Cisco 1.2 GHz Super High Output (SHO) GS7000 Node
Installation and Operation Guide
For Your Safety

Explanation of Warning and Caution Icons

Avoid personal injury and product damage! Do not proceed beyond any symbol until you fully understand the indicated conditions.

The following warning and caution icons alert you to important information about the safe operation of this product:

⚠️ You may find this symbol in the document that accompanies this product. This symbol indicates important operating or maintenance instructions.

⚠️ You may find this symbol affixed to the product. This symbol means electric shock hazard. This symbol indicates a live terminal where a dangerous voltage may be present; the tip of the flash points to the terminal device.

:flexed_face: You may find this symbol affixed to the product. This symbol indicates a protective ground terminal.

:flexed_face: You may find this symbol affixed to the product. This symbol indicates a chassis terminal (normally used for equipotential bonding).

⚠️ You may find this symbol affixed to the product. This symbol warns of a potentially hot surface.

⚠️ You may find this symbol affixed to the product and in this document. This symbol indicates an infrared laser that transmits intensity-modulated light and emits invisible laser radiation or an LED that transmits intensity-modulated light.

⚠️ 📚 This symbol means WARNING/CAUTION – read instruction

⚠️ This symbol means a.c. (alternating current)

Important

Please read this entire guide. If this guide provides installation or operation instructions, give particular attention to all safety statements included in this guide.
Notices

Trademark Acknowledgments
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks.

Third party trademarks mentioned are the property of their respective owners.
The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Publication Disclaimer
Cisco Systems, Inc. assumes no responsibility for errors or omissions that may appear in this publication. We reserve the right to change this publication at any time without notice. This document is not to be construed as conferring by implication, estoppel, or otherwise any license or right under any copyright or patent, whether or not the use of any information in this document employs an invention claimed in any existing or later issued patent.

Copyright
© 2016 Cisco and/or its affiliates. All rights reserved. Printed in the United States of America.

Information in this publication is subject to change without notice. No part of this publication may be reproduced or transmitted in any form, by photocopy, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, for any purpose, without the express permission of Cisco Systems, Inc.
Contents

For Your Safety ... 3
Notices .. iii
Important Safety Instructions ... vii
Laser Safety ... xv
Laser Warning Labels ... xvii

General Information

- Equipment Description .. 2

Theory of Operation

- System Diagrams .. 10
- Forward Path ... 11
- Reverse Path .. 12
- Power Distribution .. 13
- RF Amplifier Module ... 14
- Optical Interface Board (OIB) .. 17
- Optical Receiver Module .. 18
- Optical Analog Transmitter Modules 22
- Local Control Module .. 24
- Power Supply Module ... 27

Installation

- Tools and Test Equipment ... 32
- Node Housing Ports ... 34
- Strand Mounting the Node ... 35
- Pedestal or Wall Mounting the Node 38
- Fiber Optic Cable Installation ... 40
- RF Cable Installation ... 47
- Applying Power to the Node .. 50

Setup and Operation

- Tools and Test Equipment ... 56
- System Diagrams .. 57
- Forward Path Setup Procedure .. 60
- Reverse Path Setup Procedure ... 63

Maintenance

- ... 65
Important Safety Instructions

Read and Retain Instructions
Carefully read all safety and operating instructions before operating this equipment, and retain them for future reference.

Follow Instructions and Heed Warnings
Follow all operating and use instructions. Pay attention to all warnings and cautions in the operating instructions, as well as those that are affixed to this equipment.

Terminology
The terms defined below are used in this document. The definitions given are based on those found in safety standards.

Service Personnel - The term service personnel applies to trained and qualified individuals who are allowed to install, replace, or service electrical equipment. The service personnel are expected to use their experience and technical skills to avoid possible injury to themselves and others due to hazards that exist in service and restricted access areas.

User and Operator - The terms user and operator apply to persons other than service personnel.

Ground(ing) and Earth(ing) - The terms ground(ing) and earth(ing) are synonymous. This document uses ground(ing) for clarity, but it can be interpreted as having the same meaning as earth(ing).

Electric Shock Hazard
This equipment meets applicable safety standards.

⚠️ WARNING:
To reduce risk of electric shock, perform only the instructions that are included in the operating instructions. Refer all servicing to qualified service personnel only.

Electric shock can cause personal injury or even death. Avoid direct contact with dangerous voltages at all times.

Know the following safety warnings and guidelines:

- Only qualified service personnel are allowed to perform equipment installation or replacement.
- Only qualified service personnel are allowed to remove chassis covers and access any of the components inside the chassis.
Important Safety Instructions

Equipment Placement

WARNING:
Avoid personal injury and damage to this equipment. An unstable mounting surface may cause this equipment to fall.

To protect against equipment damage or injury to personnel, comply with the following:

- Install this equipment in a restricted access location (access restricted to service personnel).
- Make sure the mounting surface or rack is stable and can support the size and weight of this equipment.

Product Ratings

- **Electrical Ratings:** quasi-square or sinusoidal wave 45 – 90 V, 50 – 60 Hz, max. pass-through current 15 A, max. surge current 25 A, internal power supply max. 185 W.

- Ambient temperature range outside the node must be maintained between -40°C and +60°C (-40°F to 140°F).

- Storage temperature range of the EDR must be maintained between -40°C to +85°C (-40°F to 185°F).

- Humidity range must be maintained between 5% to 95% non-condensing before installation of the EDR Digital Return module(s).

- Max. altitude: <2000 m

- Protection Grade: IP67

- Laser Class: Class 1M.

Strand (Aerial) Installation

CAUTION:
Be aware of the size and weight of strand-mounted equipment during the installation operation. Ensure that the strand can safely support the equipment’s weight.

Pedestal, Service Closet, Equipment Room or Underground Vault Installation

WARNING:
Avoid the possibility of personal injury. Ensure proper handling/lifting techniques are employed when working in confined spaces with heavy equipment.
Important Safety Instructions

- Ensure this equipment is securely fastened to the mounting surface or rack where necessary to protect against damage due to any disturbance and subsequent fall.

- Ensure the mounting surface or rack is appropriately anchored according to manufacturer’s specifications.

- Ensure the installation site meets the ventilation requirements given in the equipment’s data sheet to avoid the possibility of equipment overheating.

- Ensure the installation site and operating environment is compatible with the equipment’s International Protection (IP) rating specified in the equipment’s data sheet.

Connection to Network Power Sources

Refer to this equipment’s specific installation instructions in this manual or in companion manuals in this series for connection to network ferro-resonant AC power sources.

⚠️ Unit is intended to be installed, operated and maintained by trained personnel, in accordance with the local and National Regulation.

⚠️ The unit is intended to be powered from the secondary circuit of an APPROVED/CERTIFIED power source with adequate isolation (reinforced or double called out in the applicable standard) between mains and secondary circuit.

⚠️ Use suitably rated CERTIFIED/APPROVED CATV Cable suitable for outdoor use rated VW-1 or FT-1 or better.

⚠️ Maximum current through the node is 15 Amps. A suitable current limiter is to be provided during end installation or service provider Ferro resonant power source shall have suitable current limiter.

⚠️ Shock Hazard - Housing/Enclosure of the unit must be reliably bonded to protective earth/ground conductor prior to connecting the unit to a power source.

⚠️ Do not touch internal conductor of F/COAX connector or coax cable while the node is energized and disconnect power before removing cover because 90 V a.c. can be accessible.

⚠️ Equipment connected to the protective earthing of the building installation through the mains connection or through other equipment with a connection to protective earthing – and to a cable distribution system using coaxial cable, may in some circumstances create a fire hazard. Connection to a cable distribution system has therefore to be provided through a device providing electrical isolation below a certain frequency range (galvanic isolator, see EN 60728-11).”

NOTE In Norway, due to regulation for installations of cable distribution systems, and in Sweden, a galvanic isolator shall provide electrical insulation below 5 MHz. The insulation shall withstand a dielectric strength of 1,5 kV r.m.s., 50 Hz or 60 Hz, for 1 min.
Important Safety Instructions

Translation to Norwegian (the Swedish text will also be accepted in Norway):

⚠️ Utstyr som er koplet til beskyttelsesjord via nettplugg og/eller via annet jordtilkoplet utstyr – og er tilkoplet et kabel-TV nett, kan forårsake brannfare. For å unngå dette skal det ved tilkoping av utstyret til kabel-TV nettet installeres en galvanisk isolator mellom utstyret og kabel-TV nettet.“

Translation to Swedish:

”Utrustning som är kopplad till skyddsjord via jordat vägguttag och/eller via annan utrustning och samtidigt är kopplad till kabel-TV nät kan i vissa fall medföra risk för brand. För att undvika detta skall vid anslutning av utrustningen till kabel-TV nät galvanisk isolator finnas mellan utrustningen och kabel-TV nätet.”

⚠️ WARNING:
High leakage current earth connection essential before connection supply.

AC Power Shunts

AC power shunts may be provided with this equipment.

Important: The power shunts (where provided) must be removed before installing modules into a powered housing. With the shunts removed, power surge to the components and RF-connectors is reduced.

⚠️ CAUTION:
RF connectors and housing seizure assemblies can be damaged if shunts are not removed from the equipment before installing or removing modules from the housing.

Equipotential Bonding

If this equipment is equipped with an external chassis terminal marked with the IEC 60417-5020 chassis icon (), the installer should refer to CENELEC standard EN 50083-1 or IEC standard IEC 60728-11 for correct equipotential bonding connection instructions.

⚠️ Shock Hazard - Housing/Enclosure of the unit must be reliably bonded to protective earth/ground conductor prior to connecting the unit to a power source.

⚠️ Do not touch internal conductor of F/COAX connector or coax cable while the node is energized and disconnect power before removing cover because 90 V a.c. can be accessible.

⚠️ Equipment connected to the protective earthing of the building installation through the mains connection or through other equipment with a connection to protective earthing – and to a cable distribution system using coaxial cable, may in some circumstances create a fire hazard. Connection to a cable distribution system has therefore to be provided through a device providing electrical isolation below a certain frequency range (galvanic isolator, see EN 60728-11).”
Important Safety Instructions

NOTE In Norway, due to regulation for installations of cable distribution systems, and in Sweden, a galvanic isolator shall provide electrical insulation below 5 MHz. The insulation shall withstand a dielectric strength of 1,5 kV r.m.s., 50 Hz or 60 Hz, for 1 min.

Translation to Norwegian (the Swedish text will also be accepted in Norway):

⚠️ Utstyr som er koplet til beskyttelsesjord via nettplugg og/eller via annet jordtilkople utstyr – og er tilkoplet et kabel-TV nett, kan forårsake brannfare. For å unngå dette skal det ved tilkoping av utstyret til kabel-TV nettet installeres en galvanisk isolator mellom utstyret og kabel-TV nettet.”

Translation to Swedish:

"Utrustning som är kopplad till skyddsjord via jordat vägguttag och/eller via annan utrustning och samtidigt är kopplad till kabel-TV nät kan i vissa fall medföra risk för brand. För att undvika detta skall vid anslutning av utrustningen till kabel-TV nät galvanisk isolator finnas mellan utrustningen och kabel-TV nätet.”

⚠️ WARNING:
High leakage current earth connection essential before connection supply.

General Servicing Precautions

⚠️ WARNING:
Avoid electric shock! Opening or removing this equipment’s cover may expose you to dangerous voltages.

⚠️ CAUTION:
These servicing precautions are for the guidance of qualified service personnel only. To reduce the risk of electric shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so. Refer all servicing to qualified service personnel.

Be aware of the following general precautions and guidelines:

- **Servicing** - Servicing is required when this equipment has been damaged in any way, such as power supply cord or plug is damaged, liquid has been spilled or objects have fallen into this equipment, this equipment has been exposed to rain or moisture, does not operate normally, or has been dropped.

- **Wristwatch and Jewelry** - For personal safety and to avoid damage of this equipment during service and repair, do not wear electrically conducting objects such as a wristwatch or jewelry.

- **Lightning** - Do not work on this equipment, or connect or disconnect cables, during periods of lightning.

- **Labels** - Do not remove any warning labels. Replace damaged or illegible warning labels with new ones.

- **Covers** - Do not open the cover of this equipment and attempt service unless instructed to do so in the instructions. Refer all servicing to qualified service personnel.
Important Safety Instructions

- **Moisture** - Do not allow moisture to enter this equipment.
- **Cleaning** - Use a damp cloth for cleaning.
- **Safety Checks** - After service, assemble this equipment and perform safety checks to ensure it is safe to use before putting it back into operation.

- **Shock Hazard** - Housing/Enclosure of the unit must be reliably bonded to protective earth/ground conductor prior to connecting the unit to a power source.

- **Do not touch internal conductor of F/COAX connector or coax cable while the node is energized and disconnect power before removing cover because 90 V a.c. can be accessible.**

- **Equipment connected to the protective earthing of the building installation through the mains connection or through other equipment with a connection to protective earthing – and to a cable distribution system using coaxial cable, may in some circumstances create a fire hazard. Connection to a cable distribution system has therefore to be provided through a device providing electrical isolation below a certain frequency range (galvanic isolator, see EN 60728-11).”**

NOTE: In Norway, due to regulation for installations of cable distribution systems, and in Sweden, a galvanic isolator shall provide electrical insulation below 5 MHz. The insulation shall withstand a dielectric strength of 1,5 kV r.m.s., 50 Hz or 60 Hz, for 1 min.

Translation to Norwegian (the Swedish text will also be accepted in Norway):

- **Utstyr som er koplet til beskyttelsesjord via nettplugg og/eller via annet jordtilkoplet utstyr – og er tilkoplet et kabel-TV nett, kan forårsake brannfare. For å unngå dette skal det ved tilkoping av utstyr til kabel-TV nettet installeres en galvanisk isolator mellom utstyret og kabel- TV nettet.”**

Translation to Swedish:

"Utrustning som är kopplad till skyddsjord via jordat vägguttag och/eller via annan utrustning och samtidigt är kopplad till kabel-TV nät kan i vissa fall medföra risk för brand. För att undvika detta skall vid anslutning av utrustningen till kabel-TV nät galvanisk isolator finnas mellan utrustningen och kabel-TV nätet.”

Electrostatic Discharge

Electrostatic discharge (ESD) results from the static electricity buildup on the human body and other objects. This static discharge can degrade components and cause failures.

Take the following precautions against electrostatic discharge:

- **Use an anti-static bench mat and a wrist strap or ankle strap designed to safely...**
ground ESD potentials through a resistive element.
- Keep components in their anti-static packaging until installed.
- Avoid touching electronic components when installing a module.

Batteries

This product may contain batteries. Special instructions apply regarding the safe use and disposal of batteries:

Safety

- Insert batteries correctly. There may be a risk of explosion if the batteries are incorrectly inserted.
- Do not attempt to recharge ‘disposable’ or ‘non-reusable’ batteries.
- Please follow instructions provided for charging ‘rechargeable’ batteries.
- Replace batteries with the same or equivalent type recommended by manufacturer.
- Do not expose batteries to temperatures above 100°C (212°F).

Disposal

- The batteries may contain substances that could be harmful to the environment.
- Recycle or dispose of batteries in accordance with the battery manufacturer’s instructions and local/national disposal and recycling regulations.

The batteries may contain perchlorate, a known hazardous substance, so special handling and disposal of this product might be necessary. For more information about perchlorate and best management practices for perchlorate-containing substance, see www.dtsc.ca.gov/hazardouswaste/perchlorate.

Modifications

This equipment has been designed and tested to comply with applicable safety, laser safety, and EMC regulations, codes, and standards to ensure safe operation in its intended environment. Refer to this equipment's data sheet for details about regulatory compliance approvals.

Do not make modifications to this equipment. Any changes or modifications could void the user’s authority to operate this equipment.

Modifications have the potential to degrade the level of protection built into this equipment, putting people and property at risk of injury or damage. Those persons making any modifications expose themselves to the penalties arising from proven non-compliance with regulatory requirements and to civil litigation for compensation in respect of consequential damages or injury.
Important Safety Instructions

Accessories
Use only attachments or accessories specified by the manufacturer.

Electromagnetic Compatibility Regulatory Requirements
This equipment meets applicable electromagnetic compatibility (EMC) regulatory requirements. Refer to this equipment's data sheet for details about regulatory compliance approvals. EMC performance is dependent upon the use of correctly shielded cables of good quality for all external connections, except the power source, when installing this equipment.

- Ensure compliance with cable/connector specifications and associated installation instructions where given elsewhere in this manual.

EMC Compliance Statements
Where this equipment is subject to USA FCC and/or Industry Canada rules, the following statements apply:

FCC Statement for Class A Equipment
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when this equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case users will be required to correct the interference at their own expense.

Industry Canada - Industrie Canadienne Statement
This apparatus complies with Canadian ICES-003. Cet appareil est conforme à la norme NMB-003 du Canada.

CENELEC/CISPR Statement with Respect to Class A Information Technology Equipment
This is a Class A equipment. In a domestic environment this equipment may cause radio interference in which case the user may be required to take adequate measures.
Laser Safety

Introduction

This equipment contains an infrared laser that transmits intensity-modulated light and emits invisible radiation.

Warning: Radiation

<table>
<thead>
<tr>
<th>WARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Avoid personal injury! Use of controls, adjustments, or procedures other than those specified herein may result in hazardous radiation exposure.</td>
</tr>
<tr>
<td>■ Avoid personal injury! The laser light source on this equipment (if a transmitter) or the fiber cables connected to this equipment emit invisible laser radiation. Avoid direct exposure to the laser light source.</td>
</tr>
<tr>
<td>■ Avoid personal injury! Viewing the laser output (if a transmitter) or fiber cable with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.</td>
</tr>
</tbody>
</table>

- Do not apply power to this equipment if the fiber is unmated or unterminated.
- Do not stare into an unmated fiber or at any mirror-like surface that could reflect light emitted from an unterminated fiber.
- Do not view an activated fiber with optical instruments (e.g., eye loupes, magnifiers, microscopes).
- Use safety-approved optical fiber cable to maintain compliance with applicable laser safety requirements.

Warning: Fiber Optic Cables

<table>
<thead>
<tr>
<th>WARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid personal injury! Qualified service personnel may only perform the procedures in this manual. Wear safety glasses and use extreme caution when handling fiber optic cables, particularly during splicing or terminating operations. The thin glass fiber core at the center of the cable is fragile when exposed by the removal of cladding and buffer material. It easily fragments into glass splinters. Using tweezers, place splinters immediately in a sealed waste container and dispose of them safely in accordance with local regulations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye injury can occur - do not pull optical connector or look into the connector or the fiber cable while the node is energized.</td>
</tr>
</tbody>
</table>
Safe Operation for Software Controlling Optical Transmission Equipment

If this manual discusses software, the software described is used to monitor and/or control ours and other vendors’ electrical and optical equipment designed to transmit video, voice, or data signals. Certain safety precautions must be observed when operating equipment of this nature.

For equipment specific safety requirements, refer to the appropriate section of the equipment documentation.

For safe operation of this software, refer to the following warnings.

<table>
<thead>
<tr>
<th>WARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Ensure that all optical connections are complete or terminated before using this equipment to remotely control a laser device. An optical or laser device can pose a hazard to remotely located personnel when operated without their knowledge.</td>
</tr>
<tr>
<td>■ Allow only personnel trained in laser safety to operate this software. Otherwise, injuries to personnel may occur.</td>
</tr>
<tr>
<td>■ Restrict access of this software to authorized personnel only.</td>
</tr>
<tr>
<td>■ Install this software in equipment that is located in a restricted access area.</td>
</tr>
</tbody>
</table>
Laser Warning Labels

Maximum Laser Power

The maximum laser power that can be expected from the EDFA optical amplifier for various amplifier configurations is defined in the following table.

<table>
<thead>
<tr>
<th>Output Power</th>
<th>Maximum Output</th>
<th>CDRH Classification</th>
<th>IEC 60825-1 Classification</th>
<th>IEC 60825-2 Hazard Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 dBm</td>
<td>17 dBm</td>
<td>1</td>
<td>1M</td>
<td>1M</td>
</tr>
<tr>
<td>20 dBm</td>
<td>20 dBm</td>
<td>1</td>
<td>1M</td>
<td>1M</td>
</tr>
<tr>
<td>22 dBm</td>
<td>22 dBm</td>
<td>1</td>
<td>1M</td>
<td>3B</td>
</tr>
</tbody>
</table>

Warning Labels

One or more of the labels shown below are located on this product.
Location of Labels on Equipment

The following illustrations display the location of warning labels on this equipment.
Introduction
This manual describes the installation and operation of the Cisco 1.2 GHz Super High Output (SHO) GS7000 Node.

In This Chapter
- Equipment Description...2
Equipment Description

Overview
This section contains a physical and functional description of the 1.2 GHz SHO GS7000 Node.

Physical Description
The 1.2 GHz SHO GS7000 Node is the latest generation 1.2 GHz optical node platform which uses the housing developed for the GS7000 Node Platform, but it has been painted for improved thermal performance. The housing has a hinged lid to allow access to the internal electrical and optical components. The housing also has provisions for strand, pedestal, or wall mounting.

Note: The 1.2 GHz SHO GS7000 node is painted white, and the pictures in this document which use unpainted housings are used as references.

The base of the housing contains:
- an RF amplifier module
- AC power routing

The lid of the housing contains:
- a fiber management tray and track (included in all nodes)
- optical receiver and transmitter modules (optional)
- power supplies (one or two)
- a status monitor/local control module (optional)
- Remote-PHY module (optional)

Not every 1.2 GHz SHO GS7000 Node contains all of these modules. The 1.2 GHz SHO GS7000 Node is a versatile node that can be configured to meet various network requirements.
The following illustration shows the external housing of the 1.2 GHz SHO GS7000 Node.
The following illustration shows the 1.2 GHz SHO GS7000 Node internal modules and components.

![Diagram of 1.2 GHz SHO GS7000 Node](image)

Functional Description

The 1.2 GHz SHO GS7000 Node is used in broadband hybrid fiber/coax (HFC) networks. It is configured with a receiver, transmitters, and other modules to meet your unique network requirements.

The 1.2 GHz SHO GS7000 Node receives forward optical inputs, converts the input to an electrical radio frequency (RF) signal, and outputs the RF signals to up to four ports. The forward bandwidth is from either 54 MHz or 102 MHz to 1218 MHz. The lower edge of the passband is primarily determined by the diplex filter and the reverse amplifier assembly. Diplex filter choices are 42/54 MHz, and 85/102 MHz.

The forward path of the 1.2 GHz SHO GS7000 Node can be deployed with a broadcast 1310/1550 nm optical receiver with common services distributed to four output ports (all high level). The forward path is configured by using either one optical receiver or one remote PHY module that feeds all output ports.

Reverse traffic can be segmented or combined and routed to up to two DFB reverse
optical transmitters, or up to two Enhanced Digital Return reverse optical transmitters as part of our EDR system. Reverse segmentation is configured by setting the reverse segmentation switch to the appropriate setting.

The 1.2 GHz SHO GS7000 Node accepts Optical Transmitter Modules based on the existing 694x/GainMaker optical transmitters. Reverse optical transmitters can be installed to transmit data, video, or both. Reverse bandwidth is determined by the diplex filter and the reverse amplifier assembly. Diplex filter choices are 42/54 MHz, and 85/102 MHz.

The 1.2 GHz SHO GS7000 Node utilizes the transmitter and receiver module covers that have been designed to allow fiber pigtailed storage within them, providing improved fiber management within the node.

Up to one optical receiver, up to two analog or two digital transmitters, and one Remote-PHY device can be installed in the 1.2 GHz SHO GS7000 Node.

45 - 90 V AC input power is converted to +24.5, +8.5, -6.0, and +5.5 V DC by an internal power supply to power the 1.2 GHz SHO GS7000 Node.

Features
The 1.2 GHz SHO GS7000 Node has the following features:

- Four port 1.2 GHz RF platform
- Uses GaN Technology on the interstage and output stages
- Uses standard GainMaker style accessories (i.e., attenuator pads, equalizers, diplexers and crowbar)
- Field accessible plug-in Forward Linear Equalizers
- 3-state reverse switch (on/off/-6 dB) allows reverse input to be isolated for noise and ingress troubleshooting (status monitor or local control module required)
- Fiber entry ports on both ends of housing lid
- Fiber management tray and track provides easy access to fiber connections
- Primary and redundant power supplies with passive load sharing
- Spring loaded seizure assemblies allow coax connectors to be installed or removed without removing amplifier chassis or spring loaded mechanism from the rear of the housing base
- Dual/Split AC powering

Node Inputs/Outputs Diagram
The following diagram shows the system-level inputs and outputs of the 1.2 GHz SHO GS7000 Node.
Chapter 1 General Information

Note: Port 3 and 6 are only for power.

- The AC can be applied through any housing base port and routed, if required, to the other ports.
- The DC power supply modules can be fed by any housing base port (1 through 6).

Modules Functional Descriptions

This table briefly describes each module. The 1.2 GHz SHO GS7000 Node may not contain all these modules. See Theory of Operation (on page 9) for detailed descriptions of the modules.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Amplifier</td>
<td>The RF Amplifier Module includes:</td>
</tr>
<tr>
<td></td>
<td>- four forward RF output ports</td>
</tr>
<tr>
<td></td>
<td>- four reverse inputs.</td>
</tr>
<tr>
<td></td>
<td>- forward and reverse bandwidths that are established by diplexer and reverse low pass filter assembly selection.</td>
</tr>
<tr>
<td>Optical Receiver</td>
<td>This module converts an optical signal from the headend into a forward path RF signal. An SC/APC fiber connector is standard. Optical power, test points, and status LEDs are provided.</td>
</tr>
<tr>
<td>Optical Transmitter</td>
<td>This module converts reverse path RF signals from the network into an optical signal. An SC/APC fiber connector is standard. Multiple transmitter options are available such as uncooled DFB, 1550 ITU, and EDR. EDR uses the included LC/APC connector that jumps over to an SC/APC bulkhead. Optical power, test points, and status LEDs are provided.</td>
</tr>
</tbody>
</table>
Equipment Description

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Remote-PHY Device (RPD)** | The Remote-PHY Device includes:
- two SFP+ 10G interfaces
- one CONSOLE interface
- 50-pin B2B connector interface between RPD and GS7000 OIB
- 1 DS X 2 US Physical RF ports between RPD and GS7000 |
| **Status Monitor/Local Control Module (SM/LCM)** | The local control module monitors the input optical power of up to four receivers and four transmitters, plus AC power entry and power supply voltage rails. It also provides local reverse path wink and shutdown capabilities through the PC-based GS7000 ViewPort software. It can be upgraded to a status monitor which provides node monitoring and control capability at the cable plant's headend. This module is not required for normal operation of the node. In a hub node application the SM/LCM also monitors and controls the operation of the EDFAs and optical switches. |
| **Power Supply** | The 1.2 GHz GS7000 power supply module has multiple output voltages of +24.5, +8.5, -6.0, and +5.5 V DC. A second power supply can be installed in the node for redundancy or load sharing. The 1.2 GHz GS7000 Node can be set up in the following powering configurations:
- two power supplies powered by different AC sources
- two power supplies using the same AC source
- a single supply using a single AC source |
| **Fiber Management Tray and Track** | The fiber management system secures and protects the optical fiber inside the node housing. |
| **Optical Interface Board** | The Optical Interface Board (OIB) provides all interconnections between the modules in the housing lid to the RF amplifier module in the housing base. Each module in the lid plugs directly into the OIB through a connector header, a connector header and RF connectors, or row of sockets depending on the module type. An input attenuator pad is provided on the OIB for each optical receiver and Remote-PHY device in the housing lid. Output attenuator pads are provided on the OIB for each optical transmitter and Remote-PHY device in the housing lid. |

Ordering Information

Please refer to the 1.2 GHz SHO GS7000 Node Data Sheet for a full listing of the configured node, components, and accessories that are available.

Note: Please consult with your Account Representative, Customer Service Representative, or System Engineer to determine the best configuration PID for your particular application.
Theory of Operation

Introduction

This chapter describes the theory of operation for the 1.2 GHz SHO GS7000 Node, including functional descriptions of each module in the node.

The 1.2 GHz SHO GS7000 Node is comprised of two parts, the lid and the base.

The lid houses an optical interface board (OIB), and some of the following products: the optical receiver (optional), one or two optical transmitters (optional), a Remote-PHY device (optional), a status monitor (optional) or a local control module (optional), one or two power supplies, and a fiber management tray/track.

The base houses the RF amplifier module and the accessories that plug into it. These accessories include, three forward band linear equalizer modules, multiple attenuator pads, four diplexer modules and a high pass filter trim (HPFT) module.

In This Chapter

- System Diagrams
- Forward Path
- Reverse Path
- Power Distribution
- RF Amplifier Module
- Optical Interface Board (OIB)
- Optical Receiver Module
- Optical Analog Transmitter Modules
- Local Control Module
- Power Supply Module
System Diagrams
Forward Path

Introduction
Forward path refers to signals received by the node from the hub or headend. These signals are amplified in the node and routed to subscribers through the cable distribution network.

Forward Path Signal Routing
1.2 GHz SHO GS7000 Node forward path signal routing functions are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1310 nm or 1550 nm optical signals from the hub or headend are applied to the receiver module in the 1.2 GHz SHO GS7000 Node.</td>
</tr>
<tr>
<td>2</td>
<td>The receiver module detects the signal on the optical carrier applied to it and outputs an electrical RF signal to the node Optical Interface Board (OIB).</td>
</tr>
<tr>
<td>3</td>
<td>The RF signal travel across the OIB and cables to the Launch Amp which splits the RF signals entering it equally between the four forward amplification paths in the RF amplifier module.</td>
</tr>
<tr>
<td>4</td>
<td>The forward amplification paths in the RF amplifier module is composed of one common input amplification stage and one common interstage amplification stage in series followed by a 4-way power divider. Each output of the power divider feeds a power doubler output amplification stage. This topology provides four node output ports with one common input signal source.</td>
</tr>
<tr>
<td>5</td>
<td>The common forward amplification path in the RF amplifier module also contains padding, trimming, thermal compensation, equalization, and filtering circuitry.</td>
</tr>
</tbody>
</table>
Reverse Path

Introduction
Reverse path refers to signals received by the node from the cable distribution network. These signals are amplified in the node and returned to the headend optically through the fiber portion of the network. The reverse path is not used in all networks.

Reverse Path Signal Routing
1.2 GHz SHO GS7000 Node reverse path signal routing functions are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reverse path RF signals are applied to node output ports</td>
</tr>
<tr>
<td>2</td>
<td>The RF signals from ports 1 and 2 are combined as well as the signals from ports 4 and 5. Each set of combined ports are amplified independently in the RF amplifier module. Segmentation of these reverse signals is determined by the switch located on the launch amplifier module.</td>
</tr>
<tr>
<td>3</td>
<td>Each of the reverse amplification paths in the RF amplifier module also contains padding, trimming, filtering, -6 db wink, and RF On/Off switch circuitry.</td>
</tr>
<tr>
<td>4</td>
<td>The pairs (ports 1 & 2, ports 4 and 5) of reverse path signals are combined or maintained separate, depending on the position of the reverse segmentation switch, and directed to the transmitter module path(s) on the OIB.</td>
</tr>
<tr>
<td>5</td>
<td>The RF signals travel across the OIB to the transmitter(s) and or Remote-PHY Device. The transmitter(s) and/or Remote-PHY Device convert the RF signals to optical signals which are transmitted through the fiber portion of the network back to the hub or headend.</td>
</tr>
</tbody>
</table>
Introduction

The 1.2 GHz SHO GS7000 Node is powered by one or two power supplies.

Power Distribution

1.2 GHz SHO GS7000 Node power distribution functions are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45 to 90 V AC is applied to one or two power supply modules in the 1.2 GHz GS7000 Node.</td>
</tr>
<tr>
<td>2</td>
<td>The power supply module(s) convert(s) the AC input to +24.5, +8.5, -6.0, and +5.5 V DC.</td>
</tr>
<tr>
<td>3</td>
<td>The +24.5, +8.5, -6.0, and +5.5 V DC lines are routed to 1.2 GHz GS7000 Node internal modules.</td>
</tr>
<tr>
<td>4</td>
<td>If two power supplies are installed and both are active, the load is shared equally between them.</td>
</tr>
<tr>
<td>5</td>
<td>An AC segmentable shunt is available to separate the AC connection to ports 1-3 from that of ports 4-6. This allows the node to be configured where one power supply is powered from ports 1-3 and a second power supply is powered from ports 4-6.</td>
</tr>
</tbody>
</table>
RF Amplifier Module

Introduction

This section describes the RF amplifier module. The RF amplifier module contains the forward band and the reverse band amplifiers.

Functional Diagrams

The following diagrams show how the RF amplifier functions.
Forward Band Amplification 4-Way Path Description

The RF amplifier module provides all forward signal amplification outside the optical receiver and remote PHY modules in the GS7000 Node.

The launch amplifier contains four forward amplification paths. The forward amplification paths have one common input, and share the same input gain block, frequency response trim circuit, thermal compensation circuit, plug-in pad, (plug-in) linear equalizer, and interstage gain block. The interstage gain block is followed by a 2-way splitter. Each of the (two) signals from the splitter travels through an interstage (plug-in) linear equalizer. After the interstage equalizers, the (left and right side) signals each go through a 2-way splitter. Each of the four (forward) signals travel through an output pad, an output gain block, a diplex filter, a bi-directional 20 dB down forward test point, and finally an AC bypass circuit.

The thermal circuit on the RF amplifier module is designed to compensate for the RF forward path thermal movement of the entire node RF station. This includes the forward path amplifier module circuitry, RF cables, and optical interface board circuitry. It does not include the thermal movement of the optical receiver or the Remote-PHY Device.

Forward Band Linear Equalizer Module

The forward band linear equalizer modules set the overall forward path tilt of the RF amplifier module and the 1.2 GHz SHO GS7000 Node. The 1.2 GHz SHO GS7000 Node launch amplifier is shipped with two 12.0 dB and one 10.5 dB linear equalizers installed in the RF amplifier module. One equalizer is installed in the amplifier module common forward path and two equalizers are installed in the interstage path of the amplifier module. Each interstage equalizer is for one side (left or right) of the RF amplifier module. This sets the node’s forward path tilt to 21 dB linear. Forward band linear equalizer modules of other values are available. This allows the nodes forward path tilt to be adjusted as needed. The forward band linear equalizer module is a plug-in, field accessible module. See the equalizer charts in Appendix A - Technical Information.

Reverse Band Amplification Path Description

The RF amplifier module provides all reverse signal amplification outside the optical transmitter modules in the 1.2 GHz SHO GS7000 Node. It contains four reverse paths comprised of an AC bypass circuit, a bi-directional 20 dB down reverse test point, a diplex filter, and an input pad. After the input pads, the reverse signals from ports 1 and 2 (left), and ports 4 and 5 (right) are each combined with separate 2-way combiners. After combining, each (left and right) combined path includes a low pass filter, a 6 dB switched attenuator, a gain block, an RF on/off switch, and a frequency response trim circuit. After the frequency response trim circuits, the left and right paths can be combined or remain segmented based on the position of the reverse configuration control switch. The 6 dB switched attenuator and RF on/off switch circuits allow the left and right reverse paths to have 6 dB (wink) and on/off capabilities. These circuits are controllable from the headend via the status monitor or locally via the local control
module and a hand held controller. A serial communication link is provided between status monitor or local control module and the reverse band launch amplifier. Circuitry on the amplifier converts the serial communications to parallel control signals and routes them as needed.
Optical Interface Board (OIB)

Optical Interface Board Description

The Optical Interface Board (OIB) provides all interconnections between the modules in the housing lid of the 1.2 GHz SHO GS7000 Node. The modules in the housing lid include the optical receiver, optical transmitter, power supply, Remote-PHY module, and status monitoring/local control modules. Each module in the lid plugs directly into the OIB through a connector header, connector header and RF connectors (in the case of the Remote-PHY module, or row of sockets. Input attenuator pads are provided on the OIB (in the housing lid) for the optical receiver module and the Remote-PHY module. 1 or 2 output attenuator pads are provided on the OIB for each optical transmitter and/or Remote-PHY module in the housing lid. All RF and power cables running between the housing lid and base also plug into the OIB.

The OIB can be field replaceable. All optical modules, power supplies, RF cables, power cables, and OIB mounting screws must be removed in order to remove the OIB from the housing lid.
Optical Receiver Module

Optical Receiver Module Description

The optical receiver module takes in optical signals and puts out forward band RF signals. The module cover has a sliding tray incorporated into it allowing the receivers fiber pigtail to be spooled up and contained within the receiver module. This greatly improves fiber management within the node.

The optical receiver modules plug directly into the optical interface board via a connector header and are secured in place with two screws. Input attenuator pads are provided on the optical interface board for each receiver mounted in the housing lid.

All optical receiver test points are provided and are accessible through holes in the module housing. The optical power test points for the optical receiver module has a scaling ratio of \(1 \text{ V} = 1 \text{ mW} \). A -20 dB RF power test point is accessible through the front panel.

The optical receiver module has an optical power LED to indicate the presence of optical power that is either above or below the specified range. ON indicates optical power is within operating limits and OFF indicates that optical power is below the alarm threshold.

The optical power level into the optical receiver module is monitored by the status monitor or local control module. When the node is setup for redundant optical receiver operation, a digital signal is generated by the status monitor or local control module to switch between the primary and redundant optical receiver module in the forward configuration module.

There are two types of the receiver module: Standard Input Optical Receiver and Low Input Optical Receiver.
The optical input range for the low input receiver is 0.1 \text{ w} to 0.63 \text{ w} (-10 \text{ dBm} to -2 \text{ dBm}). Compared to the standard input optical receiver (the optical input range is -6 \text{ dBm} to +2 \text{ dBm} (0.25 \text{ w} to 1.58 \text{ w})), the low input optical receiver can work with lower optical input level, in order to support fiber deep applications.
Chapter 2 Theory of Operation

The illustration below is Low Input Receiver RF Output Level and Transmitter OMI: Rx Switch in 0 dB Setting:

![Graph showing RF Output Level vs. Optical Input Power for 1310nm and 1550nm transmitters.]

The illustration below is Low Input Receiver RF Output Level and Transmitter OMI: Rx Switch in -8 dB Setting:

![Graph showing RF Output Level vs. Optical Input Power for 1310nm and 1550nm transmitters.]

For the detailed information about the low input optical receiver, please refer to the latest GS7000 Data Sheet.
Optical Receiver Module Diagram

The following diagram shows how the optical receiver module functions.
Optical Analog Transmitter Modules

Optical Analog Transmitter Module Descriptions

The optical analog transmitter module takes in reverse band RF signals and puts out optical signals. The 1.2 GHz GS7000 Node is designed to work specifically with the existing mid gain, temperature compensated DFB optical transmitters. Other mid and high gain optical transmitters may be installed in the 1.2 GHz GS7000 Node with varying effects on the overall node specifications. The new module cover fits on all existing optical transmitters. This module cover has a sliding tray incorporated into it allowing the transmitters fiber pigtail to be spooled up and contained within the transmitter module. This greatly improves fiber management within the node.

The optical transmitter modules plug directly into the optical interface board via a connector header and are secured in place with two screws. Output attenuator pads are provided on the optical interface board for each transmitter mounted in the housing lid.

RF test points are accessible through holes in the module housing. The optical power test point for the optical transmitter module has a scaling ratio of 1 V = 1 mW. A -20 dB RF power test point is accessible through the module top cover.

The top cover contains a status monitor LED. Each optical transmitter module laser power indicator turns off when the laser power output falls outside the alarm threshold. It is on (green) when within the alarm threshold.
Optical Analog Transmitter Module Diagram

This illustration shows how the optical analog transmitter module functions.
Local Control Module

Overview
A local control module and a status monitor are available for the 1.2 GHz SHO GS7000 Node and Hub Node. A status monitor consists of a local control module with a transponder core module installed in the housing. The same housing is used for both units. The units perform the following function:

- Local Control Module - controls redundancy and forward segmentation, and configures the modules
- Status Monitor - adds status monitoring capability to the local control module
- DOCSIS capability

Status Monitor Description
The status monitor is HMS compliant and provides node monitoring and control capability at the cable plant's headend. The following node voltages and signals are monitored and their status reported to the headend by the status monitor.

- Receiver optical input level
- Transmitter optical output level
- AC power presence and peak voltage (for split AC powering cases, AC power from both sides of node housing is monitored)
- DC voltages from both primary and redundant power supplies

Commands are sent from the headend to the status monitor. The status monitor communicates serially with the RF amplifier module to control the optional forward band redundancy switches on the forward configuration module, the reverse band 6 dB (wink) attenuators on the reverse amplifier PWB, and the reverse band on/off switches on the reverse amplifier PWB.
Note: The transponder core module can be seen through the Heart Beat/Receive/Error indicator cutout in the cover.

Local Control Module Description

The local control module locally monitors the following node voltages and signals:

- Receiver optical input level
- Transmitter optical output level
- AC power presence and peak voltage (for split AC powering cases, AC power from both sides of node housing is monitored)
- DC voltages from both primary and redundant power supplies

The local control module communicates serially with the RF amplifier module to control the optional forward band redundancy switches on the forward configuration module. It is a low-cost module that plugs into the status monitor connectors on the optical interface board.

The local control module is equipped with a USB port to allow local control of the optional forward band redundancy switches, the reverse band 6 dB (wink) attenuators,
the reverse band on/off switches, the optical switch, and optical amplifiers through the PC-based GS7000 ViewPort software. All parameters monitored by the local control module can be displayed and reviewed using ViewPort.
Power Supply Module

Power Supply Module Description

The power supply module converts a quasi-square wave, 50 – 60 Hz AC input voltage into four well-regulated DC output voltages. The supply is an off-line, switched-mode power supply with a large operative input range. This reduces service outages by converting long duration AC surges into load power. The power supply is a constant power device, meaning that it automatically adjusts its internal operating parameters for the most efficient use of the different levels of input voltage and current it will receive within the cable plant.

The DC output voltages generated by the power supply, at given load currents, are shown below:

+24.5 VDC @ 6.2 Amps
+8.5 VDC @ 1.0 Amps
+5.5 VDC @ 1.3 Amps
-6.0 VDC @ 0.8 Amps

Test points are provided on top of the power supply module for AC input and all output DC voltage rails.
The power supply module plugs directly into the optical interface board, no external cables are required.

A 1.2 GHz SHO GS7000 Node can be configured with one or two power supplies. AC input voltage can be routed to both power supplies commonly from any node output port. In addition, AC input voltages can be routed in a split fashion to the two power supplies. AC input voltages from the left half of the node (output ports 1 - 3) can be routed to power supply 1 independent of AC input voltages from the right half of the node (output ports 4 - 6) being routed to power supply 2. Each of the power supplies output voltage rails is diode OR’d within the supply. This creates common DC powering circuits when multiple supplies are present in the node.
Node Power Limitations

Nodes and hub nodes must be configured in a manner that prevents potential thermal overloads. Heat generated by the node can reduce the life of the equipment.

![CAUTION:]

The life of the equipment may be reduced if configured to draw more than the recommended level of power from the power supplies.

Two power supplies can provide a maximum power level of 150 watts to the node or hub node. The RF amplifier uses the majority of the available power. Maintain the total power consumption of all modules in the housing within these guidelines to minimize the heat generated. Find the optimal configuration by summing the power consumption of the RF amplifier plus the other individual modules in the housing using the following table.

Important: Do not populate the housing with any combination of modules that would draw more than the available power of 150 watts.

The following table lists the modules and their respective power consumption.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Type</th>
<th>Maximum Power Draw (Watts)</th>
<th>Typical Power Draw (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td>1310 nm dfb, analog CWDM</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Standard Input Receiver</td>
<td>Operating</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard Input Receiver</td>
<td>Standby</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>Operating</td>
<td>4.1</td>
<td>3.85</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>Standby</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Status Monitor/ Local Control Module</td>
<td></td>
<td>2.6</td>
<td>0.9</td>
</tr>
<tr>
<td>RF Amplifier</td>
<td></td>
<td>72.8</td>
<td>72.9</td>
</tr>
<tr>
<td>1:1 EDR Transmitter</td>
<td></td>
<td>< 3</td>
<td></td>
</tr>
<tr>
<td>2:1 EDR Transmitter</td>
<td></td>
<td>< 7</td>
<td></td>
</tr>
</tbody>
</table>
3

Installation

Introduction
This chapter describes the installation of the 1.2GHz GS7000 Node.

In This Chapter

- Tools and Test Equipment .. 32
- Node Housing Ports .. 34
- Strand Mounting the Node .. 35
- Pedestal or Wall Mounting the Node ... 38
- Fiber Optic Cable Installation ... 40
- RF Cable Installation ... 47
- Applying Power to the Node .. 50
Tools and Test Equipment

Required Tools and Test Equipment

The following tools and equipment are required for installation.

- Torque wrench capable of 5 to 12 ft-lbs (6.8 to 16.3 Nm)
- 4-inch to 6-inch extension for torque wrench
- 1/2-inch socket for strand clamp bolts and cover bolts
- 1/4-inch flat-blade screwdriver
- #2 Phillips-head screwdriver
- Long-nose pliers
- 1/2-inch deep-well socket for seizure connector
- True-RMS digital voltmeter (DVM)
- EXFO FOT 22AX optical power meter with adapters
- Optical connector cleaning supplies
- Optical connector microscope with appropriate adapters for your optical connectors

Node Fastener Torque Specifications

Be sure to follow these torque specifications when assembling/mounting the node.

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque Specification</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing closure bolts</td>
<td>5 to 12 ft-lbs (6.8 to 16.3 Nm)</td>
<td></td>
</tr>
<tr>
<td>Test point port plugs</td>
<td>5 to 8 ft-lbs (6.8 to 10.8 Nm)</td>
<td></td>
</tr>
<tr>
<td>Housing plugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strand clamp mounting bracket bolts</td>
<td>5 to 8 ft-lbs (6.8 to 10.8 Nm)</td>
<td></td>
</tr>
<tr>
<td>Pedestal mounting bolts</td>
<td>8 to 10 ft-lbs (10.8 to 13.6 Nm)</td>
<td></td>
</tr>
<tr>
<td>Module securing screws (Tx, Rx, PS, and SM/LCM modules)</td>
<td>25 to 30 in-lbs (2.8 to 3.4 Nm)</td>
<td></td>
</tr>
<tr>
<td>RF Amplifier assembly shoulder screws</td>
<td>18 to 20 in-lbs (2.0 to 2.3 Nm)</td>
<td></td>
</tr>
</tbody>
</table>
Fastener | Torque Specification | Illustration
--- | --- | ---
Seizure nut | 2 to 5 ft-lbs (2.7 to 6.8 Nm) | ![Seizure nut](image1.png)
RF cable connector* | Per manufacturer instructions | ![RF cable connector](image2.png)
Fiber optic cable connector | 20 to 25 ft-lbs (27.1 to 33.9 Nm) | ![Fiber optic connector](image3.png)

Note: The typical insertion force required for RF connectors and RF terminators is 20-30 lbsf. However in some field situations the required insertion force can be higher. RF Connector/Terminators used should be able to withstand at least 80 pounds of insertion force without damage to the center pin.
Node Housing Ports

The following illustration shows the location of available RF ports, fiber ports, and test points on the 1.2 GHz GS7000 Node housing.

Notes:
- When replacing test point port plugs, torque from 5 to 8 ft-lbs (6.8 to 10.8 Nm).
Strand Mounting the Node

Description

The following procedure explains how to install the 1.2 GHz GS7000 Node on a strand (aerial installation). Strand mounting allows street-side access to the housing.

Procedure

Follow this procedure to mount the housing to a strand. The housing does not need to be opened for strand installation.

![Strand Clamps]

1. Check the strand size. The minimum strand diameter should be 5/16 inch.
2. Attach the strand clamp brackets to the housing in the position shown in the following illustration. Use a torque wrench tightens the strand clamp bracket bolts from 5 ft-lb to 8 ft-lbs (6.8 to 10.8 Nm).
3. Loosen the strand clamp bolts to separate the clamps enough to insert the strand, but do not remove them. Then lift the housing into proper position on the strand.

4. Slip the clamps over the strand and finger-tighten the clamp bolts. This allows additional side-to-side movement of the housing as needed.

5. Move the housing as needed to install the coaxial cable and connectors. See the illustrations below for an example.

 Powered from Left

 ![Strand Clamps](image1)

 Powered from Right

 ![Strand Clamps](image2)

Note: If supplying power to the node through a main output port, a power inserter must be installed to inject the AC voltage onto the RF signal.

6. Use a torque wrench and a 1/2-inch socket to tighten the strand clamp bolts from 5 ft-lb to 8 ft-lbs (6.8 to 10.8 Nm).

 Note: A slight tilt of the face of the housing is normal. Cable tension will cause the housing to hang more closely to vertical.

7. Connect the coaxial cable to the pin connector according to the pin connector manufacturer’s specifications.

8. Continue to *Fiber Optic Cable Installation* (on page 40) and *RF Cable Installation*
(on page 47).
Pedestal or Wall Mounting the Node

Description

Two mounting holes on the housing allow pedestal or wall mounting.

Procedure

Follow this procedure for pedestal or wall mounting.

![Mounting Holes]

WARNING:

Be aware of the size and weight of the node while mounting. A fully loaded 1.2 GHz GS7000 Node weighs over 50 lbs (22.7 kg).

Ensure that proper handling/lifting techniques are employed when working in confined spaces with heavy equipment.

Failure to observe these admonishments can result in serious injury or death.

1. Remove the cover of the pedestal.
2. Remove the self-tapping bolts from the strand clamps, if previously installed, and set the bolts and strand clamps aside.
3. Position the 1.2 GHz GS7000 Node horizontally in the enclosure and allow for free flow of air around it. Inadequate airflow could cause the node to exceed thermal parameters. Line up the bolt holes on the bottom of the housing with the mounting holes on the pedestal bracket provided by the pedestal manufacturer.
Important: The node housing must be mounted horizontally, as shown, to ensure proper airflow over the housing cooling fins. Do NOT mount the node housing vertically.

4 Secure the node housing to the pedestal bracket using the strand clamp bracket bolts you removed in step 2. Insert the bolts into the mounting holes. Use the strand clamps as spacers if necessary. Torque the bolts from 8 ft-lb to 10 ft-lb (10.8 Nm to 13.6 Nm).

5 Connect the coaxial cable to the pin connector according to connector manufacturer’s specifications.

6 Ground the equipment in accordance with local codes and regulations.

7 Continue to Fiber Optic Cable Installation (on page 40) and RF Cable Installation (on page 47).
Fiber Optic Cable Installation

Overview

The 1.2 GHz GS7000 Node can accept a fiber optic cable connector from either the right or left side of the housing, or both. The fiber optic cable(s) carries forward and reverse optical signals.

This procedure assumes a specific type of connector as an example. Your connector may be different from the one shown in these illustrations. Be sure to install the connector according to the connector manufacturer’s instructions.

Important: Fiber optic cable installation is a critical procedure. Incorrect installation can result in severely degraded 1.2 GHz GS7000 Node performance. Be sure to carefully follow fiber connector manufacturer’s instructions. See Care and Cleaning of Optical Connectors (on page 76).

Color Code

Fiber connectors and adapters are labeled with the following color code.

Note: This is only a suggested setup. Your fiber assignment may be different. Refer to your network diagrams to verify your color code.

<table>
<thead>
<tr>
<th>Connector/Adapter Number</th>
<th>Fiber Color Code</th>
<th>Connects to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
<td>forward receiver 1</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td>forward receiver 2</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>reverse transmitter 1</td>
</tr>
<tr>
<td>4</td>
<td>Brown</td>
<td>reverse transmitter 2</td>
</tr>
<tr>
<td>5</td>
<td>Slate</td>
<td>spare</td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td>spare</td>
</tr>
<tr>
<td>7</td>
<td>Red</td>
<td>spare</td>
</tr>
<tr>
<td>8</td>
<td>Black</td>
<td>spare</td>
</tr>
</tbody>
</table>

Fiber Management System

The fiber management system is made up of a fiber tray and a fiber routing track. The fiber tray provides a convenient location to store excess fiber and up to two WDM modules in the node. The tray is hinged to allow it to move out of the way during the
The insertion of the fibers and for installation or replacement of the node power supplies. The fiber routing track provides a channel for routing fiber pigtails to their appropriate optical modules as well as a location to snap in unused fiber connectors for storage.

The following illustration shows the design of the fiber tray.

Note: Fibers are spooled in a counterclockwise direction in the tray.

The following illustrations show the location and layout of the fiber tray and track in the housing lid.
Note: Power supplies are removed in the previous illustration for clarity.

Procedure

Install fiber optic cable as described below.

WARNING:
Laser light hazard. The laser light source on this product emits invisible laser radiation. Avoid direct exposure. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

- Do not apply power to this product if the fiber is unmated or unterminated.
- Do not stare into an unmated fiber or at any mirror-like surface that could reflect light that is emitted from an unterminated fiber.
- Do not view an activated fiber with optical instruments.

1 The first step depends on whether the fiber optic cable is factory installed or not.

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>fiber optic cable is factory installed</td>
<td>splice fiber pigtail of optical fiber input cable to your splice enclosure and continue to RF Cable Installation.</td>
</tr>
<tr>
<td>fiber optic cable is not installed</td>
<td>go to step 2</td>
</tr>
</tbody>
</table>

2 Select the right or left fiber connection port for use and remove its sealing plug.
3 Push in the two release tabs at the top of the fiber tray and swivel the top of the fiber tray up and back to allow a clear view of the fiber routing channel below.

4 One at a time, carefully insert fibers with attached connectors through the fiber connection port, the fiber channel, and then up and through the fiber entry point in the bottom of the fiber tray. Do not bend or kink fibers. Though not necessary, you can also remove the power supplies and open the fiber routing channel cover for additional access.
Note: If using the alternate (right-side) fiber connection port, you have to route the fibers through the fiber channel in the fiber track located underneath the unused
fiber holders.

5 Hold the connector body to prevent rotation of the connector or fibers.

6 Carefully thread the 5/8-inch threaded nut into the threaded hole of the fiber port. Tighten to 20 to 25 ft-lbs (27.1 to 33.9 Nm).

7 Firmly tighten the rotational nut against the 5/8-inch threaded nut.

8 Push heat shrink tubing over the connector and fiber port and shrink in place.

9 Identify individual fibers according to their color code and determine to which receiver or transmitter module each fiber will connect.

10 Pivot the fiber tray back down and snap it into place on top of the power supply with its locking tabs.

11 Open the fiber tray cover and carefully wind the fibers around the spool in a counterclockwise direction. Be sure to leave enough fiber so that each connector can reach its intended module. Note that different diameter spool paths are provided to properly adjust the fiber length.
12 Route each fiber to its intended module through the fiber track as shown.
13 Before connection, carefully clean the optical connectors on both fiber and module according to the procedures in *Care and Cleaning of Optical Connectors* (on page 76).
14 Open the receiver or transmitter module fiber connector cover. Carefully slide the fiber connector into the module connector until it clicks.
15 Repeat steps 12 and 13 for each receiver and transmitter module.
16 Splice fiber pigtail of optical fiber input cable to your splice enclosure.
17 Continue to *RF Cable Installation* (on page 47).
RF Cable Installation

Overview

The 1.2 GHz GS7000 SHO Node can accept up to four RF cables. These cables carry forward path RF signal outputs and reverse path RF signal inputs. The RF cables also supply the 45 to 90 V AC power input. Power can also be supplied through the 2 Ports (3 and 6) which do not support RF signals.

Trimming the Center Conductor

The 1.2 GHz GS7000 Node requires pin-type connectors for all RF connections. Standard pin connectors, with pins extending 1.5 in. to 1.6 in. (3.8 cm to 4.064 cm) from connector shoulder, require no trimming. You must trim longer pins before inserting them into the housing.

Trimming Using the Integrated Cradle

To trim long pins using the integrated cradle, follow these steps.

1. Place the connector on the cradle as shown in the following illustration.
2 If the center conductor extends past the CUT stanchion on the housing, trim the pin flush with the end of the CUT stanchion.

3 Remove any burrs or sharp edges from the trimmed end of the pin.

Trimming Using the Strip Line Mark

To trim long pins using the strip line mark on the housing, follow these steps.

1 Place the connector above the entry port so that it lines up with its installed position.
2. If the center conductor extends past the STRIP line on the housing, trim the pin flush with the STRIP line.

3. Remove any burrs or sharp edges from the trimmed end of the pin.

Connecting the RF Cables to the Node Housing

Follow these steps to connect the RF cables.

1. Determine which ports receive an RF cable for your configuration.

2. The length of the RF connector center pin is critical to proper operation. The pin length must be 1.6 inches (4.064 cm). Trim pin if necessary before installation. See *Trimming the Center Conductor* (on page 47).

 Note: Assemble each RF connector to its cable according to manufacturer’s instructions.

3. Remove the sealing plug of each port to which cables connect. Note that Ports 1, 3, 4, and 6 have the option of a vertical or horizontal connection.

4. Insert the appropriate coaxial connector of each RF cable to the desired housing port and torque to the manufacturer’s specification. Do not exceed recommended torque.

5. Repeat steps 2 through 4 for each RF port used.

6. Continue to **Applying Power to the Node**.
Applying Power to the Node

Overview

The 1.2 GHz SHO GS7000 Node requires input power of 45 to 90 V AC from an external power source. This power is supplied through one or more of the RF cables.

The powering configuration is flexible and can be changed to meet most network requirements. Power direction is configured by installing AC shunts for the ports through which you want to pass AC power. An AC segmentable shunt is provided to configure power direction between the two sides of the node.

The following schematic diagram illustrates 1.2 GHz GS7000 Node powering.

⚠️ Maximum electrical rating of the external power source: quasi-square or sinusoidal wave 45 – 90 V, 50 – 60 Hz, max. pass-through current 15 A, max. surge current 25 A.

⚠️ Shock Hazard - Housing/Enclosure of the unit must be reliably bonded to protective earth/ground conductor prior to connecting the unit to a power source.

⚠️ Do not touch internal conductor of F/COAX connector or coax cable while the node is energized and disconnect power before removing cover because 90 V a.c. can be accessible.

Equipment connected to the protective earthing of the building installation through the mains connection or through other equipment with a connection to protective earthing – and to a cable distribution system using coaxial cable, may in some circumstances create a fire hazard. Connection to a cable distribution system has therefore to be provided through a device providing electrical isolation below a certain frequency range (galvanic isolator, see EN 60728-11).

NOTE: In Norway, due to regulation for installations of cable distribution systems, and in Sweden, a galvanic isolator shall provide electrical insulation below 5 MHz. The insulation shall withstand a dielectric strength of 1,5 kV r.m.s., 50 Hz or 60 Hz, for 1 min.
Node Powering Procedure

Follow these steps to apply power.

1. Determine which of the RF cables carry 45 to 90 V AC input power.
2. Install shunts in the locations that correspond to the AC-powered RF ports. Each port’s shunt is located on the RF amplifier module near the port as shown in the following illustration.

![4-Way RF Amplifier Module](image)

Note: Shunts are available with both red and black tops. Use red to indicate that power is applied to that port. Use black to indicate that input power is not applied.

3. If desired, remove shunts to block AC power at the individual ports.
4. The next step depends on the power path, as follows:

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>power will pass from left side of housing (Ports 1, 2, and 3) to right side of housing (Ports 4, 5, and 6)</td>
<td>ensure that the AC segmentable shunt is installed.</td>
</tr>
</tbody>
</table>
IF...

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>power is to be blocked between left side of housing (Ports 1, 2, and 3) and right side of housing (Ports 4, 5 and 6)</td>
<td>ensure that the AC segmentable shunt is removed.</td>
</tr>
<tr>
<td>Ports 1, 2, and 3 are powered from one source and Ports 4, 5 and 6 are powered from another source</td>
<td>ensure that the AC segmentable shunt is removed.</td>
</tr>
</tbody>
</table>

5 Continue to **Voltage Check Procedure**.

Voltage Check Procedure

Always check both AC and DC voltages during initial setup of the 1.2 GHz GS7000 Node.

Follow these steps to check AC and DC voltages.

1 Use a true-rms DVM to check for 45 to 90 V AC input voltage at the AC test point on the power supply module.

![Image of power supply module with test points labeled]

2 Check for the various DC output voltages (+24.5, +8.5, -6.0, and +5.5) of the power supply at the DC test points on the power supply module.

3 Verify that the Power ON LED on the receiver module is on.

4 Carefully close the housing lid. See *Opening and Closing the Housing* (on page 66).
Introduction

This chapter describes how to set up and operate the 1.2 GHz SHO GS7000 Node. These procedures assume the 1.2 GHz GS7000 Node is installed according to the procedures in Chapter 3 of this manual.

Network Requirements

Refer to your network design diagrams during setup. The design diagrams should specify the exact input and output signal levels required for your network. The 1.2 GHz SHO GS7000 Node is configured to have a specific amount of gain at 22 dB of linear tilt from 52 MHz to 1218 MHz.

In This Chapter

- Tools and Test Equipment...56
- System Diagrams...57
- Forward Path Setup Procedure...60
- Reverse Path Setup Procedure...63
Tools and Test Equipment

Required Tools and Test Equipment

Tools and test equipment required for setup are listed below. Equivalent items may be substituted. Ensure test equipment is calibrated and in good working order.

- Fluke Model 77 (or equivalent) true-rms digital voltmeter (DVM) with 0.001 resolution.
- Signal generator capable of generating carriers at 55.25 MHz and 1.2GHz
- “F” barrel adapter – 1.2 GHz
- Field strength meter capable of measuring up to 1.2GHz
- Field sweep receiver/transmitter with a minimum bandwidth of 1.2 GHz
- EXFO FOT 22AX optical power meter with adapters
- Fiber optic jumper to test transmitter optical output power
- Glendale Technologies optical eye protection blocking 900–1600 nm light
RF Assembly

Become familiar with the function and component layout of the RF assembly before aligning the 1.2 GHz SHO GS7000 Node. The cover of the RF assembly is printed with a diagram that shows the functional signal flow and identifies each field-replaceable component.

Some of these components (pads, equalizers,) are removed and replaced with different
value components during the setup procedures.

Forward SHO Node RF Assembly

The following illustrations show the forward RF assembly.

Left side Ports 1, 2, and 3 illustration.
Right side Ports 4, 5, and 6 illustration.
Forward Path Setup Procedure

Introduction
This procedure describes how to perform the forward path setup.

Note: The procedure uses an example with a transmitter modulation index of 2.5% per channel and the 1.2GHz node with RF output level of 54 dBmV @ 1218 MHz.

Setup Procedure
Perform the following steps to set up the forward path.

1. Ensure all unused RF ports are terminated with 75 ohms. Use an AC load if AC is routed to the RF port.
2. Open the housing according to Opening and Closing the Housing (on page 66).
3. Carefully disconnect the forward path optical fiber(s), if connected.

WARNING:
Laser hazard. This product contains a class 3B laser with no safety interlocks. Under no circumstances should connectors be viewed with equipment enabled. Direct viewing of connectors can cause eye damage. Failure to adhere to this admonishment may result in serious injury to the eye(s) or even blindness.

CAUTION:
Disconnecting the optical fibers of a working network element will interrupt customer service.

Note: Ensure all optical connectors are clean. See Care and Cleaning of Optical Connectors (on page 76).

4. Use an optical power meter to measure the level of the input light signal from the forward path optical fiber cable(s). Signal should be 0 dBm, 1mW nominal, for a standard receiver; record the measurement(s).
5. Connect the forward path optical fiber(s) to the receiver. Use a DVM to measure DC voltage at receiver optical power level test point. Scale: 1V DC = 1mW (1310 nm transmitter) and 1.12 V DC = 1mW (1550 nm transmitter).
6 Set the receiver module attenuator switch as follows:

<table>
<thead>
<tr>
<th>IF received optical power is...</th>
<th>THEN set the attenuator switch to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Receiver</td>
<td>-2 to +2 dBm</td>
</tr>
<tr>
<td></td>
<td>-6 to -2 dBm</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>-6 to -2 dBm</td>
</tr>
<tr>
<td></td>
<td>-8 to -6 dBm</td>
</tr>
</tbody>
</table>

7 For standard input receiver, check the RF level at the -20 dB RF test point on each forward path receiver. Signal level should be +7 dBmV at the test point with 0 dBm optical input power and 2.5% index modulation of the laser headend transmitter. (With optical receiver attenuator set to the -8 dB switch setting.) This represents an optical receiver output of +27 dBmV. For low input receiver follow the same process to check the RF level and refer the table below.

<table>
<thead>
<tr>
<th>For standard receiver</th>
<th>For low input receiver</th>
<th>Att/OMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output level</td>
<td>27dBmV</td>
<td>27dBmV</td>
</tr>
<tr>
<td>Input optical power</td>
<td>0dBm</td>
<td>-4dBm</td>
</tr>
</tbody>
</table>

8 The next step depends on your RF output levels.

<table>
<thead>
<tr>
<th>IF your RF output ports will... and you have...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>all have equal output levels</td>
<td>1X segmentation</td>
</tr>
<tr>
<td>be driven at different levels</td>
<td>1X segmentation</td>
</tr>
</tbody>
</table>

9 If all four of the node's output ports are to have equal output levels.
To achieve an output level of 54 dBmV @1218MHz / 50.7 dBmV @ 1002 MHz
- with 27 dbmV output from the optical receiver, install a 15 dB attenuator pad into the optical interface board just above the receiver module.

Go to step 13.

10 If the node's output RF ports are to be driven at different levels, the port with the highest output level should be used to set up the node. Measure signal level at the forward RF test point, on the amplifier module, to identify the port with the highest level output signal. Verify the output power level is correct using the OIB Pad as in Step 9. Increase the attenuator pad value at the FWD PORT OUT PAD locations on the RF amplifier module to reduce the output level of the port, which needs to be driven at a lower level than the port used to setup the node. See Appendix A - Technical Information for pad selection charts.

11 The SHO GS7000 Node is set for 22 dB of linear tilt between 54 and 1218 MHz. This is done by using 3 different EQ’s. A common EQ of 10.5dB value and 2 other 12dB EQ for Left side (port 1 & 2) and Right side (port 4 & 5). If your network requires a different tilt value, remove the field replaceable common 10.5 dB equalizers and replace with equalizers of the appropriate value. See Forward Equalizer Chart (on page 98). If you want port 1 & 2 to have different tilt than port 4 & 5, then replace the appropriate 12dB EQ with equalizer of needed value to change the tilt of the appropriate left or right ports.

12 Continue to Reverse Path Setup Procedure or close the housing according to Opening and Closing the Housing (on page 66).
Reverse Path Setup Procedure

Introduction

This procedure describes how to perform the reverse path setup. Perform this procedure only if the 1.2 GHz SHO GS7000 Node has an active reverse path.

Optical Transmitter Setup Procedure

Perform the following steps to set up the proper level into the reverse path optical transmitters.

1. Open the housing according to Opening and Closing the Housing (on page 66).
2. Verify the level of the input reverse RF signals at the RF test points located near the main ports of the RF amp module. Nominal level is +17 dBmV per channel. Install the appropriate value input pad at the REV PORT IN PAD location to attenuate the signal to the desired level for the reverse path of the node.
3. With the input to the node port set to 17 dBmV per channel, a 4 dB transmitter input attenuator pad should be installed on the optical interface board (just above the transmitter module) to achieve 13 dBmV level into the optical transmitter (-7 dBmV at the transmitter -20 dB test point). This RF input level into the high gain reverse transmitter will achieve an optical modulation index (OMI) of 10%.
4. Repeat steps 2 and 3 for each RF port carrying a reverse path signal.
5. Use an optical power meter to measure the transmitter optical output power. (1330 nm or 1550 nm)

Note: If you are operating the reverse path in 4X1 mode, make sure the reverse switch control on the launch amplifier is set to 4X1 position and install 75ohm pad load at XMTR 2 location of the OIB.

If you are operating the reverse path in 4X2 mode, make sure the reverse switch control on the launch amplifier is set to 4X2 position, remove 75ohm pad load at XMTR 2 location on the OIB. Perform step 2-5 above for port 1 & 2 XMTR-1 and port 4 & 5 for XMTR-2.
6 Using a DVM, measure the DC voltage at the optical test point and record the value.
7 Check the connection of the optical connector. Make sure the optical connector is seated and verify that the fiber bend radius is greater than 1 inch.

⚠️ **WARNING:**
When handling optical fibers always follow laser safety precautions.
5

Maintenance

Introduction

This section describes maintenance procedures for the 1.2 GHz SHO GS7000 Node.

In This Chapter

- Opening and Closing the Housing Error! Bookmark not defined.
- Preventative Maintenance Error! Bookmark not defined.
- Removing and Replacing Modules........ Error! Bookmark not defined.
- Care and Cleaning of Optical ConnectorsError! Bookmark not defined.
Opening and Closing the Housing

Overview

Installation or maintenance of the 1.2 GHz SHO GS7000 Node requires opening the housing to access the internal modules.

Proper housing closure is important to maintaining the node in good working condition. Proper closure ensures a good seal against the environment, protecting the internal modules.

Opening the Housing

Open the housing as follows.

1. Remove the bolts securing the lid to the base.
2. Carefully open the lid to allow access to the inside of the housing.
3. Inspect gaskets on the cover flange and on the test port plugs.
4. Replace any gaskets showing signs of wear (cracked, twisted, pinched, or dry) with new, silicon-lubricated gaskets.

Closing the Housing

Close the housing as follows.

1. Ensure any worn gaskets are replaced, and the gaskets are clean and in the correct position.
2. Carefully close the lid.
3. For strand-mounted housings, pull the lid away from the base and remove the slack from the hinge before rotating the lid up toward the base.
4. Ensure no cables are pinched between lid and base.
5. Secure lid to base with bolts. Tighten from 5 to 12 ft-lbs (6.8 to 16.3 Nm) in the sequence shown in the following illustration. Repeat the sequence twice, ending with the final torque specification.

CAUTION:
Use caution when closing housing. Improper closing may result in the unit not being sealed from the environment.
Opening and Closing the Housing
Preventative Maintenance

Overview
Preventive maintenance procedures are regularly scheduled actions that help prevent failures and maintain the appearance of the equipment.

Schedule
Perform the preventive maintenance procedures at these intervals.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection:</td>
<td></td>
</tr>
<tr>
<td>External Surfaces</td>
<td>Semiannually</td>
</tr>
<tr>
<td>Connectors</td>
<td>Semiannually</td>
</tr>
<tr>
<td>Indicators</td>
<td>Semiannually</td>
</tr>
<tr>
<td>Wiring/Cable Assemblies</td>
<td>Annually</td>
</tr>
<tr>
<td>Cleaning:</td>
<td></td>
</tr>
<tr>
<td>External Surfaces</td>
<td>Annually</td>
</tr>
<tr>
<td>External Controls/Connectors</td>
<td>Annually</td>
</tr>
<tr>
<td>Internal Connectors/Circuit Cards</td>
<td>Annually</td>
</tr>
</tbody>
</table>

Visual Inspection
Visually inspect the following items.

<table>
<thead>
<tr>
<th>What to Inspect</th>
<th>How to Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior surfaces</td>
<td>Inspect for: dust, dirt, lubricants, or other foreign matter worn spots or deep scratches on surfaces, corrosion, marred protective finish exposing bare metal, missing, incorrect or obliterated marking, decals, or reference designators</td>
</tr>
<tr>
<td>Connectors</td>
<td>Inspect for: broken, loose, bent, corroded, or missing pins, cracked insulator inserts</td>
</tr>
</tbody>
</table>
Preventative Maintenance

<table>
<thead>
<tr>
<th>What to Inspect</th>
<th>How to Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring and cables</td>
<td>Inspect for:</td>
</tr>
<tr>
<td></td>
<td>- cuts, nicks, burns, or abrasions</td>
</tr>
<tr>
<td></td>
<td>- exposed bare conductors</td>
</tr>
<tr>
<td></td>
<td>- sharp bends</td>
</tr>
<tr>
<td></td>
<td>- pinched or damaged wires</td>
</tr>
<tr>
<td></td>
<td>- broken or loose lacing or clamps</td>
</tr>
</tbody>
</table>

Cleaning

Clean exterior surfaces of the equipment at least annually.

Consumable Materials

Use the materials listed below (or equivalent) when cleaning the equipment.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopropyl alcohol</td>
<td>TT-I-735</td>
</tr>
<tr>
<td>Cheesecloth</td>
<td>CC-C-440</td>
</tr>
<tr>
<td>Spray-type contact cleaner</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Procedure

Clean the equipment as described below.

1. Use a small paintbrush to brush dust from connectors.
2. Wipe surfaces dry with clean, dry cheesecloth.
3. Clean exterior surfaces with clean cheesecloth moistened with isopropyl alcohol or general-purpose detergent. Do not let alcohol or detergent get inside equipment or connectors.

WARNING:
Isopropyl alcohol is flammable. Use isopropyl alcohol only in well-ventilated areas away from energized electrical circuits and heated objects such as soldering irons or open flames. Avoid excessive inhalation of vapors or prolonged or repeated contact with skin. Wear industrial rubber gloves and industrial safety goggles to avoid contact with skin. Do not take internally. Failure to comply with this admonishment can cause injury, physical disorder, or death.
CAUTION:
Do not use cleaning fluids containing trichloroethylene, trichloroethane, acetone or petroleum-based cleaners on equipment. Failure to comply with this caution could harm equipment surfaces.

4 Clean electrical contacts with spray-type contact cleaner.
5 Clean internal connectors and circuit boards with hand-controlled, dry-air jet. Do not use pressure exceeding 15 lb/in2 (1.05 kg/cm², or 103.43 kPa).
6 Clean interior surfaces with clean cheesecloth moistened with isopropyl alcohol or general-purpose detergent.
7 Clean internal electrical contacts with clean cheesecloth moistened with spray-type contact cleaner.
8 Dry interior with clean, dry cheesecloth.
Removing and Replacing Modules

Overview

This procedure describes how to remove and replace the internal modules of the 1.2 GHz SHO GS7000 Node. All field-replaceable modules can be removed and replaced without removing power from the 1.2 GHz SHO Node.

Field-replaceable modules include:
- Forward optical receiver modules
- Reverse optical transmitter modules
- Status monitor/local control module
- Equalizers
- Power supply modules
- RF amplifier assembly

CAUTION:
Removing power from the 1.2 GHz GS7000 Node will interrupt customer service. Removing any module, except for the status monitor/local control module, will interrupt customer service unless that module has a redundant backup.

Module Replacement Procedure

Follow this procedure to remove and replace an optical receiver, optical transmitter, status monitor/local control module, or power supply module.

1. Open the housing. See Opening and Closing the Housing (on page 66).
2. Carefully tag and remove any optical fibers from a receiver or transmitter module.

WARNING:
Laser light hazard. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

3. Loosen the screws securing the module.
4. Lift the module straight up out of the housing to unplug it.
 Note: Pull up on the built-in handle on a receiver module, transmitter module, status monitor/local control module, or power supply module.
5. Position the new module in the same location and carefully slide the module into its slot until connected to the optical interface board.
6. Tighten the screws securing the module. Torque screws to 25 to 30 in-lbs (2.8 to 3.4 Nm).
7. Carefully reconnect any optical fibers that were removed from the original module. Clean optical connectors before reconnecting. See Care and Cleaning of Optical
Connectors (on page 76) for cleaning procedure.

WARNING:
Laser light hazard. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

8 Close the housing. See *Opening and Closing the Housing* (on page 66).

Important: If you are using a Local Control Module in the node be sure to press the Auto Set-Up button on the cover of the LCM before you close the node housing. This allows the LCM to check for, and detect, installed modules. If the modules are not detected during this discovery process, they cannot be monitored and controlled by the LCM. The node must be powered and the modules operating properly in order to be detected.

9 Perform the setup procedure in Chapter 4 to verify node performance.

Accessing the Receiver/Transmitter Module Fiber Spool and Connector

Optical receivers and transmitter modules have an integrated fiber spool inside the module housing. This allows the fiber pigtail to be spooled up and contained within the module housing.

You may need to access this spool to clean or replace a fiber pigtail or connector.

Follow this procedure to access the module fiber spool and connector.

1 Pull up on the two module cover knurled tabs. Use a slight rocking motion.

Note: If the module is out of the housing, it is easier to hold the module in both hands and push up on the two module cover knurled tabs with your thumbs. You can also insert a flat blade screwdriver into the cover release tab slot on the right side of the module housing to assist with opening the cover.

The module cover opens as shown.
2 Pull the fiber connector straight out from the side of the module cover to remove it.
3 Disassemble the fiber connector and pigtail for cleaning if necessary.

4 Reattach the fiber connector to the module cover and close the cover.
Diplexers, Equalizer, and Trim modules

The diplexer modules, equalizers, and High Pass Filter/Trim modules plug into the RF amplifier assembly through cut-outs in its cover.

To remove these modules, pull up carefully on their integrated handles until they separate from the RF amplifier assembly.

RF Amplifier Assembly Replacement Procedure

Follow this procedure to remove and replace the RF amplifier assembly.

1. Open the housing. See Opening and Closing the Housing (on page 66).
2. Remove the AC power shunts and make a note of their location for reinstallation in the replacement RF amplifier assembly.

CAUTION: Damage to the node may result if AC power shunts are not removed before replacing the RF amplifier assembly.

3. Loosen the seven shoulder screws securing the RF amplifier assembly to the housing.
 Note: The screw locations are identified by number, 1 through 7.

4. Insert a flat-blade screwdriver into the small holes in the metal handles on each side of the RF amplifier assembly and pry up carefully to disconnect the RF amplifier assembly’s rear panel connectors.
 Important: Be careful not to damage the housing with the screwdriver.
5 Grasp the two metal handles on the RF amplifier assembly and carefully lift the RF assembly out of the housing.

6 To replace the RF amplifier assembly in the housing, carefully align the assembly in the housing, lower it into place and push down to reconnect the rear panel connectors.

7 Secure the RF amplifier assembly to the housing with the seven cross-head shoulder screws.
 Important: Tighten the screws in order by number, 1 through 7. Repeat the sequence twice, ending with a torque of 18 to 20 in-lbs (2.0 to 2.25 Nm).

8 Reinstall the AC power shunts in their proper locations on the RF amp assembly.

9 Close the housing. See *Opening and Closing the Housing* (on page 66).

10 Perform the setup procedure in Chapter 4 to verify node performance.
Care and Cleaning of Optical Connectors

CAUTION:
Proper operation of this equipment requires clean optical fibers. Dirty fibers will adversely affect performance. Proper cleaning is imperative.

The proper procedure for cleaning optical connectors depends on the connector type. The following describes general instructions for fiber-optic cleaning. Use your company's established procedures, if any, but also consider the following.

Cleaning fiber-optic connectors can help prevent interconnect problems and aid system performance. When optical connectors are disconnected or reconnected, the fiber surface can become dirty or scratched, reducing system performance.

Inspect connectors prior to mating, clean as needed, and then remove all residues. Inspect connectors after cleaning to confirm that they are clean and undamaged.

Recommended Equipment
- CLETOP or OPTIPOP ferrule cleaner (CLETOP Type A for SC, Type B for LC)
- Compressed air (also called “canned air”)
- Lint-free wipes moistened with optical-grade (99%) isopropyl alcohol
- Bulkhead swabs for LC or SC type connectors (choose appropriate type)
- Optical connector scope

Tips for Optimal Fiber-Optic Connector Performance
- Do not connect or disconnect optical connectors with optical power present.
- Always use compressed air before cleaning the fiber-optic connectors and when cleaning connector end caps.
- Always install or leave end caps on connectors when they are not in use.
- If you have any degraded signal problems, clean the fiber-optic connector.
- Advance a clean portion of the ferrule cleaner reel for each cleaning.
- Turn off optical power before making or breaking optical connections to avoid microscopic damage to fiber mating surfaces.
To Clean Optical Connectors

WARNING:
- Avoid personal injury! Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.
- Avoid personal injury! The laser light source on this equipment emits invisible laser radiation. Avoid direct exposure to the laser light source.
- Avoid personal injury! Viewing the laser output with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.

- Connect or disconnect fiber only when equipment is OFF or in Service mode.
- Do not apply power to this equipment if the fiber is unmated or unterminated.
- Do not look into an unmated fiber or at any mirror-like surface that could reflect light that is emitted from an unterminated fiber.
- Do not view an activated fiber with optical instruments such as eye loupes, magnifiers, or microscopes.
- Use safety-approved optical fiber cable to maintain compliance with applicable laser safety requirements.

Connector cleanliness is crucially important for optimum results in fiber optic communications links. Even the smallest amount of foreign material can make it impossible to obtain the expected insertion and return losses. This can reduce the range of the equipment, shorten its expected service life, and possibly prevent the link from initializing at all.

New equipment is supplied with clean optical connectors and bulkheads. Clean these connectors and bulkheads in the field only if you observe and can verify an optical output problem.

Connectors and Bulkheads

Most fiber optic connectors are of the physical contact (PC) type. PC type connectors are designed to touch their mating connector to prevent air gaps, which cause reflections. For optimum performance, all dirt must be removed.

Bulkheads can also become dirty enough to affect performance, either from airborne dust or from contamination introduced by connectors.

WARNING:
Avoid damage to your eyes! Do not look into any optical connector while the system is active. Even if the unit is off, there may still be hazardous optical levels present.

Note: Read the above warning before performing cleaning procedures.

Cleaning Connectors

It is important that all external jumper connectors be cleaned before inserting them into the optical module. Follow these steps to clean fiber optic connectors that will be connected to the optical module:
Important: Before you begin, remove optical power from the module or ensure that optical power has been removed.

1. Inspect the connector through an optical connector scope. If the connector is damaged, e.g., scratched, burned, etc., replace the jumper.

2. If the connector is dirty but otherwise undamaged, clean the connector as follows:
 a. Make several swipes across the face of the connector with the appropriate ferrule cleaner. This will remove dust and some films.
 b. Listen for a slight "squeak" typically generated during this process, indicating a clean connector.
 c. Inspect the connector again through the scope to confirm that it is clean.

3. If a second inspection indicates that further cleaning is needed:
 a. Use 99% isopropyl alcohol and a lint-free wipe to clean the connector.
 b. Use the appropriate ferrule cleaner again to remove any film left over from the alcohol.
 c. Inspect the connector again through the scope and confirm that it is clean.

4. If necessary, repeat steps 3a-3c until the connector is clean.

Cleaning Bulkheads

Note: It is generally more difficult to clean bulkhead connectors and verify their condition due to limited accessibility of the fiber end face. For this reason, even on products with accessible bulkhead connectors, you should only attempt to clean a bulkhead connector when a dirty connector is indicated.

Follow these steps to clean the bulkhead:

WARNING:
- Avoid personal injury! Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.
- Avoid personal injury! The laser light source on this equipment emits invisible laser radiation. Avoid direct exposure to the laser light source.
- Avoid personal injury! Viewing the laser output with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.

1. Insert a dry bulkhead swab into the bulkhead and rotate the swab several times.
2. Remove the swab and discard. Swabs may be used only once.
3. Check the bulkhead optical surface with a fiber connector scope to confirm that it is clean. If further cleaning is needed:
 a. Moisten a new bulkhead swab using a lint-free wipe moistened with optical-grade (99%) isopropyl alcohol.
 b. With the connector removed, fully insert the bulkhead swab into the bulkhead and rotate the swab several times.
 c. Remove the swab and discard. Swabs may be used only once.
 d. Check with a fiber connector scope again to confirm that there is no dirt or alcohol residue on the optical surface.
 e. If any alcohol residue remains, clean it off with a new dry bulkhead swab.
4 Mate all connectors to bulkheads and proceed to **Verifying Equipment Operation** below.

5 It is also recommended that all connectors be visually inspected after cleaning to verify the connector is clean and undamaged.

Verifying Equipment Operation

Perform circuit turn-up. If the equipment does not come up, i.e., fails verification or indicates a reflection problem, clean the connectors and bulkheads again.

For Further Assistance

If you have any questions or concerns about cleaning fiber optic connectors, contact Customer Service using the contact information provided in the **Customer Support Information** chapter.
Troubleshooting

Introduction
This troubleshooting section lists common problems and their solutions.

Replacing Modules
If a troubleshooting procedure directs you to replace a module of the 1.2 GHz SHO GS7000 Node, see Removing and Replacing Modules (on page 71).

In This Chapter
- No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off Error! Bookmark not defined.
- No RF Output: Fiber Optic Light Level is Good, Receiver Optical Power LED is on Error! Bookmark not defined.
- Poor C/N Performance.......................... Error! Bookmark not defined.
- Poor Distortion Performance Error! Bookmark not defined.
- Poor Frequency Response Error! Bookmark not defined.
- No RF Output from Reverse Receiver ... Error! Bookmark not defined.
No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off

Troubleshooting Flowchart

Follow this troubleshooting flowchart. Also see the notes following the chart.
No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off

Notes

These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This unit will have no RF output.</td>
</tr>
</tbody>
</table>
| 2 | The receiver will not function below this DC level which is equal to –10 dBm.
- The optimum light level input is -6 to 2 dBm.
- For every 1 dBm change in optical input power, the RF output will change by 2 dB.
- Excessively high light input levels (> +2 dBm) will cause distortions and/or damage the photo diode. |
| | The receiver will not function below this DC level which is equal to –10 dBm.
- The optimum light level input is -8 to -2 dBm.
- For every 1 dBm change in optical input power, the RF output will change by 2 dB.
- Excessively high light input levels (> -2 dBm) will cause distortions and/or damage the photo diode. |
Chapter 6 Troubleshooting

No RF Output: Fiber Optic Light Level is Good, Receiver Optical Power LED is on

Troubleshooting Flowchart

Follow this troubleshooting flowchart. Also see the notes following the chart.

1. Start (See Note 1)
 - Connect a coax test lead to the RF output test point of the receiver.

2. Is RF present? (See Note 2)
 - Yes
 - Is a pad, EQ or jumper installed in all pad and EQ locations?
 - Yes
 - Replace RF amplifier module.
 - No
 - Install pads and EQs as necessary.
 - No
 - Replace the receiver module.

3. Is RF Present?
 - Yes
 - End
 - No
 - Verify the RF input into the laser.

4. Verify all devices "upstream" of the laser input and correct the problem.

5. Is RF Present?
 - Yes
 - Replace the laser.
 - No
Notes

These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
<th>For standard receiver</th>
<th>For low input receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If the green LED is Off, it is outside optical input range. Green (On) indicates that light is present and the optical input value is higher than -10 dBm.</td>
<td>If the green LED is Off, it is outside optical input range. Green (On) indicates that light is present and the optical input value is higher than -14 dBm.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The recommended RF output level at the output of the receiver module is 27 dBmV (+7.0 dBmV as measured at the -20 dB RF test point). This setup is recommended to achieve the best possible performance.</td>
<td>The recommended RF output level at the output of the receiver module is 27 dBmV (+7.0 dBmV as measured at the -20 dB RF test point). This setup is recommended to achieve the best possible performance with 8 dB setting.</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Assumes 2.5% OMI/CH or 20% composite.
- Assumes 1310 nm wavelength / Add one dB for 1550
- Assumes 0dB attenuator switch setting unless noted, if otherwise subtract attenuator value from reading
- Assumes -4dB optical input, if otherwise add or subtract 2dB RF for each 1dB optical input
Poor C/N Performance

Troubleshooting Flowchart

Follow this troubleshooting flowchart. Also see the notes following the chart.

Start

Assure headend performance meets system design target

Yes

Measure level of RF input to the laser. (See Note 1)

Is RF input level correct?

Yes

Laser is probably underdriven. Adjust RF input level as necessary.

No

Correct setup of RF module.

End

No

Improve headend performance.

Connect a coax test lead to the test point at the output of the receiver and measure the C/N performance.

Is C/N performance the same or better?

Better

Connect setup of RF module. (See Note 2)

No

Replace RF amplifier module.

Same

Check setup of RF module. (See Note 2)

Is setup correct?

Yes

Replace receiver module.

No

Simplify the link by eliminating as many connectors, jumpers and couplers as possible. (See Note 4)

Any improvement in C/N performance?

Yes

Replace receiver module.

No

Clean all connectors in the fiber path. Ensure connectors are properly seated.

Measure C/N performance after each connector is cleaned.

Any improvement in C/N performance?

Yes

No

Replace laser.

No

Measure and record the Vdc at the receiver module. (See Note 3)
Notes

These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF drive level to the laser must be set to the laser manufacturer’s specification.</td>
</tr>
<tr>
<td>2</td>
<td>It is possible that the distribution module is set up incorrectly. See the pad and equalizer selection charts in Appendix A for correct pad and equalization. The C/N performance will suffer if the RF levels are too low into the first gain stage or the interstage.</td>
</tr>
<tr>
<td>3</td>
<td>It is important to monitor the DC level at the receiver module because in the process of cleaning the connectors, the transfer of light through each connector may improve or degrade. The DC reading should degrade if there is a reflection in the path depending on the severity of the core mismatch. Scratches on the surface of the fiber of the connector can cause reflections. Scratched connectors must be replaced.</td>
</tr>
</tbody>
</table>
| 4 | **For standard receiver**
Attenuate the light to simulate the amount of light that should be at the 1.2 GHz SHO GS7000 Node and rerun the C/N performance. Add components into the path one at a time until the problem is found. Change jumpers, couplers, fibers and connectors one at a time, taking C/N measurements after each change.
A phenomenon called “shot noise” will occur if the light level is too high into the receiver. This is noise generated by the photo diode when the light is converted back to RF. An optical input level exceeding +2 dBm at the detector will also generate distortions.

For low input receiver
Attenuate the light to simulate the amount of light that should be at the 1.2 GHz SHO GS7000 Node and rerun the C/N performance. Add components into the path one at a time until the problem is found. Change jumpers, couplers, fibers and connectors one at a time, taking C/N measurements after each change.
A phenomenon called “shot noise” will occur if the light level is too high into the receiver. This is noise generated by the photo diode when the light is converted back to RF. An optical input level exceeding -2 dBm at the detector will also generate distortions. |
Poor Distortion Performance

Troubleshooting Flowchart

Follow this troubleshooting flowchart. Also see the notes following the chart.
Notes

These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | **Recommended RF input levels are:**
 - **Headend transmitter module:** 14 dBmV
 Note: Based on 79-channel loading. The input will increase as the channel loading decreases. |
| 2 | **For standard receiver**
 The range for optical light input level is -6 to +2 dBm which converts to 0.25 to 1.6 V DC. The optimum operating range is -3 dBm to +2 dBm which converts to 0.5 to 1.6 V DC. Levels higher than +2 dBm can cause the photo diode to generate distortions, which add to the distortion performance of the link, effectively degrading the distortion performance.
 For low input receiver
 The range for optical light input level is -10 to -2 dBm which converts to 0.1 to 0.6 V DC. The optimum operating range is -6 dBm to -2 dBm which converts to 0.25 to 0.6 V DC. Levels higher than -2 dBm can cause the photo diode to generate distortions, which add to the distortion performance of the link, effectively degrading the distortion performance. |
| 3 | Attenuate the light to simulate the amount of light that should be at the 1.2 GHz SHO GS7000 Node and rerun the distortion performance. If the distortion performance improves, there is too much light. An inline optical attenuator or a coupler with a higher loss can reduce the light, or the laser may have to be replaced with a lower launch power. |
| 4 | Attenuate the RF input level into the amplifier by increasing the pad value at the OIB. If the distortion perform improves, there is too much RF. |
Poor Frequency Response

Troubleshooting Flowchart

Follow this troubleshooting flowchart. Also see the notes following the chart.
Notes

These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Be sure all unused ports are properly terminated into 75 ohms to prevent mismatches. The frequency response is cumulative and reflects the response of each active device in the link:
 - The frequency response for the transmitter is dependent on the transmitter manufacturer's specification.
 - The frequency response of the 1.2 GHz SHO GS7000 Node is ±1.0 dB from 52 MHz to 1218 MHz (for optical receiver and amplifier combined). |
| 2 | It is possible that the RF amplifier is set up incorrectly. Always check to see that padding and equalization is correct to ensure proper levels at the inputs to each gain stage. See the pad and equalizer selection charts in Appendix A for correct pad and equalization. |
Chapter 6 Troubleshooting

No RF Output from Reverse Receiver

Troubleshooting Flowchart

Follow this troubleshooting flowchart.

Start

Does reverse path receiver have power?

Yes

End

No

Apply power to reverse path receiver.

Is RF present at transmitter test point?

Yes

Is optical signal present at reverse path RX?

Yes

Replace the receiver module.

No

End

Troubleshoot for a break in the fiber optic cable.

Is RF present at reverse path RX output port?

Yes

Is reverse path transmitter green LED on?

Yes

Measure optical power directly from the output of the reverse path transmitter.

No

Is power level acceptable?

Yes

Replace the reverse path laser.

No

Replace the reverse path laser.
If You Have Questions

If you have technical questions, call Cisco Services for assistance. Follow the menu options to speak with a service engineer.

Access your company's extranet site to view or order additional technical publications. For accessing instructions, contact the representative who handles your account. Check your extranet site often as the information is updated frequently.
Technical Information

Introduction
This appendix contains tilt, forward and reverse equalizer charts and pad values and part numbers.

In This Appendix
- Linear Tilt Chart Error! Bookmark not defined.
- Forward Equalizer Chart............................... Error! Bookmark not defined.
Linear Tilt Chart

Amplifier Output Linear Tilt Chart for 1.2 GHz

The following chart can be used to determine the operating level at a particular frequency considering the operating linear tilt.
Amplifier Output Linear Tilt Chart for 1 GHz

The following chart can be used to determine the operating level at a particular frequency considering the operating linear tilt.

Example: If the amplifier’s 1 GHz output level is 49.0 dBmV with a linear operating tilt of 14.5 dB (from 50 to 1 GHz), the corresponding output level at 750 MHz would be 45.1 dBmV. This was found by taking the difference in tilt between 1 GHz and 750 MHz (14.5 - 10.6 = 3.9 dB). Then subtract the difference in tilt from the operating level (49.0 - 3.9 = 45.1 dBmV).
Forward Equalizer Chart

1.2 GHz Forward Linear Equalizers

The following table shows the 1.2 GHz forward linear equalizer loss.

<table>
<thead>
<tr>
<th>EQ Value (dB)</th>
<th>Insertion Loss at (MHz)</th>
<th>Total Tilt (52-1218 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1218</td>
<td>1000</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>7.5</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>9.0</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>10.5</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>3.2</td>
</tr>
<tr>
<td>13.5</td>
<td>1.0</td>
<td>3.5</td>
</tr>
<tr>
<td>15.0</td>
<td>1.0</td>
<td>3.7</td>
</tr>
<tr>
<td>16.5</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>18.0</td>
<td>1.0</td>
<td>4.3</td>
</tr>
<tr>
<td>19.5</td>
<td>1.2</td>
<td>4.8</td>
</tr>
<tr>
<td>21.0</td>
<td>1.2</td>
<td>5.0</td>
</tr>
<tr>
<td>22.5</td>
<td>1.2</td>
<td>5.3</td>
</tr>
<tr>
<td>24.0</td>
<td>1.2</td>
<td>5.6</td>
</tr>
</tbody>
</table>
The following table shows the 1 GHz forward linear equalizer loss.

<table>
<thead>
<tr>
<th>EQ Value (dB)</th>
<th>Insertion Loss at (MHz)</th>
<th>Total Tilt (52-1000 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>870</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>7.5</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>9.0</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>10.5</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>13.5</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>15.0</td>
<td>1.0</td>
<td>3.1</td>
</tr>
<tr>
<td>16.5</td>
<td>1.0</td>
<td>3.3</td>
</tr>
<tr>
<td>18.0</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td>19.5</td>
<td>1.5</td>
<td>4.2</td>
</tr>
<tr>
<td>21.0</td>
<td>1.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Enhanced Digital Return Multiplexing Applications

This appendix explains the installation and application of the Cisco Enhanced Digital Return (EDR) 85 Multiplexing System in the GS7000 Node.

The products are intended for digital transmission of reverse path signals over a fiber optic link from the node to the headend.

The Cisco Enhanced Digital Return (EDR) 85 System expands the functionality of GS7000 and GainMaker 4-Port and Reverse Segmentable Nodes by increasing the performance, reach, and efficiency of the reverse path transmissions.

The Cisco EDR 85 System includes EDR Transmitter modules that install in GainMaker and GS7000 Nodes, and companion Cisco Prisma® high-density (HD) EDR PRX85 Receiver modules that install in a Prisma II or Prisma II XD chassis at the headend or hub. The transmitter and receiver use Small Form Factor Pluggable (SFP) optical pluggable modules (OPMs) for enhanced flexibility. The Cisco EDR 85 System operates over the 5-85 MHz range and supports all standard reverse frequency bandwidths at 40, 42, 55, 65, and 85 MHz.

The Cisco Enhanced Digital Return (EDR) 85 Systems includes the EDR 1:1 multiplexing system and the 2:1 multiplexing system.

In This Appendix
- Enhanced Digital Return System Overview
- Enhanced Digital Return (EDR) System Installation
- Transmitter Module Setup Procedure
- Reverse Balancing the Node with EDR
- Troubleshooting
Enhanced Digital Return System Overview

Features

The EDR Enhanced Digital Return 1:1 and 2:1 Multiplexing Systems have the following features.

- High-performance Digital Return technology
 - 12 bit encoding enables transmission of analog video in the reverse band
 - High-order digital modulation signals (e.g., 16 QAM, 64 QAM, and 256 QAM)
- Multiple operating modes in the EDR receiver support EDR transmitter
- Optical Pluggable Modules (OPM) enable flexible inventory management
- Long reach transmission capabilities eliminate the need for optical amplifiers, reducing cost and space requirements
- Capable of sending 80 individual 5 – 85 MHz reverse signals over a single fiber
 - Compatible with Cisco’s 40 wavelength DWDM system
- Enables independent balancing of reverse traffic at EDR receiver RF ports
- Simplified setup reduces installation time and expertise requirements
- Distance- and temperature-independent link performance simplifies engineering and maintenance requirements
- Space-saving, high-density deployment in Prisma II or Prisma II XD chassis increases deployment cost-efficiency
- Optional monitoring of node (GS7000) and Tx (GS7000 and GainMaker) parameters available at the receiver

The EDR 2:1 Enhanced Digital Return Multiplexing System leverages 2:1 multiplexing to reduce fiber usage.
System Functional Diagrams

Single Transmitter Configuration

Single Transmitter Configuration for EDR 1:1 Transmitter Module

The following illustration shows how the GS7000 Node functions in Enhanced Digital Return configuration with one 1:1 EDR transmitter module installed as the single transmitter.

Important: This configuration requires a 4x1 Reverse Configuration Module (for 6-port OIB), as shown.

Single Transmitter Configuration for EDR 2:1 Transmitter Module

The following illustration shows how the GS7000 Node functions in Enhanced Digital
Return configuration with one 2:1 EDR transmitter module installed as the single transmitter.

Note: When the node is configured in either segmented or EDR mode, a 75 dB pad must be placed in the Tx2 SM Term.

Important: This configuration requires a 4x2 Reverse Configuration Module (for 6-port OIB), as shown.

Important: This configuration requires a 4x4 Reverse Configuration Module as shown.

System Block Diagram

System Block Diagram for EDR 1:1 Transmitter Module

The following is a block diagram of the EDR Enhanced Digital Return 1:1 Multiplexing System.
Appendix B
Enhanced Digital Return Multiplexing Applications

The following is a block diagram of the EDR Enhanced Digital Return 2:1 Multiplexing System.
Enhanced Digital Return System Overview

EDR 2:1 Transmitter Module

- RF Input 1A
 - Input Test Point -20 dB
- RF Input 1B
 - Input Test Point -20 dB

A/D → MUX → TX OPM → Optical Output

Optical Network

EDR Receiver Module

- RX OPM → DEMUX
 - DAC
 - 0 to 10 dB Variable Attenuator

RF Output 1A
- Output Test Point -20 dB
RF Output 1B
- Output Test Point -20 dB

DAC
- 0 to 10 dB Variable Attenuator
EDR Transmitter Module

At the transmit (node) end of the system, reverse-path RF input signals from each node port are routed to an EDR 2:1 or EDR 1:1 Transmitter module in the housing lid. The transmitter module converts each signal to a baseband digital data stream and combines the signals into a serial data stream using time-division multiplexing (TDM). The baseband data stream is then converted to an optical signal for transmission to the headend or hub. The double-wide (2:1) transmitter modules occupy two transmitter slots and the 1:1 modules occupy one slot.

The EDR 1:1 transmitter introduces one single RF inputs to produce the discrete 5 to 85 MHz RF signal, while the EDR 2:1 transmitter introduces two RF inputs to produce two discrete 5 to 85 MHz RF signals. The transmitter module also converts each signal to a baseband digital data stream and time division multiplexes the two streams into a single data stream.

The data stream is carried optically over fiber, via an SFP type OPM module, to a remote hub or headend location where the optical signal is detected and converted back to a serial electrical signal. The data is then de-scrambled and de-framed and switched to a Digital-to-Analog Converter (DAC), where the analog spectrum that was sampled at the transmit side is reconstructed. The baseband data stream is converted to an optical signal for transmission back to the headend or hub.

The following block diagrams show the transmitter module's internal components.

For EDR 1:1 Transmitter Module

For EDR 2:1 Transmitter Module
The following illustrations show the transmitter module components.

For EDR 1:1 Transmitter Module

Note:
1. The EDR transmitter cannot monitor the GainMaker Node parameters.
2. The EDR LCM module needs to be installed for EDR transmitter status monitoring.
3. The status monitor interface is not used for data transmission. The Cisco DOCSIS transponder is needed when data transmission is required.

The transmitter module uses the same style housing as the optical receivers and transmitters, and it uses the single-wide module housing. As such, it occupies one standard transmitter positions in the node lid.

For EDR 2:1 Transmitter Module
Note:
1. The EDR transmitter cannot monitor the node parameters.
2. The EDR LCM module needs to be installed for EDR transmitter status monitoring.
3. The status monitor interface is not used for data transmission. The Cisco DOCSIS transponder is needed when data transmission is required.

The transmitter module uses the same style housing as the optical receivers and transmitters, except that it uses double-wide module housing. As such, it occupies two standard transmitter positions in the node lid.
EDR Receiver Module

At the receive end, typically in a large hub or headend, the EDR Receiver module receives the optical signal and performs the conversion back to the baseband data stream. The resulting data streams are converted back to analog reverse path signals for routing to termination equipment. The EDR Receiver module is available in the High Density form factor. The receiver OPMs are available in Standard Range (SR) and Extended Range (XR) configurations. Both configurations feature a dual LC/PC optical input connector that feeds two independent reverse optical receivers, each with its own RF output port.

A single EDR Receiver module occupies one slot in a Cisco Prisma II XD chassis. Two EDR HD receiver modules can be vertically stacked in an associated Prisma II Host Module that occupies a single-wide slot in the Prisma II standard chassis. Up to 26 HD modules can operate in a standard 6 rack unit (6RU) chassis (the 56-connector version of the chassis is required to make use of both receivers in one chassis slot). Up to 16 HD modules can operate in the Prisma II XD chassis. The ability to mix EDR Receiver modules with other Prisma II HD modules in the same chassis greatly enhances the flexibility of the platform.

For instructions on installing the receiver refer to the Prisma II Chassis Installation and Operation Guide, part number 713375.

The following block diagram shows the receiver module's internal components.

At the headend, the reverse optical receiver converts the optical signal back to an RF signal that is then routed out through the receiver’s RF output.

Refer to the Cisco Prisma II EDR Receiver Installation Guide, part number OL-29646, for detailed information on the EDR receiver module.
Appendix B
Enhanced Digital Return Multiplexing Applications

Receiver Module Diagram
The following illustration shows the receiver module.

Receiver Operating Modes
The receiver module supports receiver mode configuration performed by setting the proper mode ID numbers in the Prisma II Web UI system.

The following diagrams provide a basic walk-through of all the supported modes for the EDR receiver module.

The receiver can be configured for any of the following modes of operation:
- Single 2:1
- Dual 1:1
- Dual 2:1
- Single 2:1 on Primary + Single 1:1 on Secondary
- Single 1:1 on Primary + Single 2:1 on Secondary
- Legacy Single 2:1
- Legacy Dual 2:1

Each of these operating modes is described below.

Single 2:1 Mode
Referring to the diagram below, the EDR transmitter digitizes and combines two RF signals (RF 1 + RF 2) into one serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial stream is de-serialized, converted back to its two analog RF components, and then sent to the two RF connectors on the back of the module. RF 1 appears on RF port A, and RF 2 appears on RF port B.
Note: The optical fiber must be plugged into the top receiver on the OPM.

Single 2:1

Dual 1:1 Mode

Referring to the diagram below, the EDR transmitter digitizes a single RF signal (RF 1) into a serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial streams from two separate transmitters are deserialized and converted back to an analog RF signal. The RF signal (RF 1) for each transmitter is sent separately to the two RF connectors on the back of the module.

Dual 1:1

Dual 2:1 Mode

Referring to the diagram below, two EDR transmitters are connected to one receiver. Each EDR transmitter digitizes and combines two RF signals (RF 1 + RF 2) into one serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial streams from the two separate transmitters are deserialized and converted back to their two analog RF components. Since the receiver only has two RF ports, the combined signals (RF 1 + RF 2) for each transmitter are sent to the two RF connectors on the back of the module.
Appendix B
Enhanced Digital Return Multiplexing Applications

Single 2:1 on Primary + Single 1:1 on Secondary

This mode is a combination of the 2:1 and 1:1 modes described above. Referring to the diagram below, one EDR transmitter digitizes and combines two RF signals (RF 1 + RF 2) into one serial stream and transmits it over optical fiber to the receiver. The other EDR transmitter digitizes a single RF signal (RF 1). At the receiver, the serial streams from two separate transmitters are deserialized and converted back to their two analog RF components. The combined Transmitter 1 signal (RF 1 + RF 2) is sent to RF port A, and the Transmitter 2 signal (RF 1) is sent to RF port B on the back of the module.

Single 2:1 Primary + Single 1:1 Secondary

Single 1:1 on Primary + Single 2:1 on Secondary

This mode is identical to the mode just described, except that the 2:1 transmitter is connected to the second receiver and the 1:1 transmitter is connected to the primary receiver.
Enhanced Digital Return System Overview

Single 1:1 Primary + Single 2:1 Secondary
EDR OPM and LCM

About the OPM Module

The reverse transmitter converts the RF test signal(s) to an optical signal using the installed Optical Module (OPM) and transmits it to the headend (or hub site) via fiber optic cable. At the headend, the reverse optical receiver also converts the optical signal back to an RF signal that is then routed out through the receiver's RF output using its installed OPM module.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dust Plug</td>
</tr>
<tr>
<td>2</td>
<td>Bale Clasp (Open, Push upward to close)</td>
</tr>
<tr>
<td>3</td>
<td>Transmit Bore (Not In Use for the Receiver)</td>
</tr>
<tr>
<td>4</td>
<td>Receive Bore (Not In Use for the Transmitter)</td>
</tr>
</tbody>
</table>

About the EDR LCM

The EDR Local Control Module is required for in-band status monitoring the node signaling and data transmission.

The packet cable is delivered with the EDR LCM module. Refer to the installation section in the following content for instructions on local status monitoring connection.

Refer to the following sections for EDR OPM and LCM installation.
Enhanced Digital Return (EDR) System Installation

Before You Begin

Overview

Perform these installation instructions only if you are upgrading the GS7000 Node with the EDR. If your node came with the EDR installed, go to Reverse Balancing the Node with Digital Return Modules (on page 234).

Required Tools

The following tools and equipment are needed to configure and install the EDR.

- ½-inch hex driver or ratchet
- Two adjustable wrenches for coaxial connectors
- Standard flat-head or phillips-head screwdriver
- Torque wrench, capable of settings up to 100 in-lb (11.3 Nm)

Operating Environment

Before operating the node with the EDR installed, ensure that the operating environment meets the following standards.

- Ambient temperature range outside the node must be maintained between -40°C and +60°C (-40°F to 140°F).
- Storage temperature range of the EDR must be maintained between -40°C to +85°C (-40°F to 185°F).
- Humidity range must be maintained between 5% to 95% non-condensing before installation of the EDR Digital Return module(s).
Installing the EDR Transmitter

The transmitter module uses the same style housing as the optical receivers and transmitters, except that it uses double-wide module housing. As such, it occupies two standard transmitter positions in the node lid.

If your EDR transmitter comes without OPM module installed, you need to order the fiber jumper and the OPM module from our sales representatives, and perform the following steps to install the OPM module and connect the fiber jumper to the installed OPM module before installing the EDR transmitter.

To Install the OPM Module in the EDR Transmitter

CAUTION:

The OPM modules are electro-static sensitive devices. Always use an ESD wrist strap or similar individual grounding device when handling OPM modules or coming in contact with modules.

1. Connect the blue LC connector to the transmit bore of the OPM module before installing the module. Refer to the EDR OPM and LCM section on page 238 for details for the OPM module.

2. Close the bale-clasp before inserting the OPM module.

3. Connect the blue LC connector to the transmit bore of the OPM module.

4. Line up the OPM module with the port, and slide it into the port.

5. Proceed to next section for installation.

The following diagram shows the OPM module installed on the 1:1 transmitter module.
The following diagram shows the OPM module installed on the 2:1 transmitter module.

![Diagram of OPM module installation](image)

CAUTION:
Removing and installing an OPM module can shorten its useful life. Do not remove and insert OPM modules more often than is absolutely necessary.

To Route the Fiber Jumper
Make sure the transmitter module is installed with the OPM module before routing the fiber jumper. The fiber jumper must be routed carefully in the fiber tray and aligned under the fiber jumper clip one by one.

The following diagram shows the fiber jumper connection for 1:1 transmitter.

![Diagram of fiber jumper connection](image)

The following diagram shows the fiber jumper connection for 2:1 transmitter.
Note:
1. When removing faulty OPM module, press and remove the blue LC connector before you can open the bale clasp.
2. OPM modules should be installed before installing the fiber jumper.
To Install the EDR Transmitter

Follow these steps to install the transmitter module(s).

1. See Module Replacement Procedure (on page 71) for instructions on installing these modules in the housing.
2. Remove any existing transmitter modules from the positions in which you want to install the EDR transmitter module(s).
3. Install one to the 1:1 transmitter modules in the housing lid as required for your application.

<table>
<thead>
<tr>
<th>IF you are installing...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>only one transmitter module</td>
<td>install the module in transmitter positions XMTR 1</td>
</tr>
<tr>
<td>Two transmitter modules</td>
<td>install the modules in transmitter positions XMTR 1/XMTR 2</td>
</tr>
</tbody>
</table>

4. Install one or two 2:1 transmitter modules in the housing lid as required for your application.

<table>
<thead>
<tr>
<th>IF you are installing...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>only one transmitter module</td>
<td>install the module in transmitter positions XMTR 1/XMTR 2</td>
</tr>
</tbody>
</table>

WARNING:

Laser transmitters when disconnected from their optical fiber path emit invisible laser radiation, which is harmful to the human eye. If viewed at close range, the radiation may be of sufficient power to cause instantaneous damage to the retina of the eye. Only trained service personnel using proper safety precautions and equipment such as protective eyewear should disconnect and service the laser transmitter equipment.

To Connect the Long-haul Fiber

1. Insert the fiber-optic start-head to the optical adapter.
2. Route fiber on the fiber tray of GS7000 Node.
3. Connect the fiber-optic end-head to the receive bore of the OPM module installed on the Receiver of the Prisma II platform.
4. The receiver OPM module requires LC connector, conversion maybe needed.
5. Clean the LC connector’s fiber-optic end-faces.

See the following Tip for a pointer to a fiber-optic inspection and cleaning white paper.

To Connect the EDR LCM for Status Monitoring

The LCM module is equipped with the interface ribbon cable. The cable can be used to
connect the LCM module and the Status Monitor point of the desired EDR transmitter module for local status monitoring.

Note: Local Status monitoring supports one EDR transmitter module at a time.

The following diagrams show how to connect the interface ribbon cable.

Note: Insert the cable head-end with the red marker on back.

When EDR 1:1 transmitter module is installed:

When EDR 2:1 transmitter module is installed:

Press the Auto Set-Up button on the LCM to initiate module discovery.

The Auto-Setup process typically takes up to 30 seconds.

Note: Node data monitoring is only available for GS7000 Nodes with a transponder-less EDR LCM installed. The PC-based GS7000 Hub ViewPort software is not available for GS7000 Node.

Installing the EDR Receiver
Refer to the *Cisco Prisma II EDR Receiver Installation Guide*, part number 4044294, for detailed information on installing the EDR receiver module on the Prisma II.

To Install the OPM Module on the Receiver Module

The following diagram shows the OPM module installed on the receiver module of the Prisma II.

![Diagram of OPM module on Prisma II](image)

To Configure the Receiver Mode

The receiver mode can be configured in the Web UI interface though connection with the Prisma II platform.

For complete configuration steps and setup precautions, refer to the *Cisco Prisma II EDR Receiver Installation Guide*, part number OL-29646, and the *Cisco Prisma II Platform Configuration Guide*, after system release 2.05.30, part number OL-27998.
Transmitter Module Setup Procedure

Perform the following steps to set up the reverse transmitter module(s).

1. Open the housing according to *Opening and Closing the Housing* (on page 66).
2. Verify the level of the reverse path RF signal at the RF test points on the RF module. Nominal level is +15 dBmV per channel. Install the appropriate value input pad at the REV PORT IN PAD location to give the desired signal level into the node.
3. Repeat step 3 for each RF cable carrying a reverse path signal.
4. Measure the transmitter module(s) optical output power.
5. Check the connection of the optical connector. Make sure the optical connector is seated and verify fiber bend radius is greater than 1 inch.

WARNING:
When handling optical fibers always follow laser safety precautions.

EDR Transmitter Status Indicators

The transmitter module has two status indicator LEDs.

The following section describes the LED status and the correspondent indications. The input level overdrive indicates the input signal level exceeds the limit of 35 dBmV.

For EDR 1:1 transmitter module

The following table lists the LED status and the indicated OPM, and the overdrive status of the RF port.

<table>
<thead>
<tr>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (PWR)</td>
<td>Laser (LSR)</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
</tr>
</tbody>
</table>

For EDR 2:1 transmitter module

The following table lists the LED status and the indicated OPM, and the overdrive status of both RF port 1 and RF port 2.

<table>
<thead>
<tr>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (PWR)</td>
<td>Laser (LSR)</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
</tr>
</tbody>
</table>
Transmitter Module Setup Procedure

<table>
<thead>
<tr>
<th>Power (PWR)</th>
<th>Laser (LSR)</th>
<th>OPM Module</th>
<th>Port 1 Input Overdrive</th>
<th>Port 2 Input Overdrive</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>Cisco Standard OPM Module</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
<td>Cisco Standard OPM Module</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Green</td>
<td>Cisco Standard OPM Module</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Orange (Blink)</td>
<td>Cisco Standard OPM Module</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Reverse Balancing the Node with EDR

Introduction

This section explains the reverse balancing procedures for the GS7000 Node using EDR. When balancing the reverse path, reference your system design print for the required reverse signal level. Use appropriate padding and equalization to provide proper signal level to the reverse transmitter.

CAUTION:
Never attempt to reconfigure the unit beyond its normal setup. Changes to the node’s configuration may cause degradations that affect its performance. Do not use digital carrier measurement to set up the forward or reverse paths. Familiarize yourself with your cable system’s specifications before performing the setup.

There are a variety of test equipment combinations that enable proper balancing of the reverse path. Regardless of the type of equipment used, the balancing process is fundamentally the same. A reverse RF test signal (or signals) of known amplitude is injected into the RF path at the RF input of the node. The reverse transmitter converts the RF test signal(s) to an optical signal and transmits it to the headend (or hub site) via fiber optic cable. At the headend, the reverse optical receiver converts the optical signal back to an RF signal that is then routed out through the receiver's RF output. The amplitude of the injected test signal must be monitored at the receiver's output, and compared to the expected (design value) amplitude.

Method of Generating and Monitoring Test Signals

The reverse RF test signals that are injected into the reverse path of the RF launch amplifier being balanced may be generated by the following method.

- Multiple CW signal (tone) generator
- Reverse sweep transmitter
The amplitude of the received test signals at the output of the reverse optical receiver in the headend or hub may be measured and monitored using the following:

- Spectrum analyzer (when using a CW generator for test signals)
- Signal level meter (when using a CW generator for test signals)
- Reverse sweep receiver (when using a reverse sweep transmitter for test signal)

The variance in relative amplitude of the received signal from desired (reference) may be relayed to the field technician via the following:

- Radio (by a second technician in the headend/hub who is monitoring a spectrum analyzer or signal level meter)
- A dedicated forward TV channel, whose associated modulator has its video input being generated by a video camera focused on the spectrum analyzer display
- An associated forward data carrier (if using a particular type of reverse sweep system)

If a portable reverse sweep generator with built-in forward data receiver is used to generate the reverse test signals, only one technician is required to perform the balancing. This type of system is becoming increasingly popular due to its ease of use.

In this case, the sweep system includes a combination reverse sweep receiver and forward data transmitter, which is located in the headend/hub. The frequency response characteristics of the received sweep signal (including relative amplitude and tilt) are converted by the headend sweep receiver to a data format, and transmitted in the forward RF path as a data carrier (by combining it into the forward headend combiner). The portable sweep generator/data receiver that is injecting the test signal into the RF launch amplifier's reverse path in the field is simultaneously receiving the incoming data carrier via the forward RF path. The incoming data is converted back to a sweep display that represents what is being received by the headend unit.

Reverse Balancing and Alignment Procedure

Overview

Digital Return technology is designed to have a constant link gain, regardless of the length of fiber or amount of passive optical loss in the link. That is, if the RF signal amplitude of all ports in all nodes is set to a constant value, the signal level at the output of the receiver will be balanced automatically to a constant power level. Minor differences in levels can be trimmed out at the receiver with no penalty to link performance.

Balancing and Alignment

Follow these steps to reverse balance and align the node with EDR.

1. Refer to the reverse system design print on the RF amplifier assembly cover and inject the proper level into the forward output test point of a port of the RF launch amplifier with a reverse sweep transmitter or a CW signal generator. The insertion
loss of all forward output test points is 20 dB (relative to corresponding port).

Note: For the location of the forward output test point of each port, see RF Assembly (on page 57).

Important: To calculate the correct signal level to inject, add the reverse input level (from the design print) to the insertion loss of the forward output test point.

Formula:
Reverse input + Insertion loss = Signal generator setting

Example:
Reverse input = 15 dBmV
Insertion loss = 20 dB
Result: Signal generator setting=15 dBmV + 20 dB = 35 dBmV

Note: The ADC full-scale (100%) level for a single CW carrier is +33 dBmV. This is the level at which the ADC begins clipping.

Note: The reverse attenuator (pad) and reverse equalizer in the GS7000 Node is selected during the reverse system design, and it is based on the drive level into the digital module which is determined by system performance requirements, type and quantity of return carriers, etc. Consult data sheet to determine proper operational level.

2 Verify the level of the reverse output test point. This output level leaves the RF launch amplifier via the coaxial cable to the multiplexing digital module input. (Use an SMB connector to F-connector test cable.)

3 Have the person in the headend refer to the headend system design and set the output of the receiver to the specified output level. See the instruction guide that was shipped with receiver for setup procedures.
Troubleshooting

Equipment

The following equipment may be necessary to perform some troubleshooting procedures.

- Cisco fiber optic ferrule cleaner, part number 468517, to clean fiber optic connectors
- Cisco 99% alcohol and lint free wipes to clean fiber connectors
- Optical power meter to measure light levels
- Proper fiber connector for optical power meter to make optical connections
- Digital voltmeter to measure voltages
- Spectrum analyzer or a field strength meter to measure RF levels
- Cisco test probe, part number 501111, to access test points
- Cisco external test probe, part number 562580, to access external test points
Transmitter Module Troubleshooting Chart

Follow the steps in the table below to troubleshoot the transmitter module on LED signaling. The following steps indications and solutions apply to both EDR 1:1 and 2:1 transmitter modules.

Follow the steps in the table below to troubleshoot the transmitter module on LED signaling.

For EDR 1:1 Transmitter Module

<table>
<thead>
<tr>
<th>LED Warning</th>
<th>Indication</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>LSR</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>No power supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the power supply of the node with the transmitter installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify that connectors of the transmitter are clicked into the interface connectors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the transponder slot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If still no power supply, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No need for troubleshooting.</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
<td>Input Level Overdrive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the input level of RF port. The output level overdrive indicates the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output signal level exceeds the limit of 35 dBmV.</td>
</tr>
</tbody>
</table>
Troubleshooting

For EDR 2:1 Transmitter Module

<table>
<thead>
<tr>
<th>LED Warning</th>
<th>Indication</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR OFF</td>
<td>LSR OFF</td>
<td>No power supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the power supply of the node with the transmitter installed. Verify that connectors of the transmitter are clicked into the interface connectors in the transponder slot. If still no power supply, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No need for troubleshooting. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
<td>Input Level Overdrive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the input level of RF port 2. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV.</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Green</td>
<td>Non-Cisco Standard OPM Module is in use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV.</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is in use. Output Level Overdrive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
</tbody>
</table>
Orange (Blink) | Orange (Blink) | Non-Cisco Standard OPM Module is in use. Input Level Overdrive. | Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optical signal output</td>
<td>Laser temperature could be too high or low.</td>
<td>Allow up to one minute after power is ON for the temperature to stabilize. If still no output, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Laser could be faulty.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Automatic power control circuit failure.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Damaged fiber.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optical signal output (cont'd)</td>
<td>One or more power supply voltages are out of specification.</td>
<td>Check the power supply for proper operation.</td>
</tr>
<tr>
<td></td>
<td>No AC at receptacle.</td>
<td>Check the receptacle for AC power.</td>
</tr>
<tr>
<td></td>
<td>Blown fuse on the power supply.</td>
<td>Check the power supply fuse and replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Faulty module.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
</tbody>
</table>
Introduction

This appendix explains the installation and configuration of the GS7000 Node expanded fiber tray.

In This Appendix

- Expanded Fiber Tray Overview
- Expanded Fiber Tray Installation
- Fiber Management System
- Configuration Examples
Expanded Fiber Tray Overview

Introduction
The expanded fiber tray is an optional replacement for the standard fiber tray in the GS7000 Node. The expanded fiber tray provides additional space for fiber management/storage and the installation of additional bulkhead adaptors. The expanded fiber tray also provides the space for the installation of various passive devices such as CWDM and OADM cassettes and raw WDM cartridges.

Features
The expanded fiber tray provides the following features:

- Design allows for configuration flexibility.
- Built-in fiber guides and tabs aid management of slack fiber and maintenance of minimum bend radiuses.
- Accommodates most commercially available optical passive devices.
- Circular indexed slot pattern in tray base allows flexibility in mounting components.
- Custom mounting clips provided to secure various components in tray.
- Tray design facilitates additional securing of fibers and components with Velcro straps.
Tray Components

The following illustration shows the unassembled expanded fiber tray components.
Expanded Fiber Tray Installation

Installation Procedure

Perform the following steps to install the expanded fiber tray in the node.

1. If you are replacing a standard fiber tray in an existing node, go to step 2.
 If you are not replacing a standard fiber tray, go to step 3.

2. Remove any installed fibers from the existing standard fiber tray and then remove the fiber tray from the node by pulling up on the fiber tray assembly as shown in the following illustration.

3. Make sure that the expanded fiber tray clear cover is secured in place on the fiber tray.
 Note: Push down on the cover at the cover locking tabs around the periphery of the fiber tray to secure the cover.

4. Insert the expanded fiber tray part way into the node lid as shown in the following illustration.
Important:

- Make sure that the fiber tray fits into the two guide slots in the fiber track near the power supplies.
- Make sure that the fingers and locking tabs on the other end of the fiber tray are inserted between the fiber track and the aluminum node housing.

5 Push down on the fiber tray housing until the fiber tray snaps into place and is fully inserted into the node as shown in the following illustration.

6 Pivot the fiber tray down and snap it into place on top of the power supplies with its
locking tabs and in the node lid with its hold-down tab as shown in the following illustration.
Fiber Management System

Overview

The fiber management system is made up of a fiber tray and a fiber routing track. The fiber tray provides a convenient location to mount passive devices and store excess fiber. The tray is hinged to allow it to move out of the way during the insertion of the fibers and for installation or replacement of the various node modules. The fiber routing track provides a channel for routing fiber pigtails to their appropriate optical modules as well as a location to snap in unused fiber connectors for storage.

The expanded fiber tray provides various clips to hold passive devices and bulkhead adaptors neatly in the tray while providing easy access. An indexed pattern of mounting slots in the tray allows you to install a variety of components in the tray in various configurations. Several features are incorporated into the tray to provide fiber protection and aid in maintaining the proper bend radius of the fiber. A sheet of blank, stick-on, labels is also included for use in identifying the installed components and configuration.

Quality fiber management focuses on four key areas, as follows:

- Maintaining fiber bend radius
- Proper fiber routing
- Connectors and bulkhead access
- Fiber protection

These topics are discussed in detail in the next sections.

Maintaining Fiber Bend Radius

Observe the following considerations regarding fiber bend radius:

- Bent fibers can induce higher losses that can lead to signal degradation and service disruption.
- Current industry standards call for a minimum bend radius of 1.5 inches (38 mm).
- Using bend insensitive fiber, as defined in ITU-T G.657.A, can allow for a smaller bend radius. However, this does not diminish the need to control fiber bends.
- The expanded fiber tray provides several guide walls for spooling and routing fiber. Use these guides to maintain the bend radius of the fiber.

Proper Fiber Routing

Observe the following considerations regarding fiber routing:

- Poor fiber routing is a major cause of bend radius violations.
 Proper fiber routing provides well-defined paths, making it easier to access individual fibers.

- Easy to follow paths aid technicians in performing fiber tracing, testing, and reconfiguration.

- When fiber is not managed, slack fiber tends to become entangled, making tracing and rearrangement difficult.

- The expanded fiber tray provides fiber guides to contain slack fiber. Slack fiber can be coiled in a circular fashion using the guides on the left side of the tray, or by routing through the guides on the outer edge of the tray.

The FIBER guides are designed to allow Velcro tie-down straps to be looped through the posts to further maintain neat fiber placement.
Connector and Bulkhead Access

Observe the following considerations regarding connector and bulkhead access:

- Connector access is critical for reconfiguration, testing, maintenance, and troubleshooting.
- The expanded fiber tray provides a clip which can accommodate up to four SC-type bulkhead adapters, and a smaller clip which can hold up to two SC-type bulkhead adapters.
- The clips can be placed in any one of the three circular retaining tracks in various orientations.

Fiber Protection

Observe the following considerations regarding fiber protection:

- Fibers are subject to serious damage from mishandling that can cause pinching and bending of the fiber beyond its capabilities.
- The expanded fiber tray comes with a clear protective cover. After fibers have been properly routed in the tray, the cover should be closed and locked in position with the locking tabs before stowing the tray in the node.
- Always route fibers in the tray using the fiber guides located about the tray periphery. This will retain the fiber within the tray and prevent inadvertent displacement or pinching of the cable when opening or closing the node.
- The mounting surface of the tray faces downward in the stowed position and upwards when the tray is in the access position, thereby discouraging inadvertent contact with the fibers and passive devices.

Passive Device and Bulkhead Mounting

Mounting clips are provided for installing available passive devices and bulkhead adaptors. These clips can be used to mount devices in various orientations in any of the three circular retaining tracks in the expanded fiber tray. The following illustrations show the available mounting clips.

2-Adaptor Clip

The following illustration shows a 2-adaptor clip for bulkhead adaptors.
Appendix C
Expanded Fiber Tray

4-Adaptor Clip
The following illustration shows a 4-adaptor clip for bulkhead adaptors.

3-Cartridge Clip
The following illustration shows a 3-cartridge clip holding raw WDM cartridges.
CWDM Clip

The following illustration shows a CWDM clip.

![CWDM Clip Image](image1)

Cassette Device Clip

The following illustration shows a cassette device clip holding a demultiplexer.

![Cassette Device Clip Image](image2)

Fiber Installation

For general instructions on installing and routing the fiber optic cables in the node, refer to the *Fiber Optic Cable Installation* (on page 40).
Configuration Examples

WDM Configuration Example

The following illustration shows a cartridge style WDM configuration of the expanded fiber tray.

This application is used to fully segment the GS7000 4-Port Node when limited fiber counts are available, or as means to conserve fibers for future use.

The GS7000 Node comes with several optical module options to help you combine 3x3, and 4x4 forward and return segments utilizing coarse wave division multiplexing (CWDM), dense wave division multiplexing (DWDM), and available analog or digital laser options.

With the use of four 1310 nm/1550 nm WDMs or four 1310 nm CWDMs installed in the node's expanded fiber tray, the 1310 nm forward path signals can be combined with the DWDM or CWDM return signals to achieve full 4x4 segmentation with half the quantity of fibers.

Note: This solution requires WDM modules at headend as shown in the following illustration.
Multi-Wave O-Band Demultiplexer Configuration Example

As the demand for bandwidth continues to grow and clusters of homes decrease into smaller serving areas, networks can become capacity constrained or "fiber starved." A cost-effective approach to solving this problem uses multiple wavelengths on a single fiber.

The Prisma II™ Multi-Wavelength (O-Band) system solution enables dramatic bandwidth increase over a single optical fiber. This system uses forward transmitters capable of co-propagating multiple wavelengths in the 1320 nm to 1335 nm window down a single fiber using wavelength division multiplexing (WDM), with each transmitter carrying a full RF load.

The multi-wavelength solution is ideal for segmentation of node service areas because they enable the reuse of existing fiber up to six times, over distances of up to 30 kilometers.

The following illustration shows a cassette style O-Band demultiplexer configuration of the expanded fiber tray.
Using the O-Band demultiplexer in the expanded fiber tray, the four multiplexed 13xx multi-wave forward path signals are demultiplexed and feed into the four individual receiver modules to achieve 4x forward segmentation with a single fiber.

Note: This solution requires an O-Band multiplexer at the headend as shown in the following illustration.
A

ampere. A unit of measure for electrical current.

ac, AC

alternating current. An electric current that reverses its direction at regularly recurring intervals.

AC/RF

alternating current radio frequency.

AFC

automatic frequency control. An arrangement whereby the tuning of a circuit is automatically maintained within specified limits with respect to a reference frequency.

AGC

automatic gain control. A process or means by which gain is automatically adjusted in a specified manner as a function of input level or other specified parameters.

AMPL

amplitude.

amplifier cascade

two or more amplifiers in a series, the output of one feeding the input of another.

attenuation

The difference between transmitted and received signal strength due to loss through equipment, lines, or other transmission medium. Usually expressed in decibels.

attenuator

A passive device designed to reduce signal strength without distorting the waveform. Usually specified in dB.
AUX
auxiliary.

baseband
The original band of frequencies occupied by the signal before it modulates the carrier frequency to form the transmitted signal. Characteristic of any network technology that uses a single carrier frequency and requires all stations attached to the network to participate in every transmission.

baud (Bd)
A measure of signaling rate based on the number of signaling events per unit of time.

beamwidth
The included angle between two rays (usually the half-power points) on the radiation pattern, which includes the maximum lobe, of an antenna.

BIOS
basic input/output system.

blanking level
The amplitude of the front and back porches of the composite video signal. The blanking level separates the range containing picture information from the range containing synchronization information.

BNC
A coaxial connector that uses two bayonet lugs on the side of the female connector. BNC stands for Bayonet Neill Concelman and is named after Amphenol engineer Carl Concelman.

BPF
bandpass filter.

BW
bandwidth. A measure of the information-carrying capacity of a communications channel, for example the range of usable frequencies that can be carried by a CATV system. The bandwidth corresponds to the difference between the lowest and highest frequency that can be carried by the channel.

C/N or CNR
carrier-to-noise ratio. The ratio, in decibels, of the carrier to that of the noise in a receiver's IF bandwidth after specified band limiting and before any nonlinear process such as amplitude
limiting and detection takes place.

C/T

carrier-to-noise temperature ratio.

CISC

Complex Instruction Set Computer. A computer that uses many different types of instructions to conduct its operations, i.e., IBM PCs, Apple Macintosh’s, IBM 370 mainframes.

compression

The non-linear change of gain at one level of a signal with respect to the change of gain at another level for the same signal. Also, the elimination of redundant information from an audio, data, or video signal to reduce transmission requirements.

CW

continuous wave.

CWDM

coarse wave-division multiplexing. CWDM allows a modest number of channels, typically eight or less, to be stacked in the 1550 nm region of the fiber called the C-Band. This capacity is greater than WDM (wave-division multiplexing) and lesser than DWDM (dense wave-division multiplexing).

dB

decibel. One tenth of a bel, the number of decibels denoting the ratio of two amounts of power being ten times the common logarithm of this ratio.

dBc

decibels relative to a reference carrier.

dBi

decibels of gain relative to an isotropic radiator.

dBm

decibels relative to 1 milliwatt.

dBmV

decibels relative to 1 millivolt.
Glossary

dBuV
decibels relative to 1 microvolt.

dBW
decibels relative to 1 watt.

DC
directional coupler.

dc, DC
direct current. An electric current flowing in one direction only and substantially constant in value.

development
The peak difference between the instantaneous frequency of the modulated wave and the carrier frequency, in an FM system.

differential gain
The difference in amplification of a signal (superimposed on a carrier) between two different levels of carrier.

diplexer
A filter which divides the frequency spectrum into a high frequency segment and a low frequency segment so that two different signals can be sent down the same transmission path.

distribution
The activities associated with the movement of material, usually finished products or service parts, from the manufacturer to the customer.

distribution system
The part of a CATV system consisting of the transmission medium (coaxial cables, fiber optic cables, etc.) used to carry signals from the headend system to subscriber terminals.

DSP
digital signal processor.

duplexer
A device which permits the connection of both a receiver and a transmitter to a common antenna.
DVM
digital voltmeter.

DWDM
dense wave-division multiplexing. A method of placing multiple wavelengths of light into a single fiber that yields higher bandwidth capacity. Dense WDM indicates close spacing and more than 4 to 8 wavelengths.

EC
European Community.

EEPROM
electrically erasable programmable read-only memory.

EMC
electromagnetic compatibility. A measure of equipment tolerance to external electromagnetic fields.

emission designer
An FCC or CCIR code that defines the format of radiation from a transmitter.

EPROM
erasable programmable read-only memory.

EQ
equalizer.

equalization
The process of compensating for an undesired result. For example, equalizing tilt in a distribution system.

ERP
effective radiated power.

ESD
Electrostatic discharge. Discharge of stored static electricity that can damage electronic equipment and impair electrical circuitry, resulting in complete or intermittent failures.
Glossary

FCM
forward configuration module.

FET
field-effect transistor. A transistor in which the conduction is due entirely to the flow of majority carriers through a conduction channel controlled by an electric field arising from a voltage applied between the gate and source electrodes.

FM
frequency modulation. A transmission technique in which the frequency of the carrier varies in accordance with the modulating signal.

frequency
The number of similar shapes in a communications or electrical path in a unit of time. For example, the number of sine waves moving past a fixed point in a second.

frequency agile
The ability to change from one frequency to another without changing components.

frequency response
The effect that changing the frequency has on the magnitude of a signal.

ft-lb
foot-pound. A measure of torque defined by the application of one pound of force on a lever at a point on the lever that is one foot from the pivot point.

gain
A measure of the increase in signal level, relative to a reference, in an amplifier. Usually expressed in decibels.

Hertz
A unit of frequency equal to one cycle per second.

HFC
hybrid fiber/coaxial. A network that uses a combination of fiber optics and coaxial cable to transport signals from one place to another. A broadband network using standard cable television transmission components, such as optical transmitters and receivers, coaxial cable, amplifiers, and power supplies. The broadband output stream is transmitted as an optical signal, over the high-speed, fiber optic transmission lines to local service areas where it is split, converted to electrical RF signals, and distributed to set-tops over coaxial cable.
I/O
input/output.

IC
integrated circuit.

IEC

IF
intermediate frequency. The common frequency which is mixed with the frequency of a local oscillator to produce the outgoing radio frequency (RF) signal.

in-lb
inch-pound. A measure of torque defined by the application of one pound of force on a lever at a point on the lever that is one inch from the pivot point.

ITU
International Telecommunications Union.

LE
line extender.

LED
light-emitting diode. An electronic device that lights up when electricity passes through it.

LNC
low-noise converter.

Mbps
megabits per second. A unit of measure representing a rate of one million bits (megabits) per second.

multipath, multipath transmission
The phenomenon which results from a signal traveling from point to point by more than one path so that several copies of the signal arrive at the destination at different times or at different angles.
Glossary

Nm
Newton meter. A measure of torque defined by the application of one Newton of force on a lever at a point on the lever that is one meter from the pivot point. (1 Nm = 0.737561 ft-lb)

OIB
optical interface board.

PCB
printed circuit board.

PROM
programmable read-only memory. A memory chip on which data can be written only once. Once data has been written onto a PROM, it cannot be written to again.

PWB
printed wiring board.

QAM
quadrature amplitude modulation. An amplitude and phase modulation technique for representing digital information and transmitting that data with minimal bandwidth. Both phase and amplitude of carrier waves are altered to represent the binary code. By manipulating two factors, more discrete digital states are possible and therefore larger binary schemes can be represented.

QPSK
quadrature phase-shift keying. A phase modulation technique for representing digital information. QPSK produces four discrete states, each state representing two bits of information.

RCM
reverse configuration module.

RCVR
receiver.

reverse path
Signal flow direction toward the headend.
RF
radio frequency. The frequency in the portion of the electromagnetic spectrum that is above the audio frequencies and below the infrared frequencies, used in radio transmission systems.

RFI
radio frequency interference.

RMA
return material authorization. A form used to return products.

RX
receive or receiver.

S/N or SNR
signal-to-noise ratio. The ratio, in decibels, of the maximum peak-to-peak voltage of the video signal, including synchronizing pulse, to the root-mean-square voltage of the noise. Provides a measure and indication of signal quality.

SA
system amplifier.

SM
status monitor.

SMC
status monitoring and control. The process by which the operation, configuration, and performance of individual elements in a network or system are monitored and controlled from a central location.

SMIU
status monitor interface unit.

SNMP
simple network management protocol. A protocol that governs network management and the monitoring of network devices and their functions.

synchronous transmission
A transmission mode in which the sending and receiving terminal equipment are operating continuously at the same rate and are maintained in a desired phase relationship.
Glossary

torque
A force that produces rotation or torsion. Usually expressed in lb-ft (pound-feet) or N-m (Newton-meters). The application of one pound of force on a lever at a point on the lever that is one foot from the pivot point would produce 1 lb-ft of torque.

TX
transmit or transmitter.

UPS
un-interruptible power supply.

uV
microvolt. One millionth of a volt.

V
volt.

W
watt. A measure of electrical power required to do work at the rate of one joule per second. In a purely resistive load, 1 Watt = 1 Volt x 1 Amp.
Index

1
1 GHz Forward Linear Equalizers • 157
1x2 and 1x4 Forward Configuration Modules • 104
1x2 and 1x4 Forward Configuration Modules Description • 29
1x2 and 1x4 Forward Configuration Modules with Forward RF Injection • 105
1x2 and 1x4 Forward Configuration Modules with Forward RF Injection Description • 29
1x2 and 1x4 Redundant Forward Configuration Modules • 106
1x2 and 1x4 Redundant Forward Configuration Modules Description • 30
1x2 and 1x4 Redundant Forward Configuration Modules with Forward RF Injection • 107
1x2 and 1x4 Redundant Forward Configuration Modules with Forward RF Injection Description • 30

2
2x2 and 2x4 Forward Configuration Modules • 108
2x2 and 2x4 Forward Configuration Modules Description • 31
2x2 and 2x4 Redundant Forward Configuration Modules • 109
2x2 and 2x4 Redundant Forward Configuration Modules Description • 31

3
3x4-1,2,4 Forward Configuration Module • 111
3x4-1,2,4 Forward Configuration Module Description • 32
3x4-1,3,4 Forward Configuration Module • 110
3x4-1,3,4 Forward Configuration Module Description • 32

4
4-Way Forward Path Signal Routing • 21
4-Way Forward Segmentable Node RF Assembly • 95
4x1 Redundant Reverse Configuration Module • 115
4x1 Redundant Reverse Configuration Module Description • 34
4x1 Reverse Configuration Module with Auxiliary Reverse RF Injection • 114
4x1 Reverse Configuration Module with Auxiliary Reverse RF Injection Description • 34
4x2 Redundant Reverse Configuration Module • 117
4x2 Redundant Reverse Configuration Module Description • 35
4x2 Reverse Configuration Module with Auxiliary Reverse RF Injection (8-Port OIB) • 116
4x2 Reverse Configuration Module with Auxiliary Reverse RF Injection (8-Port OIB) Description • 35
4x3-1,2,4 Reverse Configuration Module with Auxiliary Reverse RF Injection • 118
4x3-1,2,4 Reverse Configuration Module with Auxiliary Reverse RF Injection Description • 36
4x3-1,3,4 Reverse Configuration Module with Auxiliary Reverse RF Injection • 119
4x3-1,3,4 Reverse Configuration Module with Auxiliary Reverse RF Injection Description • 36
4x4 Forward Configuration Module • 112
4x4 Forward Configuration Module Description • 33
4x4 Reverse Configuration Module with Auxiliary Reverse RF Injection • 120
4x4 Reverse Configuration Module with Auxiliary Reverse RF Injection Description • 37

A
A • 213
ac, AC • 213
AC/RF • 213
Accessing the Receiver/Transmitter Module Fiber Spool and Connector • 130
AFC • 213
AGC • 213
AMPL • 213
amplifier cascade • 213
Amplifier Output Linear Tilt Chart for 1 GHz • 155
Applying Power to the Node • 85
attenuation • 213
attenuator • 213
AUX • 214
Index

B

baseband • 214
baud (Bd) • 214
beamwidth • 214
Before You Begin • 177
BIOS • 214
blanking level • 214
BNC • 214
BPF • 214
BW • 214

C

C/N or CNR • 215
C/T • 215
Care and Cleaning of Optical Connectors • 134
CISC • 215
Cleaning • 125
Closing the Housing • 122
Color Code • 74
compression • 215
Configuration Examples • 209
Connecting the RF Cables to the Node Housing • 84
Connector and Bulkhead Access • 205
Consumable Materials • 125
Customer Support Information • 151
CW • 215
CWDM • 215

D

dB • 215
dBc • 215
dBi • 215
dBm • 216
dBmV • 216
dBuV • 216
dBW • 216
DC • 216
dc, DC • 216
Description • 69, 72
deviation • 216
differential gain • 216
digital reverse
differential gain • 216
differential gain troubleshooting • 192
diplex filter • 216
distribution • 216
distribution system • 216
DSP • 217
duplexer • 217
DVM • 217
DWDM • 217

E

EC • 217
EDR OPM and LCM • 176
EDR Receiver Module • 171
EDR Transmitter Module • 166
EDR Transmitter Status Indicators • 187
EEPROM • 217
EMC • 217
emission designer • 217
Enhanced Digital Return (EDR) System Installation • 177
Enhanced Digital Reverse System Overview • 159
EPROM • 217
equalization • 218
equipment
description • 2
features • 6
Equipment • 192
Equipment Description • 2
ERP • 218
ESD • 218
Expanded Fiber Tray Installation • 200
Expanded Fiber Tray Overview • 198

F

FCM • 218
Features • 6, 159, 198
FET • 218
Fiber Installation • 208
Fiber Management System • 75, 203
fiber optic cable
care and cleaning of optical connectors • 134
installation • 74
Fiber Optic Cable Installation • 74
Fiber Protection • 205
FM • 218
Forward Band Amplification 2-Way and 4-Way Path Description • 25
Forward Configuration Module • 29
forward configuration modules
classification module replacement procedure • 131
descriptions • 29
Forward Equalizer Chart • 156
forward path
forward path setup procedure • 97
reconfiguring forward signal routing • 103
Forward Path • 21
Forward Path Setup Procedure • 97
Forward Routing Configurations • 103
Index

Optical Receiver Module Description • 39
Optical Receiver Module Diagram • 42
Optical Switch Module • 52
Optical Switch Module Description • 52
Optical Switch Module Diagram • 53
Optical Switch Operating Parameters • 53
optical transmitter module • 43
Optical Transmitter Module Descriptions • 43
Optical Transmitter Module Diagram • 44
Optical Transmitter Modules • 43
Optical Transmitter Setup Procedure • 101
Ordering Matrix • 13
Overview • 2, 58, 74, 82, 85, 122, 124, 127, 203

P
Passive Device and Bulkhead Mounting • 205
PCB • 220
Pedestal or Wall Mounting the Node • 72
Physical Description • 2
Poor C/N Performance • 144
Poor Distortion Performance • 146
Poor Frequency Response • 148
power distribution • 23
Power Distribution • 23
power supply module • 61
Power Supply Module • 61
Power Supply Module Description • 61
powering the node • 85
Preventative Maintenance • 124
Procedure • 69, 72, 77, 125
PROM • 220
Proper Fiber Routing • 204
PWB • 220

Q
QAM • 220
QPSK • 221

R
RCM • 221
RCVR • 221
Receiver Operating Modes • 173
Recommended Equipment • 134
Reconfiguring Forward Signal Routing • 103
Reconfiguring Reverse Signal Routing • 113
Removing and Replacing Modules • 127
Required Tools and Test Equipment • 66, 90
Reverse Balancing and Alignment Procedure • 190
Reverse Balancing the Node with EDR • 189
Reverse Band Amplification Path Description • 27
Reverse Configuration Module • 34
reverse configuration modules configuration module replacement procedure • 131
descriptions • 34
reverse path • 221
reconfiguring reverse signal routing • 113
reverse path setup procedures • 101
reverse path signal routing • 22
Reverse Path • 22
Reverse Path Setup Procedure • 101
Reverse Path Signal Routing • 22
Reverse Routing Configurations • 113
RF • 221
RF Amplifier Assembly Replacement Procedure • 131
RF amplifier module forward band amplification path description • 25
functional diagrams • 24
reverse band amplification path description • 27
RF Amplifier Module • 24
RF Assembly • 95
RF cable installation • 82
trimming the center conductor • 82
RF Cable Installation • 82
RFI • 221
RMA • 221
RX • 221

S
S/N or SNR • 221
SA • 221
Schedule • 124
setup and operation • 89
forward path setup procedure • 97
reverse path setup procedures • 101
tools and test equipment • 90
Setup and Operation • 89
Setup Procedure • 97
Single Transmitter Configuration • 160
SM • 222
SMC • 222
SMIU • 222
SNMP • 222
status monitor • 58
Status Monitor Description • 58
Status Monitor/Local Control Module • 58
Strand Mounting the Node • 69
synchronous transmission • 222
System Block Diagram • 164
System Diagrams • 17, 91
System Functional Diagrams • 160

160
T
Theory of Operation • 15
Tips for Optimal Fiber-Optic Connector Performance • 134
To Clean Optical Connectors • 135
Tools and Test Equipment • 66, 90
torque • 222
Transmitter Module Setup Procedure • 186
Transmitter Module Troubleshooting Chart • 193
Tray Components • 199
Trimming the Center Conductor • 82
Troubleshooting • 139, 192
Troubleshooting Flowchart • 140, 142, 144, 146, 148, 150
troubleshooting flowcharts • 139
TX • 222

U
UPS • 222
uV • 222

V
V • 222
Visual Inspection • 124
Voltage Check Procedure • 86

W
W • 223
WDM Configuration Example • 209