Contents

Introduction

Installing a VM

- Recommended platform .. 4
- Specifications-based system – minimum specification 4
- Co-residency support ... 4
- Installation process ... 5
 - Configuring the VM host 5
 - Deploying OVA to host 5
 - Configuring the VM guest 10

Upgrades

Clustering for resilience and capacity

Snapshot and restore using VM snapshot

- Creating a VMware snapshot 16
- Restoring a VMware snapshot 16
- Incremental VMware backups 16

Hardware references

- Serial interface .. 17
- Ethernet interfaces (NICs) 17
 - Allocating a virtual NIC to a physical NIC interface 17

Additional information

- Supported features .. 19
- Unsupported features .. 19
- Licensing ... 19

Appendix 1 — Troubleshooting

- Checking VMware compatibility 20
- VMware checklist .. 20
- Isolating a possible root cause 21
- Possible issues ... 21
- Analyzing the cause of VMware issues 22
- Restoring default configuration (factory reset) 22
 - Prerequisite files .. 22
 - Performing a reset to default configuration 22

Appendix 2 — VM New Product Hold (NPH) release process

Appendix 3 — Deploying multiple datastores

Appendix 4 — Ensuring that the required 6GB of memory is allocated for the VM TelePresence Conductor

Document revision history
Introduction

Cisco TelePresence Conductor (TelePresence Conductor) is playing an increasingly important role in the deployment of video networks. Although the 1U appliance provides a solid platform on which to run TelePresence Conductor, many companies now want to run TelePresence Conductor on the 'Company Standard' Virtual Machine (VM) hardware platform for ease of management and deployment within an existing data center.

This deployment guide specifies:

- the VM platform requirements for TelePresence Conductor
- how to load the TelePresence Conductor .ova installation file
- how to install a VM
- how to troubleshoot the system, when there are issues

With a suitably specified VM platform, the TelePresence Conductor running on VMware will perform identically to the TelePresence Conductor running on its appliance hardware.

Why does the VM .ova file specify “use .ova for initial VM install only”?

The VM TelePresence Conductor is licensed using information that is generated at the time of the .ova file installation. If the .ova was installed a second time, new licensing information would be created, and to use the new VM, new release and licence keys would need to be purchased. To upgrade a VM TelePresence Conductor, follow the procedure under Upgrades [p.14], using the .tar.gz version of the TelePresence Conductor software.

After installation we recommend that you take a snapshot of the VM TelePresence Conductor (see Snapshot and restore using VM snapshot [p.16]) so that it can be restored if the running VM gets damaged in any way. The VM snapshot retains the licensing information that was generated when the .ova file was installed, including any release and license keys that were applied.

How do I get release keys and license keys for my VM TelePresence Conductor?

Licenses can be obtained after the VM TelePresence Conductor is installed, using the serial number of the VM TelePresence Conductor. The serial number is available from the Option key page and from the footer of the TelePresence Conductor web interface.

For full details on obtaining your release and license keys, see Appendix 2 — VM New Product Hold (NPH) release process [p.24].
Installing a VM

The sections below list the recommended platform and specifications-based system requirements, and describe the VM installation process. The requirements outlined below refer to the minimum requirements for TelePresence Conductor version XC1.2. The minimum requirements for future TelePresence Conductor software releases may differ and you should refer to the release notes or administrator guide to ensure that pre-requisites are met.

Recommended platform

The recommended hardware on which to run a VM TelePresence Conductor is:

- Cisco UCS C200 – M2, UCS C210 – M2, UCS C220 – M3, or UCS B200 – M2 with:
 - Processor supporting AESNI feature
 - 6GB of RAM per VM
 - 132GB disk space per VM (for a 4GB virtual disk 1 and a 128GB virtual disk 2)
 - R2XX-LBBU (Raid disk battery backup to enable cache)
 - Four hard disks (450GB SAS 15K RPM 3.5in HDD/hot plug/C200 drive sled)
 - PCI card Intel Quad port GbE Controller (E1G44ETG1P20)

Ensure that:

- VT is enabled in the BIOS before installing VMware ESXi
 - ESXi to be ESXi 4.1 or ESXi5.0 (Update 1)
- the VM host “Virtual Machine Startup/Shutdown” is configured to “Allow Virtual machines to start and stop automatically with the system”, and that the VM TelePresence Conductor has been moved to the Automatic startup section
- your UCS system is configured with RAID 5

Specifications-based system – minimum specification

If using a specifications-based system, the minimum requirements are:

- VM host operational and running ESXi 4.1
- 6GB of RAM per VM TelePresence Conductor
- 132GB disk space per VM (for a 4GB virtual disk 1 and a 128GB virtual disk 2)
- 2 Cores reserved per VM TelePresence Conductor; each core >= 2GHz processor
- vCenter or vSphere operational

Note: ESXi 5.0 is currently not supported; during testing a problem was observed on a Host using ESXi 5.0 and a LSI MegaRAID card. We strongly recommend using ESXi 5.0 Update 1, where this issue has been resolved.

Co-residency support

The TelePresence Conductor can co-reside with applications (any other VMs occupying same host) subject to the following conditions:
- no oversubscription of CPU: 1:1 allocation of vCPU to physical cores must be used (2 cores required per VM TelePresence Conductor)
- no oversubscription of RAM: 1:1 allocation of vRAM to physical memory
- sharing disk storage subsystem is supported subject to correct performance (latency, BW) characteristics

Installation process

This process guides you through installing VM; it assumes that you are using vSphere.

Configuring the VM host

Ensure that the VM host is configured with a valid NTP server – the same NTP server that will be specified in TelePresence Conductor.

1. Select the host.
2. Go to the **Configuration** tab.
3. Select **Time configuration**.
4. Select **Properties**.
 - If the date and time were red on the previous page, then set the date and time manually to the current time.
5. Click **Options**.
6. Select **NTP Settings**.
7. Click **Add**.
8. Enter the IP address of the NTP server.
9. Click **OK**.
10. Select the **Restart NTP service to apply changes** check box.
11. Click **OK**.
12. Click **OK**.

Deploying OVA to host

These instructions represent a typical installation. The Deploy OVF Template wizard dynamically changes to reflect host configuration.
1. Log in to vSphere to access the ESXi Host.

2. Select File > Deploy OVF Template.

3. Select Source and Browse to the location of the .ova file, and click Next.

4. On the OVF Template Details page click Next.
5. On the **End User License Agreement** page read the EULA.

6. If you accept the EULA, click **Accept** then **Next**.

7. On the **Name and Location** page enter a **Name** for this TelePresence Conductor VM guest, for example “Virtual_Conductor”.

8. On the **Storage** page, select the datastore onto which the TelePresence Conductor VM Guest will be deployed and then click **Next**.
9. On the **Disk Format** page, ensure that the default disk format of **Thick Provision Lazy Zeroed** is selected and then click **Next**.

Note that **Thin Provision** is not supported as VM performance may degrade during resizing of a partition.

10. If listed, configure **Network Mapping** and select the network mapping that applies to your infrastructure and then click **Next** (default is **VM Network**).
11. On the **Ready to Complete** page confirm Deployment Settings.
12. Select the **Power on after deployment** check box.
13. Click **Finish**.

The TelePresence Conductor OVA is now deployed as a Guest on the VM Host.

Configuring the VM guest

1. Either:
 - Select the VM guest and then select the 'Console' tab, or
 - Right-click on the VM guest and select 'Open Console'.

 ![Virtual Machine Console](image)

2. The VM guest will take some time to boot, create its second hard disk partition and then reboot to a login prompt.
3. At the login prompt enter 'admin' for the username and 'TANDBERG' for the password.

4. At the Install Wizard prompt type y and then press Enter.
5. Follow the Install Wizard to enter IP information. (Defaults can be entered by pressing Enter at the prompt.)

6. At the end, the configuration is applied and the TelePresence Conductor logs you out.

7. Log into the TelePresence Conductor as root with a password of TANDBERG and then restart the VM guest by typing `restart`.

8. You should now be able to access the TelePresence Conductor via a web browser.
9. Log in as admin.

10. Get release key:
 a. Go to the **Option keys** page (**Maintenance > Option keys**).
 b. Copy the **Hardware serial number**.
 c. Use this serial number to order a release key for this VM TelePresence Conductor.
 For full details on obtaining your release keys, see **Appendix 2 — VM New Product Hold (NPH) release process** [p.24].

When the release key is available:

1. Log in as admin.

2. Enter the release and option keys:
 a. Go to the **Option keys** page (**Maintenance > Option keys**).
 b. Enter the release key provided in the **Release key** field.
 c. Click **Set release key**.
 d. For each option key provided:
 i. Enter the option key value in the **Add option key** field.
 ii. Click **Add option**.

3. Reboot the TelePresence Conductor to activate the licenses:
 a. Go to the **Restart options** page (**Maintenance > Restart options**).
 b. Click **Reboot**.

4. After the reboot, log in to the web interface and configure the TelePresence Conductor, including changing any default passwords, configuring DNS, NTP, conference configuration settings and so on as required.
 Follow the relevant **Cisco TelePresence Conductor Deployment Guide** to guide you through configuring this VM TelePresence Conductor ready for operation.

5. After the TelePresence Conductor has been configured it is good practice to backup the TelePresence Conductor configuration using the TelePresence Conductor backup facility, and also to take a VM snapshot (see “Snapshot and restore using VM snapshot”).
 The snapshot is important, because it can be used to restore a VM should it become damaged – the snapshot will retain the existing license keys. If the VM is re-installed instead of being restored, new license keys would be required.
Upgrades

You upgrade a VM TelePresence Conductor in the same manner as you would upgrade a non-VM TelePresence Conductor (using the .tar.gz file, not a .ova file):

1. If the TelePresence Conductor is part of a cluster follow the relevant Cisco TelePresence Conductor Clustering deployment guide.

2. If the TelePresence Conductor is not part of a cluster:
 a. Log in to the TelePresence Conductor VM web interface as an admin user.
 b. Backup the TelePresence Conductor from the Backup page (Maintenance > Backup and restore).
 c. Upgrade the TelePresence Conductor from the Upgrade page (Maintenance > Upgrade).
Clustering for resilience and capacity

When clustering VM TelePresence Conductors it is strongly recommended to use at least two physical hardware hosts – clustered TelePresence Conductors are designed to support resilience and capacity.

To support hardware resilience, TelePresence Conductor peers must run on at least two different hardware platforms.

Each and every TelePresence Conductor peer in a cluster must be within a 15ms hop (30ms round trip delay) of each and every other TelePresence Conductor in or to be added to the cluster.

For more information on clustering TelePresence Conductors, see the relevant Cisco TelePresence Conductor Clustering Deployment Guide.
Snapshot and restore using VM snapshot

The VMware snapshot feature is especially useful in test labs where it is required to return to a known starting point. This is not a replacement for the TelePresence Conductor backup – the TelePresence Conductor backup should always be performed prior to the VMware snapshot being taken.

A VMware snapshot can also be used to restore a VM should it become damaged – the VMware snapshot will retain the existing license keys. If the VM is re-installed instead of being restored, new license keys would be required.

- Ensure that the host has spare disk space on which to create and store the snapshot – each snapshot can take up to 132GB + 6GB.
- Only perform the snapshot when the VM TelePresence Conductor has little activity going on – performing the snapshot will degrade the performance of the VM.

Creating a VMware snapshot

We strongly recommended to perform a VMware snapshot when there are no calls in progress to ensure reliability.

1. Select the relevant TelePresence Conductor VM Guest.
2. Right-click the TelePresence Conductor VM Guest and select Snapshot > Take Snapshot.
3. Enter name and description.
4. Ensure Snapshot the virtual machine’s memory is selected.
5. Click OK.
6. Wait for the "Create virtual machine snapshot” task to complete.

Restoring a VMware snapshot

1. Select the relevant TelePresence Conductor VM Guest.
2. Right-click the TelePresence Conductor VM Guest and select Snapshot > Snapshot Manager.
3. Select the required snapshot image.
4. Click Goto.
5. Click Yes.
6. Click Close.

Incremental VMware backups

If incremental backups are to be enabled, ensure that you follow the VMware Guides on 1st & 3rd Party Guest Backup Solutions.
Hardware references

Serial interface

A VM TelePresence Conductor has no physical serial interface; the serial interface is accessible through the console tab of the VM guest.

Note: use CTRL+ALT to exit from the Console window (this is identified in the bottom right corner of the vSphere Client window).

Ethernet interfaces (NICs)

In VM TelePresence Conductor the LAN interfaces are Virtual NICs. Appropriate drivers are set up as VM TelePresence Conductor is installed; configuration of IP addresses is carried out through the standard TelePresence Conductor interface.

VM TelePresence Conductor allocates 3 virtual NICs:

- the first is used for the standard LAN 1 interface
- the second and third are reserved for future use

Allocating a virtual NIC to a physical NIC interface

Virtual NICs can be assigned to physical interfaces as follows:

1. Ensure that the physical NIC on the VM host is connected and operational.
2. Set up or check that there are Virtual Switches (vNetwork Distributed Switches) for each physical NIC. (Select the host on which the VM TelePresence Conductor will run, select the Configuration tab and select Networking.)
3. Ensure that there is at least one Virtual Machine Port Group (with associated VLAN IDs) set up for each physical NIC.
 To add a new Virtual Machine Port Group:
 a. Click Properties on the appropriate Virtual Switch or vNetwork Distributed Switch.
 b. Follow the network wizard.
4. Note the name of a Virtual Machine Port Group connecting to the required NIC.
5. Select the VM guest; right click it and select Edit settings...
6. Select the required network adaptor (Network adaptor 1 = LAN 1, Network adaptor 2 = LAN 2).

7. Select the appropriate Network label (Virtual Machine Port Group) to associate the TelePresence Conductor LAN interface with the required physical NIC.

8. After a few seconds the TelePresence Conductor will be able to communicate over the physical interface.
Additional information

Supported features

vMotion has been tested and TelePresence Conductor correctly moves. We recommend that a vMotion move is carried out when there is low conference creation activity on the VM TelePresence Conductor.

Use of a SAN with Fibre interconnect, rather than a NAS, is recommended in order to maximize the transfer speed.

Unsupported features

VMware fault tolerant mode is not supported (because the TelePresence Conductor uses dual cores).

Licensing

VM TelePresence Conductors require licensing in the same way that the appliance TelePresence Conductor units require licensing.

A VM TelePresence Conductor will be deemed to be a different TelePresence Conductor if it is moved and gets a new serial number. The VM TelePresence Conductor is designed to allow different hardware platforms to be used to get TelePresence Conductor functionality, not to support copy to a new platform.
Appendix 1 — Troubleshooting

This section contains information to help in troubleshooting system issues.

Checking VMware compatibility

If you are using third party hardware for hosting the VM TelePresence Conductor application, check the hardware compatibility. This can be done using the VMware compatibility guide tool available from http://www.vmware.com/resources/compatibility/search.php.

VMware checklist

1. Check the accessibility to the VM host server (by ping, physical console access, ssh remote access, KVM-over-IP console, and so on).
2. Check the network connectivity of the VMkernel (by executing the vmkpinger command using Tech Support Mode to verify network connectivity from the VMkernel NIC level).
3. If you are having problems connecting to the vSphere Client management console, execute the command /sbin/services.sh from an SSH session to restart the ESXi management agent.
4. Check the utilization of the VM host server (CPU utilization, memory utilization, disk access speed, storage access speed, network access status, power utilization, and so on).
 If any specific application causes high utilization, stop or restart this application to isolate the overall VM host performance level. Alternatively execute the command esxtop from Tech Support Mode to list all system processes running on the ESXi host application.
5. Check the ESXi server file log (hostd.log) under the folder /var/log/vmware.
 This log contains common error logs such as iSCSI naming error, authentication error, host convertibility error, and so on.
6. Verify that there is adequate disk space available on the volume that is storing the database files to ensure correct operation of the database.
 If there is not adequate space available on the physical volume that stores the database files, free up disk space.
 Validate the authentication to the vCenter Server database. The vCenter Server service may not be able to authenticate with the database if:
 a. There are permission issues with the database when importing from one instance to another.
 b. The password on the account you are using to authenticate to the database has changed but the password in the registry has not changed as well.
 c. The vCenter Server database user is not granted correct permissions.
Isolating a possible root cause

<table>
<thead>
<tr>
<th>Potential issue area</th>
<th>What to look for</th>
</tr>
</thead>
</table>
| Storage | Look for the VM store application image stored either on the local drive, SAN or NFS. VMs often freeze or hang up if the application failed to access the storage. Possible error messages are:
 - vCenter Server does not start
 - vCenter Server is slow to respond
 - vCenter Server fails after an indefinite amount of time |
| Network | Any network failure or locking causes a connection failure between the VM and the virtual network. Also, if using NFS or iSCSI, storage may cause application failures because the application cannot access the file system. |
| DNS | DNS server failures or communication failures between DNS and the VM server may cause the VMware application or the VM TelePresence Conductor application to fail. |
| vCenter Server | If vCenter is not operating properly, even though the VM TelePresence Conductor application is still up and running, you may lose connection to the VM TelePresence Conductor application from the network. |
| Host application | Check any critical alarms on the VM application for events on the host or application level (check the event information from vSphere Client). |

Possible issues

VM image fails to boot

If the VM image fails to boot, check the VT (Virtualization Technology) setting in BIOS. This needs to be enabled for hosting VMs. If it is not set, set it and re-install ESXi then load the .ova file.

TelePresence Conductor application fails to start

Look at the /tmp/hwfail file – its content will indicate any violations in the installation.

For example, TelePresence Conductor reserves 3 virtual NICs – these are required in the TelePresence Conductor, do not try deleting one or more of them otherwise hwfail will be created and the VM TelePresence Conductor will not run.

Configured NTP does not work

For NTP to work on TelePresence Conductor, the same NTP must also be configured on the VM host.

Guest console in vSphere 5 fails to run on some Microsoft platforms

When attempting to open a console screen from vSphere for the VM:

- Error message: “The VMRC console has disconnected...attempting to reconnect.”
- Screen remains black

The following operating systems are at risk:

- Windows 7 64 bit – reported on VMware forum (http://communities.vmware.com/thread/333026)
- Windows Server 2008 R2 (64-bit) – found by use
Raid controller synchronization

If the VMware system is synchronizing its RAID disks, disk performance is seriously degraded. It is strongly recommended that TelePresence Conductor is not installed or run on VM platforms where RAID disks are in a degraded or synchronizing state.

Analyzing the cause of VMware issues

If VMware is causing problems on a TelePresence Conductor host, you are initially recommended to collect logs from the host for analysis:

1. Using the vSphere client (or the vCenter Server managing this ESXi host) connect to the ESXi host on which the TelePresence Conductor is running.
2. Go to File > Export > Export System logs, choose the appropriate ESXi host and go with the default settings.

After you have downloaded the logs analyze them, or have them analyzed to determine the issue.

Restoring default configuration (factory reset)

Very rarely, it may become necessary to run the "factory-reset" script on a TelePresence Conductor. This reinstalls the TelePresence Conductor software image and resets the configuration to the functional minimum.

Prerequisite files

The factory-reset procedure described below rebuilds the TelePresence Conductor based on the most recent successfully-installed software image. The files that are used for this reinstallation are stored in the /mnt/harddisk/factory-reset/ folder on the system. These files are:

- A text file containing just the 16-character Release Key, named rk
- A file containing the software image in tar.gz format, named tandberg-image.tar.gz

In some cases (most commonly a fresh VM installation that has not been upgraded), these files will not be present on the system. In such a case, to use this procedure, these files must first be put in place using SCP as root.

Performing a reset to default configuration

The following procedure must be performed from the serial console or via a direct connection to the appliance with a keyboard and monitor. This is because the network settings will be rewritten, so any SSH session used to initiate the reset would be dropped and the output of the procedure would not be seen. The process takes approximately 20 minutes.

1. Log in to TelePresence Conductor as root.
2. Type factory-reset
3. Answer the questions as required:
The recommended responses will reset the system completely to a factory default state.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Recommended response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep option keys [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Keep IP configuration [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Keep ssh keys [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Keep ssl certificates and keys [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Keep root and admin passwords [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Save log files [YES/NO]?</td>
<td>YES</td>
</tr>
<tr>
<td>Replace hard disk [YES/NO]?</td>
<td>NO</td>
</tr>
</tbody>
</table>

4. Finally, confirm that you want to proceed.
Appendix 2 — VM New Product Hold (NPH) release process

Currently, all Virtual TelePresence Conductor orders are placed on New Product Hold (NPH) and are fulfilled manually. To expedite the fulfillment of the order, follow this process:

1. Once the VM TelePresence Conductor is installed, retrieve the serial number from the Option key page (Maintenance > Option keys) or from the bottom right hand corner of the TelePresence Conductor web interface.

2. Send an email to vmvcs-sn-entry@cisco.com with the following information:
 a. Contact name.
 b. Contact email.
 c. Contact phone number.
 d. Sales order number.
 e. Serial number of the TelePresence Conductor.
 Note: We will not be able to process the license key request without all of the information.

3. When we have received all of the information listed above, we can then process your request and create a release key. Please allow 24 – 48 hours (Monday through Friday) for a reply. If you have any questions regarding this process, please send an email to vmvcs-sn-entry@cisco.com.
Appendix 3 — Deploying multiple datastores

This process should be carried out during the initial build of the VM host, if the VM host has two or more RAID arrays of disk storage. This configuration enables vSphere / vCenter to know about all the datastores.

1. From vSphere or vCenter Inventory list select the relevant Host.
2. Select the Configuration tab.
3. Select Storage.
4. Select Add Storage ... (on the right hand side window).
5. Select Disk/Lun and click Next.

6. Under Disk/LUN select the required Disc/LUN from the list presented and click Next.
7. On the **File System Version** page select **VMFS-5** and then click **Next**.

8. On the **Current Disk Layout** page verify the details and then click **Next**.
9. On the **Properties** page enter a name for the new datastore and then click **Next**.

![Add Storage Properties Page](image1)

10. On the **Formatting** page select **Maximum available space** and then click **Next**.

![Add Storage Formatting Page](image2)
11. On the **Ready to Complete** page verify the details and then click **Finish**.

![Ready to Complete](image1)

12. Wait for the Create VMFS Datastore task to complete.

13. On completion, the new datastore will be listed under the **Storage** section.

![Create VMFS Datastore](image2)
Appendix 4 — Ensuring that the required 6GB of memory is allocated for the VM TelePresence Conductor

If the wrong amount of memory has been allocated to the VM TelePresence Conductor, this can be corrected as follows:

1. Power off the guest:
 a. Select TelePresence Conductor VM Guest.
 b. Select the Console tab.
 c. Right-click TelePresence Conductor VM Guest.
 d. Select **Power > Shut Down Guest**.
 e. Select to confirm shutdown.
 f. Wait for Initiate guest OS shutdown to complete.
 g. Wait for Console screen to go blank and the icon by TelePresence Conductor VM Guest to lose its green Power On indication.

2. When the guest is off, right-click the guest and select **Edit Settings**.

3. Select the **Hardware** tab.

4. Select **Memory**.

5. On the right side, ensure that Memory Size is set at 6GB – if not set it to 6GB and click **OK**.

6. Power on the guest:
 a. Select TelePresence Conductor VM Guest.
 b. Select the Console tab.
 c. Right-click on the TelePresence Conductor VM Guest.
 d. Select **Power > Power On**.
 e. Wait for console to show the login: prompt.
7. Check that other configuration requirements (for example, number of CPUs, disk space allocation, version of ESXi) are correct.
Document revision history

The following table summarizes the changes that have been applied to this document.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>September 2012</td>
<td>Initial release.</td>
</tr>
<tr>
<td>2</td>
<td>December 2012</td>
<td>Updated for XC2.0 release</td>
</tr>
<tr>
<td>3</td>
<td>February 2013</td>
<td>Information on .ova file usage and VM New Product Hold release process added.</td>
</tr>
</tbody>
</table>
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco’s trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.