
	

 
	

 
	

	

Service Directory Installation and API Guide 
 
 
 
 
 
 
 
 

 
 

Date:  March 9, 2016 
Americas Headquarters 
Cisco Systems, Inc. 

170 West Tasman Drive 

San Jose, CA 95134-1706 

USA 
http://www.cisco.com 
Tel: 408 526-4000 

800 553-NETS (6387) 
Fax: 408 527-0883 



	

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, 
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. 

	

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH 
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, 
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. 

	

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version 
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. 

	

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. 
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. 

	

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT 
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS 
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

	

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http:// 
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership 
relationship between Cisco and any other company. (1110R) 

	

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown 
for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental. 

	

Adobe Systems, Inc. 

	

Adobe LiveCycle Data Services ES2.5, Copyright © 2010, Adobe Systems, Inc. All Rights Reserved 

	

Oracle 

	

Copyright ©2012, Oracle and/or its affiliates. All rights reserved. 

	

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. 

	

Red Hat, Inc. 

	

Red Hat and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the United States and other countries. 

Other product names, symbols, and phrases used throughout this document (if any) are property of their respective owners.  

© 2016 Cisco Systems, Inc. All rights reserved. 



 
C O N T E N T S  

	

	

Service Directory Overview 

Directory Server Software Installation and Configuration 
Installation	Requirements	..............................................................................................................................................	7	

Directory	Server	Installation	.........................................................................................................................................	7	

Directory	Server	Configuration	....................................................................................................................................	8	
Standalone	Mode	......................................................................................................................................................................	8	
Replicated	Mode	.......................................................................................................................................................................	8	

Troubleshooting	the	Directory	Server	.......................................................................................................................	9	

Using the Directory Service API 
API	Use	Cases	.....................................................................................................................................................................	11	
Service	registration	..................................................................................................................................................................	13	
Service	Lookup	.........................................................................................................................................................................	14	
Service	Change	Callback	..........................................................................................................................................................	15	
Tuning	the	parameters	............................................................................................................................................................	16	
	

	

	

	

	

	

	

	



	
	

 
	

	

Service Directory Overview 
	

	
As	the	complexity	of	customer	integration	grows,	so	does	the	number	of	provisioned	service	instances.		Such	complex	
deployments	require	that	100's	of	components	and	interfaces	be	created,	and	then	managed	per	operational	
requirements	including	system	evolution,	resource,	and	network	changes.	

	

Service	Directory	provides	the	platform	features	necessary	to	support	auto-wiring	for	a	large	system	of	many	
component	types	and	instances.		Service	Directory	is	both	transparent	to	the	means	by	which	the	components	are	
deployed,	their	organization	as	Service	implementations,	components,	product	families,	and	so	on.		It	is	largely	agnostic	
to	the	most	component	implementation	concerns,	such	as	language	and	operating	system.		Language-specific	client	
libraries	may	be	created,	as	required.		The	Service	Directory	deployment	adapts	dynamically	to	changes	in	the	deployed	
system,	requiring	no	specific	user	interventions.	

Also,	the	Service	Directory	facility	is	an	essential	requirement	of	a	Service	Oriented	Architecture	(SOA).		Providing	the	
basis	for	a	Service	Provider	to	register	its	Service	Endpoints,	such	that	the	attributes	required	to	communicate	with	the	
endpoints	can	be	discovered	by	a	Service	Consumer	that	needs	to	use	the	service.		The	following	diagram	provides	the	
pieces	that	make	up	the	Service	Directory	deployment.	

 



Architecturally,	the	Service	Directory	comprises	a	highly	available	(HA)	back-end	Directory	Server,	a	client	API,	and	a	
well-defined	protocol	for	clients	to	communicate	with	the	Directory	Server.		The	following	provides	a	description	of	the	
key	terms	and	the	components	that	comprise	the	Directory	Service.	

• Service	–	is	an	abstraction	for	a	logical	business	process	that	is	uniquely	named.		The	components	in	a	
distributed	system	interact	with	the	service	by	learning	about	a	specific	instance	of	the	service	to	communicate	
with.		Each	instance	is	implemented	by	a	Service	Provider	application	(which	may	implement	many	different	
service	instances).		The	interface	to	the	service	instance	is	called	a	Service	Endpoint;	its	representation	is	
standardly	encoded	in	URI	format.	

• Directory	Server	–	is	an	application	component	of	the	Service	Directory	facility,	which	provides	distributed	
persistence	for	the	Service	Directory	service	instance	registrations,	plus	various	lookup	features,	for	its	clients.		
The	server	is	responsible	for	tracking	the	health	of	the	registered	service	instances	(those	intended	to	be	
monitored),	and	to	provide	a	means	to	make	service	availability	visible	to	its	clients,	as	required.		This	may	
include	aggregate	service	availability,	as	well	as	instance	availability	state.	

• Service	Directory	Client	–	is	an	application,	which	interacts	with	a	Directory	Server	according	to	one	or	any	of	
the	following	roles:	
o Service	Directory	Provider,	which	registers	one	or	more	services	that	are	implemented	by	the	application	

itself.	
o Service	Directory	Consumer,	which	looks	up	services	by	name	to	obtain	information	about	Service	

Endpoints	that	it	should	communicate	with.	
o Service	Directory	Proxy	Provider,	a	weakened	notion	of	a	provider,	responsible	for	registering	one	or	more	

services,	which	are	implemented	externally.	
• Service	Directory	API	–	is	a	library	component	of	the	Service	Directory	facility	that	provides	a	means	for	a	client	

to	fulfill	any	or	all	of	the	above	roles.	
Beyond	providing	a	convenient,	callable	interface,	hiding	the	details	of	the	communications	protocols	between	
client	and	Directory	Server,	the	API	includes	a	performance-boosting	service	cache	(for	highly	efficient	lookups	
by	consumers),	and	an	efficient	heartbeat	mechanism	for	monitoring	the	availability	of	provided	services.		A	
ServiceDirectory	class	(static	usage,	only)	provides	the	entry	point	for	using	the	features	of	the	Service	
Directory	API,	including:		configuration,	getting	references	to	the	functional	interfaces	for	the	main	Service	
Directory	client	roles,	and	resetting	the	API	(for	unit	testing).	

• Service	Instance	–	is	a	Service	Instance	representation	of	a	named	Service	Endpoint	owned	by	a	Service	
Provider.		It	is	represented	in	the	API	by	the	class	ServiceInstance.		The	ServiceInstance	contains	the	name,	
instance	id,	URI,	and	metadata	information.		Typically,	once	having	looked	up	a	Service	and	having	retrieved	a	
specific	ServiceInstance,	the	client	acting	as	a	Service	Consumer	uses	the	URI	to	invoke	the	function	supplied	at	
the	specific	endpoint	of	that	instance.	
Multiple	instances	of	a	named	service	may	exist,	each	sharing	the	common	service	name	but	with	different	
attributes.		Attributes	may	be	intrinsic,	modifiable,	or	provider-defined	metadata,	and	may	include:	
o The	Service	Name	that	is	common	to	all	instances	of	the	service	(intrinsic).	
o The	identity	of	the	application	implementing	the	service	instance	(For	example,	the	Service	Provider	

Address	(intrinsic)).	
o An	attribute	to	indicate	whether	the	service	instance	is	monitored	or	not	(intrinsic).	
o The	Service	Endpoint,	which	is	a	URI	specifying	the	means	for	a	client	to	communicate	with	the	instance	

(modifiable).	
o The	known	status	of	the	instance:	Up	or	Down	(modifiable).	
o Additional	attributes,	in	the	form	of	service	meta-data,	which	may	be	used	to	refine	the	lookups	to	obtain	a	

subset	of	service	instances	(modifiable).	

	 	



	

• Registration	Manager	–	is	the	portion	of	the	Service	Directory	API,	which	supports	the	roles	of	the	Service	
Directory	Provider	(and	Proxy	Provider).		The	RegistrationManager	interface	provides	methods	to	register,	
update,	and	unregister	a	ServiceInstance.		The	API's	implementation	class	is	responsible	for	all	communications	
with	the	Directory	Server	in	support	of	these	features.		This	includes	an	optimized	heartbeat	model	to	regularly	
assert	the	availability	of	the	provider's	registered	(and	monitorable)	instances.	

• Lookup	Manager	–	is	the	portion	of	the	Service	Directory	API,	which	supports	the	roles	of	the	Service	Directory	
Consumer.		The	LookupManager	interface	provides	methods	for	simple	ServiceInstance	lookups,	as	well	as	
more	refined	queries.		A	change	notification	interface	allows	a	client	application	to	register	for	a	callback	when	
the	state	of	an	instance,	of	a	specified	service,	has	changed.	
The	API's	implementation	class	is	responsible	for	all	communication,	maintaining	the	cache	of	instances	
previously	requested	by	lookups	or	queries,	based	on	dynamic	change	notifications	from	the	Directory	Service.	
Single-instance	lookup	supports	a	default	rotational	selection	mechanism,	providing	a	default	client-side	load-
balancing	feature.



	

Directory Server Software Installation and 
Configuration 

	

The	Directory	Server	supports	requirements	for	service	registration;	monitoring	and	lookup	via	RESTful	interface,	and	
provides	a	service	facade	on	top	of	a	persistent	data	store.		This	chapter	describes	how	to	install	and	configure	the	
Directory	Server.	

Installation	Requirements	
The	following,	as	a	minimum	are	required	for	the	Service	Directory	software	installation:	

• RHEL6.4/CentOS6.4	or	greater	
• Sun	Java	SDK	1.7.0u5	or	greater	
• 2	GB	RAM	or	greater	

Directory	Server	Installation	
To	install	the	Directory	Server	software,	complete	the	following:	

1. Download	and	install	the	server	RPM	from	the	following	location,	using	the	following	command:	

http://10.84.65.203:8081/nexus/content/repositories/vss-
releases/com/cisco/oss/foundation/directory/cisco.sd.server/1.2.1-5/	

rpm -ivh cisco.sd.server-{version}.noarch.rpm	

2. Install	the	server	package	using	YUM.		The	YUM	repository	can	be	find	at	yum_repo_def.		

yum install cisco.sd.server 

3. Start	the	server	with	default	configuration.	

service sdd start  

4. Verify	the	Directory	Server	installation	status.		

service sdd status 

VCS directory server is running [UP] 

Alternatively	the	Directory	Server	can	be	installed	by	deploying	the	foundation	services	VMware	template	or	QCOW	
image,	which	can	be	downloaded	at	from	the	following	location:	

 http://10.84.65.9/VCSF/templates/Foundation-Core/1.6.0/latest-foundation-services/ 	 	



	

Directory	Server	Configuration	
To	configure	the	Directory	Server	a	script	is	used,	which	is	installed	after	the	RPM	installation/upgrade.		This	script	can	
be	used	for	both	standalone	and	HA	deployment	configurations.	

NOTE:		This	script	MUST	be	executed	after	the	RPM	installation/upgrade.		This	can	be	done	during	the	deploy/upgrade	
time.	

The	Directory	server	can	be	configured	to	run	in	the	following	modes:	

• Standalone	
• Replicated	

Standalone	Mode	
To	configure	a	Directory	Server	to	run	in	a	standalone	mode,	run	the	following	script:	

/opt/cisco/sd/bin/configSDServer.sh isHA false 

Replicated	Mode	
To	configure	a	Directory	Server	to	run	in	a	replicated	mode,	run	the	following	script:	

/opt/cisco/sd/bin/configSDServer.sh isHA true myID id_number quorum “quorum_value” 

Where:	

id_number	–	Is	a	number	in	the	range	of	1	to	255.		This	number	needs	to	be	different	for	each	server	deployed	in	the	
same	cluster.		All	the	nodes	in	the	cluster	must	know	the	other	nodes	addresses	(IP	address	or	hostname),	which	is	
specified	in	quorum	argument.		

quorum_value	–	A	value	formatted	as		<id1>:<address1>;<id2>:<address2>;<id3>:<address3>	

Note	that	the	quorum_value	is	the	same	for	all	nodes	in	the	cluster.	

In a cluster of 3 nodes where id 1~3 form the cluster, the sample configuration for node 
number (=2) is as follows: 
/opt/cisco/sd/bin/configSDServer.sh isHA true myID 2 quorum 
"1:192.168.1.1;2:192.168.1.2;3:192.168.1.3" 
 
In a cluster of 6 nodes where id 1~3 form the main cluster and 4~6 form the observer 
cluster, the sample configuration for node number (=4) is as follows: 
/opt/cisco/sd/bin/configSDServer.sh isHA true myID 4 quorum 
"1:192.168.1.1;2:192.168.1.2;3:192.168.1.3;4:192.168.1.4:observer;5:192.168.1.5:observer;
6:192.168.1.6:observer" 

	 	



Troubleshooting	the	Directory	Server	
In	the	event	of	any	Directory	Server	issues,	the	following	can	be	checked	or	used	to	help	with	the	issue:	

• Directory	Server	Failed	to	Start	–	if	the	Directory	Server	fails	to	start,	refer	to	the	following	log	for	details:	

/var/log/cisco/sd/runsd.log for details 

• Directory	Server	Runtime	Errors	–	if	there	are	Directory	Server	runtime	errors,	refer	to	the	following	log	for	
details:	

/var/log/cisco/sd/server.log 

• Check,	Stop,	or	Restart	Directory	Server	–	to	check	server	status,	or	to	stop/restart	the	directory	server,	use	one	
of	the	following	commands	(Note	that	this	command	should	be	run	by	video	user	not	root	user):	

service sdd status|stop|start|restart 

/opt/cisco/sd/bin/runds.sh status|stop|start|restart (version 1.1.0-5 or earlier) 

• Configuration	and	Version	Information	–	the	Directory	Server	configuration	and	version	information	are	stored	
in	the	following	directory:	

/etc/cisco/sd 

	





	

Using the Directory Service API 
	

	

NOTE:		This	chapter	assumes	that	you	have	downloaded	and	configured	the	Directory	Server.	

The	OSS	v1.x	SD	API	requires	setting	up	a	v1.x	Directory	Server.		For	a	client	project	to	use	the	Service	Directory	API	
V1.x,	the	SD	API	library	is	specified	in	the	dependency	section	of	the	project's	pom.xml	file:	

<dependency>  
    <groupId>com.cisco.oss.foundation.directory</groupId> 
    <artifactId>sd-api</artifactId>  
    <version>1.2.1-5</version>  
</dependency>  

If	you	are	using	Ant	for	your	projects,	you	can	download	the	SD	API	jars	with	dependency	libraries	as	a	tar	ball	(sd-api-
version.tar.gz)	from	the	following	location:	

http://search.maven.org/#search|ga|1|g%3A%22com.cisco.oss.foundation.directory%22%20AND%2
0a%3A%22sd-api%22 

API	Use	Cases	
Before	using	the	Service	Directory	API	to	connect	to	the	directory	server,	the	API	needs	to	be	informed	of	the	location	
of	the	Directory	Service.		The	following	configuration	settings	are	used	to	communicate	this	to	the	API:	

The	server	address:		

DirectoryServiceRestfulClient.SD_API_SD_SERVER_FQDN_PROPERTY 

With	a	default	value:		

vcsdirsvc 

The	server	port:		

DirectoryServiceRestfulClient.SD_API_SD_SERVER_PORT_PROPERTY 

If	the	Directory	Server	is	using	the	default	port	value	(2013),	then	you	only	need	to	ensure	that	the	server	address	(first	
property	above)	works	for	your	environment.	

	 	



	

The	following	methods	can	be	used	to	make	your	configuration	settings	work	in	your	environment:	

• Host	Alias	–	Define	a	host	alias	vcsdirsvc	to	resolve	to	the	IP	address	where	the	Directory	Service	runs.		Some	
production	deployments	may	use	a	DNS	(especially	where	HA	Directory	Server	clusters	are	fronted	by	a	load	
balancer	exposing	a	virtual	IP	address).		This	can	also	be	accomplished	by	defining	the	host	alias	in	the	
/etc/hosts	file	with	the	DIR-SVC-IP	value,	by	adding	the	following	line:	

DIR-SVC-IP vcsdirsvc  

In	this	method,	the	default	address	setting	maps	to	the	DNS,	which	resolves	to	the	desired	IP	address.	

• Adding	a	config.properities	File	–	Another	method	is	to	add	a	file	named	config.properties	in	your	Java	classpath	
(or	found	using	a	path	which	can	be	specified	to	the	API).		This	file	must	have	(as	a	minimum)	the	following	
lines:	

com.cisco.oss.foundation.directory.server.fqdn=SERVER-IP-OR-HOSTNAME 
com.cisco.oss.foundation.directory.server.port=SERVER-PORT  

• Using	the	Configuration	File	–	Another	method	is	to	use	the	configuration	features	of	Service	Directory	API	to	
directly	set	properties	for	Directory	Service	IP	address	or	hostname	(if	it	is	resolvable),	and/or	the	port	number,	
in	code:	

ServiceDirectory.getServiceDirectoryConfig().setProperty( 
        DirectoryServiceRestfulClient.SD_API_SD_SERVER_FQDN_PROPERTY, "SERVER-IP-OR- 
        HOSTNAME");  
     ServiceDirectory.getServiceDirectoryConfig().setProperty( 
        DirectoryServiceRestfulClient.SD_API_SD_SERVER_PORT_PROPERTY, SERVER-PORT);  

The	advantage	of	this	approach	is	that	your	application	will	control	where	the	values	for	SERVER-IP-OR-
HOSTNAME	and	SERVER-PORT	come	from	(for	example,	your	own	property	definitions).	

NOTE:		A	static	shutdown()	method	is	provided	for	the	ServiceDirectory	class.		If	
ServiceDirectory.shutdown()	is	called,	the	SD	API	will	be	completely	shut	down.		ServiceDirectory	is	
reusable	after	the	ServiceDirectory.reset()	is	called.	

	 	



Service	registration	
// Get a RegistrationManager instance from ServiceDirectory.      
// The ServiceDirectory will load a default ServiceDirectoryConfig and   
// instantialize a RegistrationManager instance.   
RegistrationManager registrationManager = ServiceDirectory.getRegistrationManager();       

// The name of the service  
String serviceName = "odrm-setupsession";       

// IP or the fully qualified host name of the machine which runs the service.   
String address = "10.10.35.7";       

// Construct the service instance. serviceName and address together uniquely   
// identify a service instance.   

ProvidedServiceInstance instance = new ProvidedServiceInstance(serviceName, address);   

// Setting the service instance URI.   
// URI is defined as tcp: 
//address:port for the TCP end point  
instance.setUri("http://odrm.cisco.net:8090/ndvr/setupsession");       
// By default, the instance status is DOWN instance.setStatus(OperationalStatus.UP);     
// Setting the service instance metadata. Optional Map<String, String> meta = new 
HashMap<String, String>();  
meta.put("version", "2.5.0"); 
meta.put("datacenter", "datacenter1"); 
meta.put("region", "east"); 
instance.setMetadata(meta);       

// The port of the service. Optional  

int port = 8090;    

// The TLS port of the service. Optional  

int tls_port = 8443;  

// Protocol. Optional  
String protocol = "http";  
instance.setPort(port);  
instance.setTls_port(tls_port);  
instance.setProtocol(protocol);   

// healthCallback is optional, leave it to be null when registering,   

// if the service should not be monitored, e.g. the provider is acting as a proxy. 
ServiceInstanceHealth healthCallback = new ServiceInstanceHealth( 
         public boolean isHealthy(){ 
         // implementation, skip here. 
         return true; 
         } 
);       

registrationManager.registerService(instance, healthCallback);   
OR      
registrationManager.registerService(instance); 
// Update the OperationalStatus of the instance to DOWN,   

// DOWN instance will be removed from lookup.     
registrationManager.updateServiceOperationalStatus(serviceName,                    
instance.getAddress(), OperationalStatus.DOWN);       

// Update the instance URI  

String uri = "http://odrm.cisco.net:8090/ndvr/ setupsessionnew"; 
registrationManager.updateServiceUri(serviceName,                                    
instance.getAddress(), uri);       

//Update metadata meta.put("solution-node", "odrm");     
registrationManager.updateServiceMetadata(serviceName,                                    
instance.getAddress(), meta);        

// Unregister the instance.  

registrationManager.unregisterService(serviceName, instance.getAddress());      	



	

Service	Lookup	
// Get the LookupManager from ServiceDirectory.      
LookupManager lookupManager = ServiceDirectory.getLookupManager();       
String serviceName = "odrm-setupsession";       

// Simple service lookup, an available (only **UP**) service instance is returned via 
Round-Robin  

// policy from the list of the ServiceInstances      

ServiceInstance serviceInstance1 = lookupManager.lookupInstance(serviceName);       

// Get service endpoint uri      
String uri = instance.getUri();       

// Look up all ServiceInstances (both UP and DOWN) of the Service.     
List<ServiceInstance> allServiceInstances = lookupManager.getInstances(serviceName);       

// Filtering the ServiceInstance via some query criteria on the metadata.  
ServiceInstanceQuery query = new ServiceInstanceQuery()                               
.getEqualQueryCriterion("version", "1.0")                               
.getEqualQueryCriterion("datacenter", "dc01");       

// Returns an available ServiceInstance which matches the query criteria.     
ServiceInstance versionedServiceInstance = lookupManager.queryInstanceByName(serviceName, 
query);       

// Query all ServiceInstances which match the query criteria.     

List<ServiceInstance> queryedServiceInstances = 
lookupManager.queryInstancesByName(serviceName, query);      

	 	



Service	Change	Callback	
// A ServiceInstanceChangeListener interface is provided, and user needs to implement the 
// onChange method. Example debug messages are provided as examples.  

private ServiceInstanceChangeListener sdCallback = new ServiceInstanceChangeListener () { 

      public void onChange(ChangeType type, InstanceChange<ServiceInstance> change) { 

      switch (type) { 
      // An instance is deleted 
      case REMOVE: 
         LOGGER.debug("Service instance {} has been removed from cache", 
                 change.from); 
         break; 
      // A new instance is added 
      case ADD: 
         LOGGER.debug("Service instance {} has been added to cache.", 
                 change.to); 
         break; 
      // There is a status change for the instance UP->DOWN or DOWN->UP 
     case STATUS: 
         LOGGER.debug( 
                 "Service instance {} has changed Status from {} to {}", 
                 change.from.getAddress(), change.from.getStatus(), 
                 change.to.getStatus()); 
         break; 
      // There is a URI change 
      case URL: 
         LOGGER.debug( 
                 "Service instance {} has changed URL from {} to {}", 
                 change.from.getAddress(), change.from.getUri(), 
                 change.to.getUri()); 
         break; 
      // There is meta data change 
     case META: 
         Map<String, String> map = new HashMap<String, String>(); 
         map.putAll(change.to.getMetadata()); 
         LOGGER.debug( 
                 "Service instance {} has changed Metadata from {} to {}", 
                 change.from.getAddress(), change.from.getMetadata(), 
                 map); 
         break; 
     default: 
         break; 
     } 
 }; 

  public void addNotify() throws ServiceException { 
     // Add callback to the lookupManager 
     LookupManager lookupManager = ServiceDirectory.getLookupManager(); 
     lookupManager.addInstanceChangeListener(serviceName, sdCallback); 
   }  

	 	



	

Tuning	the	parameters	
The	service	instance	change	notification	is	based	on	a	polling	mechanism.		The	Service	Directory	API	periodically	sends	
polling	requests	to	the	server	for	any	instance	changes.		The	default-polling	interval	is	1	second	to	allow	for	any	service	
instance	change	to	be	notified	timely.		The	client	cache	also	acts	as	the	service	instance	change	listener,	which	is	
updated	when	there	is	any	service	instance	change.		The	Service	Directory	API	provides	parameters	to	allow	an	
application	to	turn	off	the	polling	or	adjust	the	polling	interval.		

// Set polling interval  
ServiceDirectory.getServiceDirectoryConfig().setProperty( 
   DirectoryLookupService.SD_API_POLLING_DELAY_PROPERTY, 10); 

// Disable client cache  
ServiceDirectory.getServiceDirectoryConfig().setProperty( 
   ServiceDirectoryConfig.SD_API_CACHE_ENABLED_PROPERTY, false);  

 


