8-Port 10/100 Ethernet Switch with Webview

Model: SRW208/SRW208G/SRW208L/SRW208P/SRW208MP
About This Guide

Icon Descriptions
While reading through the User Guide you may see various icons that call attention to specific items. Below is a description of these icons:

NOTE: This check mark indicates that there is a note of interest and is something that you should pay special attention to while using the product.

WARNING: This exclamation point indicates that there is a caution or warning and it is something that could damage your property or product.

WEB: This globe icon indicates a noteworthy website address or e-mail address.

Online Resources
Website addresses in this document are listed without http:// in front of the address because most current web browsers do not require it. If you use an older web browser, you may have to add http:// in front of the web address.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linksys</td>
<td>www.linksys.com</td>
</tr>
<tr>
<td>Linksys International</td>
<td>www.linksys.com/international</td>
</tr>
<tr>
<td>Glossary</td>
<td>www.linksys.com/glossary</td>
</tr>
<tr>
<td>Network Security</td>
<td>www.linksys.com/security</td>
</tr>
</tbody>
</table>

Copyright and Trademarks

Linksys is a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries. Copyright © 2007 Cisco Systems, Inc. All rights reserved. Other brands and product names are trademarks or registered trademarks of their respective holders.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Welcome</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Product Overview</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SRW208 - Front Panel</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SRW208G - Front Panel</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SRW208L - Front Panel</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SRW208P/SRW208MP - Front Panel</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Back Panel</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Installation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Positioning the Switch</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Placement Options</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Desktop Placement</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rack-Mount Placement</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Wall-Mount Placement</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Configuration Using the Console Interface</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Configuring the HyperTerminal Application.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Connecting to the Switch through a Telnet Session.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Configuring the Switch through the Console Interface.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Switch Main Menu</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>System Configuration Menu</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Port Status</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Port Configuration</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Configuration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Accessing the Web-based Utility</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Setup > Summary</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Device Information</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>System Information</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>PoE Information</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Setup > Network Settings</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>IP Configuration</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Setup > Time</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Set Time</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Local Time</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Daylight Saving</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SNTP Servers</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Port Management > Port Settings</td>
<td>20</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Port Configuration Detail</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Port Management > Link Aggregation</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Link Aggregation Detail</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Port Management > LACP</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Port Management > PoE Power Settings</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>VLAN Management > Create VLAN</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>VLAN Management > Port Settings</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Single VLAN</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>VLAN Range</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>VLAN Table</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>VLAN Management > Ports to VLAN</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>VLAN Management > VLAN to Ports</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Join VLAN Detail</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>VLAN Management > GVRP</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Statistics > RMON Statistics</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Statistics > RMON History</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Log Table</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RMON History</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Statistics > RMON Alarms</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Statistics > RMON Events</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Add Event</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Statistics > Port Utilization</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Statistics > 802.1x Statistics</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Statistics > GVRP Statistics</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>ACL > IP based ACL</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>ACL > MAC based ACL</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Security > ACL Binding</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Security > RADIUS</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Security > TACACS+</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Security > 802.1x Settings</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Setting Timer</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Security > Ports Security</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Security > Multiple Hosts</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Security > Storm Control</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>QoS</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>QoS > CoS Settings</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>CoS Default</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>QoS > Queue Settings</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>QoS > DSCP Settings</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>QoS > Bandwidth</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>QoS > Basic Mode</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>QoS > Advanced Mode</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Out of Profile DSCP</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

- Policy Name .. 40
- New Class Map ... 40
- New Aggregate Policer 41
- Spanning Tree .. 41
 - Spanning Tree > STP Status 41
 - Spanning Tree > Global STP 42
 - Global Setting 42
 - Bridge Settings 42
 - Spanning Tree > STP Port Settings 43
 - Spanning Tree > RSTP Port Settings 43
 - Spanning Tree > MSTP Properties 44
 - Spanning Tree > MSTP Instance Settings 45
 - Spanning Tree > MSTP Interface Settings 45
- Multicast > IGMP Snooping 46
- Multicast > Bridge Multicast 47
- Multicast > Bridge Multicast Forward All 47
- SNMP > Global Parameters 47
- SNMP > Views ... 48
- SNMP > Group Profile 49
- SNMP > Group Membership 49
- SNMP > Communities 50
 - Base Table ... 50
 - Advanced Table 51
- SNMP > Notification Filter 51
- SNMP > Notification Recipient 51
- Admin > User Authentication 52
- Admin > Static Address 52
 - Query .. 53
- Admin > Dynamic Address 53
 - Query .. 53
- Admin > Logging .. 53
- Admin > Port Mirroring 54
- Admin > Cable Test 54
- Admin > Save Configuration 55
 - Via TFTP .. 55
 - Via HTTP .. 55
 - Backup .. 55
- Admin > Firmware Upgrade 55
- Admin > Reboot .. 56
- Admin > Factory Defaults 56
- Admin > Server Logs 56
- Admin > Memory Logs 57
- Admin > Flash Logs 57
Table of Contents

Appendix A: About Gigabit Ethernet and Fiber Optic Cabling 58
- Gigabit Ethernet ... 58
- Fiber Optic Cabling ... 58

Appendix B: Introduction 59
- Startup Menu Procedures ... 59

Appendix C: Glossary 61

Appendix D: Specifications 65

Appendix E: Warranty Information 73
- Exclusions and Limitations ... 73
- Obtaining Warranty Service ... 73
- Technical Support ... 74

Appendix F: Regulatory Information 75
- FCC Statement ... 75
- Safety Notices .. 75
- Industry Canada Statement .. 75
- Avis d’Industrie Canada ... 75

Appendix G: Contact Information 80
Chapter 1: Introduction

Welcome

This guide covers five product models.

- **SRW208** 8-port 10/100 Ethernet Switch with WebView. Includes 8 10/100 RJ-45 ports.
- **SRW208G** 8-port 10/100 Ethernet Switch with WebView and Expansion Slots. Includes 8 10/100 RJ-45 ports and 1 10/100/1000 RJ-45 port and 1 MiniGBIC slot.
- **SRW208L** 8-port 10/100 Ethernet Switch with WebView and 100Base-LX Uplink. Includes 8 10/100 RJ-45 ports and 1 MiniGBIC slot and 1 100LX Uplink port.
- **SRW208MP** 8-port 10/100 Ethernet Switch with WebView and Maximum POE (Power over Ethernet). Includes 8 10/100 RJ-45 ports and 2 10/100/1000 RJ-45 ports and 2 shared MiniGBIC slots.
- **SRW208P** 8-port 10/100 Ethernet Switch with WebView and POE (Power over Ethernet) Includes 8 10/100 RJ-45 ports and 2 10/100/1000 RJ-45 ports and 2 shared MiniGBIC slots.

For the purpose of this manual, whenever a feature applies to all models, the model number will be referenced as SRW208x. If a specific model number is mentioned, then the feature is specific to that model.

The Linksys WebView Managed switch allows you to expand your network securely. Configuration of the Switch is secured using SSL for web access. User control is secured using 802.1x security using a RADIUS authentication mechanism and can also be controlled using MAC-based filtering.

Extensive QoS features makes the solution ideal for real-time applications like Voice and Video. The 4 priority queues together with the Weighted Round Robin and Strict Priority scheduling techniques facilitate efficient coexistence of real-time traffic with data traffic allowing them each to meet their QoS needs. Individual users or applications can be prioritized above others using various Class of Service options - by port, layer 2 priority (802.1p), and Layer 3 priority (TOS or DSCP). Intelligent Broadcast, and Multicast storm control minimizes and contain the effect of these types of traffic on regular traffic. IGMP Snooping limits bandwidth-intensive video traffic to only the requestors without flooding to all users. Incoming traffic can be policed and outgoing traffic can be shaped allowing you to control network access and traffic flow.

There are features that allow you to expand and grow your network of switches. Link aggregation allows multiple high-bandwidth trunks between switches to be setup. This also provides a level of reliability in that the system continues to operate if one of the links break. Spanning Tree (STP), Fast Spanning Tree, and Rapid Spanning Tree (RSTP) allow you to build a mesh of switches increasing the availability of the system.

The rich management functionality of the WebView switches includes SNMP, RMON, Telnet, and HTTP Management options, allowing you to flexibly integrate and manage these devices in your network.

The SRW208P and SRW208MP support Automatic Load Sensing - Power control circuitry automatically detects Power over Ethernet on access point before providing power. Power feeding of Ethernet limited for fixed 10/100 Base-T/TX ports. The SRW208MP can provide maximum output power per PoE port up to 15.4W on 8 ports simultaneously, while the SRW208P can provide maximum output power on 4 ports simultaneously or 8 ports at half power.
Chapter 2: Product Overview

SRW208 - Front Panel

The LEDs and ports are located on the front panel of the Switch.

SYSTEM (Green) The system LED lights up to indicate that the Switch is powered on.

LINK/ACT (Green) The LINK/ACT LED lights up to indicate a functional network link through the corresponding port (1 through 8) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

100M (Orange) The 100M LED lights up to indicate a 100Mbps connection on the corresponding port (1 through 8).

ETHERNET 1-8 The Switch is equipped with 8 auto-sensing, Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps or 100Mbps.

They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps or 100Mbps), and adjust its speed and duplex accordingly.

Console The Console port is where you can connect a serial cable to a PC’s serial port for configuration using your PC’s HyperTerminal program. Refer to Chapter 4: Using the Console Interface for Configuration for more information.

SRW208G - Front Panel

The LEDs and ports are located on the front panel of the Switch.

SYSTEM (Green) The system LED lights up to indicate that the Switch is powered on.

LINK/ACT (Green) The LINK/ACT LED lights up to indicate a functional network link through the corresponding port (1 through 8, G1, or G2) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

100M (Orange) The 100M LED lights up to indicate a 100Mbps connection on the corresponding port (1 through 8).

Gigabit (Orange) The Gigabit LED lights up to indicate a Gigabit connection on the corresponding RJ-45 port (G1) or miniGBIC port (G2).

ETHERNET 1-8 The Switch is equipped with 8 auto-sensing, Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps or 100Mbps.

They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps or 100Mbps), and adjust its speed and duplex accordingly.

G1-G2 The Gigabit Ethernet ports support network speeds of 10Mbps, 100Mbps, and 1000Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps, 100Mbps, or 1000Mbps), and adjust its speed and duplex accordingly. The G1 and G2 RJ-45 ports are shared with the miniGBIC ports.

miniGBIC1/2 The mini-GBIC (gigabit interface converter) port is a connection point for a mini-GBIC expansion module, so the Switch can be uplinked via fiber to another switch. Each MiniGBIC port provides a link to a high-speed network segment or individual workstation at speeds of up to 1000Mbps.
Console The Console port is where you can connect a serial cable to a PC's serial port for configuration using your PC's HyperTerminal program. Refer to Chapter 4: Using the Console Interface for Configuration for more information.

SRW208L - Front Panel
The LEDs and ports are located on the front panel of the Switch.

![Front Panel](image)

- **SYSTEM** (Green) The system LED lights up to indicate that the Switch is powered on.
- **LINK/ACT** (Green) The LINK/ACT LED lights up to indicate a functional network link through the corresponding port (1 through 8, G1, or 100LX) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.
- **100M** (Orange) The 100M LED lights up to indicate a 100Mbps connection on the corresponding port (1 through 8).
- **Gigabit** (Orange) The Gigabit LED lights up to indicate a Gigabit connection on the corresponding RJ-45 port (G1) or miniGBIC port (G2).
- **ETHERNET 1-8** The Switch is equipped with 8 auto-sensing, Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps or 100Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps or 100Mbps), and adjust its speed and duplex accordingly.

- **G1** The mini-GBIC (gigabit interface converter) port is a connection point for a mini-GBIC expansion module, so the Switch can be uplinked via fiber to another switch. Each MiniGBIC port provides a link to a high-speed network segment or individual workstation at speeds of up to 1000Mbps.

Use the Linksys MGBT1, MGBSX1, or MGBLH1 mini-GBIC modules with the Switch. The MGBSX1 and the MGBLH1 require fiber cabling with LC connectors, while the MGBT1 requires a Category 5e Ethernet cable with an RJ-45 connector.

- **9** The 100LX port is where you can connect

SRW208P/SRW208MP - Front Panel
The LEDs and ports are located on the front panel of the Switch.

![Front Panel](image)

- **SYSTEM** (Green) The system LED lights up to indicate that the Switch is powered on.
- **Gigabit** (Orange) The Gigabit LED lights up to indicate a Gigabit connection on the corresponding port (1 through 8).
- **PoE** (Orange) The PoE LED lights up to indicate a device is connected utilizing Power over Ethernet on the corresponding port (1 through 8).
Gigabit (Orange) The Gigabit LED lights up to indicate a Gigabit connection on the corresponding RJ-45 port (G1 through G2).

ETHERNET 1-8 The Switch is equipped with 8 auto-sensing, Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps or 100Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps or 100Mbps), and adjust its speed and duplex accordingly.

G1-G2 The Gigabit Ethernet ports support network speeds of 10Mbps, 100Mbps, and 1000Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps, 100Mbps, or 1000Mbps), and adjust its speed and duplex accordingly. The G1 and G2 RJ-45 ports are shared with the miniGBIC ports.

miniGBIC1/2 The mini-GBIC (gigabit interface converter) port is a connection point for a mini-GBIC expansion module, so the Switch can be uplinked via fiber to another switch. Each MiniGBIC port provides a link to a high-speed network segment or individual workstation at speeds of up to 1000Mbps.

Console The Console port is where you can connect a serial cable to a PC’s serial port for configuration using your PC’s HyperTerminal program. Refer to Chapter 4: Using the Console Interface for Configuration for more information.

Back Panel

The console and power ports are located on the back panel of the Switch.

POWER The Power port is where you will connect the AC power.
Chapter 3: Installation

Overview

This chapter will explain how to connect network devices to the Switch. The following diagram shows a typical network configuration.

When you connect your network devices, make sure you don’t exceed the maximum cabling distance of 100 meters (328 feet).

Positioning the Switch

Before you choose a location for the Switch, observe the following guidelines:

- Make sure that the Switch is accessible and that the cables can be connected easily.
- Keep cabling away from sources of electrical noise, power lines, and fluorescent lighting fixtures.
- Position the Switch away from water and moisture sources.
- To ensure adequate air flow around the Switch, be sure to provide a minimum clearance of two inches (50mm).
- Do not stack free-standing Switches more than four units high.

Placement Options

There are three ways to physically install the Switch, either set the Switch on its four rubber feet for desktop placement, mount the switch in a standard-sized, 19-inch 1U high rack for rack-mount placement, or horizontally on the wall.

Desktop Placement

1. Attach the rubber feet to the recessed areas on the bottom of the Switch.
2. Place the Switch on a desktop near an AC power source.
3. Keep enough ventilation space for the Switch and check the environmental restrictions mentioned in “Appendix D: Specifications” as you are placing the Switch.
4. Connect the Switch to network devices according to the Hardware Installation instructions below.
Chapter 3

Rack-Mount Placement

When rack-mounting the Switch, please observe the following guidelines:

- **Elevated Operating Ambient** If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.

- **Reduced Air Flow** Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.

- **Mechanical Loading** Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.

- **Circuit Overloading** Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

- **Reliable Earthing** Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips).

To rack-mount the Switch in any standard 19-inch rack, follow the instructions described below.

1. Place the Switch on a hard flat surface with the front panel facing you.
2. Attach a rack–mount bracket to one side of the Switch with the supplied screws. Then attach the other bracket to the other side.

WARNING: Make sure you use the screws supplied with the mounting brackets. Using the wrong screws could damage the Switch and would invalidate your warranty.
Wall-Mount Placement

When mounting the Switch on the wall, the Switch should be mounted horizontally. The front panel should face either up or down. The unit should not be positioned vertically when mounted. You will need two suitable screws to mount the Switch. Use the template above to plan your installation.

1. Determine where you want to mount the Switch. Ensure that the wall you use is smooth, flat, dry and sturdy and make sure the location is within reach of the power outlet.
2. Drill two holes into the wall. Make sure the holes are 3.7 inches (94 mm) apart. You can print the template from this page.
3. Insert a screw into each hole, and leave 3 mm (0.12 in) of its head exposed.
4. Maneuver the Switch so the wall-mount slots line up with the two screws.
5. Place the wall-mount slots over the screws and slide the Switch down until the screws fit snugly into the wall-mount slots.

NOTE: Linksys is not responsible for damages incurred by insecure wall-mounting hardware.

Congratulations! The wall-mount installation of the Switch is complete.
Hardware Installation

To connect network devices to the Switch, follow these instructions:

1. Make sure all the devices you will connect to the Switch are powered off.

2. For 10/100Mbps devices, connect a Category 5 Ethernet network cable to one of the numbered ports on the Switch. For a 1000Mbps device, connect a Category 5e Ethernet network cable to one of the numbered ports on the Switch.

3. Connect the other end to a PC or other network device.

4. Repeat steps 2 and 3 to connect additional devices.

5. If you are using the mini-GBIC port, then connect the mini-GBIC module to the mini-GBIC port. For detailed instructions, refer to the module's documentation.

6. If you will use the Switch's console interface to configure the Switch, then connect the supplied serial cable to the Switch's Console port, and tighten the captive retaining screws. Connect the other end to your PC's serial port. (This PC must be running the VT100 terminal emulation software, such as HyperTerminal.)

7. Connect the supplied power cord to the Switch's power port, and plug the other end into an electrical outlet.

WARNING: Make sure you use the power cord that is supplied with the Switch. Use of a different power cord could damage the Switch.

8. Power on the network devices connected to the Switch. Each active port's corresponding Link/Act LED will light up on the Switch. If a port has an active Gigabit connection, then its corresponding Gigabit LED will also light up.

NOTE: If you need to reset the Switch, unplug the power cord from the back of the Switch. Wait a few seconds and then reconnect it.
Chapter 4: Configuration Using the Console Interface

Overview

The Switch features a menu-driven console interface for basic configuration of the Switch and management of your network. The Switch can be configured using CLI through the console interface or through a telnet connection. This chapter describes console interface configuration. Configuration can also be performed through the web utility, which is covered in the next chapter.

Configuring the HyperTerminal Application

1. Click the Start button.
2. Select Programs > Accessories > Communications > HyperTerminal.
3. Enter a name for this connection. In the example, the name of the connection is SRW208. Select an icon for the application, then click OK.
4. Select a port to communicate with the switch. Select COM1, COM2, or TCP/IP.
5. Set the serial port settings as follows, then click OK.
 - Bits per Second: 38400
 - Databits: 8
 - Parity: None
 - Stop bits: 1
 - Flow control: None

Connecting to the Switch through a Telnet Session

1. Open a command line editor and enter telnet 192.168.1.254. Then, press the Enter key.
2. The Login screen will now appear. The first time you open the CLI interface, select Edit and hit Enter. Enter admin in the User Name field. Leave the Password field blank.
Press the Esc button and you will return to the login screen. Use the right arrow button to navigate to Execute and press the Enter button to enter the CLI interface.

Configuring the Switch through the Console Interface

The console screens consist of a series of menus. Each menu has several options, which are listed vertically. You select a menu option when you highlight it; pressing the Enter key activates the highlighted option.

To navigate through the menus and actions of the console interface, use the up or down arrow keys to move up or down, and use the left or right arrow keys to move left or right. Use the Enter key to select a menu option, and use the Esc key to return to the previous selection. Menu options and any values entered or present will be highlighted. The bottom of the screen lists the actions available.

Switch Main Menu

The Main Menu screen displays six menu choices: System Configuration Menu, Port Status, Port Configuration, Help, and Log Out.

System Configuration Menu

System Configuration Menu options:
1. System Information
2. Management Settings
3. User and Password Settings
4. Security Settings
5. IP Configuration
6. File Management
7. Restore System Default Settings
8. Reboot System
0. Back to Main Menu.

System Information

From the System Information screen you can check current firmware versions and other general switch information.
Chapter 4

Versions

Boot Version This file runs when the Switch is turned on. It performs power-on diagnostics and loads the operating system for the Switch.

Software Version This file contains the programming code that runs the Switch.

Hardware Version The current hardware setup of the Switch.

General System Information

The General System Information screen displays the System Description, System Up Time, System Mac Address, System Contact, System Name and System Location.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

Management Settings

From the Management Settings screen, you can set Serial Port Session Configuration, Telnet Session Configuration, or Secure Telnet (SSH) Configuration.

Serial Port Configuration

On the Serial Port Configuration screen, the Switch's baud rate is displayed.

Select Edit and press the Enter key to make changes. Toggle to the desired speed and when your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

Telnet Configuration

On the Telnet Configuration screen, the time-out is displayed. The value is entered in seconds. If you do not want the Telnet session to timeout, you may enter a value of 0 sec.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.
Chapter 4

Configuration Using the Console Interface

SSH Configuration

On the **SSH Configuration** screen, you can select SSH Server Configuration, SSH Server Status, SSH Crypto Key Generation, and SSH Keys Fingerprints.

SSH Server Configuration

On the **SSH Server Configuration** screen, the SSH Server can be enabled or disabled by navigating to the SSH Server option and using the SPACE bar to toggle the option. The SSH Server Port can be modified by entering in the value. Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.

SSH Status

The **SSH Status** screen displays whether the SSH Server is enabled, the RSA and DSA key status, and any open SSH sessions. Select Refresh to update the screen if necessary. To exit, select **Quit** and press the **Enter** key.

SSH Crypto Key Generation

On the **SSH Crypto Key Generation** screen, the SSH Public Key Algorithm can be toggled between RSA and DSA using the SPACE bar to toggle the option. The SSH Public Key Length cannot be modified. Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.
Chapter 4

SSH Crypto Key Generation

SSH Keys Fingerprints

On the SSH Keys Fingerprints screen, the RSA and DSA keys will be displayed if they have been generated.

Select Refresh to update the screen if necessary. To exit, select Quit and press the Enter key.

User & Password Settings

From this screen, you can administer the user names and passwords of those accessing the Switch.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

NOTE: The Username & Password Settings screen can also be used to set passwords for other users.

Security Settings

The Security Settings screen enables you to configure security settings on the Switch, as well as generate and display the certificate.

SSL Certificate Generation

Use the Certificate Generation screen to specify a device-generated certificate.

The following fields are specified:

- **Public Key Length** Specifies the SSL RSA key length. (Range: 512 - 2048)
- **Organization Name** Specifies the organization name. (Range: 1 - 64)
- **Locality or City Name** Specifies the location or city name. (Range: 1 - 64)
- **State or Province Name** Specifies the state or province name. (Range: 1 - 64)
- **Country Name** Specifies the country name. (Range: 2 - 2)
- **Validity Term** Specifies number of days certification is valid. (Range: 30 - 3650)
Chapter 4

SSL Certificate Generation

Show Certificate

Use the Show Certificate screen to display the internal certificate.

```
SSL Certificate

Issued by: C=US, O=Internet, CN=8-port-10/100-ethernet-switch-with-webview
Valid From: 2000-01-01 00:00:00 GMT
Valid To: 2000-12-31 23:59:59 GMT
Subject: C=US, O=Internet, CN=8-port-10/100-ethernet-switch-with-webview
Fingerprint: 44A1B9E6 89940C6C 6E185626 666980 071B01CE
```

SSL Certificate

Disable Active Management Profile

Selecting this option will prompt you to confirm that you want to disable the Active Management Profile.

IP Configuration

The IP Configuration screen displays these choices: the Switch's IP Address Settings, HTTP, HTTPS Configuration and Network Configuration.

```
IP Configuration

1. IP Address Settings
2. HTTP Configuration
3. HTTPS Configuration
4. Network Configuration
0. Back
```

IP Address Configuration

The IP Address Settings screen allows you to set the IP information for the Switch.

IP Address The IP Address of the Switch is displayed. (The default IP address is 192.168.1.254) Verify that the address you enter is correct and does not conflict with another device on the network.

Subnet Mask The subnet mask of the Switch is displayed.

Default Gateway The IP address of your network's default gateway is displayed.

Management VLAN The VLAN ID number is displayed.

DHCP client The status of the DHCP client is displayed. If you want the Switch to be a DHCP client, then select ENABLE. If you want to assign an static IP address to the Switch, then enter the IP settings and select DISABLE. Select Edit to make changes. When your changes are complete, press the Esc key to return to the Action menu, and select Save to save your changes.

HTTP

The HTTP screen displays the status and port number of the HTTP Server.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.
HTTPS Configuration

Use the HTTPS Configuration screen to configure HTTPS settings. You can enable or disable the HTTPS server and configure the port on which the session is enabled.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

Ping

The Ping screen displays the IP address of the location you want to contact.

Select Edit to change the IP address, and select Execute to begin the ping test.

After the ping test is complete, the Ping screen displays the IP address, status, and statistics of the ping test.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

Traceroute

The TraceRoute screen displays the IP address of the address whose route you want to trace.

Select Edit to change the IP address, and select Execute to begin the traceroute test.

After the traceroute test is complete, the TraceRoute screen displays the IP address, status, and statistics of the traceroute test.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.
Chapter 4

File Management

The File Management screen allows you to upload or download files, such as the startup configuration, boot, or image file, using a TFTP server.

Select Edit to change the settings. When your changes are complete, press the Esc key to return to the Action menu, and select Execute to upload or download the designated file. After you download a new image file, the device should be rebooted.

If you are downloading a new boot image, please follow these steps:
1. Download the new boot code. DO NOT RESET THE DEVICE.
2. Download the new software image.
3. Reset the device now.

NOTE: When downloading a configuration file, be sure that it is a valid configuration file. If you have edited the file, ensure that only valid entries have been configured.

Restore System Default Settings

To restore the Switch back to the factory default settings, select Restore System Default Settings and press the Enter key. You will be asked if you want to continue. Press the y key to restore the Switch’s default settings, or press the n key to cancel.

Reboot System

Select Reboot System and press the Enter key if you want to restart the Switch. You will be asked if you want to continue. Press the y key to reboot the Switch, or press the n key to cancel. After the Switch has rebooted, the Switch Main Menu screen will appear.

Port Configuration

On the Switch Main Menu screen, select Port Configuration and press the Enter key if you want to configure the Switch’s ports.
The Port Configuration screen displays the port numbers, their status, auto-negotiation status, speed and duplex mode, and status of flow control, which is the flow of packet transmissions.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

Help

Select Help and press the Enter key if you want to view the help information. This screen explains how to navigate the various screens of the console interface.
Chapter 5: Advanced Configuration

Overview

This chapter describes the features included in the Web-based Utility. All of the features shown in this chapter, unless specifically identified, are included in all of Fast Ethernet switches. Additional features for specific switches are noted.

Accessing the Web-based Utility

Open your web browser and enter 192.168.1.254 into the Address field. Press the Enter key and the login screen will appear.

NOTE: The default IP address of the device is 192.168.1.254. If you have modified this address, enter the correct IP address. The device should be on the same subnet as the management station used to configure the device.

The first time you open the web-based utility, enter admin in the User Name field, and leave the Password field blank. Click the OK button. You can set a password later from the System Password screen.

The first screen that appears is the Setup Summary screen. Twelve main tabs are accessible from the web-based utility: Setup, Port Management, VLAN Management, Statistics, ACL, Security, QoS (Quality of Service), Spanning Tree, Multicast, SNMP, Admin, and Logout. Click one of the main tabs to view additional tabs.

NOTE: The LEDs displayed in the web-based utility are not the same as the LEDs on the front panel of the Switch. The front panel LEDs display different status information, which is described in Chapter 2: Overview.

The LEDs on the Setup Summary screen display status information about their corresponding ports. A green LED indicates a connection, while a grey LED indicates no connection. An orange LED indicates the port has been closed down by the administrator. When you click a port’s LED, the statistics for that port are displayed.

NOTE: After configuring values using the web-based utility, you may be required to refresh the page to see the updated configuration.

Setup > Summary

The Summary screen provides device and system information about the Switch.

Device Information

System Name Displays the name for the Switch, if one has been entered on the Setup > Network Settings tab.

IP Address The IP address of the Switch is displayed here (configurable from Setup > Network Settings tab).

Subnet Mask The Subnet Mask of the Switch is displayed here (configurable from Setup > Network Settings tab).

DNS Servers The DNS Servers are displayed here (configurable from Setup > Network Settings tab).

Default Gateway The Default Gateway is displayed here (configurable from Setup > Network Settings tab).
Address Mode Indicates whether the Switch is configured with a Static or Dynamic IP address (configurable from Setup - Network Settings tab).

Base MAC Address This is the MAC address of the Switch.

System Information

Serial Number The serial number of the Switch is displayed.

Model Name The model name of the Switch is displayed.

Hardware version The current hardware version is displayed.

Boot Version The current boot version is displayed.

Firmware Version The current software version is displayed.

System Location The system location is displayed here (configurable from Setup > Network Settings tab).

System Contact The contact person for this Switch is displayed here (configurable from Setup > Network Settings tab).

System Uptime This displays the amount of time that has elapsed since the Switch was last reset.

Current Time The system time is displayed here (configurable from Setup > Time tab).

PoE Information

Maximum Available Power Indicates the maximum amount of power the device can supply.

System Operation Status Indicates whether the PoE function is on or off.

Mainpower Consumption Displays how much power is currently used.

Setup > Network Settings

The Network Settings screen allows you to assign DHCP or static IP settings to interfaces and assign default gateways.

Identification

System Name This field allows you to assign a system name.

System Location This field is used for entering a description of where the Switch is located, such as 3rd floor.

System Contact Enter the administrative contact person in this field.

System Object ID The system object identifier is displayed here.

Base MAC Address This is the MAC address of the Switch.

IP Configuration

Management VLAN This drop-down allows you to select the Management VLAN.

IP Address Mode This drop-down allows you to select Static or Dynamic IP address configuration.

Host Name Enter the DHCP Host Name here.

IP Address If using a static IP address, enter the IP address here.

Subnet Mask Enter the subnet mask of the currently configured IP address.

Default Gateway Enter the IP address of the Default Gateway.
Chapter 5
Advanced Configuration

DNS Server Enter the primary DNS Server information.
Click the Save Settings button to save your changes or click Cancel Changes to discard the information.

Setup > Time
The Time screen allows you to configure the time settings for the Switch.

Set Time
Use System Time When this option is selected, the local hardware clock is utilized.
Use SNTP Time When this option is selected, the time is synchronized to an SNTP (Simple Network Time Protocol) server.

Local Time
Hours The hour can be entered here.
Minutes The minutes can be entered here.
Seconds The seconds can be entered here.
Month The month can be entered here.
Day The day can be entered here.
Year The year can be entered here.
Time Zone Enter the difference between Greenwich Mean Time (GMT) and local time.

Daylight Saving
Daylight Saving Select Daylight Saving to enable it on the Switch. If the Switch should use US daylight savings, then select USA. If the Switch should use EU daylight savings, then select European. If it should use another kind of daylight savings, then select Custom and complete the From and To fields.
Time Set Offset (1-1440) For non-US and European countries, specify the amount of time for daylight savings. The default is 60 minutes.
From If you selected Other for the Daylight Saving setting, then enter the date and time when daylight savings begins.
To If you selected Other for the Daylight Saving setting, then enter the date and time when daylight savings ends.
Recurring If you selected Other for the Daylight Saving setting and daylight savings has the same start and end dates and times every year, then select Recurring.
From If you selected Recurring, then enter the date and time when daylight savings begins.
To If you selected Recurring, then enter the date and time when daylight savings ends.

SNTP Servers
Server1 Enter the primary SNTP server here.
Server2 Enter a secondary SNTP server here.
SNTP Polling Interval (60-86400) The value defined here determines the amount of time (in seconds) before the Switch polls the SNTP server. The default value is every 1024 seconds (approx. 17 minutes).
Click the Save Settings button to save your changes or click Cancel Changes to discard the information.

Port Management > Port Settings
The Port Management > Port Settings screen shows you the settings for each of the Switch’s ports.
Port The number of the port. To use an SFP module, click on the Detail button of the appropriate port (G1, G2).
Description Displays a brief description of the port (can be entered by clicking on the Detail button).
Administrative Status The port can be taken offline by selecting the Down option. When Up is selected, the port can be accessed normally.
Link Status Up indicates a port has an active connection, Down indicates there is no active connection or the port has been taken offline by an Administrator.
Speed The connection speed of the port is displayed here. The speed can be configured only when auto-negotiation is disabled on that port.

Duplex This is the port duplex mode, Full (transmission occurs in both directions simultaneously) or Half (transmission occurs in only one direction at a time). This mode can be configured only when auto-negotiation is disabled and port speed is set to 10Mbps or 100Mbps. It cannot be configured on Link Aggregation Groups (LAGs).

MDI/MDIX This is the MDI/MDIX status of the port. The MDI setting is used if the port is connected to an end station. The MDIX setting is used if the port is connected to a hub or another switch.

Flow Control This is the flow control status of the port. It is active when the port uses Full Duplex Mode.

LAG This indicates if the port is part of a LAG.

Type Displays the port type.

PVE When a port is a Private VLAN Edge (PVE) port, it bypasses the Forwarding Database and forwards all unicast, multicast, and broadcast traffic to an uplink. Uplinks can be ports or LAGs.

Detail The Detail button will open the Port Configuration Detail screen.

Port Configuration Detail

Port The number of the port.

Description Displays a brief description of the port (can be entered by clicking on the Detail button).

Port Type This is the port type.

Admin Status The port can be taken offline by selecting the Down option. When Up is selected, the port can be accessed normally.

Current Port Status The current status of the port is displayed here.

Reactivate Suspended Port If you want to reactivate a port that has been suspended, click the checkbox.

Operational Status This indicates whether or not the port is active.

Admin Speed Change the speed of the port here.

Current Port Speed The current speed of the port is displayed here.

Admin Duplex Change the duplex mode here.

Current Duplex Mode This is the duplex mode of the port.

Auto Negotiation You can enable or disable the port’s Auto Negotiation feature. If using an SFP module, Auto Negotiation for the specific port should be set to Disable.

Current Auto Negotiation This is the current setting of the port’s Auto Negotiation feature.

Admin Advertisement Specifies the capabilities to be advertised by the port. Multiple options may be selected or Max Capability can be selected to cover all of the options. The available options are:
• **Max Capability** Indicates that the port speeds and duplex mode settings can be accepted.

• **10 Half** Indicates that the port is advertising a 10Mbps half duplex mode setting.

• **10 Full** Indicates that the port is advertising a 10Mbps full duplex mode setting.

• **100 Half** Indicates that the port is advertising a 100Mbps half duplex mode setting.

• **100 Full** Indicates that the port is advertising a 100Mbps full duplex mode setting.

• **1000** Indicates that the port is advertising a 1000Mbps full duplex mode setting.

Current Advertisement The port advertises its capabilities to its neighbor port to begin the negotiation process. This field displays the current advertisement settings.

Neighbor Advertisement The neighbor port (the port to which the selected interface is connected) advertises its capabilities to the port to start the negotiation process. This field displays the neighbor’s current settings.

Back Pressure The Back Pressure feature of the selected port can be enabled or disabled.

Current Back Pressure Displays whether Back Pressure is enabled or disabled on the currently selected port.

Flow Control The Flow Control feature of the selected port can be enabled or disabled.

Current Flow Control Displays whether Flow Control is enabled or disabled on the currently selected port.

MDI/MDIX Select the *Auto* setting if you want the port to automatically detect the cable type. Select *MDI* if the port is connected to an end station. Select *MDIX* if the port is connected to a hub or another switch.

Current MDI/MDIX This is the current MDI/MDIX status of the port.

PVE When a port is a Private VLAN Edge (PVE) port, it bypasses the Forwarding Database and forwards all unicast, multicast, and broadcast traffic to an uplink.

NOTE: PVE does not apply to the SRW208.

Click the **Save Settings** button to save your changes.

Port Management > Link Aggregation

LAG This indicates if the port is part of a LAG.

Description Description for this LAG.

Admin Status The admin status of the LAG. Up indicates that the LAG is available. Down indicates that administrator has taken the port offline. When modifying the option, be sure to click the Save Settings option.

Type The type of LAG is displayed here.

Link Status The link status is displayed here.

Speed The connection speed is displayed here.

Duplex The connection duplex is displayed here.

Flow Control This is the flow control status of the LAG. It is active when the port uses Full Duplex Mode.

LAG Mode Displays the LAG status, On, Off, or Not Present.

Detail button The Detail button opens up the Link Aggregation Detail screen.

Link Aggregation Detail

LAG Configuration

LAG The number of the selected LAG.

Description A general description can be listed here for reference.

LACP Indicates if the LAG is in LACP (Link Aggregation Control Protocol) mode.

LAG Type The port types that comprise the LAG.

Administrative Status Enables or disables traffic forwarding through the selected LAG.
Current Status Indicates if the LAG is currently operating.

Reactivate Suspended LAG Reactivates a LAG if the LAG has been disabled as a result of a port lock or ACL operation.

Admin Auto Negotiation Enables or disables Auto Negotiation on the LAG. Auto-negotiation is a protocol between two link partners that enables a LAG to advertise its transmission rate, duplex mode and flow control (the flow control default is disabled) abilities to its partner.

Current Auto Negotiation The current Auto Negotiation setting.

Admin Speed The configured speed at which the LAG is operating.

Current LAG Speed The current speed at which the LAG is operating.

Admin Flow Control Enables or disables flow control or enables the auto negotiation of flow control on the LAG.

Current Flow Control The user-designated Flow Control setting.

PVE Displays the PVE group to which the LAG is configured.

Select Ports

Ports Displays the ports that are members of the selected LAG.

Port Management > LACP

Aggregate ports can be linked into link-aggregation port groups. Each group is comprised of ports with the same speed, set to full-duplex operation.

Aggregated Links can be manually setup or automatically established by enabling Link Aggregation Control Protocol (LACP) on the relevant links. Aggregate ports can be linked into link-aggregation port-groups. Each group is comprised of ports with the same speed. The LACP screen contains fields for configuring LACP LAGs.

LACP System Priority (1-65535) Indicates the global LACP priority value. The possible range is 1- 65535. The default value is 1.

Port Defines the port number to which timeout and priority values are assigned.

LACP Port Priority Defines the LACP priority value for the port. The field range is 1-65535.

LACP Timeout Administrative LACP timeout. A short or Long timeout value can be selected. Long is the default.

Admin Key A channel will only be formed between ports having the same admin key. This only applies to ports located on the same switch.

Port Management > PoE Power Settings

Port Displays the selected port’s number.
Chapter 5

Advanced Configuration

Admin Status Indicates whether PoE is enabled or disabled on the port.

Priority Indicates the PoE priority setting of the port. The possible values are: Critical, High and Low. The default is **Low**.

Power Allocation (milliwatts) Indicates the actual amount of power the device can supply.

Mode Indicates whether the port is enabled to utilize PoE.

Power Consumption (milliwatts) Indicates the amount of the power used by the device.

NOTE: The **Modify PoE Page** displays the currently configured PoE ports. This option is only seen on the SRW208P and SRW208MP.

VLAN Management > Create VLAN

The Create VLAN screen provides information and global parameters for configuring and working with VLANs.

VLAN Table

The VLAN Table displays a list of all configured VLANs. The VLAN ID, VLAN Name, and status of the VLAN are displayed here. To remove a VLAN, click the **Remove** button.

VLAN Management > Port Settings

The VLAN Port Settings screen provides parameters for managing ports that are part of a VLAN. The port default VLAN ID (PVID) is configured on the VLAN Port Settings screen. All untagged packets arriving to the device are tagged by the ports PVID.

Port The port number included in the VLAN:

- **Mode** Indicates the port mode. Possible values are:
 - **General** The port belongs to VLANs, and each VLAN is user-defined as tagged or untagged (full 802.1Q mode).
 - **Access** The port belongs to a single untagged VLAN. When a port is in Access mode, the packet types which are accepted on the port (packet type) cannot be designated. It is also not possible to enable/disable ingress filtering on an access port.
 - **Trunk** The port belongs to VLANs in which all ports are tagged (except for an optional single native VLAN).

Acceptable Frame Type Packet type accepted on the port. Possible values are:

- **Admit Tag Only** Indicates that only tagged packets are accepted on the port.
- **Admit All** Indicates that both tagged and untagged packets are accepted on the port.
PVID Assigns a VLAN ID to untagged packets. The possible values are 2 to 4094. VLAN 4095 is defined as per standard and industry practice as the discard VLAN. Packets classified to the Discard VLAN are dropped.

Ingress Filtering Enables or disables Ingress filtering on the port. Ingress filtering discards packets which do not include an ingress port.

LAG Indicates the LAG to which the VLAN is defined.

VLAN Management > Ports to VLAN

The **Ports to VLAN** screen contains fields for configuring ports to a VLAN. The port default VLAN ID (PVID) is configured on the Create VLAN screen. All untagged packets arriving to the device are tagged by the ports PVID.

The **Ports to VLAN** screen contains a Port Table for VLAN parameters for each ports. Ports are assigned VLAN membership by selecting and configuring the presented configuration options.

VLAN The VLAN number.

Access Indicates the port belongs to a single untagged VLAN. When a port is in Access mode, the packet types which are accepted on the port cannot be designated. Ingress filtering cannot be enabled/disabled on an access port.

Trunk Indicates the port belongs to VLANs in which all ports are tagged, except for one port that can be untagged.

General Indicates the port belongs to VLANs, and each VLAN is user-defined as tagged or untagged (full 802.1Q mode).

Tagged Defines the interface as a tagged member of a VLAN. All packets forwarded by the interface are tagged. The packets contain VLAN information.

Untagged Packets forwarded by the interface are untagged.

Forbidden Forbidden ports are not included in the VLAN.

Exclude Excludes the interface from the VLAN. However, the interface can be added to the VLAN through GVRP.

VLAN Management > VLAN to Ports

The **VLAN to Ports** screen contains fields for configuring VLANs to a ports.

Interface Displays the interface number.

Mode Indicates the port to VLAN mode. The possible field values are:

- **General** Indicates the port belongs to VLANs, and each VLAN is user-defined as tagged or untagged (full 802.1Q mode).

- **Access** Indicates the port belongs to a single untagged VLAN. When a port is in Access mode, the packet types which are accepted on the port cannot be designated. Ingress filtering cannot be enabled/disabled on an access port.

- **Trunk** Indicates the port belongs to VLANs in which all ports are tagged, except for one port that can be untagged.

Join VLAN Defines the VLANs to which the interface is joined.

VLANs Displays the PVID tag.
LAG Indicates if the port is a member of a LAG. If it is a member of a LAG, it cannot be configured to a VLAN. The LAG to which it belongs can be configured to a VLAN.

Join VLAN Detail

The Join VLAN Detail screen allows you to select the VLAN for the port selected and determine whether it is tagged or untagged. It will be displayed with a T if it is tagged and with a U if it is untagged.

VLAN Management > GVRP

GARP VLAN Registration Protocol (GVRP) is specifically provided for automatic distribution of VLAN membership information among VLAN-aware bridges. GVRP allows VLAN-aware bridges to automatically learn VLANs to bridge ports mapping, without having to individually configure each bridge and register VLAN membership.

Enable GVRP Enables and disables GVRP on the device.

Interface Displays the interface on which GVRP is enabled. The possible field values are:

- Port Indicates the port number on which GVRP is enabled.
- LAG Indicates the LAG number on which GVRP is enabled.

GVRP State When the checkbox is checked, GVRP is enabled on the interface.

Dynamic VLAN Creation When the checkbox is checked, Dynamic VLAN creation is enabled on the interface.

GVRP Registration When the checkbox is checked, VLAN registration through GVRP is enabled on the device.

The Update button adds the configured GVRP setting to the table at the bottom of the screen.

Statistics > RMON Statistics

The RMON Statistics screen contains fields for viewing information about device utilization and errors that occurred on the device.

Interface Indicates the device for which statistics are displayed. The possible field values are:

- Port Defines the specific port for which RMON statistics are displayed.
- LAG Defines the specific LAG for which RMON statistics are displayed.

Refresh Rate Defines the amount of time that passes before the interface statistics are refreshed. The possible field values are:

- No Refresh Indicates that the RMON statistics are not refreshed.
- 15 Sec Indicates that the RMON statistics are refreshed every 15 seconds.
Chapter 5

30 Sec Indicates that the RMON statistics are refreshed every 30 seconds.

60 Sec Indicates that the RMON statistics are refreshed every 60 seconds.

Drop Events Displays the number of dropped events that have occurred on the interface since the device was last refreshed.

Received Bytes (Octets) Displays the number of octets received on the interface since the device was last refreshed. This number includes bad packets and FCS octets, but excludes framing bits.

Received Packets Displays the number of packets received on the interface, including bad packets, Multicast and broadcast packets, since the device was last refreshed.

Broadcast Packets Received Displays the number of good broadcast packets received on the interface since the device was last refreshed. This number does not include Multicast packets.

Multicast Packets Received Displays the number of good Multicast packets received on the interface since the device was last refreshed.

CRC & Align Errors Displays the number of CRC and Align errors that have occurred on the interface since the device was last refreshed.

Undersize Packets Displays the number of undersized packets (less than 64 octets) received on the interface since the device was last refreshed.

Oversize Packets Displays the number of oversized packets (over 1518 octets) received on the interface since the device was last refreshed.

Fragments Displays the number of fragments (packets with less than 64 octets, excluding framing bits, but including FCS octets) received on the interface since the device was last refreshed.

Jabbers Displays the total number of received packets that were longer than 1518 octets. This number excludes frame bits, but includes FCS octets that had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral octet (Alignment Error) number. The field range to detect jabbers is between 20 ms and 150 ms.

Collisions Displays the number of collisions received on the interface since the device was last refreshed.

Frames of xx Bytes Number of xx-byte frames received on the interface since the device was last refreshed.

Clear Counters button This option will reset all of the statistic counts.

Refresh Now button Use this option to refresh the statistics.

Statistics > RMON History

The **RMON History** screen contains information about samples of data taken from ports. For example, the samples may include interface definitions or polling periods.

The **RMON History** screen is divided into RMON History and Log Table.

Source Interface Displays the interface from which the history samples were taken. The possible field values are:

- **Port** Specifies the port from which the RMON information was taken.
- **LAG** Specifies the port from which the RMON information was taken.

Sampling Interval Indicates (in seconds) the time that samplings are taken from the ports. The field range is 1-3600. The default is 1800 seconds (equal to 30 minutes).

Max No. of Samples to Keep Indicates the number of samples to save.

Owner Displays the RMON station or user that requested the RMON information. The field range is 0-20 characters.

The **Add to List** button adds the configured RMON sampling to the Log Table at the bottom of the screen.

Log Table

Sampling Requested Displays the number of samples to be saved. The field range is 1-65535. The default value is 50.
Current Number of Samples Displays the current number of samples taken.

RMON History

The RMON History screen contains interface specific statistical network samplings. Each table entry represents all counter values compiled during a single sample.

- **History Entry No** Displays the history table entry number.
- **Owner** Displays the RMON station or user that requested the RMON information. The field range is 0-20 characters.
- **Sample No** Indicates the sample number from which the statistics were taken.
- **Drop Events** Displays the number of dropped events that have occurred on the interface since the device was last refreshed.
- **Received Bytes (Octets)** Displays the number of octets received on the interface since the device was last refreshed. This number includes bad packets and FCS octets, but excludes framing bits.
- **Received Packets** Displays the number of packets received on the interface since the device was last refreshed, including bad packets, Multicast and Broadcast packets.
- **Broadcast Packets** Displays the number of good Broadcast packets received on the interface since the device was last refreshed. This number does not include Multicast packets.
- **Multicast Packets** Displays the number of good Multicast packets received on the interface since the device was last refreshed.
- **CRC Align Errors** Displays the number of CRC and Align errors that have occurred on the interface since the device was last refreshed.
- **Undersize Packets** Displays the number of undersized packets (less than 64 octets) received on the interface since the device was last refreshed.
- **Oversize Packets** Displays the number of oversized packets (over 1518 octets) received on the interface since the device was last refreshed.
- **Fragments** Displays the number of fragments (packets with less than 64 octets, excluding framing bits, but including FCS octets) received on the interface since the device was last refreshed.
- **Jabbers** Displays the total number of received packets that were longer than 1518 octets. This number excludes frame bits, but includes FCS octets that had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral octet (Alignment Error) number. The field range to detect jabbers is between 20 ms and 150 ms.
- **Collisions** Displays the number of collisions received on the interface since the device was last refreshed.
- **Utilization** Displays the percentage of the interface utilized.

Statistics > RMON Alarms

The RMON Alarm screen contains fields for setting network alarms. Network alarms occur when a network problem, or event, is detected. Rising and falling thresholds generate events.

- **Alarm Entry** Indicates a specific alarm.
- **Source Interface** Displays the interface for which RMON statistics are displayed. The possible field values are:
Chapter 5

Advanced Configuration

- **Port** Displays the RMON statistics for the selected port.
- **LAG** Displays the RMON statistics for the selected LAG.

Counter Name Displays the selected MIB variable.

Sample Type Defines the sampling method for the selected variable and comparing the value against the thresholds. The possible field values are:
- **Absolute** Compares the values directly with the thresholds at the end of the sampling interval.
- **Delta** Subtracts the last sampled value from the current value. The difference in the values is compared to the threshold.

Rising Threshold Displays the rising counter value that triggers the rising threshold alarm. The rising threshold is presented on top of the graph bars. Each monitored variable is designated a color.

Rising Event Displays the mechanism in which the alarms are reported. The possible field values are:
- **LOG** Indicates there is not a saving mechanism for either the device or in the management system. If the device is not reset, the entry remains in the Log Table.
- **TRAP** Indicates that an SNMP trap is generated, and sent via the Trap mechanism. The Trap can also be saved using the Trap mechanism.
- **Both** Indicates that both the Log and Trap mechanism are used to report alarms.

Falling Threshold Displays the falling counter value that triggers the falling threshold alarm. The falling threshold is graphically presented on top of the graph bars. Each monitored variable is designated a color.

Falling Event Displays the mechanism in which the alarms are reported. The possible field values are:
- **LOG** Indicates there is not a saving mechanism for either the device or in the management system. If the device is not reset, the entry remains in the Log Table.
- **TRAP** Indicates that a SNMP trap is generated, and sent via the Trap mechanism. The Trap can also be saved using the Trap mechanism.
- **Both** Indicates that both the Log and Trap mechanism are used to report alarms.

Startup Alarm Displays the trigger that activates the alarm generation. Rising is defined by crossing the threshold from a low-value threshold to a higher-value threshold.

Interval Defines the alarm interval time in seconds.

Owner Displays the device or user that defined the alarm.

The **Add to List** button adds the RMON Alarms Table entry.

The Alarm Table area contains the following additional field:

Counter Value Displays the current counter value for the particular alarm.

Statistics > RMON Events

An RMON Event determines the action to take when an alarm is triggered. The response to an alarm can include logging the alarm or sending an SNMP trap message. If the response corresponding to an alarm has not yet been defined, use the RMON Event screen to configure the Event Setting table.

Add Event

Event Entry Displays the event.

Community Displays the community to which the event belongs.

Description Displays the user-defined event description.

Type Describes the event type. Possible values are:
- **None** Indicates that no event occurred.
- **Log** Indicates that the event is a log entry.
- **Trap** Indicates that the event is a trap.
- **Log and Trap** Indicates that the event is both a log entry and a trap.

Owner Displays the device or user that defined the event.
The **Add to List** button adds the configured RMON event to the Event Table at the bottom of the screen.

The Event Table area contains the following additional field:

- **Time** Displays the time that the event occurred.

Statistics > Port Utilization

The **Port Utilization** screen displays the amount of resources each interface is currently consuming. Ports in green are functioning normally, while ports in red are currently transmitting an excessive amount of network traffic.

- **Refresh Rate** Indicates the amount of time that passes before the port utilization statistics are refreshed. The possible field values are:
 - **No Refresh** Indicates that the statistics are not refreshed.
 - **15 Sec** Indicates that the statistics are refreshed every 15 seconds.
 - **30 Sec** Indicates that the statistics are refreshed every 30 seconds.
 - **60 Sec** Indicates that the statistics are refreshed every 60 seconds.

Statistics > 802.1x Statistics

The **802.1X Statistics** screen contains information about EAP packets received on a specific port.

- **Port** Indicates the port, which is polled for statistics.
- **Refresh Rate** Indicates the amount of time that passes before the EAP statistics are refreshed. The possible field values are:
 - **No Refresh** Indicates that the EAP statistics are not refreshed.
 - **15 Sec** Indicates that the EAP statistics are refreshed every 15 seconds.
 - **30 Sec** Indicates that the EAP statistics are refreshed every 30 seconds.
 - **60 Sec** Indicates that the EAP statistics are refreshed every 60 seconds.
- **Name** Displays the measured 802.1x statistic.
- **Description** Describes the measured 802.1x statistic.
- **Packet** Displays the amount of packets measured for the particular 802.1x statistic.
Statistics > GVRP Statistics

The GVRP Statistics screen contains device statistics for GVRP.

The GVRP Statistics screen is divided into two areas, GVRP Statistics Table and GVRP Error Statistics Table. The following fields are relevant for both tables:

- **Interface** Specifies the interface type for which the statistics are displayed.
 - **Port** Indicates port statistics are displayed.
 - **LAG** Indicates LAG statistics are displayed.

- **Refresh Rate** Indicates the amount of time that passes before the GVRP statistics are refreshed. The possible field values are:
 - **No Refresh** Indicates that the GVRP statistics are not refreshed.
 - **15 Sec** Indicates that the GVRP statistics are refreshed every 15 seconds.
 - **30 Sec** Indicates that the GVRP statistics are refreshed every 30 seconds.
 - **60 Sec** Indicates that the GVRP statistics are refreshed every 60 seconds.

The GVRP Statistics Table contains the following fields:

- **Join Empty** Displays the device GVRP Join Empty statistics.
- **Empty** Displays the device GVRP Empty statistics.
- **Leave Empty** Displays the device GVRP Leave Empty statistics.
- **Join In** Displays the device GVRP Join In statistics.
- **Leave In** Displays the device GVRP Leave In statistics.
- **Leave All** Displays the device GVRP Leave all statistics.

The GVRP Error Statistics Table contains the following fields:

- **Invalid Protocol ID** Displays the device GVRP Invalid Protocol ID statistics.
- **Invalid Attribute Type** Displays the device GVRP Invalid Attribute ID statistics.
- **Invalid Attribute Value** Displays the device GVRP Invalid Attribute Value statistics.
- **Invalid Attribute Length** Displays the device GVRP Invalid Attribute Length statistics.
- **Invalid Events** Displays the device GVRP Invalid Events statistics.

The **Clear All Counters** button resets all tables.

ACL > IP based ACL

The IP Based ACL (Access Control List) screen contains information for defining IP Based ACLs.

- **ACL Name** Displays the user-defined IP based ACLs.
- **New ACL Name** Define a new user-defined IP based ACL.
- **Delete ACL** Deletes the selected ACL.
- **Action** Indicates the action assigned to the packet matching the ACL. Packets are forwarded or dropped. In addition, the port can be shut down, a trap can be sent to the network administrator, or a packet assigned rate limiting restrictions for forwarding. The options are as follows:
 - **Permit** Forwards packets which meet the ACL criteria.
- **Deny** Drops packets which meet the ACL criteria.
- **Shutdown** Drops packet that meets the ACL criteria, and disables the port to which the packet was addressed. Ports are reactivated from the *Port Management* screen.

Protocol Creates an ACE (Access Control Event) based on a specific protocol.

Select from List Selects from a protocols list on which ACE can be based. The possible field values are:
- **Any** Matches the protocol to any protocol.
- **EIGRP** Indicates that the Enhanced Interior Gateway Routing Protocol (EIGRP) is used to classify network flows.
- **ICMP** Indicates that the Internet Control Message Protocol (ICMP) is used to classify network flows.
- **IGMP** Indicates that the Internet Group Management Protocol (IGMP) is used to classify network flows.
- **TCP** Indicates that the Transmission Control Protocol is used to classify network flows.
- **OSPF** Matches the packet to the Open Shortest Path First (OSPF) protocol.
- **UDP** Indicates that the User Datagram Protocol is used to classify network flows.

Protocol ID To Match Adds user-defined protocols to which packets are matched to the ACE. Each protocol has a specific protocol number which is unique. The possible field range is 0-255.

TCP Flags Filters packets by TCP flag. Filtered packets are either forwarded or dropped. Filtering packets by TCP flags increases packet control, which increases network security. The values that can be assigned are:
- **Set** Enables filtering packets by selected flags.
- **Unset** Disables filtering packets by selected flags.
- **Don’t care** Indicates that selected packets do not influence the packet filtering process.

The TCP Flags that can be selected are:
- **Urg** Indicates the packet is urgent.
- **Ack** Indicates the packet is acknowledged.
- **Psh** Indicates the packet is pushed.
- **Rst** Indicates the connection is dropped.
- **Syn** Indicates request to start a session.
- **Fin** Indicates request to close a session.

Source Port Defines the TCP/UDP source port to which the ACE is matched. This field is active only if 800/6-TCP or 800/17-UDP are selected in the *Select from List* drop-down menu. The possible field range is 0 - 65535.

Destination Port Defines the TCP/UDP destination port. This field is active only if 800/6-TCP or 800/17-UDP are selected in the *Select from List* drop-down menu. The possible field range is 0 - 65535.

Source IP Address Matches the source port IP address to which packets are addressed to the ACE.

Wildcard Mask Defines the source IP address wildcard mask. Wildcard masks specify which bits are used and which bits are ignored. A wildcard mask of 255.255.255.255 indicates that no bit is important. A wildcard of 0.0.0.0 indicates that all the bits are important. For example, if the source IP address 149.36.184.198 and the wildcard mask is 255.36.184.00, the first eight bits of the IP address are ignored, while the last eight bits are used.

Dest. IP Address Matches the destination port IP address to which packets are addressed to the ACE.

Wildcard Mask Defines the destination IP address wildcard mask.

Match DSCP Matches the packet DSCP value to the ACE. Either the DSCP value or the IP Precedence value is used to match packets to ACLs. The possible field range is 0-63.

Match IP Precedence Matches the packet IP Precedence value to the ACE. Either the DSCP value or the IP Precedence value is used to match packets to ACLs. The possible field range is 0-7.

The **Add to List** button adds the configured IP Based ACLs to the IP Based ACL Table at the bottom of the screen.

ACL > MAC based ACL
The **MAC Based ACL** screen allows a MAC based ACL to be defined. ACEs can be added only if the ACL is not bound to an interface.

ACL Name Displays the user-defined MAC based ACLs.

New ACL Name Specifies a new user-defined MAC based ACL name.

Delete ACL Deletes the selected ACL.

Action Indicates the ACL forwarding action. Possible field values are:

- **Permit** Forwards packets which meet the ACL criteria.
- **Deny** Drops packets which meet the ACL criteria.
- **Shutdown** Drops packets that meet the ACL criteria, and disables the port to which the packet was addressed.

Source MAC Address Matches the source MAC address to which packets are addressed to the ACE.

Wildcard Mask Defines the source IP address wildcard mask. Wildcard masks specify which bits are used and which bits are ignored. A wildcard mask of 255.255.255.255 indicates that no bit is important. A wildcard of 0.0.0.0 indicates that all the bits are important. For example, if the source IP address 149.36.184.198 and the wildcard mask is 255.36.184.00, the first eight bits of the IP address are ignored, while the last eight bits are used.

Dest. MAC Address Matches the destination MAC address to which packets are addressed to the ACE.

Wildcard Mask Defines the destination IP address wildcard mask.

VLAN ID Matches the packet’s VLAN ID to the ACE. The possible field values are 2 to 4094.

Ether Type Specifies the packet’s Ethernet type.

The Add to List button adds the configured MAC Based ACLs to the MAC Based ACL Table at the bottom of the screen.

Security > ACL Binding

When an ACL is bound to an interface, all the ACE rules that have been defined are applied to the selected interface. Whenever an ACL is assigned on a port or LAG, flows from that ingress interface that do not match the ACL are matched to the default rule, which is Drop unmatched packets.

Interface Indicates the interface to which the ACL is bound.

ACL Name Indicates the ACL which is bound to the interface.

The Add to List button adds the ACL Binding configuration to the ACL Binding Table at the bottom of the screen.

Security > RADIUS

Security > RADIUS
Remote Authorization Dial-In User Service (RADIUS) servers provide additional security for networks. RADIUS servers provide a centralized authentication method for web access.

IP Address The Authentication Server IP address.

Priority The server priority. The possible values are 0-65535, where 1 is the highest value. The RADIUS Server priority is used to configure the server query order.

Authentication Port Identifies the authentication port. The authentication port is used to verify the RADIUS server authentication. The authenticated port default is 1812.

Number of Retries Defines the number of transmitted requests sent to RADIUS server before a failure occurs. The possible field values are 1 - 10. Three is the default value.

Timeout for Reply Defines the amount of the time in seconds the device waits for an answer from the RADIUS server before retrying the query, or switching to the next server. The possible field values are 1 - 30. Three is the default value.

Dead Time Defines the amount of time (minutes) that a RADIUS server is bypassed for service requests. The range is 0-2000. The Dead Time default is 0 minutes.

Key String Defines the default key string used for authenticating and encrypting all RADIUS communications between the device and the RADIUS server. This key must match the RADIUS encryption.

Source IP Address Defines the source IP address that is used for communication with RADIUS servers.

Usage Type Specifies the RADIUS server authentication type. The default value is Login. The possible field values are:

- **Login** Indicates that the RADIUS server is used for authenticating user name and passwords.
- **802.1X** Indicates that the RADIUS server is used for 802.1X authentication.
- **All** Indicates that the RADIUS server is used for authenticating user name and passwords, and 802.1X port authentication.

The Add to List button adds the RADIUS configuration to the RADIUS Table at the bottom of the screen.

Security > TACACS+

The device provides Terminal Access Controller Access Control System (TACACS+) client support. TACACS+ provides centralized security for validation of users accessing the device. TACACS+ provides a centralized user management system, while still retaining consistency with RADIUS and other authentication processes. The TACACS+ protocol ensures network integrity through encrypted protocol exchanges between the device and TACACS+ server.

Host IP Address Displays the TACACS+ Server IP address.

Priority Displays the order in which the TACACS+ servers are used. The default is 0.

Source IP Address Displays the device source IP address used for the TACACS+ session between the device and the TACACS+ server.

Key String Defines the authentication and encryption key for TACACS+ server. The key must match the encryption key used on the TACACS+ server.

Authentication Port Displays the port number through which the TACACS+ session occurs. The default is port 49.

Timeout for Reply Displays the amount of time that passes before the connection between the device and the TACACS+ server times out. The field range is 1-30 seconds.

Status Displays the connection status between the device and the TACACS+ server. The possible field values are:

- **Connected** There is currently a connection between the device and the TACACS+ server.
- **Not Connected** There is not currently a connection between the device and the TACACS+ server.

Single Connection Maintains a single open connection between the device and the TACACS+ server when selected

The Add to List button adds the TACACS+ configuration to the TACACS+ table at the bottom of the screen.
Security > 802.1x Settings

Port based authentication enables authenticating system users on a per-port basis via an external server. Only authenticated and approved system users can transmit and receive data. Ports are authenticated via the RADIUS server using the Extensible Authentication Protocol (EAP).

Enable 802.1x Place a checkmark in the check box to enable 802.1x authentication.

Port Indicates the port name.

Status Port Control Specifies the port authorization state. The possible field values are as follows:

- **Force-Authorized** The controlled port state is set to Force-Authorized (forward traffic).
- **Force-Unauthorized** The controlled port state is set to Force-Unauthorized (discard traffic).

Enable Periodic Reauthentication Permits immediate port reauthentication.

Setting Timer The Setting Timer button opens the Setting Timer screen to configure ports for 802.1x functionality.

Setting Timer

Reauthentication Period Specifies the number of seconds in which the selected port is reauthenticated (Range: 300-4294967295). The field default is 3600 seconds.

Quiet Period Specifies the number of seconds that the switch remains in the quiet state following a failed authentication exchange (Range: 0-65535).

Resending EAP Specifies the number of seconds that the switch waits for a response to an EAP - request/identity frame, from the supplicant (client), before resending the request.

Max EAP Requests The total amount of EAP requests sent. If a response is not received after the defined period, the authentication process is restarted. The field default is 2 retries.

Supplicant Timeout Displays the number of seconds that lapses before EAP requests are resent to the supplicant (Range: 1-65535). The field default is 30 seconds.

Server Timeout Specifies the number of seconds that lapses before the switch resends a request to the authentication server (Range: 1-65535). The field default is 30 seconds.

Security > Ports Security

Network security can be increased by limiting access on a specific port only to users with specific MAC addresses. MAC addresses can be dynamically learned or statically configured. Locked port security monitors both received and learned packets that are received on specific ports. Access to the locked port is limited to users with specific MAC addresses. These addresses are either manually defined on the port, or learned on that port up to the point when it is locked. When a packet is received on a locked port, and the packet source MAC address is not tied...
to that port (either it was learned on a different port, or it is unknown to the system), the protection mechanism is invoked, and can provide various options. Unauthorized packets arriving at a locked port are either:

- Forwarded
- Discarded with no trap
- Discarded with a trap
- Cause the port to be shut down.

Locked port security also enables storing a list of MAC addresses in the configuration file. The MAC address list can be restored after the device has been reset.

Disabled ports are activated from the Port Security page.

Interface Displays the port or LAG name.

Lock Interface Selecting this option locks the specified interface.

Learning Mode Defines the locked port type. The Learning Mode field is enabled only if Locked is selected in the Interface Status field. The possible field values are:

- **Classic Lock** Locks the port using the classic lock mechanism. The port is immediately locked, regardless of the number of addresses that have already been learned.

- **Limited Dynamic Lock** Locks the port by deleting the current dynamic MAC addresses associated with the port. The port learns up to the maximum addresses allowed on the port. Both relearning and aging MAC addresses are enabled.

In order to change the Learning Mode, the Lock Interface must be set to Unlocked. Once the mode is changed, the Lock Interface can be reinstated.

Max Entries Specifies the number of MAC addresses that can be learned on the port. The Max Entries field is enabled only if Locked is selected in the Interface Status field. In addition, the Limited Dynamic Lock mode is selected. The default is 1.

Action on Violation Indicates the action to be applied to packets arriving on a locked port. The possible field values are:

- **Discard** Discards the packets. This is the default value.

- **Forward Normal** Forwards the packet.

- **Discard Disable** Discards the packets and shuts down the port. The port remains shut down until reactivated, or until the device is reset.

Enable Trap Enables traps when a packet is received on a locked port.

Trap Frequency The amount of time (in seconds) between traps. The default value is 10 seconds.

Security > Multiple Hosts

The *Multiple Hosts* screen allows network managers to configure advanced port-based authentication settings for specific ports and VLANs.

Port Displays the port number for which advanced port-based authentication is enabled.

Enable Multiple Hosts When checked, indicates that multiple hosts are enabled. Multiple hosts must be enabled in order to either disable the ingress-filter, or to use port-lock security on the selected port.

Action on Violation Defines the action to be applied to packets arriving in single-host mode, from a host whose MAC address is not the supplicant MAC address. The possible field values are:

- **Discard** Discards the packets. This is the default value.

- **Forward** Forwards the packet.

- **Discard Disable** Discards the packets and shuts down the port. The ports remains shut down until reactivated, or until the device is reset.

Enable Traps When checked, indicates that traps are enabled for Multiple Hosts.

Trap Frequency Defines the time period by which traps are sent to the host. The Trap Frequency (1-1000000) field can be defined only if multiple hosts are disabled. The default is 10 seconds.

Status Indicates the host status. If there is an asterisk (*), the port is either not linked or is down.
Number of Violations Indicates the number of packets that arrived on the interface in single-host mode, from a host whose MAC address is not the supplicant MAC address.

Security > Storm Control

Port Displays the port number for which storm control is enabled.

Broadcast Control Indicates whether broadcast packet types are forwarded on the specific interface.

Mode Specifies the Broadcast mode currently enabled on the device. The possible field values are:
- **Unknown Unicast, Multicast & Broadcast** Counts Unicast, Multicast, and Broadcast traffic.
- **Multicast & Broadcast** Counts Broadcast and Multicast traffic together.
- **Broadcast Only** Counts only Broadcast traffic.

Rate Threshold The maximum rate (packets per second) at which unknown packets are forwarded. The default value is 3500. The range is 70 - 100000.

QoS

Network traffic is usually unpredictable, and the only basic assurance that can be offered is best effort traffic delivery. To overcome this challenge, Quality of Service (QoS) is applied throughout the network. This ensures that network traffic is prioritized according to specified criteria, and that specific traffic receives preferential treatment. QoS in the network optimizes network performance and entails two basic facilities:

Classifying incoming traffic into handling classes, based on an attribute, including:
- The ingress interface
- Packet content
- A combination of these attributes

Providing various mechanisms for determining the allocation of network resources to different handling classes, including:
- The assignment of network traffic to a particular hardware queue
- The assignment of internal resources
- Traffic shaping

The terms Class of Service (CoS) and QoS are used in the following context:

CoS provides varying Layer 2 traffic services. CoS refers to classification of traffic to traffic-classes, which are handled as an aggregate whole, with no per-flow settings. CoS is usually related to the 802.1p service that classifies flows according to their Layer 2 priority, as set in the VLAN header.

QoS refers to Layer 2 traffic and above. QoS handles per-flow settings, even within a single traffic class.

QoS > CoS Settings

The CoS Settings screen contains fields for enabling or disabling CoS. In addition, the Trust mode can be selected. The Trust mode relies on predefined fields within the packet to determine the egress queue settings.

The CoS Settings screen has two areas, CoS Settings and CoS to Queue.

CoS Mode Indicates if QoS is enabled on the interface. The possible values are:
- **Disable** Disables QoS on the interface.
• **Basic** Enables QoS on the interface.
• **Advanced** Enables Advanced mode QoS on the interface.

Class of Service Specifies the CoS priority tag values, where zero is the lowest and 7 is the highest.

Queue Defines the traffic forwarding queue to which the CoS priority is mapped. Four traffic priority queues are supported.

The **Restore Defaults** button restores the device factory defaults for mapping CoS values to a forwarding queue.

CoS Default

Interface Interface to which the CoS configuration applies.

Default CoS Determines the default CoS value for incoming packets for which a VLAN tag is not defined. The possible field values are 0-7. The default CoS is 0.

Restore Defaults Restores the device factory defaults for mapping CoS values to a forwarding queue.

LAG LAG to which the CoS configuration applies.

QoS > Queue Settings

The **Queue Setting** screen contains fields for defining the QoS queue forwarding types.

Strict Priority Indicates that traffic scheduling for the selected queue is based strictly on the queue priority.

WRR Indicates that traffic scheduling for the selected queue is based strictly on the WRR.

Queue Displays the queue for which the queue settings are displayed. The possible field range is 1 - 4.

WRR Weight Displays the WRR weights to queues.

% of WRR Bandwidth Displays the amount of bandwidth assigned to the queue. These values are fixed and are not user defined.

QoS > DSCP Settings

The **DSCP Settings** screen enables mapping DSCP values to specific queues.

The **DSCP Settings** screen contains the following fields:

DSCP Indicates the Differentiated Services Code Point value in the incoming packet.

Queue Maps the DSCP value to the selected queue.

QoS > Bandwidth

The **Bandwidth** screen allows network managers to define the bandwidth settings for a specified egress interface.
Modifying queue scheduling affects the queue settings globally. The Bandwidth screen is not used with the Service mode, as bandwidth settings are based on services.

Queue shaping can be based per queue and/or per interface. Shaping is determined by the lower specified value. The queue shaping type is selected in the Bandwidth screen.

Interface Indicates the interface for which the queue shaping information is displayed. The possible field values are:

- **Port** Indicates the port for which the bandwidth settings are displayed.
- **LAG** Indicates the LAG for which the bandwidth settings are displayed.

Ingress Rate Limit Status Indicates if rate limiting is defined on the interface.

Rate Limit (62-1000000 Kbps) Defines the amount of bandwidth assigned to the interface. The possible field values are 62-1000000 Kbps.

Egress Shaping Rate on Selected Port Indicates if rate limiting is enabled on the interface.

Committed Information Rate (CIR) Defines CIR as the queue shaping type. The possible field value is 64 - 1,000,000 Kbps.

Committed Burst Size (CBS) Defines CBS as the queue shaping type. The possible field value is 4096-16,769,020 bits. Committed Burst Size cannot be configured on FE ports.

The **Add to List** button adds the Bandwidth configuration to the Bandwidth Table at the bottom of the screen.

QoS > Basic Mode

The Basic Mode screen contains the following fields:

Trust Mode Displays the trust mode. If a packet's CoS tag and DSCP tag are mapped to different queues, the Trust Mode determines the queue to which the packet is assigned. Possible values are:

- **CoS** Sets trust mode to CoS on the device. The CoS mapping determines the packet queue
- **DSCP** Sets trust mode to DSCP on the device. The DSCP mapping determines the packet queue

QoS > Advanced Mode

Advanced QoS mode provides rules for specifying flow classification and assigning rule actions that relate to bandwidth management. The rules are based on the Access Control Lists (see Access Control Tab).

MAC ACLs and IP ACLs can be grouped together in more complex structures, called policies. Policies can be applied to an interface. Policy ACLs are applied in the sequence they appear within the policy. Only a single policy can be attached to a port.

In advanced QoS mode, ACLs can be applied directly to an interface in the Security - ACL Binding. However, a policy and ACL cannot be simultaneously applied to an interface.

After assigning packets to a specific queue, services such as configuring output queues for the scheduling scheme, or configuring output shaping for burst size, CIR, or CBS per interface or per queue, can be applied.

Out of Profile DSCP Assignments This button opens up the Out of Profile DSCP screen.
Out of Profile DSCP

DSCP In Displays the DSCP In value.

DSCP Out Displays the current DSCP out value. A new value can be selected from the pull-down menu.

The **Policy Settings** button opens the **Policy Name** screen.

Policy Name

Policy Name Defines a new Policy name.

Add to List The Add to List button will add the policy to the Policy Name table.

Select Policy Selects an existing Policy by name. The Policy can be comprised of:

- **Class Map**
- **Action**
- **Policer**

New Policy Name Defines a new Policy name.

Class Map Selects an existing Class Map by name.

New Class Map The **New Class Map** button opens the **New Class Map** screen.

New Class Map

Class Map Name Defines a new Class Map name.

Preferred ACL Indicates if packets are first matched to an IP based ACL or a MAC based ACL. The possible field values are:

- **IP Based ACLs** Matches packets to IP based ACLs first, then matches packets to MAC based ACLs.
- **MAC Based ACLs** Matches packets to MAC based ACLs first, then matches packets to IP based ACLs.

Match Criteria used to match IP addresses and/or MAC addresses with an ACL's address. The possible field values are:

- **And** Both the MAC-based and the IP-based ACL must match a packet.
- **Or** Either the MAC-based or the IP-based ACL must match a packet.

MAC ACL Matches packets to MAC based ACLs first, then matches packets to IP based ACLs.

Policer Enables Policer functionality.

Type Policer type for the class. Possible values are:

Aggregate Policer Configures the class to use a configured aggregate policer selected from the drop-down menu. An aggregate policer is defined if the policer is shared with multiple classes. Traffic from two different ports can be configured for policing purposes. An aggregate policer can be applied to multiple classes in the same policy map, but cannot be used across different policy maps.

Single Configures the class to use manually configured information rates and exceed actions.

Aggregate Policer User-defined aggregate policers.
Aggregate Policer Settings The Aggregate Policer button opens the New Aggregate Policer screen.

New Aggregate Policer

- **Aggregate Policer Name** Enter a name in this field.
- **Ingress Committed Information Rate (CIR)** Defines the CIR in bits per second. This field is only relevant when the Police value is Single.
- **Ingress Committed Burst Size (CBS)** Defines the CBS in bytes per second. This field is only relevant when the Police value is Single.
- **Exceed Action** Action assigned to incoming packets exceeding the CIR. This field is only relevant when the Police value is Single. Possible values are:
 - **Drop** Drops packets exceeding the defined CIR value.
 - **Remark DSCP** Remarks packet's DSCP values exceeding the defined CIR value.
 - **None** Forwards packets exceeding the defined CIR value.

Spanning Tree

Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP also provides one path between end stations on a network, eliminating loops.

Loops occur when alternate routes exist between hosts. Loops in an extended network can cause bridges to forward traffic indefinitely, resulting in increased traffic and reducing network efficiency.

The device supports the following Spanning Tree versions:
- **Classic STP** Provides a single path between end stations, avoiding and eliminating loops.
- **Rapid STP** Detects and uses network topologies that provide faster convergence of the spanning tree, without creating forwarding loops.
- **Multiple STP** Provides full connectivity for packets allocated to any VLAN. Multiple STP is based on the RSTP. In addition, Multiple STP transmits packets assigned to different VLANs through different MST regions. MST regions act as a single bridge.

Spanning Tree > STP Status

The STP Status screen describes the STP status on the device.

- **Spanning Tree State** Indicates if STP is enabled on the device.
- **Spanning Tree Mode** Indicates the STP mode by which STP is enabled on the device.
- **Bridge ID** Identifies the Bridge priority and MAC address.
- **Designated Root** Indicates the ID of the bridge with the lowest path cost to the instance ID.
- **Root Port** Indicates the port number that offers the lowest path cost from this bridge to the Root Bridge. It is significant when the Bridge is not the Root. The default is zero.
- **Root Path Cost** The cost of the path from this bridge to the root.
- **Root Maximum Age (sec)** Indicates the device Maximum Age Time. The Maximum Age Time indicates the amount of time in seconds a bridge waits before sending configuration messages. The default max age is 20 seconds. The range is 6 to 40 seconds.
- **Root Hello Time (sec)** Indicates the device Hello Time. The Hello Time indicates the amount of time in seconds a root bridge waits between configuration messages. The default is 2 seconds. The range is 1 to 10 seconds.
Chapter 5

Root Forward delay (sec) Indicates the device forward delay time. The Forward Delay Time indicates the amount of time in seconds a bridge remains in a listening and learning state before forwarding packets. The default is 15 seconds. The range is 4 to 30 seconds.

Topology Changes Counts Indicates the total amount of STP state changes that have occurred.

Last Topology Change Indicates the amount of time that has elapsed since the bridge was initialized or reset, and the last topographic change occurred. The time is displayed in a day hour minute second format, for example, 2 days 5 hours 10 minutes and 4 seconds.

Spanning Tree > Global STP

The Global STP screen contains parameters for enabling STP on the device.

Global Setting

Spanning Tree State Indicates if STP is enabled on the device.

STP Operation Mode Indicates the STP mode by which STP is enabled on the device. The possible field values are:

- **Classic STP** Enables Classic STP on the device. This is the default value.
- **Rapid STP** Enables Rapid STP on the device.
- **Multiple STP** Enables Multiple STP on the device.

BPDU Handling Determines how BPDU packets are managed when STP is disabled on the port/device. BPDUs are used to transmit spanning tree information. The possible field values are:

- **Filtering** Filters BPDU packets when spanning tree is disabled on an interface. This is the default value.
- **Flooding** Flooding BPDU packets when spanning tree is disabled on an interface.

Path Cost Default Values Specifies the method used to assign default path costs to STP ports. The possible field values are:

- **Short** Specifies 1 through 65,535 range for port path costs. This is the default value.
- **Long** Specifies 1 through 200,000,000 range for port path costs. The default path costs assigned to an interface varies according to the selected method.

NOTE: Lower numeric values indicate higher priority.

Bridge Settings

Priority Specifies the bridge priority value. When switches or bridges are running STP, each is assigned a priority. After exchanging BPDUs, the device with the lowest priority value becomes the Root Bridge. The default value is 32768. The port priority value is provided in increments of 4096. For example, 4096, 8192, 12288, etc. The range is 0 to 65535.

Hello Time Specifies the device Hello Time. The Hello Time indicates the amount of time in seconds a root bridge waits between configuration messages. The default is 2 seconds. The range is 1 to 10 seconds.

Max Age Specifies the device Maximum Age Time. The Maximum Age Time indicates the amount of time in seconds a bridge waits before sending configuration messages. The default max age is 20 seconds. The range is 6 to 40 seconds.

Forward Delay Specifies the device forward delay time. The Forward Delay Time indicates the amount of time in seconds a bridge remains in a listening and learning state before forwarding packets. The default is 15 seconds. The range is 4 to 30 seconds.
Spanning Tree > STP Port Settings

Network administrators can assign STP settings to specific interfaces using the STP Interface Settings screen.

The STP Interface Settings screen contains the following fields:

- **Interface** Indicates the port or LAG on which STP is enabled.
- **STP** Indicates if STP is enabled on the port.
- **Port Fast** Indicates if Fast Link is enabled on the port. If Fast Link mode is enabled for a port, the Port State is automatically placed in the Forwarding state when the port link is up. Fast Link optimizes the STP protocol convergence. STP convergence can take 30-60 seconds in large networks.
- **Port State** Displays the current STP state of a port. If enabled, the port state determines what forwarding action is taken on traffic. Possible port states are:
 - **Disabled** Indicates that STP is currently disabled on the port. The port forwards traffic while learning MAC addresses.
 - **Blocking** Indicates that the port is currently blocked and cannot forward traffic or learn MAC addresses. Blocking is displayed when Classic STP is enabled.
 - **Listening** Indicates that the port is in Listening mode. The port cannot forward traffic nor can it learn MAC addresses.
 - **Learning** Indicates that the port is in Learning mode. The port cannot forward traffic, however it can learn new MAC addresses.
 - **Forwarding** Indicates that the port is in Forwarding mode. The port can forward traffic and learn new MAC addresses.
- **Speed** Indicates the speed at which the port is operating.
- **Path Cost** Indicates the port contribution to the root path cost. The path cost is adjusted to a higher or lower value, and is used to forward traffic when a path being rerouted.
- **Default Path Cost** When selected the default path cost is implemented.
- **Priority** Priority value of the port. The priority value influences the port choice when a bridge has two ports connected in a loop. The priority value is between 0 - 240. The priority value is provided in increments of 16.
- **Designated Bridge ID** Indicates the bridge priority and the MAC Address of the designated bridge.
- **Designated Port ID** Indicates the selected port’s priority and interface.
- **Designated Cost** Indicates the cost of the port participating in the STP topology. Ports with a lower cost are less likely to be blocked if STP detects loops.
- **Forward Transitions** Indicates the number of times the port has changed from the Blocking state to Forwarding state.

Spanning Tree > RSTP Port Settings

While the classic spanning tree prevents Layer 2 forwarding loops in a general network topology, convergence can take between 30-60 seconds. This time may delay detecting possible loops, and propagating status topology changes. Rapid Spanning Tree Protocol (RSTP) detects and uses
network topologies that allow a faster STP convergence without creating forwarding loops.

Interface Displays the port or LAG on which Rapid STP is enabled.

Role Indicates the port role assigned by the STP algorithm in order to provide to STP paths. The possible field values are:

- **Root** Provides the lowest cost path to forward packets to root switch.
- **Designated** Indicates that the port or LAG via which the designated switch is attached to the LAN.
- **Alternate** Provides an alternate path to the root switch from the root interface.
- **Backup** Provides a backup path to the designated port path toward the Spanning Tree leaves. Backup ports occur only when two ports are connected in a loop by a point-to-point link. Backup ports also occur when a LAN has two or more connections connected to a shared segment.
- **Disabled** Indicates the port is not participating in the Spanning Tree.

Mode Indicates the current Spanning Tree mode. The Spanning Tree mode is selected in the Global STP screen. The possible field values are:

- **Classic STP** Indicates that Classic STP is enabled on the device.
- **Rapid STP** Indicates that Rapid STP is enabled on the device.
- **Multiple STP** Indicates that Multiple STP is enabled on the device.

Fast Link Indicates if Fast Link is enabled or disabled for the port or LAG. If Fast Link is enabled for a port, the port is automatically placed in the forwarding state.

Port State Indicates if RSTP is enabled on the interface.

Point-to-Point Admin Status Indicates if a point-to-point links are established, or permits the device to establish a point-to-point link. The possible field values are:

- **Auto** Point-to-point links are automatically established by the device.
- **Enabled** Enables the device to establish a point-to-point link. To establish communications over a point-to-point link, the originating PPP first sends Link Control Protocol (LCP) packets to configure and test the data link. After a link is established and optional facilities are negotiated as needed by the LCP, the originating PPP sends Network Control Protocols (NCP) packets to select and configure one or more network layer protocols. When each of the chosen network layer protocols has been configured, packets from each network layer protocol can be sent over the link. The link remains configured for communications until explicit LCP or NCP packets close the link, or until some external event occurs. This is the actual switch port link type. It may differ from the administrative state.

- **Disabled** Disables point-to-point link.

Point-to-Point Oper Status Indicates the Point-to-Point operating state.

To run a migration test, press **Activate** next to the **Activate Protocol Migration Test** field. The test sends Link Control Protocol (LCP) packets to test if a data link is enabled.

Spanning Tree > MSTP Properties

MSTP provides differing load balancing scenarios. For example, while port A is blocked in one STP instance, the same port is placed in the Forwarding State in another STP instance. The MSTP Properties screen contains information for defining global MSTP settings, including region names, MSTP revisions, and maximum hops.

The **MSTP Properties** screen contains the following fields:

- **Region Name** Provides a user-defined STP region name.
- **Revision** Defines unsigned 16-bit number that identifies the revision of the current MST configuration. The revision number is required as part of the MST configuration. The possible field range is 0-65535.
- **Max Hops** Indicates the total number of hops that occur in a specific region before the BPDU is discarded. Once the BPDU is discarded, the port information is aged out. The possible field range is 1-40. The field default is 20 hops.
- **IST Master** Identifies the Spanning Tree Master instance. The IST Master is the specified instance root.
MSTP operation maps VLANs into STP instances. Packets assigned to various VLANs are transmitted along different paths within Multiple Spanning Trees Regions (MST Regions). Regions are one or more Multiple Spanning Tree bridges by which frames can be transmitted. In configuring MST, the MST region to which the device belongs is defined. A configuration consists of the name, revision, and region to which the device belongs.

Network Administrators can define MSTP Instances settings using the MSTP Instance Settings screen.

Instance ID Defines the VLAN group to which the interface is assigned.

Included VLAN Maps the selected VLAN to the selected instance. Each VLAN belongs to one instance.

Bridge Priority Specifies the selected spanning tree instance device priority. The field range is 0-61440.

Designated Root Bridge ID Indicates the ID of the bridge with the lowest path cost to the instance ID.

Root Port Indicates the selected instance’s root port.

Root Path Cost Indicates the selected instance’s path cost.

Bridge ID Indicates the bridge ID of the selected instance.

Remaining Hops Indicates the number of hops remaining to the next destination.

Network Administrators can assign MSTP Interface settings using the MSTP Interface Settings screen.

The MSTP Interface Settings screen contains the following fields:

Instance ID Lists the MSTP instances configured on the device. Possible field range is 0-15.

Interface Displays the interface for which the MSTP settings are displayed. The possible field values are:
- **Port** Specifies the port for which the MSTP settings are displayed.
- **LAG** Specifies the LAG for which the MSTP settings are displayed.

Port State Indicates whether the port is enabled for the specific instance.

Type Indicates if the port is a point-to-point port, or a port connected to a hub. The possible field values are:
- **Boundary Port** Indicates the port is a boundary port. A Boundary port attaches MST bridges to LAN in an outlying region. If the port is a boundary port, it also indicates whether the device on the other side of the link is working in RSTP or STP mode.
- **Master Port** Indicates the port is a master port. A Master port provides connectivity from a MSTP region to the outlying CIST root.
- **Internal** Indicates the port is an internal port.

Role Indicates the port role assigned by the STP algorithm in order to provide STP paths. The possible field values are:
Chapter 5
Advanced Configuration

- **Root** Provides the lowest cost path to forward packets to root device.
- **Designated** Indicates the port or LAG via which the designated device is attached to the LAN.
- **Alternate** Provides an alternate path to the root device from the root interface.
- **Backup** Provides a backup path to the designated port path toward the Spanning Tree leaves. Backup ports occur only when two ports are connected in a loop by a point-to-point link. Backup ports also occur when a LAN has two or more connections connected to a shared segment.
- **Disabled** Indicates the port is not participating in the Spanning Tree.

Mode Indicates the current Spanning Tree mode. The Spanning Tree mode is selected in the Global STP screen. The possible field values are:
- **Classic STP** Indicates that Classic STP is enabled on the device.
- **Rapid STP** Indicates that Rapid STP is enabled on the device.
- **Multiple STP** Indicates that Multiple STP is enabled on the device.

Interface Priority Defines the interface priority for specified instance. The default value is 128.

Path Cost Indicates the port contribution to the Spanning Tree instance. The range should always be 1-200,000,000.

Designated Bridge ID Indicates that the bridge ID number that connects the link or shared LAN to the root.

Designated Port ID Indicates that the Port ID number on the designated bridge that connects the link or the shared LAN to the root.

Designated Cost Indicates that the default path cost is assigned according to the method selected on the Spanning Tree Global Settings screen.

Forward Transitions Indicates the number of times the port has changed from Forwarding state to Blocking state.

Remaining Hops Indicates the hops remaining to the next destination.

Multicast > IGMP Snooping

When IGMP Snooping is enabled globally, all IGMP packets are forwarded to the CPU. The CPU analyzes the incoming packets and determines:

- Which ports want to join which Multicast groups?
- Which ports have Multicast routers generating IGMP queries?
- Which routing protocols are forwarding packets and Multicast traffic?

Ports requesting to join a specific Multicast group issue an IGMP report, specifying that Multicast group is accepting members. This results in the creation of the Multicast filtering database.

Enable IGMP Snooping Indicates if IGMP Snooping is enabled on the device. IGMP Snooping can be enabled only if Bridge Multicast Filtering is enabled.

VLAN ID Specifies the VLAN ID.

IGMP Status Indicates if IGMP snooping is enabled on the VLAN.

Auto Learn Indicates if Auto Learn is enabled on the device. If Auto Learn is enabled, the device automatically learns where other Multicast groups are located. Enables or disables Auto Learn on the Ethernet device.

Host Timeout Indicates the amount of time host waits to receive a message before timing out. The default time is 260 seconds.

MRouter Timeout Indicates the amount of time the Multicast router waits to receive a message before it times out. The default value is 300 seconds.
Leave Timeout Indicates the amount of time the host waits, after requesting to leave the IGMP group and not receiving a Join message from another station, before timing out. If a Leave Timeout occurs, the switch notifies the Multicast device to stop sending traffic. The Leave Timeout value is either user-defined, or an immediate leave value. The default timeout is 10 seconds.

Multicast > Bridge Multicast

The **Bridge Multicast** screen displays the ports and LAGs attached to the Multicast service group in the Ports and LAGs tables. The Port and LAG tables also reflect the manner in which the port or LAGs joined the Multicast group. Ports can be added either to existing groups or to new Multicast service groups. The Bridge Multicast screen permits new Multicast service groups to be created. The Bridge Multicast screen also assigns ports to a specific Multicast service address group.

The Bridge Multicast screen is divided into two areas, Configuring Multicast and Multicast Table. The fields are the same for both areas.

- **VLAN ID** Identifies a VLAN to be configured to a Multicast service.
- **Bridge Multicast Address** Identifies the Multicast group MAC address/IP address.
- **Bridge IP Multicast** Displays the port that can be added to a Multicast service.
- **LAG** Displays LAG that can be added to a Multicast service.

The configuration options are as follows:

- **Static** Indicates the port is user-defined.
- **Dynamic** Indicates the port is configured dynamically.
- **Forbidden** Forbidden ports are not included the Multicast group, even if IGMP snooping designated the port to join a Multicast group.
- **None** The port is not configured for Multicast service.

The **Add to List** button adds the configured RMON event to the Event Table at the bottom of the screen.

Multicast > Bridge Multicast Forward All

The **Bridge Multicast Forward All** screen contains fields for attaching ports or LAGs to a device that is attached to a neighboring Multicast router/switch. Once IGMP Snooping is enabled, Multicast packets are forwarded to the appropriate port or VLAN.

The Bridge Multicast Forward All screen contains the following fields:

- **VLAN ID** Displays the VLAN for which Multicast parameters are displayed.

The configuration options are as follows:

- **None** The port is not configured for Multicast service.
- **Forbidden** Forbidden ports are not included the Multicast group, even if IGMP snooping designated the port to join a Multicast group.
- **Static** Indicates the port is user-defined.
- **Dynamic** Indicates the port is configured dynamically.

SNMP > Global Parameters

The Global Parameters screen contains parameters for defining SNMP notification parameters.
Local Engine ID Indicates the local device engine ID. The field value is a hexadecimal string. Each byte in hexadecimal character strings consists of two hexadecimal digits. Each byte can be separated by a period or a colon. The Engine ID must be defined before SNMPv3 is enabled. For stand-alone devices, select a default Engine ID that is comprised of Enterprise number and the default MAC address. For a stackable system configure the Engine ID, and verify that the Engine ID is unique for the administrative domain. This prevents two devices in a network from having the same Engine ID.

Use Default Uses the device generated Engine ID. The default Engine ID is based on the device MAC address and is defined per standard as:
- First 4 octets — first bit = 1, the rest is IANA Enterprise number.
- Fifth octet — Set to 3 to indicate the MAC address that follows.
- Last 6 octets — MAC address of the device.

SNMP Notifications Indicates if the device can send SNMP notifications.

Authentication Notifications Indicates if SNMP Authentication failure notification is enabled on the device.

SNMP Views

SNMP Views provide access or block access to device features or feature aspects. For example, a view can be defined that states that SNMP Group A has Read Only (R/O) access to Multicast groups, while SNMP Group B has Read-Write (R/W) access to Multicast groups. Feature access is granted via the MIB name, or MIB Object ID.

View Name Displays the user-defined views. The options are as follows:
- **Default** Displays the default SNMP view for read and read/write views.
- **DefaultSuper** Displays the default SNMP view for administrator views.

Subtree ID Tree Indicates the device feature OID included or excluded in the selected SNMP view. The options to select the Subtree are as follows:
- **Select from List** Select the Subtree from the list provided.
- **Insert** Enables a Subtree not included in the Select from List field to be entered.

View Type Indicates if the defined OID branch will be included or excluded in the selected SNMP view.

The **Add to List** button adds the Views configuration to the Views Table at the bottom of the screen.
Chapter 5

Advanced Configuration

SNMP > Group Profile

The Group Profile screen provides information for creating SNMP groups and assigning SNMP access control privileges to SNMP groups. Groups allow network managers to assign access rights to specific device features, or features aspects.

Group Name Displays the user-defined group to which access control rules are applied. The field range is up to 30 characters.

Security Model Defines the SNMP version attached to the group. The possible field values are:
- SNMPv1 SNMPv1 is defined for the group.
- SNMPv2 SNMPv2 is defined for the group.
- SNMPv3 SNMPv3 is defined for the group.

Security Level Defines the security level attached to the group. Security levels apply to SNMPv3 only. The possible field values are:
- No Authentication Indicates that neither the Authentication nor the Privacy security levels are assigned to the group.
- Authentication Authenticates SNMP messages, and ensures the SNMP messages origin is authenticated.
- Privacy Encrypts SNMP messages.

Operation Defines the group access rights. The possible field values are:
- Read The management access is restricted to read-only, and changes cannot be made to the assigned SNMP view.
- Write The management access is read-write and changes can be made to the assigned SNMP view.

Notify Sends traps for the assigned SNMP view.

SNMP > Group Membership

The Group Membership screen provides information for assigning SNMP access control privileges to SNMP groups.

User name Provides a user-defined local user list.

Engine ID Indicates either the local or remote SNMP entity to which the user is connected. Changing or removing the local SNMP Engine ID deletes the SNMPv3 User Database.
- Local Indicates that the user is connected to a local SNMP entity.
- Remote Indicates that the user is connected to a remote SNMP entity. If the Engine ID is defined, remote devices receive inform messages.

Group Name Contains a list of user-defined SNMP groups. SNMP groups are defined in the SNMP Group Profile page.

Authentication Method Indicates the Authentication method used. The possible field values are:
- None Indicates that no authentication method is used to authenticate the port.
- MD5 Password Indicates that port authentication is performed via HMAC-MD5-96 password authentication.
- SHA Password Indicates that port authentication is performed via HMAC-SHA-96 password authentication.
- MD5 Key Indicates that port authentication is performed via the HMAC-MD5 algorithm.
- SHA Key Indicates that port authentication is performed via the HMAC-SHA-96 algorithm.
performed via HMAC-SHA-96 authentication.

Password Define the local user password. Local user passwords can contain up to 159 characters.

Authentication Key Defines the HMAC-MD5-96 or HMAC-SHA-96 authentication level. The authentication and privacy keys are entered to define the authentication key. If only authentication is required, 16 bytes are defined. If both privacy and authentication are required, 32 bytes are defined. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or a colon.

Privacy Key Defines the Privacy Key (LSB). If only authentication is required, 20 bytes are defined. If both privacy and authentication are required, 36 bytes are defined. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon.

The **Add to List** button adds the Group Membership configuration to the respective table at the bottom of the screen.

SNMP > Communities

The **Communities** screen contains three areas, Communities, Basic Table and Advanced Table.

SNMP Management Station Defines the management station IP address for which the advanced SNMP community is defined. There are two definition options:

- **Define the management station IP address.**
- **All** Includes all management station IP addresses.

Community String Defines the password used to authenticate the management station to the device.

Basic Enables SNMP Basic mode for a selected community and contains the following fields:

- **Access Mode** Defines the access rights of the community. The possible field values are:
 - **Read Only** Management access is restricted to read-only, and changes cannot be made to the community.
 - **Read Write** Management access is read-write and changes can be made to the device configuration, but not to the community.
 - **SNMP Admin** User has access to all device configuration options, as well as permissions to modify the community.

- **View Name** Contains a list of user-defined SNMP views.

Advanced Enables SNMP Advanced mode for a selected community and contains the following fields:

- **Group Name** Defines advanced SNMP communities group names.

The **Add to List** button adds the Communities configuration to the respective Table at the bottom of the screen.

Base Table

- **Management Station** Displays the management station IP address for which the basic SNMP community is defined.
- **Community String** Displays the password used to authenticate the management station to the device.
- **Access Mode** Displays the access rights of the community.
- **View Name** Displays the user-defined SNMP view.
Chapter 5

Advanced Configuration

Advanced Table

Management Station Displays the management station IP address for which the basic SNMP community is defined.

Community String Displays the password used to authenticate the management station to the device.

Group Name Displays advanced SNMP communities group name.

SNMP > Notification Filter

The **Notification Filter** screen permits filtering traps based on OIDs. Each OID is linked to a device feature or a feature aspect. The **Notification Filter** screen also allows network managers to filter notifications.

Filter Name Contains a list of user-defined notification filters.

New Object Identifier Subtree Displays the OID for which notifications are sent or blocked. If a filter is attached to an OID, traps or informs are generated and sent to the trap recipients. Object IDs are selected from either the Select from List or the Object ID List. There are two configuration options:

- **Select from List** Select the OID from the list provided.
- **Object ID** Enter an OID not offered in the Select from List option.

Filter Type Indicates whether informs or traps are sent regarding the OID to the trap recipients.
- **Excluded** Restricts sending OID traps or informs.
- **Included** Sends OID traps or informs.

The **Add to List** button adds the Notification Filter configuration to the Notification Filter Table at the bottom of the screen.

SNMP > Notification Recipient

The **Notification Recipient** screen contains information for defining filters that determine whether traps are sent to specific users, and the trap type sent. SNMP notification filters provide the following services:

- Identifying Management Trap Targets
- Trap Filtering
- Selecting Trap Generation Parameters
- Providing Access Control Checks

Recipient IP Indicates the IP address to whom the traps are sent.

Notification Type Defines the notification sent. The possible field values are:
- **Traps** Indicates traps are sent.
- **Informs** Indicates informs are sent.

SNMPv1,2 Enables SNMPv1,2 as the Notification Recipient. Either SNMPv1,2 or SNMPv3 can be enabled at any one time, but not both at the same time. If SNMPv1,2 is enabled, the Community String and **Notification Version** fields are enabled for configuration:

Community String Identifies the community string of the trap manager.

Notification Version Determines the trap type. The possible field values are:
- **SNMP V1** Indicates SNMP Version 1 traps are sent.
- **SNMP V2** Indicates SNMP Version 2 traps are sent.

SNMPv3 Enables SNMPv3 as the Notification Recipient. Either SNMPv1,2 or SNMPv3 can be enabled at any one time, but not both at the same time. If SNMPv3 is enabled, the **User Name** and Security Level fields are enabled for configuration:

User Name Defines the user to whom SNMP notifications are sent.

Security Level Defines the means by which the packet is authenticated. The possible field values are:
- **No Authentication** Indicates the packet is neither authenticated nor encrypted.
- **Authentication** Indicates the packet is authenticated.
- **Privacy** Indicates the packet is both authenticated and encrypted.
UDP Port Displays the UDP port used to send notifications. The default is 162.

Filter Name Indicates if the SNMP filter for which the SNMP Notification filter is defined.

Timeout Indicates the amount of time (seconds) the device waits before resending informs. The default is 15 seconds.

Retries Indicates the amount of times the device resends an inform request. The default is 3 seconds.

The Add to List button adds the Notification Recipient configuration to the relevant table at the bottom of the screen.

Admin > User Authentication

The User Authentication screen is used to modify user passwords.

Authentication Type Defines the user authentication methods. Combinations of all the authentication methods can be selected. The possible field values are:

- Local Authenticates the user at the device level. The device checks the user name and password for authentication.
- RADIUS Authenticates the user at the RADIUS server.
- TACACS+ Authenticates the user at the TACACS+ server.
- None Assigns no authentication method to the authentication profile.

User Name Displays the user name.

Password Specifies the new password. The password is not displayed. As it entered an “*” corresponding to each character is displayed in the field. (Range: 1-159 characters)

Confirm Password Confirms the new password. The password entered into this field must be exactly the same as the password entered in the Password field.

The Add to List button adds the user configuration to the Local User’s Table.

Admin > Static Address

A static address can be assigned to a specific interface on this switch. Static addresses are bound to the assigned interface and cannot be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table.

Interface Displays the interface to which the entry refers:

- Port The specific port number to which the forwarding database parameters refer.
- LAG The specific LAG number to which the forwarding database parameters refer.

MAC Address Displays the MAC address to which the entry refers.

VLAN ID Displays the VLAN ID number to which the entry refers.

VLAN Name Displays the VLAN name to which the entry refers.

Status Displays how the entry was created. The possible field values are:

- Permanent The MAC address is permanent.
Chapter 5

Advanced Configuration

- **Delete on Reset** The MAC address is deleted when the device is reset.
- **Delete on Timeout** The MAC address is deleted when a timeout occurs.
- **Secure** The MAC Address is defined for locked ports.

Query

Port Specifies the interface for which the table is queried. There are two interface types from which to select.
- **Port** The specific port number.
- **LAG** The specific LAG number.

MAC Address Specifies the MAC address for which the table is queried.

VLAN ID Specifies the VLAN ID for which the table is queried.

Address Table Sort Key Specifies the means by which the Dynamic MAC Address Table is sorted. The address table can be sorted by address, VLAN, or interface.

Admin > Dynamic Address

The Dynamic Address Table contains the MAC addresses learned by monitoring the source address for traffic entering the switch. When the destination address for inbound traffic is found in the database, the packets intended for that address are forwarded directly to the associated port. Otherwise, the traffic is flooded to all ports.

Admin > Logging

The System Logs enable viewing device events in real time, and recording the events for later usage. System Logs record and manage events and report errors or informational messages.

Event messages have a unique format, as per the SYSLOG protocols recommended message format for
all error reporting. For example, Syslog and local device reporting messages are assigned a severity code, and include a message mnemonic, which identifies the source application generating the message. It allows messages to be filtered based on their urgency or relevancy. Each message severity determines the set of event logging devices that are sent per each event logging.

Logging Indicates if device global logs for Cache, File, and Server Logs are enabled. Console logs are enabled by default.

- **Emergency** The system is not functioning.
- **Alert** The system needs immediate attention.
- **Critical** The system is in a critical state.
- **Error** A system error has occurred.
- **Warning** A system warning has occurred.
- **Notice** The system is functioning properly, but system notice has occurred.
- **Informational** Provides device information.
- **Debug** Provides detailed information about the log. If a Debug error occurs, contact Customer Tech Support.

Admin > Port Mirroring

Port mirroring monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port. Port mirroring can be used as diagnostic tool and/or a debugging feature. Port mirroring also enables switch performance monitoring.

Network administrators configure port mirroring by selecting a specific port to copy all packets, and different ports from which the packets are copied.

Source Port Defines the port to which traffic is mirrored.

Type Indicates the port mode configuration for port mirroring. The possible field values are:

- **RxOnly** Defines the port mirroring on receiving ports. This is the default value.
- **TxOnly** Defines the port mirroring on transmitting ports.
- **Both** Defines the port mirroring on both receiving and transmitting ports.

Target Port Defines the port from which traffic is mirrored.

Admin > Cable Test

The Cable Test screen shows you results from performance tests on copper cables. The maximum cable length that can be tested is 120 meters. Cables are tested when the ports are in the down state, except for the Approximate Cable Length test.

Port This is the port to which the cable is connected.

Test Result This is the test result. OK indicates that the cable passed the test. No Cable means there is no cable connected to the port. Open Cable means the cable is connected on only one side. Short Cable indicates that a short has occurred in the cable. Undefined indicates that the test could not be properly performed.

Cable Fault Distance This is the distance from the port at which the cable error occurred.

Last Update This is the last time the port was tested.

Test Click the Test button to perform the test.
Chapter 5

Advanced Configuration

Cable Length This is the approximate length of the cable. The Cable Length test can be performed only when the port is up and operating at 1Gbps.

Admin > Save Configuration

Via TFTP

After you download a new image file, the device should be rebooted. If you are downloading a new boot image, please follow these steps:

1. Download the new boot code.

 WARNING: While inputting the boot code, refrain from resetting the device.

2. Download the new software image.

3. Reset the device now.

Upgrade Select this option to upgrade the switch from a file located on a TFTP server.

- **TFTP Server** The TFTP Server IP Address that contains the source file to upgrade from.
- **Source File** Specifies the name of the upgrade file on the TFTP server.

Backup To back up the switch configuration via TFTP, enter the TFTP server address.

- **TFTP Server** Specifies the TFTP Server IP Address to which the configuration file will be saved.
- **Destination File** Specifies the name of the configuration file. The default is **StartupCfg.cfg**.

Via HTTP

This **HTTP Firmware Upgrade** screen is used for saving configuration information using your web browser.

Upgrade Select this option to upgrade the switch from a file on the local hard drive.

- **Source File** Type in the name and path of the file or click **Browse** to locate the upgrade file.

Backup

Proceed The **Proceed** button is used to backup the configuration to the local hard drive.

Admin > Firmware Upgrade

The **Firmware Upgrade** screen contains the following fields:

via TFTP Defines the upgrade through a TFTP Server.

via HTTP Allows you to upgrade the firmware using your Web browser.

Upgrade Defines the screen functionality as a Firmware upgrade.

Backup Defines the screen functionality as a Firmware backup.

TFTP Server IP Address Specifies the TFTP Server IP Address from which files are downloaded.

Source File Name Specifies the file to be downloaded.

Destination File name Specifies the destination file type to which the file is downloaded. The possible field values are:

- **Software Image** Downloads the image file.
- **Boot Code** Downloads the boot file.
NOTE: When downloading a configuration file, make sure that it is a valid configuration file. If you have edited the file, ensure that only valid entries have been configured.

Admin > Reboot

The Reboot screen resets the device. The device configuration is automatically saved before the device is rebooted.

Admin > Factory Defaults

The Factory Reset screen allows network managers to reset the device to the factory defaults shipped with the switch. Restoring factory defaults results in erasing the configuration file.

NOTE: Restoring the factory defaults will erase all configuration settings that you have made. You can save a backup of your current configuration settings from the Admin > Save Configuration screen.

Admin > Server Logs

The Server Logs screen contains information for viewing and configuring the Remote Log Servers. New log servers can be defined, and the log severity sent to each server.

Server Specifies the server to which logs can be sent.

UDP Port (1-65535) Defines the UDP port to which the server logs are sent. The possible range is 1 to 65535. The default value is 514.

Facility Defines a user-defined application from which system logs are sent to the remote server. Only one facility can be assigned to a single server. If a second facility level is assigned, the first facility is overridden. All applications defined for a device utilize the same facility on a server. The field default is Local 7. The possible field values are Local 0 - Local 7.

Description Provides a user-defined server description.

Minimum Severity Indicates the minimum severity from which logs are sent to the server. For example, if Notice is selected, all logs from a Notice severity and higher are sent to the remote server.

The Add to List button adds the Server Log configuration to the Server Log Table at the bottom of the screen.
Admin > Memory Logs

The Memory Log screen contains all system logs in a chronological order that are saved in RAM (Cache).

Log Index Displays the log number.
Log Time Displays the time at which the log was generated.
Severity Displays the log severity.
Description Displays the log message text.

Admin > Flash Logs

The Flash Log screen contains information about log entries saved to the Log File in FLASH, including the time the log was generated, the log severity, and a description of the log message. The Message Log is available after reboot.
Appendix A: About Gigabit Ethernet and Fiber Optic Cabling

Gigabit Ethernet

Gigabit Ethernet runs at speeds of 1Gbps (Gigabit per second), ten times faster than 100Mbps Fast Ethernet, but it still integrates seamlessly with 100Mbps Fast Ethernet hardware. Users can connect Gigabit Ethernet hardware with either fiber optic cabling or copper Category 5e cabling, with fiber optics more suited for network backbones. As the Gigabit standard gradually integrates into existing networks, current computer applications will enjoy faster access time for network data, hardware, and Internet connections.

Fiber Optic Cabling

Fiber optic cabling is made from flexible, optically efficient strands of glass and coated with a layer of rubber tubing, fiber optics use photons of light instead of electrons to send and receive data. Although fiber is physically capable of carrying terabits of data per second, the signaling hardware currently on the market can handle no more than a few gigabits of data per second.

Fiber cables come with two main connector types. The most commonly used fiber optic cable is multi-mode fiber cable (MMF), with a 62.5 micron fiber optic core. Single-mode fiber cabling is somewhat more efficient than multi-mode but far more expensive, due to its smaller optic core that helps retain the intensity of traveling light signals. A fiber connection always require two fiber cables: one transmits data, and the other receives it.

Each fiber optic cable is tipped with a connector that fits into a fiber port on a network adapter, hub, or switch. In the USA, most cables use a square SC connector that slides and locks into place when plugged into a port or connected to another cable. In Europe, the round ST connector is more prevalent.

For Gigabit Ethernet, you must use the Linksys MGBT1, MGBSX1, or MGBLH1 miniGBIC modules with the Linksys Gigabit Switches. The MGBSX1 and the MGBLH1 require fiber cabling with LC connectors, and the MGBT1 requires a Category 5e Ethernet cable with an RJ-45 connector.

For Fast Ethernet, you must use the MFEX1 (100BASE-FX) or MFELX1 (100BASE-LX) SFP transceivers.
Appendix B: Introduction

Startup Menu Procedures

The Startup menu can be entered when booting the device. There is a two second window of time to enter the Startup Menu immediately after the POST test. The menu can be accessed directly from a terminal connected to the console port. The Startup menu procedures can be done using the ASCII terminal or Windows HyperTerminal.

The software download procedure is performed when a new version must be downloaded to replace corrupted files, update or upgrade the system software. To download software from the Startup menu:

To enter the Startup menu:

1. Power off your computer and Switch.
2. Connect the provided null modem cable from the COM port on your computer to the Console port on the Switch.
3. Power on your computer and launch HyperTerminal, follow the instructions in Chapter 4: Configuration Using the Console Interface to configure HyperTerminal to connect to the Switch.
4. Power on the Switch and watch for the auto-boot message:
 Autoboot in 2 seconds - press RETURN or Esc to abort and enter prom.
5. When the auto-boot message appears, press the Enter key to access the Startup menu.

6. Select [1] Download Software and a message will appear Downloading code using XMODEM with characters running across the screen. If you do not perform the steps on the next page to locate the file for download within a certain time, the device will reset.

7. Select Send File from the Transfer pull-down menu.

8. In the Filename: field, enter the file path for the file to be downloaded or click Browse to locate the file.

 Only valid files, with a *.ros or *.rfb suffix, that have been provided by Linksys, can be downloaded.

 Downloading invalid files will result in unpredictable behavior.

 Ensure that the Xmodem protocol is selected in the Protocol: field.
9. Press **Send** and the software is downloaded.

After the software has been downloaded, the device will reboot automatically.
Appendix C: Glossary

This glossary contains some basic networking terms you may come across when using this product.

WEB: For additional terms, please visit the glossary at www.linksys.com/glossary

Access Mode Specifies the method by which user access is granted to the system.

Access Point A device that allows wireless-equipped computers and other devices to communicate with a wired network. Also used to expand the range of a wireless network.

Access Profiles Allows network managers to define profiles and rules for accessing the device. Access to management functions can be limited to user groups, which are defined by the following criteria:

- Ingress interfaces
- Source IP address and/or Source IP subnets.

ACE Filters in Access Control Lists (ACL) that determine which network traffic is forwarded. An ACE is based on the following criteria:

- Protocol
- Protocol ID
- Source Port
- Destination Port
- Wildcard Mask
- Source IP Address
- Destination IP Address

ACL (Access Control List) Access Control Lists are used to grant, deny, or limit access devices, features, or applications.

Auto-negotiation Allows 10/100 Mbps or 10/100/1000 Mbps Ethernet ports to automatically establish the optimal duplex mode, flow control, and speed.

Back Pressure A mechanism used with Half Duplex mode that enables a port not to receive a message.

Bandwidth The transmission capacity of a given device or network.

Bandwidth Assignments Indicates the amount of bandwidth assigned to a specific application, user, and/or interface.

Baud Indicates the number of signaling elements transmitted each second.

Best Effort Indicates that traffic is assigned to the lowest priority queue, and packet delivery is not guaranteed.

Bit A binary digit.

Boot To start a device and cause it to start executing instructions.

Browser An application program that provides a way to look at and interact with all the information on the World Wide Web.

Bridge A device that connects two networks. Bridges are hardware specific, however they are protocol independent. Bridges operate at Layer 1 and Layer 2 levels.

Broadcast Domain Devices sets that receive broadcast frames originating from any device within a designated set. Routers bind Broadcast domains, because routers do not forward broadcast frames.

Broadcast Storm An excessive amount of broadcast messages simultaneously transmitted across a network by a single port. Forwarded message responses are heaped onto the network, overloading network resources or causing the network to time out.

Burst A packet transmission at faster than normal rates. Bursts are limited in time and only occur under specific conditions.

Burst Size Indicates the burst size transmitted at a faster than normal rate.

Byte A unit of data that is usually eight bits long.

Cable Modem A device that connects a computer to the cable television network, which in turn connects to the Internet.

CBS (Committed Burst Size) Indicates the maximum number of data bits transmitted within a specific time interval.

CIR (Committed Information Rate) The data rate is averaged over a minimum time increment.

Class Maps An aspect of Quality of Service system that is comprised of an IP ACL and/or a MAC ACL. Class maps are configured to match packet criteria, and are matched to packets in a first-fit fashion.

Combo Ports A single logical port with two physical connections, including an RJ-45 connection and a SFP connection.

Communities Specifies a group of users which retain the same system access rights.
CoS (Class of Service) The 802.1p priority scheme. CoS provides a method for tagging packets with priority information. A CoS value between 0-7 is added to the Layer II header of packets, where zero is the lowest priority and seven is the highest.

DDNS (Dynamic Domain Name System) Allows the hosting of a website, FTP server, or e-mail server with a fixed domain name (e.g., www.xyz.com) and a dynamic IP address.

Default Gateway A device that forwards Internet traffic from your local area network.

DHCP (Dynamic Host Configuration Protocol) A networking protocol that allows administrators to assign temporary IP addresses to network computers by “leasing” an IP address to a user for a limited amount of time, instead of assigning permanent IP addresses.

DHCP Clients An Internet host using DHCP to obtain configuration parameters, such as a network address.

DHCP Server An Internet host that returns configuration parameters to DHCP clients.

DNS (Domain Name Server) The IP address of your ISP’s server, which translates the names of websites into IP addresses.

Domain A specific name for a network of computers.

Download To receive a file transmitted over a network.

DSL (Digital Subscriber Line) An always-on broadband connection over traditional phone lines.

DSCP (DiffServ Code Point) Provides a method of tagging IP packets with QoS priority information.

Dynamic IP Address A temporary IP address assigned by a DHCP server.

EIGRP (Enhanced Interior Gateway Routing Protocol) Provides fast convergence, support for variable-length subnet mask, and supports multiple network layer protocols.

Encryption Encoding data transmitted in a network.

Ethernet IEEE standard network protocol that specifies how data is placed on and retrieved from a common transmission medium.

Firmware The programming code that runs a networking device.

Flow Control Enables lower speed devices to communicate with higher speed devices. This is implemented by the higher speed device refraining from sending packets.

FTP (File Transfer Protocol) A protocol used to transfer files over a TCP/IP network.

Full Duplex The ability of a networking device to receive and transmit data simultaneously.

GARP (General Attributes Registration Protocol) Registers client stations into a multicast domain.

Gateway A device that interconnects networks with different, incompatible communications protocols.

GBIC (GigaBit Interface Converter) A hardware module used to attach network devices to fiber-based transmission systems. GBIC converts the serial electrical signals to serial optical signals and vice versa.

GVRP (GARP VLAN Registration Protocol) Registers client stations into a VLANs.

Half Duplex Data transmission that can occur in two directions over a single line, but only one direction at a time.

HTTP (HyperText Transport Protocol) The communications protocol used to connect to servers on the World Wide Web.

HTTPS (HyperText Transport Protocol Secure) An extension to the standard HTTP protocol that provides confidentiality by encrypting the traffic from the website. By default this protocol uses TCP port 443.

ICMP (Internet Control Message Protocol) Allows the gateway or destination host to communicate with the source host. For example, to report a processing error.

IGMP (Internet Group Management Protocol) Allows hosts to notify their local switch or router that they want to receive transmissions assigned to a specific multicast group.

IP (Internet Protocol) A protocol used to send data over a network.

IP Address The address used to identify a computer or device on a network.

IPCONFIG A Windows 2000 and XP utility that displays the IP address for a particular networking device.

IPSec (Internet Protocol Security) A VPN protocol used to implement secure exchange of packets at the IP layer.

ISP (Internet Service Provider) A company that provides access to the Internet.

Jumbo Frames Enable transporting identical data in fewer frames. Jumbo Frames reduce overhead, lower processing time, and ensure fewer interrupts.

LAG (Link Aggregated Group) Aggregates ports or VLANs into a single virtual port or VLAN.

LAN The computers and networking products that make up your local network.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC (Media Access Control) Address</td>
<td>The unique address that a manufacturer assigns to each networking device.</td>
</tr>
<tr>
<td>Mask</td>
<td>A filter that includes or excludes certain values, for example parts of an IP address.</td>
</tr>
<tr>
<td>Mbps (MegaBits Per Second)</td>
<td>One million bits per second; a unit of measurement for data transmission.</td>
</tr>
<tr>
<td>MD5 (Message Digest 5)</td>
<td>An algorithm that produces a 128-bit hash. MD5 is a variation of MD4, and increases MD4 security. MD5 verifies the integrity of the communication and authenticates the origin of the communication.</td>
</tr>
<tr>
<td>MDI (Media Dependent Interface)</td>
<td>A cable used for end stations.</td>
</tr>
<tr>
<td>MDIX (Media Dependent Interface with Crossover)</td>
<td>A cable used for hubs and switches.</td>
</tr>
<tr>
<td>MIB (Management Information Base)</td>
<td>MIBs contain information describing specific aspects of network components.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Transmits copies of a single packet to multiple ports.</td>
</tr>
<tr>
<td>Network</td>
<td>A series of computers or devices connected for the purpose of data sharing, storage, and/or transmission between users.</td>
</tr>
<tr>
<td>NMS (Network Management System)</td>
<td>An interface that provides a method of managing a system.</td>
</tr>
<tr>
<td>OID (Object Identifier)</td>
<td>Used by SNMP to identify managed objects. In the SNMP Manager/Agent network management paradigm, each managed object must have an OID to identify it.</td>
</tr>
<tr>
<td>Packet</td>
<td>A unit of data sent over a network.</td>
</tr>
<tr>
<td>Ping (Packet Internet Groper)</td>
<td>An Internet utility used to determine whether a particular IP address is online.</td>
</tr>
<tr>
<td>Policing</td>
<td>Determines if traffic levels are within a specified profile. Policing manages the maximum traffic rate used to send or receive packets on an interface.</td>
</tr>
<tr>
<td>Port</td>
<td>The connection point on a computer or networking device used for plugging in cables or adapters.</td>
</tr>
<tr>
<td>Port Mirroring</td>
<td>Monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port.</td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td>A technology enabling an Ethernet network cable to deliver both data and power.</td>
</tr>
<tr>
<td>QoS (Quality of Service)</td>
<td>Provides policies that contain sets of filters (rules). QoS allows network managers to decide how and what network traffic is forwarded according to priorities, application types, and source and destination addresses.</td>
</tr>
<tr>
<td>RADIUS (Remote Authentication Dial-In User Service)</td>
<td>A protocol that uses an authentication server to control network access.</td>
</tr>
<tr>
<td>RJ-45 (Registered Jack-45)</td>
<td>An Ethernet connector that holds up to eight wires.</td>
</tr>
<tr>
<td>RMON (Remote Monitoring)</td>
<td>Provides network information to be collected from a single workstation.</td>
</tr>
<tr>
<td>Router</td>
<td>A networking device that connects multiple networks together.</td>
</tr>
<tr>
<td>RSTP (Rapid Spanning Tree Protocol)</td>
<td>Detects and uses network topologies that allow a faster convergence of the spanning tree, without creating forwarding loops.</td>
</tr>
<tr>
<td>Server</td>
<td>Any computer whose function in a network is to provide user access to files, printing, communications, and other services.</td>
</tr>
<tr>
<td>SMTP (Simple Mail Transfer Protocol)</td>
<td>The standard e-mail protocol on the Internet.</td>
</tr>
<tr>
<td>SNMP (Simple Network Management Protocol)</td>
<td>A widely used network monitoring and control protocol.</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell. A utility that uses strong authentication and secure communications to log in to another computer over a network.</td>
</tr>
<tr>
<td>SSL (Secure Socket Layer)</td>
<td>Encryption technology for the Internet used to provide secure transactions, such as the transmission of credit card numbers for e-commerce.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>A fixed address assigned to a computer or device that is connected to a network.</td>
</tr>
<tr>
<td>STP (Spanning Tree Protocol)</td>
<td>Prevents loops in network traffic. The Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP provides one path between end stations on a network, eliminating loops.</td>
</tr>
<tr>
<td>Subnet (Sub-network)</td>
<td>Subnets are portions of a network that share a common address component. In TCP/IP networks, devices that share a prefix are part of the same subnet. For example, all devices with a prefix of 157.100.100.100 are part of the same subnet.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>An address code that determines the size of the network.</td>
</tr>
<tr>
<td>Switch</td>
<td>Filters and forwards packets between LAN segments. Switches support any packet protocol type.</td>
</tr>
</tbody>
</table>
TCP (Transmission Control Protocol) A network protocol for transmitting data that requires acknowledgement from the recipient of data sent.

TCP/IP (Transmission Control Protocol/Internet Protocol) A set of instructions PCs use to communicate over a network.

Telnet A user command and TCP/IP protocol used for accessing remote PCs.

TFTP (Trivial File Transfer Protocol) A version of the TCP/IP FTP protocol that has no directory or password capability.

Throughput The amount of data moved successfully from one node to another in a given time period.

Trunking Link Aggregation. Optimizes port usage by linking a group of ports together to form a single trunk (aggregated groups).

TX Rate Transmission Rate.

UDP (User Data Protocol) Communication protocol that transmits packets but does not guarantee their delivery.

Upgrade To replace existing software or firmware with a newer version.

Upload To transmit a file over a network.

URL (Uniform Resource Locator) The address of a file located on the Internet.

VLAN (Virtual Local Area Networks) Logical subgroups that constitute a Local Area Network (LAN). This is done in software rather than defining a hardware solution.

WAN (Wide Area Network) Networks that cover a large geographical area.

Wildcard Mask Specifies which IP address bits are used, and which bits are ignored. A wild card mask of 255.255.255.255 indicates that no bit is important. A wildcard of 0.0.0.0 indicates that all the bits are important.

For example, if the destination IP address is 149.36.184.198 and the wildcard mask is 255.36.184.00, the first two bits of the IP address are used, while the last two bits are ignored.
Appendix D: Specifications

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Model</th>
<th>SRW208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>8 RJ-45 Connectors for 10BASE-T and 100BASE-TX Console Port Auto MDI/MDI-X Autonegotiate/Manual Setting</td>
<td></td>
</tr>
<tr>
<td>Cabling Type</td>
<td>UTP CAT 5 or Better for 10BASE-T/100BASE-TX</td>
<td></td>
</tr>
<tr>
<td>LEDs</td>
<td>10/100 Link/Act, Speed, System</td>
<td></td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Capacity</td>
<td>1.6 Gig Non-Blocking</td>
</tr>
<tr>
<td>Forwarding Rate</td>
<td>1.19 Mpps Wire-Speed Performance</td>
</tr>
</tbody>
</table>

Layer 2

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC table size</td>
<td>8K</td>
</tr>
<tr>
<td>Number of VLANs</td>
<td>256 Active VLANs (4096 range) Port-Based and 802.1Q Tag-Based VLANs Management VLAN</td>
</tr>
<tr>
<td>HOL Blocking</td>
<td>Head of Line Blocking Prevention</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web User Interface</td>
<td>Built-In Web UI for Easy Browser-Based Configuration (HTTP/HTTPS)</td>
</tr>
<tr>
<td>SNMP</td>
<td>SNMP Version 1, 2c, 3 with Support for Traps</td>
</tr>
<tr>
<td>SNMP MIBs</td>
<td>RFC1213 MIB-2, RFC2863 Interface MIB, RFC2665 Ether-like MIB, RFC1493 Bridge MIB, RFC2674 Extended Bridge MIB (P-bridge, Q-bridge), RFC2819 RMON MIB (groups 1,2,3,9 only), RFC2737 Entity MIB, RFC 2618 RADIUS Client MIB, RFC 1215 Traps</td>
</tr>
<tr>
<td>RMON</td>
<td>Embedded Remote Monitoring (RMON) Software Agent Supports four RMON Groups (History, Statistics, Alarms, and Events) for Enhanced Traffic Management, Monitoring, and Analysis.</td>
</tr>
</tbody>
</table>

Firmware Upgrade

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Browser Upgrade</td>
<td>(HTTP)</td>
</tr>
<tr>
<td>TFTP Upgrade</td>
<td></td>
</tr>
</tbody>
</table>

Port Mirroring

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic on a Port can be Mirrored to another Port for Analysis with a Network Analyzer or RMON Probe</td>
<td></td>
</tr>
</tbody>
</table>

Other Management

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traceroute</td>
<td></td>
</tr>
<tr>
<td>Secure Socket Layer (SSL) Secure Shell (SSH) RADIUS Port Mirroring TFTP upgrade SSL security for Web UI DHCP Client BootP SNTP Xmodem Upgrade Cable Diagnostics PING Telnet Client (SSH Secure Support)</td>
<td></td>
</tr>
</tbody>
</table>

Security Features

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1X</td>
<td>802.1X - RADIUS Authentication MD5 Encryption</td>
</tr>
</tbody>
</table>

Access Control

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLs - Drop or Rate Limit Based on: Source and Destination MAC-Based Source and Destination IP Address Protocol ToS/DSCP Port VLAN Ethertype</td>
<td></td>
</tr>
</tbody>
</table>

Availability

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Aggregation</td>
<td>Link Aggregation using IEEE 802.3ad LACP Up to 8 Ports in up to 8 Groups</td>
</tr>
<tr>
<td>Storm Control</td>
<td>Broadcast, Multicast and Unknown Unicast</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>IEEE 802.1d Spanning Tree, IEEE 802.1w Rapid Spanning Tree, IEEE 802.1s Multiple Spanning Tree</td>
</tr>
</tbody>
</table>
Specifications

IGMP Snooping
IGMP (v1/v2) Snooping
Provides for Fast Client Joins and Leaves of Multicast Streams
and Limits Bandwidth-Intensive Video Traffic to Only the Requestors
Supports 256 Multicast Groups.

QoS
Priority levels
4 Hardware Queues

Scheduling
Priority Queueing and Weighted Round Robin (WRR)

Class of Service
Port-Based
802.1p VLAN Priority Based
IPv4/v6 IP Precedence/TOS/DSCP Based
TCP/UDP Port Based
Diffserv
Classification and Remarking ACLs

Rate Limiting
Ingress Policer
Egress Rate Control

Standards
802.3 10BASE-T Ethernet,
802.3u 100BASE-TX Fast Ethernet,
802.3ab, 802.3x Flow Control,
802.3 ad LACP, 802.1D STP,
802.1Q/p VLAN,
802.1w Rapid STP,
802.1s Multiple STP,
802.1x Port Access Authentication

Environmental
Dimensions
11” x 1.75” x 6.69”
(279.4 x 44.45 x 170 mm)

Unit Weight
2.20 lb (1 kg)

Power
External AC Power Adapter

Certification
FCC Part15 Class A, CE Class A,
UL, cUL, CE Mark, CB

Operating Temp.
32 to 104°F (0 to 40°C)

Storage Temp.
-4 to 158°F (-20 to 70°C)

Operating Humidity
10 to 90% Noncondensing

Storage Humidity
10 to 95% Noncondensing

Specifications are subject to change without notice.

Model
SRW208G

Ports
8 RJ-45 Connectors for 10BASE-T and 100BASE-TX
1 RJ-45 connectors for 10BASE-T/100BASE-TX/1000BASE-T, and 1 miniGBIC/SFP port

Console Port
Auto MDI/MDI-X
Autonegotiate/Manual Setting

Cabling Type
UTP CAT 5 or Better for 10BASE-T/100BASE-TX
UTP CAT 5e or Better for 1000BASE-T

LEDs
10/100 Link/Act, Giga Link/Act, Speed, miniGBIC Link/Act, System

Performance
Switching Capacity
5.6 Gig Non-Blocking

Forwarding Rate
4.17 Mpps Wire-Speed Performance

Layer 2
MAC table size
8K

Number of VLANs
256 Active VLANs (4096 range)

VLAN
Port-Based and 802.1Q
Tag-Based VLANs
Management VLAN

HOL Blocking
Head of Line Blocking Prevention

Management
Web User Interface
Built-In Web UI for Easy Browser-Based Configuration (HTTP/HTTPS)

SNMP
SNMP Version 1, 2c, 3 with Support for Traps

SNMP MIBs
RFC1213 MIB-2,
RFC2863 Interface MIB,
RFC2665 Ether-like MIB,
RFC1493 Bridge MIB,
RFC2674 Extended Bridge MIB (P-bridge, Q-bridge),
RFC2819 RMON MIB (groups 1,2,3,9 only),
RFC2737 Entity MIB,
RFC 2618 RADIUS Client MIB,
RFC 1215 Traps

RMON
Embedded Remote Monitoring (RMON) Software Agent Supports four RMON Groups
Appendix D

Specifications

8-Port 10/100 Ethernet Switch with Webview

Firmware Upgrade
Web Browser Upgrade (HTTP)
TFTP Upgrade

Port Mirroring
Traffic on a Port can be Mirrored to another Port for Analysis with a Network Analyzer or RMON Probe

Other Management
Traceroute
Secure Socket Layer (SSL)
Secure Shell (SSH)
RADIUS
Port Mirroring
TFTP Upgrade
SSL security for Web UI
DHCP Client
BootP
SNTP
Xmodem Upgrade
Cable Diagnostics
PING
Telnet Client (SSH Secure Support)

Security Features
IEEE 802.1X
802.1X - RADIUS Authentication
MD5 Encryption

Access Control
ACLs -
Drop or Rate Limit Based on:
Source and Destination
MAC-Based
Source and Destination
IP Address
Protocol
ToS/DSCP
Port
VLAN
Ethertype

Availability
Link Aggregation
Link Aggregation using IEEE 802.3ad LACP
Up to 8 Ports in up to 8 Groups

Storm Control
Broadcast, Multicast and Unknown Unicast

Spanning Tree
IEEE 802.1d Spanning Tree,
IEEE 802.1w Rapid Spanning Tree, IEEE 802.1s Multiple Spanning Tree

IGMP Snooping
IGMP (v1/v2) Snooping
Provides for Fast Client Joins and Leaves of Multicast Streams and Limits Bandwidth-Intensive Video Traffic to Only the Requestors Supports 256 Multicast Groups.

QoS
Priority levels
4 Hardware Queues
Scheduling
Priority Queueing and Weighted Round Robin (WRR)
Class of Service
Port-Based
802.1p VLAN Priority Based
IPv4/v6 IP Precedence/TOS/DSCP Based
TCP/UDP Port Based
Diffserv Classification and Remarking
ACLs
Rate Limiting
Ingress Policer
Egress Rate Control
Standards
802.3 10BASE-T Ethernet,
802.3u 100BASE-TX Fast Ethernet,
802.3ab 1000BASE-T Gigabit Ethernet
802.3z Gigabit Ethernet
802.3x Flow Control,
802.3 ad LACP, 802.1D STP,
802.1Q/p VLAN,
802.1w Rapid STP,
802.1s Multiple STP,
802.1x Port Access Authentication

Environmental
Dimensions
11” x 1.75” x 6.69”
(279.4 x 44.45 x 170 mm)
Unit Weight
2.20 lb (1 kg)
Power
External AC Power Adapter
Certification
FCC Part15 Class A, CE Class A,
UL, cUL, CE Mark, CB
Operating Temp.
32 to 104ºF (0 to 40ºC)
Storage Temp.
-4 to 158ºF (-20 to 70ºC)
Operating Humidity
10 to 90% Noncondensing
Storage Humidity
10 to 95% Noncondensing

Specifications are subject to change without notice.
Specifications

Model: SRW208L

Ports: 8 RJ-45 Connectors for 10BASE-T and 100BASE-TX, 1 miniGBIC/SFP port, 1 LC type connector for 100LX SMF port at 1310nm

Cabling Type: UTP CAT 5 or Better for 10BASE-T/100BASE-TX, UTP CAT 5e or Better for 1000BASE-T

LEDs: 10/100 Link/Act, Giga Link/Act, Speed, 1 100LC Link/Act, System

Performance

- **Switching Capacity**: 3.8 Gig Non-Blocking
- **Forwarding Rate**: 2.8 Mpps Wire-Speed Performance

Layer 2

- **MAC table size**: 8K
- **Number of VLANs**: 256 Active VLANs (4096 range)
- **VLAN**: Port-Based and 802.1Q Tag-Based VLANs Management VLAN
- **HOL Blocking**: Head of Line Blocking Prevention

Management

- **Web User Interface**: Built-In Web UI for Easy Browser-Based Configuration (HTTP/HTTPS)
- **SNMP**: SNMP Version 1, 2c, 3 with Support for Traps
- **SNMP MIBs**: RFC1213 MIB-2, RFC2863 Interface MIB, RFC2665 Ether-like MIB, RFC1493 Bridge MIB, RFC2674 Extended Bridge MIB (P-bridge, Q-bridge), RFC2819 RMON MIB (groups 1,2,3,9 only), RFC2737 Entity MIB, RFC 2618 RADIUS Client MIB, RFC 1215 Traps

Security Features

- **IEEE 802.1X**: 802.1X - RADIUS Authentication MD5 Encryption
- **Access Control**: ACLs - Drop or Rate Limit Based on: Source and Destination MAC-Based Source and Destination IP Address Protocol ToS/DSCP Port VLAN Ethertype

Availability

- **Link Aggregation**: Link Aggregation using IEEE 802.3ad LACP Up to 8 Ports in up to 8 Groups
- **Storm Control**: Broadcast, Multicast and Unknown Unicast
- **Spanning Tree**: IEEE 802.1d Spanning Tree, IEEE 802.1w Rapid Spanning Tree, IEEE 802.1s Multiple Spanning Tree
- **IGMP Snooping**: IGMP (v1/v2) Snooping Provides for Fast Client Joins and Leaves of Multicast
Specifications

Streams and Limits Bandwidth-Intensive Video Traffic to Only the Requestors
Supports 256 Multicast Groups.

QoS
Priority levels 4 Hardware Queues
Scheduling Priority Queueing and Weighted Round Robin (WRR)
Class of Service Port-Based
80.1p VLAN Priority Based
IPv4/v6 IP Precedence/TOS/DSCP Based
TCP/UDP Port Based
Diffserv Classification and Remarking ACLs
Rate Limiting Ingress Policer Egress Rate Control
Standards 802.3 10BASE-T Ethernet, 802.3u 100BASE-TX Fast Ethernet, 802.3ab 1000BASE-T Gigabit Ethernet 802.3z Gigabit Ethernet 802.3x Flow Control, 802.3 ad LACP, 802.1D STP, 802.1Q/p VLAN, 802.1w Rapid STP, 802.1s Multiple STP, 802.1x Port Access Authentication

Environmental
Dimensions 11” x 1.75” x 6.69” (279.4 x 44.45 x 170 mm)
Unit Weight 2.20 lb (1 kg)
Power External AC Power Adapter
Certification FCC Part 15 Class A, UL, cUL, CE Mark, CB
Operating Temp. 32 to 104°F (0 to 40°C)
Storage Temp. -4 to 158°F (-20 to 70°C)
Operating Humidity 10 to 90% Noncondensing
Storage Humidity 10 to 95% Noncondensing

Specifications are subject to change without notice.
Appendix D

Specifications

Management, Monitoring, and Analysis.

Firmware Upgrade
- Web Browser Upgrade (HTTP)
- TFTP Upgrade

Port Mirroring
- Traffic on a Port can be Mirrored to another Port for Analysis with a Network Analyzer or RMON Probe

Other Management
- Traceroute
- Secure Socket Layer (SSL)
- Secure Shell (SSH)
- RADIUS
- Port Mirroring
- TFTP Upgrade
- SSL security for Web UI
- DHCP Client
- BootP
- SNTP
- Xmodem Upgrade
- Cable Diagnostics
- PING
- Telnet Client (SSH Secure Support)

Security Features

IEEE 802.1X
- 802.1X - RADIUS Authentication
- MD5 Encryption

Access Control
- ACLs - Drop or Rate Limit Based on:
 - Source and Destination
 - MAC-Based
 - Source and Destination IP Address
 - Protocol
 - ToS/DSCP
 - Port
 - VLAN
 - Ethertype

Availability

Link Aggregation
- Link Aggregation using IEEE 802.3ad LACP
- Up to 8 Ports in up to 8 Groups

Storm Control
- Broadcast, Multicast and Unknown Unicast

Spanning Tree
- IEEE 802.1d Spanning Tree,
- IEEE 802.1w Rapid Spanning Tree,
- IEEE 802.1s Multiple Spanning Tree

IGMP Snooping
- IGMP (v1/v2) Snooping
 - Provides for Fast Client Joins and Leaves of Multicast

QoS

Priority Levels
- 4 Hardware Queues

Scheduling
- Priority Queuing and Weighted Round Robin (WRR)

Class of Service
- Port-Based
- 802.1p VLAN Priority Based
- IPv4/v6 IP Precedence/TOS/DSCP Based
- TCP/UDP Port Based DiffServ

Rate Limiting
- Ingress Policer
- Egress Rate Control

Standards
- 802.3 10BASE-T Ethernet,
- 802.3u 100BASE-TX Fast Ethernet,
- 802.3ab 1000BASE-T Gigabit Ethernet
- 802.3z Gigabit Ethernet
- 802.3x Flow Control,
- 802.3ad LACP, 802.3af PoE
- 802.1D STP,
- 802.1Q/p VLAN,
- 802.1w Rapid STP,
- 802.1s Multiple STP,
- 802.1x Port Access Authentication

Environmental

Dimensions
- 11" x 1.75" x 6.69"
 (279.4 x 44.45 x 170 mm)

Unit Weight
- 2.20 lb (1 kg)

Power
- External AC Power Adapter

Certification
- FCC Part15 Class A, CE Class A, UL, cUL, CE Mark, CB

Operating Temp.
- 32 to 104°F (0 to 40°C)

Storage Temp.
- -4 to 158°F (-20 to 70°C)

Operating Humidity
- 10 to 90% Noncondensing

Storage Humidity
- 10 to 95% Noncondensing

Specifications are subject to change without notice.
Specifications

Model
SRW208MP

Ports
- 8 RJ-45 Connectors for 10BASE-T and 100BASE-TX,
- 2 RJ-45 connectors for 10BASE-T/100BASE-TX/1000BASE-T with 2 SFP slots
- Console Port
- Auto MDI/MDI-X
- Autonegotiate/Manual Setting

Cabling Type
- UTP CAT 5 or Better for 10BASE-T/100BASE-TX
- UTP CAT 5e or Better for 1000BASE-T

LEDs
- 10/100 Link/Act, PoE, 2 Giga
- Link/Act, Speed, System

Performance
- **Switching Capacity**: 5.6 Gig Non-Blocking
- **Forwarding Rate**: 4.17 Mpps Wire-Speed Performance

Layer 2
- **MAC table size**: 8K
- **Number of VLANs**: 256 Active VLANs (4096 range)

VLAN
- Port-Based and 802.1Q
- Tag-Based VLANs
- Management VLAN

HOL Blocking
Head of Line Blocking Prevention

Management
- **Web User Interface**: Built-In Web UI for Easy Browser-Based Configuration (HTTP/HTTPS)
- **SNMP**: SNMP Version 1, 2c, 3 with Support for Traps
- **SNMP MIBs**: RFC1213 MIB-2, RFC2863 Interface MIB, RFC2665 Ether-like MIB, RFC1493 Bridge MIB, RFC2674 Extended Bridge MIB (P-bridge, Q-bridge), RFC2819 RMON MIB (groups 1,2,3,9 only), RFC2737 Entity MIB, RFC 2618 RADIUS Client MIB, RFC 1215 Traps
- **Private POE MIB**

RMON
- Embedded Remote Monitoring (RMON) Software Agent
- Supports four RMON Groups (History, Statistics, Alarms, and Events) for Enhanced Traffic

Firmware Upgrade
- Web Browser Upgrade (HTTP)
- TFTP Upgrade

Port Mirroring
- Traffic on a Port can be Mirrored to another Port for Analysis with a Network Analyzer or RMON Probe

Other Management
- Traceroute
- Secure Socket Layer (SSL)
- Secure Shell (SSH)
- RADIUS
- Port Mirroring
- TFTP Upgrade
- SSL security for Web UI
- DHCP Client
- BootP
- SNTP
- Xmodem Upgrade
- Cable Diagnostics
- PING
- Telnet Client (SSH Secure Support)

Security Features
- **IEEE 802.1X**: 802.1X - RADIUS Authentication, MD5 Encryption
- **Access Control**: ACLs - Drop or Rate Limit Based on: Source and Destination, MAC-Based, Source and Destination, IP Address, Protocol, ToS/DSCP, Port, VLAN, Ethertype

Availability
- **Link Aggregation**: Link Aggregation using IEEE 802.3ad LACP
- Up to 8 Ports in up to 8 Groups
- **Storm Control**: Broadcast, Multicast and Unknown Unicast
- **Spanning Tree**: IEEE 802.1d Spanning Tree, IEEE 802.1w Rapid Spanning Tree, IEEE 802.1s Multiple Spanning Tree
- **IGMP Snooping**: IGMP (v1/v2) snooping limits bandwidth-intensive video traffic to only the requestors. Support 256 multicast groups.
Specifications

QoS

<table>
<thead>
<tr>
<th>Priority levels</th>
<th>4 Hardware Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling</td>
<td>Priority Queueing and Weighted Round Robin (WRR)</td>
</tr>
<tr>
<td>Class of Service</td>
<td>Port-Based 802.1p VLAN Priority Based IPv4/v6 IP Precedence/TOS/DSCP Based TCP/UDP Port Based Diffserv Classification and Remarking ACLs</td>
</tr>
<tr>
<td>Rate Limiting</td>
<td>Ingress Policer Egress Rate Control</td>
</tr>
<tr>
<td>Standards</td>
<td>802.3 10BASE-T Ethernet, 802.3u 100BASE-TX Fast Ethernet, 802.3ab 1000BASE-T Gigabit Ethernet 802.3z Gigabit Ethernet 802.3x Flow Control, 802.3 ad LACP, 802.3af PoE 802.1D STP, 802.1Q/p VLAN, 802.1w Rapid STP, 802.1s Multiple STP, 802.1x Port Access Authentication</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>11” x 1.75” x 6.69” (279.4 x 44.45 x 170 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight</td>
<td>2.65 lb (1.2 kg)</td>
</tr>
<tr>
<td>Power</td>
<td>External AC Power Adapter</td>
</tr>
<tr>
<td>Certification</td>
<td>FCC Part15 Class A, CE Class A, UL, cUL, CE Mark, CB</td>
</tr>
<tr>
<td>Operating Temp.</td>
<td>32 to 104°F (0 to 40°C)</td>
</tr>
<tr>
<td>Storage Temp.</td>
<td>-4 to 158°F (-20 to 70°C)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>10 to 90% Noncondensing</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>10 to 95% Noncondensing</td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice.
Appendix E: Warranty Information

Linksys warrants this Linksys hardware product against defects in materials and workmanship under normal use for the Warranty Period, which begins on the date of purchase by the original end-user purchaser and lasts for the period specified for this product at www.linksys.com/warranty. The internet URL address and the web pages referred to herein may be updated by Linksys from time to time; the version in effect at the date of purchase shall apply.

This limited warranty is non-transferable and extends only to the original end-user purchaser. Your exclusive remedy and Linksys’ entire liability under this limited warranty will be for Linksys, at its option, to (a) repair the product with new or refurbished parts, (b) replace the product with a reasonably available equivalent new or refurbished Linksys product, or (c) refund the purchase price of the product less any rebates. Any repaired or replacement products will be warranted for the remainder of the original Warranty Period or thirty (30) days, whichever is longer. All products and parts that are replaced become the property of Linksys.

Exclusions and Limitations

This limited warranty does not apply if: (a) the product assembly seal has been removed or damaged, (b) the product has been altered or modified, except by Linksys, (c) the product damage was caused by use with non-Linksys products, (d) the product has not been installed, operated, repaired, or maintained in accord with instructions supplied by Linksys, (e) the product has been subjected to abnormal physical or electrical stress, misuse, negligence, or accident, (f) the serial number on the Product has been altered, defaced, or removed, or (g) the product is supplied or licensed for beta, evaluation, testing or demonstration purposes for which Linksys does not charge a purchase price or license fee.

ALL SOFTWARE PROVIDED BY LINKSYS WITH THE PRODUCT, WHETHER FACTORY LOADED ON THE PRODUCT OR CONTAINED ON MEDIA ACCOMPANYING THE PRODUCT, IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. Without limiting the foregoing, Linksys does not warrant that the operation of the product or software will be uninterrupted or error free. Also, due to the continual development of new techniques for intruding upon and attacking networks, Linksys does not warrant that the product, software or any equipment, system or network on which the product or software is used will be free of vulnerability to intrusion or attack. The product may include or be bundled with third party software or service offerings. This limited warranty shall not apply to such third party software or service offerings. This limited warranty does not guarantee any continued availability of a third party’s service for which this product’s use or operation may require.

TO THE EXTENT NOT PROHIBITED BY LAW, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED TO THE DURATION OF THE WARRANTY PERIOD. ALL OTHER EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF NON-INFRINGEMENT, ARE DISCLAIMED. Some jurisdictions do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. This limited warranty gives you specific legal rights, and you may also have other rights which vary by jurisdiction.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL LINKSYS BE LIABLE FOR ANY LOST DATA, REVENUE OR PROFIT, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, REGARDLESS OF THE THEORY OF LIABILITY (INCLUDING NEGLIGENCE), ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE THE PRODUCT (INCLUDING ANY SOFTWARE), EVEN IF LINKSYS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL LINKSYS’ LIABILITY EXCEED THE AMOUNT PAID BY YOU FOR THE PRODUCT. The foregoing limitations will apply even if any warranty or remedy provided under this limited warranty fails of its essential purpose. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Obtaining Warranty Service

If you have a question about your product or experience a problem with it, please go to www.linksys.com/support where you will find a variety of online support tools and information to assist you with your product. If the product proves defective during the Warranty Period, contact the Value Added Reseller (VAR) from whom you purchased the product or Linksys Technical Support for instructions on how to obtain warranty service. The telephone number for Linksys Technical Support in your area can be found in the product User Guide and at www.linksys.com. Have your product serial number and proof of purchase on hand when calling. A DATED PROOF OF ORIGINAL PURCHASE IS REQUIRED TO PROCESS WARRANTY CLAIMS. If you are requested to return your product, you will be given a Return Materials Authorization (RMA) number. You are responsible for properly packaging and shipping your product to Linksys at your cost and risk. You must include the RMA number and a copy of your dated proof of
original purchase when returning your product. Products received without a RMA number and dated proof of original purchase will be rejected. Do not include any other items with the product you are returning to Linksys. Defective product covered by this limited warranty will be repaired or replaced and returned to you without charge. Customers outside of the United States of America and Canada are responsible for all shipping and handling charges, custom duties, VAT and other associated taxes and charges. Repairs or replacements not covered under this limited warranty will be subject to charge at Linksys’ then-current rates.

Technical Support

This limited warranty is neither a service nor a support contract. Information about Linksys’ current technical support offerings and policies (including any fees for support services) can be found at: www.linksys.com/support.

This limited warranty is governed by the laws of the jurisdiction in which the Product was purchased by you.

Please direct all inquiries to: Linksys, P.O. Box 18558, Irvine, CA 92623.
Appendix F: Regulatory Information

FCC Statement

This equipment has been tested and complies with the specifications for a Class A digital device, pursuant to Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. These limits are designed to provide reasonable protection against harmful interference when equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING: You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.

Safety Notices

- Caution: To reduce the risk of fire, use only No.26 AWG or larger telecommunication line cord.
- Do not use this product near water, for example, in a wet basement or near a swimming pool.
- Avoid using this product during an electrical storm. There may be a remote risk of electric shock from lightning.

WARNING: This product contains lead, known to the State of California to cause cancer, and birth defects or other reproductive harm. Wash hands after handling.

Industry Canada Statement

This Class A digital apparatus complies with Canadian ICES-003.

Operation is subject to the following two conditions:
1. This device may not cause interference and
2. This device must accept any interference, including interference that may cause undesired operation of the device.

Avis d’Industrie Canada

Cet appareil numérique de la classe A est conforme à la norme NMB-003 d’Industrie Canada.

Le fonctionnement est soumis aux conditions suivantes :
1. Ce périphérique ne doit pas causer d’interférences;
2. Ce périphérique doit accepter toutes les interférences reçues, y compris celles qui risquent d’entraîner un fonctionnement indésirable.
User Information for Consumer Products
Covered by EU Directive 2002/96/EC on
Waste Electric and Electronic Equipment
(WEEE)

This document contains important information for users with regards to the proper disposal and recycling of Linksys products. Consumers are required to comply with this notice for all electronic products bearing the following symbol:

English - Environmental Information for Customers in the European Union

European Directive 2002/96/EC requires that the equipment bearing this symbol ☑ on the product and/or its packaging must not be disposed of with unsorted municipal waste. The symbol indicates that this product should be disposed of separately from regular household waste streams. It is your responsibility to dispose of this and other electric and electronic equipment via designated collection facilities appointed by the government or local authorities. Correct disposal and recycling will help prevent potential negative consequences to the environment and human health. For more detailed information about the disposal of your old equipment, please contact your local authorities, waste disposal service, or the shop where you purchased the product.

Български (Bulgarian) - Информация относно опазването на околната среда за потребители в Европейския съюз

Европейска директива 2002/96/ЕС изисква уредите, носещи този символ ☑ върху изделиято и/или опаковката му, да не се изхвърлят с несортирани битови отпадъци. Символът обозначава, че изделието трябва да се изхвърля отделно от сметосъбирането на обикновените битови отпадъци. Вашата отговорност е да уведомите евентуални държавни или общински органи за събиране и рециклиране. Коректно сметосъбиране и рециклиране намира съвместна полза за околната среда и здравето на населението. За по-подробна информация относно изхвърлянето на вашия уред, се обърнете към местните власти, службите за сметосъбиране или магазина, от който сте закупили уреда.

Ceština (Czech) - Informace o ochraně životního prostředí pro zákazníky v zemích Evropské unie

Evropská směrnice 2002/96/ES zakazuje, aby zařízení označené tímto symbolem ☑ na produktu anebo na obalu bylo likvidováno s netříděným komunálním odpadem. Tento symbol udává, že daný produkt musí být likvidován odděleně od běžného komunálního odpadu. Odpovídáte za likvidaci tohoto produktu a dalších elektrických a elektronických zařízení prostřednictvím určených sběrných míst stanovených vládou nebo místními úřady. Správná likvidace a recyklace pomáhá předcházet potenciálním negativním dopadům na životní prostředí a lidské zdraví. Podrobnější informace o likvidaci starého vybavení si laskavě vyžádejte od místních úřadů, podniku zabyvajícího se likvidací komunálních odpadů nebo obchodu, kde jste produkt zakoupili.

Dansk (Danish) - Miljøinformation for kunder i EU

Deutsch (German) - Umweltinformation für Kunden innerhalb der Europäischen Union

8-Port 10/100 Ethernet Switch with Webview
Eesti (Estonian) - Keskkonnaalane infomatsioon Euroopa Liidus asuvatele klientidele

Español (Spanish) - Información medioambiental para clientes de la Unión Europea

La Directiva 2002/96/CE de la UE exige que los equipos que lleven este símbolo ☑ en el propio aparato y/o en su embalaje no deben eliminarse junto con otros residuos urbanos no seleccionados. El símbolo indica que el producto en cuestión debe separarse de los residuos domésticos convencionales con vistas a su eliminación. Es responsabilidad suya desechar este y cualesquiera otros aparatos eléctricos y electrónicos a través de los puntos de recogida que ponen a su disposición el gobierno y las autoridades locales. Al desechar y reciclar correctamente estos aparatos estará contribuyendo a evitar posibles consecuencias negativas para el medio ambiente y la salud de las personas. Si necesita información más detallada sobre la eliminación segura de su aparato usado, consulte a las autoridades locales, al servicio de recogida y eliminación de residuos de su zona o pregunte en la tienda donde adquirió el producto.

Italiano (Italian) - Informazioni relative all’ambiente per i clienti residenti nell’Unione Europea

La direttiva europea 2002/96/EC richiede che le apparecchiature contrassegnate con questo simbolo ☑ sul prodotto e/o sull’imballaggio non siano smaltite insieme ai rifiuti urbani non differenziati. Il simbolo indica che questo prodotto non deve essere smaltito insieme ai normali rifiuti domestici. È responsabilità del proprietario smaltire sia questi prodotti sia le altre apparecchiature elettriche ed elettroniche mediante le specifiche strutture di raccolta indicate dal governo o dagli enti pubblici locali. Il corretto smaltimento ed il riciclaggio aiuteranno a prevenire conseguenze potenzialmente negative per l’ambiente e per la salute dell’essere umano. Per ricevere informazioni più dettagliate circa lo smaltimento delle vecchie apparecchiature in Vostro possesso, Vi invitiamo a contattare gli enti pubblici di competenza, il servizio di smaltimento rifiuti o il negozio nel quale avete acquistato il prodotto.

Latviešu valoda (Latvian) - Ekoloģiska informācija klientiem Eiropas Savienības jurisdikcijā

Appendix F

Regulatory Information

Lietuviškai (Lithuanian) - Aplinkosaugos informacija, skirta Europos Sąjungos vartotojams

Europos direktyva 2002/96/EC numato, kad įrangos, kuri ir ᵀ Powered by smallurl https://www.smallurl.com/ kūrios pakaitė yra pažymėta šiuo simboliu (įveskite simbolį), negaliama šaltinti kartu su nerūšiotomis komunalinėmis atliekomis. Šis simbolis rodo, kad įrangos atskirai nuo bendro su kitomis atliekomis, jūsų privalote užtikrinti, kad ji ir kita elektros ar elektroninė įranga būtų šalinama per tam tikras nacionalinės ar vietinės valdžios nustatytas atliekų rinkimo sistemoms. Tinkamai šalinti ir perdirbant atliekas, bus išvengta galimos žalos aplinkai ir žmonių sveikatai. Daugiau informacijos apie jūsų senos įrangos šalinimą galite gauti vietinės valdžios institucijose, atliekų šalinimo tarnybos arba parduotuvės, kuriose jūs gijote tą įrangą.

Malti (Maltese) - Informazzjoni Ambjentali għal Klijenti fl-Unjoni Ewropea

Magyar (Hungarian) - Környezetvédelmi információ az európai uniós vásárlók számára

A 2002/96/EC számú európai uniós irányelv megkívánja, hogy az európai uniós irányelv megkívánja, hogy az európai uniós irányelv irán
Português (Portuguese) - Informação ambiental para clientes da União Europeia

A Directiva Europeia 2002/96/CE exige que o equipamento que exibe este símbolo \[\text{symbol} \] no produto e/ou na sua embalagem não seja eliminado junto com os resíduos municipais não separados. O símbolo indica que este produto deve ser eliminado separadamente dos resíduos domésticos regulares. É da sua responsabilidade eliminar este e qualquer outro equipamento elétrico e electrónico através das instalações de recolha designadas pelas autoridades governamentais ou locais. A eliminação e reciclagem correctas ajudarão a prevenir as consequências negativas para o ambiente e para a saúde humana. Para obter informações mais detalhadas sobre a forma de eliminar o seu equipamento antigo, contacte as autoridades locais, os serviços de eliminação de resíduos ou o estabelecimento comercial onde adquiriu o produto.

Română (Romanian) - Informaţii de mediu pentru clienţii din Uniunea Europeană

Slovenčina (Slovak) - Informácie o ochrane životného prostredia pre zákazníkov v Európskej unii

Podľa európskej smernice 2002/96/ES zariadenie s týmto symbolom \[\text{symbol} \] na produkte a/alebo jeho balení nesmie byť likvidované spolu s netriedeným komunálnym odpadom. Symbol znamená, že produkt by sa mal likvidovať oddelene od bežného odpadu z domácnosti. Je vásou povinnosťou likvidovať toto i ostatné elektrické a elektronické zariadenia prostrednictvom špecializovaných zbieriek zariadení určených vládou alebo miestnymi orgánmi. Správa likvidácia a recyklácia pomôže zabrániť prípadným negatívnym dopadom na životné prostredie a zdravie ľudí. Ak máte záujem o podrobnějšie informácie o likvidácii starého zariadenia, obrátte sa, prosím, na miestne orgány, organizácie zaobierajúce sa likvidáciou odpadov alebo obchod, v ktorom ste si produkt zakúpili.

Suomi (Finnish) - Ympäristöä koskevia tietoja EU-alueen asiakkaille

EU-direktiivi 2002/96/ED edellyttää, että jos laitteistossa on tämä symboli \[\text{symbol} \] – se tuotteessa ja/tai sen pakkausessa, laitteisto ei saa hävittää laittelemattoman yhdyskuntajätteen mukana. Symboli merkitsee sitä, että tämä tuote on hävitettävä erillään tavallisesta kotitalousjätteestä. Sinun vastuullasi on hävittää tämä elektronikkatuote ja muut vastaavat elektronikkatuotteet viemällä tuote tai tuotteet viranomaisten määramään keräyspiisteeseen. Laitteiston oikea hävittäminen estää mahdolliset kielteiset vaikutukset ympäristön ja ihmisten terveyteen. Lisätietoja vanhan laitteiston oikeasta hävitystavasta saa paikallisilta viranomaisilta, jätteenhâvityspalvelusta tai siitä myymälästä, josta ostit tuotteen.

Svenska (Swedish) - Miljöinformation för kunder i Europeiska unionen

WEB: For additional information, please visit www.linksys.com
Appendix G: Contact Information

<table>
<thead>
<tr>
<th>Linksys Contact Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.linksys.com</td>
</tr>
<tr>
<td>Support Site</td>
<td>http://www.linksys.com/support</td>
</tr>
<tr>
<td>FTP Site</td>
<td>ftp.linksys.com</td>
</tr>
<tr>
<td>Advice Line</td>
<td>800-546-5797 (LINKSYS)</td>
</tr>
<tr>
<td>Support</td>
<td>800-326-7114</td>
</tr>
<tr>
<td>RMA (Return Merchandise Authorization)</td>
<td>http://www.linksys.com/warranty</td>
</tr>
</tbody>
</table>

NOTE: Details on warranty and RMA issues can be found in the Warranty section of this Guide.