration Manager

Once the installation is complete, the RSM Configuration Manager utility is launched. This utility is used to set the configuration settings for RSM, as stored in the Windows Registry.

Note Refer to Appendix B, Registry Keys, for information on how to modify these settings manually.
Configuration Settings

Mail Server settings

- **Send Email Alerts**—Check this box and fill in the text fields to allow PhoneSim and VLEngine to send email alerts when an error occurs.

Miscellaneous Configuration settings

- **Problem Call Min Duration**—Call is classified as a problem if it exceeds specified minimum seconds. (Registry key: ProblemCallMinDuration)
- **Problem Call Min Holds**—Call is classified as a problem if agent has put caller on hold more than specified number. (Registry key: ProblemCallMinHolds)
- **Max Stale Call Duration**—Maximum seconds state of a call can remain unchanged (does not trigger a CTI event) before deemed stale and removed. (Registry key: MaxStaleCallDuration)
- **CTI OS Trace Mask**—Determines verbosity level for CTI OS CIL messages logged to disk, for all CTI OS connections (both agent mode and monitor mode). Logging is written to the C:\CiscoRSM\vlengine\ctiosLogs directory. Agent mode CTI OS connections are created on demand for back-end authorization when a login to RSM is requested. Monitor mode connections are created upon startup, and remain active for the life of the application. Used to retrieve information about events in call center environment. (Registry keys: CTIOS_TraceMask)
- **VLEngine - Log Level**—String which dictates verbosity level of output to the VLEngine log file. INFO and DEBUG are the most commonly used settings. Note that changing this setting requires that you restart the VLEngine. (Registry key: VLEngine_LogLevel)
- **VLEngine - HTTP Listen Port**—Port number VLEngine listens to for incoming HTTP requests. Default is 8080. (Registry key: VLEngine_HTTPListenPort)
- **PhoneSim - HTTP Listen Port**—HTTP port number PhoneSim listens to for incoming HTTP agent monitor session requests. Default is 29001. (Registry key: PhoneSim_HTTPListenPort)
• **PhoneSim - RTSP Listen Port**—RTSP port number PhoneSim listens to for incoming RTSP agent monitor session requests. Default is 29554. (Registry key: PhoneSim_RTSPListenPort)

• **PhoneSim - Audio Buffer Len To VRU**—Bytes of data PhoneSim will buffer before transmission to VRU Voice browser. Used when VRU voice browser receives agent audio data from PhoneSim. Set to 160 for an IP IVR environment, and 480 for a CVP environment. If both IP IVR and CVP are used with the RSM server, set to 480. (Registry key: PhoneSim_AudioBufferLenToVRU)

• **PhoneSim - Log Level**—String which dictates verbosity level of output to the PhoneSim log file. INFO, DEBUG, and TRACE are the most commonly used settings. Note that changing this setting requires that you restart the PhoneSim. (Registry key: PhoneSim_LogLevel)

• **PhoneSim - Audio Encoding**—Data encoding method PhoneSim uses for requested audio data. Must be set to one of the following values, below. (Registry key: PhoneSim_AudioEncoding)
  - wav-ulaw (for IP IVR HTTP G.711 u-law streaming)
  - wav-alaw (currently not supported)
  - wav-g729 (currently not supported)
  - rtsp-ulaw (for CVP RTSP G.711 u-law streaming)
  - rtsp-alaw (for CVP RTSP G.711 a-law streaming)
  - rtsp-g729 (for CVP RTSP G.729 streaming)
  - wav-pcm (deprecated, no longer supported)
  - au-ulaw (deprecated, no longer supported)
  - au-alaw (currently not supported)
  - au-pcm (deprecated, no longer supported)

• **PhoneSim – Do HTTP Chunked Transfers**—Enables PhoneSim to transmit HTTP chunking of audio data, from VRU node request. Must be set to Yes. (Registry key: PhoneSim_DoHTTPChunkedTransfers)

• **PhoneSim - Host Data IP**—Set to the IP address of the RSM server. This is the IP address the PhoneSim server uses to contact other computers in network. Useful when there are multiple NIC machines in network. If blank, IP address of primary network interface is used. This is also the IP address the VLEngine server uses to contact other computers in the network. Useful
for multi-NIC machines. If blank, IP address of primary network interface is used. This parameter is important in a large deployment, where VLEngine and PhoneSim are on different servers, and is the address that PhoneSim uses to communicate with VLEngine. (Registry keys: PhoneSim_HostDataIP and VLEngine_HostDataIP)

Define Cluster Configuration Settings

These settings are used to configure each UCM cluster with the agents to be monitored by RSM.

- **ClusterN_Name**—Alphanumeric name for the cluster, for descriptive purposes. (Registry key: ClusterN_Name)

- **# Login Pool Simphones**—Number of simphones in the login pool. Set to 5. Refer to the “Login Pool Simphone Setup” topic in Chapter 3, Pre-Installation Tasks, for more information. (Registry key: ClusterN_NumSimPhonesUsedForCTIOSAgentLogins)

- **# Monitor Pool Simphones**—Maximum simultaneous, real-time monitor requests the platform can handle for the cluster. This should equal the number of simphones in the cluster that are not used in the login pool. For example, if you want to have 40 concurrent monitoring sessions, you must assign 45 simphones in the cluster, with 40 used for monitoring and 5 reserved for login. (Registry key: ClusterN_MaxNumRequests)

- **Peripheral ID**—Peripheral instrument ID used to denote the cluster in Unified ICME, for example, the ICME peripheral ID of the PIM for the UCM cluster. (Registry key: ClusterN_PeripheralID)

- **JTAPI Username**—JTAPI application user username used by RSM to connect to the specified UCM servers in the cluster. Refer to the “RSM Application User Creation” topic in Chapter 3, Pre-Installation Tasks, for more information. (Registry key: ClusterN_JTAPI_UserName)

- **JTAPI Password**—JTAPI application user password used by RSM to connect to the specified UCM servers in the cluster. Refer to the “RSM Application User Creation” topic in Chapter 3, Pre-Installation Tasks, for more information. (Registry key: ClusterN_JTAPI_Password)

- **Start MAC Range**—First MAC address to use for auto-generation of MAC range for simphone device names. For example, if 000000100010 is specified, the range would proceed with SIP000000100010, SIP000000100011, SIP000000100012, and so forth. MAC ranges must not
overlap between clusters. Note that the 0000:5Exx range is normally reserved for public use, as per IANA standards. Refer to the “Simulated Phones Configuration” topic in Chapter 3, Pre-Installation Tasks, for more information. (Registry key: ClusterN_PhoneSim_StartMACRange)

- **Start Line Num Range**—First extension number to use for auto-generation of line extension range for simphone DNs. Line extension ranges must not overlap between clusters. Correlates to ClusterN_PhoneSim_StartMACRange value. If 1000 is specified, and 000000100010 is ClusterN_PhoneSim_StartMACRange, then the first simphone device name generated will be SIP000000100010 and will have line extension 1000; SIP000000100011 will have line extension 1001; SIP000000100012 will have line extension 1002, and so forth. Refer to the “Simulated Phones Configuration” topic in Chapter 3, Pre-Installation Tasks, for more information. (Registry key: ClusterN_PhoneSim_StartLineNumRange)

- **SIP Transport**—Tells PhoneSim how to conduct the SIP transmission with Contact Manager for the cluster, via TCP or UDP. Must be set to tcp. (Registry key: ClusterN_PhoneSim_SIPTransport)

### Call Manager Configuration Settings

- Enter information for the Call Manager UCM server in the cluster (as well as any backup servers) that RSM communicates with. (Registry keys: ClusterN_Vlengine_CM1_Hostname et al, ClusterN_PhoneSim_CM2_CM2_Port et al, and so on).

### Unified CCE CTI or CTIOS Configuration Settings

RSM 10.x and higher supports integration with Unified CCE via both CTI or CTI OS.
CTI (GED-188) integration with Unified CCE allows for the following:

- Pure Finesse installations without CTI OS servers;
- Support for 2000 active agents and 12000 configured agents, per PG pair, when RSM is configured with CTI integration;
- Support for 2000 active agents and 8000 configured agents, when RSM is configured with CTI OS integration using Java CI;
Note

If CTI OS monitor more connections exceeds the maximum allowed (two), then CTI integration can be used to bypass this limit.

VLEngine and PhoneSim Services

The installer automatically enables the VLEngine and PhoneSim services to run at startup, after you restart your machine. If desired, you can select to run the services after installation.

Refer to Chapter 6, RSM Services, for information on how to start and stop the RSM services.

Directory Structure

RSM creates the following directories with the following files upon installation:

<table>
<thead>
<tr>
<th>Directory</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:\WINDOWS\java\lib</td>
<td>JTAPI client library files</td>
</tr>
<tr>
<td>C:\Program Files\JTAPITools</td>
<td>Cisco JTAPI client library sample applications and documentation</td>
</tr>
<tr>
<td>C:\CiscoRSM\phonesim\logs</td>
<td>PhoneSim log files</td>
</tr>
<tr>
<td>C:\CiscoRSM\docs</td>
<td>RSM documentation</td>
</tr>
<tr>
<td>C:\CiscoRSM\vlengine\bin</td>
<td>Runtime RSM dependencies: ICE_JNIRegistry.DLL</td>
</tr>
<tr>
<td>C:\CiscoRSM\vlengine\logs</td>
<td>VLEngine log files</td>
</tr>
<tr>
<td>C:\CiscoRSM\vlengine\lib</td>
<td>RSM dependency JARs:</td>
</tr>
<tr>
<td></td>
<td>JavaCIL-7.2.jar - CTI OS</td>
</tr>
<tr>
<td></td>
<td>jtds-1.2.jar - JTDS (MS SQL connectivity)</td>
</tr>
<tr>
<td></td>
<td>registry.jar - ICE Registry (Windows regedit)</td>
</tr>
</tbody>
</table>
Port Numbers Used

RSM uses the following TCP and UDP ports for the following connections:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>TCP in</td>
<td>HTTP connections to VLEngine from VRU</td>
</tr>
<tr>
<td>8443</td>
<td>TCP in</td>
<td>HTTPS connections to VLEngine from VRU</td>
</tr>
<tr>
<td>29001</td>
<td>TCP in</td>
<td>HTTP connections to PhoneSim from VRU</td>
</tr>
<tr>
<td>29554</td>
<td>TCP in</td>
<td>RTSP connections to PhoneSim from VRU</td>
</tr>
<tr>
<td>5060</td>
<td>TCP/UDP out</td>
<td>PhoneSim SIP communication with Unified CM</td>
</tr>
<tr>
<td>16384-32767</td>
<td>UDP in/out</td>
<td>PhoneSim RTP communication with agent phone endpoints</td>
</tr>
<tr>
<td>42027 and 43027</td>
<td>TCP out</td>
<td>VLEngine communication to CTI (GED-188) server</td>
</tr>
<tr>
<td>42028</td>
<td>TCP out</td>
<td>VLEngine communication to CTI OS servers</td>
</tr>
<tr>
<td>2789</td>
<td>TCP out</td>
<td>VLEngine communication to Unified CM (JTAPI)</td>
</tr>
<tr>
<td>33161</td>
<td>UDP in</td>
<td>RSM SNMP Agent</td>
</tr>
</tbody>
</table>
Environment Variables

After installation, verify the following environment variable settings:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Navigate to Start &gt; Control Panel &gt; System &gt; Advanced &gt; Environment Variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Verify the following values for these system variables:</td>
</tr>
<tr>
<td></td>
<td>• RSM_HOME = C:\CiscoRSM\</td>
</tr>
<tr>
<td></td>
<td>• CATALINA_HOME = C:\CiscoRSM\vlengine\tomcat</td>
</tr>
</tbody>
</table>

Security Settings

This section describes host and network level security considerations for the integration of RSM into a Cisco environment, after RSM is installed.

Host Level Security

Host level RSM security can be hardened and configured using Windows Server Windows 2008 Firewall as described below.

Windows Security Hardening

It is highly recommended that the ICM recommended Windows Security Hardening policies be applied to the RSM server.

To do this, copy the ICM security hardening script (located in the C:\CiscoUtils\SecurityTemplates directory of any PG in the environment) to the same directory on the RSM server, creating the directory if necessary. The script can then be invoked from the RSM server.

Windows 2003 or 2008 Firewall

Windows Firewall may be manually enabled and used on the RSM server, if desired. Exceptions must be created for ports 8080, 29001, 29554, and 5060. (Refer to Table 0-2, Port Numbers Used, for RSM port and protocol usage when creating exceptions.)

If your VLEngine and PhoneSim configuration uses ports other than those listed, be sure to create firewall exceptions for those ports.

Note: Currently, the Cisco Unified Contact Center Security Wizard’s Windows Firewall tool is not programmed to automatically create exceptions for RSM. RSM will not work properly if this tool is used to enable Windows Firewall on the RSM server.

Network Level Security

Currently, network level IP security (IPsec) encryption is the only supported method for securing high-level protocols between RSM and other Unified CCE components.


ICM allows IPsec policies to be set up manually (via the Microsoft 2003 or 2008 Server security tools), or via the Cisco Network Isolation Utility. Note that RSM supports only manually configured peer-to-peer IPsec tunnels and does not support the Cisco Network Isolation Utility.

IPsec for secure CTI, CTI OS, and JTAPI communication is described below.
Secure CTI or CTI OS Communication Encryption with IPsec

To encrypt CTI or CTI OS communications between the RSM server and a PGCG/CTI or CTI OS server, an IPsec tunnel may be configured. If the environment has multiple PGs that the RSM server is configured to use, this approach may be used with each PG or only certain ones (for example, only PGs over a certain insecure network connection).

Secure JTAPI Communication Encryption with IPsec

As CTI or CTI OS communications can be encrypted, so can JTAPI communications between RSM and the UCM servers. RSM and UCE both support secure IPsec tunnels for securing JTAPI traffic.

The UCE IPsec configuration must be configured from the UCE OS Administration Web interface. Refer to Chapter 6 of the Cisco Unified Communications Operating Systems Administration Guide for your Unified CM release, located at

This chapter describes the integration of the RSM prompts and callflow script with the Voice Response Unit (VRU). The VRU determines how RSM responds to caller-entered data (press 1 to continue, press # to cancel, and so on).

IP IVR 8.0(x), 8.5(x), 9.0(x), or 10.0(x), or CVP 8.0(x), 8.5(x), 9.0(x) 10.0(x), or 11.0(x) may be used as the VRU, as per your environment.

Figure 5-1 illustrates the default call flow script.
Figure 0-1  Default Call Flow Script
Continuous Monitoring of Agent Calls

There are two callflow scripts that you can use to continually monitor agent’s calls—Unified CVP and IP IVR.

Note

Monitoring a new call from the beginning is implemented by a polling mechanism in both Unified CVP and IP IVR. RSM establishes a monitoring (BiB) call with the agent phone only after a call is established. Depending on the polling frequency configuration and other network latency factors, a portion of the beginning of the call may be clipped, from 0.25 seconds up to two (2) seconds.

Unified CVP Callflow

The Unified CVP script uses RTSP streaming (with the MonitorAgent_MM and MonitorAgent_MS custom script elements) and, by default, camps on an agent’s call and continues monitoring the session even after the call ends or is put on hold. (A 500ms polling on the server side ensures no overhead is incurred in Unified CVP VXML session memory.) The Unified CVP script breaks out of the camped monitoring session only when the supervisor presses a DTMF key option. For example, the # key to return to main menu, 2 to monitor next call, and so on. The supervisor presses the key option irrespective of the option selected to land on the call.

Continuous monitoring is possible only after the supervisor starts monitoring an agent, and only if the agent is in a talking state and not on hold. The same holds true if the supervisor breaks out of a monitoring session by pressing a DTMF key option. For example, the * for instructions, 1 for call information, and so on. Once a supervisor breaks out of a monitoring session, they can resume monitoring that agent only if the agent is in a talking state.

IP IVR Callflow

RTSP streaming is not supported in the IP IVR callflow script. Instead, the sample IP IVR callflow script template supports continuous monitoring (camping) of a specific agent's calls via menu option 1 (one).
In IP IVR, continuous monitoring consumes IVR execution steps as it polls to detect the start of a new call. Depending on how the polling frequency is configured, the IP IVR script may reach the maximum allowed execution steps and terminate the session.

IP IVR Integration

RSM installs a basic IP IVR call flow script, which is designed to meet the majority of VRU needs without modification. Cisco Unified CM or Unified ICME must be configured to route calls to the RSM call flow on the IP IVR Server.

Refer to the following documents for more information:


Currently, only IP IVR systems with the G.711 codec are enabled. G.729 is not supported.

Upload RSM Prompts

RSM prompts are the decision tree selections that a caller hears and responds to when they dial into the system. They must be uploaded into the system for IP IVR, as described below.

To upload RSM prompts:

**Step 1** Navigate to Applications > Prompt Management.
Step 2 Select the en_US directory.

Step 3 Click the Create New Folder link. A new window appears.

Step 4 Enter VL for the Folder Name.

Step 5 Click Create. The Prompt Management page refreshes, and includes the newly created VL directory.

Step 6 Click the VL directory.

Step 7 Click the Upload New Prompts link. A new window appears.

Step 8 Click Browse and navigate to C:\CiscoRSM\vlengine\callflows.

Step 9 Select the prompts.zip file then click Upload.

Step 10 The file is uploaded to the server, populating the directory with the RSM system prompt files.

**IP IVR Integration (non-Unified ICME)**

To handle calls transferred directly from Unified CM into RSM, you must install the call flow script and add RSM as a new application on IP IVR.

**To install the call flow script:**

Step 1 Log into IP IVR from the RSM server.

Step 2 Navigate to Applications > Script Management.

Step 3 Click the Upload New Scripts link. A new window appears.

Step 4 Click Browse and navigate to C:\CiscoRSM\vlengine\callflows\ipivr.

Step 5 Select the RSM.aef script then click Upload.

Step 6 The script now appears in the Script Repository.

**To add RSM as a new application:**

Step 1 Navigate to Applications > Application Management.

Step 2 Click the Add a New Application link.

Step 3 Select Cisco Script Application for the application type, then click Next.
Step 4 Enter **RSM** for the script name. (Default values can be used for Description, ID, and Enabled fields.)

Step 5 Enter a numeric value in the **Maximum Number of Sessions** field, as per your environment. The exact value is contingent upon factors such as hardware used, IP IVR server capability, Cisco platform, and so on. Set this value to the maximum number of users that are expected to dial into the environment, and ensure this figure does not exceed the value of Max Num Requests configuration value. (refer to “Configuration Manager” topic in Chapter 4, Installation).

Step 6 Select **RSM.aef** from the **Script** pull-down menu. The page refreshes, allowing you to enter custom values for the script parameters as follows:

- **VRU_VL1_VLEngine_IP**—IP address of the RSM server where VLEngine is configured.
- **VRU_VL1_VLEngine_Port**—Default, unless the value of the VLEngine_HTTPListenPort setting has been changed in the Windows Registry Editor (see Appendix B, Registry Keys).
- **VRU_VL1_PhoneSim_Port**—Default, unless the value of the PhoneSim_HTTPListenPort setting has been changed in the Windows Registry Editor (see Appendix B, Registry Keys).
- **MAX_NUM_LOGIN_ATTEMPTS**—Number of invalid login attempts allowed before the system rejects the call. Default value is three (3).
- **TTS_ENABLED**—Set to true to enable text-to-speech (TTS) functionality. TTS functionality is then allowed for certain portions of the call flow in lieu of the default pre-recorded prompts. For example, it is allowed for agent listing, information about conversations currently being monitored and so on.
- **VRU_VL1_PhoneSim_IP**—IP Address of RSM server where PhoneSim service configured.
- **supervisorLoginTimeoutinMS**—Time allowed for CTIOS based supervisor login step (CheckUserCredentials) to complete validating the password. This value is specified in milliseconds and defaults to 15000. The default 15 seconds allows the login validation to take up to 15 seconds in scenarios where the VLengine connects to a remote (DR site) CTIOS server. This value should be less than the default application value specified in httpRequestTimeoutinMS properties.

Step 7 Press **Add**. The application is created.
IP IVR Integration (Unified ICME)

To handle calls transferred directly from Unified ICME into RSM, you must install the call flow script on IP IVR.

To install the call flow script:

- **Step 1** From the IP IVR web interface, click the Subsystems > ICM link.
- **Step 2** Click the ICM VRU Scripts link.
- **Step 3** Click the Add a new VRU Script link.
- **Step 4** Select RSM.aef for the VRU Script Name.
- **Step 5** Select RSM.aef for the script.
- **Step 6** Click Add. The script is added to Unified ICME environment.
- **Step 7** Navigate to the Unified ICME Routing.icms script.
- **Step 8** Open and modify the script to suit your environment, as required. For example, you may need to associate the script to the appropriate call types in the CallType Manager.

Unified CVP Integration

The procedure provided for RSM integration with Unified CVP is designed for a basic CVP configuration. Before integrating RSM with Unified CVP:

- Ensure that your CVP VXML Server software is installed and running at C:\Cisco\CVP\VXMLServer;
- Ensure that CVP Unified Call Studio is installed on the user’s desktop;
- Ensure that you have the appropriate level of administrator’s access to the CVP VXML Server, VXML gateway, and media server components.
Upload RSM Prompts

RSM prompts are the decision tree selections that a caller hears and responds to when they dial into the system. They must be uploaded into the system for CVP, as described below.

To upload RSM prompts:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Navigate to your media server directory, at C:\inetpub\wwwroot\en-us, and create a new directory labeled VL.</td>
</tr>
<tr>
<td>2</td>
<td>Navigate to C:\CiscoRSM\callflows and unzip the contents of the prompts.zip file into the VL directory.</td>
</tr>
<tr>
<td>3</td>
<td>Right-click the VL directory, then click Properties.</td>
</tr>
<tr>
<td>4</td>
<td>Click the Security tab, then click Advanced.</td>
</tr>
<tr>
<td>5</td>
<td>Select Allow inheritable permissions from the parent to propagate to this object and all child objects.</td>
</tr>
<tr>
<td>6</td>
<td>Click OK.</td>
</tr>
<tr>
<td>7</td>
<td>Open your web browser and navigate to the VL directory of your media server, http://&lt;SERVER IP&gt;/en-us/VL. Ensure that the prompt files are listed and accessible.</td>
</tr>
</tbody>
</table>

CVP Call Flow Integration

To handle calls transferred directly from CVP into RSM, you must install the call flow script on CVP.

To install the call flow script:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Navigate to the C:\CiscoRSM\callflows\vxml-cvp folder on the RSM server.</td>
</tr>
<tr>
<td>2</td>
<td>Copy all the contents from the folder to a directory that can be accessed by the desktop machine hosting CVP Unified Call Studio software (for example, C:\RSM-Callflow).</td>
</tr>
<tr>
<td>3</td>
<td>Open CVP Unified Call Studio and import the RSM Project into your workspace.</td>
</tr>
</tbody>
</table>
Step 4  Right-click **RSM Project** in the Navigator pane then click **Properties**.
Step 5  Click **Call Studio > Audio Settings**.
Step 6  Navigate to the **Default Audio Path URI** text field and enter the VL directory on your media server, for example, **http://10.1.110.110/en-us/VL**.
Step 7  Click **OK**.
Step 8  Navigate to the **DoLogin** page in the Callflow Navigator pane for RSM Project.
Step 9  Select the **SetBaseSessionVars** element then click the element’s **Data** tab.
Step 10 Modify the **VoiceXML Variable settings** for RSM Project as follows:

- **VL_VLENGINE_HOSTNAME**—Hostname or IP address of server running VLEngine service.
- **VL_VLENGINE_PORT**—Port number used by VLEngine service. Usually port 8080.
- **VL_PHONESIM_HOSTNAME**—Hostname or IP address of server running PhoneSim service. Usually same as **VL_VLENGINE_HOSTNAME**.
- **VL_PHONESIM_HTTP_PORT**—HTTP port number used by PhoneSim service. Usually port 29001.
- **VL_PHONESIM_RTSP_PORT**—RTSP port number used by PhoneSim service. Usually port 29554.
- **CVP_MEDIASVR_HOSTNAME**—Hostname or IP address of CVP media server with RSM prompts, as found in the **/MediaFiles/en-us/VL** directory.
- **CVP_MEDIASVR_PORT**—Port number of media server daemon. Usually port 80.
- **CVP_MEDIASVR_PATH**—Points to the URL path where RSM prompts are uploaded (for example, **/MediaFiles/en-us/VL**). NOTE: This path, and the Path component specified in the RSM CVP project's Audio Settings - Default Audio Path URL text field, must be identical.
- **CVP_VXMLSVR_HOSTNAME**—Hostname or IP address of server running VXML server.
- **CVP_VXMLSVR_PORT**—Port number used by VXML server.
- **MAX_NUM_LOGIN_ATTEMPTS**—Maximum number of failed login attempts allowed before RSM disconnects user.
- **MAIN_MENU_TIMEOUT**—Time allowed for users to pick one of the main menu options. Default = 12 seconds (12s).
• **SUPERVISOR_LOGIN_TIMEOUT**—Time allowed for CTIOS-based supervisor login step (CheckUserCredentials) to complete validating the password. This value is specified in milliseconds and defaults to 15000. The default 15 seconds allows the login validation to take up to 15 seconds in scenarios where the VLengine connects to a remote (DR site) CTIOS server. This value should be less than the default application fetchtimeout value specified in RSM project properties.

• **MONITOR_NEWEST_REPOLL_PERIOD**—Time, in seconds or milliseconds, for monitoring new agent conversations from the beginning. This polling period default is 500ms and can be reduced further to minimize the duration clipped at the beginning of a new call, to values less than one (1) second. Default units is seconds (s), and you can specify milliseconds (ms) as well. For example, specify 1s for one second, 250ms for 250 milliseconds, and so on.

• **MONITOR_NEWEST_PROMPT_TO_END_EVERYN**—Number of pollings before progress prompt is stated to caller (“System is still busy. Press any key to return to main menu or continue to hold.”) Normally set to 24.

**Step 11** Click **Save** to save the RSM Project.

**Step 12** Run a basic test call flow to ensure the system is functioning properly. Customize the call flow script, if desired.

**Call Flow Deployment**

Once the call flow script is installed on CVP, it must be deployed for use by CVP VXML Server.

**To deploy the call flow script:**

**Step 1** Open CVP Unified Call Studio.

**Step 2** Right-click **RSM Project** in the Navigator pane, then click **Deploy**.

**Step 3** Select **Cisco Unified CVP Home** for **Deploy Destination**.

**Step 4** Enter your VXMLServer home directory in the text box, C:\Cisco\CVP\VXMLServer.

**Step 5** Click **Finish**. The call flow script is deployed to the CVP server.
Step 6  Close CVP Unified Call Studio.

Step 7  Navigate to the C:\Cisco\CVP\VXMLServer\applications\RSM\admin directory, then double-click the deployApp.bat file. The batch file is executed in a separate DOS window.

Step 8  Enter Y for yes when prompted to deploy the application. The call flow script is now accessible from the CVP VXML Server.

Step 9  Configure the appropriate micro-applications on your VXML gateway (VG dial peers, Unified Communications Manager route patterns, and so on) so they can access the script. Refer to the Unified CVP configuration documentation for more information, located at http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_installation_and_configuration_guides_list.html

Call Flow Troubleshooting


CVP Unified Call Studio Logging

CVP Unified Call Studio contains the VXML output that the VXML Server produces. You can enable additional logging and debugging of RSM in CVP Unified Call Studio, if desired.

To enable CVP Unified Call Studio logging:

Step 1  Open RSM Project in CVP Unified Call Studio, then navigate to General Settings.

Step 2  Select Loggers. A new window appears.

Step 3  Add the com.audium.logger.application.debug.ApplicationDebugLogger to the project.

Step 4  Click OK.

**VXML Gateway Setup Notes**

RSM is supported on any VXML gateway model and version of Cisco Internetwork Operating System (IOS) that CVP 8.0(1), CVP 8.5(1), CVP 9.0(1), CVP 10.0(1), or CVP 11/0(1) supports.

**Note**

For RTSP streaming, IOS version must be release 15.0(1)M and later. However, newer versions of CVP may have higher minimum versions.

**To set up the VXML gateway for use with RSM:**

- Ensure that IVR prompt streaming is not enabled for RTSP (since CVP RSM callflow script uses RTSP streaming) by issuing the IOS command `no ivr prompt streamed http`, which allows RSM to be deployed on a shared VXML gateway with CVP.

**Example Configuration**

The VXML gateway configuration will vary from system to system. A basic example configuration using a H.323 dial peer is shown below.

```
http client cache memory pool 15000
http client cache memory file 500
http client cache refresh 864000
no http client connection persistent
http client connection timeout 60
http client response timeout 30
ivr prompt memory 8000
no ivr prompt streamed http

service RSM flash:CVPSelfService.tcl
paramspace english language en
paramspace english index 0
paramspace english location flash
```
Disabling Supervisor Team Structure or User Authentication

RSM has built-in user authentication mechanisms that integrate with the agent and supervisor hierarchal team structure of Unified CCE.

It may be desired to edit the call flow script and disable these mechanisms, to allow any supervisor to access any agent, all agent access for anyone who dials into the system, third-party authentication, and so on.

**To disable RSM's Supervisor Team Structure Membership (optional):**

**Step 1**  Open the call flow script using the CRS Editor.

---

```plaintext
paramspace english prefix en
param CVPPrimaryVXMLServer 10.1.110.110
param CVPPBackupVXMLServer 10.1.110.110
param CVPSelfService-app RSM
param CVPSelfService-port 7000

dial-peer voice 12345 voip
description ICM VRU label
translation-profile incoming block
service rsm
voice-class codec 1
incoming called-number 12345
dtmf-relay rtp-nte h245-signal h245-alphanumeric
no vad
```

**Note**


Disabling Supervisor Team Structure or User Authentication

Step 2 Change the SupervisorID parameter to zero (0) for all instances of the canMonitorAgentID, getCallToMonitor, and getAgentList API calls.

Step 3 Edit the Create URL Document parameters, as appropriate.

Step 4 Modify the supervisorID entry in the Parameters table to zero (0).

To disable RSM’s user authentication (optional):

Step 1 Open the call flow script using the CRS Editor.

Step 2 Remove the DoLogin section in the script, up to (but not including) the MainMenu section.

Step 3 If you are using a third-party authentication tool, modify the MainMenu section of the script as per the tool’s requirements. In most cases, the UserID and PIN information will remain the same, but the Create URL Document and Voice Browser parameters will need to be deleted.

Step 4 Remove all instances of the canMonitorAgentID API call, including the Create URL Document, Voice Browser, and Switch parameters. If you are using a third-party authentication tool, enter the proper parameters to ensure the caller can monitor the agent ID, as entered.

Step 5 Change the SupervisorID parameter for any instances of the getCallToMonitor and getAgentList API calls to zero (0), editing Create URL Document parameters as appropriate and modifying the supervisorID entry in the Parameters table to zero (0).

Step 6 If you are using a third-party authentication tool, you may need to run the returned text through filtering and checks, as required by the tool.

Note Refer to Appendix A, API Extensions, for detailed information on the API calls described above.
This chapter describes how to enable the two RSM services, Cisco RSM (Tomcat-VLEngine) and Cisco RSM (PhoneSim), so that they run upon startup. (The installer automatically enables the VLEngine and PhoneSim services to run at startup.)

Information on how to remove RSM from your Cisco environment, as well as all of its settings and components, is also provided.

RSM Enable, Check, Restart

The following procedures describe how to enable VLEngine and PhoneSim, ensure that RSM is properly installed and running, and restart the RSM services, if necessary.

To enable the VLEngine and PhoneSim services:

- **Step 1** Navigate to **Start > Settings > Control Panel**.
- **Step 2** Click **Administrative Tools**, then click **Services**.
- **Step 3** Right-click the **Cisco-RSM-VLEngine** service, then select **Properties**.
- **Step 4** Select **Automatic** from the Startup type pull-down menu.
- **Step 5** Click **Start** for Service status.
- **Step 6** Click **OK** to save your settings. The service will now start upon server startup.
Removing RSM

The procedures in this section describe how to remove RSM and its components from your IP IVR or CVP environment, if necessary.

IP IVR Removal

For each IP IVR VRU with RSM integration, you will need to remove the call flow script and the RSM prompts.

To remove RSM and the call flow script in a non-Unified ICME environment:

Step 1 Log into the IP IVR web interface.

To ensure RSM is installed and running properly:

Step 1 Navigate to Start > Programs > Administrative Tools > Services.
Step 2 Verify that the service Cisco-RSM-VLEngine is running.
Step 3 Verify that the service Cisco-RSM-PhoneSim is running.
Step 4 Right-click Start then select Task Manager.
Step 5 Select the Processes tab. Verify that the java.exe and phonesim.exe processes for the VLEngine are running.

To restart the RSM services:

Step 1 Navigate to Start > Settings > Control Panel.
Step 2 Click Administrative Tools, then click Services.
Step 3 Right-click the Cisco-RSM-VLEngine service, then click Restart.
Step 4 Right-click the Cisco RSM - PhoneSim service, then click Restart.
Step 2 Navigate to Applications > Application Management.

Step 3 Click the trash can icon for the RSM application, then click Yes when prompted to delete the associated trigger.

Step 4 Navigate to Applications > Script Management.

Step 5 Click the trash can icon for the RSM.aef script, then click OK.

To remove the RSM call flow script in a Unified ICME environment:

- Step 1 Log into the IP IVR web interface.
- Step 2 Click the Subsystems > ICM link.
- Step 3 Click the ICM VRU Scripts link.
- Step 4 Remove the RSM VRU script.

To remove RSM prompts:

- Step 1 Log into the IP IVR web interface.
- Step 2 Navigate to Applications > Prompt Management.
- Step 3 Select the en_US directory.
- Step 4 Select the Delete Folder link.
- Step 5 Select VL from the drop-down list, then click Delete.

CVP Removal

For each CVP VRU with RSM integration, you will need to remove the call flow script, the call flow project files, and the RSM prompts.

To remove the RSM call flow script

- Step 1 Run the updateApp.bat script, located in the C:\Cisco\CVP\VXMLServer\applications\RSM\admin directory.
- Step 2 Delete the C:\Cisco\CVP\VXMLServer\applications\RSM directory when prompted.
To delete the RSM call flow project files:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Open the RSM project in VoiceXML Studio,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Right-click on the project's root icon in the Navigator pane, then select Delete.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Delete both the project and the project files.</td>
</tr>
</tbody>
</table>

To remove RSM prompts:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Navigate to C:\Cisco\CVP\MediaFiles\en-us\VL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Delete the directory and all of its contents.</td>
</tr>
</tbody>
</table>

RSM Application Removal

To remove the RSM application from your Cisco environment:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Click Start &gt; Control Panel &gt; Add or Remove Programs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Follow the prompts to remove Cisco Remote Silent Monitoring. All RSM-related service entries will also be deleted.</td>
</tr>
</tbody>
</table>

Unified ICME Removal

In a Unified ICME environment, you will need to remove all RSM-specific supervisor login accounts.

To remove the supervisor login accounts for Unified CCE:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>From the Admin Workstation (AW), click Start &gt; All Programs &gt; ICM Admin Workstation &gt; Configuration Manager.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Expand Tools &gt; Explorer Tools.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Double-click Agent Explorer.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Retrieve to return a list of all existing agents in the environment.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click any account in the list.</td>
</tr>
</tbody>
</table>
Step 6 Click Multiple below the account listing. The Delete Multiple window appears.
Step 7 Select the RSM-specific agents previously created, then click Delete.
Step 8 Click OK to return to the Agent Explorer, then click Save.

Unified CM Removal

To remove RSM from your Unified CM environment, you must perform all of the following tasks for each Unified CM cluster that RSM is installed on.

To disassociate all simphone devices from pguser:

Step 1 Log into the Unified CM web interface.
Step 2 Navigate to User Management > Application User.
Step 3 Click Find to display all application users. Locate then click the pguser account for your cluster.
Step 4 Select the simphone devices in the Device Information > Controlled Devices listbox.
Step 5 Click the up arrow to move the devices to the Available Devices listbox.
Step 6 Click Save. Repeat steps 1 through 5 for each cluster.

To remove the RSM application user account:

Step 1 Navigate to User Management > Application User.
Step 2 Click Find. A list of application users is displayed.
Step 3 Select the rsmuser account.
Step 4 Click Delete Selected. The account is deleted.

To remove all simphone devices:

Step 1 Navigate to Device > Phone.
Step 2 Select Device Name and begins with search criteria, then enter 00005E in the Find textbox.
To remove the RSM SimPhone calling search space:

Step 1  Navigate to Call Routing > Class of Control > Calling Search Space.
Step 2  Enter the name of the RSM calling search space previously created (for example, RSMSimPhone) then click Find. (If you do not remember the name of the calling search space, click Find and search for the entry from the unfiltered results.)
Step 3  Select the name then click Delete Selected. The calling search space is deleted.

To remove the RSM SimPhone partition:

Step 1  Navigate to Call Routing > Class of Control > Partition.
Step 2  Enter the name of the RSM partition previously created (for example, RSMSimPhone) then click Find. (If you do not remember the name of the partition, click Find and search for the entry from the unfiltered results.)
Step 3  Select the name then click Delete Selected. The partition is deleted.

To remove the RSM SimPhone device pool:

Step 1  Navigate to System > Device Pool.
Step 2  Enter the name of the RSM device pool previously created (for example, RSMSimPhone) then click Find. (If you do not remember the name of the device pool, click Find and search for the entry from the unfiltered results.)
Step 3  Select the name then click Delete Selected. The device pool is deleted.

To remove the RSM SimPhone region:

Step 1  Navigate to System > Region.
Step 2  Enter the name of the RSM region previously created (for example, RSMSimPhone) then click Find. (If you do not remember the name of the region, click Find and search for the entry from the unfiltered results.)
Step 3  Select the name then click Delete Selected. The region is deleted.
CHAPTER 8

Troubleshooting

This chapter provides information on the RSM log files, and provides case scenarios and troubleshooting guidance for system errors and other issues. Most troubleshooting issues will be related to JTAPI, CTI, or CTI OS, and can be easily fixed by an experienced Cisco Enterprise Call Center Administrator.

Log Files

RSM maintains several troubleshooting logs for the VLEngine and PhoneSim services. Note that if you change the VLEngine or PhoneSim Log Level parameters, you must restart the VLEngine or PhoneSim, respectively.

Table 0-1 Log Files

<table>
<thead>
<tr>
<th>Log File</th>
<th>Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLEngine Logs</td>
<td>vlengine\logs</td>
</tr>
<tr>
<td>PhoneSim Logs</td>
<td>phonesim\logs</td>
</tr>
<tr>
<td>VLEngine - CTI OS Trace Logs</td>
<td>vlengine\logs\ctiosLogs</td>
</tr>
<tr>
<td>VLEngine - JTAPI Trace Logs</td>
<td>As per jtapiprefs setting</td>
</tr>
</tbody>
</table>

Note

To verify that RSM can see Agents, Skills, Skill Groups, Supervisor Login, and Active Agent Cells, enter the following URL in your web browser:

http://<RSM_Server_IP_Address>:8080/vlengine/testEngineServlet.jsp
General Call Flow Issues

Agent Monitoring Request Fails

Symptom  A supervisor tries to monitor an agent but the monitoring request fails, with no helpful or pertinent feedback from the IVR interface. For example, the supervisor hears, “Starting to monitor” and then, “Conversation has ended, you will now be returned to the main menu.”

Possible Cause  A JTAPI-related error returns a GENERAL_ERROR result from the VLEngine or PhoneSim back to the VRU. The VRU tries to play this text data as if it were audio data, and a “cannot recognize the file format” message is returned in the iOS CVP VRU error log files. (IP IVR error log files will show a similar message if the SS_PROMPT subsystem debugging is turned on.)

Error Message

Mar 29 00:28:17.277: %IVR_MSB-3-NOPROMPT: Could not create IVR prompt http://10.1.110.110:29001/monitorAgent?agentID=42441&vruType=cvp errno=0=Can not recognize the file format

Recommended Action  Refer to the following topics in this section:

– JTAPI Timeout on Monitoring Attempt
– Terminal Not In Domain Log File Message
– AddressOutOfService Exception
– CCNException with Error Code -1932787536
JTAPI Timeout on Monitoring Attempt

Symptom  JTAPI latency may cause a timeout on the monitoring attempt in certain system environments. Thus, the VLEngine cannot locate an active conversation for the agent who is known to be on a call. This is a rare event, occurring less than 1% of the time for all monitoring attempts.

Possible Cause  Review the VLEngine logs (located in the C:\CiscoRSM\vlengine\logs directory) and search for the following message:

Error Message

INFO | jvm 1 | 2008/04/03 04:35:28 | - CanMonitorAgentID: MONITOR ATTEMPT BEGIN
INFO | jvm 1 | 2008/04/03 04:35:28 | - CanMonitorAgentID: Result: "MAY_MONITOR"
INFO | jvm 1 | 2008/04/03 04:35:34 | - DetermineAgentCluster: AgentID: 42441; Result: "RSM_Cluster1"
INFO | jvm 1 | 2008/04/03 04:35:34 | - InitiateMonitorAgent invoked for AgentID: 42441; PhoneID: SEP00005E000050; LineID: 42080
INFO | jvm 1 | 2008/04/03 04:35:34 | - Waiting for call TALKING event on call observer for initiator terminal "SEP00005E000050", line ID "42080"; target terminal of "SEP00005E000429", target line ID "42441" (i.e. Can’t find an active call on any line for the targeted agent’s phone yet.)
INFO | jvm 1 | 2008/04/03 04:35:35 | - JTAPI-CLI-1/0: startMonitoring(): No active target terminal connections (none present) for address "42441" on terminal "SEP00005E000429" (i.e. Couldn’t find an active call on any line for the targeted agent’s phone in the time allowed, so we gave up.)
INFO | jvm 1 | 2008/04/03 04:35:35 | - InitiateMonitorAgent: MONITOR ATTEMPT END -- Result: "GENERAL_ERROR; AgentID: 42441; PhoneID: SEP00005E000050; LineID: 42080; RESCLUSTERID: 0; TARGETCALLID: 17406159; targetPhoneDeviceID: SEP00005E000429; targetDN: 42441

Recommended Action  Retry the monitoring request.
Caller Asked To Hangup After Entering PIN

**Symptom** A caller dials into RSM, hears the normal user ID and PIN prompts. After submitting their PIN, a ring and then an error message is heard, stating, “I'm sorry, we are currently experiencing system problems. Please hang up and try your call again.”

**Possible Cause** VLEngine service is not running properly, or a valid connection to port 8080/TCP cannot be made to the RSM server.

**Recommended Action** Restart the VLEngine service. If Windows firewall is used, ensure that the port used by the VRU to communicate with VLEngine (8080/TCP) is unblocked. (Refer to Chapter 3, RSM Services.)

Caller Suddenly Asked To Hangup

**Symptom** A caller has been performing normal call flow operations, but suddenly a ring and then an error message is heard, stating, “I'm sorry, we are currently experiencing system problems. Please hang up and try your call again.”

**Possible Cause** The VLEngine or PhoneSim services have stopped running on the RSM server, or were otherwise unable to process the caller's request. The services may have stopped during a network outage when the VRU was unable to make contact with the RSM servers.

**Recommended Action** Check the status of the VLEngine and PhoneSim services and the RSM servers, and restart them if they are stopped. (Refer to Chapter 3, RSM Services.)
Invalid Login Message

**Symptom**  A valid supervisor account (for example, DN 42071) is rejected during login and an error message is heard, stating, “Your login was invalid.”

**Possible Cause**  CTI OS login, required to validate the caller's credentials as entered, is not working properly. Review the VLEngine logs (located in the C:\CiscoRSM\vlengine\logs directory) for the login request, and search for one of the following messages:

**Error Message**


17-08-07 11:46:17:121 EDT - {FATAL} voicelink.vlengine Thread [JCIL_Sess(7959524)_EvtThd(22293724)]; CTIOS Failure: IPCC Error [12005]Login could not be performed - Possible causes are Invalid Instrument; Media Termination Problem or other CM issue

17-08-07 11:46:17:418 EDT - {INFO} voicelink.vlengine Thread [http-8080-Processor25]; LOGIN ATTEMPT -- SupervisorID: 41001; Result: "INVALID_SUPERVISOR_ID"

**Recommended Action**

– Verify that the PhoneSim service is running, and is properly logged into the device used for the CTI OS login attempt. (Refer to Chapter 3, RSM Services.)

– Verify that the device is registered to the RSM server IP that is running the PhoneSim service, in the Unified CM Administration interface.

– Verify that the device used for the login attempt is a member of the VLEngine login pool. Only DNs in the login pool will be used as the CTI OS login instrument for caller login attempts. If the DN is not a member of the login pool, you may need to adjust the following registry keys for the cluster configuration (refer to Appendix B, Registry Keys):

ClusterN_NumSimPhonesUsedForCTIOSAgentLogins
ClusterN_PhoneSim_StartMACRange
ClusterN_PhoneSim_StartLineNumRange
– Verify that the DN is listed as a valid device target in Unified ICME. Device target entries must exist in Unified ICME for all device DNs in the VLEngine login pool.

– Verify that the DN is associated with the appropriate pguser account.

– Try logging in with the same agent via the CTI OS desktop, with the same instrument (for example, 42071). If the login does not work, the problem may be a general CTI OS login issue.

– Try restarting the RSM server by restarting the VLEngine and PhoneSim services. (Refer to Chapter 3, RSM Services.)

Invalid Login Error Output

**Symptom** Whenever a supervisor attempts to log into the system using IDs that are known to be valid, an error output is displayed.

**Possible Cause** The Login WaitOnMultipleEvents() timeout is paired with the INVALID SUPERVISOR_ID resultant code. VLEngine is probably not able to use the simulated instrument to log in (For example, 42002, as per the sample error messages, below, located in the C:\CiscoRSM\vlengine\logs directory).

**Error Message**

```bash
jvm 1 | - CTI-AM-1: Connecting to CTIOS Server
rwcsvr021:42028 (backup is rwcsvr022:43028)

jvm 1 | - CTI-AM-1: Reserved phone ID 42002 with end reserve time of 1194981846953

jvm 1 | - CTI-AM-1: Login: Instrument "42002". AgentID: 41001; PeripheralID:5000

ejvm 1 | - CTI-AM-1(41001): Login WaitOnMultipleEvents() timeout

jvm 1 | - CTI-AM-1: Disconnecting from CTIOS Servers rwcsvr021:42028, rwcsvr022:43028

jvm 1 | - CheckUserCredentials: LOGIN ATTEMPT -- SupervisorID: 41001; Result: "INVALID SUPERVISOR_ID"
```
Recommended Action

- Verify that the PhoneSim service is running, and is properly logged into the device used for the CTI OS login attempt (for example, 42002). (Refer to Chapter 3, RSM Services.)

- Verify that the device being used to make the login attempts (for example, 42002) is registered to the RSM server IP that is running the PhoneSim service, as configured via the Unified CM Administration interface.

- Verify that the DN is listed as a valid device target in Unified ICME. Device target entries must exist in Unified ICME for all device DNs in the VLEngine login pool.

- Verify that the DN is associated with the appropriate pguser account.

- Try logging in with the same agent via the CTI OS desktop, with the same instrument (for example, 42071). If the login does not work, the problem may be a general CTI OS login issue.

- Try restarting the RSM server by restarting the VLEngine and PhoneSim services. (Refer to Chapter 3, RSM Services.)

- Verify that the pguser account is configured as an application user in the Unified CM Administration interface, not an end user. (This may be the case if the CM configuration is the result of a version 4.x upgrade.)
Agent Is Not A Supervisor Error

**Symptom** An agent tries to log into the system and an error output is displayed.

**Possible Cause** The supervisor account which attempted the login is not flagged as a supervisor login or is not assigned as a supervisor of a team.

Review the VLEngine logs (located in the C:\CiscoRSM\vlengine\logs directory) for the login request, and search for one of the following messages:

**Error Message**

```
jvm 1 | - CTI-AM-1: Connecting to CTIOS Server
rwcsvr021:42028 (backup is rwcsvr022:43028)

jvm 1 | - CTI-AM-1: Reserved phone ID 42002 with end reserve
time of 1194981846953

jvm 1 | - CTI-AM-1: Login: Instrument "42002". AgentID:
41001; PeripheralID:5000

jvm 1 | - CTI-AM-1(41001): Login failed: Agent is not a
supervisor

jvm 1 | - CTI-AM-1: Disconnecting from CTIOS Servers
rwcsvr021:42028, rwcsvr022:43028

jvm 1 | - CheckUserCredentials: LOGIN ATTEMPT --
SupervisorID: 41001; Result: "NOT_A_SUPERVISOR"
```

**Recommended Action** Ensure that the Supervisor Login Account Creation procedure has been properly followed for the creation of this account. (Refer to Chapter 3, RSM Services.)
VLEngine Runtime Issues

The following line may appear in your VLEngine log files and may be safely ignored:

CTIOS Failure: Agent state has been set to Not Ready because calls routed to you were not received. Please ask your Administrator for help.

Terminal Not In Domain Log File Message

**Symptom** The following message or similar is found in the VLEngine log file (located in the C:\CiscoRSM\vlengine\logs directory):

com.cisco.jtapi.InvalidArgumentExceptionImpl:
Terminal SEP001BD51242CE is not in provider's domain.

**Possible Cause** The specified terminal is probably improperly associated to the RSM application user account that VLEngine is configured to use.

**Recommended Action** Use the Unified CM administration interface to view the application user device associations, and ensure that all RSM simphone devices, as well as all agent phones, have been added to the controlled list.

Connection to CTI OS Server Denied

**Symptom** Monitor Mode connection to CTI OS is denied.

**Possible Cause** Another application may be accessing the CTI OS server with a monitor mode connection. RSM may also fail to connect if the CTI OS server has security enabled. Check the VLEngine log files, located in the C:\CiscoRSM\vlengine\logs directory.

**Error Message**

INFO | jvm 1 | 2007/11/06 10:33:31 | - CTIOS: Connecting to CTIOS Server 10.1.110.18:42028 (backup is 10.1.110.19:43028)
INFO | jvm 1 | 2007/11/06 10:33:31 | - CTIOS Failure:
WARNING!!! Monitor Mode Connection Is Denied. Number of supported monitor mode connections [2] by one CTI OS Server pair has been reached.

**Recommended Action** Ensure that no other applications accessing the CTI OS server (for example, 10.1.110.18 as per sample, above) have monitor mode connections to the CTI OS server.

**Recommended Action** Modify the MaxMonitorModeConnections registry key for the CTI OS server to allow for additional connections. Refer to the *CTI OS System Manager's Guide* document, located at


### Supervisor With Valid ID and PIN Cannot Log In

**Symptom** A supervisor cannot log into RSM, with valid ID and PIN.

**Possible Cause 1.** The supervisor is logged into the CTI OS agent desktop using the same credentials. Check the VLEngine log file (located in the C:\CiscoRSM\vlengine\logs directory) for the following:

17-08-07 17:50:18:715 EDT - {DEBUG} voicelink.vlengine Thread [http-8080-Processor22]; CTIOS-AM: Login: Instrument "42071". AgentID: 41001; PeripheralID: 5000

17-08-07 17:50:19:215 EDT - {WARN} voicelink.vlengine Thread [JCIL_Sess(5076865)_EvtThd(6385630)]; CTIOS Failure: IPCC Error [10102]The agent is already LOGGED ON

17-08-07 17:50:19:762 EDT - {DEBUG} voicelink.vlengine Thread [http-8080-Processor22]; CTIOS-LOGIN(41001): Logout unsuccessful: Logout() failure

17-08-07 17:50:19:762 EDT - {DEBUG} voicelink.vlengine Thread [http-8080-Processor22]; CheckUserCredentials: LOGIN ATTEMPT -- SupervisorID: 41001; Result: "INVALID_SUPERVISOR_ID"

**Recommended Action** Log the supervisor out of the desktop before logging into RSM. Ensure that you have created separate and exclusive supervisor accounts for RSM use, and are not being used for CTI OS agent desktop
logins. Also, ensure that each supervisor login is being used only by one supervisor; multiple simultaneous logins are not supported. (Refer to the “Supervisor Login Account Creation” topic in Chapter 3, Pre-Installation Tasks.)

**Possible Cause 2.** The device the supervisor is using is in an invalid state (for example, is toggling between reserved and ready) and its status cannot be retrieved during CTI OS login.

**Recommended Action**  
Restart the PhoneSim service. (Refer to Chapter 3, RSM Services.)

**Possible Cause 3.** The supervisor's login is hung (stuck). This occurs if the supervisor is not logged into the CTI OS agent desktop, PhoneSim has been restarted, and the error is still being generated.

**Recommended Action**  
Run the CTI OS SDK AllAgents.exe to log the supervisor out of the system, or restart the VLEngine service. (Refer to Chapter 3, RSM Services.)

### VLEngine Will Not Start

**Symptom**  
VLEngine will not start.

**Possible Cause**  
Insufficient memory, as per system requirements. Check the VLEngine log file, located in the C:\CiscoRSM\vlengine\logs directory.

**Error Message**

```
ERROR | wrapper | 2007/12/20 08:22:19 | JVM exited while loading the application.

STATUS | wrapper | 2007/12/20 08:22:23 | Launching a JVM...

INFO | jvm 5 | 2007/12/20 08:22:24 | Error occurred during initialization of VM

INFO | jvm 5 | 2007/12/20 08:22:24 | Could not reserve enough space for object heap

INFO | jvm 5 | 2007/12/20 08:22:24 | Could not create the Java virtual machine.
```
**VLEngine Runtime Issues**

**Remote Silent Monitoring Installation and Administration Guide**

**Chapter** Troubleshooting

---

ERROR | wrapper | 2007/12/20 08:22:24 | JVM exited while loading the application.

**Recommended Action** If there is enough memory in the system and the error still occurs, you can manually force the VLEngine to run by modifying the `wrapper.java.maxmemory` parameter in the `wrapper.conf` file (located in the `C:\CiscoRSM\vlengine` directory) to a lower value (for example, 1000).

**Caution** Modifying the `wrapper.conf` file is not supported by Cisco, as it may lead to unreliable system behavior.

---

**AddressOutOfService Exception**

**Symptom** The following error message or similar is found in the VLEngine log file (located in the `C:\CiscoRSM\vlengine\logs` directory):

**Error Message**

`com.cisco.jtapi.AddressOutOfService`

**Possible Cause 1** The simphone device associated with this message may have the wrong device pool setting.

**Recommended Action** Launch the Unified CM administration interface and ensure that the simphone device settings are correct.

**Possible Cause 2** The RSM simphone device pool configuration may be incorrect.

**Recommended Action** Ensure that the RSM simphone device pool settings are configured as described in the “Simphone Device Dependencies” topic in Chapter 3, Pre-Installation Tasks.
CCNException with Error Code -1932787536

**Symptom**  The following message or similar is found in the VLEngine log file (located in the C:\CiscoRSM\vlengine\logs directory):

**Error Message**

```
JTAPI-CLI-1/2: Got Exception for call with initiator terminal "SEP00005E00054f", line ID "42579"; target terminal of "SEP00005E000423", target line ID "42435":com.cisco.jtapi.PlatformExceptionImpl: Monitor request failed: com.cisco.cti.client.CCNException
   at com.cisco.jtapi.CallImpl.startMonitor(CTQF)
at com.cisco.jtapi.CallImpl.startMonitor(CTQF)
at com.knoahsoft.voicelink.vlengine.JTAPIClient.
   startMonitoring(JTAPIClient.java:352)
at com.knoahsoft.voicelink.vlengine.servlet.
   InitiateMonitorAgent.doGet(InitiateMonitorAgent.java:181)
   [
    at org.apache.tomcat.util.net.LeaderFollowerWorkerThread.
   runIt(LeaderFollowerWorkerThread.java:81)
at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:685)
at java.lang.Thread.run(Thread.java:619)
JTAPI-CLI-1/2: EXCEPTION Errorcode is: -1932787536
```

**Possible Cause**  The built-in-bridge resource is probably not enabled on the agent phone to be monitored (SEP00005E000423 in the above example).

**Recommended Action**  Launch the Unified CM administration interface and navigate to the device settings for the agent phone. Ensure that the built-in bridge setting is enabled.
PhoneSim Runtime Issues

Simphone Registrations Are Rejected

Symptom  When starting the PhoneSim service, the Simphone registrations are rejected.

Possible Cause  Start range of the ClusterN_PhoneSim_StartMACRange parameter, as previously configured, does not correspond to start range of ClusterN_PhoneSim_StartLineNumRange parameter for cluster N.

For example, if Cluster1_PhoneSim_StartMACRange is set to 00005E000047 and Cluster1_PhoneSim_StartLineNumRange is set to 42001, then line DN 42001 is probably not assigned to phone device ID 00005E000047.

Check the log files (located in the C:\CiscoRSM\phonesim\logs directory) for the following:

08/17/07 11:25:41 (Eastern Daylight Time), [4024]  
CHTTPServer.cpp :236 INFO - Received HTTP request from machine with ip address 10.1.14.76 on port 1244 with request uri "/sendRegisterMessage?PhoneSimExt=42001"

08/17/07 11:25:41 (Eastern Daylight Time), [4024]  
VoipCommon.cpp :986 ERROR - Client Socket : Send Failed :WSAENOTSOCK

08/17/07 11:25:41 (Eastern Daylight Time), [4024]  
VoipCommon.cpp :986 ERROR - Client Socket : Unable to send dataUnknown Error

Recommended Action  Refer to the “Cluster Configuration Registry Keys” topic in Appendix B, Registry Keys, for information on how to modify the start MAC range of the ClusterN_PhoneSim_StartMACRange parameter.
# PhoneSim Log File Error Messages

The following table lists all the PhoneSim error messages that may appear in the log files, and their probable causes.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Called with unknown alert type <code>&lt;alert type&gt;</code> while sending email alert</td>
<td>An unknown email alert type was received—it is not on list of five predefined types: APPLICATION_DOWN, PROCESS_CREATION_FAILURE, PHONESIM_STARTED, VLENGINE_NOT_RUNNING, VLENGINE_CONNECTION_CLOSED</td>
<td>This is a benign message. Contact Cisco support if this occurs on a regular basis so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Unable to connect to mail server at <code>&lt;mail server exchange IP&gt;</code> on <code>&lt;port number&gt;</code></td>
<td>PhoneSim is unable to connect to the mail server at IP address on displayed port number</td>
<td>This is a rare, transient phenomenon. Verify that firewall, IP address, and port are working properly (for example, ping).</td>
</tr>
<tr>
<td>Unable to receive data from mail server at <code>&lt;configured mail server exchange IP&gt;</code> on <code>&lt;configured port number&gt;</code></td>
<td>The socket connected to the mail exchange server is unable to receive data from the server</td>
<td>This is a rare, transient incident. Verify that the firewall, IP address, and port are working properly (for example, ping).</td>
</tr>
<tr>
<td>Failed to connect to <code>&lt;IP address&gt;</code> on <code>&lt;port number&gt;</code> for <code>&lt;socket client name&gt;</code></td>
<td>Socket failed to connect to displayed client name</td>
<td>This is a rare, transient phenomenon. Verify that firewall, IP address, and port are working properly (for example, ping). If this error appears on a regular basis, restart the PhoneSim service (note that doing so will cancel all sessions currently being monitored).</td>
</tr>
<tr>
<td>Number of call managers exceeds limit</td>
<td>Number of configured Call Managers is greater than number allowed by RSM, which is three (3).</td>
<td>An improper change was probably made to a cluster registry key. Refer to the “Cluster Configuration Keys” topic in Appendix B, Registry Keys.</td>
</tr>
</tbody>
</table>
### PhoneSim Log File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket connection closed abruptly from machine with <code>&lt;IP address&gt;</code>, <code>&lt;port number of machine&gt;</code></td>
<td>HTTP/Timer for the IP address socket connection returned an invalid value for received data on the socket. This is a rare, transient phenomenon. Verify that firewall, IP address, and port are working properly (for example, ping). If this error appears on a regular basis, contact Cisco support so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Socket accept failed for HTTP server thread last error = <code>&lt;previous error code&gt;</code></td>
<td>Failed to accept HTTP server socket connection request. This is a rare, transient phenomenon that may occur when the PhoneSim service is terminating. If this error appears on a regular basis, or at any other time other than when the service is shutting down, contact Cisco support so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Buffer exceeded: available buffer size = <code>&lt;available size value&gt;</code>, needed = <code>&lt;needed size value&gt;</code> for SIP/Timer socket buffer</td>
<td>Buffer exceeded limit when parsing SIP/Timer socket message data. This is a rare, transient phenomenon. Save the SIP/HTTP packet capture dump from the RSM server (using packet sniffing software such as Wireshark), then send this information to Cisco support so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Buffer exceeded: available buffer size = <code>&lt;available value&gt;</code>, needed = <code>&lt;needed value&gt;</code> for timer socket buffer</td>
<td>Buffer exceeded limit when parsing HTTP Timer socket message data. This is a rare, transient phenomenon. Save the SIP/HTTP packet capture dump on the RSM server (using packet sniffing software such as Wireshark), then send this information to Cisco support so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Socket connection closed abruptly for VLEngine from machine with <code>&lt;IP address of VLEngine&gt;</code>, <code>&lt;port number&gt;</code></td>
<td>This occurs if the VLEngine takes too long to respond to PhoneSim requests. The VLEngine service is probably at its maximum load capacity. Disconnect, then try another monitoring session.</td>
</tr>
</tbody>
</table>
### Table 0-2 PhoneSim Log File Error Messages

<table>
<thead>
<tr>
<th>Issue Description</th>
<th>Possible Cause</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to locate the socket table index for HTTP response message</td>
<td>Reading and processing of HTTP/VLEngine messages via connected socket failed</td>
<td>This is a benign message. Contact Cisco support so the message can be relayed to the RSM development team for review.</td>
</tr>
<tr>
<td>Received &lt;error return code&gt; for &lt;action URL&gt; and &lt;agent ID trying to monitor&gt; from &lt;client socket IP address&gt; and &lt;port number&gt;</td>
<td>This error code is displayed when PhoneSim is exchanging messages with VLEngine</td>
<td>Review the returned values of the message—URL, agent ID, client IP address, and port number—, and troubleshoot accordingly (for example, ensure agent ID is in the system, that the port is working, and so on.).</td>
</tr>
<tr>
<td>Unable to get cluster index for &lt;cluster_name&gt;</td>
<td>PhoneSim service is unable to return cluster information from the VLEngine service for the agent the system is attempting to monitor</td>
<td>There is probably an inconsistency between the PhoneSim and VLEngine cluster configurations. This may occur in a multiple server scenario, where the PhoneSim and VLEngine services are installed on separate machines. The services were either improperly configured during installation, or an improper change was made to a registry key. Refer to the “Cluster Configuration Keys” topic in Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Could not open connection with VLEngine at machine with &lt;machine IP address&gt;, &lt;port number&gt;</td>
<td>Failed to open a socket connection with VLEngine for specified IP address and port number</td>
<td>This is a rare, transient phenomenon. Confirm that the IP address and port numbers for the VLEngine service are properly configured. Ensure that the port is enabled by the firewall. (This may also occur if there are too many pending requests to the VLEngine and PhoneSim is unable to allocate a new socket for connecting to VLEngine.)</td>
</tr>
<tr>
<td>Failed to open &lt;PhoneSimStats.txt&gt; statistics file</td>
<td>Failed to open text file to write configured simulated phones statistics, as per command from PhoneSimDynConfig</td>
<td>The RSM installation drive (for example, C:) is probably full and cannot create the file. Create space on the drive, then ensure the file is created.</td>
</tr>
</tbody>
</table>
### PhoneSim Log File Error Messages

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Cause</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to write PhoneSim statistics to <code>&lt;PhoneSimStats.txt&gt;</code> file</td>
<td>Unable to write to PhoneSimStats.txt file, after command was issued and file was opened</td>
<td>The permissions for the file were probably improperly modified. Check the file to ensure it is configured for write permission. The RSM installation drive may also be full and cannot create the file. Create space on the drive, then ensure the file is created.</td>
</tr>
<tr>
<td>The connection to SIP proxy server at <code>&lt;CallManager IP&gt;</code> and <code>&lt;SIP standard Port number&gt;</code> for phone with <code>&lt;simulated phone extension number&gt;</code> closed</td>
<td>Simulated phone failed to keep its registered binding open with SIP Proxy in the Call Manager</td>
<td>Check basic network connectivity. Verify that Call Manager is running and not blocked by the firewall. Verify that no secondary or other RSM servers are configured for the same simphone extensions. (NOTE: It is recommended that the Call Manager and Peripheral Gateway machines be located in the same geographical vicinity and within the same network as the RSM server to better isolate the problem.)</td>
</tr>
<tr>
<td>Socket read failed for agent with <code>&lt;simulated phone extension number&gt;</code></td>
<td>Simulated phone SIP socket failed to read data received from remote machine (Call Manager)</td>
<td>Check data in the PhoneSimStats file (from the PhoneSimDynConfig application) to determine if this is a recurring socket failure. If so, check basic network connectivity and firewall settings to verify that Call Manager is running and not being blocked by the firewall. If this error appears on a regular basis, the Call Manager may be too busy (overloaded) or may be trying to disconnect the simphone due to improper or duplicate registration of the simphone.</td>
</tr>
<tr>
<td><code>&lt;SIP warning message&gt;</code> received for phone with <code>&lt;simulated phone extension number&gt;</code></td>
<td>SIP warning response message for SIP request, when warning message is received</td>
<td>Forward the reason code and cause number in the SIP warning header to Cisco support. This information will be used to discern why Call Manager rejected the simphone request.</td>
</tr>
</tbody>
</table>
Failed to open `<PhoneSim configuration file>`

Failed to open PhoneSim configuration file when initiating the PhoneSim service, in order to read configured keyword names and respective values.

Check the file to ensure it is configured for read permission. Ensure that PhoneSim.ini file exists in the C:\CiscoRSM\PhoneSim directory. Create a blank file if it does not exist. It is also possible that the file is corrupt, in which case you can delete the file and create a new blank one.

Failed to load `<PhoneSim configuration file>`

Failed to load the PhoneSim configuration file when initiating the PhoneSim service, in order to read configured keyword names and respective values.

Check the file to ensure it is configured for read permission. Ensure that PhoneSim.ini file exists in the C:\CiscoRSM\PhoneSim directory. Create a blank file if it does not exist. It is also possible that the file is corrupt, in which case you can delete the file and create a new blank one.

OpenSCManager failed, error code = `<error code>`

MFC service manager failed to initiate the PhoneSim service while trying to open it.

Refer to Microsoft documentation for standard list of MFC error codes.

RSM was probably installed while logged in on the machine as a user other than the administrator. If this is the case, you must reinstall RSM. It is also possible that the PhoneSim service was never properly installed during the RSM installation process.

OpenService failed, error code = `<error code>`

MFC service manager failed to initiate the PhoneSim service while trying to open it.

Refer to Microsoft documentation for standard list of MFC error codes.

RSM was probably installed while logged in on the machine as a user other than the administrator. If this is the case, you must reinstall RSM. It is also possible that the PhoneSim service was never properly installed during the RSM installation process.
## PhoneSim Runtime Issues

**Table 0-2 PhoneSim Log File Error Messages**

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Description</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartService failed, error code = (&lt;\text{error code})&gt;</td>
<td>MFC service manager failed to initiate the PhoneSim service while trying to start it.</td>
<td>RSM was probably installed while logged in on the machine as a user other than the administrator. If this is the case, you must reinstall RSM.</td>
</tr>
<tr>
<td></td>
<td>Refer to Microsoft documentation for standard list of MFC error codes.</td>
<td>It is also possible that the PhoneSim service was never properly installed during the RSM installation process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is also possible that the log on password for the service was changed and so the account needs to be reconfigured for the service.</td>
</tr>
<tr>
<td>Mac Address is not configured correctly: length should be 12 character only</td>
<td>Cisco IP phones MAC addresses are twelve (12) characters by default</td>
<td>An improper change was probably made to a MAC-related registry key. Refer to Appendix B, Registry Keys, and ensure all MAC address configurations are compliant.</td>
</tr>
<tr>
<td>Mac Address is not configured correctly: Invalid character (&lt;\text{character in MAC address}&gt;) in Mac Address (&lt;\text{MAC Address}&gt;)</td>
<td>Characters in MAC address not: 0 through 9; a through f; or A through F.</td>
<td>An improper change was probably made to a MAC-related registry key. Refer to Appendix B, Registry Keys, and ensure characters in all MAC address configurations are compliant.</td>
</tr>
<tr>
<td>(&lt;\text{Cluster name}&gt;): No of phones for CTIOS login (&lt;\text{number of login pool phones}&gt;) exceeds or equals max number of phones in the cluster</td>
<td>Number of login pool phones is equal or greater to maximum number of phones allowed in cluster</td>
<td>An improper change was probably made to a login or cluster registry key. Refer to Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>(&lt;\text{Cluster name}&gt;): Invalid call manager index (&lt;\text{call manager index in cluster}&gt;)</td>
<td>This message appears if RSM has been configured for more than three (3) Call Managers</td>
<td>An improper change was probably made to a cluster registry key. Refer to the “Cluster Configuration Keys” topic in Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Illegal value for registry keyword (&lt;\text{registry name}&gt;)</td>
<td>Registry value is either unacceptable or was improperly entered</td>
<td>An improper change was probably made to a registry key. Refer to Appendix B, Registry Keys, and check configuration values for Call Manager port numbers, CTIOS servers, PhoneSim, and VLEngine.</td>
</tr>
</tbody>
</table>
### PhoneSim Log File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to stop the <code>&lt;thread name&gt;</code> thread</td>
<td>Thread tried to stop, or is already stopped, when stopping the PhoneSim service</td>
<td>This is a rare, benign message that occurs during PhoneSim service shutdown.</td>
</tr>
<tr>
<td>Sum total of simulated phones in all clusters <code>&lt;sum value&gt;</code> exceeds</td>
<td>Configured value for simphones and cluster do not match</td>
<td>An improper change was probably made to a registry key. Refer to Appendix B, Registry Keys, and check configuration values for clusters and MaxNumRequests key.</td>
</tr>
<tr>
<td>MaxNumRequests <code>&lt;configured value&gt;</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illegal value for MaxNumRequests</td>
<td>Number of monitoring phones configured is greater than configured value of maximum number of phones allowed</td>
<td>An improper change was probably made to a registry key. Refer to Appendix B, Registry Keys, and check configuration values for clusters and MaxNumRequests key.</td>
</tr>
<tr>
<td>No of simulated phones must be specified</td>
<td>Number of simulated phones is configured for none (zero)</td>
<td>An improper change was probably made to a simphone registry key. Refer to Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Failed to send e-mail address</td>
<td>Sender email address is not configured and is empty</td>
<td>An improper change was probably made to an email registry key. Refer to Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Failed to load an email address for alert notification</td>
<td>Sender email address is not configured and is empty</td>
<td>An improper change was probably made to an email registry key. Refer to Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Failed to retrieve domain name from sender's email address</td>
<td>Sender email address is configured so that the address does not specify a domain or IP address after the @ symbol</td>
<td>An improper change was probably made to an email registry key. Refer to Appendix B, Registry Keys.</td>
</tr>
<tr>
<td>Illegal keyword <code>&lt;keyword specified in PhoneSim configuration file&gt;</code> in</td>
<td>Keyword configured in PhoneSim configuration file does not exist</td>
<td>The PhoneSim.ini file was probably improperly modified, or there is a misspelling.</td>
</tr>
<tr>
<td>configuration file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illegal value <code>&lt;keyword value&gt;</code> for <code>&lt;keyword name&gt;</code></td>
<td>Keyword has incorrect value</td>
<td>The PhoneSim.ini file was probably improperly modified, or there is a misspelling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fatal Error Messages

The following table lists rare, fatal PhoneSim error messages that may appear in the log files, and their probable causes. Generally speaking, these errors occur if you are using a server that does not meet the minimum system requirements, as detailed in Chapter 2 (For example, insufficient memory installed.) Restarting the service should resolve the issue.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable to allocate memory of amount xx &lt;numeric value&gt; bytes for xx &lt;object number&gt; &lt;application objects&gt;</td>
<td>Insufficient memory allocated for cluster, Call Manager, SupervisorPhones objects</td>
</tr>
<tr>
<td>Failed to allocate memory of XX &lt;numeric value&gt; bytes for send data buffer for supervisor phone with extension XX</td>
<td>Buffer size used to send voice data using this listener object failed to create the buffer size listed, before the simulated phones listener object was created</td>
</tr>
<tr>
<td>Failed to allocate memory of xx &lt;numeric value&gt; bytes for x listener objects for supervisor phone with extension xx</td>
<td>Simulated phone listener object creation failed when starting the service</td>
</tr>
<tr>
<td>Unable to allocate memory for CKeepAlive</td>
<td>Insufficient memory allocated for sending and receiving simulated SIP phones CKeepalive messages from Call Manager</td>
</tr>
<tr>
<td>Failed to allocate memory of size xx &lt;numeric value&gt; for receive audio buffer for phone with extension xx</td>
<td>Receiving audio buffer length is not configured or is empty</td>
</tr>
<tr>
<td>Failed to read the values from registry</td>
<td>Unable to read registry field values or registry does not exist (for example, was mistakenly deleted), when starting service</td>
</tr>
<tr>
<td>Illegal value for NoOfClusters</td>
<td>Number of configured clusters has exceeded limit</td>
</tr>
<tr>
<td>MAC Address wrapped at max limit of xx</td>
<td>Maximum limit of MAC addresses for this value has been reached and new values cannot be generated by RSM for simphones</td>
</tr>
<tr>
<td>CKeepAlive Thread Creation failed</td>
<td>Initialization or creation of CKeepAlive thread failed</td>
</tr>
</tbody>
</table>
### PhoneSim Log File Fatal Error Messages

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to open timer socket connection</td>
<td>Timer socket connection failed when service started</td>
</tr>
<tr>
<td>RTPReceiver thread creation failed</td>
<td>Initialization or creation of RTPReceiver thread failed</td>
</tr>
<tr>
<td>Unable to allocate memory for XMLMessagesStack</td>
<td>Initialization or creation of XMLMessagesStack class object failed when starting service</td>
</tr>
<tr>
<td>CVoipLoggerThread thread creation failed</td>
<td>While initializing or creation of the CVoipLoggerThread thread object fails then this error could occur.</td>
</tr>
<tr>
<td>CAlertMessg thread creation failed</td>
<td>While initializing or creation of the CAlertMessg thread object fails then this error could occur.</td>
</tr>
<tr>
<td>CPhoneSimDynConfig thread creation failed</td>
<td>While initializing or creation of the CPhoneSimDynConfig thread object fails then this error could occur.</td>
</tr>
<tr>
<td>CPhoneSimServer thread not created. Last error = xx</td>
<td>While initializing or creation of the CPhoneSimServer thread object fails then this error could occur.</td>
</tr>
<tr>
<td>CHealthMonitor Thread Creation failed</td>
<td>While initializing or creation of the CHealthMonitor thread object fails then this error could occur.</td>
</tr>
<tr>
<td>&lt;Thread name&gt; thread creation failed</td>
<td>Initialization or creation of thread object failed</td>
</tr>
</tbody>
</table>
Serviceability and Monitoring of RSM Components

RSM 11.0(1) supports monitoring RSM configuration, processes, and performance counters using Unified CCE System CLI tool or SNMP based MIB interrogation NMS tools. This chapter describes the SNMP Agent for interrogating the MIB and retrieving process status and performance counters. Information is also provided on RSM System CLI setup and how to get information using various System CLI commands.

SNMP Agent

The following information is used to connect the RSM SNMP agent and the root MIB Object.

- **RSM SNMP Agent Connection**
  
  `<RSM Server IP>:33161`

- **RSM SNMP Agent Root OID**
  
  `.1.3.6.1.4.1.9.9.2776 - ciscoRSMMIB`
RSM System CLI Setup

The following procedure describes how to configure and use RSM System CLI commands.

---

**Step 1**
Create a System CLI RSM device *rsm.properties* file and enter the following:

```properties
# Protocol supported: rest, soap, telnet
# by default is rest and apply to all commands; each device type
can override it if needed
# Each protocol must have a port defined for the connection
Protocol=Rest
Rest.Port=8443
Rest.Commands=All
# Send just one command if the subcomponent is not specified
SingleRequest=ListLogFiles ListTraceFiles
StartupParams=username password
username.Name=username
username.Display=Enter username[%s]:
username.DefaultValue=rsm
password.Name=password
password.Display=Enter password:
password.Secret=true
DebugLevels=0 1 2 3 4 5 99
```

**Step 2**
Save the *rsm.properties* file in the following directory:

```
C:\icm\serviceability\wsccli\conf
```

**Step 3**
**Step 3**
Launch systemcli command from command prompt:

```
systemcli host:<RSM Server IP> devicetype:rsm
```

or Launch DP command from browser:

```
and the parameters>
```

**Step 4**
Enter the default loginID/password:

```
rsm/rsm
```

---

**Note**
To change or add default loginID/password, modify the following file:

```
C:\CiscoRSM\vlengine\tomcat\conf\tomcat-users.xml
```
System CLI Commands

GetProductVersion
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/GetProductVersion
Result: RSM Build version displayed

GetPlatformInformation
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/GetPlatformInformation
Result: OS and other platform information displayed

ListTraceComponents
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/ListTraceComponents
Result: List the vlengine and phonesim trace log levels and file components. Note that only lists the components and no support for getting the trace files by date range, etc.

ListLogComponents
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/ListLogComponents
Result: List the vlengine and phonesim log levels and file components. Note that only lists the components and no support for getting the log files by date range, etc.

ListConfigurationCategories
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/ListConfigurationCategories
Result: Should return Registry as the only configuration category.

GetConfigurationCategory
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/GetConfigurationCategory
Result: Should prompt to download RSM Registry export in a zip file.

ListProcesses
https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/ListProcesses
Result: For each cluster, the following vlengine service 
(vlengine-clustername N) connections should be displayed:

CTI or CTIOS - Connect Status (Connected or NotConnected),
CTI/CTIOS Server Connected to, Connection Uptime
JTAPI 0/2 - Connect Status (Connected or NotConnected), UCM
Subscriber Connected to, Connection Uptime
JTAPI 1/2 - Connect Status (Connected or NotConnected), UCM
Subscriber Connected to, Connection Uptime
JTAPI 2/2 - Connect Status (Connected or NotConnected), UCM
Subscriber Connected to, Connection Uptime

GetPerformanceInformation

https://<RSMServerIP>:
8443/rsm-dp/rest/DiagnosticPortal/GetPerformanceInformation

Result: For overall Totals across all clusters:

Cisco RSM(_Total)/Active VRU Monitoring Sessions Count
Cisco RSM(_Total)/Active Phone BiB Monitoring Calls Count
Cisco RSM(_Total)/Configured SIMPhones Count
Cisco RSM(_Total)/Registered SIM Phones Count
Cisco RSM(_Total)/NotRegistered SIMPhones Count

For each Cluster:
Cisco RSM(Cluster Name N)/Active VRU Monitoring Sessions Count
Cisco RSM(Cluster Name N)/Active Phone BiB Monitoring Calls Count
Cisco RSM(Cluster Name N)/Configured SIMPhones Count
Cisco RSM(Cluster Name N)/Registered SIM Phones Count
Cisco RSM(Cluster Name N)/NotRegistered SIMPhones Count
Cisco’s Remote Silent Monitoring includes a simple HTTP-driven API for making service requests into the system, as well as IP IVR and CVP call flow scripts which demonstrate the use of this API. The specific APIs are for RSM’s two services, VLEngine and PhoneSim.

CVP Unified Call Studio can make calls to most of these APIs by using the Subdialog element, and the response is dynamic VXML (with optional formatting).

IP IVR’s CRS Editor prohibits direct invocation of the call flow scripts and parsing of return data. To handle these interactions, the VoiceBrowser step makes requests to an API URL, and a result code is returned, encoded as a variable in a VXML document (appropriately) named result.

**JSP Suffix**

All documented HTTP API calls that can be called by a VRU call flow script also have a jsp suffix (with the exception of the determineAgentCluster and initiateMonitorAgent calls).

This allows the calls to be used in environments (For example, IP IVR 5.0.2) that make assumptions, based on the URL filename extension, as to whether or not a URL is for dynamic data.

For example, the getAgentList call is available as both getAgentList and getAgentList.jsp. Both versions function identically. It is recommended that the jsp suffix always be used.
checkUserCredentials.jsp

Checks validity of user ID (the Cisco agent ID) and PIN. Called by VRU call flow script (VXML, IP IVR, CVP).

Parameters

**userID:** ID of user logging in.

**pin:** Password of user logging in.

**waitLoginTimeout:** Maximum time allowed for CTIOS supervisor login password validation to complete. Value should be specified in milliseconds. Default is 10000 (10 seconds) if parameter is not specified.

**outputFormat:** Specifies format of returned data:

- **plain:** Returned data contains no formatting. CREDENTIALS_VALID result will be returned as simple text (CREDENTIALS_VALID), for example. Appropriate for hand-written VXML scripts or anything that can perform a HTML request and process the result directly.

- **vxml:** Data formatted in result variable of returned VXML document. Returned page has an `<exit>` statement that specifies a result variable in its namelist parameter, and which contains the return code for the operation. Appropriate for IP IVR’s VoiceBrowser step.

- **vxml-cvp:** VXML output. Includes extra data usable by a CVP Unified Call Studio call flow (specifies output as VXML sub-dialog, contains Audium tags, and so on).

Returns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREDENTIALS_VALID</td>
<td>Information supplied is valid</td>
</tr>
<tr>
<td>INVALID_USER_ID</td>
<td>Caller’s user ID is invalid</td>
</tr>
</tbody>
</table>
Appendix A       API Extensions

VLEngine HTTP API

canMonitorAgentID.jsp

Checks validity of agent ID, if the agent is logged in, and if the supervisor has the necessary permissions to monitor the agent. Called by the VXML script before calling monitorAgent on the PhoneSim service. Called by the VRU call flow script (VXML, IP IVR, CVP).

Parameters

agentID: ID of agent to be checked.

supervisorID: ID of supervisor (caller) to be checked. Set to 0 to not perform supervisor permission-type checks (For example, only agent availability checks will happen, where the system checks that the agent is logged in and talking).

outputFormat: Specifies format of returned data:

plain: Returned data contains no formatting. For example, a CREDENTIALS_VALID result will be returned as simple text (CREDENTIALS_VALID). This output method is appropriate for hand-written VXML scripts or anything that can perform a HTML request and process the result directly.

vxml: Returned data is formatted in result variable of returned VXML document. Returned page has an <exit> statement that specifies a result variable in its namelist parameter, which contains the return code for the operation. This output format is appropriate for IP IVR’s VoiceBrowser step.

vxml-cvp: VXML output, which includes extra data that makes it usable by a CVP Unified Call Studio call flow (for example, specifying the output as a VXML sub-dialog, contains Audium tags, and so on.).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID_USER_PIN</td>
<td>PIN is not valid for the user</td>
</tr>
<tr>
<td>NOT_A_SUPERVISOR</td>
<td>Agent userID is not a supervisor in CTI OS</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
</tbody>
</table>
Returns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY_MONITOR</td>
<td>All checks passed, supervisor can monitor agent</td>
</tr>
<tr>
<td>INVALID_AGENT_ID</td>
<td>Agent ID is invalid</td>
</tr>
<tr>
<td>INVALID_USER_ID</td>
<td>Caller’s user ID is invalid</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>AGENT_CANT_MONITOR</td>
<td>Agent ID is valid but the agent is currently not known by the system to be logged in and active. The agent ID specified is valid, but either: the agent is not active (currently logged in and talking) and therefore has no active call ID; or the agent cannot otherwise be monitored (for example, too many monitoring sessions already on their phone).</td>
</tr>
<tr>
<td>NO_PERMISSIONS</td>
<td>Specified supervisor does not have the proper permissions to monitor the specified agent</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
</tbody>
</table>

getCallToMonitor.jsp

Returns ID of agent handling the most recent call for the specified skillgroup ID, which the specified supervisor may monitor. Called by VRU call flow script (VXML, IP IVR, or CVP).

Note

Call type monitoring is currently not implemented, as the functionality to track calls by type is not yet available with CTI.

Parameters

selectionType: Either skillgroup (if ID is a skillgroup ID); dnis (if ID is a numeric DNIS); dialednum (if ID is a numeric DialedNumber); or calltype (if ID is a call type ID–inbound vs. outbound).
**selectionID**: Either ID of skillgroup; numeric DNIS value; numeric Dialed Number; or calltype (inbound or outbound) to monitor. For calltype, specify 1 for inbound and 2 for outbound. Can be set to 0 to not limit by a particular skillgroup, dnis, dialednum or call type. Maximum 14 digits number allowed.

**supervisorID**: ID of the supervisor (caller) requesting to monitor the skillgroup. Selected call will be restricted to calls for agents on the supervisor’s team. If set to zero, any call in the system may be selected, effectively disabling the built-in permissions check of this API call.

**selectionMode**: Newest, random, or problem:
- **newest**: The newest call in the group.
- **random**: A random call in the group.
- **problem**: Problem calls in the group. Problem calls are defined by the registry configuration values of the ProblemCallMinHolds and ProblemCallMinHolds parameters. (See Appendix B, Registry Keys.)

**outputFormat**: Specifies format of returned data:
- **plain**: Returned data contains no formatting. For example, a CREDENTIALS_VALID result will be returned as simple text (CREDENTIALS_VALID). This output method is appropriate for hand-written VXML scripts or anything that can perform a HTML request and process the result directly.
- **vxml**: Returned data is formatted in result variable of returned VXML document. Returned page has an <exit> statement that specifies a result variable in its namelist parameter, which contains the return code for the operation. This output format is appropriate for IP IVR’s VoiceBrowser step.
- **vxml-cvp**: VXML output, which includes extra data that makes it usable by a CVP Unified Call Studio call flow (For example, specifying the output as a VXML sub-dialog, contains Audium tags, and so on.).

### Returns

<table>
<thead>
<tr>
<th>Return</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;NUMERIC AGENT ID&gt;</td>
<td>ID of agent handling selected call and skillgroup</td>
</tr>
</tbody>
</table>
getConvoInfo.jsp

**Description:** Returns either text data that can be read via TTS, or a VXML sub-dialog that allows call flow script to play information about a conversation. Called by VRU call flow script (VXML, IP IVR, or CVP).

**Parameters**

**agentID:** ID of agent to get current conversation information.

**supervisorID:** ID of supervisor (caller) requesting agent's conversation information.

**outputFormat:** Specifies format of returned data:

- **plain:** Equivalent to vxml (below).
- **vxml:** Returned data is formatted in result variable of returned VXML document. Returned page has an `<exit>` statement that specifies a result variable in its namelist parameter, which contains the return code for the operation. This output format is appropriate for IP IVR’s VoiceBrowser step.
- **vxml-cvp:** VXML output, which includes extra data that makes it usable by a CVP Unified Call Studio call flow (For example, specifying the output as a VXML sub-dialog, contains Audium tags, and so on.).

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID_SELECTION_ID</td>
<td>Skillgroup or call type ID is invalid or not recognized</td>
</tr>
<tr>
<td>INVALID_USER_ID</td>
<td>Caller’s user ID is invalid</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>NO_TALKING_AGENTS</td>
<td>Currently no active agents for specified skillgroup</td>
</tr>
<tr>
<td>NO_PERMISSIONS</td>
<td>Specified supervisor does not have the proper permissions to monitor the specified skillgroup</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
</tbody>
</table>
**hasTTS:** True or false. If true, text data that can be read by TTS via `<prompt>` statement is returned. If false, data returned plays information about the conversation via pre-recorded audio prompts, using `<audio>` statement upon success.

**activeVLHostName:** Value of `activeVLHostName` parameter in VXML script.

**activeVLEnginePort:** Value of `activeVLEnginePort` parameter in VXML script.

## Returns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;TEXTUAL DATA&gt;</code></td>
<td>The conversation sub-dialog VXML page, as per <code>outputFormat</code> parameter. The returned VXML document or sub-dialog will also exit or return one of the parameters listed below (INVALID_USER_ID, SUCCESS, and so on).</td>
</tr>
<tr>
<td>INVALID_AGENT_ID</td>
<td>Agent ID is invalid</td>
</tr>
<tr>
<td>INVALID_USER_ID</td>
<td>Caller’s user ID is invalid</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>AGENT_NOT_TALKING</td>
<td>Agent ID is valid, but agent is not currently active (logged in and talking) and therefore has no active call ID</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
<tr>
<td>SUCCESS</td>
<td>Operation was successful</td>
</tr>
</tbody>
</table>

**getAgentList.jsp**

Returns a sub-dialog with list of currently talking agents, as called by VRU. Format of returned data, and how it is used, is specified by `hasTTS` parameter. Called by VRU call flow script (VXML, IP IVR, or CVP).
**Parameters**

**supervisorID:** ID of supervisor (caller) requesting list of agents, filtered to supervisor’s team members. If set to zero, team filtering is not performed.

**outputFormat:** Specifies format of returned data:

- **plain:** Equivalent to vxml (below).
- **vxml:** Returned data is formatted in result variable of returned VXML document. Returned page has `<exit>` statement that specifies result variable in its namelist parameter, which contains return code for operation. This output format is appropriate for IP IVR’s VoiceBrowser step.

- **vxml-cvp:** VXML output, which includes extra data that makes it usable by a CVP Unified Call Studio call flow (For example, specifying the output as a VXML sub-dialog, contains Audium tags, and so on).

**hasTTS:** True or false. If true, returned sub-dialog reads data out via TTS. If false, returned sub-dialog plays pre-recorded prompts to list each agent.

**filterBy:** Set to skillgroup to filter list by skillgroup ID, as specified by filterID parameter. Set to blank for no filtering.

**filterID:** Skillgroup or calltype ID, as used by filterBy parameter. Set to blank if filterBy is set to blank, for no filtering.

**activeCVPMediaSvrHostName:** *(CVP only)* Hostname or IP address of CVP media server with RSM prompts installed, in the MediaFiles/en-us/ VL/ directory. Must be specified if using vxml-cvp outputFormat parameter. Not required if outputFormat parameter is vxml or plain.

**activeCVPMediaSvrPort:** *(CVP only)* Port number of CVP media server web server process. Must be specified if using vxml-cvp outputFormat parameter. Not required if outputFormat parameter is vxml or plain.
Returns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;TEXTUAL DATA&gt;</td>
<td>Conversation sub-dialog VXML page, as per outputFormat and hasTTS parameter. Also, returned VXML document or sub-dialog will also exit or return one of parameters listed below (INVALID_USER_ID, SUCCESS, and so on).</td>
</tr>
<tr>
<td>INVALID_USER_ID</td>
<td>Caller’s user ID is invalid</td>
</tr>
<tr>
<td>INVALID_FILTER_ID</td>
<td>Skillgroup or call type ID is invalid or cannot be recognized</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>NO_TALKING_AGENTS</td>
<td>No agents are currently talking in the system</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
<tr>
<td>SUCCESS</td>
<td>Operation was successful</td>
</tr>
</tbody>
</table>

**proxyMonitorAgentForVRU.jsp**

Allows monitoring of calls on IP IVR or CVP VRU. Handles requests for streaming audio data, which the IP IVR CRS Editor’s Prompt step does not provide. Called by call flow script (IP IVR, or CVP).

**Parameters**

**agentID**: ID of agent to monitor.

**escapeOnDTMF2**: True or false. Set to true to escape monitoring when DTMF 2 is pressed (the number 2) or when a browsing mode is enabled (press the 2 key to advance to next agent). Set to false when a single agent is being monitored (the 2 key has no meaning).

**outputFormat**: Specifies format of returned data:

- **plain**: Equivalent to vxml (below).
**vxml:** Returned data is formatted in result variable of returned VXML document. Returned page has `<exit>` statement that specifies result variable in its namelist parameter, which contains return code for operation. This output format is appropriate for IP IVR’s VoiceBrowser step.

**vxml-cvp:** VXML output, which includes extra data that makes it usable by a CVP Unified Call Studio call flow (For example, specifying the output as a VXML sub-dialog, contains Audium tags, and so on.).

## Returns

Returns VXML code, which, when executed, sends request to PhoneSim monitorAgent API call to stream in voice data. Data is returned as VXML page with `<audio>` statement that makes a request for voice data from the PhoneSim monitorAgent API.

The page is run by a VoiceXML browser, and the following code is returned:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL_ERROR</td>
<td>See [&quot;Agent Monitoring Request Fails&quot;] topic in Chapter 7, Troubleshooting</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>NOTHING_PRESSED</td>
<td>Monitoring was successful, call ended naturally. User did not press anything on the keypad.</td>
</tr>
<tr>
<td>ONE_PRESSED</td>
<td>Monitoring was successful. User terminated call prematurely by pressing DTMF [1].</td>
</tr>
<tr>
<td>TWO_PRESSED</td>
<td>Monitoring was successful. User terminated call prematurely by pressing DTMF [2].</td>
</tr>
<tr>
<td>STAR_PRESSED</td>
<td>Monitoring was successful. User terminated call prematurely by pressing DTMF [*].</td>
</tr>
<tr>
<td>POUND_PRESSED</td>
<td>Monitoring was successful. User terminated call prematurely by pressing DTMF [#].</td>
</tr>
</tbody>
</table>
determineAgentCluster

Allows VLEngine to know which Unified CM cluster is managing agent whose ID is specified. Allows VLEngine to choose an idle simulated phone registered to that cluster. Called by VLEngine when it receives a monitorAgent request.

Parameters

**correlationID:** Unique ID for request, as generated by VLEngine. ID is specified so PhoneSim can correlate VLEngine response with its initial request, which allows it to run all HTTP request traffic over single persistent socket. The correlationID must be alphanumeric, and is passed back in response message.

**agentID:** ID of agent.

Returns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;CLUSTER_NAME&gt;</td>
<td>Routing client name of cluster handling agent (for example, CM1_PIM)</td>
</tr>
<tr>
<td>INVALID_AGENT_ID</td>
<td>Specified agent ID is invalid</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
</tbody>
</table>

Note

Each return is prefaced by the string `correlationID =<correlationID>&result=`
initiateMonitorAgent

Tells VLEngine (which manages JTAPI connections) to tell appropriate Unified CM cluster (via JTAPI) to initiate a monitoring session for specified simulated supervisor phone. Parameters passed are for a phone registered to the same cluster and returned by determineAgentCluster request. Called by VLEngine upon receipt of successful return code from determineAgentCluster request.

Parameters

correlationID: Unique ID for request, as generated by VLEngine. ID is specified so VLEngine can correlate response with its initial request, which allows it to run all HTTP request traffic over a single persistent socket. The correlationID must be alphanumeric, and is passed back in response message.

agentID: Agent ID to initiate monitoring.

phoneID: Device ID of simphone to initiate monitoring (for example, SEP00005E000001).

lineID: Line DN on passed simphoneID to take call.

Returns

Note Each return is prefaced by string correlationID =<correlationID>&result=

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID_PARAMETERS</td>
<td>One or more required parameters not specified</td>
</tr>
<tr>
<td>AGENT_NOT_TALKING</td>
<td>ID specified is valid, but agent is currently not active (logged in and talking) and therefore has no active call ID.</td>
</tr>
<tr>
<td>NO_PERMISSIONS</td>
<td>Specified caller does not have permissions required to monitor specified agent.</td>
</tr>
<tr>
<td>GENERAL_ERROR</td>
<td>See &quot;Agent Monitoring Request Fails&quot; topic in Chapter 7, Troubleshooting</td>
</tr>
</tbody>
</table>
testEngineServlet.jsp

Called manually, for debugging purposes.

Parameters

None.

Returns

Provides information about current active agents and calls in system.

PhoneSim HTTP API

monitorAgent.jsp

Checks if agent ID is valid and agent is currently talking, by proxying an error return code, from subsequent call to initiateMonitorAgent, to the VLEngine. Called by VXML script to allow it to monitor specified agent. Called by VRU call flow script (VXML, IP IVR, or CVP) or VLEngine. Call is made after VXML script calls canMonitorAgentID. Does not perform permissions check.

Parameters

agentID: ID of agent to monitor.

vruType: Specifies VRU type making the call. Impacts VRU-specific details of returned data (For example, data length stated in the audio header file, and so on).

Values: ipivr and cvp. If not specified, ipivr is default.

chunkedTransferMode: (optional) TRUE or FALSE. Allows call flow script to turn on (TRUE) or off (FALSE) chunked transfer mode for returned audio stream. If not specified, the value in the PhoneSim_DoHTTPChunkedTransfers registry key used.
Returns

**GENERAL_ERROR**: See "Agent Monitoring Request Fails" topic in Chapter 7, Troubleshooting
APPENDIX B

Registry Keys

The configuration parameters for RSM, as entered during the installation process, are stored in the Windows registry.

If you need to modify these settings (For example, a port number or error message email address has changed), you can do so in one of two ways:

- Re-run the installer, via the Windows Add or Remove Programs control panel, and run the Configuration Manager
- Manually edit the registry keys with Windows Registry Editor

The registry keys are divided into two sections: general settings, and those related to cluster configuration.
Changing RSM Registry Keys

To change configuration parameters via the installer:

1. Navigate to Start > Control Panel > Add or Remove Programs.
2. Select Cisco Remote Silent Monitoring from the currently installed programs list.
3. Click Change. The RSM installer appears.
4. Navigate through the installer to the Configuration Manager, and modify the settings you wish to change.
5. Navigate to the last screen of the installer and click Finish to save your changes.
6. Restart the VLEngine and PhoneSim services (refer to the “Restart RSM Services” topic in Chapter 6, RSM Services).

To change configuration parameters with Windows Register Editor:

1. Navigate to Start > Run.
2. Enter regedit.exe then click OK. The Windows Registry Editor window appears.
3. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc.\Remote Silent Monitoring.
4. Modify the registry values as required (refer to the “General Registry Keys” topic, below).
5. When finished, restart the VLEngine and PhoneSim services (refer to the “Restart RSM Services” topic in Chapter 6, RSM Services).
General Registry Keys

Version

Product version number. Set during product installation. Value cannot be altered.
Type: REG_SZ
Value Required: Yes
Valid Values: Any numeric value, in X.Y.Z format
Default Value: 1.0.0

NumClusterConfigs

Number of valid cluster configurations in registry. Numbers must be contiguous, fully entered, and valid for first through last cluster (Cluster1 through ClusterN). Minimum one valid configuration required.
Type: REG_SZ
Value Required: Yes
Valid Values: Any numeric value less than 100
Default Value: 1

MaxNumRequests

Maximum number of simultaneous real-time monitor requests that platform and RSM can handle (the maximum number of supervisors that can be logged in and using RSM at the same time). Must equal number of simphones created across all clusters, minus the number of simphones in the login pool (normally 5 per cluster). For example, if the environment has 2 clusters, each with 40 simphone devices, and the login pool size for each cluster is 5, then this will be (40 – 5) + (40 – 5) = 70.
Type: REG_SZ
Value Required: Yes
Valid Values: Integer greater than 0, and less than or equal to 500
Default Value: 80

**ProblemCallMinHolds**

Call is classified as a problem if agent has put caller on hold more than specified number.

Type: REG_SZ
Value Required: Yes
Valid Values: Integer greater than 0, and less than or equal to 500
Default Value: 4

**ProblemCallMinDuration**

Call is classified as a problem if it exceeds specified minimum seconds.

Type: REG_SZ
Value Required: Yes
Valid Values: Integer greater than 0, and less than or equal to 120000
Default Value: 1800

**MaxStaleCallDuration**

Maximum seconds state of a call can remain unchanged (does not trigger a CTI event) before deemed stale and removed.

Type: REG_SZ
Value Required: Yes
Valid Values: Integer greater than 60 seconds, and less than or equal to 172800 seconds (2 days)
Default Value: 3600 seconds (1 hour)
**SMTP_HostName**

Hostname or IP address of SMTP server that VLEngine and PhoneSim use to email program errors or exceptions. Blank entry disables feature.

*Type:* REG_SZ  
*Value Required:* No  
*Valid Values:* Valid IP address, in dotted decimal notation, or hostname  
*Default Value:* None

**SMTP_Port**

Port number used to connect to SMTP server, as specified by SMTP_Hostname parameter.

*Type:* REG_SZ  
*Value Required:* Yes  
*Valid Values:* Integer greater than 0, and less than or equal to 65534  
*Default Value:* 25

**SMTP_SenderEmailAddress**

Sender email address for error message emails. Value must be entered, even if SMTP_Hostname parameter is blank.

*Type:* REG_SZ  
*Value Required:* Yes  
*Valid Values:* Valid email address  
*Default Value:* voicelink@knoahsoft.com
SMTP_Receiver EmailAddress1

Recipient email address for error message emails. Value must be entered, even if SMTP_Hostname parameter is blank.

Type: REG_SZ
Value Required: Yes
Valid Values: Valid email address
Default Value: None

SMTP_ReceiverEmailAddress2

Recipient email address for error message emails. Not used if SMTP_Hostname parameter is blank.

Type: REG_SZ
Value Required: No
Valid Values: Valid email address
Default Value: None

SMTP_ReceiverEmailAddress3

Recipient email address for error message emails. Not used if SMTP_Hostname parameter is blank.

Type: REG_SZ
Value Required: No
Valid Values: Valid email address
Default Value: None
Appendix B       Registry Keys

SMTP_ReceiverEmailAddress4

Recipient email address for error message emails. Not used if SMTP_Hostname parameter is blank.

Type: REG_SZ
Value Required: No
Valid Values: Valid email address
Default Value: None

VLEngine_LogLevel

String which dictates verbosity level of output to the VLEngine log file.

Type: REG_SZ
Value Required: Yes
Valid Values (lowest to highest verbosity): FATAL, WARN, INFO, DEBUG, TRACE, ALL
Default Value: INFO

PhoneSim_LogLevel

String which dictates verbosity level of output to the PhoneSim log file.

Type: REG_SZ
Value Required: Yes
Valid Values (lowest to highest verbosity): FATAL, WARN, INFO, DEBUG, TRACE, ALL
Default Value: INFO
## VLEngine_HostDataIP

IP address of VLEngine server used to contact other computers in the network. Useful for multi-NIC machines. If blank, IP address of primary network interface is used.

This parameter is important in a large deployment, where VLEngine and PhoneSim are on different servers, and is the address that PhoneSim uses to communicate with VLEngine.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** IP address, in dotted decimal notation  
**Default Value:** None

## VLEngine_HTTPListenPort

Port number VLEngine listens to for incoming HTTP requests.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** Integer greater than 0, and less than or equal to 65534  
**Default Value:** 8080

## PhoneSim_HTTPListenPort

Port number PhoneSim listens to for incoming HTTP requests.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** Integer greater than 0, less than or equal to 65534  
**Default Value:** 29001
Appendix B       Registry Keys

General Registry Keys

PhoneSim_RTSPListenPort

Port number PhoneSim listens to for incoming RTSP requests.

Type: REG_SZ

Value Required: Yes

Valid Values: Integer greater than 0, less than or equal to 65534

Default Value: 29554

PhoneSim_AudioEncoding

Data encoding method PhoneSim uses for requested audio data.

Type: REG_SZ

Value Required: Yes

Valid Values:

- wav-ulaw (for IP IVR HTTP G.711 u-law streaming)
- wav-alaw (currently not supported)
- wav-g729 (currently not supported)
- rtsp-ulaw (for CVP RTSP G.711 u-law streaming)
- rtsp-alaw (for CVP RTSP G.711 a-law streaming)
- rtsp-g729 (for CVP RTSP G.729 streaming)
- wav-pcm (deprecated, no longer supported)
- au-ulaw (deprecated, no longer supported)
- au-alaw (currently not supported)
- au-pcm (deprecated, no longer supported)

Default Value: wav-ulaw

PhoneSim_DoHTTPChunkedTransfers

Enables PhoneSim to transmit HTTP chunking of audio data, from VRU request.

Type: REG_SZ
Value Required: Yes
Valid Values: yes or no
Default Value: yes

PhoneSim_AudioBufferLenToVRU

Bytes of data PhoneSim will buffer before transmission to VRU Voice browser. Used when VRU voice browser receives agent audio data from PhoneSim.
Set to 160 for an IP IVR environment. (For CVP environment, this value is ignored, as RTSP/RTP based streaming does not require buffering of the RSM server.)
Type: REG_SZ
Value Required: Yes
Valid Values: Integer greater than 20, and less than or equal to 1000000
Default Value: 160

PhoneSim_HostDataIP

IP address PhoneSim server uses to contact other computers in network. Useful when there are multiple NIC machines in network. If blank, IP address of primary network interface is used.
Type: REG_SZ
Value Required: Yes
Valid Values: IP address, in dotted decimal notation
Default Value: None

CTIOS_TraceMask

Trace mask used to log CTI OS CIL messages to disk for CTI OS mode connections. CTI OS connections are created upon startup, and remain active for life of application. Used to retrieve information about events in call center environment.
Setting determines how much CIL output data is logged in C:\CiscoRSM\vlengine\ctiosLogs directory files for these connections.

**Type:** REG_SZ

**Value Required:** No

**Valid Values:** Eight-digit numerical hexadecimal, as the CTI OS trace mask to use, or blank. If blank, tracing to file is disabled. Refer to the *CTI OS Developer Guide* for more information.

**Default Value:** None

### CTIOS_AgentModeTraceMask

Trace mask used to log CTI OS CIL messages to disk for the CTI OS agent mode connections. Connections are created on demand for back-end authorization when login to RSM is requested.

Setting determines how much CIL output data is logged to ctiosAMLogs directory for these connections.

**Type:** REG_SZ

**Value Required:** No

**Valid Values:** Eight-digit numerical hexadecimal of CTI OS trace mask, or blank. If blank, tracing to file will be disabled.

**Default Value:** None

### VLEngine_PassPrefix

Prefix for supervisor password used when creating accounts. Refer to “Supervisor Login Account Creation” topic in Chapter 3, Pre-Installation Tasks.

For example, if set to RSM1RSM, and you want a supervisor to log in with PIN 1234, then set supervisor's password to RSM1RSM1234. VLEngine prepends the RSM1RSM string before it submits the password to CTI OS for validation.

**Type:** REG_SZ

**Value Required:** No
Valid Values: Any string of letters, numbers, and valid password symbols (e.g., no whitespace and control characters).

Default Value: Blank string

Cluster Configuration Registry Keys

These configuration parameters are duplicated for each supported cluster, where N goes from 1 to the setting of the NumClusterConfigs value.

When configuring multiple CTI OS servers, pair the hostname and port keys (ClusterN_VLEngine_CTIOS1_HostName, ClusterN_VLEngine_CTIOS1_Port) in A/B fashion as follows:

<table>
<thead>
<tr>
<th>Registry Key</th>
<th>CTI OS Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterN_VLEngine_CTIOS1</td>
<td>CTIOS1A</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS2</td>
<td>CTIOS1B</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS21</td>
<td>CTIOS2A</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS22</td>
<td>CTIOS2B</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS31</td>
<td>CTIOS3A</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS32</td>
<td>CTIOS3B</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS41</td>
<td>CTIOS4A</td>
</tr>
<tr>
<td>ClusterN_VLEngine_CTIOS42</td>
<td>CTIOS4B</td>
</tr>
</tbody>
</table>

ClusterN_Name

Client name in IPPC, for cluster’s routing.

Type: REG_SZ

Value Required: Yes
Valid Values: Alphanumeric string (underscore and emdash allowed)
Default Value: None

ClusterN_MaxNumRequests

Maximum simultaneous, real-time monitor requests the platform can handle for the cluster. Equal to number of simphones in cluster not used in the login pool. For example, if the cluster has 50 devices and 5 in the login pool, then value is 45.
Type: REG_SZ
Value Required: Yes
Valid Values: Numerical value less than or equal to MaxNumRequests
Default Value: None

ClusterN_PeripheralID

Peripheral instrument ID used to denote the cluster in Unified ICME (For example, the ICM peripheral ID of the PIM for the UCM cluster).
Type: REG_SZ
Value Required: Yes
Valid Values: Numeric string
Default Value: None

ClusterN_JTAPI_UserName

JTAPI application user username used by RSM to connect to the specified UCM servers in the cluster.
Type: REG_SZ
Value Required: Yes
Valid Values: Alphanumeric string
Default Value: None
ClusterN_JTAPI_Password

JTAPI user password, as per ClusterN_JTAPI_User parameter

**Type:** REG_SZ

**Value Required:** Yes

**Valid Values:** String (alphanumeric special non-whitespace characters allowed)

**Default Value:** None

ClusterN_NumSimPhonesUsedForCTIOSAgentLogins

Number of simphones in the login pool for the given cluster configuration. Normally this value is set to 5 and should not be changed. For more information, refer to the “Login Pool Simphone Setup” topic in Chapter 3, Pre-Installation Tasks.

**Type:** REG_SZ

**Value Required:** Yes

**Valid Values:** Any numeric string between 1 and 10

**Default Value:** 5

ClusterN_PhoneSim_StartMACRange

First MAC address to use for auto-generation of MAC range for simphone device names. For example, if 000000100010 is specified, the range would proceed with SIP000000100010, SIP000000100011, SIP000000100012, and so forth.

MAC ranges must not overlap between clusters. Note that the 0000:5Exx range is normally reserved for public use, as per IANA standards.

**Type:** REG_SZ

**Value Required:** Yes

**Valid Values:** Twelve-digit, numerical hexadecimal

**Default Value:** 00005E000001
ClusterN_PhoneSim_StartLineNumRange

First extension number to use for auto-generation of line extension range for simphone DNs. Correlates to ClusterN_PhoneSim_StartMACRange value.

If 1000 is specified, and 000000100010 is ClusterN_PhoneSim_StartMACRange, then the first simphone device name generated will be SIP000000100010 and will have line extension 1000; SIP000000100011 will have line extension 1001; SIP000000100012 will have line extension 1002, and so forth.

Line extension ranges must not overlap between clusters.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** Four to six digit number  
**Default Value:** 1000

ClusterN_PhoneSim_SIPTransport

Tells PhoneSim how to conduct the SIP transmission with Contact Manager for the cluster, via TCP or UDP.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** tcp or udp  
**Default Value:** tcp

ClusterN_PhoneSim_CM1_HostName

IP address or hostname of the primary Contact Manager that PhoneSim will hone its simphones to for the cluster.

**Type:** REG_SZ  
**Value Required:** Yes  
**Valid Values:** Valid IP address, in dotted decimal notation; or hostname  
**Default Value:** None
ClusterN_PhoneSim_CM1_Port

Port PhoneSim uses to send its SIP messages to Contact Manager 1. If TCP is used, connections will be made to this port. If UDP is use, datagrams will be sent to this port.

Type: REG_SZ

Value Required: Yes

Valid Values: Integer greater than 0 and less than or equal to 65534

Default Value: 5060

ClusterN_PhoneSim_CM2_HostName

(optional) IP address or hostname of the Contact Manager 2 that PhoneSim hones its simphones to as a secondary (failover) Contact Manager for the cluster.

Type: REG_SZ

Value Required: No

Valid Values: Valid IP address, in dotted decimal notation; or hostname

Default Value: None

ClusterN_PhoneSim_CM2_Port

Port PhoneSim uses to send its SIP messages to Contact Manager 2. If TCP is used, connections will be made to this port. If UDP is use, datagrams will be sent to this port.

Type: REG_SZ

Value Required: If ClusterN_PhoneSim_CM2_Port is specified

Valid Values: Integer greater than 0, and less than or equal to 65534

Default Value: 5060
ClusterN_VLEngine_CM1_HostName

IP address or hostname of Contact Manager 1 for the cluster that VLEngine
connects to via JTAPI, to make its JTAPI requests.

Type: REG_SZ
Value Required: Yes
Valid Values: Valid IP address, in dotted decimal notation; or hostname
Default Value: None

ClusterN_VLEngine_CM2_HostName

(optional) IP address or hostname of Contact Manager 2 for the cluster that
VLEngine connects to via JTAPI, to make its JTAPI requests. Contact Manager 2
is used in conjunction with Contact Manager 1, in round-robin fashion, for JTAPI
requests.

Type: REG_SZ
Value Required: No
Valid Values: Valid IP address, in dotted decimal notation; or hostname
Default Value: None (blank)

ClusterN_VLEngine_CTIOS1_HostName

IP address or hostname of primary CTI OS server for the cluster; or, if the cluster
has multiple CTI OS pairs, this is the primary server of the first pair. If another
cluster is using the same set of CTI OS servers, enter only these servers in the
configuration for one of the clusters, and leave the other clusters CTI OS server
configuration blank.

Type: REG_SZ
Value Required: Yes
Valid Values: Valid IP address, in dotted decimal notation; or hostname
Default Value: None
ClusterN_VLEngine_CTIOS1_Port

Connection port for the cluster’s primary CTI OS server.

**Type:** REG_SZ

**Value Required:** Yes

**Valid Values:** Integer greater than 0, and less than or equal to 65534

**Default Value:** 42028

ClusterN_VLEngine_CTIOS2_HostName

IP address or hostname of secondary (backup) CTI OS server for cluster; or, if the cluster has multiple CTI OS pairs, this is the secondary server of the first pair.

**Type:** REG_SZ

**Value Required:** No

**Valid Values:** Valid IP address, in dotted decimal notation; or hostname

**Default Value:** None (blank)

ClusterN_VLEngine_CTIOS2_Port

Used when RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the primary CTI OS server for the second pair.

**Type:** REG_SZ

**Value Required:** If ClusterN_VLEngine_CTIOS2_HostName is specified

**Valid Values:** Integer greater than 0, and less than or equal to 65534

**Default Value:** 4202

ClusterN_VLEngine_CTIOS21_HostName

Used when RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the primary CTI OS server for the second pair.
ClusterN_VLEngine_CTIOS21_HostName

Used when RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the secondary CTI OS server for the second pair.

**Type:** REG_SZ

**Value Required:** No

**Valid Values:** Valid IP address, in dotted decimal notation; or hostname

**Default Value:** None (blank)

ClusterN_VLEngine_CTIOS22_Port

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the secondary CTI OS server for the second pair.

**Type:** REG_SZ

**Value Required:** If ClusterN_VLEngine_CTIOS22_HostName is specified

**Valid Values:** Integer greater than 0, and less than or equal to 65534

**Default Value:** 42028
ClusterN_VLEngine_CTIOS31_HostName

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the primary CTI OS server for the 3rd pair.

Type: REG_SZ
Value Required: No
Valid Values: Valid IP address, in dotted decimal notation; or hostname
Default Value: None

ClusterN_VLEngine_CTIOS31_Port

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the primary CTI OS server for the third pair.

Type: REG_SZ
Value Required: If ClusterN_VLEngine_CTIOS31_HostName is specified
Valid Values: Integer greater than 0, and less than or equal to 65534
Default Value: 42028

ClusterN_VLEngine_CTIOS32_HostName

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the secondary CTI OS server for the third pair.

Type: REG_SZ
Value Required: No
Valid Values: Valid IP address, in dotted decimal notation; or hostname
Default Value: None (blank)
ClusterN_VLEngine_CTIOS32_Port

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the secondary CTI OS server for the third pair.

Type: REG_SZ

Value Required: If ClusterN_VLEngine_CTIOS32_HostName is specified

Valid Values: Integer greater than 0, and less than or equal to 65534

Default Value: 42028

ClusterN_VLEngine_CTIOS41_HostName

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the primary CTI OS server for the fourth pair.

Type: REG_SZ

Value Required: No

Valid Values: Valid IP address, in dotted decimal notation; or hostname

Default Value: None

ClusterN_VLEngine_CTIOS41_Port

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the primary CTI OS server for the fourth pair.

Type: REG_SZ

Value Required: If ClusterN_VLEngine_CTIOS41_HostName is specified

Valid Values: Integer greater than 0, and less than or equal to 65534

Default Value: 42028
ClusterN_VLEngine_CTIOS42_HostName

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the IP address or hostname of the secondary CTI OS server for the fourth pair.

**Type:** REG_SZ

**Value Required:** No

**Valid Values:** Valid IP address, in dotted decimal notation; or hostname

**Default Value:** None (blank)

ClusterN_VLEngine_CTIOS42_Port

Used in cases where RSM must connect to more than one CTI OS server pair per cluster. This is the connection port of the secondary CTI OS server for the fourth pair.

**Type:** REG_SZ

**Value Required:** If ClusterN_VLEngine_CTIOS42_HostName is specified

**Valid Values:** Integer greater than 0, and less than or equal to 65534

**Default Value:** 42028

ClusterN_VLEngine_UCCE_Integration

RSM 10.0(1) and higher supports both CTI and CTIOS integrations with Unified CCE. The new CTI integration option allows RSM to function in pure Cisco Finesse environments where CTI OS is not available. Used to select CTI or CTI OS, depending on the All Events monitoring clients limits in a Unified CCE deployment.

**Type:** REG_SZ

**Value Required:** Yes

**Valid Values:** CTI or CTIOS

**Default Value:** CTI OS (for backward compatibility)
INDEX

A
agent device setup 3-13
agent phone device setup 3-13
anti-virus software 3-2
Apache Tomcat server
configuration 1-3
installation 4-2
API extensions A-1
JSP suffix A-1
PhoneSim A-13
VLEngine A-2
application connectivity 1-4
application user
JTAPI user 1-6
JTAPI username 4-5, 4-6, B-13
login pool 3-10
RSM creation 3-12
RSM removal 6-5
terminal domain error 7-9
Unified CM removal 6-5
associate a pguser 3-10

B
base system provisioning 3-2
BAT tool, simphones 3-8

C
call flow 1-2
text-to-speech (TTS) 5-6
troubleshooting 7-2
troubleshooting, CVP 5-11
VXML deployment 5-10
call flow script
CVP integration 5-8
disable built-in user authentication 5-13
editing tools 1-2
IP IVR integration (non-Unified ICME) 5-5
IP IVR integration (Unified ICME) 5-7
VRU integration 5-4
check RSM services 6-2
Cisco hardware and software requirements 2-1
Cisco Internetwork Operating System (IOS) 5-12
Cisco Security Agent (CSA) 4-10
disable 4-2
Configuration Manager
   Call Manager settings  4-6
   define cluster settings  4-5
   installation  4-2
   miscellaneous settings  4-3

CVP
   audio buffer  4-4
   call flow deployment  5-10
   call flow integration  5-8
   call flow troubleshooting  5-11
   Cisco documentation  5-11
   media server  5-9
   media server port number  A-8
   RSM integration  5-7
   RSM removal  6-3
   upload RSM prompts  5-8
CVP Unified Call Studio  5-7
   API extensions  A-1
   logging  5-11
CVP VXML Server
   installation location  5-7

D
   directory structure  4-7
   disable
      Cisco Security Agent (CSA)  4-2
      supervisor team structure  5-13
      user authentication  5-13
   disassociate simphone devices, pguser  6-5

E
   enable RSM services  6-1
   environment variables  4-8
   error messages
      PhoneSim log file  7-15

F
   firewall, Windows 2003  4-9

G
   G.711 codec  5-4
   G.729 codec  5-4
   general call flow troubleshooting  7-2

H
   hardware and software requirements, Cisco  2-1
   host level security  4-9

I
   installation  4-1
   Internetwork Operating System (IOS)  5-12
   IP IVR
      CRS Editor and APIs  A-1
      integration (non-Unified ICME)  5-5
integration (Unified ICME)  5-7
integration overview  5-4
removal  6-2
IP security (IPsec)  4-10

J
Java Service Wrapper  4-2
JTAPI  1-1
  application username  B-13
  client libraries installation  3-3
  client library directory  4-7
  encryption  4-11
  IPsec CTI OS communication  4-10
  trace logs  7-1
  troubleshooting  7-1
  username  4-5, 4-6
  user password  B-14
  VLEngine connections  A-12

L
line DN
  add to simphone device  3-7
  parameters  3-8
  simphone device association  3-7
log files  7-1
  PhoneSim error messages  7-15
login pool
  Configuration Manager  4-5
  invalid login  7-5
login error  7-7
rsmuser association  3-12
simphone setup  3-10

M
Microsoft’s Baseline Security Analyzer (MBSA)  3-2
multi-site deployment  1-6

P
pguser
  association  3-10
  disassociate simphone devices  6-5
PhoneSim  1-3
  HTTP API  A-13
  log file error messages  7-15
  runtime troubleshooting  7-14
  port numbers  4-8
pre-installation tasks  3-1
prompts
  CVP upload  5-8
  IP IVR upload  5-4

R
registry keys  B-1
  cluster configuration  B-12
  general  B-3
modifying B-2
Remote Silent Monitoring (see RSM) 1-1
remove
  application user 6-5
  CVP 6-3
  IP IVR 6-2
  RSM 6-2
  supervisor login account 6-4
Unified CM 6-5
Unified ICME 6-4
restart RSM services 6-2
RSM 1-1
  application user creation 3-12
  directory structure 4-7
  removal 6-2
  services enablement 6-1
  services overview 1-3
  user group, create 3-11
  VLAN configuration 1-4
RSM.aef 5-6
RSM prompts
  upload for CVP 5-8
  upload for IP IVR 5-4
rsmuser
  application user 3-12
host level 4-9
  JTAPI encryption 4-11
simphone
  BAT tool 3-8
  calling search space, create 3-5
  configuration 3-3
  login pool setup 3-10
  region, create 3-4
  route partition, create 3-5
simphone device
  add line DN 3-7
  create 3-6
  dependencies 3-4
  line DN association 3-7
simphone device pool
  create 3-5
  supervisor login account
    create 3-13
    remove 6-4
  supervisor team structure, disabling 5-13
system overview 1-1
system requirements 2-1

S
security 4-9
  CTI OS encryption 4-10
  hardening 4-9
T

troubleshooting
  general call flow 7-2
  JTAPI, CTI OS 7-1
  PhoneSim runtime issues 7-14
  VLEngine runtime issues 7-9
U

Unified CM
  group create  3-4
  removal  6-5
  services enablement  3-3
Unified ICME
  device target, create  3-10
  removal  6-4
upload RSM prompts
  CVP  5-8
  IP IVR  5-4
user authentication, disabling  5-13
user group, RSM  3-11

V

VLAN configuration  1-4
VLEngine  A-2
  HTTP API  A-2
  overview  1-3
VLEngine runtime troubleshooting  7-9
VRU configuration  5-1
vxml-cvp  A-2
VXML gateway  5-12
  sample code  5-12

W

Windows 2003 Firewall  4-9
Windows automatic updates  3-2
Windows Security hardening  4-9