

Cisco Unified Contact Center Express
Expression Language Reference Guide,
Release 11.0(1)
Cisco Unified Contact Center Express Scripting and Development Series:
Volume 3
First Published: August 27, 2015
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)
Copyright © 2015 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

Cisc

C O N T E N T S
Preface i

Purpose i-i

Audience i
Organization ii
Related Documentation ii
Conventions iii
Obtaining Documentation, Obtaining Support, and Security Guidelines iv
Documentation Feedback iv

C H A P T E R 1 About the Cisco Unified CCX Expression Language 1-1

The Language Purpose 1-1

How to Access the Language 1-1

The Language Syntax 1-2

The Language Classes and Interfaces 1-3

Language Code Examples 1-3

Expression Language Terminology 1-4

Expression Language Operator Summary 1-7

Operators Used with Prompts and Documents 1-8

The Prompt Substitution Operator ||| 1-9

Qualifier Operators 1-9

Additive Operators 1-9

Integer/Boolean Conditional-Or Operator || 1-10

Escalation Operator || 1-11

Compound Assignment Operators 1-13

Expression Language Keywords 1-14

Expression Language Literals 1-15

Lexical Literals 1-15

Class Literals 1-15

Complex Literals 1-16

Expression Language Data Types 1-16

Type Variables 1-17

Type Values 1-17

Primitive Values 1-18

Reference Values 1-24
i
o Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
Where Types Are Used 1-27

The Language Variables 1-27

About Language Variables 1-27

Primitive Variables 1-28

Reference Variables 1-28

Variable Categories 1-28

“final” Variables 1-29

Initial Values of Variables 1-29

Definite Local Variable Assignment 1-30

Variable Types, Classes, and Interfaces 1-30

About Conversions in the Expression Language 1-31

Prompt Conversions 1-32

Document Conversions 1-32

String Conversions 1-32

String Parsing 1-33

New Objects Resulting from Conversions 1-33

C H A P T E R 2 Using Expressions and the Expression Editor 2-1

How to Access the Cisco Unified CCX Expression Editor 2-1

How to Use the Expression Editor 2-2

How To Enter Expressions in the Expression Editor 2-2

About the Expression Editor Toolbar 2-4

Toolbar Tabs 2-5

A Pop-Up Menu 2-7

Showing or Hiding the Expression Editor Toolbar 2-8

About the Expression Editor Syntax Buttons 2-9

About Expression and Java Licensing 2-9

C H A P T E R 3 Expression Editor Tool Reference Descriptions 3-1

Friendly Data Types 3-2

Tool Tips 3-4

Tool Tips For the Java and Miscellaneous Tool Tabs 3-4

Tool Tips For All the Expression Editor Tools 3-6

Array 3-8

About Arrays 3-8

Array Java Specification on the Web 3-8

Example Array Code 3-9

Array Variables 3-10
ii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
Index Variables 3-10

Array Methods 3-11

Array tab Syntax Buttons 3-11

BigDecimal 3-13

About BigDecimals 3-13

BigDecimal Java Specification on the Web 3-13

Example BigDecimal Code 3-14

BigDecimal Variables 3-15

BigDecimal Constructors, Methods, and Attributes 3-15

BigDecimal tab Syntax Buttons 3-16

BigInteger 3-18

About BigIntegers 3-18

BigInteger Specification on the Web 3-18

Example BigInteger Code 3-18

BigInteger Variables 3-20

BigInteger Constructors, Methods, and Attributes 3-20

BigInteger tab Syntax Buttons 3-20

Boolean 3-23

About Booleans 3-23

Boolean Specification on the Web 3-23

Example Complex Expression Using a Boolean 3-23

Boolean Variables 3-24

Boolean Constructors, Methods, and Attributes 3-25

Boolean tab Syntax Buttons 3-25

Boolean Literals 3-27

Byte 3-27

About Bytes 3-28

Byte Java Specification on the Web 3-28

Example Simple Expression Use the Byte Data Type 3-29

Byte Constructors, Methods, and Attributes 3-29

Byte Variables 3-29

Byte tab Syntax Buttons 3-29

Character 3-32

About the Character Data Type 3-32

Character Specification on the Web 3-33

Example Character Code 3-33

Character Methods and Attributes 3-34

Character Variables 3-34

Character tab Syntax Buttons 3-35
iii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
Character Literals 3-35

Escape Character Literals 3-36

Currency 3-37

About Currencies 3-37

Currency Specification and Code List on the Web 3-37

Example Simple Expression Using a Prompt and Currency 3-38

Currency Variables 3-38

Currency Methods and Attributes 3-38

Recent Currencies 3-38

Currency tab Syntax Button 3-39

Currency Literals 3-39

Date 3-39

About Dates 3-39

Date Specification on the Web 3-40

Example Date Code 3-40

Date Variables 3-41

Date Constructors and Methods 3-42

Date tab Syntax Buttons 3-42

Date Literals 3-43

Document 3-44

About Expression Language Documents 3-45

Example Expression Using a Document 3-45

Document Variables 3-45

Browse Documents Dialog Box 3-46

Document tab Syntax Buttons 3-46

Document Literals 3-48

Document Concatenation Operator + 3-51

Document Qualifier Operator 3-52

Time of Week, Day of Week, and Time of Day Documents 3-52

Double 3-54

About Doubles 3-54

Double Specification on the Web 3-54

Example Double Code 3-55

Double Variables 3-56

Double Constructors, Methods, and Attributes 3-56

Double tab Syntax Buttons 3-56

Float 3-57

About Floats 3-58

Float Specification on the Web 3-58
iv
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
Example Float Code 3-58

Float Variables 3-59

Float Constructors, Methods, and Attributes 3-59

Float tab Syntax Buttons 3-60

Floating-Point Literals 3-61

Grammar 3-62

About Grammars 3-62

Grammar Specifications on the Web 3-62

Example Grammar Code 3-63

Grammar Variables 3-63

Browse Grammars Dialog Box 3-64

Grammar tab Syntax Buttons 3-64

Grammar Literals 3-65

Compound Grammar 3-68

Compound Grammar Indexing 3-69

Grammar Template File Types and Template Enhancements 3-69

Integer 3-69

About the Integer Class 3-70

Integer Specification on the Web 3-70

Example Integer Code 3-70

Integer Variables 3-71

Integer Constructors, Methods, and Attributes 3-71

Integer Operations 3-72

Integer tab Syntax Buttons 3-72

Integer Literals 3-75

Java 3-77

Java Specification on the Web 3-77

Example Java tab Code 3-77

Java tab Constructors, Methods, and Attributes 3-78

How to Access a Java Constructor, Method, or Attribute for Any Class 3-79

How to Make Custom Java Classes Available to the Cisco Unified CCX Editor 3-80

Java tab Syntax Button Descriptions 3-80

Language 3-84

Language Class and Code Specifications on the Web 3-84

Example Language Code 3-85

Language Variables 3-85

Language Methods and Attributes 3-85

Recent Languages 3-85

All Languages 3-86
v
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
Language tab Syntax Button 3-86

Language Literals 3-86

Long 3-87

About the Long Data Type 3-87

Long Specification on the Web 3-87

Example Long Code 3-87

Long Variables 3-89

Long Constructors, Methods, and Attributes 3-89

Long tab Syntax Buttons 3-89

Miscellaneous 3-91

Example Simple Expression Using the Miscellaneous Tab 3-92

Object Variables 3-92

DayOfWeek 3-93

Gender 3-93

The Null Literal 3-93

Miscellaneous tab Syntax Buttons 3-93

Prompt 3-94

About Prompts 3-94

Prompt Variables 3-95

Browse Prompts Dialog Box 3-96

Prompt tab Syntax Buttons 3-96

Prompt Literals 3-98

Operators Used with Prompts 3-104

Prompt Templates 3-106

Prompt Conversions 3-109

Script 3-110

About Scripts 3-110

Example Simple Expression Using a Script 3-111

Script Variables 3-111

Browse Scripts 3-111

Script tab Syntax Buttons 3-111

Short 3-113

About the Short Data Type 3-113

Numeric Type Specification on the Web 3-113

Example Short Code 3-113

Short Variables 3-115

Short Constructors, Methods, and Attributes 3-115

Short tab Syntax Buttons 3-115
vi
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
String 3-117

About the String Class 3-118

Java String Specification on the Web 3-118

Example Simple Expression Using a String 3-118

String Variables 3-119

String Constructors, Methods, and Attributes 3-119

String tab Syntax Buttons 3-119

String Literals 3-120

Escape Sequences for Character and String Literals 3-121

An Array of Characters is Not a String 3-121

Time 3-122

About Time Data 3-122

Time Specification on the Web 3-122

Example Simple Expression using Time and Three Script Variables 3-123

Time Variables 3-123

Time Constructors and Methods 3-123

Time tab Syntax Buttons 3-124

Time Literals 3-124

User 3-125

About Users 3-125

Example User Code 3-126

User Variables 3-126

User Syntax Button 3-126

I N D E X
vii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Contents
viii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Preface

The Cisco Unified Contact Center Express (Cisco Unified CCX) Scripting and Development Series
contains three volumes and provides information about how to use the Cisco Unified CCX Editor to
develop a wide variety of interactive scripts:

• Volume 1, Getting Started with Scripts , provides an overview of the Cisco Unified CCX and the
Cisco Unified CCX Editor web interface.

• Volume 2, Editor Step Reference, describes each individual step in the Cisco Unified CCX Editor
palettes.

• Volume 3, Expression Language Reference (this book), provides details on working with the Cisco
Unified CCX Expression Editor

The information in all three volumes is included in the Cisco Unified CCX Step Editor online help. This
means by searching in one location, the Cisco Unified CCX Step Editor help, you should be able to find
any information contained in all three volumes.

Purpose
This document briefly describes the Expression Language and how to use its Expression Editor. The
Expression Editor is an addition to the Cisco Unified CCX script application set of APIs that provides
support for creating, validating, and evaluating expressions in Cisco Unified CCX scripts.

The Expression Language syntax is borrowed from other languages such as C++, C, and Java.

Audience
The Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1) is written for
script developers who use the Cisco Unified CCX Editor to create and modify Cisco Unified CCX
scripts. This guide targets developers who have the IP telephony knowledge required to create useful
applications and who also have some background in programming or scripting. While readers of this
guide do not need experience or training with Java, such training is useful to fully utilize the capabilities
of the Expression Language.
i
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Preface
Purpose
Organization

Related Documentation
Refer to the following documents for further information about Cisco Unified CCX Applications and
Products:

• Cisco Unified Contact Center Express Scripting and Development Series: Volume 1, Getting Started
with Scripts

• Cisco Unified Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference

• Cisco Unified Contact Center Express Administration Guide

• Cisco Unified Contact Center Express Installation and Upgrade Guide

• Cisco Unified Contact Center Express Servicing and Troubleshooting Guide

• Cisco Unified Communications Manager Administration Guide

• Cisco Unified Communications Manager Extended Services Administrator Guide

• Cisco Unified Communications Manager System Guide

• Cisco Unified Communications Solution Reference Network Design (SRND) documents

• IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New
York)

Chapter Describes

Chapter 1, “About the Cisco Unified CCX
Expression Language”

The Expression Language

Chapter 2, “Using Expressions and the Expression
Editor”

How to use the Cisco Unified CCX Expression
Editor

Chapter 3, “Expression Editor Tool Reference
Descriptions”

Each of the Expression Editor editing aids on the
Expression Editor tool bars.
ii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Preface
Purpose
Conventions
This manual uses the following conventions.

Convention Description

boldface font Boldface font is used to indicate commands, such as user entries, keys, buttons,
and folder and submenu names. For example:

• Choose Edit > Find.

• Click Finish.

italic font Italic font is used to indicate the following:

• To introduce a new term. Example: A skill group is a collection of agents
who share similar skills.

• For emphasis. Example:
Do not use the numerical naming convention.

• An argument for which you must supply values. Example:
IF (condition, true-value, false-value)

• A book title. Example:
See the Cisco Unified CCX Installation Guide.

window font Window font, such as Courier, is used for the following:

• Text as it appears in code or information that the system displays.
Example:
<html><title>Cisco Systems,Inc. </title></html>

• File names. Example: tserver.properties.

• Directory paths. Example:
C:\Program Files\Adobe

string Nonquoted sets of characters (strings) appear in regular font. Do not use
quotation marks around a string or the string will include the quotation marks.

[] Optional elements appear in square brackets.

{ x | y | z } Alternative keywords are grouped in braces and separated by vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and separated by
vertical bars.

< > Angle brackets are used to indicate the following:

• For arguments where the context does not allow italic, such as ASCII
output.

• A character string that the user enters but that does not appear on the
window such as a password.

^ The key labeled Control is represented in screen displays by the symbol ^. For
example, the screen instruction to hold down the Control key while you press
the D key appears as ^D.
iii
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Preface
Purpose
Obtaining Documentation, Obtaining Support, and Security
Guidelines

For information on obtaining documentation, obtaining support, security guidelines, and also recommended
aliases and general Cisco documents, see the monthly What’s New in Cisco Product Documentation, which
also lists all new and revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Documentation Feedback
You can provide comments about this document by sending email to the following

address:

ccbu_docfeedback@cisco.com

We appreciate your comments.
iv
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

ccbu_docfeedback@cisco.com
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Cisco Unified Contact Center Exp
C H A P T E R 1

About the Cisco Unified CCX Expression
Language

This chapter section covers the following topics:

• The Language Purpose, page 1-1

• How to Access the Language, page 1-1

• The Language Syntax, page 1-2

• The Language Classes and Interfaces, page 1-3

• Language Code Examples, page 1-3

• Expression Language Terminology, page 1-4

• Expression Language Operator Summary, page 1-7

• Operators Used with Prompts and Documents, page 1-8

• Expression Language Keywords, page 1-14

• Expression Language Literals, page 1-15

• Expression Language Data Types, page 1-16

• The Language Variables, page 1-27

• About Conversions in the Expression Language, page 1-31

The Language Purpose
The Cisco Unified CCX Expression Language provides a simple, yet powerful, way for script developers
to customize steps or variable values within Cisco Unified CCXscripts.

How to Access the Language
The Expression Language can be accessed from the Cisco Unified CCX Step Editor through the
Expression Editor responsible for providing parsing, validating, and evaluation of expressions. See How
to Access the Cisco Unified CCX Expression Editor, page 2-1, for more details.
1-1
ress Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Syntax
The Language Syntax
The syntax for this language started with simple operations such as additions and subtractions in Cisco
CRA 2.0.

After Cisco CRA 2.0, the language syntax was enhanced to provide more programming capability by
borrowing from the syntax of other languages such as C++, C, and Java. For example, the expression
syntax allows for developing more complex expressions that use statements such as for, while, if-then,
switch, and try/catch which are popular in many programming languages today.

The Unified CCX 8.0 Expression Language syntax is backwards compatible with the previous releases
of the Expression Language.

Note Although the notation in the Expression Language is identical to Java in many cases, it is different in
other cases. Also the Expression Language adds more support for creating literals of complex objects
and more operators for these complex objects.

The language was enhanced to support the following:

• All numerical operators

• All boolean operators (?:, |, ||, &, &&, …)

• Variables manipulation operators (=, +=, -=, ^=, …)

• All primitive Java data types (void, byte, short, float, double, int, …)

• All numerical literals (3I, 5L, 6.3E4F, 5.54D, …)

• All BigInteger and BigDecimal literals (23IB, 45.5ID)

• Hexadecimal numbers (0x2A4, 0x2F44FL, …)

• Additional prompt operators (substitute prompt, random prompt, day of week prompt, time of day
prompt)

• Additional document operators (day of week document, time of day document, …)

• Additional grammar operators (compound grammars, indexing of compound grammars)

• User document representation

• Customizing some prompt generation ($[23.33, C[FRF]], …)

• Typecasting ((int)23.33, …)

• Block comments and line comments within the expression similar to C++ and Java

• Creating user-specified objects using the new operator (new java.util.Vector(), …)

• Full array creation and indexing support (new int[] {3, 4}, intVar[2], intVar.length, …)

• Complex block expression with return statement ({return 5 * 1000L;})

• Full Java-like statement support in complex block expression (if, while, do-while, for, switch,
try-catch-finally, throw, break, continue, default, …)

• Full Java-like support for labels inside complex block expression ({loop: while(true) {while
(true) {break loop;}}, …)

• Local variable definition inside complex block expression ({int j = 5; return j + 2;}, …)
1-2
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Classes and Interfaces
The Language Classes and Interfaces
The classes and interfaces of the Expression Language are drawn from the Java 2 platform. By default
the Expression Language supports referencing classes and interfaces defined in the Java package
java.lang directly without the need to specify the name of the package. This is similar to Java
programming where this package is implicitly imported.

As opposed to these other programming languages, the Cisco Unified CCX expression language is
tailored only to provide a value for a property of a step such as a timeout or a prompt to be played while
allowing the freedom for the script designator to bridge into Java-defined classes directly instead of
using the original Java steps that used to provide that type of bridge between Cisco Unified CCX scripts
and custom Java classes defined by individual users.

The Expression Language contains not only the publicly available Java language classes but also has the
following unique language classes:

Contact
Currency
Document
Grammar
Prompt
Session
Script
User
Customer
POD

See also:

• Expression Editor Tool Reference Descriptions, page 3-1

• Expression Language Data Types, page 1-16 and The Language Variables, page 1-27

• “How to Use the Cisco Unified CCX Editor in Cisco Unified CCX Scripting and Development
Series: Volume 1, Getting Started with Scripts.

• “Cisco Unified CCX Editor Palette Step Descriptions in Cisco Unified CCX Scripting and
Development Series: Volume 2, Editor Step Reference.

Language Code Examples
In Chapter 3, “Expression Editor Tool Reference Descriptions,” language code examples are provided
with example screen shots of the Expression Editor tool tabs. These examples can be used in any
expression field of a script. You can also use the Set step to test most of the examples presented in this
guide.
1-3
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Terminology
Expression Language Terminology
The following are some of the common object-oriented programming terms found in the Java
programming language and used in the Expression Language.

Table 1-1 Language Terminology

Term Description

BigDecimal A decimal number that can be arbitrarily large.

BigInteger An integer that can be arbitrarily large. It is not limited to the 64 bits available in the
long data type.

Class A data type that defines what a specific type of object is. You associate methods with
the data type.

Comments Everything between /* and */ is ignored by the script parser and is used for entering
comments. These comment separators can be spread over more than one line.

Everything after // on one line is ignored by the script parser and is used for entering
comments on one line.

Constructor Creates a new instance of a class, an object, and initializes all the fields in that
instance. A constructor method has the same name as the class.

Floating-Point
numbers

Has a decimal point and a fractional part. They can be positive or negative and come
in two sizes:

• float: A four-byte number that can contain values as small as 1.40129846e-45
and as large as 3.40282347e+38

• double: An eight-byte number that can contain values as small as
4.940656458412446544e-324 and as large as 1.79769313486231570e+308

Identifiers Names of variables, methods, classes, packages, and interfaces. Unlike literals, they
are not the objects themselves, just ways of referring to them.

An identifier is an unlimited-length sequence of letters and digits and underscore,
the first of which must be a letter or an underscore. An identifier cannot have the
same spelling as a keyword, Boolean literal, day of week literal, gender literal or the
null literal.

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral

or DayOfWeekLiteral or GenderLiteral or NullLiteral
IdentifierChars:

Letter
IdentifierChars LetterOrDigit

Letter:
any from A to Z
any from a to z
_

LetterOrDigit:
Letter
any from 0 to 9

Examples of identifiers are:

i3 _i StringMAX_VALUEisLetterOrDigit
1-4
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Terminology
Integers Whole numbers. They come in four sizes:

• int: The default type. Takes up to four bytes of memory and can hold numbers
between -2,147,483,648 and +2,147,483,647

• long: Takes up to eight bytes of memory and ranges in size from
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

• short: Takes up two bytes of memory and can hold numbers between -32,768
and +32,767

• byte: The shortest integer of all. Is one byte long and ranges in value from -128
to 127.

Keywords Reserved words that cannot be used by the programmer for variable or method
names. Uses the same keywords that Java uses. For a list of these keywords, see
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html.

Literal A value that is written directly into an expression without being stored in a variable
first.

Method A function that all objects in a class can perform. When more than one argument can
be passed to a method, the successive arguments are separated by commas. Every
method has a return type or else it is called a void method. A void method produces
no output, begins with the void keyword and is usually used to notify an object of
an event. A method can return only one value.

Object A specific instance of a class. When you create a new object, you are said to be
“instantiating” the class. To create an object, use the keyword new. The new
keyword is also called the “construction operator.”

Operator A symbol that operates on one or more arguments to produce a result.

Package A group of functionally related classes.

Public If a field or variable is declared to be public, it can be used by any object.

Remainder or
Modulus

The remainder value of a number left over after one number is divided by another.
For example, 7 divided by 2 has a remainder or modulus of 1.

Table 1-1 Language Terminology (continued)

Term Description
1-5
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Terminology
See also:

• Chapter 3, “Expression Editor Tool Reference Descriptions”

• http://java.sun.com/docs/books/jls/second_edition/html/jTOC.doc.html

Separators Help define the structure of your expressions.

Separator Description

() Parentheses.
Enclose arguments in method definitions and calling. Adjusts
precedence in arithmetic expressions. Surrounds cast types
and delimits test expression in flow control statements.

{ } Curly braces.
Define a block of statements.

[] Square brackets.
Declare array types and used for referencing array members.

; Semicolon.
Terminates a code statement.

, Comma.
Separates successive identifiers in a variable declaration.
Joins statements in the test expression of a for loop.

. Period.
Separates and selects a field or method from an object.
Separates package names from class names and subpackages.

Thread An independent process. A single program can have many different processes
executing independently and continuously.

Tokens The smallest items in the language. They consist of keywords, operators, comments,
identifiers, separators, white space, and literals.

Unicode A two-byte character code set that has characters representing almost all characters
in the human alphabets and writing systems around the world, including English,
Arabic, and Chinese.

Variable Stores a value in a computer storage location. That value can be changed by
programs acting on it. Variables defined within a class are member variables or
fields of that class.

White Space The single space, the horizontal tab, the form feed, the carriage return, and the
linefeed characters. Outside of String literals, white space characters are all treated
the same. Many white space characters together are also treated the same, as if they
were one. They are used to separate tokens and to enhance code legibility for human
reading.

Table 1-1 Language Terminology (continued)

Term Description
1-6
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Operator Summary
Expression Language Operator Summary
The following is a summary of the operators in the Java language. These have the same functions in the
Expression Language. See the individual Expression Editor tab descriptions for the meanings of the
syntax buttons displayed on each tab.

See also:

• For a list of all the operators you can use in the Java language:
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230663 .

• For descriptions of how these operators are used:
http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html.

Table 1-2 Arithmetic Operators for Obtaining a Value

Operator Meaning Example

+ Addition 6 + 7

- Subtraction 9 - 6

* Multiplication 4 * 4

/ Division 9 / 3

% Modulus (remainder) 12 % 10

Table 1-3 Assignment Operators Used to Store Values in Variables

Operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x/y

x = y x = y

Table 1-4 Relational Operators for Returning a Boolean Value

Opera
tor Meaning Example

== True if x Equals y. Otherwise, false. x == y

!= True if x is Not Equal to y. Otherwise false. x != y

< True if is x is less than y. Otherwise, false. x < y

> True if is x is Greater than y. Otherwise false. x > y

<= True if is x is less than or equal to y. x <= y

>= True if is x is Greater than or equal to y. x >= y
1-7
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230663
http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
Operators Used with Prompts and Documents
In addition to the usual operators used in Java, you should be aware of the following operators that you
can use in the Expression Language with prompts and documents:

• The Prompt Substitution Operator |||, page 1-9

Table 1-5 Bitwise Operators for Integer Comparisons

Operator Meaning Example

& Bitwise AND.

Copies a bit to the result if it exists in both operands. Otherwise it
returns zero.

x & y

| Bitwise OR.

Copies a bit to the result if it exists in either operand. Otherwise it
returns 0.

x | y

^ Bitwise XOR.

Copies the bit to the result if it is set in one operand (but not both).
Otherwise it returns 0.

x ^ y

<< Left shift

The SHIFT LEFT operator moves the bits to the left in the left
operand by the number of bits specified in the right operand,
discarding the far left bit, and assigning the right-most bit a value of
0. Each move to the left effectively multiplies operand 1 by 2.

The left operands value is moved left or right by the number of bits
specified by the right operand.

x << y

>> Signed Right shift

The SHIFT RIGHT operator moves the bits to the right in the left
operand by the number of bits specified in the right operand,
discarding the far right bit, and assigning the left-most bit a value of
0.

Each move to the right effectively divides the operand on the left in
half.

x >> y

>>> Unsigned (Zero fill) right shift x >>> y

~ Bitwise complement

The COMPLEMENT operator has one operand and is used to invert
all of the bits of that operand.

~ x

<<= Left shift assignment x = x << y

>>= Signed Right shift assignment x = x >> y

>>>= Unsigned (Zero fill) right shift assignment x = x >>> y

?&=? AND assignment x = x & y

?|=? OR assignment x + x | y

?^=? XOR assignment x = x ^ y
1-8
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
• Qualifier Operators, page 1-9

• Additive Operators, page 1-9

• Escalation Operator ||, page 1-11

• Compound Assignment Operators, page 1-13

The Prompt Substitution Operator |||
The operator ||| is called the prompt substitution operator. It is used to create a substitute prompt. A
substitute prompt is a prompt where the first prompt is queued for playback whenever the substitute
prompt is used in a media context. If a failure occurs while attempting to queue the prompt then the
substitute is queued instead. For example the main prompt could represent a TTS prompt which in cases
where the system has not been installed or licensed with TTS support, one would want to fallback to a
pre-recorded prompt. In this case, queuing a TTS prompt would fail and the substitute would be used
instead. This operator is not associative.

SubstituteExpression:
PromptExpression ||| PromptExpression

Qualifier Operators
Qualifier operators are used to further qualify objects by assigning them new or different properties.
Qualified objects can be used just as their normal objects. However, in some cases the qualification
applied to an object can be used to determine what kind of container prompt or documents will result
from the || operator (see Prompt Escalation Operator ||, page 1-11 and Document Escalation Operator ||,
page 1-12). Only one specific qualifier is not ignored if not used in conjunction with the || operator and
that is the language qualification. Prompts or documents can be qualified multiple times through
multiple types of qualifications.

All qualifiers have the same precedence and are syntactically left-associative (they group left-to-right).
They are defined as:

QualifiedExpression:
QualifiedPromptExpression
QualifiedDocumentExpression

The following sections describe a qualified prompt expression and a qualified document expression:

• Prompt Escalation Operator ||, page 1-11

• Document Escalation Operator ||, page 1-12

Additive Operators
The operators + and - are called the additive operators. They have the same precedence and are
syntactically left-associative (they group left-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If the type of either operand of a + operator is Prompt, then the operation is prompt concatenation. If
either type is String or if both are char, then the operation is string concatenation. If the type of both
operands is Document then the operation is a document concatenation.
1-9
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
Otherwise, the type of each of the operands of the + operator must be a primitive numeric type, or a
parse-time error occurs.

In every case, the type of each of the operands of the binary - operator must be a primitive numeric type,
or a compile-time error occurs.

The following topics describe additive and multiplcative expressions:

• Document Concatenation Operator +, page 1-10

• Prompt Concatenation Operator +, page 1-10

• String Concatenation Operator +, page 1-10

Document Concatenation Operator +

If both operand expressions are of type Document or a java.io.InputStream or a java.io.Reader, then the
result is a reference to a newly created Document object that is the concatenation of the two operand
documents. The content of the left-hand operand precedes the content of the right-hand operand in the
newly created document. The concatenation is low-level and makes no assumptions as to the content of
both documents. The resulting content type will be reported the same as the first document that defines
a content type.

Prompt Concatenation Operator +

If only one operand expression is of type Prompt, then prompt conversion is performed on the other
operand to produce a prompt at run time. The result is a reference to a newly created Prompt object that
is the concatenation of the two operand prompts. The content of the left-hand operand precedes the
content of the right-hand operand in the newly created prompt.

String Concatenation Operator +

If only one operand expression is of type String, then string conversion is performed on the other operand
to produce a string at run time. If both are of type char, then string conversion is performed on both
operands to produce strings at run time. The result is a reference to a newly created String object that
is the concatenation of the two operand strings. The characters of the left-hand operand precede the
characters of the right-hand operand in the newly created string.

Integer/Boolean Conditional-Or Operator ||
This Java operator when used as follows is called the conditional-or operator. This section is included
here so that you can understand both the conditional-or operator and the escalation operator, which use
the same symbol.

The || operator is like | but evaluates its right-hand operand only if the value of its left-hand operand is
false. It is syntactically left-associative (it groups left-to-right). It is fully associative with respect to
both side effects and result value; that is, for any expressions a, b, and c, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects occurring in the same order, as
evaluation of the expression (a)||((b)||(c)).

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression
1-10
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
Each operand of || must be of type Boolean, or a parse-time error occurs. The type of a conditional-or
expression is always Boolean.

At run time, the left-hand operand expression is evaluated first; if its value is true, the value of the
conditional-or expression is true and the right-hand operand expression is not evaluated. If the value of
the left-hand operand is false, then the right-hand expression is evaluated and its value becomes the
value of the conditional-or expression.

Thus, || computes the same result as | on Boolean operands. It differs only in that the right-hand operand
expression is evaluated conditionally rather than always.

Escalation Operator ||
When used as follows, the || operator is called the escalation operator.

The || operator can either be used like | or it can be used with Prompt, or Document (or compatible types
such as java.io.InputStream or java.io.Reader) to create an escalating prompt, a day of week prompt, a
time of day prompt, a random prompt or an escalating document, a day of week document or a time of
day document.

The escalation || operator can be used to create escalation prompts/documents, day of week
prompts/documents, time of day prompts/documents, time of week prompts/documents or random
prompts. It is syntactically left-associative (it groups left-to-right). It is fully associative with respect to
both side effects and result value; that is, for any expressions a, b, and c, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects occurring in the same order, as
evaluation of the expression (a)||((b)||(c)).

EscalationExpression:
PromptEscalationExpression
DocumentEscalationExpression

The following topics describe a prompt escalation expression and a document escalation expression:

• Prompt Escalation Operator ||, page 1-11

• Document Escalation Operator ||, page 1-12

Prompt Escalation Operator ||

The prompt escalation || operator can be used to create escalation prompts, day of week prompts, time
of day prompts, time of week prompts or random prompts. If at least one of the operands is a prompt,
the other is converted to a prompt according to the rules set forth by Table 1-7 and the result will be a
new prompt. It is syntactically left-associative (it groups left-to-right). It is fully associative with respect
to both side effects and result value; that is, for any expressions a, b, and c, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects occurring in the same order, as
evaluation of the expression (a)||((b)||(c)).

PromptEscalationExpression:
PromptExpression || PromptEscalationExpression

The determination of the type of prompt that will result from this operator depends on how the first two
prompt operands (in a sequence of || operators) wsere qualified using the @ or % operators:

1. If both prompt operands are qualified with a time of day and a day of week then the resulting prompt
will be a time of week prompt. All remaining operands of subsequent|| operators are going to be
added as prompts for subsequent time of week and must then be qualified with at least both a time
of day and a day of week or a parse-time error will occur. Other qualifiers if present will be ignored.
1-11
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
2. Otherwise, if both prompt operands are qualified with a day of week then the resulting prompt will
be a day of week prompt. All remaining operands of subsequent || operators are going to be added
as prompts for subsequent day of week and must then be qualified with at least a day of week or a
parse-time error will occur. Other qualifiers if present will be ignored.

3. Otherwise, if both prompt operands are qualified with a time of day then the resulting prompt will
be a time of day prompt. All remaining operands of subsequent || operators are going to be added as
prompts for subsequent time of day and must then be qualified with at least a time of day or a
parse-time error will occur. Other qualifiers if present will be ignored.

4. Otherwise, if both prompt operands are qualified with a weight then the resulting prompt will be a
random prompt. All remaining operands of subsequent || operators are going to be added as
additional prompts and must then be qualified with at least a weight or a parse-time error will occur.
Other qualifiers if present will be ignored.

5. Otherwise, the resulting prompt will be an escalation prompt. All remaining operands of subsequent
|| operators are going to be added as subsequent escalation and their qualifications will be ignored.

Document Escalation Operator ||

The document escalation || operator can be used to create escalation documents, day of week documents,
time of day documents, or time of week documents. If at least one of the operands is a document or a
java.io.InputStream or a java.io.Reader, the other is converted to a document. This conversion only
supports the prompt conversion as seen in Prompt Conversions, page 1-32. The result of this operator
will be a new document. It is syntactically left-associative (it groups left-to-right). It is fully associative
with respect to both side effects and result value; that is, for any expressions a, b, and c, evaluation of
the expression ((a)||(b))||(c) produces the same result, with the same side effects occurring in the same
order, as evaluation of the expression (a)||((b)||(c)).

DocumentEscalationExpression:
DocumentExpression || DocumentEscalationExpression

 InputStreamExpression || DocumentEscalationExpression
 ReaderExpression || DocumentEscalationExpression

The determination of the type of document that will result from this operator depend on how the first
two document operands (in a sequence of || operators) were qualified using the @ operator:

1. If both document operands are qualified with a time of day and a day of week then the resulting
document will be a time of week document. All remaining operands of subsequent || operators are
going to be added as documents for subsequent time of week and must then be qualified with at least
both a time of day and a day of week or a parse-time error will occur. Other qualifiers if present will
be ignored.

2. Otherwise, if both document operands are qualified with a day of week then the resulting document
will be a day of week document. All remaining operands of subsequent || operators are going to be
added as documents for subsequent day of week and must then be qualified with at least a day of
week or a parse-time error will occur. Other qualifiers if present will be ignored.

3. Otherwise, if both document operands are qualified with a time of day then the resulting document
will be a time of day document. All remaining operands of subsequent || operators are going to be
added as documents for subsequent time of day and must then be qualified with at least a time of
day or a parse-time error will occur. Other qualifiers if present will be ignored.

4. Otherwise, the resulting document will be an escalation document. All remaining operands of
subsequent || operators are going to be added as subsequent escalation and their qualifications will
be ignored.
1-12
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Operators Used with Prompts and Documents
Compound Assignment Operators
All compound assignment operators require both operands to be of primitive type, except for +=, which
allows the right-hand operand to be of any type if the left-hand operand is of type String or of one of the
type specified in Table 1-7 if the left-hand operand is of type Prompt.

A compound assignment expression of the form E1 op= E2 is equivalent to E1 = (T)((E1) op (E2)),
where T is the type of E1, except that E1 is evaluated only once.

Note The implied cast to type T may be either an identity conversion or a narrowing primitive conversion.

For example, the following code is correct.

short x = 3;
x += 4.6;

and results in x having the value 7 because it is equivalent to:

short x = 3;
x = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways. If the left-hand operand expression is not
an array access expression, then four steps are required:

1. First, the left-hand operand is evaluated to produce a variable. If this evaluation completes abruptly,
then the assignment expression completes abruptly for the same reason; the right-hand operand is
not evaluated and no assignment occurs.

2. Otherwise, the value of the left-hand operand is saved and then the right-hand operand is evaluated.
If this evaluation completes abruptly, then the assignment expression completes abruptly for the
same reason and no assignment occurs.

3. Otherwise, the saved value of the left-hand variable and the value of the right-hand operand are used
to perform the binary operation indicated by the compound assignment operator. If this operation
completes abruptly (the only possibility is an integer division by zero), then the assignment
expression completes abruptly for the same reason and no assignment occurs.

4. Otherwise, the result of the binary operation is converted to the type of the left-hand variable and
the result of the conversion is stored into the variable.

If the left-hand operand expression is an array access expression, then many steps are required:

1. First, the array reference subexpression of the left-hand operand array access expression is
evaluated. If this evaluation completes abruptly, then the assignment expression completes abruptly
for the same reason; the index subexpression (of the left-hand operand array access expression) and
the right-hand operand are not evaluated and no assignment occurs.

2. Otherwise, the index subexpression of the left-hand operand array access expression is evaluated. If
this evaluation completes abruptly, then the assignment expression completes abruptly for the same
reason and the right-hand operand is not evaluated and no assignment occurs.

3. Otherwise, if the value of the array reference subexpression is null, then no assignment occurs and
a NullPointerException is thrown.

4. Otherwise, the value of the array reference subexpression indeed refers to an array. If the value of
the index subexpression is less than zero, or greater than or equal to the length of the array, then no
assignment occurs and an ArrayIndexOutOfBoundsException is thrown.
1-13
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Keywords
5. Otherwise, the value of the index subexpression is used to select a component of the array referred
to by the value of the array reference subexpression. The value of this component is saved and then
the right-hand operand is evaluated. If this evaluation completes abruptly, then the assignment
expression completes abruptly for the same reason and no assignment occurs. (For a simple
assignment operator, the evaluation of the right-hand operand occurs before the checks of the array
reference subexpression and the index subexpression, but for a compound assignment operator, the
evaluation of the right-hand operand occurs after these checks.)

6. Otherwise, consider the array component selected in the previous step, whose value was saved. This
component is a variable; call its type S. Also, let T be the type of the left-hand operand of the
assignment operator as determined at parse time.

– If T is a primitive type, then S is necessarily the same as T.

• The saved value of the array component and the value of the right-hand operand are used to
perform the binary operation indicated by the compound assignment operator. If this operation
completes abruptly (the only possibility is an integer division by zero), then the assignment
expression completes abruptly for the same reason and no assignment occurs.

• Otherwise, the result of the binary operation is converted to the type of the selected array
component and the result of the conversion is stored into the array component.

– If T is a reference type, then it must be String or a Prompt. Because class String is a final class,
S must also be String if this is a string compound assignment operator. If it is a prompt
compound assignment operator then the S can be assignment compatible with the Prompt
reference type. Therefore the run-time check that is sometimes required for the simple
assignment operator is never required for a compound assignment operator.

• The saved value of the array component and the value of the right-hand operand are used to
perform the binary operation (string or prompt concatenation) indicated by the compound
assignment operator (which is necessarily +=). If this operation completes abruptly, then the
assignment expression completes abruptly for the same reason and no assignment occurs.

7. Otherwise, the String, Prompt, or Document result of the binary operation is stored into the array
component.

Expression Language Keywords
The following character sequences, formed from ASCII letters, are reserved for use as keywords and
cannot be used as identifiers:

Keyword: one of
abstractdefaultifpackagesynchronized
booleandoimplementsprivatethis
breakdoubleimportprotectedthrow
byteelseinstanceofpublicthrows
caseextendsintreturn transient
catchfinalinterfaceshorttry
charfinallyinterruptiblestaticuninterruptible
classfloatlongstrictfpvoid
constfornativesupervolatile
continuegotonewswitchwhile

Some of these keywords, though not currently used, are reserved nevertheless.

While true and false might appear to be keywords, they are technically Boolean literals. Similarly, while
null might appear to be a keyword, it is technically the null literal. And the same is true for sun, mon,
tue, wed, thu, fri, sat which are technically DayOfWeek literals and neutral, male, female which are
Gender literals.
1-14
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Literals
Expression Language Literals
This topic includes:

• Lexical Literals, page 1-15

• Class Literals, page 1-15

• Complex Literals, page 1-16

See Expression Editor Tool Reference Descriptions for further descriptions of the literals used in the
Expression Language.

Lexical Literals
A literal denotes a fixed, unchanging value.

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
DayOfWeekLiteral
GenderLiteral
NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal that ends with I or i is int, that ends with L or l is long and that ends
with IB or ib is BigInteger; the type of any other integer literal is int.

• The type of a floating-point literal that ends with F or f is float. The type of a floating-point literal
that ends with D or d is double. The type of a floating-point literal that ends with BF or bf is
BigDecimal. The type of any other floating-point literal is double.

• The type of a boolean literal is boolean.

• The type of a character literal is char.

• The type of a string literal is String.

• The type of the null literal null is the null type; its value is the null reference.

Evaluation of a lexical literal always completes normally.

Class Literals
A class literal is an expression consisting of the name of a class, interface, array, or primitive type
followed by a `.' and the token class. The type of a class literal is Class. It evaluates to the Class object
for the named type (or for void) as defined by the defining class loader of the class of the current
instance.
1-15
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
Complex Literals
A complex literal is the source code representation of a value of a Currency, Date, Document, Grammar,
Language, Prompt, User, Script, or Time. For examples of complex literals, see the example literals in
the descriptions of Currency, Date, Document, Grammar, Language, Prompt, User, Script, or Time data
types.

ComplexLiteral:
CurrencyLiteral
DateLiteral
DocumentLiteral
GrammarLiteral
LanguageLiteral
PromptLiteral
UserLiteral
ScriptLiteral
TimeLiteral

Prompt complex literals are of type Prompt. Currency complex literals are of type Currency, Date
complex literal are of type Date. Document complex literals are of type Document. Grammar complex
literals are of type Grammar. Language complex literals are of type Language. Prompt complex literals
are of type Prompt. User complex literals are of type User. Script complext literals are of type Script.
Time complex literals are of type Time.

Expression Language Data Types
The Java programming language on which the Expression Language is based is a strongly typed
language, which means that every variable and every expression has a type that is known at parse time.

Types:

• Limit the values that a variable can hold or that an expression can produce.

• Limit the operations supported on those values.

• Determine the meaning of the operations.

Strong typing helps detect errors at parse time.

The types of the Expression Language are divided into two basic categories:

• Primitive types: The Boolean type and the numeric types. The numeric types are the integral types:

– byte

– short

– int

– long

– BigInteger

– char

– floating-point types: float, double, and BigDecimal

• Reference types:

– class types

– interface types
1-16
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
– array types

– a special null type.

An object is a dynamically created instance of a class type or a dynamically created array. The values
of a reference type are references to objects. All objects, including arrays, support the methods of
class Object. String literals are represented by String objects.

The Cisco Unified CCX Expression Language also includes the friendly data type. A friendly data type
is the Cisco Unified CCX data type that is the equivalent of a fully qualified Java class name, that is the
Java data name and the package in which it is included. Friendly data types are either primitive or
reference types. For more information on friendly data types, see Friendly Data Types.

Names of types or friendly type names are used in declarations, casts, array creation expressions, class
literals, and instanceof operator expressions.

This section includes the following topics:

• Type Variables, page 1-17

• Type Values, page 1-17

• Primitive Values, page 1-18

• Reference Values, page 1-24

• Where Types Are Used, page 1-27

See also:

• Expression Editor Tool Reference Descriptions, page 3-1for descriptions and examples of the data
classes and literals you can use in the Expression Language.

Type Variables
A variable is always of a type and is a storage location for that type:

• A variable of a primitive type always holds a value of that exact type or a null reference.

• A variable of a class type X can hold a null reference or a reference to an instance of class X or of
any class that is a subclass of X.

• A variable of an interface type can hold a null reference or a reference to any instance of any class
that implements the interface.

Type Values
Since the Expression Language has two basic types (primitive and reference), it also has two kinds of
data values that can be stored in variables, passed as arguments, returned by methods, and operated on:
primitive and reference values.

There is also a special null type, the type of the null expression, which has no name. Because the null
type has no name, it is impossible to declare a variable of the null type or to cast to the null type. The
null reference is the only possible value of an expression of null type. The null reference can always be
cast to any reference type. In practice, you can ignore the null type and consider that null is merely a
special literal that can be of any reference type.

This section includes the following topics:

• Integral Values
1-17
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
• Integer Operations

• Floating-Point Values

• Floating-Point Operations

• Boolean Values

Primitive Values
A primitive type is predefined by the Expression Language and named by its reserved keyword:

PrimitiveType:
NumericType
Boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long BigInteger char

FloatingPointType: one of
float double BigDecimal

Primitive values do not share state with other primitive values. A variable whose type is a primitive type
always holds a primitive value of that same type or null. The value of a variable of primitive type can be
changed only by assignment operations on that variable:

• The numeric types are the integral types and the floating-point types.

• The integral types are byte, short, int, long, and BigInteger, whose values are 8-bit, 16-bit, 32-bit,
64-bit and unlimited signed two's-complement integers, respectively, and char, whose values are
16-bit unsigned integers representing Unicode characters.

• The floating-point types are float, whose values include the 32-bit IEEE 754 floating-point numbers,
and double, whose values include the 64-bit IEEE 754 floating-point numbers, and BigDecimal,
whose value include an unlimited size floating-point numbers.

• The Boolean type has exactly two values: true and false.

As opposed to the Java programming language where primitive types are not considered reference types,
the Expression Language treats them the same. That means the reference type Integer and the primitive
data type int are one and the same. All primitive data types share the same features as a reference type.
So although an attempt was made in this chapter to separate them, primitive data types should be
considered as reference data types as well.

Integral Values

The values of the integral types are integers in the following ranges:

• For byte, from -128 to 127, inclusive.

• For short, from -32768 to 32767, inclusive.

• For int, from -2147483648 to 2147483647, inclusive.

• For long, from -9223372036854775808 to 9223372036854775807, inclusive.

• For BigInteger, no limits.

• For char, from '\u0000' to '\uffff' inclusive.
1-18
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
Integer Operations

The Expression Language provides a number of operators that act on integral values:

• The comparison operators, which result in a value of type Boolean:

– Numerical Comparison Operators (<, <=, >, and >=).

– Numeric Equality Operators (== and !=).

• The numerical operators, which result in a value of type int or long or BigInteger:

– Unary Plus Operator (+) and Unary Minus Operator (-).

– Multiplicative Operators (*, /, and %).

– Additive Operators (+ and -) for Numeric Types.

– Prefix Increment Operator (++) and Postfix Increment Operator (++).

– Prefix Decrement Operator (--) and Postfix Decrement Operator (--).

– Shift Operators (<<, >>, and >>>).

– Bitwise Complement Operator (~).

– Integer Bitwise Operators (&, ^, and |).

• Conditional Operator (? :)

• Field Access Using a Primary.

• Method Invocation Expressions.

• The cast operator, which can convert from an integral value or a string value to a value of any
specified numeric type.

• The String Concatenation Operator +, which, when given a String operand and an integral operand,
will convert the integral operand to a String representing its value in decimal form, and then
produces a newly created String that is the concatenation of the two strings.

• The prompt concatenation operator +, which, when given a Prompt operand and an integral operand,
will convert the integral operand to a Prompt representing its value in spoken form, and then produce
a newly created Prompt that is the concatenation of the two prompts.

Except for the prompt concatenation operator, these operations are the same as those in Java. For
descriptions of the operations you can have on expressions, see:
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393.

Other useful constructors, methods, and constants are predefined in the classes Byte, Short, Integer,
Long, BigInteger, and Character.

If an integer operator other than a shift operator has at least one operand of type BigInteger, then the
operation is carried out using BigInteger precision and the result of the numerical operator is of type
BigInteger.

If at least one operand is of type long, then the operation is carried out using 64-bit precision, and the
result of the numerical operator is of type long. If the other operand is not long or BigInteger, it is first
widened to type long or BigInteger by numeric promotion. Otherwise, the operation is carried out using
32-bit precision, and the result of the numerical operator is of type int. If either operand is not an int, it
is first widened to type int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any way. The only numeric
operators that can throw an exception are the integer divide operator / and the integer remainder operator
%, which throw an ArithmeticException in the complex expression block or an
ExpressionArithmeticException in the script if the right-hand operand is zero.
1-19
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
The example:

{
 Prompt p = null;
 int i = 1000000;

 p = N[i * i];
 long l = i;

 p += N[l * l];
 p += [20296 / (l - i)];
 return p;
}

would create a concatenated prompt that would playback the spoken representation of -727379968 and
1000000000000 and then encounters an ArithmeticException in the division by l - i, because l - i is zero.
The first multiplication is performed in 32-bit precision, whereas the second multiplication is a long
multiplication. The value -727379968 is the decimal value of the low 32 bits of the mathematical result,
1000000000000, which is a value too large for type int.

Any value of any integral type may be cast to or from any numeric type and from the String type in which
case an ExpressionTargetExeption with a nested NumberFormatException is thrown back if the string
value cannot be properly parsed into an integral type. There are no casts between integral types and the
type Boolean.

Floating-Point Values

The floating-point types are float, double, and BigDecimal, which are conceptually associated with the
single-precision 32-bit, double-precision 64-bit format IEEE 754 and arbitrary-precision signed decimal
values and operations as specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that consist of a sign and
magnitude, but also positive and negative zeros, positive and negative infinities, and special
Not-a-Number values (hereafter abbreviated NaN). A NaN value is used to represent the result of certain
invalid operations such as dividing zero by zero. NaN constants of both float and double type are
predefined as Float.NaN and Double.NaN.

The finite nonzero values of any floating-point value set can all be expressed in the form s - m -
2[e-N+1] , where s is +1 or -1, m is a positive integer less than 2N, and e is an integer between
Emin = -(2K-1-2) and Emax = 2K-1-1, inclusive, and where N and K are parameters that depend
on the value set. Some values can be represented in this form in more than one way; for example, suppose
that a value v in a value set might be represented in this form using certain values for s, m, and e,
then if it happened that m were even and e were less than 2K-1 , one could halve m and increase e
by 1 to produce a second representation for the same value v. A representation in this form is called
normalized if [N-1]; otherwise the representation is said to be denormalized. If a value in a value
set cannot be represented in such a way that [N-1], then the value is said to be a denormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin and Emax) for the
two floating-point value sets are summarized in Table 1-6.

m 2≥
m 2≥
1-20
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
Each of the two value sets includes not only the finite nonzero values that are ascribed to it above, but
also NaN values and the four values positive zero, negative zero, positive infinity, and negative infinity.

The elements of the float value set are exactly the values that can be represented using the single
floating-point format defined in the IEEE 754 standard. The elements of the double value set are exactly
the values that can be represented using the double floating-point format defined in the IEEE 754
standard.

Except for NaN, floating-point values are ordered; arranged from smallest to largest, they are negative
infinity, negative finite nonzero values, positive and negative zero, positive finite nonzero values, and
positive infinity.

Positive zero and negative zero compare equal; thus the result of the expression 0.0==-0.0 is true
and the result of 0.0>-0.0 is false. But other operations can distinguish positive and negative zero; for
example, 1.0/0.0 has the value positive infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so the numerical comparison operators <, <=, >, and >= return false if either
or both operands are NaN. The equality operator == returns false if either operand is NaN, and the
inequality operator != returns true if either operand is NaN. In particular, x!=x is true if and only
if x is NaN, and (x<y) == !(x>=y) is false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric type and from the String type in
which case an ExpressionTargetExeption with a nested NumberFormatException is thrown
back if the string value cannot be properly parsed into a floating-point type. There are no casts between
floating-point types and the type Boolean.

Floating-Point Operations

The Expression Language provides a number of operators that act on floating-point values:

• The comparison operators, which result in a value of type Boolean:

– Numerical Comparison Operators (<, <=, >, and >=).

– Numeric Equality Operators (== and !=).

• The numerical operators, which result in a value of type float or double or BigDecimal:

– Unary Plus Operator (+) and Unary Minus Operator (-).

– Multiplicative Operators (* ? %).

– Additive Operators (+ and -).

– Postfix Increment Operator ++ and Prefix Increment Operator (++).

– Postfix Decrement Operator -- and Prefix Decrement Operator (--).

• Conditional Operator (? :)

• Field access, using either a qualified name or a field access expression.

Table 1-6 Floating-Point Limit Value Sets

Parameter Float Double

N 24 53

K 8 11

Emax +127 +1023

Emin -126 -1022
1-21
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
• Method invocation.

• The cast operator, which can convert from a floating-point value to a value of any specified numeric
type.

• The string concatenation operator + , which, when given a String operand and a floating-point
operand, will convert the floating-point operand to a String representing its value in decimal form
(without information loss), and then produce a newly created String by concatenating the two
strings.

• The prompt concatenation operator +, which, when given a Prompt operand and a floating-point
operand, will convert the floating-point operand to a Prompt representing its value in spoken form,
and then produce a newly created Prompt that is the concatenation of the two prompts.

Except for the prompt concatenation operator, these operations are the same as those in Java. For
descriptions of the operations you can have on expressions, see:
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393.

Other useful constructors, methods, and constants are predefined in the classes Float, Double,
BigDecimal, and Math.

If at least one of the operands to a binary operator is of floating-point type, then the operation is a
floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is of type BigDecimal, then the operation is carried
out using arbitrary floating-point arithmetic, and the result of the numerical operator is a value of type
BigDecimal. If the other operand is not a BigDecimal, it is first widened to type double by numeric
promotion. If at least one of the operands to a numerical operator is of type double, then the operation
is carried out using 64-bit floating-point arithmetic, and the result of the numerical operator is a value
of type double. (If the other operand is not a double, it is first widened to type double by numeric
promotion.) Otherwise, the operation is carried out using 32-bit floating-point arithmetic, and the result
of the numerical operator is a value of type float. If the other operand is not a float, it is first widened to
type float by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with the exception of the
remainder operator). The Expression Language requires support of IEEE 754 denormalized
floating-point numbers and gradual underflow, which make it easier to prove the properties of some
numerical algorithms. Floating-point operations do not "flush to zero" if the calculated result is a
denormalized number.

The Java programming language requires that floating-point arithmetic behave as if every floating-point
operator rounded its floating-point result to the result precision. Inexact results must be rounded to the
representable value nearest to the infinitely precise result; if the two nearest representable values are
equally near, the one with its least significant bit zero is chosen. This is the IEEE 754 standard's default
rounding mode known as round to nearest.

The language uses round toward zero when converting a floating value to an integer, which acts, in this
case, as though the number were truncated, discarding the mantissa bits. Rounding toward zero chooses
as its result the format's value closest to and no greater in magnitude than the infinitely precise result.

Floating-point operators produce no exceptions. An operation that overflows produces a signed infinity,
an operation that underflows produces a denormalized value or a signed zero, and an operation that has
no mathematically definite result produces NaN. All numeric operations with NaN as an operand
produce NaN as a result. As has already been described, NaN is unordered, so a numeric comparison
operation involving one or two NaNs returns false and any != comparison involving NaN returns
true, including x!=x when x is NaN.

The example expression:

{
 // An example of overflow:
1-22
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
 double d = 1e308;

 System.out.print("overflow produces infinity: ");
 System.out.println(d + "*10==" + d*10);
 // An example of gradual underflow:
 d = 1e-305 * Math.PI;
 System.out.print("gradual underflow: " + d + "\n ");
 for (int i = 0; i < 4; i++) {
 System.out.print(" " + (d /= 100000));
 }
 System.out.println();
 // An example of NaN:
 System.out.print("0.0/0.0 is Not-a-Number: ");
 d = 0.0/0.0;
 System.out.println(d);
 // An example of inexact results and rounding:
 System.out.print("inexact results with float:");
 for (int i = 0; i < 100; i++) {
 float z = 1.0f / i;

 if (z * i != 1.0f) {
 System.out.print(" " + i);
 }
 }
 System.out.println();
 // Another example of inexact results and rounding:
 System.out.print("inexact results with double:");
 for (int i = 0; i < 100; i++) {
 double z = 1.0 / i;

 if (z * i != 1.0) {
 System.out.print(" " + i);
 }
 }
 System.out.println();
 // An example of cast to integer rounding:
 System.out.print("cast to int rounds toward 0: ");
 d = 12345.6;
 System.out.println((int)d + " " + (int)(-d));
 return null;
}

produces the output:

overflow produces infinity: 1.0e+308*10==Infinity
gradual underflow: 3.141592653589793E-305

3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0
0.0/0.0 is Not-a-Number: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradual underflow can result in a gradual loss of
precision. The results when i is 0 involve division by zero, so that z becomes positive infinity, and z * 0
is NaN, which is not equal to 1.0.

Boolean Values

The Boolean type represents a logical quantity with two possible values, indicated by the case insensitive
literals true and false.

The Boolean operators are:
1-23
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
• Boolean Equality Operators (== and !=)

• Logical Complement Operator (!)

• Boolean Logical Operators (&, ^, and |)

• Conditional-And Operator (&&) and Integer/Boolean Conditional-Or Operator (||), and Escalation
Operator (||)

• Conditional Operator (? :)

• Field access, using either a qualified name or a field access expression

• Method invocation

• The String Concatenation Operator (+) which, when given a String operand and a Boolean operand,
will convert the Boolean operand to a String (either "true" or "false"), and then produce a newly
created String that is the concatenation of the two strings

These operations are the same as those in Java. For descriptions of the operations you can have on
expressions, see: http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393.

Boolean expressions determine the control flow in several kinds of statements:

• if Statement

• while Statement

• do Statement

• for Statement

A Boolean expression also determines which subexpression is evaluated in the conditional ?: operator.

Only Boolean expressions can be used in control flow statements and as the first operand of the
conditional operator ?:. An integer x can be converted to a Boolean, following the C language
convention that any nonzero value is true, by the expression x!=0. An object reference obj can be
converted to a Boolean, following the C language convention that any reference other than null is true,
by the expression obj!=null.

A cast of a Boolean value to type Boolean is allowed; no other casts on type Boolean are allowed. A
Boolean can be converted to a string by string conversion.

Reference Values
The section includes the following topics:

• About Reference Values

• The Object Class

• The Currency Class

• The Date Class

• The Document Class

• The Grammar Class

• The Language Class

• The Prompt Class

• The String Class

• The Script Class
1-24
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#44393

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
• The User Class

• The Customer Class

• The POD Class

• Where Types Are Used

About Reference Values

There are three kinds of reference types:

• class

• interface

• array

ReferenceType:
ClassOrInterfaceType
ArrayType

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
TypeName

InterfaceType:
TypeName

ArrayType:
Type []

The Object Class

The Object class is a super class of all other classes. A variable of type Object can hold a reference to
any object, whether it is an instance of a class or an array. All class and array types inherit the methods
of class Object.

The Currency Class

Instances of the Currency class represent currency designators. A Currency object has a constant
(unchanging) value. Complex currency literals are references to instances of class Currency.

The Date Class

Instances of the Date class represent currency designators. A Date object has a constant (unchanging)
value. Complex date literals are references to instances of class Date.

The Document Class

Instances of the Document class represent documents located somewhere that can be accessed for
various reasons. A Document object has a constant (unchanging) value. Complex document literals are
references to instances of class Document.

The document concatenation operator +, the time of day document, time of week document, and day of
week document operators || implicitly create a new Document object.
1-25
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
Expression Language Data Types
The Grammar Class

Instances of the Grammarclass represent grammars located somewhere that can be accessed for various
reasons. A Grammar object has a constant (unchanging) value. Complex grammar literals are references
to instances of class Grammar.

The compound grammar operator || implicitly creates a new Grammar object.

The Language Class

Instances of the Language class represent language designators. A Language object has a constant
(unchanging) value. Complex language literals are references to instances of class Language.

The Prompt Class

Instances of the Prompt class represent audio data that can be played back to a caller. A Prompt object
has a constant (unchanging) value. Complex prompt literals are references to instances of class Prompt.

The prompt concatenation operator +, the prompt escalation, time of day prompt, time of week prompt,
day of week prompt, and random prompt operators ||, and the prompt substitution operator |||implicitly
create a new Prompt object.

The String Class

Instances of the String class represent sequences of Unicode characters. A String object has a constant
(unchanging) value. String literals are references to instances of class String.

The string concatenation operator + implicitly creates a new String object.

The Script Class

Instances of the Script class represents scripts designed using the Cisco Unified CCX Script Editor and
located somewhere accessible by the Cisco Unified CCX Engine such as the script repository, local or
network disks, and a web server. A Script object has a constant (unchanging) value. Script literals are
references to instances of class Script. Complex Script literals are references to instances of class Script.

The Time Class

Instances of the Time class represent currency designators. A Time object has a constant (unchanging)
value. Complex time literals are references to instances of class Time.

The User Class

Instances of the User class represent a user configured in the Cisco Call Manager. It can represent a
normal user, a Cisco Unified CCX Agent, a Cisco Unified CCX Supervisor and/or a Cisco Unified CCX
Administrator. A User object has a constant (unchanging) value. Complex user literals are references to
instances of class User.
1-26
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Variables
The Customer Class

Instances of the Customer class represent an Organization’s customer when used with reference to
Context Service data, for instance the caller's data. Here, an Organization represents Cisco’s customer.

The POD Class

Instances of the POD class represent a piece of data that presents an activity between the Organization
and its customer. POD is referred to as an activity in the Finesse UI. Here, the Organization represents
Cisco’s customer.

Where Types Are Used
Types are used when they appear in declarations or in certain expressions. They can be found in
expressions of the following kinds:

• Array Creation Expressions

• Cast Expressions

• Type Comparison Operator instanceof

The Language Variables
This topic covers the following:

• About Language Variables, page 1-27

• Primitive Variables, page 1-28

• Reference Variables, page 1-28

• Variable Categories, page 1-28

• “final” Variables, page 1-29

• Initial Values of Variables, page 1-29

• Definite Local Variable Assignment, page 1-30

• Variable Types, Classes, and Interfaces, page 1-30

About Language Variables
A variable is a storage location and has an associated type, sometimes called its parse-time type, which
is either a primitive type or a reference type. A variable always contains a value that is assignment
compatible with its type. A variable's value is changed by an assignment or by a prefix or postfix ++
(increment) or -- (decrement) operator.

Compatibility of the value of a variable with its type is guaranteed by the Expression Language. Default
values are compatible and all assignments to a variable are checked for assignment compatibility usually
at parse time, but, in a single case involving arrays, a run-time check is made.
1-27
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Variables
See also:

• “The Variable Pane” in the Cisco Unified CCX Scripting and Development Series: Volume 1, Getting
Started with Scripts for how to use script variables.

• “How and When To Configure the Encoding and Decoding of Variable Types” in the Cisco Unified
CCX Scripting and Development Series: Volume 1, Getting Started with Scripts for how variables of
different data types are converted to the appropriate system type when transferred between systems
in an enterprise configuration.

Primitive Variables
A variable of a primitive type always holds a value of that exact primitive type or a null reference.

Reference Variables
A variable of reference type can hold either of the following:

• A null reference

• A reference to any object whose class is assignment compatible with that type of the variable

Variable Categories
There are five kinds of variables:

• Script variables. These are defined in the Cisco Unified CCX Script Editor and are accessible from
within expressions (except for prompt and grammar templates). They exist for the life of the script.

• Array components. These are unnamed variables that are created and initialized to default values
whenever a new object that is an array is created. The array components effectively cease to exist
when the array is no longer referenced.

• Complex expression block parameters. These are name argument values passed to a complex
block expression. For every parameter declared in a method declaration, a new parameter variable
is created each time that method expression is evaluated. The new variable is initialized with the
corresponding argument value from the expression invocation. The block parameter effectively
ceases to exist when the execution of the body of the block expression is complete.

• An exception-handler parameter. This is created each time an exception is caught by a catch
clause of a try statement. The new variable is initialized with the actual object associated with
the exception. The exception-handler parameter effectively ceases to exist when execution of the
block associated with the catch clause is complete.

• Local variables. These are declared by local variable declaration statements. Whenever the flow of
control enters a block or for statement, a new variable is created for each local variable declared
in a local variable declaration statement immediately contained within that block or for statement.
A local variable declaration statement may contain an expression which initializes the variable. The
local variable with an initializing expression is not initialized, however, until the local variable
declaration statement that declares it is executed. The rules of definite assignment prevent the value
of a local variable from being used before it has been initialized or otherwise assigned a value. The
local variable effectively ceases to exist when the execution of the block or for statement is
complete.
1-28
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Variables
Were it not for one exceptional situation, a local variable could always be regarded as being created when
its local variable declaration statement is executed. The exceptional situation involves the switch
statement, where it is possible for control to enter a block but bypass execution of a local variable
declaration statement. Because of the restrictions imposed by the rules of definite assignment, however,
the local variable declared by such a bypassed local variable declaration statement cannot be used before
it has been definitely assigned a value by an assignment expression.

The following example contains several different kinds of variables:

(int count) {// Complex Expression Block variable
 int x, y;// x and y are local variables
 int[] w = new int[10];// w[0] is an array component
}

“final” Variables
A variable can be declared final. A final variable may only be assigned to once. It is a parse time error
if a final variable is assigned to unless it is definitely unassigned immediately prior to the assignment.

Once a final variable has been assigned, it always contains the same value. If a final variable holds a
reference to an object, then the state of the object may be changed by operations on the object, but the
variable will always refer to the same object. This applies also to arrays, because arrays are objects; if a
final variable holds a reference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

Declaring a variable final can serve as useful documentation that its value will not change and can help
avoid programming errors.

In the example:

(String s) {
 final int max_size = 23;
if (s.length() < max_size) {
 return s;
 } else {
 return s.substring(0, max_size);
 }
}

the variable max_size is declared final and holds the value 23. The value of the variable max_size can
never change, so it always refers to the same size, the one created by its initializer.

Initial Values of Variables
Every variable in a program must have a value before its value is used:

• Each array component is initialized with a default value when it is created. For type:

– byte, the default value is zero, that is, the value of (byte)0.

– short, the default value is zero, that is, the value of (short)0.

– int, the default value is zero, that is, 0.

– long, the default value is zero, that is, 0L.

– BigInteger, the default value is zero, that is, 0IB.

– float, the default value is positive zero, that is, 0.0f.

– double, the default value is positive zero, that is, 0.0d.
1-29
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
The Language Variables
– BigDecimal, the default value is positive zero, that is, 0.0fb.

– char, the default value is the null character, that is, '\u0000'.

– Boolean, the default value is false.

– String, the default value is the empty string, that is, "".

– Prompt, the default value is the empty prompt, that is, P[].

– Grammar, the default value is the empty grammar, that is, G[].

– Document, the default value is the empty document, that is, DOC[].

– Date, the default value is the current date at the time of interpretation.

– Time, the default value is the current time at the time of interpretation.

– Language, the default value is the system default language.

– Currency, the default value is the system default currency.

For all other reference types, the default value is null.

• Each complex block expression argument is initialized to the corresponding argument value
provided by the invoker of the expression.

• An exception-handler parameter is initialized to the thrown object representing the exception and
throw statements.

• A local variable and the for statement must be explicitly given a value before they are used, by either
initialization or assignment, in a way that can be verified by the parser using the rules for definite
assignment.

Definite Local Variable Assignment
Each local variable must have a definitely assigned value when any access of its value occurs. If accessed
before its value is initialized, a run-time error is generated.

Similarly, every blank final variable must be assigned at most once; it must be definitely unassigned
when an assignment to it occurs otherwise a run-time error occurs.

Variable Types, Classes, and Interfaces
In the Expression Language, every variable and every expression has a type that can be determined at
parse time. The type may be a primitive type or a reference type. Reference types include class types and
interface types. Often the term type refers to either a class or an interface.

Every object belongs to some particular class: the class that was mentioned in the creation expression
that produced the object, the class whose Class object was used to invoke a reflective method to produce
the object, or the String class for objects implicitly created by the string concatenation operator (+), or
the Document class for objects implicitly created by the document concatenation operator (+) or the time
of day, time of week, day of week document operator (||), or the Prompt class for objects implicitly
created by the prompt concatenation operator (+) or the prompt escalation, time of day, time of week,
day of week or random prompt operator (||) or the prompt substitution operator (|||), or the Grammar class
for objects implicitly created by the grammar compound operator (||). This class is called the class of the
object. (Arrays also have a class, as described at the end of this section.) An object is said to be an
instance of its class and of all super classes of its class.
1-30
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
Sometimes a variable or expression is said to have a "run-time type". This refers to the class of the object
referred to by the value of the variable or expression at run time, assuming that the value is not null.

The parse time type of a variable is always declared, and the parse time type of an expression can be
deduced at parse time. The parse time type limits the possible values that the variable can hold or the
expression can produce at run time. If a run-time value is a reference that is not null, it refers to an
object or array that has a class, and that class will necessarily be compatible with the parse-time type.

Even though a variable or expression may have a parse-time type that is an interface type, there are no
instances of interfaces. A variable or expression whose type is an interface type can reference any object
whose class implements that interface.

Here is an example of creating new objects and of the distinction between the type of a variable and the
class of an object:

{
 java.util.ArrayList alist = new java.util.ArrayList();
 java.util.Vector vector = new java.util.Vector();
 java.util.List list;

 list = alist;
 list = vector;
}

In this example:

• The local variable list has as its type the interface java.util.List, so it can hold a reference to any
object whose class implements java.util.List; specifically it can hold a reference to either
java.util.ArrayList or java.util.Vector.

• Note that an expression such as "new java.util.List()" is not valid because it is not possible to create
an instance of an interface, only of a class.

Every array also has a class; the method getClass, when invoked for an array object, will return a class
object (of class Class) that represents the class of the array.

The classes for arrays have strange names that are not valid identifiers; for example, the class for an array
of int components has the name "[I" and so the value of the expression:

new int[10].getClass().getName()

is the string "[I"; see the specification of Class.getName for details.

About Conversions in the Expression Language
In addition to the conversions allowed in Java, you should be aware of the following about conversions
in the Expression Language:

• Prompt Conversions, page 1-32

• Document Conversions, page 1-32

• String Conversions, page 1-32

• String Parsing, page 1-33

• New Objects Resulting from Conversions, page 1-33
1-31
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
Prompt Conversions
Prompt conversion applies only to the operands of the binary + operator when one of the arguments is a
Prompt. In this special case only, the other argument to the + is converted to a Prompt as described in
Table 1-7, and a new Prompt which is the concatenation of the two prompts is the result of the +.

The prompt concatenation operator +, which, when given a Prompt operand and an integral or
floating-point operand, will convert the integral or floating -point operand to a Prompt representing its
value in spoken form, and then produce a newly created Prompt that is the concatenation of the two
prompts.

There is a prompt conversion to type Prompt from every other type, including the null type as described
in Table 1-7. For the null type, the result is the empty prompt.

Document Conversions
There is a document conversion to type Document from the Prompt, String, java.io.InputStream,and
java.io.Reader types. The resulting document for the last two types can only be accessed once. There is
also a conversion to the type java.io.InputStream, from the Prompt and Document types. And finally
there is a conversion to the type java.io.Reader type from the Document type.

Document conversion allows the Prompt type to be converted to type Document, and a conversion from
type Prompt to type Document requires run-time processing to collect the content of the specified
prompt and return it as a Document object. This conversion might result in an exception being thrown at
run-time. It also allows the String type to be converted to type Document.

Example Document Conversion Code
 // Prompt conversion of i and f
 Prompt p = P[ValueOf.wav] + S["i"] + P[Is.wav] + i

 // Document conversion of prompt p
 Document d = (Document)p;

String Conversions
String conversion applies only to the operands of the binary + operator when one of the arguments is a
String and the other is not a Prompt or both of them are of type char. In the first special case, the other
argument to the + is converted to a String, and a new String which is the concatenation of the two strings
is the result of the +. In the last special case, both characters are converted to new Strings and then
concatenated together to return a new String as the result of the +. String conversion is specified in detail
within the description of the string concatenation + operator.

Any type may be converted to type String by string conversion.

A value x of primitive type T is first converted to a reference value as if by giving it as an argument to
an appropriate class instance creation expression:

• If T is Boolean, then use new Boolean(x).

• If T is char, then use new Character(x).

• If T is byte, short, or int, then use new Integer(x).

• If T is long, then use new Long(x).

• If T is float, then use new Float(x).
1-32
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
• If T is double, then use new Double(x).

This reference value is then converted to type String by string conversion.

Only reference values need to be considered. If the reference is null, it is converted to the string "null"
(four ASCII characters n, u, l, l). If it is a Document then the whole document is read and returned as
a single string. Otherwise, the conversion is performed as if by an invocation of the toString method of
the referenced object with no arguments; but if the result of invoking the toString method is null, then
the string "null" is used instead.

The toString method is defined by the primordial class Object; many classes override it, notably
Boolean, Character, Integer, Long, Float, Double, and String.

String conversion applies only to the operands of the binary + operator when one of the arguments is a
String and the other is not a Prompt or both of them are of type char. In the first special case, the other
argument to the + is converted to a String, and a new String which is the concatenation of the two strings
is the result of the +. In the last special case, both characters are converted to new Strings and then
concatenated together to return a new String as the result of the +. String conversion is specified in detail
within the description of the string concatenation + operator.

The string concatenation operator + , when given a String operand and a floating-point operand, converts
the floating-point operand to a String representing its value in decimal form (without information loss),
and then produce a newly created String by concatenating the two strings.

String Parsing
There is a string parsing from type String to every other numeral type. This type of conversion typically
parses the string operand by first replacing all occurrences of the ‘*’ character to a ‘.’. This allows input
of numbers through steps such as the Cisco Unified CCX Editor GetDigitString step where the caller
might use the ‘*’ character to represent a decimal point. Then the resulting string is converted to the
specified numerical type. String parsing can always result in exceptions being thrown at run-time.

New Objects Resulting from Conversions
A new class instance is implicitly created when:

• The string, prompt or document concatenation operator + is used in an expression, resulting in a
new object of type String, Prompt, or Document.

• The prompt escalation, time of day prompt, time of week prompt, day of week prompt or random
prompt operator || is used in an expression.

• The prompt substitution operator ||| is used in an expression.

• The time of day document, time of week document or day of week document operator || is used in
an expression.

• The compound grammar operator || is used in an expression.

• The String Concatenation Operator +, which, when given a String operand and a reference, converts
the reference to a String by invoking the toString method of the referenced object (using "null" if
either the reference or the result of toString is a null reference) or reads the whole document and
converts it as a string if the referenced object is of type Document, and then produces a newly
created String that is the concatenation of the two strings.
1-33
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
• The Document Concatenation Operator +, page 1-10, which when given a Document operand and
a reference to another Document type produces a newly created Document that is the concatenation
of the two documents.

• The time of day document, time of week document and day of week document operator || (Prompt
Escalation Operator ||, page 1-11), which when given a Document operand and a reference to
another Document type produces a newly created Document based on the qualifiers having been
applied to the two document operands.

• The Prompt Concatenation Operator +, page 1-10, which, when given a Prompt operand and a
reference to a char, Currency, Date, Document, java.io.File, java.io.InputStream, Language, Prompt,
String, java.net.URL, Time or any numeral types, converts the reference to a Prompt based on
Table 1-7, and then produces a newly created Prompt that is the concatenation of the two prompts.

Note The types with the asterisk (*) require that the proper language pack be installed. The
asterisk is not part of the type.

• The prompt escalation, time of day prompt, time of week prompt, and day of week prompt operator
|| (Prompt Escalation Operator ||, page 1-11), which when given a Prompt operand and a reference
to another Prompt type produces a newly created Prompt based on the qualifiers having been applied
to the two prompt operands.

• The Prompt Substitution Operator |||, page 1-9, which when given a Prompt operand and a reference
to another Prompt type produces a newly created Prompt.

Table 1-7 Prompt Concatenation Conversion Result

Type Prompt Result

char* Spoken representation of the character

Currency* Spoken representation of the currency designator

Date* Spoken representation of the date

Document Assumes document represents a properly encoded
prompt and plays its content

java.io.File Assumes file represents a properly encoded prompt
and plays its content

java.io.InputStream Assumes stream represents a properly encoded
prompt and plays its content

Language* Spoken representation of the represented language

Prompt No conversion needed

String* Spells back the string one character at a time

java.net.URL Assumes referenced content represents a properly
encoded prompt and plays its content

Time* Spoken representation of the time

Any numeral types* Spoken representation of the value
1-34
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
• The compound grammar operator ||, which when given a Grammar operand and a reference to
another Grammar type produces a newly created Grammar.

• The Type Comparison Operator instanceof

• The Reference Equality Operators == and !=

• The Conditional Operator ? :

• Prompt Qualifier Operator @, page 3-105, which accepts either a DayOfWeekLiteral, Language,
Time, or numeral type as its right hand-side operand and results in the same prompt/document being
qualified in order to be used with the prompt/document container operator || to create a day of week
prompt/document, a time of day prompt/document or a time of week prompt/document, or simply
to override the language of a specific prompt/document.

• Prompt Weight Qualifier Operator %, page 3-105, which accepts a numeral type as its right
hand-side operand and results in the same prompt being qualified in order to be used with the prompt
container operator || to create a random prompt.

There may be many references to the same object. Most objects have state, stored in the fields of objects
that are instances of classes or in the variables that are the components of an array object. If two variables
contain references to the same object, the state of the object can be modified using one variable's
reference to the object, and then the altered state can be observed through the reference in the other
variable.

• Array creation expressions, string concatenation expressions, document concatenation expressions,
or prompt concatenation expressions throw an OutOfMemoryError if there is insufficient memory
available.
1-35
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 1 About the Cisco Unified CCX Expression Language
About Conversions in the Expression Language
1-36
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 2

Using Expressions and the
Expression Editor

This chapter covers the following topics:

• How to Access the Cisco Unified CCX Expression Editor, page 2-1

• How to Use the Expression Editor, page 2-2

• About the Expression Editor Toolbar, page 2-4

• About the Expression Editor Syntax Buttons, page 2-9

• About Expression and Java Licensing, page 2-9

For an explanation of each toolbar on each Expression Editor tab, see Using
Expressions and the Expression Editor, page 2-1.

How to Access the Cisco Unified CCX Expression
Editor

Whenever you see this 3-dot button in a Cisco Unified CCX Editor step
properties window, you can click on it to open the Expression Editor to edit the
value of the field to the left of the button. The following figure shows the
Expression Editor button in the Set step properties window.
2-1
rted with Scripts, Release 11.0(1)

Chapter 2 Using Expressions and the Expression Editor
How to Use the Expression Editor
How to Use the Expression Editor
Use the Expression Editor to enter or modify expressions in a Cisco Unified CCX
script.

This section includes the following topics:

• How To Enter Expressions in the Expression Editor, page 2-2

• About the Expression Editor Toolbar, page 2-4

• About the Expression Editor Syntax Buttons, page 2-9

• About Expression and Java Licensing, page 2-9

How To Enter Expressions in the Expression Editor
Expressions are useful if you do not know an exact value at design time and
instead need to enter a formula that can be evaluated at run time.
2-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 Using Expressions and the Expression Editor
How to Use the Expression Editor
Note The resulting type of expression must match the expected input type or types
(which you check at design time).

In the Expression Editor window, you can enter or edit an expression in the Value
input text box and you can use the All Variables selection box to get quick access
to a variable you have previously defined in the script to paste it into the
expression.

When you choose a variable from the All Variables selection box, the variable
name appears in the Value input text box.

After you enter the expression, click OK and the Expression Editor closes.
2-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

78-xxxxx-xx

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Figure 2-1 Example Expression Editor Window with the “All Variables” Selection
box Open

About the Expression Editor Toolbar
Below the Expression Editor Value input text box and buttons is a versatile
toolbar.

Note The toolbar changes to suit the type of data or feature you select in the toolbar tabs
at the bottom of the Expression Editor window.
2-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
This section includes the following topics:

• Toolbar Tabs, page 2-5

• A Pop-Up Menu, page 2-7

• Showing or Hiding the Expression Editor Toolbar, page 2-8

Toolbar Tabs
By clicking on the appropriate tab below the toolbar, the toolbar changes to
include the tools useful for editing the selected type of data indicated by the
selected tab. For example, in Figure 2-2, the Character toolbar is selected and so
tools appropriate for editing or entering character data are displayed.

The toolbar scripting tools (or aids) include:

• Variables: A selection box listing all the variables of the toolbar type selected
(for example, character) currently contained in the open script.

• Constructors. A selection list of the public Java constructors available for
creating and initializing new objects of the selected data type.

• Methods. A selection list of public Java methods for all the operations you
can perform on the selected data type. A method has four basic parts:

– The method name

– The type of object the method returns

– A list of parameters

– The body of the method

• Attributes. A selection list of all the public Java attributes available for the
selected data type. These are the things that differentiate one object from
another in the selected data type. For example, color or size.

• Constants and Keywords. In some cases, constants and keywords for the
selected data type or object are included.

• Syntax button. Buttons for quickly entering data of the selected type with the
correct syntax. The question marks on the buttons indicate command
parameters which you need to supply.

• Easy access to Prompts, grammars, documents, and scripts stored inside
the Cisco Unified CCX repository.
2-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

78-xxxxx-xx

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
When you click a button or select an item from a list, the Cisco Unified CCX
Editor inserts the selected expression text at the cursor position in the text input
field.

For example, if you are creating an expression that accesses the current time, on
the Time tab, click the now button, and the Cisco Unified CCX Editor will insert
the Java code that retrieves the current time when the script runs.

Note The Java tab contains a selection list of the constructors, methods, attributes, and
syntax buttons of the selected Java object within the open script. Therefore, the
contents of this tab will vary.

The Java tab allows you to enter a class name of your own in order to have its set
of constructors, methods or attributes listed in the selection boxes. This enables
an easy lookup of what is available so you can paste it into the expression directly.
The Java toolbar is populated with the constructors, methods or attributes of the
class you enter. A selection box drop-down arrow is disabled if the class entered
is invalid or does not have any constructors, methods or attributes.
2-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Figure 2-2 Example Expression Editor Window with the Language Toolbar Selected

A Pop-Up Menu
Right click in the Expression Editor window to access the pop-up menu. This
enables you to accesses editing functions such as Undo, Cut, and Paste. See
Figure 2-3.

The popup menu also provides two special functions:

• One allows you to parse an expression immediately in order to pinpoint errors

• The other allows you to automatically reduce the expression to a smaller and
yet equivalent expression (for example 3 + 2 would be reduced to 5).
2-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

78-xxxxx-xx

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Showing or Hiding the Expression Editor Toolbar
To show or hide the Expression Toolbar, click on the arrow buttons on the bottom
left of the Expression Editor text window. This alternately removes or displays the
tabbed toolbar.

Figure 2-3 Expression Editor Window without the Toolbar but with the Pop-up Menu

2-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 Using Expressions and the Expression Editor
About the Expression Editor Syntax Buttons
About the Expression Editor Syntax Buttons
The toolbar syntax buttons indicate the different ways you can operate on a data
type. This syntax is the same as the Java language syntax plus additional syntax
aids for handling prompts and documents.

About Expression and Java Licensing
Beginning with Cisco CRS 4.x, expressions are validated against installed
licenses to make sure that they do not violate license agreements. This validation
is performed by the Cisco CRS Engine whenever a script is loaded or whenever a
prompt template or grammar template is accessed and evaluated.

For script expressions containing TTS or Java features to work during runtime,
you must have either a Cisco Unified IP IVR, a Cisco Unified CCX Enhanced, or
a Cisco Unified CCX Premium license.

Note In Cisco Unified CCX Standard, you can enter only simple expressions unless you
also have a Java license. You automatically have a Java license with the other four
Cisco Unified CCXproducts.

An example of a TTS feature is a TTS prompt complex literal. A Java feature is
a complex expression block, a Java-like statement, method, constructor
invocation expression, or a field access expression.

Any license violation will be recorded in the logs and prevent the scripts from
being loaded in memory.
2-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

78-xxxxx-xx

Chapter 2 Using Expressions and the Expression Editor
About Expression and Java Licensing
2-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Exp

C H A P T E R 3

Expression Editor Tool Reference Descriptions

Each Expression Editor tool tab helps you enter or modify script data of a specific type.

This chapter:

• Lists

– All the friendly data types with their Java equivalents that you can use in the Expression Editor.

– Tips common to all the Expression Editor tools.

• Describes the features, data types, and functions of the Expression Editor tool tabs:

– Array, page 3-8

– BigDecimal, page 3-13

– BigInteger, page 3-18

– Boolean, page 3-23

– Byte, page 3-27

– Character, page 3-32

– Currency, page 3-37

– Date, page 3-39

– Document, page 3-44

– Double, page 3-54

– Float, page 3-57

– Grammar, page 3-62

– Integer, page 3-69

– Java, page 3-77

– Language, page 3-84

– Long, page 3-87

– Miscellaneous, page 3-91

– Prompt, page 3-94

– Script, page 3-110

– Short, page 3-113

– String, page 3-117

– Time, page 3-122
3-1
ress Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Friendly Data Types
– User, page 3-125

Friendly Data Types
All data types can be used in scripts as parameters in an expression.

The Expression Language supports any Java data types entered as a fully qualified Java class name. As
with the Java language, all classes defined as part of the java.lang package can be named directly without
having to include the package name. For example, the java.lang.String class can also be referred to as
String. That is because the String class is both a friendly data type and also defined in the default
java.lang package for which all classes do not need to be entered using their fully qualified class name.
However, the java.util.ArrayList class cannot be referred to as simply ArrayList.

In addition to the fully qualified Java class names, the Cisco CRS expression language defines friendly
data types that are equivalent to these Java class names. Entering these data types in a script is the same
as entering their equivalent fully qualified Java class names.

Primitive Java data types such as int, boolean, long, float, byte, char, short, double are automatically
converted into their corresponding Java object representation. You can enter into a Cisco Unified CCX
script either the Java class name or the Cisco Unified CCX friendly data type name.

Table 3-3 lists the friendly data types that the Expression Language uses and their equivalents in Java.
The Java equivalent class names are the Java fully qualified class name, that is the data name and the
package in which it is included.

Table 3-1 Cisco Unified CCX Friendly Data Types with their Java Equivalent Class Names

Friendly Data Type Java Class Name Default Value

int java.lang.Integer 0

String java.lang.String ""

char java.lang.Character '\u0000'

float java.lang.Float 0.0f

long java.lang.Long 0L

double java.lang.Double 0.0d

byte java.lang.Byte (byte)0

short java.lang.Short (short)0

boolean java.lang.Boolean false

User com.cisco.user.User null

Contact com.cisco.contact.Contact null

Session com.cisco.session.Session null

Script com.cisco.script.Script null

Prompt com.cisco.prompt.Playable P[]

Grammar com.cisco.grammar.Recognizable G[]

Document com.cisco.doc.Document DOC[]

Language java.util.Locale The system default language

Currency com.cisco.util.Currency The system default currency
3-2
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Friendly Data Types
Following table gives you the detail about the additional methods without parameters that are available
in the Expression Editor of the scripts for the Customer and POD objects:

Date java.util.Date The current date at the time of
interpretation

Time java.sql.Time The current time at the time of
interpretation

BigInteger java.math.BigInteger 0IB

BigDecimal java.math.BigDecimal 0.0fb

Iterator java.util.Iterator null

Customer com.cisco.uccx.contextservice.model.I
nternalCustomer

null

POD com.cisco.uccx.contextservice.model.I
nternalPod

null

Table 3-1 Cisco Unified CCX Friendly Data Types with their Java Equivalent Class Names (continued)

Friendly Data Type Java Class Name Default Value

Class Return type
Name of the
Method Description

com.cisco.uccx.contextservice.
model.InternalCustomer

java.util.UUID getCustomerId This returns the
UUID of the
Customer object.

com.cisco.uccx.contextservice.
model.InternalCustomer

java.util.Date getCreateDate This returns the
creation date of the
Customer object.

com.cisco.uccx.contextservice.
model.InternalCustomer

 java.util.Date getLastModifie
dDate

This returns the last
modified date of the
Customer object.

com.cisco.uccx.contextservice.
model.InternalPod

java.util.UUID getPodId This returns the
UUID of the Pod
object.

com.cisco.uccx.contextservice.
model.InternalPod

java.util.UUID getCustomerId This returns the
UUID of the
Customer
corresponding to
the POD object.
3-3
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Tool Tips
Tool Tips
This section describes:

• Tool Tips For the Java and Miscellaneous Tool Tabs, page 3-4

• Tool Tips For All the Expression Editor Tools, page 3-6

Tool Tips For the Java and Miscellaneous Tool Tabs
• The Java tool tab:

– Contains a selection list of the constructors, methods, attributes, and syntax buttons of the
selected Java object within the open script. Therefore, the contents of this tab will vary.

com.cisco.uccx.contextservice.
model.InternalPod

 java.util.Date getCreateDate This returns the
creation date of the
Pod object.

Note: Create POD
step will not show
the Creation date of
the POD due to
performance
reasons. Do a
Retrieve PODs step
to obtain the
creation date of the
POD object.

com.cisco.uccx.contextservice.
model.InternalPod

 java.util.Date getLastModifie
dDate

This returns the last
modified date of the
Pod object.

com.cisco.uccx.contextservice.
model.InternalPod

String getMediaType This returns the
media type
associated with
the pod (For
example: VOICE,
CHAT, EMAIL).

com.cisco.uccx.contextservice.
model.InternalPod

String[] getContributor
s

This returns the
contributors
associated with
the Pod. Format
will be
Contributor-ID(C
ontributor-Type).

Class Return type
Name of the
Method Description
3-4
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Tool Tips
– Allows you to enter any fully qualified Java class name of your choosing in order to have its set
of constructors, methods or attributes listed in the selection boxes. Included in this list of class
names are every class from the Sun JDK, all the Cisco classes, and any custom classes you might
have uploaded through the Cisco Unified CCX Application Administration web pages. See
Figure 3-1.

Figure 3-1 Java Tool Tab with “Java.util.ArrayList” Entered By User For its Selection List

This enables an easy lookup of what is available so you can paste it into an expression directly.
The selection box drop-down arrow is disabled if the class entered is invalid or does not have
any constructors, methods or attributes. For how to do this, see How to Access a Java
Constructor, Method, or Attribute for Any Class, page 3-79

• The Miscellaneous tool tab:

– Provides a way to easily enter types of data into an expression that are not included in the other
tabs.

– Allows you to filter the variables selection list of all the variables in the opened script so that
only those variables of the type you select are displayed in the selection list. See Figure 3-2. For
how to do this, see Object Variables, page 3-92.
3-5
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Tool Tips
Figure 3-2 Miscellaneous Tool Tab

Tool Tips For All the Expression Editor Tools
• The example expressions in this guide include both simple and complex ones and list the script

variables used in the expressions.

• In Unified IP IVR, Unified CCX Enhanced, and Unified Contact CCX Premium, you can enter both
simple and complex expressions.

However, in Unified CCX Standard, you can enter only simple expressions unless you also have a
Java license. You automatically have a Java license with the other four Cisco Unified CCX products.

• A complex expression is one surrounded by braces and having more than one statement, is specific
to the Java language, and requires that you have a Java license. If your script contains a complex
expression and you do not have a Java license, then when you load that script in the Cisco Unified
CCX engine, the script is declared invalid and you will not be able to run it.

• You can paste into an expression a variable, constructor, method, and attribute that you select from
the tool selection boxes.

• The constructor, method, and attribute selection boxes for each tool display the public Java
constructors, methods, and attributes available for that tool.

• The variables selection box filters the variables in the opened script so that only those of the selected
tool type are displayed.

• Both static and nonstatic available public Java methods and attributes are displayed:
3-6
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Tool Tips
– A static method or attribute is an operation attached to a data type rather than attached to an
object. It is similar to a global function and does not require an instance Object of the type.

Note As opposed to previous releases, invoking static methods no longer requires having a
dummy variable created of the proper type. Instead one can simply prefix the method
name with the class name followed by a period. For example: String.valueOf().

– A non static method or attribute requires an instance Object of the type.

See Using Expressions and the Expression Editor, page 2-1 for further generic “how to” information.
3-7
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Array
Array
Use the Array tab to enter or modify array data in an expression.

This topic includes the following:

• About Arrays, page 3-8

• Array Java Specification on the Web, page 3-8

• Example Array Code, page 3-9

• Array Variables, page 3-10

• Index Variables, page 3-10

• Array Methods, page 3-11

• Array tab Syntax Buttons, page 3-11

About Arrays
As in the Java programming language, arrays in the Expression language are objects that are dynamically
created. All methods of class java.lang.Object may be invoked on an array.

An array is different from the other data types listed in the Expression Editor tool tabs. For example, the
other data type variables represent a single value, like a string, an integer, or a boolean. But an array
variable represents a collection (array) of values of one of the other data types; for example: a collection
of integers, strings, dates, or whatever object.

A component of an array is an integer, or string, or any other Java type or even another array. You can
act on an array component in the same way as you can act on any other object of that data type.

Array Java Specification on the Web
For the Sun Java specification on arrays, see
http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805.

The following two sections describe the differences between arrays in the second edition of the Sun Java
specification and arrays in the Cisco Unified CCX Expression Language:

• Array Enhancements, page 3-8

• Array Exceptions, page 3-9

Array Enhancements

An array iterator attribute is included in the Cisco Unified CCXExpression Language but is not in the
Sun Java specification on arrays:

• The public final field iterator, containing a list of all components of the array (the iterator may not
be null) has been added to the members of an array type.

• The iterator makes an array’s components available as a final instance variable.

• All array components may be accessed through the iterator as defined by the reference type
java.util.Iterator. This is done by following the array reference with the.iterator field.

Example Expression: ArrayVariableName.iterator
3-8
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805

Chapter 3 Expression Editor Tool Reference Descriptions
Array
This example expression returns an iterator object on which the method next() can be called to
retrieve the next element of the array starting with the first one. The method hasNext() can be also
called to check if there is another element to extract from the array. Once all elements of the array
have been iterated, the iterator can no longer be used and throws a
java.util.NoSuchElementException exception.

Array Exceptions

The following are array features in Java that are not in the Cisco Unified CCX Expression Language:

• As opposed to the Java language, a trailing comma may not appear after the last expression.

• As opposed to the Java programming language, the [] may not appear as part of the declarator for a
particular variable as in this example:

byte matrix[];

This declaration would be valid in the Java programming language but in the Expression Language,
it must be written as follows:

byte[] matrix;

Example Array Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.

Figure 3-3 A Simple Expression Using an Array and an Array Script Variable

The expression

new int[] { 23, 4, 7,}

is valid in Java but not in the expression language. Instead write:

new int[] { 23, 4, 7}
3-9
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Array
Figure 3-4 A Complex Expression Using an Array and an Array Script Variable

The following sections describe the options on the Array tool tab:

• Array Variables, page 3-10

• Index Variables, page 3-10

• Array Methods, page 3-11

• Array tab Syntax Buttons, page 3-11

Array Variables
An array variable names the object that is the array. In addition, an array variable contains other, multiple
variables. These variables are called the array components and each are of the same type as the type held
by the array. For example, if a component type of an array is T, then the type of the array itself is T[].

There is no maximum limit to the size of an array, nor any requirement that member variables be indexed
or assigned contiguously. Only memory limits the size of an array.

The Array Variables selection box lists all the array variables contained in the currently opened script.
Use this selection box to paste an already defined array variable into an expression.

Index Variables
Arrays are zero-based, that is, the first element is indexed with the number 0. If an array has n
components, then n is the length of the array and its components are referenced using integer indices
from 0 to n - 1, inclusive.
3-10
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Array
An array index variable holds an index entry for the array and is used to retrieve a specific array
component. For example: ArrayVariable[IndexVariable]=value

The Index Variables selection box lists all the variables contained in the opened script that are of the type
that can be used as an index variable. Use this selection box to paste one of these variables into an
expression as an index variable if it is appropriate for such in your script.

Array Methods
For descriptions of the public Java array methods available in the selection box, see
http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805.

Array tab Syntax Buttons
An array must be declared. When you declare an array variable, you suffix the type with [] to indicate
that this variable is an array. This states the type of value the array holds. Each [] represents one
dimension of the array. So the array

int[][]

represents a 2 dimensional array of integers where the components of the first dimension are of type

int[]

and the components of these components are of type

int

The variable name of the array appears in an array declaration followed by a semicolon. Here are some
examples:

int[] x;
float[] nt;
String[] names;
Use the new keyword to create an array. For example:

c = new int[3];

In the preceding example, c is the array variable. The number in the brackets specifies the number of
components in the array, which is called the length of the array. This allocates memory for the array.
3-11
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805

Chapter 3 Expression Editor Tool Reference Descriptions
Array
Table 3-2 Array Syntax Button Descriptions

 Button Description

new ?[] Creates a new array.
For example: ArrayVariableName = new string[]

• To create an array and at the same time assign values to the array
components, use this format:

new type[] { value, value, value, ...}

For example: new int[] { 3, 4, 5 }

creates an array of size 3 where the first component is 3, the second is
4 and the last is 5.

• To create an array and only specify its size, use this format:

new type[size]

For example: new int[3]

creates an array of size 3 but initializes all components to their default
value. For a list of variable default values based on type, see Initial Values
of Variables, page 1-29.

? [?] Enters an array component by array variable and index.
For example: ArrayVariableName[array_index]

?.length1

1. The .length and the .iterator variables do not require the Java license.

Enters an array length variable.
For example: ArrayVariableName.length

The length is the number of components in the array.

?.iterator1 Enters an array iterator variable.
For example: ArrayVariableName.iterator

The Iterator is a class based on the Array. It provides methods to go through
all the Array components, one at a time.
3-12
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigDecimal
BigDecimal
Use the BigDecimal tab to enter or modify BigDecimal data in an expression. BigDecimal is a friendly
data type corresponding to the fully qualified java.math.BigDecimal class.

This topic includes the following:

• About BigDecimals, page 3-13

• BigDecimal Java Specification on the Web, page 3-13

• Example BigDecimal Code, page 3-14

• BigDecimal Variables, page 3-15

• BigDecimal Constructors, Methods, and Attributes, page 3-15

• BigDecimal tab Syntax Buttons, page 3-16

• Floating-Point Literals, page 3-61

About BigDecimals
The BigDecimal class provides a decimal, floating-point arithmetic which produces arbitrary-precision
signed decimal numbers. Use BigDecimals when you do not want to be limited and you need more
precision than floats allow.

For a description and comparison of the different types of floating-point numbers (floats, doubles, and
BigDecimals), see Floating-Point Literals, page 3-61.

The BigDecimal class does normal rounding and gives you complete control over rounding behavior,
allowing you to explicitly specify a rounding behavior (scale) for operations capable of discarding
precision by using:

• Java constructors to specify a scale.

• Java methods [divide(BigDecimal, int), divide(BigDecimal, int, int), and setScale(int, int))].

• Cisco Unified CCX math operators (see BigDecimal Enhancements, page 3-14 and BigDecimal tab
Syntax Buttons, page 3-16).

Because the BigDecimal class gives you control over rounding and the number of decimal places you
are interested in, it can be useful when dealing with money or in any circumstance where the tolerance
for rounding errors is low.

As specified in the Sun Java specification on such, a BigDecimal consists of an arbitrary precision
integer unscaled value and a non-negative 32-bit integer scale, which represents the number of digits to
the right of the decimal point. The number represented by the BigDecimal is (unscaledValue/10scale).
BigDecimal provides operations for basic arithmetic, scale manipulation, comparison, hashing, and
format conversion.

For examples of how you can use BigDecimals, see Example BigDecimal Code, page 3-14 and
BigDecimal tab Syntax Buttons, page 3-16.

BigDecimal Java Specification on the Web
For the Sun Java specification on BigDecimals, see
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html.
3-13
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html

Chapter 3 Expression Editor Tool Reference Descriptions
BigDecimal
BigDecimal Enhancements

The following Cisco Unified CCX Expression Language enhancements are not in the Sun Java
specification on BigDecimals. In the Cisco Unified CCX Expression Language:

• You can specify a BigDecimal literal with the characters DB as in 26.12DB.

• You can do math operations on BigDecimals, using the standard math operators. See BigDecimal
tab Syntax Buttons, page 3-16.

• When entering a BigDecimal as a literal number, the scale of that BigDecimal is set as the number
of digits in the fractional part of the number. For example: in the number in 1.53DB, the scale is 2.
The scale is zero if there is no decimal point.

• When dividing BigDecimals, the scale of both numbers that are divided is added with a minimum
of 25 to set the scale of the result value. If the scale is less than 25, then the scale is fixed at 25. If
the sum of the two scales is larger than 25, then the scale is fixed at that larger number.

Example BigDecimal Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.

Figure 3-5 A Simple Expression Using a BigDecimal and Two Script Variables
3-14
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigDecimal
Figure 3-6 A Complex Expression Using a BigDecimal and Two Script Variables

Note The preceding example is of a complex expression. This type of expression, one surrounded by braces
and having more than one statement, is specific to the Java language and requires that you have a Java
license. If your script contains a complex expression and you do not have a Java license, then when you
load that script in the Cisco Unified CCX Engine, the script is declared invalid and you will not be able
to run it.

BigDecimal Variables
The BigDecimal Variables selection box lists all the BigDecimal variables contained in the currently
opened script. Use this selection box to paste an already defined BigDecimal variable into an expression.

A BigDecimal variable consists of an arbitrary-precision integer along with a scale, where the scale is
the number of digits to the right of the decimal point.

The default value of a BigDecimal variable is positive zero, that is, 0.0fb.

BigDecimal Constructors, Methods, and Attributes
Use the appropriate selection box to add BigDecimal code to your expression.
3-15
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigDecimal
The available public methods and attributes include both static and non static ones.

For descriptions of all the public BigDecimal constructors, methods, and attributes available in the
selection boxes, see the Java specification at
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html.

BigDecimal tab Syntax Buttons
The BigDecimal tab syntax buttons indicate all the ways you can add a BigDecimal to an expression.

Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate BigDecimal operand or literal.

Note All of the BigDecimal syntax listed in Table 3-3 is specific to the Cisco Unified CCX Expression
Language.

The use of DB to specify a BigDecimal and the use of math operators on BigDecimals is specific
to the Expression Language and is not a part of the Java language syntax.

Table 3-3 BigDecimal Syntax Button Descriptions

Syntax Button Name Type Description

?DB literal BigDecimal Enters a BigDecimal literal. See
Floating-Point Literals, page 3-61.

For example:
3.14159DB
2E-12DB
-100DB

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the
first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand
divided by the second.
3-16
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html

Chapter 3 Expression Editor Tool Reference Descriptions
BigDecimal
? *= ? multiply and
assign

assignment

The operand on the
left of the assignment
statement (the first
operand) can be any
type of variable,
including an array
component or a
public class attribute.

Multiplies the first operand by the second
and assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second
and assigns the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second
operand and assigns the remainder to the
first operand.

? += ? add and assign Adds the first operand to the second
operand and assigns the result to the first
operand.

? -= ? subtract and
assign

Subtracts the second operand from the
first operand and assigns the result to the
first operand.

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

Table 3-3 BigDecimal Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-17
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigInteger
BigInteger
Use the BigInteger tab to enter or modify BigInteger data in an expression. BigInteger is a friendly data
type corresponding to the fully qualified java.math.BigInteger class.

This topic includes the following:

• About BigIntegers, page 3-18

• BigInteger Specification on the Web, page 3-18

• Example BigInteger Code, page 3-18

• BigInteger Variables, page 3-20

• BigInteger Constructors, Methods, and Attributes, page 3-20

• BigInteger tab Syntax Buttons, page 3-20

• Integer Literals, page 3-75

About BigIntegers
The BigInteger class represents integers that can be arbitrarily large; that is, BigIntegers are not limited
to the 64 bits available in the long data type.

Literals of type BigInteger have no maximum and minimum. Any value can be represented using the
BigInteger type. For examples of how you can use BigIntegers, see Example BigInteger Code,
page 3-18 and BigInteger tab Syntax Buttons, page 3-20.

BigInteger Specification on the Web
For the Sun Java specification on BigIntegers on the web, see

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html

BigInteger Enhancement

In the Cisco Unified CCX Expression Language, you can specify a BigInteger with the characters IB as
in the 234556789IB. This method of specifying a BigInteger is not in the Sun Java specification on
BigInteger.

Example BigInteger Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.
3-18
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html

Chapter 3 Expression Editor Tool Reference Descriptions
BigInteger
Figure 3-7 Example Simple Expression Using a BigInteger and a Script Variable

Figure 3-8 Example Complex Expression Using a BigInteger and Two Script Variables

The following sections describe how you can use the BigInteger tab:

• BigInteger Variables, page 3-20

• BigInteger Constructors, Methods, and Attributes, page 3-20
3-19
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigInteger
• BigInteger tab Syntax Buttons, page 3-20

BigInteger Variables
The BigInteger Variables selection box lists all the BigInteger variables contained in the currently
opened script. Use this selection box to paste an already defined BigInteger variable into an expression.

The BigInteger variable represents arbitrary-precision integers. The default value of a BigInteger
variable is zero, that is, 0IB.

BigInteger Constructors, Methods, and Attributes
Use the appropriate selection box to add a public BigInteger constructor, method, or attribute in your
Cisco Unified CCX script expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java BigInteger constructors, methods, and attributes available in the
selection box, see http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html.

BigInteger tab Syntax Buttons
The BigInteger tab syntax buttons indicate all the ways you can add or modify a BigInteger in an
expression in a Cisco Unified CCX script. Clicking on one of the buttons adds the indicated syntax to
your expression. The Question marks are not added to the expression when you click the syntax button.
You need to substitute them with the appropriate values in the expression.

Note All of the BigInteger syntax listed in Table 3-4 is specific to the Cisco Unified CCX Expression
Language.

The use of IB to specify a BigInteger and the use of math operators on BigIntegers is specific to
the Expression Language and is not a part of the Java language syntax.

The semantics of arithmetic operations exactly mimic those of Java’s integer arithmetic operators, as
defined in The Java Language Specification. See the following for a summary descriptive list of all the
operators you can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Table 3-4 BigInteger Syntax Button Descriptions

Syntax
Button Name Type Description

?IB literal decimal A BigInteger literal in decimal format.

For example:
234556789IB
0IB
-23IB
21474836482147483648IB
3-20
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
BigInteger
0x?IB literal hexadecimal A BigInteger literal in hexadecimal format.

For example:
0x100000000000000000000IB

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

++?1 prefix increment increment Increments the value of the operand by one before
the operand is changed in an expression.

?++1 postfix
increment

Increments the value of the operand by one after
the operand is changed in an expression.

--?1 prefix decrement decrement Decrements the value of the operand by one before
the operand is changed in an expression.

?--1 postfix
decrement

Decrements the value of the operand by one after
the operand is changed in an expression.

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand divided
by the second.

? << ? shift left bitwise shift
(for operations
on individual bits
in integers only)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side.

? >> ? shift right Shifts bits of operand 1 right by the distance of
operand 2; fills with the highest (signed) bit on the
left-hand side.

? >>> ? zero fill right
shift

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand side.

? & ? bitwise AND bitwise logical
(for operations
on individual bits
in integers only)

Compares both operands. If both operand bits are
1, the AND function sets the resulting bit to 1;
otherwise, the resulting bit is 0.

? ^ ? bitwise exclusive
OR (XOR)

Compares both operands. If both operand bits are
different, the resulting bit is 1; otherwise the
resulting bit is 0.

? | ? bitwise inclusive
OR

Compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

 ~ ? Bitwise
complement

Inverts the value of each operand bit: If the operand
bit is 1, the resulting bit is 0; if the operand bit is 0,
the resulting bit is 1.

Table 3-4 BigInteger Syntax Button Descriptions (continued)

Syntax
Button Name Type Description
3-21
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
BigInteger
? *= ? multiply and
assign

assignment

The operand on
the left of the
assignment
statement (the
first operand) can
be any type of
variable,
including an
array component
or a public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second and assigns
the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second operand
and assigns the remainder to the first operand.

? += ? add and assign Adds the first operand to the second operand and
assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first operand
and assigns the result to the first operand.

? <<= ? left shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand side
and assigns the resulting bit to operand 1.

? >>= ? right shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand side
and assigns the resulting bit to operand 1.

? >>>= ? zero fill, right
shift, and assign

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand side
and assigns the resulting bit to operand 1.

? &= ? AND and assign Assignment
(continued)

First, compares both operands. If both operand bits
are 1, the AND function sets the resulting bit to 1;
otherwise, the resulting bit is set to 0.

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and assign First, compares both operands. If both operand bits
are different, the resulting bit is 1; otherwise the
resulting bit is 0.

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

1. The operand for the prefix and postfix increment operators must be a variable, an array
component, or a public class attribute.

Table 3-4 BigInteger Syntax Button Descriptions (continued)

Syntax
Button Name Type Description
3-22
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Boolean
Boolean
Use the Boolean tab to add or modify Boolean data in an expression. “boolean” is a friendly data type
corresponding to the fully qualified java.lang.Boolean class.

Note In the Expression Language, boolean and Boolean can be used interchangeably as opposed to Java where
boolean represents a primitive data type and Boolean represents an object.

This topic includes the following:

• About Booleans, page 3-23

• Boolean Specification on the Web, page 3-23

• Example Complex Expression Using a Boolean, page 3-23

• Boolean Variables, page 3-24

• Boolean Constructors, Methods, and Attributes, page 3-25

• Boolean tab Syntax Buttons, page 3-25

• Boolean Literals, page 3-27

About Booleans
A Boolean variable has one of two values: true or false. The words true and false are also reserved
words, are case insensitive, and are called Boolean literals.

These variables not the same as the strings true and false nor are they the same as any numeric value like
1 or 0. Booleans are not numbers or strings. They are simply Booleans.

Note The Boolean class is spelled with an initial capital letter, but the Java boolean data type is all lowercase.

For examples of how you can use Booleans, see Example Complex Expression Using a Boolean,
page 3-23 and Boolean tab Syntax Buttons, page 3-25.

Boolean Specification on the Web
For the Sun Java specification on Booleans, see
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html.

Example Complex Expression Using a Boolean
In the following example, the script variable used in the expressions is listed in the top right of the
example.
3-23
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html

Chapter 3 Expression Editor Tool Reference Descriptions
Boolean
Figure 3-9 Example Complex Expression Using a Boolean

The following sections describe the options on the Boolean tab:

• Boolean Variables, page 3-24

• Boolean Constructors, Methods, and Attributes, page 3-25

• Boolean tab Syntax Buttons, page 3-25

Boolean Variables
The Boolean Variable selection box lists all the Boolean variables defined in the open Cisco Unified
CCX script. Use this selection box to paste an already defined Boolean variable into an expression.

A Boolean variable can be either true or false, and is primarily used by the If step in the General palette
of the Cisco Unified CCX Editor or any of the conditional operators.

The default value of a Boolean variable is false.
3-24
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Boolean
Boolean Constructors, Methods, and Attributes
Use the appropriate selection box to add a public Boolean constructor, method, or attribute in your
expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java Boolean constructors, methods, and attributes available in the
selection box, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html.

Boolean tab Syntax Buttons
The Boolean tab syntax buttons indicate all the ways you can add or use a Boolean in an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values.

The semantics of Boolean operations exactly mimic those of Java’s Boolean operators, as defined in The
Java Language Specification. See the following for a summary descriptive list of all the operators you
can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Table 3-5 Boolean Syntax Button Descriptions

Syntax Button Operator Operator Type Description

true literal Boolean The Boolean literal corresponding to the
primitive value true. See also Boolean Literals,
page 3-27.

false literal Boolean The Boolean literal corresponding to the
primitive value false. See also Boolean Literals,
page 3-27.

!? boolean NOT logical Returns true if the operand is false.

? && ? boolean AND Compares both operands. Returns true if both
operand 1 and operand 2 are true.

? || ? boolean OR Compares both operands. Returns true if either
operand 1 or operand 2 is true.
3-25
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Boolean
? & ? bitwise AND bitwise logical Compares both operands. Returns true if
operand 1 and operand 2 are both boolean and
both true; always evaluates operand 1 and
operand 2.

? ^ ? bitwise
exclusive OR

Compares both operands. Returns true if
operand 1 and operand 2 are different — that is,
if one or the other of the operands, but not both,
is true.

? | ? bitwise
inclusive OR

Compares both operands. Returns true if both
operand 1 and operand 2 are boolean and either
operand 1 or operand 2 is true; always evaluates
operand 1 and operand 2.

 ~ ? bitwise
complement

Inverts the value of each operand bit: If the
operand bit is 1 (true), the resulting bit is 0
(false); if the operand bit is 0 (false), the
resulting bit is 1 (true).

? == ? equal to conditional
equality

(For Java objects,
equality is
determined by
invoking the
equals() method on
the first operand
with the second
operand as
argument.)

Returns true if operand 1 and operand 2 are
equal.

? != ? not equal to Returns true if operand 1 and operand 2 are not
equal.

? < ?1 less than conditional
relation

Returns true if operand 1 is less than operand 2.

? > ?1 greater than Returns true if operand 1 is greater than operand
2.

? <= ?1, 2 less than or
equal to

Returns true if operand 1 is less than or equal to
operand 2.

? >= ?1, 2 greater than or
equal to

Returns true if operand 1 is greater than or equal
to operand 2.

? instanceof ? instance of conditional
instance

Returns true if operand 1 is an instance of the
class represented by operand 2.

(?) ? (?): (?) if then else conditional true
and else

If operand 1 is true, returns operand 2.
Otherwise, returns operand 3.

Table 3-5 Boolean Syntax Button Descriptions (continued)

Syntax Button Operator Operator Type Description
3-26
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Byte
Boolean Literals
The Boolean type has two values, represented by the literals true and false, formed from ASCII letters.

A Boolean literal is always of type Boolean and is case insensitive.

BooleanLiteral: one of
any case from: true or false

Each Boolean literal is a reference to an instance of class Boolean. These objects have a constant value
and can be used interchangeably with its counter part Java primitive data type when calling methods that
expect the primitive types or when accessing Java attributes declared using the Java primitive data type.

Byte
Use the Byte tab to enter or modify byte data in an expression. A byte is a friendly data type
corresponding to the fully qualified java.math.Byte class name.

Note In the Expression Language, byte and Byte can be used interchangeably as opposed to Java where byte
represents a primitive data type and Byte represents an object.

? &&= ? logical AND relational and
assignment

(The operand on
the left of the
assignment
statement (the first
operand) can be
any type of
variable, including
an array
component or a
public class
attribute.)

Returns true if operand 1 and operand 2 are both
true and assigns operand 2 to operand 1;
conditionally evaluates operand 2.

? ||= ? logical OR
and assign

Returns true if either operand 1 or operand 2 is
true and then assigns operand 2 to operand 1;
conditionally evaluates operand 2.

? &= ? AND and
assign

First, compares both operands. If both operand
bits are true, the AND function sets the resulting
bit to true (1); otherwise, the resulting bit is set
to false (0).

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and
assign

First, compares both operands. If both operand
bits are different, the resulting bit is true (1);
otherwise the resulting bit is false (0).

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the
two operand bits is true (1), the resulting bit is
true (1). Otherwise, the resulting bit is false (0).

Then, assigns the resulting bit to operand 1.

1. For Java objects which are instances of the java.lang.Comparable interface, comparison is determined by invoking the
compareTo() method on the first operand with the second operand as argument.

2. For Java objects which are not instances of the java.lang.Comparable interface, comparison can only verify equality as with
the == or != operators by invoking the equals() method on the first operand with the second operand as argument. The operator
returns true only if equals() returns true. As such, only equality is being verified and not greater or less.

Table 3-5 Boolean Syntax Button Descriptions (continued)

Syntax Button Operator Operator Type Description
3-27
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Byte
This topic includes the following:

• About Bytes, page 3-28

• Byte Java Specification on the Web, page 3-28

• Example Simple Expression Use the Byte Data Type, page 3-29

• Byte Variables, page 3-29

• Byte Constructors, Methods, and Attributes, page 3-29

• Byte tab Syntax Buttons, page 3-29

About Bytes
A byte is an integral type of eight bits and is the smallest addressable numeric unit of storage.

The byte data type does not support literals. As such, one can use integer literal and type cast them to
byte using the (byte) type cast operator as long as the value of the integer literal does not exceed the
capacity of a byte.

The Java numeric types are the integral types and the floating-point types:

• The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit, 32-bit and 64-bit
signed two's-complement integers, respectively, and char, whose values are 16-bit unsigned integers
representing UTF-16 code units.

• The floating-point types are float, whose values include the 32-bit IEEE 754 floating-point numbers,
and double, whose values include the 64-bit IEEE 754 floating-point numbers.

You can convert a byte to a string and a string to a byte.

For examples of how you can use bytes, see Example Simple Expression Use the Byte Data Type,
page 3-29 and Byte tab Syntax Buttons, page 3-29.

Byte Java Specification on the Web
For the Sun Java specification on bytes, see

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Byte.html
3-28
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Byte.html

Chapter 3 Expression Editor Tool Reference Descriptions
Byte
Example Simple Expression Use the Byte Data Type

Figure 3-10 Example Simple Expression Using a Byte and Script Variables

The following sections describe the options on the Byte tab:

• Byte Variables, page 3-29

• Byte Constructors, Methods, and Attributes, page 3-29

• Byte tab Syntax Buttons, page 3-29

Byte Constructors, Methods, and Attributes
Use the appropriate selection box, to add a public byte constructor, method, or attribute into your
expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java Byte constructors, methods, and attributes available in the selection
box, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Byte.html.

Byte Variables
The Byte Variables selection box lists all the Byte variables contained in the currently opened script. Use
this selection box to paste an already defined Byte variable into an expression.

A Byte variable holds the value of a Byte, which represents an 8-bit integer value with a value range
from -128 to +127. The default value of a Byte variable is zero, that is, the value of (byte)0.

Byte tab Syntax Buttons
The Byte tab syntax buttons indicate all the ways you can add or use a Byte in an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.
3-29
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/arrays.doc.html#27805
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html

Chapter 3 Expression Editor Tool Reference Descriptions
Byte
The semantics of Byte operations exactly mimic those of Java’s Byte operators, as defined in The Java
Language Specification. See the following for a summary descriptive list of all the operators you can use
in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Table 3-6 Byte Syntax Button Descriptions

Syntax
Button Name Type Description

(byte)? Byte typecast typecast Converts the operand value into a byte value by
ignoring the information that exceeds the byte
representation.

For example:
(byte)23
(byte)-45

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

++?1 prefix increment increment Increments the value of the operand by one before
the operand is changed in an expression.

?++1 postfix
increment

Increments the value of the operand by one after the
operand is changed in an expression.

--?1 prefix decrement decrement Decrements the value of the operand by one before
the operand is changed in an expression.

?--1 postfix
decrement

Decrements the value of the operand by one after
the operand is changed in an expression.

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand divided
by the second.

? << ? shift left bitwise shift
(for operations
on individual bits
in integers only)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand side.

? >> ? shift right Shifts bits of operand 1 right by the distance of
operand 2; fills with the highest (signed) bit on the
left-hand side.

? >>> ? zero fill right
shift

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand side.
3-30
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Byte
? & ? bitwise AND bitwise logical
(for operations
on individual bits
in integers only)

Compares both operands. If both operand bits are 1,
the AND function sets the resulting bit to 1;
otherwise, the resulting bit is 0.

? ^ ? bitwise exclusive
OR (XOR)

Compares both operands. If both operand bits are
different, the resulting bit is 1; otherwise the
resulting bit is 0.

? | ? bitwise inclusive
OR

Compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

 ~ ? Bitwise
complement

Inverts the value of each operand bit: If the operand
bit is 1, the resulting bit is 0; if the operand bit is 0,
the resulting bit is 1.

? *= ? multiply and
assign

assignment

The operand on
the left of the
assignment
statement (the
first operand) can
be any type of
variable,
including an
array component
or a public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second and assigns
the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second operand and
assigns the remainder to the first operand.

? += ? add and assign Adds the first operand to the second operand and
assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first operand
and assigns the result to the first operand.

? <<= ? left shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand side
and assigns the resulting bit to operand 1.

? >>= ? right shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand side
and assigns the resulting bit to operand 1.

? >>>= ? zero fill, right
shift, and assign

assignment
(continued)

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand side
and assigns the resulting bit to operand 1.

Table 3-6 Byte Syntax Button Descriptions (continued)

Syntax
Button Name Type Description
3-31
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Character
Character
Use the Character tab to add or modify Character data in an expression. A char is a friendly data type
corresponding to the fully qualified java.lang.Character class.

Note In the Expression Language, char and Character can be used interchangeably as opposed to Java where
char represents a primitive data type and Character represents an object.

This topic includes the following:

• About the Character Data Type, page 3-32

• Character Specification on the Web, page 3-33

• Example Character Code, page 3-33

• Character Methods and Attributes, page 3-34

• Character tab Syntax Buttons, page 3-35

• Character Literals, page 3-35

• Escape Character Literals, page 3-36

About the Character Data Type
The Character class provides several methods for determining a character's category (lowercase letter,
digit, and so on) and for converting a character from uppercase to lowercase and vice versa.

The char data type represents 16-bit Unicode characters. These are a superset of the ASCII character set
which allow non-English language characters. Any Unicode character can be written as a literal using
the Escape character (backslash \) and the “u” character followed by its hexadecimal representation. For
example, \u0065 represents the letter e.

? &= ? AND and assign First, compares both operands. If both operand bits
are 1, the AND function sets the resulting bit to 1;
otherwise, the resulting bit is set to 0.

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and assign First, compares both operands. If both operand bits
are different, the resulting bit is 1; otherwise the
resulting bit is 0.

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

1. With a prefix or postfix operator, the first operand must be a variable, an array component, or a class attribute.

Table 3-6 Byte Syntax Button Descriptions (continued)

Syntax
Button Name Type Description
3-32
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Character
The methods and data of class Character are defined by the information in the UnicodeData file standard
that is part of the Unicode Character Database maintained by the Unicode Consortium. This file and its
description are available from the Unicode Consortium at:

http://www.unicode.org

For examples of character code, see Example Character Code, page 3-33 and Character tab Syntax
Buttons, page 3-35.

Character Specification on the Web
For the Sun Java specification on characters, see
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Character.html.

Example Character Code
In the following two examples, the script variable used in the expression are listed in the top right of each
example.

Figure 3-11 Example Simple Expression Using Character Code
3-33
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://www.unicode.org
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Character.html

Chapter 3 Expression Editor Tool Reference Descriptions
Character
Figure 3-12 Example Complex Expression Using Character Code

The following sections describe the options on the Character tab:

• Character Methods and Attributes, page 3-34

• Character Variables, page 3-34

• Character tab Syntax Buttons, page 3-35

• Character Literals, page 3-35

• Escape Character Literals, page 3-36

Character Methods and Attributes
Use the appropriate selection box to add a character variable, method, or attribute, or an escape character
to your expression.

The available public methods and attributes include both static and non static ones.

For descriptions the public Java char constructors, methods, and attributes available in the selection
boxes, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Character.html.

Character Variables
A character variable holds the value of a char and consists of characters, such as the letters in an alphabet.
Its range of values is from '\u0000' to '\uffff' inclusive.

The default value of a Character variable is the null character, that is, '\u0000' or '\0'.

The Character Variable selection box lists all the character variables contained in the currently opened
script. Use this selection box to paste an already defined character variable into an expression.
3-34
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Character.html

Chapter 3 Expression Editor Tool Reference Descriptions
Character
Character tab Syntax Buttons
The Character tab syntax buttons indicate all the ways you can insert or modify a char in an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values.

Character Literals
A character literal is expressed as a character or an escape sequence, enclosed in ASCII single quotes.
(The single-quote, or apostrophe, character is \u0027.)

A character literal is always of type char.

CharacterLiteral:
' SingleCharacter '
' EscapeSequence '

SingleCharacter:
UnicodeInputCharacter but not ' or \

The escape sequences are described in Escape Character Literals, page 3-36.

The characters CR and LF are never an InputCharacter; they are recognized as constituting a
LineTerminator.

Table 3-7 Character Syntax Button Descriptions

Syntax Button Name Type Description

‘?’ character literal ASCII code for a
character literal

Inserts single quotes for entering a
single character literal (which
includes characters for escape
sequences).

For example:
‘a’, ‘%’, ‘1’, ‘Z’, ' ', ‘ ’
‘\t’, ‘\r’, ‘\0’, ‘\n’, ‘\f’, ‘\\’, ‘\’

See Character Literals, page 3-35.

‘\u????’ Unicode for a
character literal

Inserts single quotes for entering a
single character literal (which
includes characters for escape
sequences) in a Unicode
representation.

For example:
'\u03a9'
'\uFFFF'

See Character Literals, page 3-35.

? + ? concatenation
(specific to Cisco
Unified CCX)

string Concatenates two characters together
to form a new string with these two
characters in it.

See String Concatenation Operator +,
page 1-10.
3-35
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Character
ou will receive a parse-time error if the character following the SingleCharacter or EscapeSequence is
other than a '. You will also receive a parse-time error if a line terminator appears after the opening '
and before the closing '.

The following are examples of char literals:

'a'
'%'
'\t'
'\\'
'\''
'\u03a9'
'\uFFFF'
'\177'
' '
' '

Each char literal is a reference to an instance of class Character. These objects have a constant value and
can be used interchangeably with its counter part Java primitive data type when calling methods that
expect the primitive types or when accessing Java attributes declared using the Java primitive data type.

Escape Character Literals
Character literals for Escape Sequence:

\ b /* \u0008: backspace BS */
\ t /* \u0009: horizontal tab HT */
\ n /* \u000a: linefeed LF */
\ f /* \u000c: form feed FF */
\ r /* \u000d: carriage return CR */
\ " /* \u0022: double quote " */
\ ' /* \u0027: single quote ' */
\ \ /* \u005c: backslash \ */
\ 0 /* \u0000: null character */
\ UnicodeInputCharacter/* the actual Unicode character */

Note Before you insert a new line ('\n') or a carriage return ('\r') in the Email body, ensure that you have a
character; such as a period, colon, or a Cisco Unified CCX variable.

Table 3-8 Escape Character Descriptions

Escape ASCII
Character

Escape Unicode
Character Description

'\t' '\u0009' tab

'\f' '\u000c' form feed

'\r' '\u000d' return

'\n' '\u000a' newline

'\0' '\u0000' null character

'\'' '\u0027' single quote

'\''' '\u0022' double quote
3-36
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Currency
Currency
Use the Currency tab to add or modify Currencies in an expression.

The Currency friendly data type corresponds to the Java com.cisco.util.Currency class and not to the Java
java.util.Currency class.

A Currency object represents a specific currency unit for a country. An operation that requires a
Currency to perform its task is called currency-sensitive and uses the Currency to tailor information for
the user. For example, playing back a dollar amount is a currency-sensitive operation and the amount
must be formatted according to the currency conventions.

This topic includes the following:

• About Currencies, page 3-37

• Currency Specification and Code List on the Web, page 3-37

• Example Simple Expression Using a Prompt and Currency, page 3-38

• Currency Variables, page 3-38

• Currency Methods and Attributes, page 3-38

• Recent Currencies, page 3-38

• Currency tab Syntax Button, page 3-39

• Currency Literals, page 3-39

About Currencies
You can enter into a script a currency code from the ISO 4217 standard lists of currency codes to specify
a country’s currency.

The ISO 4217 standard internationally represents the currencies of countries throughout the world. In
most cases, the currency code is composed of a country's two-character Internet country code plus an
extra character to denote the currency unit. For example, the code for the Canadian Dollars is simply
Canada's two-character Internet code ("CA") plus a one-character currency designator ("D").

Currency Specification and Code List on the Web
For a list of the ISO currency codes by country and precious metal or by code, see
http://www.xe.com/iso4217.htm.
3-37
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://www.oanda.com/site/help/iso_code.shtml

Chapter 3 Expression Editor Tool Reference Descriptions
Currency
Example Simple Expression Using a Prompt and Currency

The following sections describe the options on the Currency tab:

• Currency Variables, page 3-38

• Currency Methods and Attributes, page 3-38

• Recent Currencies, page 3-38

• Currency tab Syntax Button, page 3-39

Currency Variables
The Currency Variable selection box lists all the currency variables contained in the currently opened
script. Use this selection box to paste an already defined currency variable into an expression.

The Currency variable is used to identify a given currency, such as the American Dollar (USD), and is
useful when creating generated currency prompts that need to be tailored based on a given currency.

The default value of a currency variable is the system default currency.

Currency Methods and Attributes
Use the appropriate selection box to add currency methods or attributes to your expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java Currency methods and attributes available in the selection boxes, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Currency.html.

Recent Currencies
Lists the currencies you have recently used in your script.
3-38
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Currency.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Boolean.html

Chapter 3 Expression Editor Tool Reference Descriptions
Date
Currency tab Syntax Button
The C[???] button is for entering the currency of your choice with the “???” to be replaced by the ISO
4217 code for that currency.

For Example:

C[USD]// US Dollar currency
C[CAD]// Canadian Dollar currency
C[EUR]// Euro currency

Currency Literals
The currency literal is always of type Currency.

CurrencyLiteral:
CurrencyDeclarator [CurrencyDesignator]

CurrencyDeclarator: one of
c C

CurrencyDesignator:
CurrencyLetter CurrencyLetter CurrencyLetter

CurrencyLetter:
any from A to Z

The ISO 4217 standard requires the CurrencyDesignator to be defined as the upper-case three-letter
code in ISO 4217.

Each currency literal is a reference to an instance of class com.cisco.util.Currency.

Date
Use the Date tab to enter or modify dates in an expression. Date is a friendly data type that corresponds
to the java.util.Date class.

The Expression Editor formats the date and time according to the default locale.

This topic includes the following:

• About Dates, page 3-39

• Date Specification on the Web, page 3-40

• Example Date Code, page 3-40

• Date Variables, page 3-41

• Date Constructors and Methods, page 3-42

• Date tab Syntax Buttons, page 3-42

• Date Literals, page 3-43

About Dates
The Date class represents a specific instant in time with millisecond precision. For examples of how to
enter a date, see Example Date Code, page 3-40 and Date tab Syntax Buttons, page 3-42.
3-39
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Date
Date Specification on the Web
For the Sun Java specification on dates, see http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html.

Example Date Code

Figure 3-13 Example Simple Expression Using a Date
3-40
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html.

Chapter 3 Expression Editor Tool Reference Descriptions
Date
Figure 3-14 Example Complex Expression Using a Date and a Script Variable

The following sections describe the options on the Date tab:

• Date Variables, page 3-41

• Date Constructors and Methods, page 3-42

• Date tab Syntax Buttons, page 3-42

Date Variables
The Date Variables selection box lists all the date variables contained in the currently opened script. Use
this selection box to paste an already defined date variable into an expression.

The Date variable includes date information. The default value of the Date variable is the current date at
the time of interpretation.
3-41
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Date
Date Constructors and Methods
Use the appropriate selection box to add a date constructor or method to your expression.

The available public methods and attributes include both static and non static ones.

For descriptions the public Java Date constructors and methods available in the selection boxes, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html.

Date tab Syntax Buttons
The Date tab syntax buttons indicate all the ways you can add or use a Date in an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.

Note The Date syntax specified by the Date tab syntax buttons is specific to Cisco Unified CCX.

Table 3-9 Date Syntax Button Descriptions

Syntax Button Description

D[???] Enters the date. You can specify a date in many different formats. See Date
Literals, page 3-43 for the different formats you can use.

Examples:

D[12/13/52]
D[Dec 13, 1952]
D[Thu, July 4, 2002]
D[July 5, 2002]
D[July 7, 2002]
D[7/6/02]
D[Thu, July 4, 2002 5:59 PM]
D[July 5, 2002 5:59 PM]
D[July 7, 2002 5:59 PM]
D[7/6/02 5:59 PM]
D[Thu, July 4, 2002 12:23:59 AM]
D[July 5, 2002 12:23:59 AM]
D[July 7, 2002 12:23:59 AM]
D[7/6/02 12:23:59 AM]
D[Thu, July 4, 2002 12:23:59 AM CST]
D[July 5, 2002 12:23:59 AM CST]
D[July 7, 2002 12:23:59 AM CST]
D[7/6/02 12:23:59 AM CST]

D[now] Returns the current date and time at run-time. This is the date and time when the
expression is evaluated and not when the expression is entered in the Cisco
Unified CCX Editor.

Returns the current date in the format Month Day, Year HH:MM:SS AM|PM. For
example: D[July 5, 2005 3:34:42 PM].

?.year1 Returns the current year of the date object as an int number.
For example: 2005

?.month1 Returns a number representing the month that contains or begins with the instant
in time represented by this Date object. The value returned is between 1 and 12,
with the value 1 representing January.
3-42
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html.

Chapter 3 Expression Editor Tool Reference Descriptions
Date
Date Literals
The date literal is always of type Date. The following are the different syntax formats you can use to
enter a date.

DateLiteral:
DateDeclarator [n o w]
DateDeclarator [DateDesignator TimeDesignatoropt]

DateDeclarator [DateDesignator TimeDesignatoropt]

DateDeclarator: one of
d D

DateDesignator:
FullDatePattern:

?.woy1 Returns the week of the year of the date object. The range is 1 - 52.

?.wom1 Returns the week of the month of the date object. The range is 1 - 5.

?.date1 Returns the current date of the date object. This date is the same as that specified
by the .dom syntax.

?.dom1 Returns the day of the month represented by this Date object. The value returned
is between 1 and 31 representing the day of the month that contains or begins with
the instant in time represented by this Date object, as interpreted in the local time
zone.

?.doy1 Returns the day of a date in a year as a number. The range is from 1 to 366.

?.dow1 Returns the day of the week represented by this date. The returned value (1 =
Sunday, 2 = Monday, 3 = Tuesday, 4 = Wednesday, 5 = Thursday, 6 = Friday, 7 =
Saturday) represents the day of the week that contains or begins with the instant
in time represented by this Date object, as interpreted in the local time zone.

?.ampm1 Returns an int number of the date object; AM=0, PM=1

?.hour1 Returns the hour represented by this Date object. The returned value is a number
(0 through 12) representing the hour within the day that contains or begins with
the instant in time represented by this Date object, as interpreted in the local time
zone.

?.hod1 Returns the hour represented by this Date object. The returned value is a number
(0 through 23) representing the hour within the day that contains or begins with
the instant in time represented by this Date object, as interpreted in the local time
zone.

?.min1 Returns the number of minutes past the hour represented by this date, as
interpreted in the local time zone. The value returned is between 0 and 59.

?.sec1 Returns the number of seconds past the minute represented by this date. The value
returned is between 0 and 59.

?.ms1 Returns the number of milliseconds since the second represented by the Date. The
range is 0 to 999.

1. The .year, .month, .woy, .wom, .date, .dom, .doy, .dow, .ampm, .hour, .hod, .min, .sec, and .ms variables do not require the
Java license.

Table 3-9 Date Syntax Button Descriptions (continued)

Syntax Button Description
3-43
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
 Defined by the pattern "EEEE, MMMM d, yyyy"
LongDatePattern:

 Defined by the pattern "MMMM d, yyyy"
MediumDatePattern:

 Defined by the pattern "MMM d, yyyy"
ShortDatePattern:

 Defined by the pattern "M/d/yy"

TimeDesignator:
FullTimePattern:

 Defined by the pattern "h:mm:ss a z"
LongTimePattern:

 Defined by the pattern "h:mm:ss a z"
MediumTimePattern:

 Defined by the pattern "h:mm:ss a"
ShortTimePattern:

 Defined by the pattern "h:mm a"

Example Date Literals:
D[12/13/52]
D[Dec 13, 1952]
D[Thu, July 4, 2002]
D[July 5, 2002]
D[July 7, 2002]
D[7/6/02]
D[Thu, July 4, 2002 5:59 PM]
D[July 5, 2002 5:59 PM]
D[July 7, 2002 5:59 PM]
D[7/6/02 5:59 PM]
D[Thu, July 4, 2002 12:23:59 AM]
D[July 5, 2002 12:23:59 AM]
D[July 7, 2002 12:23:59 AM]
D[7/6/02 12:23:59 AM]
D[Thu, July 4, 2002 12:23:59 AM CST]
D[July 5, 2002 12:23:59 AM CST]
D[July 7, 2002 12:23:59 AM CST]
D[7/6/02 12:23:59 AM CST]
D[now]

Details for the date and time patterns are available in the documentation of the java.text.DateFormat
class. If the string now is used, then the literal corresponds to the current date in the server's default
timezone at the time the literal is evaluated for the first time.

Each date literal is a reference to an instance of class java.util.Date.

Document
Use the Document tab to add documents to an expression. The Document friendly data type corresponds
to the Java com.cisco.doc.Document class.

This topic includes the following:

• About Expression Language Documents, page 3-45

• Example Expression Using a Document, page 3-45

• Document Variables, page 3-45

• Browse Documents Dialog Box, page 3-46

• Document tab Syntax Buttons, page 3-46

• Document Literals, page 3-48
3-44
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
• Time of Week, Day of Week, and Time of Day Documents, page 3-52

See also Document Conversions, page 1-32.

About Expression Language Documents
In the Cisco Unified CCX Expression Language, instances of class Document represent documents
located somewhere that can be accessed for various reasons. A Document object has a constant
(unchanging) value. Complex document literals are references to instances of class Document.

A Document object can be an HTML or XML document, or a file, or a user or system document, and so
on. For a list of all valid Document objects, see Document Literals, page 3-48.

Example Expression Using a Document

The following sections describe the options you can use in the Expression Editor Document tab:

• Document Variables, page 3-45

• Browse Documents Dialog Box, page 3-46

• Document tab Syntax Buttons, page 3-46

Document Variables
The Document Variable selection box lists all the document variables contained in the currently opened
script. Use the Document Variables selection box to paste a document variable into an expression.

A Document variable can be of any type of document, such as a file, a URL, or a recording. The default
value of a Document variable is the empty document, that is, DOC[]
3-45
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
Browse Documents Dialog Box
Use the Browse Documents selection box to add a Document from disk or from the Document repository
to your script expression.

Document tab Syntax Buttons
The Document tab syntax buttons indicate all the ways you can add a Document object to an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values. For operations you can perform on
documents, see Operators Used with Prompts and Documents, page 1-8.

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

Table 3-10 Document Syntax Button Descriptions

Syntax
Button

Document Type
or Operation Description

DOC[?] user-defined
literal

A user-defined document in the document repository. See User
Document Literals, page 3-51.

For example:
DOC[AA\schedule.doc]
DOC[rootTemplateDir + "templateA.txt"]

DOC[?,?] A user-defined document in the document repository with associated
contact (additional arguments, more then one is allowed). The
additional argument(s) is passed into the document template (if one or
more are referenced) as initial arguments for evaluation by the
document template. See User Document Literals, page 3-51.

For example:
DOC["vxml\application1.vxml", mainCall]
3-46
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

Chapter 3 Expression Editor Tool Reference Descriptions
Document
URL[?] URL document
literal

See URL Document Literals, page 3-49.

For example:
URL[http://www.cisco.com/index.html]
URL[http://evbuweb/mydoc.asp?number=23]

URL[?,?] A URL document with output document and time out. See User
Document Literals, page 3-51.

For example:
URL[http://www.cisco.com/index.html,2000L]

The first operand is the URL as in the preceding example and the
second operand is either an output document to be sent to the
referenced URL as a post or a time out. The time out is used only in the
case of HTTP URLs as defined in the CreateURLDoc step and is in
milliseconds.

URL[?,?,?] A URL document with output document and time out. See User
Document Literals, page 3-51.

For example:
URL[http://www.cisco.com/index.html, MyDoc, 2000L]

The first operand is the URL, the second is the output document to be
sent to the referenced URL, and the third operand is the time out. The
time out is used only in the case of HTTP URLs as defined in the
CreateURLDoc step and is in milliseconds.

FILE[?] file document
literal

See File Document Literals, page 3-50.

For example:
FILE[C:\Documents\mydoc.txt]

TEXT[?] text document
literal

See Text Document Literals, page 3-50.

For example:
TEXT[Some text to be stored in a document]

BIN[?] binary
document
literal

See Binary Document Literal, page 3-49.

For example:
BIN[cafebabe34f3edca56b8001cdef]
BIN[myArrayOfBytes]

? + ? Concatenation
operation

Concatenates characters, strings, or documents. See Additive
Operators, page 1-9 and Document Concatenation Operator +,
page 3-51.

For example:
DOC[rootTemplateDir + "templateA.txt"]

Table 3-10 Document Syntax Button Descriptions (continued)

Syntax
Button

Document Type
or Operation Description
3-47
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
Document Literals
The document literal is always of type Document.

? || ? document
escalation
operation

The document escalation operator enables you to add document options
to an expression depending on the time of the week, the day of the
week, and the time of day.

See Escalation Operator ||, page 1-11. See also Time of Week
Document, page 3-52, Day of Week Document, page 3-53, or Time of
Day Document, page 3-53.

For example:
DOC[D1.txt] @ MON @ T[10:59 AM]
|| DOC[D2.txt] @ TUE @ T[11:58 PM]
|| DOC[] @ MON @ T[1:00 PM]

? @ ? document
qualification
operation

The document qualification operator @ qualifies how a document is to
be run. This operator expects a qualifying expression of the following
type:

• Language. Represents a language qualification and is used to
temporary override the language associated with a given
document. The expression must be of type Language. Qualifying a
document more then once with a language results in only the last
one to be kept as the overridden language for the document.

• DayOfWeekLiteral. Represents a day of week qualification and is
used to specify the starting day of a possible range when the
document is to be used in a day of week document or time of week
document expression.

For example, the expression “DOC[D1.txt] @ MON” specifies that
document D1.txt can be accessed on Monday:

• Number. Represents the starting day of the week where its value
must evaluate to 1 for Sunday, 2 for Monday, and so on to 7 for
Saturday.

• Time. Represents time qualification and is used to specify the
starting time of a possible range when the document is to be used
in a time of day document or time of week expression.

For example, the expression “DOC[D1.txt] @ MON @ T[10:59
AM]” specifies that document D1.txt can be accessed on Monday
from 10.59 AM:

See also Time of Week, Day of Week, and Time of Day Documents,
page 3-52.

(String)? cast conversion Converts the specified document to a string. See Document
Conversions, page 1-32.

Table 3-10 Document Syntax Button Descriptions (continued)

Syntax
Button

Document Type
or Operation Description
3-48
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
DocumentLiteral:
BinaryDocumentLiteral
URLDocumentLiteral
FileDocumentLiteral
TextDocumentLiteral
UserDocumentLiteral

Each document literal is a reference to an instance of a class that implements the interface
com.cisco.doc.Document.

This section describes the following document literals:

• Binary Document Literal, page 3-49

• URL Document Literals, page 3-49

• File Document Literals, page 3-50

• Text Document Literals, page 3-50

• User Document Literals, page 3-51

Binary Document Literal

The binary document literal is always of type Document.

BinaryDocumentLiteral:
BinaryDocumentDeclarator [ComplexLiteralInputChars]
BinaryDocumentDeclarator [Expression]

BinaryDocumentDeclarator:
any case for BIN

Binary document literals are used to represent a document located in memory using a hexadecimal text
representation of the binary data.

The ComplexLiteralInputChars can include the [character as long as it has a balanced number of]
characters; one for every [character found.

If the sequence of characters can be parsed to an Expression of type (byte[]), then the resulting document
is a binary document where the expression specifies the content of the document.

If the sequence of characters cannot be parsed properly as described above, then it is considered to be
whole binary content of the document represented in hexadecimal form where each hexadecimal
character represents one nibble of data.

Example Binary Document Literals:
BIN[cafebabe34f3edca56b8001cdef]
BIN[myArrayOfBytes]

URL Document Literals

The URL document literal is always of type Document.

URLDocumentLiteral:
URLDocumentDeclarator [ComplexLiteralInputChars]
URLDocumentDeclarator [Expression]
URLDocumentDeclarator [Expression, Expression]

URLDocumentDeclarator:
any case for URL

URL document literals are used to represent a document using a URL scheme.

The ComplexLiteralInputChars can include the [character as long as it has a balanced number of]
characters: one for every [character found:
3-49
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
• If the sequence of characters can be parsed as an Expression of type String or java.net.URL, then
the resulting document is a URL document where the expression specifies the URL from where to
retrieve the document.

• If the sequence of characters can be parsed as two Expressions where the first one must have type
String or java.net.URL and the second one must have type Document, then the resulting document
is a URL document where the first argument specifies the URL of the document and the second one
represents a document that is sent to the destination specified by the URL. This, for example, can
be used to upload documents to a web server.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the URL from where to retrieve the document.

Example URL Document Literals:
URL[http://localhost/index.html]
URL[ftp://12.12.12.12:8080/schedule.doc]
URL["http://www.cisco.com/index.html"]
URL[new java.net.URL("http", "www.cisco.com", "index.html")]
URL[myURI + "index.html", DOC[docs\fax.txt]]

File Document Literals

The file document literal is always of type Document.

FileDocumentLiteral:
 FileDocumentDeclarator [ComplexLiteralInputChars]

FileDocumentDeclarator [Expression]
FileDocumentDeclarator:

any case for FILE

File document literals are used to represent a document located on the local disk:

• If the sequence of characters can be parsed as an expression of type String or java.io.File, then the
resulting document is a file document where the expression specifies the filename where to retrieve
the document from.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the filename where to retrieve the document from.

Example File document Literals:
FILE[C:\\Program Files\wfavvid\lib\CiscoUtil.jar]
FILE[schedule.doc]
FILE[root + u"\\help.txt"]
FILE[new File(rootDirectory, "template.txt")]

Text Document Literals

The text document literal is always of type Document.

TextDocumentLiteral:
TextDocumentDeclarator [ComplexLiteralInputChars]
TextDocumentDeclarator [Expression]

TextDocumentDeclarator:
any case for TEXT

Text document literals are used to represent a document located in memory using a text string:

• If the sequence of characters can be parsed as an expression of type String, then the resulting
document is a text document where the expression specifies the content of the document.
3-50
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the whole content of the document.

Example Text Document Literals:
TEXT[This is a simple text document.]
TEXT[This is another simple text document.]
TEXT[myStringVar + u"\nAdding more information."]

User Document Literals

The user document literal is always of type Document.

UserDocumentLiteral:
UserDocumentDeclarator [ComplexLiteralInputCharsopt]
UserDocumentDeclarator [Expression]
UserDocumentDeclarator [Expression, Expression]

UserDocumentDeclarator:
any case for DOC

User document literals are used to represent a document located in the document repository and
manageable through the document management pages which are part of the Cisco Unified CCX
Application Administrator Web page.

• If the sequence of characters can be parsed as an expression of type String, then the resulting
document is a user document where the expression specifies the name of the document to retrieve
the document from the repository.

• If the sequence of characters can be parsed as two expressions where the first one must have type
String and the second one must have type Contact, then the resulting document is a user document
where the first argument specifies the name of the document to retrieve from the repository and the
second one represents a contact which can be associated with the document to allow proper
resolution of the document in the repository using the language context associated with the specified
contact.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the name of the user document to retrieve from the repository.

Example User Document Literals:
DOC[AA\schedule.doc]
DOC["vxml\application1.vxml", mainCall]
DOC[rootTemplateDir + "templateA.txt"]

Note The special case of DOC[] represents an empty document.

Document Concatenation Operator +
If both operand expressions are of type Document or a java.io.InputStream or a java.io.Reader, then the
result is a reference to a newly created Document object that is the concatenation of the two operand
documents. The content of the left-hand operand precedes the content of the right-hand operand in the
newly created document. The concatenation is low-level and makes no assumptions as to the content of
both documents. The resulting content type is reported the same as the first document that defines a
content type.
3-51
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
Document Qualifier Operator
Document qualifier operator results in an expression of the Document type.

QualifiedDocumentExpression:
DocumentExpression
QualifiedDocumentExpression @ Expression

See Prompt Templates, page 3-106 for examples of prompt expressions.

Document Qualifier Operator @

The document qualifier @ expects a qualifying expression of the following type:

• Language

• DayOfWeekLiteral

• Number

• Time

The first qualifier represents a language qualification and is used to temporarily override the language
associated with a given document. The expression must be of type Language. Qualifying a document
more then once with a language results in only the last one to be kept as the overridden language for the
document.

The second qualifier represents a day of week qualification and is used to specify the starting day of a
possible range when the document is to be used in a day of week document or time of week document
expression. The starting day can also be specified using a Number type as seen in the third option where
its value must evaluate to 1 for Sunday, 2 for Monday … or 7 for Saturday.

The last qualifier represents time qualification and is used to specify the starting time of a possible range
when the document is to be used in a time of day document or time of week expression.

Time of Week, Day of Week, and Time of Day Documents
The following are the Document specifications:

• Time of Week Document, page 3-52

• Day of Week Document, page 3-53

• Time of Day Document, page 3-53

Time of Week Document

A time of week document contains multiple documents, each qualified with a particular time of the day
and day of the week. When accessed, a time of week document evaluates the current time of the week
and accesses a single document from its list. The document selected is based on a time range starting at
the day and time specified until the day and time specified by the subsequent document in time or until
the end of the week, if this is the last document. The week starts on Sunday morning.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified day of week or time of
day used when qualifying each one of the document operands.
3-52
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Document
For example, the document expression:

DOC[D1.txt] @ MON @ T[10:59 AM]
 || DOC[D2.txt] @ TUE @ T[11:58 PM]
 || DOC[] @ MON @ T[1:00 PM]

means:

• From Sunday morning to Monday 10:58:59 AM nothing can be accessed.

• From Monday 10:59:00 AM to Monday 12:59:59 PM, DOC[D1.txt] can be accessed.
(DOC[D1.txt] @ MON @ T[10:59 AM])

• From Monday 1:00:00 PM to Tuesday 11:57:00PM, nothing can be accessed.
(|| DOC[] @ MON @ T[1:00 PM]) and (|| DOC[D2.txt] @ TUE @ T[11:58 PM])

• From Tuesday 11:58:00PM until the end of the week, DOC[D2.txt] can be played back.
(|| DOC[D2.txt] @ TUE @ T[11:58 PM])

Day of Week Document

A day of week document contains multiple documents each qualified with a particular day of the week.
When accessed, a day of week document evaluates the current day of the week and accesses a single
prompt from its list. The document selected is based on a day range starting at the day specified until the
day specified by the subsequent document in time or until the end of the week if this is the last document.
The week starts on Sunday.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified day of week used when
qualifying each one of the document operands.

The 3-letter abbreviations for the day of the week variable to be pasted into the expression are: MON,
TUE, WED, THU, FRI, SAT, SUN.

For example, the document expression:

DOC[D1.txt] @ MON || DOC[D2.txt] @ TUE || DOC[] @ THU

means:

• On Sunday nothing can be accessed.

• On Monday, DOC[D1.txt]can be accessed.
(DOC[D1.txt] @ MON)

• On Tuesday and Wednesday, DOC[D2.txt] can be accessed.
(DOC[D2.txt] @ TUE)

• The rest of the week nothing can be accessed.
(DOC[] @ THU)

Time of Day Document

A time of day document contains multiple documents, each qualified with a particular time of the day.
When accessed, a time of day document evaluates the current time of the day and accesses a single
document from its list. The document selected is based on a time range starting at the time specified until
the time specified by the subsequent document in time range or until the end of the day if this is the last
document.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified time of day used when
qualifying each one of the document operands.
3-53
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Double
For example, the document expression:

DOC[D1.txt] @ T[10:59 AM] || DOC[D2.txt] @ T[11:58 PM] || DOC[] @ T[1:00 PM]

means:

• From the beginning of the day until 10:58:59 AM nothing can be accessed.

• From 10:59:00 AM until 12:59:59 PM, DOC[D1.txt]can be accessed.
(DOC[D1.txt] @ T[10:59 AM] || DOC[D2.txt] @ T[11:58 PM])

• From 1:00:00 PM until 11:57:00 PM, nothing can be accessed.
(|| DOC[] @ T[1:00 PM]) and (|| DOC[D2.txt] @ T[11:58 PM])

• From 11:58:00 PM until the end of the day, DOC[D2.txt] can be accessed.
(|| DOC[D2.txt] @ T[11:58 PM])

Double
Use the Double tab to enter or modify double data in an expression. Double is a friendly data type
corresponding to the fully qualified java.lang.Double class.

Note In the Expression Language, double and Double can be used interchangeably as opposed to Java where
double represents a primitive data type and Double represents an object.

This topic includes the following:

• About Doubles, page 3-54

• Double Specification on the Web, page 3-54

• Example Double Code, page 3-55

• Double Variables, page 3-56

• Double Constructors, Methods, and Attributes, page 3-56

• Double tab Syntax Buttons, page 3-56

• Floating-Point Literals, page 3-61

About Doubles
There are three kinds of floating-point numbers (numbers containing a decimal point): floats, doubles,
and BigDecimals. Each can be positive or negative. For a description of floats, see Float, page 3-57. For
a description of BigDecimals, see BigDecimal, page 3-13.

A double is a 64-bit floating-point primitive number. A double takes up 8 bytes and has 18 places of
precision. Doubles are the default floating-point number type. So when you enter a number with a
decimal point, the Expression Language treats it as a double.

Double Specification on the Web
For the Sun Java specification on doubles, see
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Double.html.
3-54
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Double.html

Chapter 3 Expression Editor Tool Reference Descriptions
Double
Example Double Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.

Figure 3-15 A Simple Expression Using a Double and Two Script Variables

Figure 3-16 A Complex Expression Using a Double and Two Script Variables

The following sections describe the options on the Double tab:

• Double Variables, page 3-56
3-55
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Double
• Double Constructors, Methods, and Attributes, page 3-56

• Double tab Syntax Buttons, page 3-56

Double Variables
The Double Variables selection box lists all the double variables contained in the currently opened script.
Use this selection box to paste an already defined double variable into an expression.

The double variable represents an expanded float variable. Its values include the 64-bit IEEE 754
floating-point numbers.

The default value of a double variable is positive zero, that is, 0.0d.

Double Constructors, Methods, and Attributes
Use the appropriate selection box to add a Double constructor, method, or attribute to your expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java Double constructors, methods, and attributes available in the selection
boxes, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Double.html

Double tab Syntax Buttons
The Double tab syntax buttons indicate all the ways you can add or use a double in an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values.

Table 3-11 Double Syntax Descriptions

Syntax Button Name Type Description

?D literal Enters an object of type double.

For example:
3.14159D
2E-12D
-100D

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand divided
by the second.
3-56
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Double.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html.

Chapter 3 Expression Editor Tool Reference Descriptions
Float
See the following for a summary descriptive list of all the operators you can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Float
Use the Float tab to enter or modify Float data in an expression. Float is a friendly data type
corresponding to the fully qualified java.math.Float class.

Note In the Expression Language, float and Float can be used interchangeably as opposed to Java where float
represents a primitive data type and Float represents an object.

This topic includes the following:

• About Floats, page 3-58

• Float Specification on the Web, page 3-58

• Example Float Code, page 3-58

• Float Variables, page 3-59

• Float Constructors, Methods, and Attributes, page 3-59

• Float tab Syntax Buttons, page 3-60

• Floating-Point Literals, page 3-61

? *= ? multiply and
assign

assignment

The operand
on the left of
the
assignment
statement
(the first
operand) can
be any type
of variable,
including an
array
component
or a public
class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second and assigns
the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second operand and
assigns the remainder to the first operand.

? += ? add and assign Adds the first operand to the second operand and
assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first operand
and assigns the result to the first operand.

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

Table 3-11 Double Syntax Descriptions (continued)

Syntax Button Name Type Description
3-57
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Float
About Floats
There are three types of floating-point numbers (numbers containing a decimal point): floats, doubles,
and BigDecimals. Each can be positive or negative. For a description of doubles, see Double, page 3-54.
For descriptions of BigDecimals, see BigDecimal, page 3-13.

A java.lang.Float is a 2-bit floating-point primitive number, takes up 4 bytes, and has 9 places of
precision.

Float Specification on the Web
For the Sun Java specification on floats, see
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Float.html.

Example Float Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.

Figure 3-17 A Simple Expression Using a Float and Two Script Variables
3-58
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Float.html

Chapter 3 Expression Editor Tool Reference Descriptions
Float
Figure 3-18 A Complex Expression Using a Float and Two Script Variables

The following sections describe the options on the Expression Editor Float tab:

• Float Variables, page 3-59

• Float Constructors, Methods, and Attributes, page 3-59

• Float tab Syntax Buttons, page 3-60

Float Variables
The Float Variable selection box lists all the float variables contained in the currently opened script. Use
this to add a predefined float variable to your expression.

A float variable holds the value of a float. Its values include 32-bit IEEE 754 floating-point decimal
numbers. A Decimal number larger than this is called a Double, page 3-54 or a BigDecimal, page 3-13.
The default value of a float variable is positive zero, that is, 0.0f.

Float Constructors, Methods, and Attributes
Use the appropriate selection box to add a float item to your expression.

The available public methods and attributes include both static and non static ones.
3-59
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Float
For descriptions of the public Java float constructors, methods, and attributes available in the selection
boxes, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Float.html.

Float tab Syntax Buttons
The Float tab syntax buttons indicate all the ways you can add or use a float in an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.

See the following for a summary descriptive list of all the operators you can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Table 3-12 Float Syntax Descriptions

Syntax Button Name Type Description

?F literal Enters an object of type float. See Floating-Point
Literals, page 3-61.

For example: 3.14159F

? + ? addition arithmetic Adds two operands.

For example: 2E+12F

? - ? subtraction Subtracts the second operand from the first.

For example: 2E-12F

? * ? multiplicatio
n

Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand divided
by the second.

? *= ? multiply and
assign

assignment

The operand on
the left of the
assignment
statement (the first
operand) can be
any type of
variable, including
an array
component or a
public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and
assign

Divides the first operand by the second and
assigns the result to the first operand.

? %= ? remainder
and assign

Divides the first operand by the second operand
and assigns the remainder to the first operand.

? += ? add and
assign

Adds the first operand to the second operand and
assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first
operand and assigns the result to the first operand.

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

For example: -100F
3-60
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Float.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Float
Floating-Point Literals
A floating-point literal has the following parts: a whole-number part, a decimal point (represented by an
ASCII period character), a fractional part, an exponent, and a type suffix. The exponent, if present, is
indicated by the ASCII letter e or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and either a decimal point, an
exponent, or a float type suffix are required. All other parts are optional.

A floating-point literal is of type float if it is suffixed with an ASCII letter F or f, of type double if it is
suffixed with an ASCII letter D or d; otherwise its type is BigDecimal and must be suffixed with the
ASCII letters FB or fb.

FloatingPointLiteral:
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
. Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt
Digits ExponentPartopt FloatTypeSuffix

ExponentPart:
ExponentIndicator SignedInteger

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f F d D fb FB

The elements of the types float and double are those values that can be represented using the IEEE 754
32-bit single-precision and 64-bit double-precision binary floating-point formats, respectively.

The details of proper input conversion from an ASCII string representation of a floating-point number
to the internal IEEE 754 binary floating-point representation are described for the methods valueOf of
class Float and class Double of the package java.lang.

The largest positive finite float literal is 3.40282347e+38f. The smallest positive finite nonzero literal of
type float is 1.40239846e-45f. The largest positive finite double literal is 1.79769313486231570e+308.
The smallest positive finite nonzero literal of type double is 4.94065645841246544e-324.

If a nonzero floating-point literal of type float is too large or too small, the value is then represented as
a floating-point literal of type double.

If a nonzero floating-point literal of type double is too large, the value is then represented as a
floating-point literal of type BigDecimal.

Predefined constants representing Not-a-Number values are defined in the classes Float and Double as
Float.NaN and Double.NaN.

Examples of float literals:
1e1f 2.f.3f 0f 3.14f 6.022137e+23f

Examples of double literals:
1e1d2.D .3d 0.0D3.14D 1e-9d 1e137

Examples of BigDecimal literals:
1e1fb2.FB.3fb0.0FB3.14FB1e-9dfb 1e133334217
3-61
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
There is no provision for expressing floating-point literals in other than decimal radix. However, method
intBitsToFloat of class Float and method longBitsToDouble of class Double provide a way to express
floating-point values in terms of hexadecimal or octal Integer literals.

For example, the value of:

Double.longBitsToDouble(0x400921FB54442D18L)

is equal to the value of Math.PI.

Each float, double, and Double literal is a reference to an instance of class Float, Double and BigDecimal
respectively. These objects have a constant value. The Float and Double objects can be used
interchangeably with their counter part Java primitive data types when calling methods that expect the
primitive types or when accessing Java attributes declared using the Java primitive data type.

Grammar
Use the Grammar tab to add or modify grammars in an expression.

The Grammar friendly data type corresponds to the Java com.cisco.grammar.Recognizable class.

This topic includes the following:

• About Grammars, page 3-62

• Grammar Specifications on the Web, page 3-62

• Example Grammar Code, page 3-63

• Grammar Variables, page 3-63

• Browse Grammars Dialog Box, page 3-64

• Grammar tab Syntax Buttons, page 3-64

• Grammar Literals, page 3-65

• Compound Grammar, page 3-68

• Compound Grammar Indexing, page 3-69

• Grammar Template File Types and Template Enhancements, page 3-69

About Grammars
A grammar is a set of rules that define the structure or syntax of a language. A grammar can be used
either to parse a sentence or to generate one. Grammars are used in Cisco Unified CCX scripts for
automatic speech recognition (ASR) and touch tone (DTMF-based) interactions with a caller.

Grammar Specifications on the Web
For information on the grammar specifications Cisco Unified CCX scripts use, see the following:

• The Speech Recognition Grammar Specification (SRGS) Version 1.0 at
http://www.w3.org/TR/speech-grammar/ defines a standard syntax for representing grammars for
use in speech recognition so that developers can specify the words and patterns of words to be
listened for by a speech recognizer.
3-62
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://www.w3.org/TR/speech-grammar/

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
• The Cisco Regular Expression (Regex) Grammar Specification at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/refgde1.htm#
1050172 defines the Cisco dual tone multiple frequency (DTMF) grammar that you can use with
VoiceXML.

Example Grammar Code
The following example grammar recognizes any of the following spoken phrases:

• "music"

• "weather"

• "sports"

• "traffic"

• "traffic reports"

The following sections describe the options on the Grammar tab:

• Grammar Variables, page 3-63

• Browse Grammars Dialog Box, page 3-64

• Grammar tab Syntax Buttons, page 3-64

Grammar Variables
The Grammar Variable selection box contains all the grammar variables contained in the currently
opened script. Use this selection box to paste a grammar variable into an expression.
3-63
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/refgde1.htm#1050172
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/refgde1.htm#1050172

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
The grammar variable represents different options that can be selected by a caller using a Media input
step (such as the Menu step). A grammar variable can represent grammars uploaded to the grammar
repository or created using some of the existing steps.

The default value of a Grammar variable is the empty grammar, that is, G[].

Browse Grammars Dialog Box
Use the Browse Grammars selection box to browse grammars created on disk or in the Grammar
respository. You can then add a selected grammar from this selection box to your script.

Grammar tab Syntax Buttons
The Grammar tab syntax buttons indicate all the ways you can add a Grammar object to an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values.

Table 3-13 Grammar Syntax Button Descriptions

Syntax
Button Description

G[?] Grammar object. See Grammar Literals, page 3-65 and User Grammar Literals,
page 3-66.

Examples:
G[DigitGrammar]
G[MyGrammar.gsl]

G[?,?] Grammar and argument(s). See Grammar Literals, page 3-65 and User Grammar Literals,
page 3-66.

The first argument must be of type string and specifies the name of the grammar to
retrieve from the user or system repository.

The second argument (or argument list) corresponds to the expected parameterized
arguments of a complex expression block defined in a grammar template file.

Examples:
G[SRGSGrammar,SRGS]
G[“myGrammar.tgl”, “dtmf-2”, tagValue]

DG[?] DTMF Grammar. See Digit Grammar Literals, page 3-66

Example:
DG[<grammar xml:lang="en-US" root = "pin" mode="dtmf"
xmlns="http://www.w3.org/2001/06/grammar">]

XG[?] XML Grammar (SRGS). See SRGS Grammar Literals, page 3-68.

Example:
XG[<?xml version="1.0"?><grammar version="1.0"
xmlns=http://www.w3.org/2001/06/grammar></grammar>]
3-64
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
Grammar Literals
The grammar literal is always of type Grammar.

GrammarLiteral:
 DigitGrammar
 GSLGrammar (deprecated)

SRGSGrammar
 UserGrammar

Each grammar literal is a reference to an instance of a class that implements the interface
com.cisco.grammar.Recognizable.

Example Grammar Literals:
G[], SG[]—An empty grammar. (No value gets recognized.)
G[grammar.grxml]—A user-defined grammar located in the Grammars repository.

The topic describes the following grammar literals:

• User Grammar Literals, page 3-66

• Digit Grammar Literals, page 3-66

• GSL Grammar Literals, page 3-67

• SRGS Grammar Literals, page 3-68

Each grammar literal is a reference to an instance of a class that implements the interface
com.cisco.grammar.Recognizable.

Note The GSLGrammar is deprecated. That means that, although it can be used, it is restricted. This type of
grammar is automatically converted to the SRGSGrammar (Speech Recognition Grammar) format. You
must use the SRGSGrammar rather then the GSLGrammar.

GG[?] GSL Grammar. See GSL Grammar Literals, page 3-67

Example:
GG[[[yes digit-1] {tag yes} [no digit-2] u{tag no}]]

Note Depreciated. GSL grammars are no longer supported.

?||? Compound Grammar. The compound grammar operator || combines multiple grammars
together. See Compound Grammar, page 3-68.

Example:
G[grammar1.digit] || G[grammar2.grxml]

?[?] Indexing a compound grammar. The index is 0 based. See Compound Grammar Indexing,
page 3-69.

Example:
Grammar[5]

Table 3-13 Grammar Syntax Button Descriptions (continued)

Syntax
Button Description
3-65
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
User Grammar Literals

The user grammar literal is always of type Grammar.

UserGrammar:
UserGrammarDeclarator [ComplexLiteralInputCharsopt]
UserGrammarDeclarator [Expression]
UserGrammarDeclarator [Expression, ArgumentList]

UserGrammarDeclarator: one of
g G

User grammar literals are used to represent a grammar located in the grammar repository and
manageable through the grammar management pages which are part of the Cisco Unified CCX
Application Administrator web page. The ComplexLiteralInputChars can include the [character as long
as it has a balanced number of] characters: one for every [character found:

• If the sequence of characters can be parsed as an Expression of type String, then the resulting
grammar is a user grammar where the expression specifies the name of the grammar to retrieve the
grammar from the repository.

• If the sequence of characters can be parsed as an Expression and an ArgumentList where the first
one must have type String, then the resulting grammar is a user grammar where the first argument
specifies the name of the grammar to retrieve from the repository and the argument list must
correspond to the expected parameterized arguments of a complex expression block defined in a
grammar template file.

The arguments are ignored if the referenced grammar is not a grammar template. If it is one, then
each specified argument is evaluated and assigned as the value of a defined argument to the
expression block. If the types does not match, then a runtime exception is thrown back. No errors
are generated if more arguments are supplied then expected; they are ignored. No errors are
generated if fewer arguments are supplied then expected unless the given argument is accessed by
the complex expression block and it is not defined with a default value.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the name of the user grammar to retrieve from the repository.

Example User Grammar Literals:
G[myGrammar.gsl]
G[global]
G["myGrammar.tgl", "dtmf-2", tagValue]

The extension of the grammar file can be omitted in which case the search attempts all supported
extensions (<.grxml>, <.gsl>, <.digit>, <.tgl>) with the search starting based on the type of media
supported by the call (that is, if MRCP ASR is supported, the search starts with <.grxml>, if MRCP,
then .grxml, .tgl, .gsl, .digit; otherwise (for CMT), .digit, .tgl, .grxml, .gsl, otherwise, it starts with
<.digit>) and then continues with the other extensions based on the order specified above.

Note The special case of G[] represents an empty grammar.

Digit Grammar Literals

The digit grammar literal is always of type Grammar.

DigitGrammar:
DigitGrammarDeclarator [ComplexLiteralInputChars]
DigitGrammarDeclarator [Expression]

DigitGrammarDeclarator:
any case of DG
3-66
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
Digit grammar literals are used to represent a grammar that contains solely digits to be recognized. Its
format is similar to the Digit File Grammar format where each entry is separate with a | character. Each
entry is defined as key=value or key where the keys are defined as dtmf-x. Where x is from the set
0123456789*#ABCD or be one of star or pound and values would be the corresponding tag to be
returned when key is pressed or recognized. An optional entry defined as word=true can be used to
identify that the word representation of each DTMF digit must be automatically included during a
recognition:

• If the sequence of characters can be parsed as an Expression of type String, java.io.File or
java.util.Properties, then the resulting grammar is a digit grammar where the expression specifies
the inline content of the grammar, the filename where to retrieve the grammar or a properties object
where the keys are expected to be defined as dtmf-x and the values would be the corresponding tag
to be returned when the key is pressed or recognized.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the inline content of the digit grammar.

Example Digit Grammar Literals:
DG[digit-1=yes|digit-2=no]
DG[word=true|digit-star=cancel]
DG["digit-1=" + tag1 + "|digit-2=" + tag2]
DG[new java.io.File(u"C:\\myGrammar.digit")]

GSL Grammar Literals

Note The GSLGrammar is deprecated. That means that, although it can be used, it is restricted. This type of
grammar is automatically converted to the SRGSGrammar (Speech Recognition Grammar) format. You
must use the SRGSGrammar rather then the GSLGrammar.

The Nuance GSL (Grammar Specification Language) grammar literal is always of type Grammar.

GSLGrammar:
GSLGrammarDeclarator ComplexLiteralInputChars]
GSLGrammarDeclarator [Expression]

GSLGrammarDeclarator:
any case of GG

GSL grammar literals are used to represent a grammar that supports, in a limited way, the Nuance
Grammar Specification Language format. Only one expression is supported; no rule set and it must have
a slot named <tag> if used as a main grammar in a recognition.

The ComplexLiteralInputChars can include the [character as long as it has a balanced number of]
characters: one for every [character found:

• If the sequence of characters can be parsed as an Expression of type String or java.io.File, then the
resulting grammar is a GSL grammar where the expression specifies the inline content of the
grammar or the filename where to retrieve the grammar.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the inline content of the GSL grammar.
3-67
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Grammar
Note Unified CCX does not provide support for Nuance GSL grammars. However to remain backward
compatible, the Expression Language still parses and validates these expressions. It is at run time that it
is highly likely that an exception would be thrown if the system is unable to convert the GSL grammar
into a digit or an SRGS grammar. For more details, see the Cisco MRCP (Media Resource Control
Protocol) documentation in the Cisco Unified Contact Center Express Administration Guide.

Example GSL Grammar Literals:
GG[hello world]
GG[(i would like [one two three] hamburgers)]
GG[[yes dtmf-1]]
GG[[no dtmf-2]]
GG[[movies sports weather]]
GG[new java.io.File(u"C:\\myGrammar.gsl")]

SRGS Grammar Literals

The SRGS grammar literal is always of type Grammar.

SRGSGrammar:
SRGSGrammarDeclarator [ComplexLiteralInputChars]
SRGSGrammarDeclarator [Expression]

SRGSGrammarDeclarator:
any case of XG

SRGS grammar literals are used to represent a grammar that supports the Speech Recognition Grammar
format. The grammar must have an ecma variable named tag if used as a main grammar in a recognition.
The ComplexLiteralInputChars can include the [character as long as it has a balanced number of]
characters: one for every [character found:

• If the sequence of characters can be parsed as an Expression of type String, java.io.File,
java.net.URL, or org.w3c.dom.Document then the resulting grammar is a SRGS grammar where the
expression specifies the inline content of the grammar or the filename where to retrieve the grammar.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the inline content of the SRGS grammar.

Compound Grammar
A compound grammar is a grammar that combines multiple grammars together. All grammars combined
together are activated at the same time when a recognition or an acquisition is performed. Priority is
always given to the grammars that comes to the right of another. So if an additional grammar is combined
with a first one and it defines the same choices, it is the one taken precedence in the recognition.
Compound grammars may have some special treatment based on the media choosen. These would be
documented in these respective documents. For CMT media termination, all DTMFs are combined
together to form a single grammar to be used when acquiring DTMF digits from a caller.

For example, the grammar expression:

G[G1] || G[G2] || GG[Hello|dtmf-2]

represents a compound grammar that would activate the grammars G[G1], G[G2] and GG[Hello|dtmf-2]
together with pritority to GG[Hello|dtmf-2] over G[G1]and G[G2], and priority to G[G2] over G[G1].
3-68
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
Compound Grammar Indexing
It is possible to index a compound grammar like an array in order to reference a single grammar
contained in the compound grammar. This is done using the [] operator and is similar to indexing an
array. Whether the compound grammar is represented with the || operator or is a grammar from the
grammar repository that would result into a compound grammar.

If the supplied index is out of bounds, a parse time or an evaluation time
ExpressionArrayIndexOutOfBoundsException may be thrown as a result. If the grammar being indexed
does not represent a compound grammar then an ExpressionClassCastException is thrown.

Compound Grammar Indexing Examples, Each of which Results in a Grammar Expression
G[grammar.tgl][1]
(G[grammar1.digit] || G[grammar2.grxml])[0]
((DG[dtmf-1|word=true] || G[grammar.tgl) || GG[hello|dtmf-3])[0][1]

Grammar Template File Types and Template Enhancements
There are some grammar definition and syntax changes. The Speech Recognition Grammar
Specification (SRGS), the Speech Synthesis Markup Language Specification (SSML) MRCP grammars,
and the Cisco DTMF RegEx specification replace the Nuance Grammar Specification Language (GSL).

There is also added support for a new type of grammar file to the user and system grammars already
available. This new file has the filename extension.tgl and can be referenced in a script just like other
grammar files.

In addition, not related to the expression, there is added support for one new grammar file
extension:.grxml. Files ending with this extension are expected to be text files written as SRGS
(Speech Recognition Grammar Specification) grammars. Since Cisco CRS 3.0, when referencing a user
grammar, the extension of the file was optional and a search among valid extensions was performed to
locate a file in the grammar repository. The search order is:.grxml,.gsl,.digit and .tgl.

When a user grammar with the .tgl extension is located, it is loaded as a text file and parsed, and the
result is a grammar object. The expression specified in the text file does not have access to script
variables. However, if defined using a complex block expression, the block can be parameterized like a
method declaration, allowing for scripts to customize the evaluation of the expression. This is similar in
concept to the prompt template file described in Prompt Templates, page 3-106.

Integer
Use the Integer tab to enter or modify Integer data in an expression. The int friendly data type
corresponds to the java.lang.Integer class.

Note In the Expression Language, int and Integer can be used interchangeably as opposed to Java where int
represents a primitive data type and Integer represents an object.

This topic includes the following:

• About the Integer Class, page 3-70

• Integer Specification on the Web, page 3-70

• Example Integer Code, page 3-70
3-69
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
• Integer Variables, page 3-71

• Integer Constructors, Methods, and Attributes, page 3-71

• Integer Operations, page 3-72

• Integer tab Syntax Buttons, page 3-72

• Integer Literals, page 3-75

About the Integer Class
The Integer defines integral value between -231 to 231-1 . The BigInteger class contains those integers
that are larger.

An Integer literal can be expressed in decimal (base 10) or hexadecimal (base 16). The following are
examples of Integer literals:

0 2i -23 03720xDadaCafe1996I0x00FF00FF

For more information on Integer literals, see Integer Literals, page 3-75.

Integer Specification on the Web
For the Sun Java specification on integers on the Web, see
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Integer.html

Example Integer Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.

Figure 3-19 Example Simple Expression Using an Integer and Script Variables
3-70
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Integer.html

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
Figure 3-20 Example Complex Expression Using Integers and Two Script Variables

The following sections describe the options on the Integer tab:

• Integer Variables, page 3-71

• Integer Constructors, Methods, and Attributes, page 3-71

• Integer Operations, page 3-72

• Integer tab Syntax Buttons, page 3-72

Integer Variables
The Integer Variable selection box lists all the Integer variables contained in the currently opened script.
Use this selection box to paste an already defined Integer variable into an expression.

An Integer variable can hold the value of a whole number from -2147483648 to 2147483647, inclusive.
The default value of an Integer variable is zero, that is, 0.

Integer Constructors, Methods, and Attributes
Use the appropriate selection box to add public Integer Java code to your expression.
3-71
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
The available public methods and attributes include both static and non static ones.

For descriptions of all the public Integer constructors, methods, and attributes available in the selection
boxes, see the Java specification at http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Integer.html.

Integer Operations
The Expression Language provides a number of operators that act on Integers:

• The comparison operators, which result in a value of type Boolean:

– Numerical Comparison Operators (<, <=, >, and >=)

– Numeric Equality Operators (== and !=)

• The numerical operators, which result in a value of type int or long or BigInteger:

– Unary Plus Operator (+) and Unary Minus Operator (-)

– Multiplicative Operators (*, /, and %)

– Additive Operators (+ and -) for Numeric Types

– Prefix Increment Operator (++) and Postfix Increment Operator (++)

– Prefix Decrement Operator (--) and Postfix Decrement Operator (-)

– Shift Operators (<<, >>, and >>>)

– Bitwise Complement Operator (~)

– Integer Bitwise Operators (&, ^, and |)

• Conditional Operator (? :)

• Field Access Using a Primary

• Method Invocation Expressions

• The cast operator, which can convert from an integral value or a string value to a value of any
specified numeric type

The semantics of arithmetic operations exactly mimic those of Java’s Integer arithmetic operators, as
defined in The Java Language Specification. See the following for a summary descriptive list of all the
operators you can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Integer tab Syntax Buttons
The Integer tab syntax buttons indicate all the ways you can add or modify an Integer in an expression
in a Cisco Unified CCX script. Clicking on one of the buttons adds the indicated syntax to your
expression. Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your
expression. In the spaces left by the question marks, enter the appropriate values.
3-72
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Integer.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
Table 3-14 Integer Syntax Button Descriptions

Syntax Button Name Type Description

?I literal decimal An Integer literal in decimal format. See Integer
Literals, page 3-75.

For example: 3 or 5I

OX?

OX?I

literal hexadecimal An Integer literal in hexadecimal format. See
Integer Literals, page 3-75.

For example: 0x49 or OXFFI

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

++?1 prefix increment increment Increments the value of the operand by one before
the operand is changed in an expression.

?++1 postfix
increment

Increments the value of the operand by one after
the operand is changed in an expression.

--?1 prefix
decrement

decrement Decrements the value of the operand by one
before the operand is changed in an expression.

?--1 postfix
decrement

Decrements the value of the operand by one after
the operand is changed in an expression.

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand divided
by the second.

? << ? shift left bitwise shift
(for operations
on individual
bits in Integers
only)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side.

? >> ? shift right Shifts bits of operand 1 right by the distance of
operand 2; fills with the highest (signed) bit on
the left-hand side.

? >>> ? zero fill right
shift

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side.
3-73
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
? & ? bitwise AND bitwise logical
(for operations
on individual
bits in Integers
only)

Compares both operands. If both operand bits are
1, the AND function sets the resulting bit to 1;
otherwise, the resulting bit is 0.

? ^ ? bitwise
exclusive OR
(XOR)

Compares both operands. If both operand bits are
different, the resulting bit is 1; otherwise the
resulting bit is 0.

? | ? bitwise
inclusive OR

Compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

 ~ ? Bitwise
complement

Inverts the value of each operand bit: If the
operand bit is 1, the resulting bit is 0; if the
operand bit is 0, the resulting bit is 1.

? *= ? multiply and
assign

assignment

The operand
on the left of
the
assignment
statement (the
first operand)
can be any
type of
variable,
including an
array
component or
a public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and
assign

Divides the first operand by the second and
assigns the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second operand
and assigns the remainder to the first operand.

? += ? add and assign Adds the first operand to the second operand and
assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first
operand and assigns the result to the first operand.

? <<= ? left shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>= ? right shift and
assign

Assignment
(continued)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>>= ? zero fill, right
shift, and assign

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side and assigns the resulting bit to operand 1.

? &= ? AND and assign First, compares both operands. If both operand
bits are 1, the AND function sets the resulting bit
to 1; otherwise, the resulting bit is set to 0.

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and assign First, compares both operands. If both operand
bits are different, the resulting bit is 1; otherwise
the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the two
operand bits is 1, the resulting bit is 1. Otherwise,
the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

Table 3-14 Integer Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-74
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
Integer Literals
An Integer literal can be expressed in decimal (base 10) or hexadecimal (base 16):

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral IntegerTypeSuffixopt

HexIntegerLiteral:
HexNumeral IntegerTypeSuffixopt

IntegerTypeSuffix: one of
i I l L ib IB

An Integer literal is of type BigInteger if it is suffixed with the ASCII letters IB or ib, long if it is suffixed
with an ASCII letter L or l (ell); otherwise it is of type int. The suffix L is preferred, because the letter l
(ell) is often hard to distinguish from the digit 1 (one).

A decimal numeral is either the single ASCII character 0, representing the Integer zero, or consists of an
ASCII digit from 1 to 9, optionally followed by one or more ASCII digits from 0 to 9, representing a
positive Integer:

DecimalNumeral:
0
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X followed by one or more
ASCII hexadecimal digits and can represent a positive, zero, or negative Integer. Hexadecimal digits
with values 10 through 15 are represented by the ASCII letters a through f or A through F, respectively;
each letter used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The largest decimal literal of type int is 2147483648 (231). All decimal literals from 0 to 2147483647
may appear anywhere an int literal may appear, but the literal 2147483648 may appear only as the
operand of the unary negation operator -.

1. The operand for the prefix and postfix increment operators must be a variable, an array
component, or a public class attribute.
3-75
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Integer
The largest positive hexadecimal literal of type int is 0x7fffffff, respectively, which equals 2147483647
(231-1). The most negative hexadecimal literal of type int is 0x80000000 which represents the decimal
value -2147483648 (-231). The hexadecimal literal 0xffffffff represents the decimal value -1.

If a decimal literal of type int is larger than 2147483648 (231), or if the literal 2147483648 appears
anywhere other than as the operand of the unary - operator, or if a hexadecimal int literal does not fit
in 32 bits, the value is represented as a decimal literal of type long.

Example int Literals:
0 2i 03720xDadaCafe1996I0x00FF00FF

The largest decimal literal of type long is 9223372036854775808L (263). All decimal literals from
0L to 9223372036854775807L may appear anywhere a long literal may appear, but the literal
9223372036854775808L may appear only as the operand of the unary negation operator -.

The largest positive hexadecimal literal of type long is 0x7fffffffffffffffL, which equals
9223372036854775807L(263-1). The literal 0x8000000000000000L is the most negative long
hexadecimal literal which has the decimal value -9223372036854775808L (-263). The hexadecimal
literal 0xffffffffffffffffL, represents the decimal value -1L.

If a decimal literal of type long is larger than 9223372036854775808L (263), or if the literal
9223372036854775808L appears anywhere other than as the operand of the unary - operator, or if a
hexadecimal or octal long literal does not fit in 64 bits, the value is represented as a decimal literal of
type BigInteger.

Example Long Literals:
0l 0777L0x100000000L2147483648L 0xC0B0L

Literals of type BigInteger have no maximum and minimum. Any value can be represented using the
BigInteger type.

Example BigInteger literals:
0ib 0777IB0x100000000000000000000IB21474836482147483648IB

Each int, long, and BigInteger literal is a reference to an instance of class Integer, Long and BigInteger
respectively. These objects have a constant value. The Integer and Long objects can be used
interchangeably with their counter part Java primitive data types when calling methods that expect the
primitive types or when accessing Java attributes declared using the Java primitive data type.
3-76
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Java
Java
The Java tab in the Expression Editor provides you a visualized way to write an expression block. This
tool also enables you to access the Java constructors, methods, and attributes for any Java class of data.

Note In the example code illustrating how to use each Expression Editor tab, there are simple expression
examples and complex expression examples. The complex expression examples require a Java license.
The Unified CCX Enhanced, and Unified CCX Premium licences incude the Java license. The Cisco
Unifed CCX Standard license does not include the Java license.

This topic includes the following:

• Java Specification on the Web, page 3-77

• Example Java tab Code, page 3-77

• Java tab Constructors, Methods, and Attributes, page 3-78

• How to Access a Java Constructor, Method, or Attribute for Any Class, page 3-79

• Java tab Syntax Button Descriptions, page 3-80

Java Specification on the Web
For the Sun Java specification on the Web, see:
http://java.sun.com/docs/books/jls/second_edition/html/jTOC.doc.html

For the Java specification on Blocks and Statements, see:
http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#101241

For summary descriptions of the Sun Java control-flow statements, see:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flowsummary.html

Example Java tab Code
The following is an example complex expression using the Java tab
3-77
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/second_edition/html/jTOC.doc.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#101241
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flowsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Java
The following sections describe the options on the Java tab:

• Java tab Constructors, Methods, and Attributes, page 3-78

• Java tab Syntax Button Descriptions, page 3-80

Java tab Constructors, Methods, and Attributes
Use the appropriate selection box to add a constructor, method, or attribute to your expression for any
Java type entered in the expression text field.

The available public methods and attributes include both static and non static ones.

Note The Java tab contains a selection list of the constructors, methods, attributes, and syntax buttons of the
selected Java object within the open script. Therefore, the contents of this tab will vary.

See also How to Access a Java Constructor, Method, or Attribute for Any Class, page 3-79.
3-78
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Java
How to Access a Java Constructor, Method, or Attribute for Any Class
The Java tab allows you to enter any fully qualified Java class name of your choosing in order to have
its set of constructors, methods or attributes listed in the selection boxes. Included in this list of class
names are every class from the Sun JDK, all the Cisco classes, and any custom classes you might have
uploaded through the Cisco Unified CCX Application Administration web pages.

This enables an easy lookup of what is available so you can paste it into an expression directly. The
selection box drop-down arrow is disabled if the class entered is invalid or does not have any
constructors, methods or attributes.

Note This Expression Language Java functionality of allowing you to select the Java class name of your own
choosing replaces and simplifies what you could do with the customizer of the depreciated Java steps.

To access the Java Constructors, Methods, and Attributes of Your Own Data Choice:

Step 1 In the Cisco Unified CCX Expression Editor Java tab, place the cursor over the word “Object” in the
Constructor, Method, or Attribute selection box, depending on which item you want.

A yellow pop-up window appears saying: Enter a new type.

Step 2 Double click the word Object.

The word Object is highlighted in blue and the arrow cursor changes to an input cursor (“|”) indicating
this is a text field that you can change.

Step 3 Enter the Java class name that you want.

The drop down list changes to the entered type.

Step 4 Click the selection arrow to display the list of items available for that data class. In the following
example, the user entered “int” to replace object in the constructor selection box.
3-79
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Java
Step 5 Select an item in the list to enter it into the Expression Editor Value text field.

How to Make Custom Java Classes Available to the Cisco Unified CCX Editor
To make custom Java classes available to the Cisco Unified CCXEditor:

Step 1 Using the Cisco Unified CCX Application Administration web pages, upload the jar files containing the
custom classes to the document repository.

Step 2 Using the Cisco Unified CCX Application Administration web pages, configure a custom class path to
specify the jar files.

Step 3 Restart the Cisco Unified CCX Editor to load the custom jar files and make them available.

See the Cisco Unified Contact Cener Administration Guide for further instructions.

Java tab Syntax Button Descriptions
Use the Java tab syntax buttons to add statements to an expression. Clicking on one of the buttons adds
the indicated syntax (minus the question marks) to your expression. In the spaces left by the question
marks, enter the appropriate values.

Table 3-15 Java Syntax Button Descriptions

Syntax Button Enters into the Expression Editor palette, the syntax for a...

{ ? } Block statement.

A block statement or block is a sequence of statements and local variable
declaration statements within braces.

See “Blocks and Statements” at
http://java.sun.com/docs/books/jls/third_edition/html/statements.html

return ? Return statement.

Returns control to the evaluator of a complex expression block.

See “Branching Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html

new ? New operator. The operand represents the friendly data type or the fully
qualified Java class name of the object to create.

Creates and allocates space for a new object.

if (?) ? If statement.

Conducts a conditional test and executes a block of statements if the test
evaluates to true.

See “The if/else Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html.
3-80
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/jls/third_edition/html/statements.html
http://java.sun.com/docs/books/jls/third_edition/html/statements.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html

Chapter 3 Expression Editor Tool Reference Descriptions
Java
if (?) ? else ? If-else statement.

Conducts a conditional test and executes a block of statements if the test
evaluates to true. Allows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

See “The if/else Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html.

else ? Else statement.

Executes a block of statements in the case that the test condition with the "if"
keyword evaluates to false.

See “The if/else Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html.

while (?) ? While statement.

Executes a Statement repeatedly until the value of the Expression is false. The
Expression must have type Boolean, or a parse-time error occurs.

If the value of the Expression is false the first time it is evaluated, then the
Statement is not executed.

See “The while and do-while Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html.

do ? while (?) Do-While statement.

Executes a Statement and an Expression repeatedly until the value of the
Expression is false. The Expression must have type Boolean, or a parse-time
error occurs.

Executing a do statement always executes the contained Statement at least
once.

See “The while and do-while Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html.

for (?. ?. ?) ? For statement.

Executes some initialization code, then executes an Expression, a Statement,
and some update code repeatedly until the value of the Expression is false.

See The for Statement at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/for.html.

break Break statement.

Transfers control out of an enclosing statement.

See “Branching Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html.

continue Continue statement.

Passes control to the loop-continuation point of an iteration statement.
A continue statement may occur only in a while, do, or for statement;
statements of these three kinds are called iteration statements.

See “Branching Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html.

Table 3-15 Java Syntax Button Descriptions (continued)

Syntax Button Enters into the Expression Editor palette, the syntax for a...
3-81
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/while.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/for.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/for.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html

Chapter 3 Expression Editor Tool Reference Descriptions
Java
switch (?) { ? }

Note The switch
statement is
similar to the
Cisco
Unified CCX
Editor
Switch step.

Switch statement.

The switch statement transfers control to one of several statements depending
on the value of an expression.

The type of the Expression must be char, byte, short, int, BigInteger, float,
double, BigDecimal, String, or Language, or a parse-time error occurs. This is
an extension on the Java programming language where only the types char,
byte, short, or int are supported.

String switch statements are case insensitive.

See “The switch Statement” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html.

case ?: Case statement.

A block of code or a code branch destinations depending on the value of an
expression in a switch statement.

See “The switch Statement” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html.

default: Default statement.

Optionally used after all "case" conditions in a "switch" statement. If all "case"
conditions are not matched by the value of the "switch" variable, the "default"
statement is executed.

throw ? Throw statement.

Causes an exception to be thrown. The result is an immediate transfer of
control that may exit multiple statements and the complex expression block
containing it until a try statement is found that catches the thrown value.

See “Method Throws” at
http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.6

try { ? } catch (?) { ?
}

Try-catch statement.

A try statement executes a block. If a value is thrown and the try statement has
one or more catch clauses that can catch it, then control is transferred to the first
such catch clause.

See “Exception Handling Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html.

try { ? } finally { ? } Try-finally statement.

If the try statement has a finally clause, then another block of code is executed,
no matter whether the try block completes normally or abruptly, and no matter
whether a catch clause is first given control.

See “Exception Handling Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html.

Table 3-15 Java Syntax Button Descriptions (continued)

Syntax Button Enters into the Expression Editor palette, the syntax for a...
3-82
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html
http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.6
http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.6
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html

Chapter 3 Expression Editor Tool Reference Descriptions
Java
catch (?) { ? } Catch statement.

Encloses some code and is used to handle errors and exceptions that might
occur in that code.

See “Exception Handling Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html.

finally { ? } Finally statement.

Unconditionally executed after all other error processing has occurred. This
guarantees execution of cleanup code when execution of a block of code is
interrupted.

See “Exception Handling Statements” at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html.

Table 3-15 Java Syntax Button Descriptions (continued)

Syntax Button Enters into the Expression Editor palette, the syntax for a...
3-83
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html
at http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html

Chapter 3 Expression Editor Tool Reference Descriptions
Language
Language
Use the Language tab to add, delete, or modify languages in an expression. Language is a friendly data
type corresponding to the fully qualified java.util.Locale class.

This topic includes the following:

• Language Class and Code Specifications on the Web, page 3-84

• Example Language Code, page 3-85

• Language Variables, page 3-85

• Language Methods and Attributes, page 3-85

• Recent Languages, page 3-85

• All Languages, page 3-86

• Language tab Syntax Button, page 3-86

• Language Literals, page 3-86

Language Class and Code Specifications on the Web
The Language class in the Cisco Unified CCX Expression Language is a friendly data type and is
equivalent to the Sun Java Locale class. For the Sun Java specification on the Locale class, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html.

For a list of ISO language codes, see
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

For a list of ISO country codes, see
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
3-84
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html.
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
as: http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Chapter 3 Expression Editor Tool Reference Descriptions
Language
Example Language Code

The following sections describe the options on the Language tab:

• Language Variables, page 3-85

• Language Methods and Attributes, page 3-85

• Language tab Syntax Button, page 3-86

Language Variables
The Language Variable selection box lists all the language variables contained in the currently opened
script. Use this selection box to paste an already defined language variable into an expression.

A language variable is used to localize a particular resource in the system and can be associated with a
contact to customize what prompts and grammars must be retrieved from the Cisco Unified CCX
repository when required.

The default value of a language variable is the system default language.

Language Methods and Attributes
Use the appropriate selection box to add an available Language method or attribute to your expression.

The available public methods and attributes include both static and non static ones

For descriptions of all the public Language methods and attributes available in the selection boxes, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html.

Recent Languages
Lists all the languages currently used and defined since the last installation.
3-85
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html.

Chapter 3 Expression Editor Tool Reference Descriptions
Language
This list accumulates the languages you have used and defined since the last installation. As you use
languages, they are appended to the list.

All Languages
Lists the languages that are defined in http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Language tab Syntax Button
The Language tab syntax buttons indicate all the ways you can add or use a Language in an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values.

Language Literals
Each friendly language literal is a reference to an instance of class java.util.Locale.

The language literal is always of type Language.

LanguageLiteral:
LanguageDeclarator [LanguageDesignatoropt]

LanguageDeclarator: one of
l L

LanguageDesignator:
Language Countryopt Variantsopt

Language:
any valid ISO language code defined as the lower-case two-letter codes
by ISO-639

Country:
 _ CountryCode

CountryCode:
any valid ISO country code defined as the upper-case two-letter codes
by ISO-3166

Variants:
Variant
Variants Variant

Variant:
_ VariantCode

VariantCode:
VariantCharacter
VariantCode VariantCharacter

VariantCharacter:

Table 3-16 Language Syntax Button Description

Syntax Button Dexcription

L[??_??] language literal. See Language Literals, page 3-86.

For example: L[en_US] or L[fr_CA]
3-86
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt

Chapter 3 Expression Editor Tool Reference Descriptions
Long
InputCharacter but not _
The VariantCode is a free form string which is used to further qualify the language. The _EURO literal
is normally used to specify the use of the Euro Currency for a European country. It could also be used
to distinguish between different talents used for the prompt recordings (for example, L[en_CA_John]
versus L[en_CA_Jenna]). The variant can be composed of many variant parts each separated with an
underscore (for example, L[de_DE_EURO_Joe]).

Each language literal is a reference to an instance of class java.util.Locale.

Note The language literal requires that the proper language pack is installed.

Long
Use the Expression Editor Long tab to enter or modify Long data in an expression. Long is a friendly
data type corresponding to the fully qualified java.lang.Long class.

Note In the Expression Language, long and Long can be used interchangeably as opposed to Java where long
represents a primitive data type and Long represents an object.

This topic includes the following:

• About the Long Data Type, page 3-87

• Long Specification on the Web, page 3-87

• Example Long Code, page 3-87

• Long Variables, page 3-89

• Long Constructors, Methods, and Attributes, page 3-89

• Long tab Syntax Buttons, page 3-89

About the Long Data Type
The java.lang.Long numeric data type is a 32-bit Integer and its value can be from
-9223372036854775808 to 9223372036854775807, inclusive.

Long Specification on the Web
For the Sun Java specification of the Java class Long, see:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Long.html

For the Sun Java specification on numeric types, see “Types, Values, and Variables” at
http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9164

Example Long Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.
3-87
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Long.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Short.html
http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9164

Chapter 3 Expression Editor Tool Reference Descriptions
Long
Figure 3-21 Example Simple Expression Using a Long and Script Variables

Figure 3-22 Example Complex Expression Using a Long and Two Script Variables

The following sections describe the options available on the Long tab:

• Long Variables, page 3-89
3-88
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Long
• Long Constructors, Methods, and Attributes, page 3-89

• Long tab Syntax Buttons, page 3-89

Long Variables
The Long Variables selection box lists all the long variables contained in the currently opened script.
Use this selection box to paste an already defined Long variable into an expression.

The Long variable holds the value of a long and is an expanded Integer variable. Its value ranges from
from -9223372036854775808 to 9223372036854775807, inclusive.

The default value of a long variable is zero, that is, 0L.

Long Constructors, Methods, and Attributes
Use the appropriate selection box to add a public constructor, method, or attribute in your Cisco Unified
CCXscript expression.

The available public methods and attributes include both static and non static ones.

For descriptions of all the public Long constructors, methods, and attributes available in the selection
boxes, see the Java specification at:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Long.html

Long tab Syntax Buttons
The Long tab syntax buttons indicate all the ways you can add a long data type to an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.

Table 3-17 Long Syntax Button Descriptions

Syntax Button Name Type Description

?L literal decimal A Long literal in decimal format. See Integer
Literals, page 3-75.

for example:
234556789L
0L

0x?L literal hexadecimal A Long literal in hexadecimal format.

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.
For example: -23L

++?1 prefix increment increment Increments the value of the operand by one
before the operand is changed in an expression.

?++1 postfix
increment

Increments the value of the operand by one
after the operand is changed in an expression.
3-89
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Long.html

Chapter 3 Expression Editor Tool Reference Descriptions
Long
--?1 prefix decrement decrement Decrements the value of the operand by one
before the operand is changed in an expression.

?--1 postfix
decrement

Decrements the value of the operand by one
after the operand is changed in an expression.

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand
divided by the second.

? << ? shift left bitwise shift
(for operations
on individual bits
in Integers only)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side.

? >> ? shift right Shifts bits of operand 1 right by the distance of
operand 2; fills with the highest (signed) bit on
the left-hand side.

? >>> ? zero fill right
shift

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side.

? & ? bitwise AND bitwise logical
(for operations
on individual bits
in Integers only)

Compares both operands. If both operand bits
are 1, the AND function sets the resulting bit to
1; otherwise, the resulting bit is 0.

? ^ ? bitwise exclusive
OR (XOR)

Compares both operands. If both operand bits
are different, the resulting bit is 1; otherwise
the resulting bit is 0.

? | ? bitwise inclusive
OR

Compares both operands. If either of the two
operand bits is 1, the resulting bit is 1.
Otherwise, the resulting bit is 0.

 ~ ? Bitwise
complement

Inverts the value of each operand bit: If the
operand bit is 1, the resulting bit is 0; if the
operand bit is 0, the resulting bit is 1.

? *= ? multiply and
assign

assignment

The operand on
the left of the
assignment
statement (the
first operand) can
be any type of
variable,
including an
array component
or a public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second and
assigns the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second
operand and assigns the remainder to the first
operand.

? += ? add and assign Adds the first operand to the second operand
and assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first
operand and assigns the result to the first
operand.

Table 3-17 Long Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-90
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Miscellaneous
Miscellaneous
The Expression Editor Miscellaneous tab provides you a way to easily enter types of data into an
expression that are not included in the other tabs.

This section covers the following topics:

• Example Simple Expression Using the Miscellaneous Tab, page 3-92

• Object Variables, page 3-92

• Miscellaneous tab Syntax Buttons, page 3-93

? <<= ? left shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>= ? right shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>>= ? zero fill, right
shift, and assign

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side and assigns the resulting bit to operand 1.

? &= ? AND and assign First, compares both operands. If both operand
bits are 1, the AND function sets the resulting
bit to 1; otherwise, the resulting bit is set to 0.

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and assign First, compares both operands. If both operand
bits are different, the resulting bit is 1;
otherwise the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the
two operand bits is 1, the resulting bit is 1.
Otherwise, the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

1. The operand for the prefix and postfix increment operators must be a variable, an array
component, or a public class attribute.

Table 3-17 Long Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-91
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Miscellaneous
Example Simple Expression Using the Miscellaneous Tab

The following sections describe the options on the Miscellaneous tab:

• Object Variables, page 3-92

• Miscellaneous tab Syntax Buttons, page 3-93

Object Variables
The Object Variables selection box lists all the variables created in the currently opened script. This
allows you to paste one of these variables into an expression.

Note By entering a data class name of your choice in the “Object” field header name of the Object Variables
list selection box, you can filter filter out variables in a script that you want.

To access a script variable variable of your own data choice:

Step 1 In the Cisco Unified CCX Expression Editor Miscellaneous tab, place the cursor over the word “Object”
in the Object Variable selection box header.

A yellow pop-up window appears saying: Eter a new type.

Step 2 Double click the word Object.

The word Object is highlighted in blue and the arrow cursor changes to an input cursor (“|”) indicating
this is a text field that you can change.

Step 3 Enter the Java class name for the variables that you want listed.
3-92
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Miscellaneous
The drop down list of variables is filtered to the entered type.

Step 4 Click the selection arrow to display the list of variables available for that data class. In the following
example, the user entered “Document” to replace “Object” in the variable selection box.

Step 5 Select an item in the list to enter it into the Expression Editor Value text field.

DayOfWeek
Allows you to select a a 3-letter abbreviation for a day of the week variable to be pasted into the
expression: MON, TUE, WED, THU, FRI, SAT, SUN.

The DayOfWeek literal can be used as a qualifier for a prompt or a document expression when defining
day of week prompts or documents. It has no type and cannot be used elsewhere in the grammar. The
literals are case insensitive.

Gender
Allows you to select a gender type to be pasted into the expression: MALE, FEMALE, NEUTRAL.

The Gender literal can be used when defining a number prompt, ordinal, or TTS prompt to qualify the
gender context into which the prompt generation must be tailored. It has no type and cannot be used
elsewhere in the grammar. The literal is case insensitive.

The Null Literal
The null type has one value, the null reference, represented by the literal null, which is formed from
ASCII characters. A null literal is always of the null type.

Miscellaneous tab Syntax Buttons
The Miscellaneous tab syntax buttons provides you a way to easily enter types of data into an expression
that are not included in the other tabs. Clicking on one of the buttons adds the indicated syntax (minus
the question marks) to your expression. In the spaces left by the question marks, enter the appropriate
values.
3-93
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Prompt
Use the Prompt tab to add, delete, or modify Prompts in a Cisco Unified CCX script expression.

The Prompt friendly data type corresponds to the Java com.cisco.prompt.Playable class.

This section includes the following topics:

• About Prompts, page 3-94

• NoteYou can localize prompts to suit your local language. For information on that, see “Localizing
Cisco Unified CCX Scripts” in the Cisco Unified CCX Scripting and DExample Simple Expression
Using a Prompt, page 3-95

• Prompt Variables, page 3-95

• Browse Prompts Dialog Box, page 3-96

• Prompt tab Syntax Buttons, page 3-96

• Prompt Literals, page 3-98

• Operators Used with Prompts, page 3-104

• Prompt Templates, page 3-106

• Prompt Conversions, page 3-109

About Prompts
Instances of class Prompt represent audio data that can be played back to a caller. A Prompt object has
a constant (unchanging) value. Complex prompt literals are references to instances of class Prompt.

Table 3-18 Miscellaneous Syntax Button Descriptions

Syntax Button Name Type Description

final constant final The final local variable modifier.

This marks the variable as one that cannot have its
value changed. Such a variable is known as a
constant and can be used to define other non-final
variable initial values.

The keyword final can also be prefixed to the data
type for the same result, to make a variable final of
type Integer, as in the following example:

final int

null null value The null value.

? = ? assignment statement The assignment statement.

/* ? */ comment block A block of comments.

//? comment line A comment on one line.
3-94
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
The prompt concatenation operator +, the prompt escalation, time of day prompt, time of week prompt,
day of week prompt, and random prompt operators ||, and the prompt substitution operator ||| implicitly
create a new Prompt object. An expression that creates a prompt is called a prompt expression. See
Prompt tab Syntax Buttons, page 3-96 for examples of prompt expressions.

Note You can localize prompts to suit your local language. For information on that, see “Localizing Cisco
Unified CCX Scripts” in the Cisco Unified CCX Scripting and DExample Simple Expression Using a
Prompt

The following sections describe the options on the Prompt tab:

• Prompt Variables, page 3-95

• Browse Prompts Dialog Box, page 3-96

• Prompt tab Syntax Buttons, page 3-96

• Prompt Literals, page 3-98

• Operators Used with Prompts, page 3-104

Prompt Variables
The Prompt Variable selection box contains all the prompt variables created in the currently opened
script. Use this selection box to paste a Prompt variable into an expression.

A Prompt variable contains information about what to play to a caller when a call is passed to a Media
step. It can reference audio files in the prompt repository or on disk, concatenation of multiple prompts,
or more complicated types of prompts.

The default value of a prompt variable is the empty prompt, that is, P[]
3-95
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Browse Prompts Dialog Box
Use the Browse Prompts selection box to add a Prompt to your script expression by browsing the local
disk or the Prompt repository.

Prompt tab Syntax Buttons
The Prompt tab syntax buttons indicate all the ways you can add a Prompt object to an expression.
Clicking on one of the buttons adds the indicated syntax (minus the question marks) to your expression.
In the spaces left by the question marks, enter the appropriate values. See Prompt Literals, page 3-98 for
code examples. For operations you can perform on prompts, see Operators Used with Prompts and
Documents, page 1-8.

Table 3-19 Prompt Syntax Button Descriptions

Syntax Button Prompt Type or Operator Description

P[?] User-Defined Prompt

A prompt located in the
prompt repository and
manageable using the
prompt management pages
that are part of the Cisco
Unified CCX
Administration Web page.

User prompt. See Prompt Literals, page 3-98 and User
Prompt Literals, page 3-99.

Examples:

P[text.tts]
P[AA\Welcome.wav]

P[?,?} User prompt with optional arguments. See Prompt
Literals, page 3-98 and User Prompt Literals, page 3-99.

Example:

P["currency.tpl", amount, C[USD]]

#[?] Ordinal Prompt

A prompt that corresponds
to the spoken ordinal
position of a specified
number in a parameter.

Ordinal Prompt (neutral gender). See Ordinal Prompt
Literals, page 3-100.

Examples:

#[2] // second
#[3.3F] // third

#[?,?] Ordinal prompt with gender argument. See Ordinal
Prompt Literals, page 3-100.

Example:

#[2 + i, FEMALE]

$[?] Currency Prompt

The spoken amount
representation of the
specified currency
arguments.

Currency prompt (the system default currency). See
Currency Prompt Literals, page 3-100.

Examples:

$[2] // 2 dollars
$[3.3F] // 3 dollars and 30 cents
$["23.33"]

$[?,?] Currency prompt with additional arguments. See
Currency Prompt Literals, page 3-100.

Examples:

$["23.33", true]
$["123.33", C[CAD]]
$["123.33", false, C[DEM]]
3-96
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
N[?] Number Prompt

The spoken number
representation of the
specified arguments.

Number prompt (neutral gender). See Number Prompt
Literals, page 3-101.

Examples:

N[2345.3D]
N["12" + '.' + "23"]

N[?,?] Number prompt with additional arguments. See Number
Prompt Literals, page 3-101.

Examples:

N[0x233, false]
N["1223", Boolean.TRUE]
N[45, MALE]
N["3.23", NEUTRAL]
N[11, 1]
N[2000000, false, FEMALE]
N[-2e23, Boolean.TRUE, 1]
N["29.0002", true, MALE]

S[?] Spelling Prompt

A string spelled back one
character at a time.

See Spelling Prompt Literals, page 3-102.

Examples:

S[A]
S[John Doe]
S[\n b];
S["some text"]
S['\f']
S['a' + " nice day"]
S["b"]
S[u"\t"]
S[java.util.Locale.US]

S[?,?] Spelling prompt with additional arguments. See Spelling
Prompt Literals, page 3-102.

Examples:

S["a", true]
S[java.util.Locale.US, false]

TTS[?] TTS (Text To Speech)
prompt

A prompt generated from
textual content using a TTS
server.

 TTS prompt. See TTS Prompt Literals, page 3-103.

Examples:

TTS[This is an example]
TTS[John Doe]
TTS[URL["http://localhost/email.doc"]]
TTS[new java.io.File(u"C:\\help.ssml")]
TTS["Some text to be rendered", "Nuance

Vocalizer 3.0"]

TTS[?,?] TTS prompt with provider argument. See TTS Prompt
Literals, page 3-103.

Example:

S[java.util.Locale.US, false]

Table 3-19 Prompt Syntax Button Descriptions (continued)

Syntax Button Prompt Type or Operator Description
3-97
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Prompt Literals
This topic covers the following:

• About Prompt Literals, page 3-99

• User Prompt Literals, page 3-99

• Ordinal Prompt Literals, page 3-100

• Currency Prompt Literals, page 3-100

DP[?] Delay Prompt

A silence pause of the
specified number of
milliseconds in parameter.

Delay prompt. See Delay Prompt Literals, page 3-104.

Examples:

DP[500] // 500 milliseconds of silence
DP[1000.45] // 1 second of silence

? + ? Prompt Concatenation
Operator

Prompt concatenation. If only one operand expression is
of type Prompt, then prompt conversion is performed on
the other operand to produce a prompt at run time. The
result is a reference to a newly created Prompt object that
is the concatenation of the two operand prompts. The
content of the left-hand operand precedes the content of
the right-hand operand in the newly created prompt.

? ||| ? Prompt Substitution
Operator

Prompt substitution. A prompt used as a substitute
prompt when another is no longer available. For
example, if a failure occurs while attempting to queue a
prompt, then the substitute is queued instead.

See Prompt Substitution Operator |||, page 3-104.

? || ? Escalation Operator Can create a Time of week, day of week, time of day,
random, or escalation prompt. See Prompt Escalation
Operator ||, page 3-105.

? @ ? Prompt Qualification
Operator

Prompt qualifier. The prompt qualifier @ expects a
qualifying expression of the following type:

• Language

• DayOfWeekLiteral

• Number

• Time

See Prompt Qualifier Operator @, page 3-105

? % ? Prompt Weight
Qualification Operator

Prompt weight. The prompt weight qualifier % expects a
qualifying expression of the Number type and is used to
assign a weight to a prompt when used in a random
prompt expression. See Prompt Weight Qualifier
Operator %, page 3-105 and Random Prompt,
page 3-109..

(Document)? Prompt Conversion
Operation

Converts a prompt into an audio document. See Prompt
Conversions, page 3-109.

Table 3-19 Prompt Syntax Button Descriptions (continued)

Syntax Button Prompt Type or Operator Description
3-98
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
• Number Prompt Literals, page 3-101

• Spelling Prompt Literals, page 3-102

• TTS Prompt Literals, page 3-103

• Delay Prompt Literals, page 3-104

About Prompt Literals

The prompt literal is always of type Prompt. Each prompt literal is a reference to an instance of a class
that implements the interface com.cisco.prompt.Playable.

PromptLiteral:
UserPrompt
OrdinalPrompt
CurrencyPrompt
NumberPrompt
SpellingPrompt
TTSPrompt
DelayPrompt
GeneratedPrompt

Example Prompt Literals:

• P[] —An empty prompt. (No prompt gets played back.)

• P[AA\AAWelcome.wav]—A user-defined prompt located in the User Prompts directory.

User Prompt Literals

The user prompt literal is always of type Prompt.

UserPrompt:
UserPromptDeclarator [ComplexLiteralInputCharsopt]
UserPromptDeclarator [Expression]
UserPromptDeclarator [Expression, ArgumentList]

UserPromptDeclarator: one of
p P

User prompt literals are used to represent a prompt located in the prompt repository and manageable
using the prompt management pages which are part of the Cisco Unified CCX Administration Web page.
The ComplexLiteralInputChars can include the [character as long as it has a balanced number of]
characters: one for every [character found:

• If the sequence of characters can be parsed as an Expression of type String, then the resulting prompt
is a user prompt where the expression specifies the name of the prompt to retrieve the prompt from
the repository.

• If the sequence of characters can be parsed as an Expression and an ArgumentList where the first
one must have type String, then the resulting prompt is a user prompt where the first argument
specifies the name of the prompt to retrieve from the repository and the argument list must
corresponds to the expected parameterized arguments of a complex expression block defined in a
prompt template file.

The arguments are ignored if the referenced prompt is not a prompt template. If it is one, then each
specified argument is evaluated and assigned as the value of a defined argument to the expression
block. If the types do not match, then a runtime exception is thrown back. No errors are generated
3-99
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
if more arguments are supplied then expected; they are ignored. No errors are generated if fewer
arguments are supplied then expected unless the given argument is accessed by the complex
expression block and it was not defined with a default value

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the name of the user prompt to retrieve from the repository.

Example User Prompts Literals:
P[text.tts]
P[AA\Welcome.wav]
P[currency.tpl]
P[prompt]
P["currency.tpl", amount, C[USD]]

The extension of the prompt file can be omitted in which case the search looks at all supported extensions
(<.wav>, <.ssml>, <.tts>, <.tpl>) in order until one is found.

Note The special case of P[] represents an empty prompt.

Ordinal Prompt Literals

The ordinal prompt literal is always of type Prompt.

OrdinalPrompt:OrdinalPromptDeclarator [Expression]
OrdinalPromptDeclarator [Expression , Expression]
OrdinalPromptDeclarator:

#
Ordinal prompts correspond to the spoken ordinal position of the specified number in a parameter.
Floating point and string literals are converted to an Integer representation before being converted to an
ordinal spoken representation. The first expression must be of type String or a java.lang.Number type
(that is, integral or floating-point). The second expression, if supplied, must be either a predefined
gender constant (for example, MALE, FEMALE, or NEUTRAL) or an int type that results to 0 for
neutral, 1 for male and 2 for female. This form also assumes that the language of the text correspond to
the current language of the context unless the prompt is further qualified using the @ operator.

Example Ordinal Prompt Literals:
#[2] // second
#[3.3F] // third
#[2 + i, FEMALE]

Currency Prompt Literals

The currency prompt literal is always of type Prompt.

CurrencyPrompt:
CurrencyPromptDeclarator [ArgumentList]

CurrencyPromptDeclarator:
$

Currency prompts correspond to the spoken amount representation of the specified arguments. The
CurrencyPromptDeclarator is the symbol for the specified currency. For example: $, £, or ¥. There
cannot be more than four arguments in the ArgumentList and the supported combination are listed
as follows.
3-100
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
An Amount argument must be of type String or a java.lang.Number type (for example, integral or
floating-point). The Colloquial Flag argument must be of type Boolean and specifies whether to use
colloquial currencies representation like "Dollars" instead of "US Dollars". The Currency argument must
be of type Currency.

This form also assumes the current language of the context unless the prompt is further qualified using
the @ operator.

Example Currency Prompt Literals:
$[2] // 2 dollars
$[3.3F] // 3 dollars and 30 cents
$["23.33"]
$["23.33", true]
$["123.33", C[CAD]]
$["123.33", false, C[DEM]]
$[23.33 + 2]
$[amount, true]
$[123.33 + 3, C[CAD]]
$[balance, false, C[DEM]]
$[33, 2]
$[15, 7, true]
$[17, 66, C[CAD]]
$[3455 - 3, 88, false, C[DEM]]

Number Prompt Literals

The number prompt literal is always of type Prompt.

NumberPrompt:
NumberPromptDeclarator [ArgumentList]

NumberPromptDeclarator: one of
n N

Number prompts correspond to the spoken number representation of the specified arguments. There
cannot be more than three arguments in the ArgumentList and the supported combination are listed in
Table 3-21.

Table 3-20 Currency Prompt Literal Arguments

1st Argument 2nd Argument 3rd Argument 4th Argument

Amount

Amount Colloquial Flag

Amount Currency

Amount Colloquial Flag Currency

Dollar Amount Cent Amount

Dollar Amount Cent Amount Colloquial Flag

Dollar Amount Cent Amount Currency

Dollar Amount Cent Amount Colloquial Flag Currency
3-101
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
The Number argument must be of type String or a java.lang.Number type (for example, integral or
floating-point). The Full Format Flag argument must be of type Boolean and must specify to play the
number in full format (that is, 709 is played as "Seven Hundred and Nine"); otherwise, plays the number
in brief format that is, 709 becomes "Seven Oh Nine"). The Gender argument must be either a predefined
gender constant (that is, MALE, FEMALE, or NEUTRAL) or an int type that results to 0 for neutral, 1
for male and 2 for female.

This form also assumes the current language of the context unless the prompt is further qualified using
the @ operator.

Example Number Prompt Literals:
N[2345.3D]
N["12" + '.' + "23"]
N[0x233, false]
N["1223", Boolean.TRUE]
N[45, MALE]
N["3.23", NEUTRAL]
N[11, 1]
N[2000000, false, FEMALE]
N[-2e23, Boolean.TRUE, 1]
N["29.0002", true, MALE]

Spelling Prompt Literals

The spelling prompt literal is always of type Prompt.

SpellingPrompt:
SpellingPromptDeclarator [ComplexLiteralInputChars]
SpellingPromptDeclarator [Expression]
SpellingPromptDeclarator [Expression , Expression]

SpellingPromptDeclarator:
s S

Spelling prompts correspond to a string being spelled back one character at a time:

• If the sequence of characters can be parsed as an Expression of any type then its string
representation, returned by the Java method toString() of the object, is spelled back. If an additional
Expression can be parsed then it must be of type Boolean and represents whether or not special
characters must be spelled back as well instead of being played back as silences if it is false.

• If the sequence of characters cannot be parsed properly as described above, then it is considered to
be the text to be spelled back.

This form also assumes that the language of the text correspond to the current language of the context
unless the prompt is further qualified using the @ operator.

Table 3-21 Number Prompt Literal Arguments

1st Argument 2nd Argument 3rd Argument

Number

Number Full Format Flag

Number Gender

Number Full Format Gender
3-102
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Example Spelling Prompt Literals:
S[A]
S[John Doe]
S[\n b];
S["some text"]
S['\f']
S['a' + " nice day"]
S["b"]
S[u"\t"]
S["a", true]
S[java.util.Locale.US]
S[java.util.Locale.US, false]

TTS Prompt Literals

The TTS prompt literal is always of type Prompt.

TTSPrompt:
 TTSPromptDeclarator [ComplexLiteralInputChars]

TTSPromptDeclarator [Expression]
TTSPromptDeclarator [Expression , Expression]

TTSPromptDeclarator:
any case of TTS

TTS prompt literals are used to represent a prompt that is generated from textual content using a TTS
server. This type of prompt requires TTS to be licensed and installed for it to work properly at run time.

If the sequence of characters can be parsed as an Expression of type String, Document, java.net.URL, or
java.io.File then the resulting prompt is a TTS prompt where the expression specifies the textual content
to convert, a document containing the text to convert, a URL where to get the text to convert or a file
containing the text to convert respectively.

When specified in this form, the system default TTS provider, configured through the Cisco Unified
CCX Application Administration Web page, is selected as the provider to be contacted to perform the
resolution. This form also assumes that the language of the text correspond to the current language of
the context unless the prompt is further qualified using the @ operator:

• If the sequence of characters can be parsed as two Expressions where the first one must have type
String, Document, java.net.URL, or java.io.File and the second one must have type String, then the
resulting TTS prompt corresponds to the content specified from the first expression as described
above using the specified TTS provider if available. This form also assumes that the language of the
text correspond to the current language of the context unless the prompt is further qualified using
the @ operator.

• If the sequence of characters cannot be parsed properly, as described above, then it is considered to
be the textual content to be converted as a TTS prompt. When specified in this form, the system
default TTS provider, configured through the Cisco Unified CCX Administration Web page, is
selected as the provider to be contacted to perform the resolution. This form also assumes that the
language of the text corresponds to the current language of the context unless the prompt is further
qualified using the @ operator.

Example TTS Prompt Literals:
TTS[This is an example]
TTS[John Doe]
TTS["Some text to be rendered", "Nuance Vocalizer 3.0"]
TTS[URL["http://localhost/email.doc"]]
TTS[new java.io.File(u"C:\\help.ssml")]
3-103
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Delay Prompt Literals

The delay prompt literal is always of type Prompt.

DelayPrompt:
DelayPromptDeclarator [Expression]

DelayPromptDeclarator:
any case of DP

Delay prompts correspond to a silence pause of the specified number of milliseconds in parameter.
Floating point literals and string are converted to an Integer representation. The expression must be of
type String or a java.lang.Number type (that is, integral or floating-point).

Example Delay Prompt Literals:
DP[500] // 500 milliseconds of silence
DP[1000.45] // 1 second of silence

Operators Used with Prompts
You can use the following operators with prompts:

• Prompt Concatenation Operator +, page 3-104

• Prompt Substitution Operator |||, page 3-104

• Prompt Qualifier Operators, page 3-105

• Prompt Qualifier Operator @, page 3-105

• Prompt Weight Qualifier Operator %, page 3-105

• Prompt Escalation Operator ||, page 3-105

Prompt Concatenation Operator +

If only one operand expression is of type Prompt, then prompt conversion is performed on the other
operand to produce a prompt at run time. The result is a reference to a newly created Prompt object that
is the concatenation of the two operand prompts. The content of the left-hand operand precedes the
content of the right-hand operand in the newly created prompt.

Prompt Substitution Operator |||

The operator ||| is called the prompt substitution operator. It is used to create a substitute prompt. A
substitute prompt is a prompt where the first prompt is queued for playback whenever the substitute
prompt is used in a media context. If a failure occurs while attempting to queue the prompt then the
substitute is queued instead. For example the main prompt could represent a TTS prompt which in cases
where the system has not been installed or licensed with TTS support, one would want to fallback to a
pre-recorded prompt. In this case, queuing a TTS prompt would fail and the substitute would be used
instead. This operator is not associative.

SubstituteExpression:
PromptExpression ||| PromptExpression

See Prompt Templates, page 3-106 for examples of prompt expressions
3-104
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Prompt Qualifier Operators

Qualifier operators are used to further qualify objects by assigning them new or different properties.
Qualified objects can be used just as their normal objects. However, in some cases the qualification
applied to an object can be used to determine what kind of container prompt will result from the ||
operator (see Prompt Escalation Operator ||, page 3-105. The language qualification is the only qualifier
that is not ignored if not used in conjunction with the || operator. Prompts can be qualified multiple
times through multiple types of qualifications.

Prompt qualifier operators results in an expression of the Prompt type.

QualifiedPromptExpression:
PromptExpression
QualifiedPromptExpression @ Expression
QualifiedPromptExpression % Expression

See the following two topics for the meaning of qualified prompt expressions:

• Prompt Qualifier Operator @, page 3-105

• Prompt Weight Qualifier Operator %, page 3-105

Prompt Qualifier Operator @

The prompt qualifier @ expects a qualifying expression of the following type:

• Language

• DayOfWeekLiteral

• Number

• Time

The first qualifier represents a language qualification and is used to temporarily override the language
associated with a given prompt. The expression must be of type Language. Qualifying a prompt more
than once with a language will result in only the last one being kept as the overridden language for the
prompt.

The second qualifier represents a day of week qualification and is used to specify the starting day of a
possible range when the prompt is to be used in a day of week prompt or time of week prompt expression.
The starting day can also be specified using a Number type as seen in the third option where its value
must evaluate to 1 for Sunday, 2 for Monday … or 7 for Saturday.

The last qualifier represents time qualification and is used to specify the starting time of a possible range
when the prompt is to be used in a time of day prompt or time of week expression.

Prompt Weight Qualifier Operator %

The prompt qualifier % expects a qualifying expression of the Number type and is used to assign a
weight to a prompt when used in a random prompt expression. See also Random Prompt, page 3-109.

Prompt Escalation Operator ||

The prompt escalation || operator can be used to create escalation prompts, day of week prompts, time
of day prompts, time of week prompts or random prompts. If at least one of the operands is a prompt,
the other is converted to a prompt according to the rules set forth by Table 1-7 and the result will be a
new prompt. It is syntactically left-associative (it groups left-to-right). It is fully associative with respect
3-105
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
to both side effects and result value; that is, for any expressions a, b, and c, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects occurring in the same order, as
evaluation of the expression (a)||((b)||(c)).

PromptEscalationExpression:
PromptExpression || PromptEscalationExpression

The determination of the type of prompt that results from this operator depend on how the first two
prompt operands (in a sequence of || operators) was qualified using the @ or % operators:

• If both prompt operands are qualified with a time of day and a day of week then the resulting prompt
is a time of week prompt. All remaining operands of subsequent|| operators are going to be added
as prompts for subsequent time of week and must then be qualified with at least both a time of day
and a day of week or a parse-time error occurs. Other qualifiers if present are ignored.

• Otherwise, if both prompt operands are qualified with a day of week then the resulting prompt is a
day of week prompt. All remaining operands of subsequent || operators are added as prompts for
the subsequent day of week and must then be qualified with at least a day of week or a parse-time
error occurs. Other qualifiers if present are ignored.

• Otherwise, if both prompt operands are qualified with a time of day then the resulting prompt is a
time of day prompt. All remaining operands of subsequent || operators are added as prompts for
the subsequent time of day and must then be qualified with at least a time of day or a parse-time
error occurs. Other qualifiers if present are ignored.

• Otherwise, if both prompt operands are qualified with a weight then the resulting prompt is a random
prompt. All remaining operands of subsequent || operators are added as additional prompts and must
then be qualified with at least a weight or a parse-time error occurs. Other qualifiers if present are
ignored.

• Otherwise, the resulting prompt is an escalation prompt. All remaining operands of subsequent ||
operators are added as subsequent escalation and their qualifications are ignored.

Prompt Templates
This section contains the following topics:

• About Prompt Templates, page 3-106

• Escalating Prompt, page 3-108

• Time of Week Prompt, page 3-108

• Day of Week Prompt, page 3-109

• Time of Day Prompt, page 3-109

• Random Prompt, page 3-109

About Prompt Templates

A prompt template is a prompt represented as an expression and evaluated at the time it is queued up for
playback.

There is added support for a new type of prompt file to the user and system prompts already available.
This new file has the filename extension.tpl and can be referenced in a script just like the other.wav
prompt files could.
3-106
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
In addition, not related to the expression, there is added support for two new prompt file
extensions:.tts and.ssml. Files ending with these extensions are expected to be text files containing
the text to be rendered as audio using a configured TTS server.

Since Cisco CRS 3.0, when referencing a user or system prompt, the extension of the file was optional.
If the extension .wav,.tpl,.tts or.ssml is specified, Cisco CRS searches for only this specific
prompt. If no extension is specified, the search starts with a.wav file, and if none is found, then a file
with an.ssml extension is searched, and then.tts extension, and finally.tpl extension is searched.

If no extension is located for the first language in the language context, then the search moves to its
parent language or the next one in the context. This search is similar to the one that existed in Cisco CRS
3.0 for user and system grammars where files with the extension.gsl and.digit are supported.

When a user or system prompt with the.tpl extension is located, it is loaded as a text file and parsed
by the Expression Language manager and the result must be a prompt object, or an object of a data type
that can be converted to a Prompt as described in. The expression specified in the text file does not have
access to script variables. However, if defined using a complex block expression, the block can be
parameterized like a method declaration, allowing for the scripts to customize the evaluation of the
expression.

For example, say we have the following user prompt in the user repository defined as currency.tpl:

(float amount, boolean colloquial = true) {
 int dollars = (int)amount;
 int cents = ((int)(amount * 100.0F)) - dollars * 100;
 Prompt result = N[dollars];

 if (!colloquial) {
 result += P[us.wav];
 }
 result += P[dollars.wav] + P[and] + N[cents] + P[cents.wav];
 return result;
}

You could take advantage of this user prompt within a script to create a very simple currency generator
of the US currency. This prompt defines two arguments that can be customized inside the script:
amount, which is mandatory, as it has no default value, represents the amount to be played back; and
colloquial, which defaults to true, can be used to customized the playback of the US currency
as either US dollars or simply dollars. The result is a prompt concatenation that can be queued
for playback directly. Inside the script, this prompt is referenced in the following ways:

P["currency.tpl", 3.23F]
P["currency.tpl", BankAmount, false]

- where BankAmount is a script variable
P["currency.tpl", BankAmount, Colloquial]
P["currency.tpl", 10.0F + BankAmount]

If referenced without supplying the mandatory arguments, an
ExpressionNotInitializedException exception is thrown back. If the arguments passed in
are of an invalid type, an ExpressionClassCastException exception is thrown back. If more
arguments than declared are passed in, they are simply ignored.

See Table 3-22 for other examples of prompt template files.

Table 3-22 More Prompt Template File Examples

1 P[prompt.wav]

2 P[prompt.wav] + P[prompt2]
3-107
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Example 3 in the preceding table represents a substitute prompt where first an attempt is made to
generate the string “John Doe” localized as US English using the system configured TTS provider, and
if that fails for any reason, the system falls back to the second prompt which spells back the string “John
Doe”. Example 4 represents a TimeOfDay prompt where no prompts are played on Sundays, the user
prompt P2 is played on Mondays, and the P1 prompt is played on all other days.

Escalating Prompt

An escalating prompt contains multiple prompts sequenced in such a way that the first time the prompt
is queued up inside a step, it queues the first prompt in the escalation. If a retry occurs within the step,
then the second prompt is queued up instead of the first one, and so on until the last prompt is queued
up on the previous attempt at which point it is queued up for all remaining attempts.

An escalation is always reset to the first prompt when the step exits either successfully or in error.

For example, the prompt expression:

P[P1] || P[P2] || TTS[Hello]

represents an escalation prompt that plays P[P1] on the first attempt in a step, P[P2] on the next
retry and TTS[Hello] for all other retries in that same step.

Time of Week Prompt

A time of week prompt contains multiple prompts each qualified with a particular time of the day and
day of the week. When queued up for playback, a time of week prompt evaluates the current time of the
week and queues up a single prompt from its list. The prompt selected is based on a time range starting
at the day and time specified until the day and time specified by the subsequent prompt in time or until
the end of the week if this is the last prompt. The week starts on Sunday morning.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified day of week and time of
day used when qualifying each one of the prompt operands.

For example, the prompt expression:

P[P1] @ MON @ T[10:59 AM]
 || P[P2] @ TUE @ T[11:58 PM]
 || P[] @ MON @ T[1:00 PM]

means that from Sunday morning to Monday 10:58:59 AM nothing is played back, from Monday
10:59:00 AM to Monday 12:59:59 PM, P[P1] is played back, from Monday 1:00:00 PM to Tuesday
11:57:00 PM, nothing is played back, and from Tuesday 11:58:00 PM until the end of the week, P[P2]
is played back.

3 TTS[John Doe] @ L[en_US] ||| S[John Doe]

4 P[P1] @ TUE || P[P2] @ MON

Table 3-22 More Prompt Template File Examples (continued)
3-108
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Prompt
Day of Week Prompt

A day of week prompt contains multiple prompts each qualified with a particular day of the week. When
queued up for playback, a day of week prompt evaluates the current day of the week and queues up a
single prompt from its list. The prompt selected is based on a day range starting at the day specified until
the day specified by the subsequent prompt in time or until the end of the week if this is the last prompt.
The week starts on Sunday.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified day of week used when
qualifying each one of the prompt operands.

For example, the prompt expression:

P[P1] @ MON || P[] @ THU || P[P2] @ TUE

means that on Sunday is be played back, on Monday, P[P1]is played back, on Tuesday and
Wednesday, P[P2]is played back, and the rest of the week nothing is played back.

Time of Day Prompt

A time of day prompt contains multiple prompts each qualified with a particular time of the day. When
queued up for playback, a time of day prompt evaluates the current time of the day and queues up a single
prompt from its list. The prompt selected is based on a time range starting at the time specified until the
time specified by the subsequent prompt in time or until the end of the day if this is the last prompt.

The order of the operands is not important in determining the beginning or end of a range. The expression
parser puts them back in the proper chronological order based on the specified time of day used when
qualifying each one of the prompt operands.

For example, the prompt expression:

P[P2] @ T[11:58 PM] || P[P1] @ T[10:59 AM] || P[] @ T[1:00 PM]

means that from the beginning of the day until 10:58:59 AM nothing is played back, from 10:59:00 AM
until 12:59:59 PM, P[P1]is played back, from 1:00:00 PM until 11:57:00PM, nothing is played back,
and from 11:58:00 PM until the end of the day, P[P2] is played back.

Random Prompt

A random prompt contains multiple prompts each qualified with a given weight. When queued up for
playback, a random prompt randomly chooses and queues up a single prompt from its list. The random
selection is affected by the weight given to each prompt. A prompt qualified with a bigger weight has a
higher chance of being selected. This type of prompt is typically used for playing back advertisements
or slogans.

For example, the prompt expression:

P[P1] % 1 || P[P2] % 1 || P[] % 2

Prompt P[1] and P[2] have 25% of chances of being played back while nothing (P[]) is played
back 50% of the times.

Prompt Conversions
Prompt conversion applies only to the operands of the binary + operator when one of the arguments is a
Prompt. In this special case only, the other argument to the + is converted to a Prompt as described in
Table 1-7, and a new Prompt which is the concatenation of the two prompts is the result of the +.
3-109
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Script
The prompt concatenation operator +, which, when given a Prompt operand and an integral or
floating-point operand, converts the integral or floating -point operand to a Prompt representing its value
in spoken form, and then produces a newly created Prompt that is the concatenation of the two prompts.

There is a prompt conversion to type Prompt from every other type, including the null type as described
in Table 1-7. For the null type, the result is the empty prompt.

The Prompt Concatenation Operator +, page 3-104, which, when given a Prompt operand and a reference
to a char, Currency, Date, Document, java.io.File, java.io.InputStream, Language, Prompt, String,
java.net.URL, Time or any numeral types, converts the reference to a Prompt based on Table 1-7, and
then produces a newly created Prompt that is the concatenation of the two prompts.

Script
Use the Script tab to reference a script from within a Cisco Unified CCXscript expression.

Script is a friendly data type that corresponds to the Java com.cisco.script.Script class.

This topic includes the following:

• About Scripts, page 3-110

• Example Simple Expression Using a Script, page 3-111

• Script Variables, page 3-111

• Browse Scripts, page 3-111

• Script tab Syntax Buttons, page 3-111

About Scripts
You can reference other Cisco Unified CCX scripts from within a Cisco Unified CCX script.
3-110
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Script
Example Simple Expression Using a Script

The following section describes the options on the Script tab:

• Script Variables, page 3-111

• Browse Scripts, page 3-111

• Script tab Syntax Buttons, page 3-111

Script Variables
The Script Variables selection box lists all the script variables contained in the currently opened script.
Use this selection box to paste an already defined Script variable into an expression. The default value
of a script variable is null.

Browse Scripts
Use the Browse Scripts selection box to paste a script reference into your expression by browsing the
local drive or the script repository.

Script tab Syntax Buttons
The Script tab syntax buttons indicate all the ways you can add a script object to an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.
3-111
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Script
Table 3-23 Script Syntax Button Descriptions

Syntax Button Description

SCRIPT[?] User script

Syntax: SCRIPT[filename.aef]

Example: SCRIPT[aa.aef]

SCRIPT[FILE[?]] User script file

Syntax:SCRIPT[FILE[drive:\\directorylocation\filename.aef]]

Example: SCRIPT[FILE[C:\\Windows\aa.aef]]

SCRIPT[URL[?]] User URL-based script

Syntax: SCRIPT[URL[http://UrlAddress/filename.aef]]

Example: SCRIPT[URL[http://localhost/aa.aef]]
3-112
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Short
Short
Use the Expression Editor Short tab to enter or modify short data in an expression. Short is a friendly
data type corresponding to the fully qualified java.lang.Short class.

Note In the Expression Language, short and Short can be used interchangeably as opposed to Java where short
represents a primitive data type and Short represents an object.

This section covers the following topics:

• About the Short Data Type, page 3-113

• Numeric Type Specification on the Web, page 3-113

• Example Short Code, page 3-113

• Short Constructors, Methods, and Attributes, page 3-115

• Short tab Syntax Buttons, page 3-115

About the Short Data Type
The java.lang.Short numeric data type is a 16-bit Integer and its value can be from -32768 to 32767,
inclusive. For type short, the default value is zero, that is, the value of (short)0.

Numeric Type Specification on the Web
For the Sun Java specification on the Short data type, see:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Short.html

Example Short Code
In the following two examples, the script variables used in the expressions are listed in the top right of
each example.
3-113
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Short.html

Chapter 3 Expression Editor Tool Reference Descriptions
Short
Figure 3-23 Example Simple Expression Using a Short and Script Variables

Figure 3-24 Example Complex Expression Using a Short

The following sections describe the options on the Short tab:

• Short tab Syntax Buttons, page 3-115

• Short Variables, page 3-115

• Short Constructors, Methods, and Attributes, page 3-115

• Short tab Syntax Buttons, page 3-115
3-114
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Short
Short Variables
The Short Variables selection box lists all the short variables contained in the currently opened script.
Use this selection box to paste an already defined short variable into an expression.

A short variable holds the value of an short, which is a 16-bit Integer, with value range from -32768 to
32767, inclusive.

The default value of a short variable is zero, that is, the value of (short)0.

Short Constructors, Methods, and Attributes
Use the appropriate selection box to add to a short constructor, method, or attribute to your Cisco Unified
CCX script expression.

The available public methods and attributes include both static and non static ones.

For descriptions of all the public Java Short constructors, methods, and attributes available in the
selection boxes, see the Java specification at
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Short.html.

Short tab Syntax Buttons
The Short tab syntax buttons indicate all the ways you can add or modify a short in an expression in a
Cisco Unified CCX script. Clicking on one of the buttons adds the indicated syntax (minus the question
marks) to your expression. In the spaces left by the question marks, enter the appropriate values.

The semantics of arithmetic operations exactly mimic those of Java’s Long arithmetic operators, as
defined in The Java Language Specification. See the following for a summary descriptive list of all the
operators you can use in the Java language:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Table 3-24 Short Syntax Button Descriptions

Syntax Button Name Type Description

(short)? short typecast typecast Assigns the operand a short type. This means a
variable of type Integer, byte, and so on can be
converted to a short type. The rule of the type
casting is the same as in Java. See also Integer
Literals, page 3-75.

Example: (short)3456

+? unary plus unary The positive value of the operand.

-? unary minus The negative value of the operand.

++? prefix increment increment Increments the value of the operand by one
before the operand is changed in an expression.

?++ postfix
increment

Increments the value of the operand by one
after the operand is changed in an expression.
3-115
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Short.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Chapter 3 Expression Editor Tool Reference Descriptions
Short
--? prefix decrement decrement Decrements the value of the operand by one
before the operand is changed in an expression.

?-- postfix
decrement

Decrements the value of the operand by one
after the operand is changed in an expression.

? + ? addition arithmetic Adds two operands.

? - ? subtraction Subtracts the second operand from the first.

? * ? multiplication Multiplies two operands.

? / ? division Divides the first operand by the second.

? % ? remainder Returns the remainder of the first operand
divided by the second.

? << ? shift left bitwise shift
(for operations
on individual bits
in Integers only)

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side.

? >> ? shift right Shifts bits of operand 1 right by the distance of
operand 2; fills with the highest (signed) bit on
the left-hand side.

? >>> ? zero fill right
shift

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side.

? & ? bitwise AND bitwise logical
(for operations
on individual bits
in Integers only)

Compares both operands. If both operand bits
are 1, the AND function sets the resulting bit to
1; otherwise, the resulting bit is 0.

? ^ ? bitwise exclusive
OR (XOR)

Compares both operands. If both operand bits
are different, the resulting bit is 1; otherwise
the resulting bit is 0.

? | ? bitwise inclusive
OR

Compares both operands. If either of the two
operand bits is 1, the resulting bit is 1.
Otherwise, the resulting bit is 0.

 ~ ? Bitwise
complement

Inverts the value of each operand bit: If the
operand bit is 1, the resulting bit is 0; if the
operand bit is 0, the resulting bit is 1.

? *= ? multiply and
assign

assignment

The operand on
the left of the
assignment
statement (the
first operand) can
be any type of
variable,
including an
array component
or a public class
attribute.

Multiplies the first operand by the second and
assigns the result to the first operand.

? /= ? divide and assign Divides the first operand by the second and
assigns the result to the first operand.

? %= ? remainder and
assign

Divides the first operand by the second
operand and assigns the remainder to the first
operand.

? += ? add and assign Adds the first operand to the second operand
and assigns the result to the first operand.

? -= ? subtract and
assign

Subtracts the second operand from the first
operand and assigns the result to the first
operand.

Table 3-24 Short Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-116
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
String
String
Use the String tab to enter and modify strings in an expression. String is a friendly data type
corresponding to the fully qualified java.lang.String class name.

This topic includes the following:

• About the String Class, page 3-118

• Java String Specification on the Web, page 3-118

• Example Simple Expression Using a String, page 3-118

• String Variables, page 3-119

• String Constructors, Methods, and Attributes, page 3-119

• String tab Syntax Buttons, page 3-119

• String Literals, page 3-120

• Escape Sequences for Character and String Literals, page 3-121

• An Array of Characters is Not a String, page 3-121

See also:

• String Concatenation Operator +, page 1-10

• String Conversions, page 1-32

? <<= ? left shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>= ? right shift and
assign

Shifts bits of operand 1 left by the distance of
operand 2; fills with zero bits on the right-hand
side and assigns the resulting bit to operand 1.

? >>>= ? zero fill, right
shift, and assign

Shifts bits of operand 1 right by a distance of
operand 2; fills with zero bits on the left-hand
side and assigns the resulting bit to operand 1.

? &= ? AND and assign Assignment
(continued)

First, compares both operands. If both operand
bits are 1, the AND function sets the resulting
bit to 1; otherwise, the resulting bit is set to 0.

Then, assigns the resulting bit to operand 1.

? ^= ? XOR and assign First, compares both operands. If both operand
bits are different, the resulting bit is 1;
otherwise the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

? |= ? OR and assign First, compares both operands. If either of the
two operand bits is 1, the resulting bit is 1.
Otherwise, the resulting bit is 0.

Then, assigns the resulting bit to operand 1.

Table 3-24 Short Syntax Button Descriptions (continued)

Syntax Button Name Type Description
3-117
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
String
• String Parsing, page 1-33

About the String Class
Instances of class String represent sequences of Unicode characters. Unicode provides a unique number
for every character, no matter what the platform, no matter what the program, no matter what the
language. For a list of all the language Unicode charts, see
http://www.unicode.org/charts/

Using Google.com, you should be able to find tutorials on Unicode characters.

As in Java, the class String includes methods for examining individual characters of the sequence, for
comparing strings, for searching strings, for extracting substrings, and for creating a copy of a string with
all characters translated to uppercase or to lowercase.

The string concatenation operator + implicitly creates a new String object and a String object has a
constant (unchanging) value. Once they are created, they cannot be changed.

Java String Specification on the Web
The Cisco Unified CCX Expression Language uses strings in the same way Java uses them. For the Sun
Java specification on strings, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

Example Simple Expression Using a String
3-118
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://www.unicode.org/charts/
Google.com
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

Chapter 3 Expression Editor Tool Reference Descriptions
String
The following sections describe the options on the String tab:

• String Variables, page 3-119

• String Constructors, Methods, and Attributes, page 3-119

• String tab Syntax Buttons, page 3-119

See also:

• String Conversions, page 1-32

• String Parsing, page 1-33.

String Variables
The String Variable selection box lists all the string variables contained in the currently opened script.
Use this selection box to paste a String variable into an expression.

A String variable has a constant (unchanging) value and the string concatenation operator + implicitly
creates a new String variable. A String variable consists of the set of Unicode characters from “\u0000”
to “\uffff” inclusive.

The default value of a String variable is the empty string, that is, "".

String Constructors, Methods, and Attributes
Use the appropriate selection box to add a String constructor, method, or attribute to your expression.

The available public methods and attributes include both static and non static ones.

For descriptions of the public Java String constructors, methods, and attributes available in the selection
boxes, see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

See also:

• Character tab Syntax Buttons, page 3-35.

String tab Syntax Buttons
The String tab syntax buttons indicate all the ways you can add or use a String in an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.

Table 3-25 String Syntax Button Descriptions

Syntax Button Type Description

''?'' string literal A string. See String Literals, page 3-120

u''?'' extended string
literal

An extended string. The Unicode character codes for the
characters from 128 and higher. Since ASCII is a seven-bit
code and most computers manipulate data in eight-bit bytes,
many extensions use the additional Unicode codes available
by using all eight bits of each byte.

\u???? Unicode literal A Unicode character.
3-119
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

Chapter 3 Expression Editor Tool Reference Descriptions
String
String Literals
A string literal consists of zero or more characters enclosed in double quotes. For backward
compatibility with the original release of Cisco Unified CCX software, we must maintain the first string
literal format which did not have any support for escape sequence. As such, string literals since Cisco
CRS 3.0 can be represented in two ways. The first one using one pair of double quotes characters has no
support for escape sequence so the \ character can be used to represent itself. The second format
introduced in Cisco CRS 3.0 uses two double quote characters where the first one is represented by the
lowercase letter u where each character may be represented by an escape sequence.

A string literal is always of type String. A string literal always refers to the same instance of class String.

StringLiteral:
" NoEscapeStringCharactersopt "
u " StringCharactersopt "

NoEscapeStringCharacters:
NoEscapeStringCharacter
NoEscapeStringCharacters NoEscapeStringCharacter

NoEscapeStringCharacter:
InputCharacter but not "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
UnicodeInputCharacter but not " or \
EscapeSequence

The escape sequences are described in Escape Sequences for Character and String Literals, page 3-121.

Neither of the characters CR and LF is ever considered to be an InputCharacter; each is recognized as
constituting a LineTerminator.

You will receive a parse-time error if a line terminator appears after the opening " and before the closing
matching ". A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator +.

Example string literals:
"" // the empty string
"\" // a string containing the \ character alone
u"\"" // a string containing " alone
"This is a string"// a string containing 16 characters
"This is a " +// a string-valued constant expression,
"two-line string"// formed from two string literals

? + ? string
concatenation

Concatenates two strings into one. See also String
Concatenation Operator +, page 1-10

?.toString() cast Returns the string representation of the specified object.

String.valueOf(?) cast Returns the string representation of the specified object. If
the object is null, it returns “null”.

(Document)? cast Converts a string into a text document.

Table 3-25 String Syntax Button Descriptions (continued)

Syntax Button Type Description
3-120
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
String
Each string literal is a reference to an instance of class String. String objects have a constant value.

Escape Sequences for Character and String Literals
The character and string escape sequences allow for the representation of some non-graphic characters
as well as the single quote, double quote, and backslash characters in character literals and string literals.

Escape Sequences:
\ b /* \u0008: backspace BS */
\ t /* \u0009: horizontal tab HT */
\ n /* \u000a: linefeed LF */
\ f /* \u000c: form feed FF */
\ r /* \u000d: carriage return CR */
\ " /* \u0022: double quote " */
\ ' /* \u0027: single quote ' */
\ \ /* \u005c: backslash \ */
\ 0 /* \u0000: null character */
\ UnicodeInputCharacter/* the actual Unicode character */

If the character following a backslash in an escape is not an ASCII b, t, n, f, r, ", ', \, or 0, then the
escape sequence is replaced with the actual character and the backslash is simply omitted.

An Array of Characters is Not a String
In the Expression Framework language as in the Java programming language, unlike C, an array of char
is not a String, and neither a String nor an array of char is terminated by '\u0000' (the NULL character).

A String object is immutable, that is, its contents never change, while an array of char has mutable
elements. The method toCharArray in class String returns an array of characters containing the same
character sequence as a String. The class StringBuffer implements useful methods on mutable arrays of
characters.
3-121
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
Time
Time
Use the Time tab to enter or modify time data in an expression. Time is a friendly data type
corresponding to the fully qualified java.sql.Time class name.

The Expression Editor formats the date and time according to the default locale.

This topic includes the following:

• About Time Data, page 3-122

• Time Specification on the Web, page 3-122

• Example Simple Expression using Time and Three Script Variables, page 3-123

• Time Constructors and Methods, page 3-123

• Time tab Syntax Buttons, page 3-124

• Time Literals, page 3-124

About Time Data
The Time class deals with hours, minutes, and seconds. When you create a new Time object, you must
pass it the hour, minute, and second. The Time class uses the ISO hh-mm-ss format. Hours are
represented by numbers between 0 and 23. Minutes and seconds are represented by numbers between 0
and 59. Use the Time.valueOf(String) method to convert an “hh-mm-ss” string to a Time object and use
the ?.toString() method to return a Time object to its string (hh-mm-ss) representation.

The Time class extends the Date class. Both the Time and Date class use most of the same methods. For
a description of Time literals, see Time Literals, page 3-124.

Time Specification on the Web
For the Sun Java specification on the Time class, see
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Time.html.

For a list of world time zones, see http://www.worldtimezone.com.
3-122
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Time.html
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#46168
http://www.worldtimezone.com/

Chapter 3 Expression Editor Tool Reference Descriptions
Time
Example Simple Expression using Time and Three Script Variables

The following sections describe the options on the Time tab:

• Time Variables, page 3-123

• Time Constructors and Methods, page 3-123

• Time tab Syntax Buttons, page 3-124

Time Variables
The Time Variables selection box lists all the time variables contained in the currently opened script. Use
this selection box to paste a time variable into an expression.

A Time variable contains time information. The default value of the Time variable is the current time at
the time of interpretation.

Time Constructors and Methods
Use the appropriate selection box to add a public Time constructor or method to your expression.

The available public methods include both static and non static ones.

For descriptions of the public Java Time constructors and methods available in the selection boxes, see
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html.
3-123
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html

Chapter 3 Expression Editor Tool Reference Descriptions
Time
Time tab Syntax Buttons
The Time tab syntax buttons indicate all the ways you can add a Time object to an expression. Clicking
on one of the buttons adds the indicated syntax (minus the question marks) to your expression. In the
spaces left by the question marks, enter the appropriate values.

Time Literals
The time literal is always of type Time.

TimeLiteral:
TimeDeclarator [n o w]
TimeDeclarator [TimeDesignator]

TimeDeclarator: one of
t T

TimeDesignator:
FullTimePattern
LongTimePattern
MediumTimePattern
ShortTimePattern

Table 3-26 Time Syntax Button Descriptions

Syntax Button Description

T[???] Returns the time in the format HH:MM:SS AM|PM.

For example:
T[3:39 AM]
T[3:34:42 PM]
T[11:59:58 PM EST]

T[now] Returns the current time in the format HH:MM:SS AM|PM.

For example, returns: T[3:34:42 PM].

?.ampm1

1. The .ampm, .hour, .hod, .min, .sec, and .ms variables do not require the Java license.

Returns an int number of the date object; AM=0, PM=1

?.hour1 Returns the hour represented by this Date object. The returned value is a number
(0 through 23) representing the hour within the day that contains or begins with
the instant in time represented by this Date object, as interpreted in the local time
zone.

?.hod1 Returns the hour represented by this Date object. The returned value is a number
(0 through 23) representing the hour within the day that contains or begins with
the instant in time represented by this Date object, as interpreted in the local time
zone.

?.min1 Returns the number of minutes past the hour represented by this date, as
interpreted in the local time zone. The value returned is between 0 and 59.

?.sec1 Returns the number of seconds past the minute represented by this date. The
value returned is between 0 and 61. The values 60 and 61 can only occur on those
Java Virtual Machines that take leap seconds into account.

?.ms1 Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT
represented by this Date object.
3-124
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
User
FullTimePattern:
Defined by the pattern "h:mm:ss a z"

LongTimePattern:
Defined by the pattern "h:mm:ss a z"

MediumTimePattern:
Defined by the pattern "h:mm:ss a"

ShortTimePattern:
Defined by the pattern "h:mm a"

If the string now is used, then the literal corresponds to the current time in the server's default time zone
when the literal is first evaluated. See the documentation of the java.text.DateFormat class for
descriptions of the available time patterns.

Example Time Literals:
T[5:59 PM]
T[12:23:59 AM]
T[12:23:59 AM CST]
T[now]

Each time literal is a reference to an instance of class java.sql.Time.

User
Use the User tab to enter a user literal directly into a Cisco Unified CCX script expression.

The User class is specific to the Expression Language and is defined at com.cisco.user.User

This topic includes the following:

• About Users, page 3-125

• Example User Code, page 3-126

• User Variables, page 3-126

• User Syntax Button, page 3-126

About Users
A user object identifies and represents anyone configured in the Cisco Unified CallManager. That
someone could be an agent, a supervisor, and administrator, or anyone configured in the Csco Unified
CallManager.

You specify a user object in a user variable that you can create in a Cisco Unified CCX script. For
example, in an Unified CCX application, when a requested agent is available, the Select Resource step
can return a user object that is the requested agent. The Connect step can then pass the user object as an
argument to connect the call to the selected agent.

Another example application that can have user objects is the Cisco Auto Attendant. For example, An
Auto Attendant application, might ask you the name or extension of the person to whom you want to
speak so you can be transferred to that person.

The Name to User step and the Get User step the step are two example steps that can return a user object
as in the Auto Attendant application. The Name to User step prompts for either the spoken or spelled
name of a user. The Get User step specifies the extension of a user so it will return that particular user
to a caller.
3-125
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Chapter 3 Expression Editor Tool Reference Descriptions
User
See also Cisco Unified Contact Cener Express Scripting and Development Series: Volume 2, Editor Step
Reference and the chapter on creating IP IVR scripts in Cisco Unified Contact Center Express Scripting
and Development Series: Volume 1, Getting Started with Scripts.

To play back the spoken name of a user:

• You can replace the Get User and the Get User Info steps with one step by using a USER[userID]
variable. Then, when a user is requested in the Get User Info step, instead of selecting a “generic”
variable of type user, you can directly enter the specific user variable that holds the USER[userID]
you want.

Example User Code

The following sections describe the options on the User tab:

• User Variables, page 3-126

• User Syntax Button, page 3-126

User Variables
The User Variables selection box lists all the user variables contained in the currently opened script.

User Syntax Button
Use the USER[?] button to specify a user ID in an expression. For example: USER[JohnSmith].
3-126
Cisco Unified Contact Center Express Expression Language Reference Guide 11.0(1)

Cisco Unified Contact Center Ex
I N D E X
A

additive operators

about 1-9

document concatenation operator + 1-10, 3-51

prompt concatenation operator + 1-10, 3-104

string concatenation operator + 1-10

array

about 3-8

components 1-28

example code 3-9

Expression Editor tab 3-8

methods 3-11

of characters 3-121

specification on web 3-8

syntax 3-11

variables 3-10

assignment operators

compound assignment operators 1-13

B

BigDecimal

about 3-13

description 1-4

example code 3-14

Expression Editor tab 3-13

specification 3-13

syntax 3-16

variables 3-15

BigInteger

about 3-18

description 1-4
example code 3-18

Expression Editor tab 3-18

specification 3-18

syntax 3-20

variables 3-20

Binary Document Literal 3-49, 3-52

Boolean

about 3-23

example code 3-23

Expression Editor tab 3-23

literals 3-27

specification 3-23

syntax 3-25

type 1-21, 1-23

values 1-21, 1-23

variables 3-24

Byte

about 3-27

example code 3-29

Expression Editor tab 3-27

specification 3-28

syntax 3-29

variables 3-29

C

Character

about 3-32

escape 3-36

example code 3-34

Expression Editor tab 3-32

literals 3-35

specification 3-33
IN-1
press Expression Language Reference Guide 11.0(1)

Index
syntax 3-35

variables 3-34

class

currency 1-25

date 1-25

definition 1-4

document 1-25

grammar 1-26

language 1-26

object 1-25

prompt 1-26

string 1-26

time 1-26

comments

definition 1-4

complex

expression block

parameter 1-28

compound assignment operators 1-13

constructor

definition 1-4

conversions

document 1-32

string 1-32

string parsing 1-33

Currency

about 3-37

example code 3-38

Expression Editor tab 3-37

literal 3-39

prompt literals 3-100

recent 3-38

specification 3-37

syntax 3-39

variables 3-38

custom Java class

how make available to editor 3-80
IN-2
Cisco Unified Contact Center Express Expression Language Refere
D

Date

about 3-39

example code 3-40

Expression Editor tab 3-39

literals 3-43

specification 3-40

syntax 3-42

variables 3-41

DayOfWeek 3-93

document 3-53

day of week

prompt 3-109

definite assignment 1-30

delay prompt literals 3-104

digit grammar literals 3-66

Document

about 3-44

conversions 1-32

day of week 3-53

escalation operator || 1-12

example code 3-45

Expression Editor tab 3-44

literals 3-48

file 3-50

text 3-50

URL 3-49

user 3-51

qualificator operator @ 3-52

syntax 3-46

time of day 3-53

time of week 3-52

variables 3-45

double

about 3-54

example code 3-55

Expression Editor tab 3-54

specification 3-54
nce Guide 11.0(1)

Index
syntax 3-56

variables 3-56

E

escalating prompt 3-108

escalation operator ||

about 1-11

document escalation 1-12

prompt escalation 3-105

escape characters 3-36

escape sequences

for literals 3-121

exception-handler parameter 1-28

Expression Editor

All Variables selection box 2-3

pop-up menu 2-7

tabbed toolbar 2-7

using 2-2

Expression Language

description 1-1

operator summary 1-7

expressions

licensing 2-9

F

file document literals 3-50

final

variable modifier 3-94

variables 1-29

float

about 3-57

example code 3-58

Expression Editor tab 3-57

specification 3-58

variables 3-59

floating-point

numbers 1-4
Cisco Unified Contact C
operations 1-21

types, formats, and values 1-20

G

gender 3-93

grammar

about 3-62

example code 3-63

syntax 3-64

templates 3-69

variables 3-64

GSL grammar literals 3-67

I

identifiers

description 1-4

index variables 3-10

Integer (int)

about 3-69

class 3-70

example code 3-19, 3-41, 3-71, 3-77, 3-88, 3-114

operations 3-72

specification 3-70

syntax 3-72

variables 3-71

integer (int)

definition 1-5

Expression Editor tab 3-69

operations 1-19

integer/Boolean conditional-or operator || 1-10

integral types and values 1-18

J

Java

example code 3-77

Expression Editor tab 3-77
IN-3
enter Express Expression Language Reference Guide 11.0(1)

Index
how to use 3-77

licensing 2-9

specification 3-77

syntax buttons 3-80

Java classes

custom classes 3-80

how to access any Java class 3-79

K

keywords

definition 1-5

L

language

about 3-84

all 3-85

example code 3-85

Expression Editor tab 3-84

recent 3-86

specifications 3-84

syntax 3-86

variables 3-85

licensing, expressions 2-9

literals

and escape sequences 3-121

Boolean 3-27

character 3-35

currency 3-39

currency prompt 3-100

date 3-43

definition 1-5

delay prompt 3-104

digit grammar 3-66

floating-point 3-61

GSL grammar 3-67

integer 3-75

null 3-93
IN-4
Cisco Unified Contact Center Express Expression Language Refere
number prompt 3-101

ordinal prompt 3-100

prompt 3-98

spelling prompt 3-102

SRGS grammar 3-68

string 3-120

time 3-124

TTS prompt 3-103

user grammar 3-66

user prompt 3-99

local variables 1-28

long

about 3-87

example code 3-87

Expression Editor tab 3-87

specification 3-87

syntax 3-89

variables 3-89

M

method

definition 1-5

Miscellaneous tab

about 3-91

example code 3-92

tool tip 3-5

modulus

definition 1-5

N

null literal 3-93

number prompt literals 3-101

O

objects

class 1-25
nce Guide 11.0(1)

Index
definition 1-5

operator

definition 1-5

ordinal prompt literals 3-100

P

package

definition 1-5

primitive

types and values 1-18

prompt

about 3-94

day of week 3-109

escalating 3-108

escalation operator || 3-105

example code 3-95

Expression Editor tab 3-94

literals 3-98

qualificator operator @ 3-105

qualificator operator % 3-105

qualificator operators 3-105

random 3-109

spelling literals 3-102

substitution operator ||| 1-9, 3-104

syntax 3-96

templates 3-106

time of day 3-109

time of week 3-108

variables 3-95

public

definition 1-5

Q

qualificator operators 1-9

document 3-52

document qualificator operator @ 3-52

prompt qualification 3-105
Cisco Unified Contact C
prompt qualificator operator @ 3-105

prompt qualificator operator % 3-105

R

random prompt 3-109

remainder

definition 1-5

removing or showing

Expression Editor toolbar 2-8

S

script

example code 3-111

Expression Editor tab 3-110

syntax 3-111

variables 1-28, 3-111

separators

definition 1-6

Short

about 3-113

example code 3-113

Expression Editor tab 3-113

specification 3-113

syntax 3-115

variables 3-115

spelling prompt literals 3-102

SRGS grammar literals 3-68

String

about 3-117

concatenation operator + 1-10

conversion 1-32

example code 3-118

Expression Editor tab 3-117

literals 3-120

parsing 1-33

specification 3-118

syntax 3-119
IN-5
enter Express Expression Language Reference Guide 11.0(1)

Index
variables selection box 3-119

T

text document literals 3-50

thread

definition 1-6

time

about 3-122

example code 3-123

Expression Editor tab 3-122

literals 3-124

specification 3-122

syntax 3-124

variables 3-123

time of day

document 3-53

prompt 3-109

time of week

document 3-52

prompt 3-108

tokens

definition 1-6

TTS prompt literals 3-103

types

and classes and interfaces 1-30

kinds 1-17

where used 1-27

U

Unicode

definition 1-6

URL document literals 3-49

User

Expression Editor tab 3-125

user

document literals 3-51

grammar literals 3-66
IN-6
Cisco Unified Contact Center Express Expression Language Refere
prompt literals 3-99

V

values 1-17

variables 3-95

about 1-27

array 3-10

array components 1-28

BigDecimal 3-15

BigInteger 3-20

Boolean 1-21, 1-23, 3-24

byte 3-29

character 3-34

complex expression block parameter 1-28

Currency 3-38

Date 3-41

definite assignment 1-30

definition 1-6

Document 3-45

double 3-56

exception-handler parameter 1-28

final 1-29

float 3-59

Grammar selection box 3-64

how to quickly access 3-92

index 3-10

initial values 1-29

integer (int) 3-71

integral 1-18

kinds 1-28

language 3-85

local 1-28

long 3-89

primitive 1-18, 1-28

Prompt selection box 3-95

reference 1-24, 1-28

script 1-28

Short 3-115
nce Guide 11.0(1)

Index
String 3-119

Time 3-123

types 1-17

values 1-17

where types used 1-27

W

white space

definition 1-6
Cisco Unified Contact C
IN-7
enter Express Expression Language Reference Guide 11.0(1)

Index
IN-8
Cisco Unified Contact Center Express Expression Language Refere
nce Guide 11.0(1)

	Cisco Unified Contact Center Express Expression Language Reference Guide, Release 11.0(1)
	Contents
	Preface
	Purpose
	Audience
	Organization
	Related Documentation
	Conventions
	Obtaining Documentation, Obtaining Support, and Security Guidelines
	Documentation Feedback

	About the Cisco Unified CCX Expression Language
	The Language Purpose
	How to Access the Language
	The Language Syntax
	The Language Classes and Interfaces
	Language Code Examples
	Expression Language Terminology
	Expression Language Operator Summary
	Operators Used with Prompts and Documents
	The Prompt Substitution Operator |||
	Qualifier Operators
	Additive Operators
	Document Concatenation Operator +
	Prompt Concatenation Operator +
	String Concatenation Operator +

	Integer/Boolean Conditional-Or Operator ||
	Escalation Operator ||
	Prompt Escalation Operator ||
	Document Escalation Operator ||

	Compound Assignment Operators

	Expression Language Keywords
	Expression Language Literals
	Lexical Literals
	Class Literals
	Complex Literals

	Expression Language Data Types
	Type Variables
	Type Values
	Primitive Values
	Integral Values
	Integer Operations
	Floating-Point Values
	Floating-Point Operations
	Boolean Values

	Reference Values
	About Reference Values
	The Object Class
	The Currency Class
	The Date Class
	The Document Class
	The Grammar Class
	The Language Class
	The Prompt Class
	The String Class
	The Script Class
	The Time Class
	The User Class
	The Customer Class
	The POD Class

	Where Types Are Used

	The Language Variables
	About Language Variables
	Primitive Variables
	Reference Variables
	Variable Categories
	“final” Variables
	Initial Values of Variables
	Definite Local Variable Assignment
	Variable Types, Classes, and Interfaces

	About Conversions in the Expression Language
	Prompt Conversions
	Document Conversions
	String Conversions
	String Parsing
	New Objects Resulting from Conversions

	Using Expressions and the Expression Editor
	How to Access the Cisco Unified CCX Expression Editor
	How to Use the Expression Editor
	How To Enter Expressions in the Expression Editor

	About the Expression Editor Toolbar
	Toolbar Tabs
	A Pop-Up Menu
	Showing or Hiding the Expression Editor Toolbar

	About the Expression Editor Syntax Buttons
	About Expression and Java Licensing

	Expression Editor Tool Reference Descriptions
	Friendly Data Types
	Tool Tips
	Tool Tips For the Java and Miscellaneous Tool Tabs
	Tool Tips For All the Expression Editor Tools

	Array
	About Arrays
	Array Java Specification on the Web
	Array Enhancements
	Array Exceptions

	Example Array Code
	Array Variables
	Index Variables
	Array Methods
	Array tab Syntax Buttons

	BigDecimal
	About BigDecimals
	BigDecimal Java Specification on the Web
	Example BigDecimal Code
	BigDecimal Variables
	BigDecimal Constructors, Methods, and Attributes
	BigDecimal tab Syntax Buttons

	BigInteger
	About BigIntegers
	BigInteger Specification on the Web
	Example BigInteger Code
	BigInteger Variables
	BigInteger Constructors, Methods, and Attributes
	BigInteger tab Syntax Buttons

	Boolean
	About Booleans
	Boolean Specification on the Web
	Example Complex Expression Using a Boolean
	Boolean Variables
	Boolean Constructors, Methods, and Attributes
	Boolean tab Syntax Buttons
	Boolean Literals

	Byte
	About Bytes
	Byte Java Specification on the Web
	Example Simple Expression Use the Byte Data Type
	Byte Constructors, Methods, and Attributes
	Byte Variables
	Byte tab Syntax Buttons

	Character
	About the Character Data Type
	Character Specification on the Web
	Example Character Code
	Character Methods and Attributes
	Character Variables
	Character tab Syntax Buttons
	Character Literals
	Escape Character Literals

	Currency
	About Currencies
	Currency Specification and Code List on the Web
	Example Simple Expression Using a Prompt and Currency
	Currency Variables
	Currency Methods and Attributes
	Recent Currencies
	Currency tab Syntax Button
	Currency Literals

	Date
	About Dates
	Date Specification on the Web
	Example Date Code
	Date Variables
	Date Constructors and Methods
	Date tab Syntax Buttons
	Date Literals

	Document
	About Expression Language Documents
	Example Expression Using a Document
	Document Variables
	Browse Documents Dialog Box
	Document tab Syntax Buttons
	Document Literals
	Binary Document Literal
	URL Document Literals
	File Document Literals
	Text Document Literals
	User Document Literals

	Document Concatenation Operator +
	Document Qualifier Operator
	Document Qualifier Operator @

	Time of Week, Day of Week, and Time of Day Documents
	Time of Week Document
	Day of Week Document
	Time of Day Document

	Double
	About Doubles
	Double Specification on the Web
	Example Double Code
	Double Variables
	Double Constructors, Methods, and Attributes
	Double tab Syntax Buttons

	Float
	About Floats
	Float Specification on the Web
	Example Float Code
	Float Variables
	Float Constructors, Methods, and Attributes
	Float tab Syntax Buttons
	Floating-Point Literals

	Grammar
	About Grammars
	Grammar Specifications on the Web
	Example Grammar Code
	Grammar Variables
	Browse Grammars Dialog Box
	Grammar tab Syntax Buttons
	Grammar Literals
	User Grammar Literals
	Digit Grammar Literals
	GSL Grammar Literals
	SRGS Grammar Literals

	Compound Grammar
	Compound Grammar Indexing
	Grammar Template File Types and Template Enhancements

	Integer
	About the Integer Class
	Integer Specification on the Web
	Example Integer Code
	Integer Variables
	Integer Constructors, Methods, and Attributes
	Integer Operations
	Integer tab Syntax Buttons
	Integer Literals

	Java
	Java Specification on the Web
	Example Java tab Code
	Java tab Constructors, Methods, and Attributes
	How to Access a Java Constructor, Method, or Attribute for Any Class
	How to Make Custom Java Classes Available to the Cisco Unified CCX Editor
	Java tab Syntax Button Descriptions

	Language
	Language Class and Code Specifications on the Web
	Example Language Code
	Language Variables
	Language Methods and Attributes
	Recent Languages
	All Languages
	Language tab Syntax Button
	Language Literals

	Long
	About the Long Data Type
	Long Specification on the Web
	Example Long Code
	Long Variables
	Long Constructors, Methods, and Attributes
	Long tab Syntax Buttons

	Miscellaneous
	Example Simple Expression Using the Miscellaneous Tab
	Object Variables
	DayOfWeek
	Gender
	The Null Literal
	Miscellaneous tab Syntax Buttons

	Prompt
	About Prompts
	Prompt Variables
	Browse Prompts Dialog Box
	Prompt tab Syntax Buttons
	Prompt Literals
	About Prompt Literals
	User Prompt Literals
	Ordinal Prompt Literals
	Currency Prompt Literals
	Number Prompt Literals
	Spelling Prompt Literals
	TTS Prompt Literals
	Delay Prompt Literals

	Operators Used with Prompts
	Prompt Concatenation Operator +
	Prompt Substitution Operator |||
	Prompt Qualifier Operators
	Prompt Qualifier Operator @
	Prompt Weight Qualifier Operator %
	Prompt Escalation Operator ||

	Prompt Templates
	About Prompt Templates
	Escalating Prompt
	Time of Week Prompt
	Day of Week Prompt
	Time of Day Prompt
	Random Prompt

	Prompt Conversions

	Script
	About Scripts
	Example Simple Expression Using a Script
	Script Variables
	Browse Scripts
	Script tab Syntax Buttons

	Short
	About the Short Data Type
	Numeric Type Specification on the Web
	Example Short Code
	Short Variables
	Short Constructors, Methods, and Attributes
	Short tab Syntax Buttons

	String
	About the String Class
	Java String Specification on the Web
	Example Simple Expression Using a String
	String Variables
	String Constructors, Methods, and Attributes
	String tab Syntax Buttons
	String Literals
	Escape Sequences for Character and String Literals
	An Array of Characters is Not a String

	Time
	About Time Data
	Time Specification on the Web
	Example Simple Expression using Time and Three Script Variables
	Time Variables
	Time Constructors and Methods
	Time tab Syntax Buttons
	Time Literals

	User
	About Users
	Example User Code
	User Variables
	User Syntax Button

