Workload Optimization Manager 2.2 Installation and Update Guide
Contents

Introduction ... 5

Task Overview ... 6

Minimum Requirements .. 7

Installing Workload Optimization Manager 8
 Installing on VMware Systems 8
 Installing on Microsoft Hyper-V 9
 Installing on AWS .. 10
 Installing using the CloudFormation Template 10
 (Optional) Creating a Security Group 11
 CloudFormation Template Summary 11
 Installing on Azure ... 16
 Prerequisites ... 16
 Installing Workload Optimization Manager on Azure 16

General Configuration Tasks .. 18
 (Optional) Specifying a Static IP Address 18
 The ipsetup Script .. 18
 Manually Configuring a Static IP Address 19
 (Best practice) Synchronizing Time 19
 (Optional) Configuring remote MariaDB connections for the Workload Optimization Manager instance 20
 (Required) Ports ... 21
 (Optional) Opening a Non-Default Port 21
 (Optional) Enforcing Secure Access 22

License Installation and First-time Login 26
 Upgrading Your Workload Optimization Manager License 26

Single Sign-On Authentication .. 28
 Prerequisites .. 28
 Configuring Single Sign-On .. 28
 Example of IdP Metadata ... 30
 Disabling Single Sign-On ... 31
 Support for Single Logout .. 32
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updating Workload Optimization Manager to a New Version</td>
<td>33</td>
</tr>
<tr>
<td>Installing and Updating on a RHEL Platform</td>
<td>36</td>
</tr>
<tr>
<td>Requirements for RHEL and Setup</td>
<td>36</td>
</tr>
<tr>
<td>Installing on a RHEL VM</td>
<td>37</td>
</tr>
<tr>
<td>Updating the RHEL Deployment</td>
<td>40</td>
</tr>
<tr>
<td>Offline Update</td>
<td>40</td>
</tr>
<tr>
<td>Online Update</td>
<td>41</td>
</tr>
<tr>
<td>FAQs</td>
<td>42</td>
</tr>
<tr>
<td>Do I need special software to run the Workload Optimization Manager client?</td>
<td>42</td>
</tr>
<tr>
<td>When do I need to clear my local Adobe Flash cache?</td>
<td>42</td>
</tr>
<tr>
<td>Why can I not execute some of the recommendations made by Workload Optimization Manager?</td>
<td>43</td>
</tr>
<tr>
<td>How Do I Add Fonts to Enable Reporting for the RHEL Platform?</td>
<td>44</td>
</tr>
<tr>
<td>How Can I Work Around the Restriction for Host Names Containing Underscore Characters?</td>
<td>44</td>
</tr>
<tr>
<td>What Are the Typical Settings for an IdP?</td>
<td>45</td>
</tr>
</tbody>
</table>
Introduction

Thank you for choosing Workload Optimization Manager, the Intelligent Workload Automation Management solution for Cloud and Virtualized Environments. This guide gives you information you need to install Workload Optimization Manager in your virtual environment, install your license, and get started managing your resources.

If you have any questions, please contact Cisco support.

Sincerely:

The Workload Optimization Manager Team
Task Overview

This Workload Optimization Manager *Installation Guide* provides instructions to accomplish the following tasks:

<table>
<thead>
<tr>
<th>If you need to:</th>
<th>Perform or go to:</th>
</tr>
</thead>
</table>
| Deploy a new Workload Optimization Manager installation. | • Review the Workload Optimization Manager *Release Notes*.
 • Ensure you satisfy the minimum requirements. See *Minimum Requirements* on page 7.
 • Perform the installation procedure in *Installing Workload Optimization Manager* on page 8.
 • Configure any settings if necessary. See *General Configuration Tasks* on page 18.
 • Log in for the first time. See *License Installation and First-time Login* on page 26.
 • Install your license. See *License Installation and First-time Login* on page 26.
 • Configure SSO if necessary. See *Single Sign-On Authentication* on page 28.
 • Continue to use your Workload Optimization Manager instance. See the Workload Optimization Manager *User Guide* and the Workload Optimization Manager *Target Configuration Guide*. |
| Deploy a new Workload Optimization Manager installation on RHEL. | • Review the Workload Optimization Manager *Release Notes*.
 • Ensure you satisfy the minimum requirements. See *Requirements for RHEL and Setup* on page 36.
 • Perform the installation procedure in *Installing and Updating on a RHEL Platform* on page 36. |
| Upgrade a license. | Follow the instructions in *Upgrading Your Workload Optimization Manager License* on page 26. |
| Update your existing Workload Optimization Manager installation. | • Review the Workload Optimization Manager *Release Notes*.
 • Ensure you satisfy the minimum requirements for updating Workload Optimization Manager on supported hypervisors or the RHEL platform:
 – *Requirements for RHEL and Setup* on page 36
 • Perform one of the following update procedures:
 – *Upgrading Workload Optimization Manager to a New Version* on page 33
 – *Updating the RHEL Deployment* on page 40
 • Upgrade your license, if necessary. See *Upgrading Your Workload Optimization Manager License* on page 26.
 • Log in.
 • Continue to use your Workload Optimization Manager instance. See the Workload Optimization Manager *User Guide* and the Workload Optimization Manager *Target Configuration Guide*. |
Minimum Requirements

The following are minimum requirements to run Workload Optimization Manager:

<table>
<thead>
<tr>
<th>Supported Hypervisors</th>
<th>Storage Requirements</th>
<th>Memory</th>
<th>CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vCenter versions 5.5, 6.0, 6.5, and 6.7</td>
<td>500 GB or greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Hyper-V as bundled with Windows 2016, 2008 R2, Hyper-V Server 2012, or Hyper-V Server 2012 R2</td>
<td>16 GB</td>
<td>4 vCPUs</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Minimum requirements depend on the size of your environment's inventory. The more datastores, hosts, VMs, and applications you have, the more resources you need to run the installation effectively. Also note that other management software might recommend that you run the Workload Optimization Manager VM with lower resources. Please be sure to give Workload Optimization Manager enough resources, using the guidelines above.

Workload Optimization Manager operates with most commonly-used Web browsers (for example, Internet Explorer, Mozilla Firefox, Google Chrome, and Apple Safari). The Web browsers must have JavaScript enabled. In addition, the browser that you use for the Workload Optimization Manager user interface must be synchronized with the Workload Optimization Manager instance to within one minute. Without this synchronization, Workload Optimization Manager can show incorrect metric values. Also, if you use Google Chrome for the Workload Optimization Manager user interface, you must turn off the Chrome Preview mode before you download reports in order to view those reports.

Workload Optimization Manager supports DHCP or static IP addressing. For information about using static IP addresses, see (Optional) Specifying a Static IP Address on page 18.
Installing Workload Optimization Manager

As you get started with Workload Optimization Manager, be aware that there are different downloads available for the supported hypervisors. These downloads all deliver the same version of Workload Optimization Manager with the same capabilities, but they are packaged to install and run on different hypervisor platforms.

You can also install the Workload Optimization Manager software on a VM running Red Hat (see Installing and Updating on a RHEL Platform on page 36).

Each installation manages virtual environments in exactly the same way. The installation you choose depends on the policies and standards for your enterprise. This document describes installation procedures for each of the Workload Optimization Manager downloads. The installation you choose has no effect on the technologies you can manage with Workload Optimization Manager. No matter which type of machine hosts Workload Optimization Manager, you can manage all workloads running on the supported hypervisors, as well as those managed via cloud platforms and load balancer targets.

This section describes how to install a new Workload Optimization Manager instance. If you are updating a current installation to new version, you should not perform a full install – Instead you should update your current installation. See Updating Workload Optimization Manager to a New Version on page 33.

This section includes installation instructions for the following supported virtual platforms:

- Installing on VMware Systems on page 8
- Installing on Microsoft Hyper-V on page 9
- Installing on AWS on page 10
- Installing on Azure on page 16

When you deploy Workload Optimization Manager, you should install it on a VM that does not include underscore characters in its name. If you cannot change the host name, you can use a workaround described in How Can I Work Around the Restriction for Host Names Containing Underscore Characters? on page 44.

Installing on VMware Systems

This download of the Workload Optimization Manager instance is in the .OVA 1.0 format.

To install Workload Optimization Manager:

1. Download the Workload Optimization Manager installation package.
 Refer to the email you received from Cisco for links to the Workload Optimization Manager download pages.

2. Import the OVA file into your VMware infrastructure using VCenter.

3. Start the Workload Optimization Manager appliance and record its IP address.
 Users navigate to the appliance IP address to start up the Web User Interface in a browser.
4. If necessary, specify a static IP address for the appliance.
 If your environment does not have DHCP, or if you want to give the Workload Optimization Manager instance a static IP address, see (Optional) Specifying a Static IP Address on page 18.

5. Perform the required configuration steps for the Workload Optimization Manager instance.
 See General Configuration Tasks on page 18.

Installing on Microsoft Hyper-V

1. Download the Workload Optimization Manager installation package.
 Refer to the email you received from Cisco for links to the Workload Optimization Manager download pages.

2. Expand the .zip file and copy the contents, which includes the Virtual Machine image, to your Hyper-V server (either to your cluster shared volume or to a local hard drive).

3. Use the Import Virtual Machine Wizard in the Hyper-V Manager to import the Virtual Machine into your environment.

4. Make sure your virtual network adapter is connected to the correct virtual network.

5. Ensure the Workload Optimization Manager instance will have sufficient memory.
 Cisco recommends that you use static memory for your Workload Optimization Manager instance. However, you can specify static or dynamic memory for the instance.
 In Properties for the instance, navigate to Hardware Configuration:
 – For Static Memory, set Virtual machine memory to at least 16 GB.
 – For Dynamic Memory, then set Startup memory and Minimum memory to 16 GB.

6. Start the Workload Optimization Manager appliance and record its IP address.
 Users navigate to the appliance IP address to start up the Web User Interface in a browser.

7. If necessary, specify a static IP address for the appliance.
 If your environment does not have DHCP, or if you want to give the Workload Optimization Manager instance a static IP address, see (Optional) Specifying a Static IP Address on page 18.

8. Perform the required configuration steps for the Workload Optimization Manager instance.
 See General Configuration Tasks on page 18.

NOTE: The Workload Optimization Manager instance configuration includes a NIC that is not connected to any network. After installing the instance, you should use the Hyper-V Manager to configure the network and VLAN settings to suit the requirements of your cluster’s network.
Installing on AWS

For an AWS installation, you will install Workload Optimization Manager as an Amazon Machine Image (AMI). To perform this installation, ensure that your deployment follows Workload Optimization Manager and Amazon best practices, including:

- Automatic scheduling and executing of EBS data volume snapshots

 AWS will perform these snapshots daily and store them in a user-created S3 bucket on a rolling 14-day period.

- EBS volume encryption

 Workload Optimization Manager recommends using a Security Group to only allow access to the Workload Optimization Manager instance through HTTPS.

- Setup and use of Identity and Access Management (IAM) Instance Profiles (Instance Roles) for authentication

 Workload Optimization Manager recommends Instance Roles over Access Keys. Instance Roles are much easier to manage for compliance purposes, and are natively supported by the AWS SDK.

 Further, Workload Optimization Manager recommends enabling cross-account access for your Instance roles by following the steps found here:

- Utilize auto-scaling for HA/recovery purposes

 Through AWS’s auto-scaling, Workload Optimization Manager ensures that there is an instance running at all times.

As you perform this installation, the CloudFormation template ensures adherence to these best practices.

Installing using the CloudFormation Template

This template directs you through launching a VM that runs CentOS and that hosts a Workload Optimization Manager instance. This template ensures that your deployment will follow both Workload Optimization Manager and Amazon best practices.

To install Workload Optimization Manager using the CloudFormation template:

1. Download the Workload Optimization Manager CloudFormation template.

 To access the CloudFormation template, please contact Technical Support.

2. Modify the template to set parameters depending on your AWS environment.

 For information, review the CloudFormation Template Summary on page 11.

3. Log in to your AWS console and choose the CloudFormation service.

4. Create a new Stack.

 When you are prompted for your template:

 a. Click Upload a template to Amazon S3.

 b. Choose the template you downloaded and modified.
c. Click Next.

5. On the Specify Details page, enter your stack information.

Enter a stack name and choose the image size. Click Next.

NOTE: Cisco recommends the m5.xlarge template, but you can also use m5.large, m5.2xlarge, m4.xlarge, m4.large, m4.2xlarge, r4.xlarge, r4.2xlarge, r5.xlarge, r5.2xlarge, i2.xlarge, i3.xlarge, c4.2xlarge, or c5.2xlarge.

6. On the Options page, enter any tags you need.

For example, change the default values for the Key-Value pair to set periodic backups of your data.

After you add any tags, click Next.

Tags are a convenient way to group instances based on security needs, business requirements, and more. See https://aws.amazon.com/answers/account-management/aws-tagging-strategies/ for more information.

7. On the Review page, ensure that your selections are correct.

Once you have reviewed your selections and are satisfied, click Create.

(Optional) Creating a Security Group

NOTE: When you install Workload Optimization Manager via the CloudFormation template, that installation automatically performs this step.

If you install Workload Optimization Manager without using the CloudFormation template, Cisco recommends that you create a security group to restrict access to HTTPS only for the Workload Optimization Manager instance and attach this group to the Workload Optimization Manager instance.

Read the Amazon documentation for more information on security groups. See http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

CloudFormation Template Summary

This section provides additional explanations about portions of the CloudFormation template which may be useful when you are preparing your template.

This snippet creates the structure of the CloudFormation template, used by the rest of the template.

Metadata:

- **Instances:**
 - **Description:** Your Turbonomic instance is created with an encrypted EBS Volume. If you create an encrypted volume and don’t specify this property, AWS CloudFormation uses the default master key.
 - 'AWS::CloudFormation::Designer': 5979b605-17c1-4e1a-9158-ae132fb86736:
 - size:
 - width: 60
 - height: 60
 - position:
 - x: 30
 - 'y': -20
 - z: 1
The following snippet sets the allowable deployment templates, and defines your VPC ID to use later in the template.

Parameters:

- **InstanceTypeParameter**:
 - Type: String
 - Default: m4.xlarge
 - AllowedValues:
 - m4.large
 - m4.xlarge
 - m4.2xlarge
 - Description: 'Enter m4.large, m4.xlarge, or m4.2xlarge. Default is m4.xlarge.'

- **VpcIdParameter**:
 - Type: 'List<AWS::EC2::VPC::Id>'
 - Description: VpcId of your existing Virtual Private Cloud (VPC)
 - ConstraintDescription: must be the VPC Id of an existing Virtual Private Cloud.

The following snippet maps the various AWS regions to ensure that your Workload Optimization Manager instance is deployed in your default region.

NOTE: The list of available AMIs by region changes periodically. To obtain the latest list of AMIs for Workload Optimization Manager, go to the AWS Marketplace and log in with your AWS credentials. Click the Manual Launch tab. Then, choose the latest version of Workload Optimization Manager to display the regions and AMI IDs. Make a record of the regions and AMI IDs for use in your template.

Mappings:

- **RegionMapToAMI**:
 - us-east-2: AMI:
 - "ami-366f4e53"
 - us-east-1: AMI:
 - "ami-7ae9c16c"
 - us-west-1: AMI:
 - "ami-898fa2e9"
 - us-west-2: AMI:
 - "ami-f656428f"
 - ap-south-1: AMI:
 - "ami-f23f419d"
 - ap-northeast-2: AMI:
 - "ami-76f02f18"
 - ap-southeast-1: AMI:
 - "ami-756fe316"
 - ap-southeast-2: AMI:
 - "ami-f32d3d90"
 - ca-central-1: AMI:
 - "ami-e834208f"
AMI:
- "ami-28cd724c"
eu-central-1:
AMI:
- "ami-72eb4d1d"
eu-west-1:
AMI:
- "ami-1d7b607b"
eu-west-2:
AMI:
- "ami-eb61778f"
sa-east-1:
AMI:
- "ami-cce289a0"

The following snippet creates the Workload Optimization Manager security group, which limits access to the Workload Optimization Manager instance to HTTPS only:

Resources:
TurbononomicSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupName: TurbononomicSecurityGroup
 GroupDescription: Creates and limits access to Turbonomic instance through port 443 only
 VpcId:
 Ref: VpcIdParameter
 SecurityGroupIgress:
 - IpProtocol: tcp
 FromPort: '443'
 ToPort: '443'
 CidrIp: 0.0.0.0/0
 Metadata:
 'AWS::CloudFormation::Designer':
 id: ef20cdef-19a0-4d61-9f16-0108bb0330e1
 DependsOn:
 - Turbonomic

The following snippet sets the following items for the Workload Optimization Manager instance:

- Instance size
- Instance region
- Block storage properties, including access, backup, and encryption
- Security Group

NOTE: DeleteOnTermination is set to false by default. This ensures that even if the EC2 instance is terminated at a later time, the data will persist.

Turbonomic:
 Type: 'AWS::EC2::Instance'
 Properties:
 InstanceType:
 Ref: InstanceTypeParameter
The following snippet creates an auto scaling group of 1, which ensures that a Workload Optimization Manager EC2 instance is always running:

```
TurbonomicAutoScalingGroup:  
  Type: 'AWS::AutoScaling::AutoScalingGroup'  
  Properties:  
    AvailabilityZones:  
      - !GetAtt Turbonomic.AvailabilityZone  
    InstanceId:  
      - !Ref Turbonomic  
    Cooldown: '1800'  
    MinSize: '1'  
    MaxSize: '1'  
    DesiredCapacity: '1'  
    HealthCheckType: EC2  
    HealthCheckGracePeriod: 900  
  Metadata:  
    'AWS::CloudFormation::Designer':  
      id: b4bc499e-9882-4ab9-9c37-e165e51fe589  
  DependsOn:  
    - Turbonomic
```

The following snippet creates the S3 bucket required for the daily backups:

```
TurbonomicS3BackupBucket:  
  Type: 'AWS::S3::Bucket'  
  Properties:  
    AccessControl: AuthenticatedRead  
    BucketName: turbonomic-s3-volume-backup-bucket  
  Metadata:  
    'AWS::CloudFormation::Designer':  
      id: 5979b605-17c1-4e1a-9158-ae132fb86736
```
Installing on Azure

Workload Optimization Manager provides the Azure Marketplace Template that you can use to deploy a Workload Optimization Manager instance on an Azure cloud account. This template simplifies setup, and ensures compliance with Workload Optimization Manager minimum requirements.

Prerequisites

Before you begin, make sure you have the following:

- Access to the Azure portal.
- An active Azure subscription with permissions to deploy VMs.
- A valid Workload Optimization Manager license.

Installing Workload Optimization Manager on Azure

To install Workload Optimization Manager on Azure:

1. Log in to your Azure portal.

 Use the URL: https://portal.azure.com and log in with your Azure credentials.

2. Access the appropriate template for Workload Optimization Manager.

 For information, please contact technical support.

3. Specify deployment details for the new template.

 On the template details page, click Create. In the new window, enter the following details:

 - **Name:**

 The name of the Workload Optimization Manager Server

 - **VM Disk Type:**

 HDD

 - **Username:**

 azureuser

 NOTE: You must enter azureuser in this Username field. It is a required value.

 - **Authentication Type:**

 Click either SSH public key or password, and provide the required information.

 - **Subscription:**

 Choose the Azure subscription for the deployment.

 - **Resource Group:**

 Choose an existing one, or create a new Resource Group in which you will deploy the Workload Optimization Manager VM.
— Location:
 Choose the Azure region in which you will deploy the Workload Optimization Manager VM.
 Click OK to advance to the next window.

4. Choose the Azure VM Template for the VM that will host the Workload Optimization Manager instance.
 In the Template Selection window, choose an Azure VM Template for the Workload Optimization Manager instance. Workload Optimization Manager recommends D3_V2 Standard, but you may use any template that meets the Workload Optimization Manager minimum requirements.
 Click OK to advance to the next window.

5. Configure the VM to enable Workload Optimization Manager monitoring.
 To collect all necessary information about your environment, Workload Optimization Manager requires the following values be used (You may set values not mentioned specifically according to company policy):
 — Firewall:
 Do not remove the default ports
 — Auto Shutdown:
 Off
 — Boot Diagnostics:
 Enabled
 — Guest OS Diagnostics:
 Enabled
 Click OK to advance to the next window.

6. Verify your settings and purchase the template.
 Before you purchase the template, be sure to verify your settings. When you are satisfied, click Purchase.

7. Finalize the VM setup.
 Once Azure has deployed the Workload Optimization Manager template, navigate a browser to the Azure-assigned IP. Make sure to use the https:// protocol.
 Follow the on-screen prompts to set up and begin using your Workload Optimization Manager instance.

NOTE: You may see an HTTPS certificate error when navigating to the instance. Ignore this warning.
General Configuration Tasks

After you install the Workload Optimization Manager instance, perform the following configuration tasks:

- (Optional) Specify a static IP address.
- (Best practice) Synchronize the system clock and configure your time servers.
- (Optional) Configure remote MariaDB connections.
- (Required) Ensure the ports that Workload Optimization Manager needs for network communication are open.
- (Optional) Open a non-default port on the Workload Optimization Manager VM to allow communication from a target.
- (Optional) Enforce secure access by installing a trusted certificate.

(Optional) Specifying a Static IP Address

Many installations use DHCP for dynamic IP address allocation. You can also specify a static address via the virtual machine’s IP configuration.

Only if you need to specify a static IP address, choose one of the following methods:

- Use the `ipsetup` script from Workload Optimization Manager.
- Configure the static IP address manually as described in this topic.

The `ipsetup` Script

Workload Optimization Manager provides the `ipsetup` script to assist you with this task.

1. Open an SSH terminal session to your Workload Optimization Manager instance.

 Use the following default credentials:

 - **Username**: `root`
 - **Password**: `vmturbo`

2. Once the session is open, execute the script with the `ipsetup` command.
Manually Configuring a Static IP Address

To specify a static IP address, perform these steps:

1. Open an SSH terminal session to your Workload Optimization Manager instance.
 Use the following default credentials:
 - Username: root
 - Password: vmturbo

2. Open the connection editor.
 a. Execute the `nmtui` command.
 This opens the user interface for the NetworkManager.
 b. Click **Edit a connection** to open the editor.

3. Add a new connection.
 Click **Add** on the screen to open the New Connection dialog box.

4. Add an Ethernet connection.
 a. Choose **Ethernet** from the list of options and complete the following information (values given are examples only):
 * **Profile Name:** eth0
 * **Device:** eth0
 * **IPv4 Configuration:** Manual
 * **Click Show and complete the Configuration sub-settings based on your environment.**
 b. Click **OK** to return to the configuration list.

5. Verify that the connection you created is present.

6. Click **Quit** to return to the command line.

7. Restart the network services.
   ```
   service network restart
   ```
 The network service restarts successfully.

8. Verify that your machine is accessible and the static IP address is correct.
   ```
   ifconfig eth0
   ```
 This procedure applies the IP address to the Workload Optimization Manager instance. You can now access the Web user interface using this IP address.

(Best practice) Synchronizing Time

It is important that you synchronize the clock on the Workload Optimization Manager instance with the devices on the same network. For performance reasons, Cisco recommends that you set your Workload Optimization Manager system clock to your time zone, because Workload Optimization Manager runs regular data maintenance processes at night. Use the Network Time Protocol daemon (**ntpd**) to set your Workload Optimization Manager system clock.
NOTE: Do not use the yast option to set up an NTP service. To set up NTP, use the instructions below. The yast timezone utility provides an option to set up NTP, but you must not use this yast option.

To configure the NTP server:

1. Open an SSH terminal session to your Workload Optimization Manager instance.
2. Open the ntp configuration file.

 For example, execute the command: `vi /etc/ntp.conf`
3. Find the lines that specify the time servers.
4. Replace these time server lines with the fully-qualified domain names of your time servers.

 The safest approach is usually to provide the IP address of the your time server. If you only have one time server, you can delete the second time server entry.
5. Save the file.
6. Make sure the NTP daemon is enabled.

 The NTP daemon should be enabled by default. To enable the daemon, execute the `systemctl enable ntpd` command.
7. Verify the NTP daemon is running.

 Execute: `systemctl status ntpd`
8. Verify that your time is correct.

 Execute the `date` command. You should see results similar to:

 Thu Oct 18 14:25:45 CST 2018

(Optional) Configuring remote MariaDB connections for the Workload Optimization Manager instance

If you want to allow remote client connections to the MariaDB database in the Workload Optimization Manager instance, you can replace the local host bind address (127.0.0.1) with the IP address of your Workload Optimization Manager instance.

To configure remote client connections to the MariaDB database, perform these steps:

1. Open an SSH terminal session to your Workload Optimization Manager instance.

 Use the following default credentials:
 - Username: root
 - Password: vmturbo
2. Open the `bind-addr` configuration file.

 For example, use the `vi /etc/my.cnf.d/bind-addr.cnf` command.
3. Set the `bind_address` parameter to the IP address of your Workload Optimization Manager instance.

 For example: `bind_address=10.10.10.123`
4. Save the file.
5. Restart the MariaDB service.
 Execute the `systemctl restart mariadb` command.

(Required) Ports

Ensure the ports for network communication are open.

Workload Optimization Manager uses the following ports:

<table>
<thead>
<tr>
<th>Port</th>
<th>To support:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Incoming browser connections over HTTP</td>
</tr>
</tbody>
</table>
| 443 | • Incoming browser connections over HTTPS
 | • Proactive Support (automatically generate support tickets for Workload Optimization Manager issues) |

For browser connections with the Workload Optimization Manager instance, you should use either port 80 or 443.

NOTE: Various targets that you use with Workload Optimization Manager may require you to open ports on those targets to allow communications with Workload Optimization Manager. For more information and a list of default ports, see “Port Configuration” in the Workload Optimization Manager Target Configuration Guide.

(Optional) Opening a Non-Default Port

If your target is using a non-default, non-standard port, you can open the port on the Workload Optimization Manager VM to allow communication from the target. To open a port, use the SELinux `audit2allow` diagnostic tool. The `audit2allow` tool parses the Access Vector Cache (AVC) messages from the audit log and creates the module (semodule) to allow access to a port.

To open a non-default, non-standard port, perform these steps:

1. Open an SSH terminal session to your Workload Optimization Manager instance.
2. Change to a temporary directory from which you can run SELinux commands (for example, `/tmp/selinux`).
3. Create the module, myapp.

 Use the `audit2allow` command with the `-M` option:
   ```
   audit2allow -M myapp < /var/log/audit/audit.log
   ```
4. Load the module into the kernel.
   ```
   semodule -i myapp.pp
   ```
5. Retest access to the port.
(Optional) Enforcing Secure Access

If your company policy requires a trusted certificate, Workload Optimization Manager enables you to install a trusted certificate from a known certificate authority.

1. Request a certificate.
 a. Open an SSH terminal session to your Workload Optimization Manager instance.
 The default credentials are:
 * Username: root
 * Password: vmturbo
 b. Change to the /private directory where you will store the private key.
      ```bash
cd /etc/pki/tls/private
```
 c. Execute the command to create the private key file.
      ```bash
      openssl genrsa -out turbonomic.key 2048
      ```
 d. Create a file containing the information used to generate the CSR.
      ```bash
      vi certsignreq.cfg
      ```
 e. In the file, insert the following code and specify the fields:

      ```
      [req]
      ts = 2048
      prompt = no
      default_md = sha256
      req_extensions = req_ext
      distinguished_name = dn

      [dn]
      C=<country, 2 letter code>
      L=<city>
      O=<company>
      OU=<organizational unit name>
      CN=<FQDN>
      emailAddress=<email address>

      [req_ext]
      subjectAltName = <alternate domains to use with the SSL Certificate>

      [alt_names]
      DNS.1 = <FQDN>
      DNS.2 = <server’s short name>
      DNS.3 = <server’s IP address>
      ```

 NOTE: For the CN field, specify the fully-qualified domain name of the Workload Optimization Manager instance.

 Alternate names are other ways to access the Workload Optimization Manager instance. In the alternate names ([alt_names]) section, the value for the DNS.1 field is required. For the DNS.1 field, specify the fully-qualified domain name of the Workload Optimization Manager instance. Values for the DNS.2 and DNS.3 fields are optional. You can add more DNS.<n> fields if needed.
For example:

```
[root@turbonomic ~] vim certsignreq.cfg
```

ts = 2048
prompt = no
default_md = sha256
req_extensions = req_ext
distinguished_name = dn

[dn]
C=US
ST=New York
L=White Plains
O=Turbonomic
OU=Educational Services
CN=demo.turbonomic.com
eMailAddress = <first.lastname>@turbonomic.com

[req_ext]
sObjectAltName = @alt_names

[alt_names]
DNS.1 = demo.turbonomic.com
DNS.2 = demo
DNS.3 = my.ip.add.ress

f. Write and quit the file.

Press esc, type :wq!, and press Enter.

g. Create the certificate request file.

Execute the command:

```
openssl req -new -sha256 -nodes -out turbonomic.csr -key turbonomic.key -config certsignreq.cfg
```

h. Transfer the certificate request file to your local machine.

The path to the certificate request file (turbonomic.csr) on your remote machine is /etc/pki/tls/private.

i. Send this file to your certificate authority.

Your certificate authority will use this file to create the certificate for you.

2. Rename the certificate file.

When you receive the certificate file from your certificate authority (CA), check the name of the certificate file.

Rename it to turbonomic.crt.

For an Intermediate Certificate Bundle, certificate authorities (for example, GoDaddy or Symantec) may use intermediate certificates as a proxy to their root certificate for security purposes – if so, you will also receive a certificate chain bundle. If this is the case, also name the certificate chain with the .crt extension (for example: <intermediate>.crt).
3. Upload the certificate.
 Transfer the above certificate file(s) to the /etc/pki/tls/certs directory of the Workload Optimization Manager instance.

4. Apply the certificate.
 a. Open an SSH terminal session to your Workload Optimization Manager instance.
 The default credentials are:
 * Username: root
 * Password: vmturbo
 b. Make a backup file of the ssl.conf file.
 cp /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/ssl.conf-LOCALHOST
 c. Open the ssl.conf file.
 vi /etc/httpd/conf.d/ssl.conf
 d. Edit the ssl.conf file to specify the file paths for the new key and crt files.
 * Replace the localhost.crt with the name of the new certificate (turbonomic.crt).
 # Server Certificate
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 * Also, replace the localhost.key with the name of the new key file (turbonomic.key).
 # Server Private Key
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 * If you received an intermediate certificate bundle, replace the server-chain.crt with the name of the new intermediate file (<intermediate>.crt).
 # Server Certificate Chain
 SSLCertificateChainFile /etc/pki/tls/certs/server-chain.crt
 e. Write and quit the ssl.conf file.
 esc :wq!
 f. Restart the httpd service.
 service httpd restart

5. (Optional) Set up secure LDAP.
 a. Save the SSL Certificate information from your LDAPS Server to a .CER file.
 For example, view the certificate properties and click Save As or Export to create a .CER file.
 b. Transfer this .CER file from your system to the Workload Optimization Manager appliance.
 For example, use the SCP (secure copy) command with the default credentials (root/vmturbo) to copy the .CER file to the /tmp directory of the Workload Optimization Manager instance.
 c. In the Workload Optimization Manager instance, copy the .CER file to the /anchors directory.
 For example, copy the rootca.cer file to the /usr/share/pki/ca-trust-source/anchors/ directory.
d. Run the `update-ca-trust` command as root.

This automatically updates the built-in cacerts jks and puts the certificates in the proper location to be used by curl without additional options.

e. Restart the Tomcat service.

 `service tomcat restart`
License Installation and First-time Login

Before you begin, make sure you have your full or trial license key file that was sent to you in a separate email. Save the license file on your local machine so you can upload it to your Workload Optimization Manager installation.

To use Workload Optimization Manager for the first time, perform the following steps:

1. Type the IP address of your installed Workload Optimization Manager instance in a Web browser to connect to it.
2. Log in to Workload Optimization Manager.
 - Use the default credential for **USERNAME**: administrator.
 - Type a password for **PASSWORD**.
 - Type the password again to verify it for **REPEAT PASSWORD**.
 - Click **CONFIGURE**.
3. Decide whether to enable Usage Data and Analytics.
 - Click **AGREE** or **No**.

 You can always change this setting later. For information, see “Administrative Tasks” in the Workload Optimization Manager User Guide.
4. Continue setting up your Workload Optimization Manager installation.
 - Click **LET’S GO**.
5. Open the **Enter License** fly-out.
 - Click **UPDATE LICENSE**.
6. Upload your license key file.
 - In the **Enter License** fly-out, you can upload the license in one of the following ways:
 * Drag the license key file into the **Enter License** fly-out.
 * Browse to the license key file.

 Be sure to upload only .xml or .lic files.
 - Click **SAVE**.

Upgrading Your Workload Optimization Manager License

If you purchased a license to upgrade from a trial version to a full version, or if you purchased a license to add more workload capacity to your installation, you will receive a new license in an email message. Save the license file on your local machine so you can upload it to your Workload Optimization Manager installation.
To install this new license, perform the following steps:

1. Navigate to the License Configuration page.
 Choose **Settings > License**.

2. Open the **Enter License** fly-out.
 Click **UPDATE LICENSE**.

3. Upload your license key file.
 a. In the Enter License fly-out, you can upload the license in one of the following ways:
 * Drag the license key file into the Enter License fly-out.
 * Browse to the license key file.
 Be sure to upload only .xml or .lic files.
 b. Click **SAVE**.

Once you install the new license, the additional workload capacity automatically becomes available to you.
Single Sign-On Authentication

If your company policy supports Single Sign-On (SSO) authentication, Workload Optimization Manager enables SSO authentication by using Security Assertion Markup Language (SAML) 2.0.

At a high-level, the process involves:

- Creating external groups or at least one external user for SSO. See “Managing User Accounts” in the Workload Optimization Manager User Guide.

- Configuring Workload Optimization Manager to connect to the SAML Identity Provider (IdP). See Configuring Single Sign-On on page 28.

When SSO is enabled, use your SSO credentials to log in to your Workload Optimization Manager instance. Do not use your local or Active Directory (AD) credentials for the login. The Identity Provider (IdP) will perform the authentication.

NOTE: When you enable SSO, Workload Optimization Manager only accepts authentication from the IdP you configure. Remote requests via the Workload Optimization Manager REST API do not use SSO. For security reasons, those REST API requests will not execute while SSO is enabled. As a result, integrations which use the REST API will not work on the Workload Optimization Manager instance where SSO is enabled.

Prerequisites

Before you begin, make sure the IdP is set up for SSO. You can use a proprietary or public IdP. For examples of settings for a public Okta IdP, see What Are the Typical Settings for an IdP? on page 45.

Configuring Single Sign-On

To configure Single Sign-On, perform these steps:

1. (Required) Create external groups or at least one external user for SSO.

 IMPORTANT: When SSO is enabled, Workload Optimization Manager only permits logins via the SSO IdP. Whenever you navigate to your Workload Optimization Manager installation, it redirects you to the SSO Identity Provider (IdP) for authentication before displaying the Workload Optimization Manager user interface.

Before you enable SSO for your Workload Optimization Manager installation, you must configure at least one SSO user with Workload Optimization Manager administrator privileges. If you do not, then once you enable SSO you will not be able to configure any SSO users in Workload Optimization Manager. To authorize an SSO user as an administrator, use EXTERNAL AUTHENTICATION to do one of the following:

- Configure a single SSO user with administrator authorization.
 Add an external user. The username must match an account that is managed by the IdP.

- Configure an SSO user group with administrator authorization.
 Add an external group. The group name must match a user group on the IdP, and that group must have at least one member.
 For information about creating external groups or external users for SSO, see “Managing User Accounts” the Workload Optimization Manager User Guide.
2. (Required) Ensure that the NTP server is configured and the system time on your Workload Optimization Manager instance is correct.
 For instructions, see (Best practice) Synchronizing Time on page 19.

3. Open an SSH terminal session to your Workload Optimization Manager instance.

4. Download the metadata from your IdP.

5. Examine your metadata.
 Compare your metadata to the sample provided in Example of IdP Metadata on page 30.
 If your metadata includes optional attribute tags that are not listed in the example, you must remove those optional attribute tags since they are not supported.

6. Import the IdP metadata into the saml.xml file.
 a. Create the saml.xml file.
      ```bash
      vi /srv/tomcat/data/config/saml.xml
      ```
 b. Copy the IdP metadata into the /srv/tomcat/data/config/saml.xml file.
 c. Save the file.

7. Modify the Tomcat configuration file.
 a. Open the Tomcat configuration file.
      ```bash
      vi /etc/tomcat/tomcat.conf
      ```
 b. Set the CATALINA_OPTS variable.
      ```bash
      CATALINA_OPTS="-Dadmin.policy.localusers=SAML_ONLY"
      ```
 c. Save the file.

8. Copy the properties file.
   ```bash
   cp /srv/tomcat/data/config/saml.template.properties /srv/tomcat/data/config/saml.properties
   ```

9. Modify the properties file.
 a. Open the saml.properties file.
      ```bash
      vi /srv/tomcat/data/config/saml.properties
      ```
 b. Set the IDP.entityId property to the same value as the IdP’s Audience Restriction property.
 For example: IDP.entityId=urn:test: turbo: markharm
 c. Set the Workload Optimization Manager public IP address.
 For example: Turbonomic.Location=10.10.10.123
 d. Save the file.
10. Generate the SAML configuration file.

Run the `config_saml.sh` script to parse the values in the properties file and transfer them to the SAML configuration file, `saml-security.xml`.

a. Change to the directory for the SAML configuration script.

```
cd /srv/tomcat/script/appliance/
```

b. Execute the SAML configuration script.

```
./config_saml.sh
```

11. Add a trusted custom IdP certificate.

The public domain default key store only trusts two public IdPs, Okta and SSO Circle. If you are using a proprietary IdP or other public IdPs, contact your security administrator to add the IdP certificates to the default key store.

Default key store location: `/srv/tomcat/webapps/vmturbo/WEB-INF/security/samlKeystore.jks`

Key store password: nalle123

12. Restart the Tomcat service.

```
service tomcat restart
```

13. Verify that the configuration is successful.

a. Navigate to the Workload Optimization Manager User Interface.

 You will be automatically redirected to your IdP for authentication.

b. Log in with the username that is a member of the external group or external user previously configured.

c. Verify that the system time on your Workload Optimization Manager instance is correct.

 If the time is not synchronized, this might cause an `HTTP Status 401 - authentication failed` exception in the browser.

d. If the configuration is not successful, look for an `HTTP Status 500` exception in the `/var/log/tomcat/catalina.out` log file. If this exception exists, review your metadata for invalid optional attribute tags.

Example of IdP Metadata

This section provides an example of IdP metadata which may be useful when you are examining the optional attributes in your metadata.

If your metadata includes optional attribute tags that are not listed in the example, you must remove those optional attribute tags since they are not supported.

```
<?xml version="1.0" encoding="UTF-8"?>
<md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
entityID="http://www.okta.com/exkexl6xc9MhzqiC30h7">
<md:IDPSSODescriptor WantAuthnRequestsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
<md:KeyDescriptor use="signing">
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>
```
```
Disabling Single Sign-On

If for some reason you no longer want to use SSO, you can disable it for your Workload Optimization Manager installation. To disable Single Sign-On, perform these steps:

1. Open an SSH terminal session to your Workload Optimization Manager instance.
2. Modify the Tomcat configuration file to disable the CATALINA_OPTS variable.
   a. Open the Tomcat configuration file.
      vi /etc/tomcat/tomcat.conf
b. Insert a comment character or delete the line for the CATALINA_OPTS variable.
   For example:
   ```bash
 # CATALINA_OPTS="-Dadmin.policy.localusers=SAML_ONLY"
   ```

c. Save the file.

3. Navigate to the Tomcat configuration directory on your local machine.
   The directory is: `/srv/tomcat/data/config`

4. Remove files from the Tomcat configuration directory.
   Delete:
   - The metadata file: `/srv/tomcat/data/config/saml.xml`
   - The SAML configuration file: `/srv/tomcat/data/config/saml-security.xml`
   - The SAML properties file: `/srv/tomcat/data/config/saml.properties`

5. Restart the Tomcat service.
   ```bash
 service tomcat restart
   ```

6. Verify that the configuration is successful.
   a. Navigate to the Workload Optimization Manager User Interface.
      You will no longer be redirected to your IdP for authentication. You will be redirected to the default Workload Optimization Manager login screen.
   b. Log in with a local account or an Active Directory (AD) account.

**Support for Single Logout**

If you are using the SSO feature, Workload Optimization Manager supports the Single Logout feature provided by Security Assertion Markup Language (SAML) 2.0. When you click **Logout** in the Workload Optimization Manager session that has SSO enabled, the SAML 2.0 Single Logout feature terminates the Workload Optimization Manager session, the browser session, the Identity Provider (IdP) session, and sessions at other Service Providers (SP) connected to the same IdP session.

If you want to use this feature, contact your security administrator to configure it.

The following are requirements:

- The **Single Logout** setting must be enabled on the IdP.
- The IdP needs to trust the Workload Optimization Manager SAML key store certificate.

If the IdP does not enable or support Single Logout, you need to manually log out from the IdP to fully log out from Workload Optimization Manager.

If you close the browser without clicking **Logout** or if your browser session times out, you can log in again provided the Workload Optimization Manager or the IdP session is valid.
Updating Workload Optimization Manager to a New Version

We continually innovate and improve all aspects of Workload Optimization Manager. This means that we periodically release newer versions of Workload Optimization Manager. You should check regularly to see if a new version is available.

When a new version is available, it's important to properly update your existing installed server, rather than just install a new one. When you first installed Workload Optimization Manager, you put into place sophisticated data collection and analysis processes. Internal to the installation is an integrated database that retains performance data from across your virtual environment. Workload Optimization Manager uses this historical data for right-sizing, projecting trends, and other analysis. This means that the database is important to Workload Optimization Manager and becomes more so over time. Properly updating your installation of Workload Optimization Manager preserves the database for continued use.

To update your Workload Optimization Manager installation:

1. Check whether you have adequate disk space on the Workload Optimization Manager VM.

   To check the disk space usage on your server, SSH into the Workload Optimization Manager instance as root (the default password is vmturbo). Then issue the command: `df -kh`

   To perform an update, you should have at least 5 GB of disk free space. The required amount depends on the size of your database, and you should have enough space in the database partition to accommodate a full copy of the database. For example, if you have a large environment and a large database, then 15 GB is a more reasonable estimate of the required space.

2. Save a snapshot of your current Workload Optimization Manager VM.

   Before updating, you should properly shut down (not power off) the Workload Optimization Manager VM and perform a snapshot (or clone the VM). This provides a reliable restore point you can turn to in the event that trouble occurs during the update. After you have the snapshot, bring the VM back online.

3. Download the offline installation package.

   Navigate to http://www.cisco.com to find the latest update packages for Workload Optimization Manager. Download the package to your local machine. Save the download to a location you can return to.

4. Open the Workload Optimization Manager Update Page.

   Your Workload Optimization Manager serves an Update Page from the following URL:

   https://YOUR_WOM_URL_or_IP/update.html. For example, if you view Workload Optimization Manager from the address 10.10.222.333, then you would navigate your browser to https://10.10.222.333/update.html.
5. Log into Update Page.

Give the credentials for your default Workload Optimization Manager administrator account:
- **User**: administrator
- **Password**: The password you set for this account

6. Upload the update package to apply an offline update.

Choose the **Apply Offline Update** action
- Select the update package that you want to apply
  - Click **Choose File** to browse to the update package that you saved on your local machine.
  - Click **Upload** to apply the update package
IMPORTANT: DO NOT RESTART the Workload Optimization Manager VM until the software update is complete, and the Workload Optimization Manager user interface refreshes in your browser. If you believe the update will not complete, contact your Cisco Support Representative.

Workload Optimization Manager applies the update in stages. The software updates immediately, along with certain configuration files. The update process restarts your Workload Optimization Manager server as soon as possible.

For some versions the update must restructure the database. This can take a number of hours, depending on the size of your environment and your database. To enable a quick server restart, the update performs this restructuring in the background while the server is running. Workload Optimization Manager will manage your environment, but your access to historical data might be incomplete. For example, you might not be able to view reports until the database restructuring is complete.
Installing and Updating on a RHEL Platform

Cisco delivers a server that runs on the Red Hat Linux (RHEL) 7.x platform installed on a VM with x86 architecture. This is to support environments for which administrative policies require RHEL.

**NOTE:** The most common delivery of Workload Optimization Manager is on a VM with x86 architecture, that runs CentOS as an OS. The CentOS deliveries include all the necessary components – If an upgrade to the CentOS platform becomes necessary, Cisco releases a new delivery that includes the platform update. This section describes the less common deployment on a VM running RHEL. For RHEL platforms, you are responsible for keeping the platform up-to-date.

Requirements for RHEL and Setup

Whether you are performing a new installation, or updating an existing Workload Optimization Manager installation, you should ensure that your platform is up-to-date.

In addition, you must run an openJDK version that corresponds with the Workload Optimization Manager version you want to run. Current Workload Optimization Manager versions require openJDK 1.8.

Cisco makes the following setup recommendations for your RHEL VM:

- The VM should have 4 vCPUs and 16 GB of RAM.
- You should create a boot partition for the OS kernel, giving it 500 MB.
- The VM storage requirement is 500 GB or greater. It can be thin provisioned depending on the storage requirements.
- You should create LVM volumes for the following purposes:
  - A swap partition following Red Hat recommendation for partition schemes.
  - 16 GB for the swap partition
  - 30 GB for system logs to be stored on /var/log/
  - 20 GB for system temp storage on /tmp/
  - 50 GB for the product installation on the root partition (/)
  - Use the remaining space, approximately 380 GB, for the database on /var/lib/mysql

In addition, the VM must meet the following prerequisites:

- The OS platform is RHEL 7.x.
- The firewall is configured to allow connections on ports 80 and 443.
- SELinux is configured to allow communication between Apache and Tomcat.

  Execute the following command:

  ```bash
 setsebool -P httpd_can_network_connect=1
  ```

- The `unzip` utility must be installed.
The VM does not include underscore characters in its name. If you cannot change the host name, you can use a workaround described in How Can I Work Around the Restriction for Host Names Containing Underscore Characters? on page 44.

The following DejaVu fonts are installed:
- dejavu-fonts-common
- dejavu-sans-fonts
- dejavu-sans-mono-fonts
- dejavu-serif-fonts

To check for the fonts, use the command:

```
rpm -qa | grep dejavu
```

If the DejaVu fonts are not installed, perform the instructions in How Do I Add Fonts to Enable Reporting for the RHEL Platform? on page 44.

Workload Optimization Manager operates with most commonly-used Web browsers (for example, Internet Explorer, Mozilla Firefox, Google Chrome, and Apple Safari). The Web browsers must have JavaScript enabled. In addition, the browser that you use for the Workload Optimization Manager user interface must be synchronized with the Workload Optimization Manager instance to within one minute. Without this synchronization, Workload Optimization Manager can show incorrect metric values. Also, if you use Google Chrome for the Workload Optimization Manager user interface, you must turn off the Chrome Preview mode before you download reports in order to view those reports.

## Installing on a RHEL VM

To create a RHEL deployment of Workload Optimization Manager, you will create a VM running RHEL 7.x, download a Workload Optimization Manager update, and install the necessary components. In addition, you will have to modify the directory structure on your VM, make changes to the database config file, and start up the required services.

1. **Create a VM running the RHEL 7.x operating system.**

2. **Install the Workload Optimization Manager product on your RHEL VM.**

   You can configure an offline update or an online update to install the initial version of Workload Optimization Manager:

   **Offline Update:**

   Contact Technical Support to get the offline update.

   When you have identified the offline update version that you want, open a shell with root permissions and perform the following commands:

   ```
cd /root

cd /tmp

unzip /root/update64_redhat-XXXXX-X.X.X.zip

cp /tmp/vmturbo_temp.repo /etc/yum.repos.d/
```
— **Online Update:**

Create a YUM Repository configuration file named `vmturbo.repo` in the following location:

```
/etc/yum.repos.d/vmturbo.repo
```

Give the file the following content:

```
[vmturbo]
name=vmturbo
baseurl=http://download.vmturbo.com/appliance/download/vmturbo-redhat
type=rpm-md
enabled=1
autorefresh=1
gpgcheck=0
```

3. **Install the other required components.**

To install the components, execute the following commands, in this order:

   a. **apache/mod_ssl**

      ```
yum install mod_ssl
      ```

   b. **The Java Runtime Environment**

      Note that you must install the JRE version that matches the version of Workload Optimization Manager that you are installing. This example shows installation for JRE 1.8:

      ```
yum install java-1.8.0-openjdk
update-alternatives --config java
```

      At command, choose the version of Java that corresponds to the version just installed (see **Requirements for RHEL and Setup** on page 36).

   c. **The Workload Optimization Manager bundle**

      ```
yum install vmt-bundle --nogpgcheck
      ```

4. **Set up the correct file structure.**

Execute the following commands to set up the required directory structure:

```
ln -s /srv/www/htdocs /srv/www/html
ln -s /srv/www/htdocs /var/www/html
ln -s /srv/www/cgi-bin /var/www/cgi-bin
rm -rf /var/lib/tomcat6/ /var/lib/tomcat/
ln -s /srv/tomcat6/ /var/lib/
ln -s /srv/tomcat/ /var/lib/
mkdir -p /var/lib/mysql/tmp
```
chown mysql:mysql /var/lib/mysql/tmp
mkdir /var/lib/wwwrun
chown -R apache.apache /var/lib/wwwrun

5. Initialize the database that was installed in the Workload Optimization Manager bundle.
   Execute the following commands:
   cd /srv/rails/webapps/persistence/db/
   ./initialize_all.sh

6. Start the associated services.
   You can restart the VM or you can execute the following commands to start the services:
   service tomcat start
   service httpd start

7. Ensure that time is synchronized between the VM and the physical machine that hosts the VM.
   Confirm that the NTP service is running.
   For a host that is managed by VMware vSphere, disable the Synchronize Guest Time With Host option for the VM. You can find that setting in Options > VMware Tools > Advanced.

8. Enable Workload Optimization Manager reports.
   Execute the following command with root privileges:
   setsebool -P httpd_can_network_connect=1

9. Change the context of the /cgi-bin directory to enable the execution of cgi scripts.
   Execute the following commands:
   semanage fcontext -a -t httpd_sys_script_exec_t "/srv/www/cgi-bin(/.*)?"
   restorecon -Rv /srv/www/cgi-bin/

10. Enable http(s) communication by adding http and https to firewalld.
    Execute the following commands:
    a. Edit the /etc/firewalld/zones/public.xml file.
       Modify the settings in the public zone section. For example:

       <zone>
       <short>Public </short>
       <description>For use in public areas. You do not trust the other computers on networks to not harm your computer. Only selected incoming connections are accepted. </description>
       <service name="dhcppv6-client"/>
       <service name="ssh"/>
       <service name="http"/>
       <service name="https"/>
       </zone>
b. Reload the firewalld.
   
   `firewall-cmd --complete-reload`

c. Restart the firewalld service.
   
   `systemctl restart firewalld`

11. (Optional) Allow remote MariaDB client connections.
    
    a. Open the `bind-addr` configuration file.
       
       For example, use the `vi /etc/my.cnf.d/bind-addr.cnf` command.
    
    b. Set the `bind_address` parameter to the IP address of your Workload Optimization Manager instance.
       
       For example: `bind_address=10.10.10.123`
    
    c. Save the file.
    
    d. Restart the MariaDB service.
       
       Execute the `systemctl restart mariadb` command.

   **NOTE:** If you allow remote MariaDB client connections, be sure to add the line
   `<service name="mysql"/>` in the `/etc/firewalld/zones/public.xml` file.


---

### Updating the RHEL Deployment

After you have deployed Workload Optimization Manager on a RHEL platform, you can update that installation with new versions of Workload Optimization Manager as they become available. Choose one of the following methods to update Workload Optimization Manager:

- **Offline Update**
- **Online Update**

   **NOTE:** You should be sure that the DejaVu fonts are installed and the JDK version is compatible with the new Workload Optimization Manager version. For information, see Requirements for RHEL and Setup on page 36.

#### Offline Update

Perform these steps:

1. Download a new offline deliverable and unzip it to the `/tmp` directory.
   
   `rm -rf /tmp/vmturbo`
   
   `cd /tmp`
   
   `unzip update64_redhat-XXXXX-X.X.X.zip`

2. Execute YUM commands to update the installed components.
   
   `yum clean all`
   
   `yum update vmt-bundle vmt-config vmt-persistence vmt-platform vmt-presentation vmt-reports birt-runtime`
3. (Optional) Allow remote MariaDB client connections.
   a. Open the bind-addr configuration file.
      For example, use the vi /etc/my.cnf.d/bind-addr.cnf command.
   b. Set the bind_address parameter to the IP address of your Workload Optimization Manager instance.
      For example: bind_address=10.10.10.123
   c. Save the file.
   d. Restart the MariaDB service.
      Execute the systemctl restart mariadb command.

Online Update

Perform these steps:

1. Execute YUM commands to update the installed components.
   yum clean all
   yum update vmt-bundle vmt-config vmt-persistence vmt-platform vmt-presentation vmt-reports
   birt-runtime

2. (Optional) Allow remote MariaDB client connections.
   a. Open the bind-addr configuration file.
      For example, use the vi /etc/my.cnf.d/bind-addr.cnf command.
   b. Set the bind_address parameter to the IP address of your Workload Optimization Manager instance.
      For example: bind_address=10.10.10.123
   c. Save the file.
   d. Restart the MariaDB service.
      Execute the systemctl restart mariadb command.
FAQs

To ensure that you have the most rewarding experience with Workload Optimization Manager, we have collected the top installation issues that people experience. If you have any further questions, contact Workload Optimization Manager Technical Support.

Do I need special software to run the Workload Optimization Manager client?

If you use the Classic UI, make sure that you have installed an up-to-date Flash plug-in to your browser. If your URL takes you to a blank page, it is possible that the Flash plug-in is not installed.

When do I need to clear my local Adobe Flash cache?

If you use the Classic UI, after you update the Workload Optimization Manager instance, you must then clear the Flash cache. Clearing the Flash cache ensures that the Workload Optimization Manager user interface will be fully refreshed in the browser.

To clear the cache, you can open the Flash Settings Manager locally on your system, or can access the Settings Manager through the following Adobe site:


To open the Settings Manager locally on the system, click:

- **Windows:** Start > Settings > Control Panel > Flash Player
- **Macintosh:** System Preferences (under Other) > Flash Player
- **Linux Gnome:** System > Preferences > Adobe Flash Player
- **Linux KDE:** System Settings > Adobe Flash Player
Why can I not execute some of the recommendations made by Workload Optimization Manager?

To automate the Workload Optimization Manager recommendations, review the Workload Optimization Manager User Guide for complete information about setting policies. Policies are located in Settings > Policies.

Workload Optimization Manager supports the following action modes:

- **Disabled** – Do not recommend or perform the action.
- **Recommended** – Recommend the action so a user can perform it using the given hypervisor or by other means.
- **Manual** – Recommend the action, and provide the option to perform that action through the user interface.
- **Automated** – Workload Optimization Manager performs the action automatically.

Some actions are set to Recommend or Disabled by default. To enable execution of these actions, you must change them to Manual or Automated.

Other actions cannot be executed by Workload Optimization Manager. These actions will only have Disabled or Recommended as an option.
How Do I Add Fonts to Enable Reporting for the RHEL Platform?

To check if the DejaVu fonts are installed, use the command:

```bash
rpm -qa | grep dejavu
```

If the DejaVu fonts are not installed, perform these steps:

1. Open a shell with root permissions and execute this YUM command to install the DejaVu fonts.

   ```bash
 yum install -y dejavu-fonts-common dejavu-sans-fonts dejavu-sans-mono-fonts dejavu-serif-fonts
   ```

2. Create the new configuration file.

   ```bash
 vi /etc/fonts/local.conf
   ```

3. Copy this code into the `/etc/fonts/local.conf` file.

   ```xml
 <?xml version='1.0'?>
 <!DOCTYPE fontconfig SYSTEM 'fonts.dtd'>
 <fontconfig>
 <alias>
 <family>serif</family>
 <prefer><family>Utopia</family></prefer>
 </alias>
 <alias>
 <family>sans-serif</family>
 <prefer><family>Utopia</family></prefer>
 </alias>
 <alias>
 <family>monospace</family>
 <prefer><family>Utopia</family></prefer>
 </alias>
 <alias>
 <family>dialog</family>
 <prefer><family>Utopia</family></prefer>
 </alias>
 <alias>
 <family>dialoginput</family>
 <prefer><family>Utopia</family></prefer>
 </alias>
 </fontconfig>
   ```

4. Save the file.

How Can I Work Around the Restriction for Host Names Containing Underscore Characters?

By default, Apache no longer supports host names with underscore characters in the name. When you deploy Workload Optimization Manager, you should install it on a VM that does not include those characters in its name. If the host name includes an underscore character, Apache responds with a 400 error when you try to open the user interface.
If you cannot change the host name, you can modify the Apache configuration file to enable legacy behavior as a workaround. To do so, perform these steps:

1. Open a secure shell to your Workload Optimization Manager machine using the default credentials: root/vmturbo.
2. Open the Apache configuration file.
   
   `vi /etc/httpd/conf/httpd.conf`

3. Enable the HttpProtocolOptions unsafe setting.
   
   a. Remove the comment character to enable the HttpProtocolOptions unsafe setting.
   b. Insert the comment character to disable the HttpProtocolOptions strict setting.

   For example:

   ```
 HttpProtocolOptions unsafe
 # HttpProtocolOptions strict
   ```

4. Save the file.
5. Restart the httpd service.

   `service httpd restart`

### What Are the Typical Settings for an IdP?

Before you begin configuring Single Sign-On (SSO), you need to make sure the IdP is set up for SSO.

Here are typical settings for a public Okta IdP which may be useful when you set up your IdP.

<table>
<thead>
<tr>
<th>SAML Settings: GENERAL</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Sign On URL</td>
<td><a href="https://10.10.10.123/vmturbo/saml/SSO">https://10.10.10.123/vmturbo/saml/SSO</a></td>
</tr>
<tr>
<td>Recipient URL</td>
<td><a href="https://10.10.10.123/vmturbo/saml/SSO">https://10.10.10.123/vmturbo/saml/SSO</a></td>
</tr>
<tr>
<td>Destination URL</td>
<td><a href="https://10.10.10.123/vmturbo/saml/SSO">https://10.10.10.123/vmturbo/saml/SSO</a></td>
</tr>
<tr>
<td>Audience Restriction</td>
<td>urn:test: turbo: markharm</td>
</tr>
<tr>
<td>Default Relay State</td>
<td></td>
</tr>
<tr>
<td>Name ID Format</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Application username</td>
<td>The username for the account that is managed by Okta</td>
</tr>
<tr>
<td>Response</td>
<td>Signed</td>
</tr>
<tr>
<td>Assertion Signature</td>
<td>Signed</td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td>RSA_SHA256</td>
</tr>
<tr>
<td>Digital Algorithm</td>
<td>SHA256</td>
</tr>
<tr>
<td>Assertion Encryption</td>
<td>Unencrypted</td>
</tr>
<tr>
<td>SAML Single Logout</td>
<td>Enabled</td>
</tr>
<tr>
<td>Single Logout URL</td>
<td><a href="https://10.10.10.123/vmturbo/rest/logout">https://10.10.10.123/vmturbo/rest/logout</a></td>
</tr>
<tr>
<td>SP Issuer</td>
<td>turbo</td>
</tr>
</tbody>
</table>
### SAML Settings: GENERAL

<table>
<thead>
<tr>
<th>Setting</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Certificate</td>
<td>Example.cer (CN=apollo)</td>
</tr>
<tr>
<td>authnContextClassRef</td>
<td>PasswordProtectedTransport</td>
</tr>
<tr>
<td>Honor Force Authentication</td>
<td>Yes</td>
</tr>
<tr>
<td>SAML Issuer ID</td>
<td><a href="http://www.okta.com/$%7Borg.externalKey%7D">http://www.okta.com/${org.externalKey}</a></td>
</tr>
</tbody>
</table>