Cisco 300 Series Managed Switches Command Line Interface Reference Guide Release 1.2.9
Table of Contents

1. Introduction

2. User Interface Commands
 - enable
 - disable
 - login
 - configure
 - exit (Configuration)
 - exit (EXEC)
 - end
 - help
 - history
 - history size
 - terminal history
 - terminal history size
 - terminal datadump
 - terminal width
 - terminal prompt
 - show history
 - show privilege
 - do
 - banner login
 - show banner

3. Macro Commands
 - macro name
 - macro
 - macro description
 - macro global
 - macro global description
 - show parser macro

4. RSA and Certificate Commands
 - crypto key generate dsa
 - crypto key generate rsa
 - crypto key import
 - show crypto key
 - crypto certificate generate
 - crypto certificate request
 - crypto certificate import
 - show crypto certificate

5. System Management Commands
 - ping
 - traceroute
6 SSH Client Commands ... 119
 ip ssh-client authentication .. 119
 ip ssh-client change server password 120
 ip ssh-client key ... 121
 ip ssh-client password ... 124
 ip ssh-client server authentication 125
 ip ssh-client server fingerprint ... 126
 ip ssh-client username .. 127
 show ip ssh-client ... 128
 show ip ssh-client server .. 131

7 Clock Commands .. 133
 clock set ... 133
 clock source ... 133
 clock timezone .. 134
 clock summer-time .. 135
 clock dhcp timezone ... 137
 sntp authentication-key ... 138
 sntp authenticate ... 139
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sntp trusted-key</td>
<td>140</td>
</tr>
<tr>
<td>sntp broadcast client enable</td>
<td>141</td>
</tr>
<tr>
<td>sntp anycast client enable</td>
<td>142</td>
</tr>
<tr>
<td>sntp client enable</td>
<td>143</td>
</tr>
<tr>
<td>sntp client enable (Interface)</td>
<td>144</td>
</tr>
<tr>
<td>sntp unicast client enable</td>
<td>144</td>
</tr>
<tr>
<td>sntp unicast client poll</td>
<td>145</td>
</tr>
<tr>
<td>sntp server</td>
<td>146</td>
</tr>
<tr>
<td>show clock</td>
<td>147</td>
</tr>
<tr>
<td>show sntp configuration</td>
<td>148</td>
</tr>
<tr>
<td>show sntp status</td>
<td>149</td>
</tr>
<tr>
<td>show sntp status</td>
<td></td>
</tr>
</tbody>
</table>

8 Configuration and Image File Commands .. 151

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy</td>
<td>151</td>
</tr>
<tr>
<td>write</td>
<td>158</td>
</tr>
<tr>
<td>delete</td>
<td>158</td>
</tr>
<tr>
<td>dir</td>
<td>159</td>
</tr>
<tr>
<td>more</td>
<td>161</td>
</tr>
<tr>
<td>boot system</td>
<td>162</td>
</tr>
<tr>
<td>rename</td>
<td>163</td>
</tr>
<tr>
<td>show bootvar</td>
<td>164</td>
</tr>
<tr>
<td>show running-config</td>
<td>165</td>
</tr>
<tr>
<td>show startup-config</td>
<td>168</td>
</tr>
<tr>
<td>service mirror-configuration</td>
<td>170</td>
</tr>
<tr>
<td>show service mirror-configuration</td>
<td>172</td>
</tr>
</tbody>
</table>

9 Auto-Configuration ... 173

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>boot host auto-config</td>
<td>173</td>
</tr>
<tr>
<td>show boot</td>
<td>174</td>
</tr>
<tr>
<td>ip dhcp tftp-server ip address</td>
<td>175</td>
</tr>
<tr>
<td>ip dhcp tftp-server file</td>
<td>175</td>
</tr>
<tr>
<td>show ip dhcp tftp-server</td>
<td>176</td>
</tr>
</tbody>
</table>

10 Management ACL Commands ... 178

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>management access-list</td>
<td>178</td>
</tr>
<tr>
<td>permit (Management)</td>
<td>179</td>
</tr>
<tr>
<td>deny (Management)</td>
<td>180</td>
</tr>
<tr>
<td>management access-class</td>
<td>182</td>
</tr>
<tr>
<td>show management access-list</td>
<td>182</td>
</tr>
<tr>
<td>show management access-class</td>
<td>183</td>
</tr>
</tbody>
</table>

11 Network Management Protocol (SNMP) Commands ... 185

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server server</td>
<td>185</td>
</tr>
<tr>
<td>snmp-server community</td>
<td>185</td>
</tr>
<tr>
<td>snmp-server community-group</td>
<td>187</td>
</tr>
<tr>
<td>snmp-server view</td>
<td>188</td>
</tr>
<tr>
<td>show snmp views</td>
<td>190</td>
</tr>
<tr>
<td>snmp-server group</td>
<td>191</td>
</tr>
</tbody>
</table>
show snmp groups .. 192
snmp-server user .. 193
show snmp users ... 196
snmp-server filter ... 198
show snmp filters .. 199
snmp-server host .. 200
snmp-server engineID remote ... 202
snmp-server engineID local ... 203
show snmp engineID ... 204
snmp-server enable traps ... 205
snmp-server trap authentication ... 206
snmp-server contact ... 206
snmp-server location ... 207
snmp-server set ... 208
show snmp .. 209

12 Web Server Commands... 211
ip http server .. 211
ip http timeout-policy ... 211
ip http secure-server ... 212
ip https certificate .. 213
show ip http ... 214
show ip https ... 214

13 Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands.................. 216
ip telnet server ... 216
ip ssh server ... 217
ip ssh port .. 217
ip ssh pubkey-auth ... 218
ip ssh password-auth ... 219
crypto key pubkey-chain ssh ... 220
user-key .. 222
key-string .. 223
show ip ssh ... 224
show crypto key pubkey-chain ssh .. 225

14 Line Commands .. 227
line .. 227
speed ... 227
autobaud .. 228
exec-timeout ... 229
show line .. 230

15 Bonjour Commands .. 232
bonjour enable ... 232
bonjour interface range .. 232
show bonjour .. 233
16 Authentication, Authorization and Accounting (AAA) Commands 235
 aaa authentication login ... 235
 aaa authentication enable ... 236
 login authentication .. 238
 enable authentication ... 239
 ip http authentication .. 240
 aaa logging .. 242
 show authentication methods .. 242
 password .. 243
 enable password .. 244
 service password-recovery .. 246
 username .. 247
 show users accounts ... 248
 aaa accounting login ... 249
 aaa accounting dot1x .. 251
 show accounting ... 253
 passwords complexity enable ... 254
 passwords complexity <attributes> .. 255
 passwords aging .. 257
 show passwords configuration .. 258

17 RADIUS Commands .. 260
 radius-server host ... 260
 radius-server key .. 262
 radius-server retransmit .. 263
 radius-server source-ip ... 264
 radius-server source-ipv6 ... 265
 radius-server timeout .. 265
 radius-server deadtime ... 266
 show radius-servers .. 267
 show radius-servers key ... 268

18 TACACS+ Commands .. 269
 tacacs-server host ... 269
 tacacs-server key .. 271
 tacacs-server timeout .. 271
 tacacs-server source-ip ... 272
 show tacacs ... 273
 show tacacs key .. 274

19 Syslog Commands ... 276
 logging on .. 276
 logging host .. 277
 logging console ... 278
 logging buffered ... 279
 clear logging ... 280
 logging file .. 280
clear logging file ... 281
file-system logging .. 282
logging aggregation on .. 283
logging aggregation aging-time .. 283
show logging ... 284
show logging file ... 285
show syslog-servers ... 287

20 Remote Network Monitoring (RMON) Commands 288
show rmon statistics .. 288
rmon collection stats .. 290
show rmon collection stats .. 291
show rmon history .. 292
rmon alarm ... 295
show rmon alarm-table .. 297
show rmon alarm ... 298
rmon event ... 300
show rmon events ... 301
show rmon log ... 302
rmon table-size .. 303

21 802.1X Commands .. 305
aaa authentication dot1x .. 305
dot1x system-auth-control ... 306
dot1x port-control ... 306
dot1x reauthentication .. 308
dot1x timeout reauth-period ... 308
dot1x re-authenticate ... 309
dot1x timeout quiet-period ... 310
dot1x timeout tx-period .. 311
dot1x max-req .. 312
dot1x timeout supp-timeout .. 313
dot1x timeout server-timeout .. 314
show dot1x ... 315
show dot1x users ... 318
show dot1x statistics .. 319
clear dot1x statistics .. 321
dot1x host-mode ... 322
dot1x auth-not-req ... 323
dot1x violation-mode .. 324
dot1x guest-vlan ... 325
dot1x guest-vlan timeout .. 326
dot1x guest-vlan enable ... 327
dot1x mac-authentication .. 327
dot1x radius-attributes vlan .. 328
show dot1x advanced ... 330

22 Ethernet Configuration Commands 332
interface ... 332
interface range ... 333
shutdown ... 333
operation time ... 334
description .. 335
speed ... 336
duplex ... 337
negotiation .. 338
flowcontrol .. 339
mdix ... 340
back-pressure ... 341
port jumbo-frame ... 341
clear counters ... 342
set interface active ... 343
show interfaces configuration 343
show interfaces status ... 344
show interfaces advertise .. 345
show interfaces description 347
show interfaces counters .. 348
show ports jumbo-frame ... 351
show errdisable interfaces ... 352
storm-control broadcast enable 352
storm-control broadcast level kbps 353
storm-control broadcast level 354
storm-control include-multicast 355
show storm-control ... 356

23 PHY Diagnostics Commands ... 357
test cable-diagnostics tdr ... 357
show cable-diagnostics tdr .. 358
show cable-diagnostics cable-length 359
show fiber-ports optical-transceiver 360

24 Power over Ethernet (PoE) Commands 362
power inline .. 362
power inline .. 362
power inline powered-device 363
power inline priority ... 364
power inline usage-threshold 365
power inline traps enable .. 365
power inline limit ... 366
power inline limit-mode .. 367
show power inline .. 367
show power inline consumption 370

25 EEE Commands .. 372
ee enable (global) ... 372
ee enable (interface) .. 372
26 Green Ethernet .. 380
 green-ethernet energy-detect (global) 380
 green-ethernet energy-detect (interface) 380
 green-ethernet short-reach (global) 381
 green-ethernet short-reach (interface) 382
 green-ethernet power-meter reset 383
 show green-ethernet .. 383

27 Port Channel Commands .. 386
 channel-group .. 386
 port-channel load-balance 387
 show interfaces port-channel 387

28 Address Table Commands .. 390
 bridge multicast filtering 390
 bridge multicast mode ... 391
 bridge multicast address 393
 bridge multicast forbidden address 394
 bridge multicast ip-address 395
 bridge multicast forbidden ip-address 397
 bridge multicast source group 398
 bridge multicast forbidden source group 399
 bridge multicast ipv6 mode 400
 bridge multicast ipv6 ip-address 402
 bridge multicast ipv6 forbidden ip-address 403
 bridge multicast ipv6 source group 405
 bridge multicast ipv6 forbidden source group 406
 bridge multicast unregistered 407
 bridge multicast forward-all 408
 bridge multicast forbidden forward-all 409
 bridge unicast unknown 410
 mac address-table static 411
 clear mac address-table 413
 show bridge unicast unknown 414
 mac address-table aging-time 415
 port security ... 416
 port security mode ... 417
 port security max ... 419
 show mac address-table 420
 show mac address-table count 421
 show bridge multicast mode 422
 show bridge multicast address-table 423
 show bridge multicast address-table static 426
 show bridge multicast filtering 428
 show bridge multicast unregistered 429
30 Spanning-Tree Commands

- `spanning-tree` ... 438
- `spanning-tree mode` ... 438
- `spanning-tree forward-time` ... 439
- `spanning-tree hello-time` .. 440
- `spanning-tree max-age` ... 441
- `spanning-tree priority` .. 442
- `spanning-tree disable` .. 443
- `spanning-tree cost` .. 443
- `spanning-tree port-priority` .. 444
- `spanning-tree portfast` .. 445
- `spanning-tree link-type` .. 446
- `spanning-tree pathcost method` .. 447
- `spanning-tree bpdu (Global)` ... 448
- `spanning-tree bpdu (Interface)` .. 449
- `spanning-tree guard root` .. 450
- `spanning-tree bpduguard` .. 450
- `clear spanning-tree detected-protocols` 451
- `spanning-tree mst priority` .. 452
- `spanning-tree mst max-hops` ... 453
- `spanning-tree mst port-priority` .. 454
- `spanning-tree mst cost` ... 455
- `spanning-tree mst configuration` 456
- `instance (MST)` ... 456
- `name (MST)` ... 457
- `revision (MST)` ... 458
- `show (MST)` ... 459
- `exit (MST)` ... 460
- `abort (MST)` ... 460
- `show spanning-tree` ... 461
- `show spanning-tree bpdu` .. 462

31 Virtual Local Area Network (VLAN) Commands

- `vlan database` ... 474
- `vlan` ... 475
- `show vlan` ... 475
- `default-vlan vlan` .. 478
- `show default-vlan-membership` ... 479
- `interface vlan` ... 479
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface range vlan</td>
<td>480</td>
</tr>
<tr>
<td>name</td>
<td>481</td>
</tr>
<tr>
<td>switchport protected-port</td>
<td>482</td>
</tr>
<tr>
<td>show interfaces protected-ports</td>
<td>483</td>
</tr>
<tr>
<td>switchport mode</td>
<td>484</td>
</tr>
<tr>
<td>switchport access vlan</td>
<td>485</td>
</tr>
<tr>
<td>switchport trunk allowed vlan</td>
<td>487</td>
</tr>
<tr>
<td>switchport trunk native vlan</td>
<td>488</td>
</tr>
<tr>
<td>switchport general allowed vlan</td>
<td>490</td>
</tr>
<tr>
<td>switchport general allowed vlan</td>
<td>490</td>
</tr>
<tr>
<td>switchport general pvid</td>
<td>491</td>
</tr>
<tr>
<td>switchport general ingress-filtering disable</td>
<td>494</td>
</tr>
<tr>
<td>switchport general acceptable-frame-type</td>
<td>494</td>
</tr>
<tr>
<td>switchport customer vlan</td>
<td>495</td>
</tr>
<tr>
<td>map mac macs-group</td>
<td>496</td>
</tr>
<tr>
<td>switchport general map macs-group vlan</td>
<td>497</td>
</tr>
<tr>
<td>show vlan macs-groups</td>
<td>499</td>
</tr>
<tr>
<td>switchport forbidden default-vlan</td>
<td>499</td>
</tr>
<tr>
<td>switchport forbidden vlan</td>
<td>500</td>
</tr>
<tr>
<td>switchport default-vlan tagged</td>
<td>501</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>503</td>
</tr>
<tr>
<td>ip internal-usage-vlan</td>
<td>506</td>
</tr>
<tr>
<td>show vlan internal usage</td>
<td>507</td>
</tr>
<tr>
<td>switchport access multicast-tv vlan</td>
<td>508</td>
</tr>
<tr>
<td>switchport customer multicast-tv vlan</td>
<td>509</td>
</tr>
<tr>
<td>show vlan multicast-tv</td>
<td>510</td>
</tr>
</tbody>
</table>

32 IGMP Snooping Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping (Global)</td>
<td>511</td>
</tr>
<tr>
<td>ip igmp snooping vlan</td>
<td>511</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>512</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter interface</td>
<td>513</td>
</tr>
<tr>
<td>ip igmp snooping vlan forbidden mrouter</td>
<td>514</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>515</td>
</tr>
<tr>
<td>ip igmp snooping vlan multicast-tv</td>
<td>516</td>
</tr>
<tr>
<td>ip igmp snooping map cpe vlan</td>
<td>517</td>
</tr>
<tr>
<td>ip igmp snooping vlan querier</td>
<td>518</td>
</tr>
<tr>
<td>ip igmp snooping vlan querier address</td>
<td>519</td>
</tr>
<tr>
<td>ip igmp snooping vlan querier version</td>
<td>519</td>
</tr>
<tr>
<td>ip igmp robustness</td>
<td>520</td>
</tr>
<tr>
<td>ip igmp query-interval</td>
<td>521</td>
</tr>
<tr>
<td>ip igmp query-max-response-time</td>
<td>522</td>
</tr>
<tr>
<td>ip igmp last-member-query-count</td>
<td>523</td>
</tr>
<tr>
<td>ip igmp last-member-query-interval</td>
<td>523</td>
</tr>
<tr>
<td>ip igmp snooping vlan immediate-leave</td>
<td>524</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter</td>
<td>525</td>
</tr>
<tr>
<td>show ip igmp snooping interface</td>
<td>526</td>
</tr>
</tbody>
</table>
show ip igmp snooping groups ... 527
show ip igmp snooping multicast-tv ... 528
show ip igmp snooping cpe vlans .. 529

33 IPv6 MLD Snooping Commands .. 530
ipv6 mld snooping (Global) ... 530
ipv6 mld snooping vlan .. 530
ipv6 mld robustness .. 531
ipv6 mld snooping vlan mrouter ... 532
ipv6 mld snooping vlan mrouter ... 533
ipv6 mld snooping vlan forbidden mrouter ... 534
ipv6 mld snooping vlan static ... 535
ipv6 mld query-interval .. 536
ipv6 mld query-max-response-time ... 537
ipv6 mld last-member-query-count ... 538
ipv6 mld last-member-query-interval .. 538
ipv6 mld snooping vlan immediate-leave ... 539
show ipv6 mld snooping mrouter .. 540
show ipv6 mld snooping interface .. 541
show ipv6 mld snooping groups .. 542

34 Link Aggregation Control Protocol (LACP) Commands 544
lacp system-priority .. 544
lacp port-priority ... 544
lacp timeout .. 545
show lacp ... 546
show lacp port-channel ... 548

35 GARP VLAN Registration Protocol (GVRP) Commands 550
gvrp enable (Global) .. 550
gvrp enable (Interface) ... 550
gvrp vlan-creation-forbid ... 551
gvrp registration-forbid ... 552
clear gvrp statistics .. 552
show gvrp configuration ... 553
show gvrp statistics .. 554
show gvrp error-statistics ... 555

36 DHCP Snooping and ARP Inspection Commands 557
ip dhcp snooping ... 557
ip dhcp snooping vlan .. 558
ip dhcp snooping trust ... 558
ip dhcp snooping information option allowed-untrusted ... 559
ip dhcp snooping verify .. 560
ip dhcp snooping database .. 561
ip dhcp snooping database update-freq ... 561
ip dhcp snooping binding ... 562
clear ip dhcp snooping database .. 563
37 IP Addressing Commands ... 584

ip address ... 584
ip address dhcp ... 585
renew dhcp ... 587
ip default-gateway .. 588
show ip interface ... 588
arp ... 589
arp timeout (Global) .. 590
ip arp proxy disable .. 591
ip proxy-arp ... 592
clear arp-cache ... 593
show arp .. 593
show arp configuration ... 594
interface ip .. 595
ip helper-address ... 596
show ip helper-address .. 598
ip domain lookup ... 598
ip domain name .. 599
ip name-server ... 600
ip host .. 601
clear host .. 602
clear host dhcp .. 602
show hosts ... 603
38 IPv6 Addressing Commands ... 605
ipv6 enable ... 605
ipv6 address autoconfig ... 606
ipv6 icmp error-interval ... 607
show ipv6 icmp error-interval 608
ipv6 address ... 608
ipv6 address link-local ... 610
ipv6 unreachable ... 611
ipv6 default-gateway .. 612
show ipv6 interface .. 613
show IPv6 route .. 615
ipv6 nd dad attempts ... 615
ipv6 host ... 617
ipv6 neighbor .. 618
ipv6 set mtu ... 619
show ipv6 neighbors ... 620
clear ipv6 neighbors ... 621

39 Tunnel Commands ... 623
interface tunnel .. 623
tunnel mode ipv6ip ... 623
tunnel isatap router .. 624
tunnel source .. 625
tunnel isatap query-interval 626
tunnel isatap solicitation-interval 627
tunnel isatap robustness .. 628
tunnel isatap router .. 629
show ipv6 tunnel .. 629

40 DHCP Relay Commands ... 631
ip dhcp relay enable (Global) 631
ip dhcp relay enable (Interface) 631
ip dhcp relay address (Global) 632
ip dhcp relay address (Interface) 633
show ip dhcp relay .. 634
ip dhcp information option 637
show ip dhcp information option 637

41 IP Routing Protocol-Independent Commands 639
ip route ... 639
show ip route ... 640

42 ACL Commands .. 643
ip access-list (IP extended) 643
permit (IP) .. 644
deny (IP) ... 646
ipv6 access-list (IPv6 extended) 649
permit (IPv6) .. 650
43 Quality of Service (QoS) Commands... 667

deny (IPv6) .. 652
mac access-list .. 654
permit (MAC) .. 655
deny (MAC) ... 657
service-acl input .. 658
time-range ... 659
absolute .. 661
periodic ... 662
show time-range ... 663
show access-lists .. 664
show interfaces access-lists 665

qos .. 667
qos advanced-mode trust 668
show qos .. 669
class-map .. 670
show class-map .. 672
match .. 672
policy-map ... 673
class .. 674
show policy-map .. 675
trust ... 676
set ... 678
police .. 679
service-policy .. 680
qos aggregate-policer 681
show qos aggregate-policer 683
police aggregate ... 683
wrr-queue cos-map .. 684
wrr-queue bandwidth 686
priority-queue out num-of-queues 687
traffic-shape .. 688
traffic-shape queue .. 689
rate-limit (Ethernet) 690
rate-limit (VLAN) ... 691
qos wrr-queue wrtd ... 692
show qos wrr-queue wrtd 692
show qos interface .. 693
wrr-queue ... 696
qos wrr-queue threshold 697
qos map policed-dscp 698
qos map dscp-queue .. 699
qos map dscp-dp .. 700
qos trust (Global) .. 701
qos trust (Interface) .. 702
qos cos ... 703
44 Voice VLAN Commands ... 727
 voice vlan state ... 727
 voice vlan refresh ... 729
 voice vlan id ... 731
 voice vlan vpt ... 732
 voice vlan dscp ... 733
 voice vlan oui-table ... 734
 voice vlan cos mode .. 735
 voice vlan cos ... 736
 voice vlan aging-timeout .. 737
 voice vlan enable ... 737
 show voice vlan ... 738
 show voice vlan local .. 742

45 Smartport Commands ... 745
 macro auto (Global) ... 745
 macro auto smartport (Interface) 746
 macro auto trunk refresh ... 747
 macro auto resume ... 748
 macro auto persistent .. 749
 macro auto smartport type ... 750
 macro auto processing cdp ... 752
 macro auto processing lldp ... 753
 macro auto processing type .. 754
 macro auto user smartport macro 755
46 Link Layer Discovery Protocol (LLDP) Commands

lldp run .. 767
lldp transmit ... 767
lldp receive ... 768
lldp timer .. 769
lldp hold-multiplier .. 770
lldp reinit ... 771
lldp tx-delay ... 771
lldp optional-tlv .. 772
lldp optional-tlv 802.1 ... 773
lldp management-address .. 774
lldp notifications .. 776
lldp notifications interval .. 776
lldp lldpdu .. 777
lldp med .. 778
lldp med notifications topology-change 779
lldp med fast-start repeat-count 780
lldp med network-policy (global) 781
lldp med network-policy (interface) 782
lldp med network-policy voice auto 783
clear lldp table .. 784
lldp med location .. 785
show lldp configuration .. 786
show lldp med configuration 789
show lldp local tlv-overloading 790
show lldp local ... 791
show lldp statistics ... 793
show lldp neighbors ... 795

47 CDP Commands .. 801
cdp run .. 801
cdp enable .. 802
cdp pdu .. 802
cdp advertise-v2 ... 803
cdp appliance-tlv enable .. 804
cdp mandatory-tlv validation 805
cdp source-interface ... 806
48 SSD Commands

ssd config ... 826
passphrase ... 826
ssd rule ... 827
show SSD ... 830
ssd session read .. 831
show ssd session .. 832
ssd file passphrase control .. 833
ssd file integrity control ... 834
Introduction

The CLI is divided into various command modes. Each mode includes a group of commands. These modes are described in CLI Command Modes.

Users are assigned privilege levels. Each user privilege level can access specific CLI modes. User levels are described in the section below.

User (Privilege) Levels

Users can be created with one of the following user levels:

- **Level 1** — Users with this level can only run User EXEC mode commands. Users at this level cannot access the web GUI or commands in the Privileged EXEC mode.

- **Level 7** — Users with this level can run commands in the User EXEC mode and a subset of commands in the Privileged EXEC mode. Users at this level cannot access the web GUI.

- **Level 15** — Users with this level can run all commands. Only users at this level can access the web GUI.

A system administrator (user with level 15) can create passwords that allow a lower level user to temporarily become a higher level user. For example, the user may go from level 1 to level 7, level 1 to 15, or level 7 to level 15.

The passwords for each level are set (by an administrator) using the following command:

```
enable password [level privilege-level] {password | encrypted
encrypted-password}
```

Using these passwords, you can raise your user level by entering the command: enable and the password for level 7 or 15. You can go from level 1 to level 7 or directly to level 15. The higher level holds only for the current session.

The disable command returns the user to a lower level.

To create a user and assign it a user level, use the username command. Only users with command level 15, can create users at this level.
Example 1—Create passwords for level 7 and 15 (by the administrator):

```
switchxxxxxx#configure
switchxxxxxx<conf># enable password level 7 level7@abc
switchxxxxxx<conf># enable password level 15 level15@abc
switchxxxxxx<conf>#
```

Example 2—Create a user with user level 1:
```
switchxxxxxx#configure
switchxxxxxx<conf> username john password john1234 privilege 1
switchxxxxxx<conf>
```

Example 3—Switch between Level 1 to Level 15. The user must know the password:
```
switchxxxxxx#
switchxxxxxx# enable
Enter Password: ****** (this is the password for level 15 - level15@abc)
switchxxxxxx#
```

NOTE
If authentication of passwords is performed on RADIUS or TACACS+ servers, the passwords assigned to user level 7 and user level 15 must be configured on the external server and associated with the $enable7$ and $enable15$ user names, respectively. See the Authentication, Authorization and Accounting (AAA) Commands chapter for details.

CLI Command Modes

The CLI is divided into four command modes. The command modes are (in the order in which they are accessed):

- User EXEC mode
- Privileged EXEC mode
Each command mode has its own unique console prompt and set of CLI commands. Entering a question mark at the console prompt displays a list of available commands for the current mode and for the level of the user. Specific commands are used to switch from one mode to another.

Users are assigned privilege levels that determine the modes and commands available to them. User levels are described in User (Privilege) Levels.

User EXEC Mode

Users with level 1 initially log into User EXEC mode. User EXEC mode is used for tasks that do not change the configuration, such as performing basic tests and listing system information.

The user-level prompt consists of the switch host name followed by a #. The default host name is `switchxxxxxx` where `xxxxxx` is the last six digits of the device’s MAC address, as shown below:

```
switchxxxxxx#
```

The default host name can be changed via the `hostname` command in Global Configuration mode.

Privileged EXEC Mode

A user with level 7 or 15 automatically logs into Privileged EXEC mode.

Users with level 1 can enter Privileged Exec mode by entering the `enable` command, and when prompted, the password for level 15.

To return from the Privileged EXEC mode to the User EXEC mode, use the `disable` command.

Global Configuration Mode

The Global Configuration mode is used to run commands that configure features at the system level, as opposed to the interface level.

Only users with command level of 7 or 15 can access this mode.
To access Global Configuration mode from Privileged EXEC mode, enter the `configure` command at the Privileged EXEC mode prompt and press Enter. The Global Configuration mode prompt, consisting of the device host name followed by `(config)#`, is displayed:

`switchxxxxxxxx (config)#`

Use any of the following commands to return from Global Configuration mode to the Privileged EXEC mode:

- `exit`
- `end`
- `Ctrl+Z`

The following example shows how to access Global Configuration mode and return to Privileged EXEC mode:

```
switchxxxxxxxx#
switchxxxxxxxx# configure
switchxxxxxxxx (config)# exit
switchxxxxxxxx#
```

Interface or Line Configuration Modes

Various submodes may be entered from Global Configuration mode. These submodes enable performing commands on a group of interfaces or lines.

For instance to perform several operations on a specific port or range of ports, you can enter the Interface Configuration mode for that interface.

The following example enters Interface Configuration mode for ports gi1-5 and then sets their speed:
The exit command returns to Global Configuration mode.

The following submodes are available:

- **Interface** — Contains commands that configure a specific interface (port, VLAN, port channel, or tunnel) or range of interfaces. The Global Configuration mode command interface is used to enter the Interface Configuration mode. The `interface` Global Configuration command is used to enter this mode.

- **Line Interface** — Contains commands used to configure the management connections for the console, Telnet and SSH. These include commands such as line timeout settings, etc. The `line` Global Configuration command is used to enter the Line Configuration command mode.

- **VLAN Database** — Contains commands used to configure a VLAN as a whole. The `vlan database` Global Configuration mode command is used to enter the VLAN Database Interface Configuration mode.

- **Management Access List** — Contains commands used to define management access-lists. The `management access-list` Global Configuration mode command is used to enter the Management Access List Configuration mode.

- **Port Channel** — Contains commands used to configure port-channels; for example, assigning ports to a port-channel. Most of these commands are the same as the commands in the Ethernet interface mode, and are used to manage the member ports as a single entity. The `interface port-channel` Global Configuration mode command is used to enter the Port Channel Interface Configuration mode.

- **QoS** — Contains commands related to service definitions. The `qos` Global Configuration mode command is used to enter the QoS services configuration mode.
• **MAC Access-List** — Configures conditions required to allow traffic based on MAC addresses. The `mac access-list` Global Configuration mode command is used to enter the MAC access-list configuration mode.

To return from any Interface Configuration mode to the Global Configuration mode, use the `exit` command.

Accessing the CLI

The CLI can be accessed from a terminal or computer by performing one of the following tasks:

- Running a terminal application, such as HyperTerminal, on a computer that is directly connected to the switch’s console port,

 — or —

- Running a Telnet session from a command prompt on a computer with a network connection to the switch.

- Using SSH.

NOTE
Telnet and SSH are disabled by default on the switch.

If access is via a Telnet connection, ensure that the following conditions are met before using CLI commands:

- The switch has a defined IP address.
- Corresponding management access is granted.
- There is an IP path such that the computer and the switch can reach each other.

Using HyperTerminal over the Console Interface

NOTE
When using HyperTerminal with Microsoft® Windows® 2000, ensure that Windows® 2000 Service Pack 2 or later is installed on your computer. The arrow keys will not function properly using HyperTerminal's VT100 emulation in Windows® 2000 prior to Service Pack 2. For information on Windows® 2000 service packs, go to www.microsoft.com.
The switch’s RS-232 serial console port provides a direct connection to a computer’s serial port using a standard DB-9 null-modem or crossover cable. Once the computer and switch are connected, run a terminal application to access the CLI.

To access the CLI using the HyperTerminal application, perform the following steps:

STEP 1 Click the **Start** button.

STEP 2 Select All Programs > Accessories > Communications > HyperTerminal.

STEP 3 Enter a name for this connection. Select an icon for the application, then click **OK**.

STEP 4 Select a port to communicate with the switch. Select **COM1** or **COM2**.

STEP 5 Set the serial port settings, then click **OK**.

STEP 6 When the CLI appears, enter **cisco** at the **User Name** prompt and press **Enter**.

The `switchxxxxxx#` prompt is displayed. You can now enter CLI commands to manage the switch. For detailed information on CLI commands, refer to the appropriate chapter(s) of this reference guide.

Using Telnet over an Ethernet Interface

Telnet provides a method of connecting to the CLI over an IP network.

To establish a telnet session from the command prompt, perform the following steps:
STEP 1 Click Start, then select All Programs > Accessories > Command Prompt to open a command prompt.

Figure 2 Start > All Programs > Accessories > Command Prompt

STEP 2 At the prompt, enter telnet 1<IP address of switch>, then press Enter.

Figure 3 Command Prompt

STEP 3 The CLI prompt is displayed.

CLI Command Conventions

When entering commands there are certain command entry standards that apply to all commands. The following table describes the command conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>In a command line, square brackets indicate an optional entry.</td>
</tr>
<tr>
<td>{ }</td>
<td>In a command line, curly brackets indicate a selection of compulsory parameters separated the</td>
</tr>
<tr>
<td>parameter</td>
<td>Italic text indicates a parameter.</td>
</tr>
</tbody>
</table>
Editing Features

Entering Commands

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command `show interfaces status Gigabitethernet 1`, `show`, `interfaces` and `status` are keywords, `Gigabitethernet` is an argument that specifies the interface type, and `1` specifies the port.

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
switchxxxxxx(config)# username admin password alansmith
```

When working with the CLI, the command options are not displayed. The standard command to request help is `?`.

There are two instances where help information can be displayed:

- **Keyword lookup** — The character `?` is entered in place of a command. A list of all valid commands and corresponding help messages are displayed.
• Partial keyword lookup — If a command is incomplete and or the character ? is entered in place of a parameter, the matched keyword or parameters for this command are displayed.

To assist in using the CLI, there is an assortment of editing features. The following features are described:

- Terminal Command Buffer
- Command Completion
- Interface Naming Conventions
- Keyboard Shortcuts

Terminal Command Buffer

Every time a command is entered in the CLI, it is recorded on an internally managed Command History buffer. Commands stored in the buffer are maintained on a First In First Out (FIFO) basis. These commands can be recalled, reviewed, modified, and reissued. This buffer is not preserved across device resets.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-Arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td></td>
</tr>
<tr>
<td>Down-Arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with the up-arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
</tbody>
</table>

By default, the history buffer system is enabled, but it can be disabled at any time. For more information on enabling or disabling the history buffer, refer to the `history` command.

There is a standard default number of commands that are stored in the buffer. The standard number of 10 commands can be increased to 216. By configuring 0, the effect is the same as disabling the history buffer system. For more information on configuring the command history buffer, refer to the `history size` command.

To display the history buffer, refer to the `show history` command.
Negating the Effect of Commands

For many configuration commands, the prefix keyword `no` can be entered to cancel the effect of a command or reset the configuration to the default value. This Reference Guide provides a description of the negation effect for each CLI command.

Command Completion

If the command entered is incomplete, invalid or has missing or invalid parameters, then the appropriate error message is displayed. This assists in entering the correct command. By pressing Tab after an incomplete command is entered, the system attempts to identify and complete the command. If the characters already entered are not sufficient for the system to identify a single matching command, press ? to display the available commands matching the characters already entered.

Keyboard Shortcuts

The CLI has a range of keyboard shortcuts to assist in editing the CLI commands. The following table describes the CLI shortcuts.

<table>
<thead>
<tr>
<th>Keyboard Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-arrow</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-arrow</td>
<td>Returns the most recent commands from the history buffer after recalling commands with the up arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+Z / End</td>
<td>Returns back to the Privileged EXEC mode from any configuration mode.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Deletes one character left to the cursor position.</td>
</tr>
</tbody>
</table>
Copying and Pasting Text

Up to 1000 lines of text (or commands) can be copied and pasted into the device.

NOTE It is the user’s responsibility to ensure that the text copied into the device consists of legal commands only.

When copying and pasting commands from a configuration file, ensure that the following conditions exist:

- A device configuration mode has been accessed.
- The commands contain no encrypted data, like encrypted passwords or keys. Encrypted data cannot be copied and pasted into the device except for encrypted passwords where the keyword encrypted is used before the encrypted data (for instance in the `enable password` command).

InterfaceNaming Conventions

Interface ID

Within the CLI, interfaces are denoted by concatenating the following elements:

- **Type of interface**: The following types of interfaces are found on the various types of devices:
 - **GigabitEthernet ports (10/100/1000 bits)** — This can be written as either `GigabitEthernet` or `gi` or `GE`.
 - **LAG (Port Channel)** — This can be written as either `Port-Channel` or `po`.
 - **VLAN** — This is written as `VLAN`
 - **Tunnel** — This is written as `tunnel` or `tu`

- **Interface Number**: Port, LAG, tunnel or VLAN ID
Sample of these various options are shown in the example below.

Interface Range

Interfaces may be described on an individual basis or within a range. The interface range command has the following syntax:

```
<interface-range> ::= {<port-type>[/<first-port-number>
[ - <last-port-number>] |
port-channel<first-port-channel-number>
[ - <last-port-channel-number>] |
tunnel<first-tunnel-number>[ - <last-tunnel-number>] |
vlan<first-vlan-id>[ - <last-vlan-id>]}
```

Up to five ranges can be included.

NOTE Range lists can contain either ports and port-channels or VLANs. Combinations of port/port-channels and VLANs are not allowed.

When a range list is defined, a space after the first entry and before the comma (,) must be entered. The space after the command is optional.

A sample of this command is shown in the example below:

```
console#configure
console(config-if)#interface range gi1-5 , vlan 1-2
```

IPv6z Address Conventions

The following describes how to write an IPv6z address, which is a link-local IPv6 address.

The format is: `<ipv6-link-local-address>%<egress-interface>`

where:

```
egress-interface (also known as zone) = vlan<vlan-id> | po<number> |
tunnel<number> | port<number> | 0
```

If the egress interface is not specified, the default interface is selected. Specifying egress interface = 0 is equal to not defining an egress interface.
The following combinations are possible:

- `ipv6_address%egress-interface` - Refers to the IPv6 address on the interface specified.
- `ipv6_address%0` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- `ipv6_address` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.

System Modes

The default mode is Switch (Layer 2) system mode. To change the system mode of the switch to Router (Layer 3), use the `set system mode` command.

This command performs a system reboot.

In Switch system mode, the switch forwards packets as a VLAN-aware bridge. In Router system mode, the switch performs both IPv4 routing and VLAN-aware bridging.

If Router system mode is selected, a single IP address is supported on the default VLAN. The user also must configure a default gateway.

If Router system mode is selected, the user can manage the device on any IP interface configured on the device, as long as a default route is configured. In Router system mode, the switch routes traffic between IP VLANs, and bridges traffic with VLANs.

When the switch operates in Router system mode, the following features are not supported:

- Protocol-based VLANs
- MAC-based VLANs
- VLAN Rate Limit
- DVA, Multicast TV VLAN
- Per flow policing
User Interface Commands

2.1 enable

The enable EXEC mode command enters the Privileged EXEC mode.

Syntax

`enable [privilege-level]`

Parameters

`privilege-level`—Specifies the privilege level at which to enter the system. (Range: 1, 7, 15)

Default Configuration

The default privilege level is 15.

Command Mode

EXEC mode

Example

The following example enters privilege level 7.

```
switchxxxxxx# enable 7
enter password:**********
switchxxxxxx#Accepted
```

The following example enters privilege level 15.

```
switchxxxxxx# enable
enter password:**********
switchxxxxxx#Accepted
```
2.2 disable

The disable Privileged EXEC mode command leaves the Privileged EXEC mode and returns to the User EXEC mode.

Syntax

disable [privilege-level]

Parameters

privilege-level—Reduces the privilege level to the specified privileged level. If privilege level is left blank, the level is reduce to 1.

Default Configuration

The default privilege level is 1.

Command Mode

Privileged EXEC mode

Example

The following example returns the user to user level 7.

switchxxxxxx# disable 7
switchxxxxxx#

2.3 login

The login EXEC mode command enables changing the user that is logged in. When this command is logged in, the user is prompted for a username/password.

Syntax

login

Parameters

N/A
Default Configuration
N/A

Command Mode
EXEC mode

Example
The following example enters Privileged EXEC mode and logs in with the required username ‘bob’.

```
switchxxxxxx# login
User Name:bob
Password:*****
switchxxxxxx#
```

2.4 configure

The `configure` Privileged EXEC mode command enters the Global Configuration mode.

Syntax
```
configure [terminal]
```

Parameters
```
terminal—Enter the Global Configuration mode with or without the keyword terminal.
```

Command Mode
Privileged EXEC mode

Example
The following example enters Global Configuration mode.

```
switchxxxxxx# configure
switchxxxxxx(config)#
```
2.5 exit (Configuration)

The `exit` command exits any mode and brings the user to the next higher mode in the CLI mode hierarchy.

Syntax

```
exit
```

Parameters

N/A

Default Configuration

N/A

Command Mode

All.

Examples

The following examples change the configuration mode from Interface Configuration mode to Privileged EXEC mode.

```
switchxxxxxxx(config-if)# exit
switchxxxxxxx(config)# exit
```

2.6 exit (EXEC)

The `exit` EXEC mode command closes an active terminal session by logging off the device.

Syntax

```
exit
```

Parameters

N/A
2.7 end

The `end` command ends the current configuration session and returns to the Privileged EXEC mode.

Syntax

`end`

Parameters

N/A

Default Configuration

N/A

Command Mode

All

Example

The following example ends the Global Configuration mode session and returns to the Privileged EXEC mode.

```
switchxxxxxxx(config)# end
switchxxxxxxx#
```
2.8 help

The help command displays a brief description of the Help system.

Syntax

```
help
```

Parameters

N/A

Default Configuration

N/A

Command Mode

All

Example

The following example describes the Help system.

```
switchxxxxxx# help
```

Help may be requested at any point in a command by entering a question mark `?`. If nothing matches the currently entered incomplete command, the help list is empty. This indicates that there is no command matching the input as it currently appears. If the request is within a command, press the Backspace key and erase the entered characters to a point where the request results in a match.

Help is provided when:

1. There is a valid command and a help request is made for entering a parameter or argument (e.g. 'show ?'). All possible parameters or arguments for the entered command are then displayed.

2. An abbreviated argument is entered and a help request is made for arguments matching the input (e.g. 'show pr?').
2.9 history

The `history` Line Configuration mode command enables saving commands that have been entered. Use the `no` form of this command to disable the command.

Syntax

`history`

`no history`

Parameters

N/A

Default Configuration

Enabled.

Command Mode

Line Configuration mode

User Guidelines

This command enables saving user-entered commands for a specified line. You can return to previous lines by using the up or down arrows.

It is effective from the next time that the user logs in via console/telnet/ssh.

The following are related commands:

- Use the `terminal history size` EXEC mode command to enable or disable this command for the current terminal session.
- Use the `history size` Line Configuration mode command to set the size of the command history buffer.

Example

The following example enables the command for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history
```
2.10 history size

The history size Line Configuration mode command changes the maximum number of user commands that are saved in the history buffer for a particular line. Use the no form of this command to reset the command history buffer size to the default value.

Syntax

history size number-of-commands
no history size

Parameters

number-of-commands—Specifies the number of commands the system records in its history buffer. (Range: 10–207)

Default Configuration

The default command history buffer size is 10 commands.

Command Mode

Line Configuration mode

User Guidelines

This command configures the command history buffer size for a particular line. It is effective from the next time that the user logs in via console/telnet/ssh.

Use the terminal history size EXEC mode command to configure the command history buffer size for the current terminal session.

The allocated command history buffer is per terminal user, and is taken from a shared buffer. If there is not enough space available in the shared buffer, the command history buffer size cannot be increased above the default size.

Example

The following example changes the command history buffer size to 100 entries for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history size 100
```
2.11 terminal history

The terminal history EXEC mode command enables the command history function for the current terminal session, meaning it is not stored in the Running Configuration file. Use the no form of this command to disable the command.

Syntax

terminal history

terminal no history

Default Configuration

The default configuration for all terminal sessions is defined by the history Line Configuration mode command.

Command Mode

EXEC mode

User Guidelines

The command enables the command history for the current session. The default is determined by the history Line Configuration mode command.

This command is effective immediately.

Example

The following example disables the command history function for the current terminal session.

```
switchxxxxxx# terminal no history
```

2.12 terminal history size

The terminal history size EXEC mode command changes the command history buffer size for the current terminal session, meaning it is not stored in the Running Configuration file. Use the no form of this command to reset the command history buffer size to the default value.

Syntax

terminal history size number-of-commands
terminal no history size

Parameters

number-of-commands—Specifies the number of commands the system maintains in its history buffer. (Range: 10–207)

Default Configuration

The default configuration for all terminal sessions is defined by the `history size` Line Configuration mode command.

Command Mode

EXEC mode

User Guidelines

The `terminal history size` EXEC command changes the command history buffer size for the current terminal session. Use the `history` Line Configuration mode command to change the default history buffer size.

The maximum number of commands in all buffers is 207.

Example

The following example sets the command history buffer size to 20 commands for the current terminal session.

```
switchxxxxxx#terminal history size 20
```

2.13 terminal datadump

The `terminal datadump` EXEC mode command enables dumping all the output of a `show` command without prompting. Use the `no` form of this command to disable dumping.

Syntax

```
terminal datadump
no terminal datadump
```

Parameters

N/A
Default Configuration
When printing, dumping is disabled and printing is paused every 24 lines.

Command Mode
EXEC mode

User Guidelines
By default, a More prompt is displayed when the output contains more than 24 lines. Pressing the Enter key displays the next line; pressing the Spacebar displays the next screen of output.

The terminal datadump command enables dumping all output immediately after entering the show command by removing the pause.

The width is currently not limited (previously the limit was 77 chars), and the width of the line being printed on the terminal is based on the terminal itself.

This command is relevant only for the current session.

Example
The following example dumps all output immediately after entering a show command.

```
switchxxxxxx# terminal datadump
```

2.14 terminal width

Use the terminal width EXEC mode command to determine the width of the display for the echo input to CLI sessions and configuration files. Use terminal no width to return to the default.

The command is per session and will not be saved in the configuration database.

Syntax

```
terminal width number-of-characters
terminal no width
```
Parameters

number-of-characters - Specifies the number of characters to be displayed for the echo output of the CLI commands and the configuration file,'0' means endless number of characters on a screen line. (Range: 0, 70-512)

Default Configuration

The default number of characters is 77.

Command Mode

Privileged EXEC mode

Example

The following example sets the terminal width to 100 characters

```
switchxxxxxx# terminal width 100
```

2.15 **terminal prompt**

Use the `terminal prompt` EXEC mode command to enable the terminal prompts. Use `terminal no prompt` command to disable the terminal prompts.

The command is per session and will not be saved in the configuration database.

Syntax

```
terminal prompt
terminal no prompt
```

Parameters

N/A

Default Configuration

The default configuration is prompts enabled.

Command Mode

Privileged EXEC mode
Example

The following example disables the terminal prompts

```
switchxxxxxx# terminal no prompt
```

2.16 show history

The `show history` EXEC mode command lists commands entered in the current session.

Syntax

```
show history
```

Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC mode

User Guidelines

The buffer includes executed and unexecuted commands.

Commands are listed from the first to the most recent command.

The buffer remains unchanged when entering into and returning from configuration modes.

Example

The following example displays all the commands entered while in the current Privileged EXEC mode.

```
switchxxxxxx# show version
SW version 3.131 (date 23-Jul-2005 time 17:34:19)
HW version 1.0.0
switchxxxxxx# show clock
```
15:29:03 Jun 17 2005
switchxxxxxx# show history
show version
show clock
show history
3 commands were logged (buffer size is 10)

2.17 show privilege

The `show privilege` EXEC mode command displays the current privilege level.

Syntax

`show privilege`

Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC mode

Example

The following example displays the privilege level for the user logged on.

```
switchxxxxxx# show privilege
Current privilege level is 15
```

2.18 do

The `do` command executes an EXEC-level command from Global Configuration mode or any configuration submode.
Syntax

do command

Parameters

command—Specifies the EXEC-level command to execute.

Command Mode

All configuration modes

Example

The following example executes the show vlan Privileged EXEC mode command from Global Configuration mode.

Example

switchxxxxxx(config)# do show vlan

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>gi1-39,Po1,Po2,</td>
<td>other</td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>gi1</td>
<td>dynamicGvrp</td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>v0010</td>
<td>gi1</td>
<td>permanent</td>
<td>Not Required</td>
</tr>
<tr>
<td>11</td>
<td>V0011</td>
<td>gi1,gi3</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>gi1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>gi1,gi3</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>gi1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>gi1,gi4</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>4093</td>
<td>guest-vlan</td>
<td>gi1,gi3</td>
<td>permanent</td>
<td>Guest</td>
</tr>
</tbody>
</table>

switchxxxxxx(config)#

2.19 banner login

Use the banner login command in Global Configuration mode to specify a message to be displayed before the username and password login prompts. This banner is applied automatically on all the CLI interfaces: Console, Telnet and SSH.
and also on the WEB GUI. Use the no form of this command to delete the existing login banner.

Syntax

```
banner login d message-text d
```

```
no banner login
```

Parameters

- `d`—Delimiting character of user’s choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.

- `message-text`—Message text. The message must start on a new line. You can enter multi-line messages. You can include tokens in the form of `${token}` in the message text. Tokens are replaced with the corresponding configuration variable (see User Guidelines). The message can contain up to 1000 characters (after every 510 characters, you must press <Enter> to continue).

Default Configuration

Disabled (no Login banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

Use tokens in the form of `${token}` in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>${hostname}</code></td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td><code>${domain}</code></td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td><code>${bold}</code></td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td><code>${inverse}</code></td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
</tbody>
</table>
Use the **no banner login** Line Configuration command to disable the Login banner on a particular line or lines.

Example

The following example sets a Login banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the `token` syntax is replaced by the corresponding configuration variable.

```plaintext
switchxxxxxx(config)# banner login %
Enter TEXT message. End with the character ' %'.
You have entered $(hostname).$(domain) %
```

When the login banner is executed, the user will see the following banner:

```
You have entered host123.ourdomain.com
```

2.20 show banner

Use the **show banner** commands in EXEC mode to display the banners that have been defined.

Syntax

```
show banner login
```

Parameters

This command has no arguments or keywords.

Command Mode

EXEC mode

Examples
switchxxxxx# show banner login

Banner: Login
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
3.1 macro name

Use the macro name Global Configuration mode command to define a macro. There are two types of macros that can be defined:

- Global macros define a group of CLI commands that can be run at any time.
- Smartport macros are associated with Smartport types (Section 45 “Smartport Commands”). For each Smartport macro there must be an anti macro (a macro whose name is concatenated with no_). The anti macro reverses the action of the macro.

If a macro with this name already exists, it overrides the previously-defined one. Use the no form of this command to delete the macro definition.

Syntax

```
macro name [macro-name]
no macro name [macro-name]
```

Parameters

- macro-name—Name of the macro. Macro names are case sensitive.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

A macro is a script that contains CLI commands and is assigned a name by the user. It can contain up to 3000 characters and 200 lines.

Keywords

Macros may contain keywords (parameters). The following describes keywords:
- A macro can contain up to three keywords.
- All matching occurrences of the keyword are replaced by the corresponding value specified in macro.
- Keyword matching is case-sensitive.
- Applying a macro with keywords does not change the state of the original macro definition.

User Feedback

The behavior of a macro command requiring user feedback is the same as if the command is entered from terminal: it sends its prompt to the terminal and accepts the user reply.

Creating a Macro

Use the following guidelines to create a macro:

- Use `macro name` to create the macro with the specified name.
- Enter one macro command per line.
- Use the `@` character to end the macro.
- Use the `#` character at the beginning of a line to enter a comment in the macro.

In addition, `#` is used to identify certain preprocessor commands that can only be used within a macro. There are two possible preprocessor commands:

- **#macro key description** - Each macro can be configured with up to 3 keyword/description pairs. The keywords and descriptions are displayed in the GUI pages when the macro is displayed.

 The syntax for this preprocessor command is as follows:

  ```
  #macro key description $keyword1 description1 $keyword2 description2 $keyword3 description3
  ```

 A keyword must be prefixed with `$`.

- **#macro keywords** - This instruction enables the device to display the keywords as part of the CLI help. It accepts up to 3 keywords. The command creates a CLI help string with the keywords for the macro. The help string will be displayed if help on the macro is requested from the `macro` and `macro global` commands. The GUI also uses the keywords specified in the command as the parameter names for the macro. See
Macro Commands

Example 2 and 3 below for a description of how this command is used in the CLI.

The syntax for this preprocessor command is as follows:

```
#macro keywords $keyword1 $keyword2 $keyword3
```

where $keywordn is the name of the keyword.

Editing a Macro

Macros cannot be edited. Modify a macro by creating a new macro with the same name as the existing macro. The newer macro overwrites the existing macro.

The exceptions to this are the built-in macros and corresponding anti-macros for the Smartport feature. You cannot override a Smartport macro. To change a Smartport macro, create a new macro (my_macro) and an anti macro (no_my_macro) and associate it with the Smartport type using `macro auto user smartport macro`.

Scope of Macro

It is important to consider the scope of any user-defined macro. Because of the potential hazards of applying unintended configurations, do not change configuration modes within the macro by using commands such as `exit`, `end`, or `interface interface-id`. With a few exceptions, there are other ways of executing macros in the various configuration modes. Macros may be executed in Privileged Exec mode, Global Configuration mode, and Interface Configuration mode (when the interface is NOT a VLAN.)

Examples

Example 1 - The following example shows how to create a macro that configures the duplex mode of a port.

```
switchxxxxxx(config)# macro name dup
Enter macro commands one per line. End with the character '@'.
#macro description dup
duplex full
negotiation
@
```

Example 2 - The following example shows how to create a macro with the parameters: DUPLEX and SPEED. When the macro is run, the values of DUPLEX
and SPEED must be provided by the user. The **#macro keywords** command enables the user to receive help for the macro as shown in Example 3.

```bash
switchxxxxxx(config) # macro name duplex
Enter macro commands one per line. End with the character '@'.
duplex $DUPLEX
no negotiation
speed $SPEED
#macro keywords $DUPLEX $SPEED
@
```

Example 3 - The following example shows how to display the keywords using the help character '?' (as defined by the **#macro keywords** command above) and then run the macro on the port. The **#macro keywords** command entered in the macro definition enables the user to receive help for the macro, as shown after the words e.g. below.

```bash
switchxxxxxx(config-if)#interface gi1
switchxxxxxx(config-if)#macro apply duplex ?
   WORD <1-32> Keyword to replace with value e.g. $DUPLEX, $SPEED
   <cr>
switchxxxxxx(config-if)#macro apply duplex $DUPLEX ?
   WORD<1-32> First parameter value
   <cr>
switchxxxxxx(config-if)#macro apply duplex $DUPLEX full $SPEED ?
   WORD<1-32> Second parameter value
```

3.2 **macro**

Use the **macro apply/trace** Interface Configuration command to either:

- Apply a macro to an interface without displaying the actions being performed
- Apply a macro to the interface while displaying the actions being performed
Syntax

```
macro {apply | trace} macro-name [parameter-name1 {value}] [parameter-name2 {value}] [parameter-name3 {value}]
```

Parameters

- **apply**—Apply a macro to the specific interface.
- **trace**—Apply and trace a macro to the specific interface.
- **macro-name**—Name of the macro.
- **parameter-name value**—(Optional) For each parameter defined in the macro, specify its name and value. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameter name in the macro are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Interface Configuration mode

User Guidelines

The **macro apply** command hides the commands of the macro from the user while it is being run. The **macro trace** command displays the commands along with any errors which are generated by them as they are executed. This is used to debug the macro and find syntax or configuration errors.

When you run a macro, if a line in it fails because of a syntax or configuration error, the macro continues to apply the remaining commands to the interface.

If you apply a macro that contains parameters in its commands, the command fails if you do not provide the values for the parameters. You can use the **macro apply macro-name** with a '?' to display the help string for the macro keywords (if you have defined these with the **#macro keywords** preprocessor command).

Parameter (keyword) matching is case sensitive. All matching occurrences of the parameter are replaced with the provided value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

When you apply a macro to an interface, the switch automatically generates a macro description command with the macro name. As a result, the macro name is
appended to the macro history of the interface. The `show parser macro` command displays the macro history of an interface.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When a macro is applied to an interface range, it is applied sequentially to each interface within the range. If a macro command fails on one interface, it is nonetheless attempted to be applied and may fail or succeed on the remaining interfaces.

Examples

Example 1 - The following is an example of a macro being applied to an interface with the trace option.

```plaintext
switchxxxxxx(config) # interface gi2
switchxxxxxx<config-if> # macro trace dup $DUPLEX full $SPEED 100
  Applying command... ‘duplex full’
  Applying command... ‘speed 100’
switchxxxxxx<config-if> #
```

Example 2 - The following is an example of a macro being applied without the trace option.

```plaintext
switchxxxxxx(config) # interface gi2
switchxxxxxx<config-if> # macro apply dup $DUPLEX full $SPEED 100
switchxxxxxx<config-if> #
```

Example 3 - The following is an example of an incorrect macro being applied.

```plaintext
switchxxxxxx(config-if)#macro trace dup
Applying command...‘duplex full’
Applying command...‘speed auto’
% bad parameter value
```

3.3 macro description

Use the `macro description` Interface Configuration mode command to append a description, for example, a macro name, to the macro history of an interface. Use the `no` form of this command to clear the macro history of an interface. When the
macro is applied to an interface, the switch automatically generates a macro
description command with the macro name. As a result, the name of the macro is
appended to the macro history of the interface.

Syntax

```
macro description text
no macro description
```

Parameters

text—Description text. The text can contain up to 160 characters. The text must be
double quoted if it contains multiple words.

Default Configuration

The command has no default setting.

Command Mode

Interface Configuration mode

User Guidelines

When multiple macros are applied on a single interface, the description text is a
concatenation of texts from a number of previously-applied macros.

To verify the settings created by this command, run `show parser macro`.

Example

```
switchxxxxxx(config)#interface gi2
switchxxxxxx(config-if)#macro apply dup
switchxxxxxx(config-if)#exit
switchxxxxxx(config)#interface gi3
switchxxxxxx(config-if)#macro apply duplex $DUPLEX full $SPEED 100
switchxxxxxx(config-if)#macro description dup
switchxxxxxx(config-if)#macro description duplex
switchxxxxxx(config-if)#end
switchxxxxxx#show parser macro
```

Global Macro(s):
3.4 \textbf{macro global}

Use the \texttt{macro global} Global Configuration command to apply a macro to a switch (with or without the trace option).

\textbf{Syntax}

\begin{verbatim}
macro global \{apply | trace\} macro-name [parameter-name1 {value}] [parameter-name2 {value}] [parameter-name3 {value}]
\end{verbatim}

\textbf{Parameters}

- \texttt{apply}—Apply a macro to the switch.
- \texttt{trace}—Apply and trace a macro to the switch.
- \texttt{macro-name}—Specify the name of the macro.
- \texttt{parameter-name value}—(Optional) Specify the parameter values required for the switch. You can enter up to three parameter-value pairs. Parameter
keyword matching is case sensitive. All matching occurrences of the parameters are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode

User Guidelines

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

If you apply a macro that contains keywords in its commands, the command fails if you do not specify the proper values for the keywords when you apply the macro. You can use this command with a '?' to display the help string for the macro keywords. You define the keywords in the help string using the preprocessor command `#macro keywords` when you define a macro.

When you apply a macro in Global Configuration mode, the switch automatically generates a global macro description command with the macro name. As a result, the macro name is appended to the global macro history. Use `show parser macro` to display the global macro history.

Example.

The following is an example of a macro being defined and then applied to the switch with the trace option.

```
switchxxxxxx(config)# macro name console-timeout
Enter macro commands one per line. End with the character '@'.
line console
exec-timeout $timeout-interval
@
switchxxxxxx(config)# macro global trace console-timeout $timeout-interval 100
```
3.5 macro global description

Use the **macro global description** Global Configuration command to enter a description which is used to indicate which macros have been applied to the switch. Use the **no** form of this command to remove the description.

Syntax

```
macro global description text
no macro global description
```

Parameters

- `text`—Description text. The text can contain up to 160 characters.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode

User Guidelines

When multiple global macros are applied to a switch, the global description text is a concatenation of texts from a number of previously applied macros.

You can verify your settings by entering the `show parser macro description` privileged EXEC mode command.

Examples

```
switchxxxxxx(conf)# macro global description "set console timeout interval"
```
3.6 show parser macro

Use the show parser macro User EXEC mode command to display the parameters for all configured macros or for one macro on the switch.

Syntax

show parser macro [{brief | description [interface interface-id | detailed] | name macro-name}]

Parameters

- **brief**—Display the name of all macros.
- **description [interface interface-id]**—Display the macro descriptions for all interfaces or if an interface is specified, display the macro descriptions for that interface.
- **name macro-name**—Display information about a single macro identified by the macro name.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display description of all macros on present ports. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Examples

Example 1 - This is a partial output example from the show parser macro command.

```
switchxxxxxx#  show parser macro
Total number of macros = 6

Macro name : cisco-global
Macro type : default global
```
Enable dynamic port error recovery for link state failures

<output truncated>

Macro name : cisco-desktop

Macro type : default interface

macro keywords $AVID

Basic interface - Enable data VLAN only

Recommended value for access vlan (AVID) should not be 1

switchport access vlan $AVID

switchport mode access

<output truncated>

Example 2 - This is an example of output from the show parser macro name command.

switchxxxxxx# show parser macro standard-switch10

Macro name : standard-switch10

Macro type : customizable

macro description standard-switch10

Trust QoS settings on VOIP packets

auto qos voip trust

Allow port channels to be automatically formed

channel-protocol pagp

Example 3 - This is an example of output from the show parser macro brief command.

switchxxxxxx# show parser macro brief

default global : cisco-global

default interface: cisco-desktop
default interface: cisco-phone
default interface: cisco-switch
default interface: cisco-router
customizable : snmp

This is an example of output from the `show parser macro description` command.

```
switchxxxxxx#  show parser macro description
Global Macro(s): cisco-global
```

Example 4 - This is an example of output from the `show parser macro description interface` command.

```
switchxxxxxx#  show parser macro description interface gi2
Interface Macro Description
------------------------------------------------------------
gi2 this is test macro
------------------------------------------------------------
```
RSA and Certificate Commands

Keys and Certificates

The device automatically generates default RSA/DSA keys and certificates at following times:

- When the device is booted following a software upgrade.
- When the device is booted with an empty configuration.
- When user-defined keys/certificates are deleted.

Some commands in this section are used to generate user-defined RSA/DSA keys and certificates that replace the default keys and are used by SSL and SSH server commands. Other commands can be used to import these keys from an external source.

These keys and certificates are stored in the configuration files.

Table 2 describes when these keys/certificates are displayed.

Table 1: Keys Displayed with Show Commands

<table>
<thead>
<tr>
<th>File Type Being Displayed</th>
<th>What is Displayed in a Show Command Without Detailed</th>
<th>What is Displayed in a Show Command With Detailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined keys/certificates.</td>
<td>Option is not supported.</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user-defined)</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, mirror config. file or remote backup config. file)</td>
<td>Keys are displayed as they were copied. There is no distinction here between default and user-defined keys.</td>
<td>Option is not supported.</td>
</tr>
</tbody>
</table>
Table 3 describes how keys/certificates can be copied from one type of configuration file to another (using the `copy` command).

Table 2: Copying Keys/Certificates

<table>
<thead>
<tr>
<th>Destination File Type</th>
<th>Copy from Running Config.</th>
<th>Copy from Startup Config.</th>
<th>Copy from Remote/Local Backup Config. File or Mirror Config. File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config.</td>
<td>All keys/certificates are copied (but only user-defined ones can be displayed)</td>
<td>Option is not supported.</td>
<td>All keys/certificates present in this file are copied.</td>
</tr>
<tr>
<td>Running Config</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied.</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, mirror config. file or remote backup config. file)</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied.</td>
</tr>
</tbody>
</table>

1. If the Running Configuration file on the device contains default keys (not user-defined ones), the same default keys remain after reboot.
2. In a text-based configuration file, there is no distinction between automatically-defined, default keys and user-defined keys.

4.1 crypto key generate dsa

The `crypto key generate dsa` Global Configuration mode command generates a public and private DSA key (DSA key pair).

Syntax

crypto key generate dsa

Parameters

N/A

Default Configuration

The application creates a default key automatically.

Command Mode

Global Configuration mode
User Guidelines

DSA keys are generated in pairs - one public DSA key and one private DSA key.

If the device already has DSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.

Erasing of the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

See Keys and Certificates for information on how to display and copy this key pair.

Example

The following example generates a DSA key pair.

```
switchxxxxxx(config)# crypto key generate dsa
The SSH service is generating a private DSA key.
This may take a few minutes, depending on the key size.
.........
```

4.2 crypto key generate rsa

The crypto key generate rsa Global Configuration mode command generates RSA key pairs.

Syntax

crypto key generate rsa

Parameters

N/A

Default Configuration

The application creates a default key automatically.

Command Mode

Global Configuration mode
User Guidelines

RSA keys are generated in pairs - one public RSA key and one private RSA key. If the device already has RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

RSA keys are generated in pairs - one public RSA key and one private RSA key. If the device already has RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

See [Keys and Certificates](#) for information on how to display and copy this key pair.

Example

The following example generates RSA key pairs where a RSA key already exists.

```sh
crypto key generate rsa
```

Replace Existing RSA Key [y/n]? N

```sh
```

4.3 crypto key import

The `crypto key import` Global Configuration mode command imports the DSA/RSA key pair.

Use the no form of the command to remove the user key and generate a new default in its place.

Syntax

```sh
crypto key import {dsa | rsa}
encrypted key import {dsa | rsa}
no crypto key {dsa | rsa}
```

Parameters

N/A

Default Configuration

DSA and RSA key pairs do not exist.
Command Mode

Global Configuration mode

User Guidelines

DSA/RSA keys are imported in pairs - one public DSA/RSA key and one private DSA/RSA key.

If the device already has DSA/RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is saved in the Running Configuration file.

When using the **encrypted** key-word, the private key is imported in its encrypted form.

Example

The following example imports RSA key pairs where a RSA key already exists.

Example 1 - Import plaintext key

```
switchxxxxxx(config)# crypto key import rsa
Replace Existing RSA Key [y/n]? Y
-----BEGIN RSA PRIVATE KEY-----
MIICWQIBAAKBgQDM3fV+7nopIQ5l2sZU8gkekCzwbw0MiQF2pmarRA+IoKcs/DrEyT21NU
podlDm1tefzV8mniVo8skgffcHVx3oPsgV9WRs9sxFvPbh2m5aY9VUtSVDlmcIp0MK6L
kopUPrOPeCm6EuEwmivsCMAC714GSiLy17AxUm5qTkzT3wIBlwKBgAu06XT3rzNM3EBPvO
7pQlmE1NqKAL7QjemF2uU3FtSbd0rmLuDYTkTlE364ypY/1OGvMwTby4Wei9apQkrxe71b5
08eYGr80QrPWUnE/6FeMDqnJQeZ381WHSw5qwAvut+wO3yHyAQTG2pPas1M2VYP19HMb
YwBm43H7zjjfrAkEa8CYFRVHNLwp29wEXSGTJe4QIdk8w2SUBNTxrsqrzylo89yuyV/K8
qvzPuXO0rondozPEXd8IqBqIr+qLI6Nv9wJBApjlZmmNEa1aC+UE4/VXnWMnH0HILVod
hPgozTFJaddE/OSdgKth1FnHlrFw8yt81VPvZdwjytft3hymYRwkVkJQHSkWt+UHxO+0A
h6bR3jSt2LZ69cvOxmbhMR+63DqAFrMFMuhyVp8IxDvDp3rM5NlSW9sYPvno/11An+7T
0CQBj1duZ9Dnu2L7t+uVd3ujc3q80A7z1/t2zRdOlKN/tYV2qVQe4Zx8+/gWmqjDa/d
209bLCqvpgIkH+qsCQ3ksMwNTQv1151sf/iA0QkMrnMsBha59wo+tMfdk3/kZkTdTQT
knkRQxydFB7pB0jzbfqYL5Z1/R5HR+2r38Tc=
-----END RSA PRIVATE KEY-----
```
-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMzd9X7ueikhDmXax1TyCR6QLPBvDQyJAXamdqtED4igpyrz8NF7JPhbULSmh2UO
YywW15/NUGaaJWjyySCB9wDXHPege+yRX1Zg2zEW89uHab1pj1VS1JUMu2winQwrouSi1Q+
s49KboS4TCa+k+iWALuXgatyItiLsDFSbmpOTNFpAgEj
-----END RSA PUBLIC KEY-----

Example 2 - Import encrypted key

encrypted crypto key import rsa

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
Comment: RSA Private Key
84et9C2XUfcR1pemuGINAygnLwfkKJcDM6m2OREalHScqgLhi0wMSSYN1T1lWF2PlKEVHH
FptlaECzi17fGLclpmMwunj1+HaXBtQjPiEtbspScxqr6m1l/OEnwpFK2TrmUY0IifWk8
E/mMfx3i/2rRZLkEBea5jrA6Q62g15naRw1ZkOges+GNeibtv2YSkljr56Lur6ffT7Xu5i
KMcU2b2Nsud5yW8R/x0Cw2elqDDz/biA2gSgd6Ffn2H4V8bTC55eCkRsId2M3mbExUDz
+RQRzhjcGMByp6Hzd6z8HmSh0U+hk7DMLK9U4Sr+Pr1vyWUJ1EkOg2906aZ0Ip4tg4m4
VDy/K/G/sI5nVL0+bR8LFUXU0/U5ohBeycRUFO2fHYKZhrT1PT5Rw+Pht6/+EXKG9E+TRs
1UADM1tCrvslsB331BdvorRdd198yaA2ht2ay1TkMBq7Ubdf10+74U0qa/b+bp67wCYKe9
yen418MaYktcHJBQmF7suQZQGP34VpmOMyZcon68S/0Z77cy9ihRZx9wc11yYhJnDiYxP
dgXYhW6kCTc7j6LRUSQuxCJ9su892IWn50wdg0nLSpvfnabv2GHmmlaveL7J7J/7UcfO
61q5d4PJP67vk2L7pqHYN93lreTzPuJ1kSCLCF5uqTMbWyyQEKhDl0x35v1Gou5tky
9LqIwG4d+9edctZZageq5cgjnsZMjugoU4bn4hIreyOdHd1FUPPRxkoyhGOGnJuvxC9T9
K6BF1wBtdDQS+Gu47/0/gRoD/50q4sGkzqHsRJJ53WTOQ1lbHMMLPpwn2nXvzfGwWL/bu
Qh2ZSqRonG6MX1cP7KT7i4TPf2w2k3TGTNBvYXh600NcaTHmg1N2s50GrSYX9D9F++6nY
RfMN8CsV+9jQKQP72Ac8jUu+d72jvSwppSr032HY+IpzZ4ujkK/+X5oawZL5NknaEQTQKX
RSL55S405Np0js/pC9hg7GaVjoY2mQ7HDpSUEBDT1vOwC2skK9C6aF/Avx2XdLWeqD5
lxk7n0/mMNaiJsnK6y33LcruKj1xPNNj9k9kzRPgKQNF0brfenWKteDftjQ==
---- END SSH2 PRIVATE KEY -----

---- BEGIN SSH2 PUBLIC KEY -----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAQBiwAAAIEAvRHsKry6NKMyymb+yWEp9042vupLvYVq3ngt1sB9JH
4.4 show crypto key

The **show crypto key** Privileged EXEC mode command displays the device’s SSH private and public keys for both default and user-defined keys.

Syntax

```
show crypto key [mypubkey] [rsa | dsa]
```

Parameters

- **mypubkey**—Displays only the public key.
- **rsa**—Displays the RSA key.
- **dsa**—Displays the DSA key.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

See [Keys and Certificates](#) for information on how to display and copy these keys.

Example

The following example displays the SSH public DSA keys on the device.

```
switchxxxxxx# show crypto key mypubkey dsa
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABIAwAAAIEAzN31fu56KSEOZdrGVPIJHpa8G8NDIkB
dqZ2qOQPiKcnLPw0Xsk9tTVKaHzQ5jJbXn81QZpolaPLJIH3B1cc96D7IFf
---- END SSH2 PUBLIC KEY ----
```
4.5 crypto certificate generate

The crypto certificate generate Global Configuration mode command generates a self-signed certificate for HTTPS.

Syntax

crypto certificate number generate [key-generate length] [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country] [duration days]

Parameters

- number—Specifies the certificate number. (Range: 1–2)
- key-generate length—Regenerates SSL RSA key and specifies the SSL's RSA key length. (Range: 512–2048)

The following elements can be associated with the key. When the key is displayed, they are also displayed.

- cn common-name—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
- ou organization-unit—Specifies the organization-unit or department name. (Length: 1–64 characters)
- or organization—Specifies the organization name. (Length: 1–64 characters)
- loc location—Specifies the location or city name. (Length: 1–64 characters)
- st state—Specifies the state or province name. (Length: 1–64 characters)
- cu country—Specifies the country name. (Length: 2 characters)
• duration days—Specifies the number of days a certification is valid. (Range: 30–3650)

Default Configuration

The default SSL’s RSA key length is 1024.

If cn common-name is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

If duration days is not specified, it defaults to 365 days.

Command Mode

Global Configuration mode

User Guidelines

If the RSA key does not exist, you must use the parameter key-generate.

If both certificates 1 and 2 have been generated, use ip https certificate to activate one of them.

See Keys and Certificates for information on how to display and copy these certificates.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

Example

The following example generates a self-signed certificate for HTTPS whose length is 2048 bytes.

switchxxxxxx(config)# crypto certificate 1 generate key-generate 2048

4.6 crypto certificate request

The crypto certificate request Privileged EXEC mode command generates and displays a certificate request for HTTPS.
Syntax

crypto certificate number request [cn common- name] [ou organization-unit] [or organization] [loc location] [st state] [cu country]

Parameters

- **number**—Specifies the certificate number. (Range: 1–2)
- The following elements can be associated with the key. When the key is displayed, they are also displayed.
 - **cn common-name**—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
 - **ou organization-unit**—Specifies the organization-unit or department name. (Length: 1–64 characters)
 - **or organization**—Specifies the organization name. (Length: 1–64 characters)
 - **loc location**—Specifies the location or city name. (Length: 1–64 characters)
 - **st state**—Specifies the state or province name. (Length: 1–64 characters)
 - **cu country**—Specifies the country name. (Length: 2 characters)

Default Configuration

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

Command Mode

Privileged EXEC mode

User Guidelines

Use this command to export a certificate request to a Certification Authority. The certificate request is generated in Base64-encoded X.509 format.

Before generating a certificate request, first generate a self-signed certificate using the **crypto certificate generate** Global Configuration mode command to generate the keys. The certificate fields must be re-entered.
After receiving the certificate from the Certification Authority, use the `crypto certificate import` Global Configuration mode command to import the certificate into the device. This certificate replaces the self-signed certificate.

See **Keys and Certificates** for information on how to display and copy these certificates.

Example

The following example displays the certificate request for HTTPS.

```
switchxxxxxx# crypto certificate 1 request
-----BEGIN CERTIFICATE REQUEST-----
MIwTCCASoCAQAwYjELMAkGA1UEBhMCUCFAMwQYDVQQIExNlbnR5cGUgUmVxdWVzdCAt
EyMwYIXDVR0TAQgBgNVHRMEAQIF4gYDVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjANBg
CgYDVR0PAQH/8wDQYJKoZIhvcNAQEFBQADBgNVHSAEDjwBQgYDVR0hBAUwEASwITBj
EiMWIgYlgHBg0dAQAwJgYDVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjANBgCgYDVR0PAQH/
8wDQYJKoZIhvcNAQEFBQADBgNVHSAEDjwBQgYDVR0hBAUwEASwITBjEiMWIgYlgHBg0d
AQAwJgYDVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjANBgCgYDVR0PAQH/8wDQYJKoZIhvcNAQEF
BQADBgNVHSAEDjwBQgYDVR0hBAUwEASwITBjEiMWIgYlgHBg0dAQAwJgYDVR0TAQwH/8gSB
iGh0dHA6EA==MIIBIjANBgCgYDVR0PAQH/8wDQYJKoZIhvcNAQEFBQADBgNVHSAEDjwBQgY
DVR0hBAUwEASwITBjEiMWIgYlgHBg0dAQAwJgYDVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjAN
BgCgYDVR0PAQH/8wDQYJKoZIhvcNAQEFBQADBgNVHSAEDjwBQgYDVR0hBAUwEASwITBjEiM
WIgYlgHBg0dAQAwJgYDVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjANBgCgYDVR0PAQH/8wDQ
YJKoZIhvcNAQEFBQADBgNVHSAEDjwBQgYDVR0hBAUwEASwITBjEiMWIgYlgHBg0dAQAwJgY
DVR0TAQwH/8gSBiGh0dHA6EA==MIIBIjANBgCgYDVR0PAQH/8wDQYJKoZIhvcNAQEFBQADBgn
-----END CERTIFICATE REQUEST-----
```

4.7 **crypto certificate import**

The `crypto certificate import` Global Configuration mode command imports a certificate signed by a Certification Authority for HTTPS. In addition, the RSA key-pair can also be imported.

Use the no form of the command to delete the user-defined keys and certificate.

Syntax

```
crypto certificate number import
encrypted crypto certificate numberimport
no crypto certificate number
```
Parameters

number—Specifies the certificate number. (Range: 1–2)

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

To end the session (return to the command line to enter the next command), enter a blank line.

The imported certificate must be based on a certificate request created by the `crypto certificate request` privileged EXEC command.

If only the certificate is imported, and the public key found in the certificate does not match the device's SSL RSA key, the command fails. If both the public key and the certificate are imported, and the public key found in the certificate does not match the imported RSA key, the command fails.

This command is saved in the Running configuration file.

When using the encrypted form of the command, only the private key must be in encrypted format.

See `Keys and Certificates` for information on how to display and copy these certificates.

Examples

Example 1 - The following example imports a certificate signed by the Certification Authority for HTTPS.

```
switchxxxxxx(config)# crypto certificate 1 import
```

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

```
-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQowCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMBIDEVMBMGA1UEAxMMMTAuNS4yMzQuMjA5MQowCAYDVQQKEwEgMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDK+beogIcke73sBSL7tC2DMZrY
```
Example 2: The following example imports a certificate signed by the Certification Authority for HTTPS, and the RSA key-pair.

switchxxxxxxx(config)# crypto certificate 1 import

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

-----BEGIN RSA PRIVATE KEY-----

-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788
RSA and Certificate Commands

ZXjmd9tTJ2mhekoQf1dxU2bfYkRysK70ps8u7BtgpRfSRUr7gOLfzhzMuswoD8nB65pkCq1?y2nBeRS0zrUDgHLLRfzwjwxmjobXyfGMLp4=
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDK+beogIcke73sBSL7tC2DMZrYOOg9XMIAxf0iqLLQJHd4xf+PHGZWwfjkkJ徒弟Bp2n52LxdDu1KrpB/h0+TZP0Fv387mIDqtnero1NLwXkkVrM5LPka0L/halpYxp7EWAAt5iDBzSw5s04lv0bSN7oaGjFA6t4SN2rrnDy8JbwjWQIDAQABoaAAwDQYJKoZIhvNAQEeBQAAdgYEaYQjINJst6hIXDFxe7I08d3Uyt3Mf7KE/AmUV0Pif2yUuluy/RuxRwKb/p/1Grk12tzLQz+s5Ox7Klf/ICjzbBYXLvih45ASWG3TRv2WVKyWs89rPPXu5hKxggEeTvWqpuS+gXrIqjWVWZd01fXhMacoFlg4nEmwe1zmqrXns=
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key

encrypted crypto certificate 1 import
-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
wJIjj/tFEI/33GFkT15C+SFOesSyTvnxSsfssNo9CoHJ6X9Jg1SukjtXU49kaUbTjoQVqatZAdQwqW5mnjUhrA11MM3WfrApY7HaBL3iX59jDvrf++/Q/KKhVH6Px1v6cKvYyzHg43Um
RSA and Certificate Commands

CNI2n5zf9oisMH0U6gsIsD4ysWDIzNg0VQwD7RqfKpL9wo3+YVFV6XCB7pdB71pEfe6a
GD/crN28vTLGf/NpyKocOhdAMRuQoA4qMoOoPy2Cvvy+sQLiv4ZKck1FPlsVFV7X7sh+zVa3
We84pmzyGlY980tPdBSGhJx2DNcQyTvUppFFEJYrdGKgyboqD0o3tD/ioUQ3UJgxDbGyw
allLoavSjMyIwkdPjcfbn5MVDrusI5HApCQJXWv3Myc8GQ4H6aUDN6acUBa1UhjI+REwWO
DXpJmvmX4T/u5W4DpVdELqYTHhE7xgKKNc107gRi2yyLcybUokh+SP+XugRkG4IKnn8KyHz
XeoDOjSe6OYOQww2R0nAqzn2ZPgrDzj0zTDL8qvykurfWjWa4cv1Sc1hDEFtH6H7NdDlJQ
FKPFAKvFMcmiapG+Rw0c031KBLcEpNXpFE3v1mCeyN1pPe6eSqcMxBa2VmbInutuP
CZM927oxkb41g+U50YOQXghMK70EZmtfSm1fDLOmqfvoDH2NR4l4KgqcSj9WPQeYszB+4FW
Qmyf4TF4wQdvCly+WlvEPljWPbrdCNxIS13RWucNe4rm9uf5Zuhd1FAw9f8xwSRJWuaq8q
zzFZmDMHptey9AL02a1pwp3H0pBjK1CmjdjHT94ugFK30eyeni9sQN6Y063IvuKB0nBwAS
J0sxxrvt3q6cbKJYoZmQ5E5LsgXNvQIH4BhPtoUz+LNgYWb3V5S18k8RejqB9m9aCyJsvLF
+yAI5xA2zdTPqz017FNmzhIrXvCqcCCXc+JbgP1wYTDyo0+m2H5v8Yv6sT3y7fzc9+5/Sn
VfajpTLMWFgVF9U1Qw9bA8HA7K42XE35Zr1dOeUrXQKuRxLAHkfD72hrE7udOmTi9P
W3PqtJzbtjvjMjm5/C+h0c6oLNP6q0TEn78EdfaHpMMutMFr0LeKuzizenZQ==
-------END RSA PRIVATE KEY-------
-------BEGIN RSA PUBLIC KEY-------
MIGJAoGBAMoCAK+b9HtgrEeWjdz55FoWwV8s54k5VpuRtv1e5r1zp7zkIL6mvCCXk6J9c
kkz+TMfX63b9t5RgWGPWDeW2h3q5QkaqInzz1h7j2+A++mwCS毕HbpFNFY/gmENlGq9f
puukcnoTvBNVz73VOxv6hw1UHMTpOe0+QSbe7WwVAgMBAAE=
-------END RSA PUBLIC KEY-------
-------BEGIN CERTIFICATE-------
MIICHDCAYUCEFCC14/I/dLsUUhTwxOwzbzngMwDQYJKoZIhvcNAQEEBQAwTzELMAkG
A1UEBhMCICAXCjAIbgNVbAgTaSAXCjAIbgNVbAcTaSAXEDA0BqNVbAMTBzAuMC4w
LjAxCjAIbgNVBAoTaSAXCjAIbgNVBAiTaSAXHhcNMTIwNTExMTI1NzE2W3hNCMTe
NTInMTI1NzE2W3hNCMBEBMDcGAgA1UECdMBQGQGAgA1UEBMIEQGhhiAgEixaMw
IDEQGA4GA1UEAxMHC4wLjAuMDEKMAgGA1UEcHMWMBIBMDMIEQGhhiAgEixaMw
BgcQhkiG9w0BAQEFAAOBjAgAwYkCgYEaLy9j5r5vZFOcAMR5a3N3PnWhbBXYznitl
Wm5G2/V7mvX0nuTmvqga8IJEtonLySSv5Mx9frdv231GDAY+B24MfDerlCRqoifP
FPHwPb4D76bAKw86LUGKk0Uvj+CYQ21ar+1m66Ryeh0OE2/FvPdU7q/qHDVQccmxM
475B7t7tbBUCAwEATANBgkqhkiG9w0BAQQFAAOBjQ80knnTzas7HniIMPEc5yCO
2rd7c+zzQOe1e4CpEvV1OCQGqVpa72pz+2/m+zvoFmAC5WjQngQMw8h8rNdvrfaSyE
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT

Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

4.8 show crypto certificate

The show crypto certificate Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

Syntax

show crypto certificate [mycertificate] [number]

Parameters

- number—Specifies the certificate number. (Range: 1,3)
- mycertificate—Specifies that only the certificate will be displayed

Default Configuration

Certificate number 1.

Command Mode

Privileged EXEC mode

Examples

Example 1 - The following example displays SSL certificate # 1 present on the device.

switchxxxxxx# show crypto certificate mycertificate
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Fingerprint: DC789788 DC88A988 127897BC BB789788

Certificate 2:
Certificate Source: User-Defined
-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----
Issued by: www.verisign.com
Valid from: 8/9/2004 to 8/9/2005
Subject: CN= router.gm.com, O= General Motors, C= US
Fingerprint: DC789788 DC88A988 127897BC BB789788

Example 2:
The following example displays SSL certificate #1 present on the device and the key-pair.

```
switchxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
dHmUgUm9vdCBDZXJ0aWZpZXJwXDNAbgkqhkiG9w0BAQEFAANLADBIAkEAo4H5
nnH/xQSGA2ffkRbwU2Ixb7n8VPS7m1xyJ1t1l1a1GaqchfMqge0kmfhcoHSWr
yf1FpD0MNIQtgDAIDAQABQG8IBojCCAGwEwIwY2AGCNxQCBAYeBDAEDe
CwR0PBApDAgFGMA8GA1UdEwEB/wQFMAMBaf8wHQYDVR0OBBYEFAf4MT9BRD47
ZvKBAEL9Ggp+6MIIBNgYDVR0fBIIBTCwgsSkdGg+cgcyGgcl5ZGFw0i8v
L0VByb3h5JTlUW29mdHdhcmU1MjBSb290JTlUQ2VydGlmaWYlENOFX1cnZl
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGI+kxwBuZn1A0n9Hq9IGJsnk7/f/MauGPzxt5vDf77uQ5CPF49JWquO7cvXh
20wrBhJgB69vL1UjM9p1IXFpMk8qR3NS7Jz1InYXjHKKbE2BM0sKSA6+t/5VxevKK6H
TGB7vMxi+hv1bL9zygym6+7/6QfA51c4nP/8a6NjO/2OAgvNAMKnR2Wa+7GUoAgLo/C
11EoqzpCq5m7+/8OFP5O4dUU+NlwY1Cyb1Fb7MFoaaO+y2Nw0q0pxQoDA9ENY17qsz
MwnCfXu52/IxC7fD8FWxEbkkS4v8IXqa7K6ET657xS7m8yTJFLJyVawGKnUIs6uTZgW
DkWWe0/e/vGWgP7L7vyWyw0n0PfA+7awOAd8K75bo79NBim3HcNVXhWnqfg2s3A4CRBSx
WuGoaarpH2O5s+2s7WmuN2tsS0xI4ek43d7RaoedGKLjhpQgLIHuxXHcON7Zx15CUtP3sbH1+X
B3u4EEecHtMaw5obn1vNF5ot+d5JHrWzEaRAIKf6ha34a1VJaN+2AMCbo0hpI31kreYo
A8Lk6UMOuIQamNhHf+7RyPZXPOQQs01nPjIPHEKBTi6pj39XmviyRXvSpn5+eIYPvve5jYaEn
UeOnVZRhNVCnruJAYXSLhjAp5i1Qr1J1Jb/mVt+2zq4cu9HCQfQsMNP0FrSpbHu5V4
ZX4jmd9tTJ2mhekoQf1dwU2bfYkRysK7opsu7BtpgrFsrUR7uLfh2zMuswoDSnB65pkC
q17yZnBeRSzUrUDgHLLfrzwjwmxjOoBxYfRGMLp4=
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVufqFyJLYbUzmbm6U0L3ewHYd12MXY4A3KLF2SXUdJ1TIXq84aME8D1itSF2b
CqyQ5BoINhgAobBC96VRsUe2rzoNG4QDkJ2L9ukQOvOBYNmbzHc7a+7043wFVmh+Q0Xf
TbnRDhIMVrZJGbzlC91zGkyl1121Xmicy0/rnwsXDAgEj
```
-----END RSA PUBLIC KEY-----

Issued by: www.verisign.com

Valid from: 8/9/2003 to 8/9/2004

Subject: CN= router.gm.com, O= General Motors, C= US

Finger print: DC789788 DC88A988 127897BC BB78978
5.1 ping

Use the ping EXEC mode command to send ICMP echo request packets to another node on the network.

Syntax

```
ping [ip] [ipv4-address | hostname] [size packet_size] [count packet_count] [timeout time_out]
ping ipv6 [ipv6-address | hostname] [size packet_size] [count packet_count] [timeout time_out]
```

Parameters

- **ip**—Use IPv4 to check the network connectivity.
- **ipv6**—Use IPv6 to check the network connectivity.
- **ipv4-address**—IPv4 address to ping.
- **ipv6-address**—Unicast or Multicast IPv6 address to ping. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. See IPv6z Address Conventions.
- **hostname**—Hostname to ping (Length: 1-160 characters. Maximum label size for each part of the host name: 63.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64–1518, IPv6: 68–1518)
- **count packet_count**—Number of packets to send, from 1 to 65535 packets. The default is 4 packets. If 0 is entered, it pings until stopped (0–65535).
- **time time-out**—Timeout in milliseconds to wait for each reply, from 50 to 65535 milliseconds. The default is 2000 milliseconds (50–65535).

Default Usage

N/A
Command Mode

EXEC mode

User Guidelines

Press Esc to stop pinging. Following are sample results of the ping command:

- **Destination does not respond**—If the host does not respond, a “no answer from host” appears within 10 seconds.
- **Destination unreachable**—The gateway for this destination indicates that the destination is unreachable.
- **Network or host unreachable**—The switch found no corresponding entry in the route table.

See IPv6z Address Conventions.

When using the ping ipv6 command to check network connectivity of a directly attached host using its link local address, the egress interface may be specified in the IPv6Z format. If the egress interface is not specified, the default interface is selected.

When using the ping ipv6 command with a Multicast address, the information displayed is taken from all received echo responses.

Examples

Example 1 - Ping an IP address.

```
switchxxxxxx# ping ip 10.1.1.1
Pinging 10.1.1.1 with 64 bytes of data:
64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms
---10.1.1.1 PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11
```
Example 2 - Ping a site.

```
switchxxxxx# ping ip yahoo.com
Pinging yahoo.com [66.218.71.198] with 64 bytes of data:
  64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
  64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
  64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
  64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms
----10.1.1.1 PING Statistics----
  4 packets transmitted, 4 packets received, 0% packet loss
  round-trip (ms) min/avg/max = 7/8/11
```

Example 3 - Ping an IPv6 address.

```
switchxxxxx# ping ipv6 3003::11
Pinging 3003::11 with 64 bytes of data:
  64 bytes from 3003::11: icmp_seq=1. time=0 ms
  64 bytes from 3003::11: icmp_seq=2. time=50 ms
  64 bytes from 3003::11: icmp_seq=3. time=0 ms
  64 bytes from 3003::11: icmp_seq=4. time=0 ms
----3003::11 PING Statistics----
  4 packets transmitted, 4 packets received, 0% packet loss
  round-trip (ms) min/avg/max = 0/12/50
```

```
switchxxxxx# ping ipv6 FF02::1
Pinging FF02::1 with 64 bytes of data:
  64 bytes from 3003::11: icmp_seq=1. time=0 ms
  64 bytes from 3003::33: icmp_seq=1. time=70 ms
  64 bytes from 3003::11: icmp_seq=2. time=0 ms
  64 bytes from 3003::55: icmp_seq=1. time=1050 ms
  64 bytes from 3003::33: icmp_seq=2. time=70 ms
  64 bytes from 3003::55: icmp_seq=2. time=1050 ms
  64 bytes from 3003::11: icmp_seq=3. time=0 ms
```
5.2 traceroute

To display the routes that packets will take when traveling to their destination, use the traceroute EXEC mode command.

Syntax

```
traceroute ip [ipv4-address | hostname] [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
traceroute ipv6 [ipv6-address | hostname] [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
```

Parameters

- **ip**—Use IPv4 to discover the route.
- **ipv6**—Use IPv6 to discover the route.
- **ipv4-address**—IPv4 address of the destination host.
- **ipv6-address**—IPv6 address of the destination host.
- **hostname**—Hostname of the destination host. (Length: 1-160 characters. Maximum label size for each part of the host name: 63.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64-1518, IPv6: 68-1518)
- **ttl max-ttl**—The largest TTL value that can be used. The default is 30. The traceroute command terminates when the destination is reached or when this value is reached. (Range: 1–255)
- **count packet_count**—The number of probes to be sent at each TTL level. The default count is 3. (Range: 1–10)
- **timeout** *time_out*—The number of seconds to wait for a response to a probe packet. The default is 3 seconds. (Range: 1–60)

- **source** *ip-address*—One of the interface addresses of the device to use as a source address for the probes. The device selects the optimal source address by default. (Range: Valid IP address)

- **tos** *tos*—The Type-Of-Service byte in the IP Header of the packet. (Range: 0–255)

Default Usage

N/A

Command Mode

EXEC mode

User Guidelines

The traceroute command works by taking advantage of the error messages generated by routers when a datagram exceeds its time-to-live (TTL) value.

The traceroute command starts by sending probe datagrams with a TTL value of one. This causes the first router to discard the probe datagram and send back an error message. The traceroute command sends several probes at each TTL level and displays the round-trip time for each.

The traceroute command sends out one probe at a time. Each outgoing packet can result in one or two error messages. A "time exceeded" error message indicates that an intermediate router has seen and discarded the probe. A "destination unreachable" error message indicates that the destination node has received the probe and discarded it because it could not deliver the packet. If the timer goes off before a response comes in, the traceroute command prints an asterisk (*).

The traceroute command terminates when the destination responds, when the maximum TTL is exceeded, or when the user interrupts the trace with Esc.

The traceroute command is not relevant to IPv6 link local addresses.

Example

```
switchxxxxxx# traceroute ip umaxpl.physics.lsa.umich.edu
Type Esc to abort.

Tracing the route to umaxpl.physics.lsa.umich.edu (141.211.101.64)
1 i2-gateway.stanford.edu (192.68.191.83) 0 msec 0 msec 0 msec
```
2 STAN.POS.calren2.NET (171.64.1.213) 0 msec 0 msec 0 msec
3 SUNV--STAN.POS.calren2.net (198.32.249.73) 1 msec 1 msec 1 msec
4 Abilene--QSV.POS.calren2.net (198.32.249.162) 1 msec 1 msec 1 msec
5 kscyng-snvang.abilene.ucaid.edu (198.32.8.103) 33 msec 35 msec 35 msec
6 iplsg-kscyng.abilene.ucaid.edu (198.32.8.80) 47 msec 45 msec 45 msec
7 so-0-2-0x1.aal.mich.net (192.122.183.9) 56 msec 53 msec 54 msec
8 atm1-0x24.michnet8.mich.net (198.108.23.82) 56 msec 56 msec 57 msec
9 * * *
10 A-ARB3-LSA-NG.c-SEB.umnet.umich.edu(141.211.5.22)58 msec 58msec 58 msec
11 umaxp1.physics.lsa.umich.edu (141.211.101.64) 62 msec 63 msec 63 msec
Traceroute completed

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicates the sequence number of the router in the path to the host.</td>
</tr>
<tr>
<td>i2-gateway.stanford.edu</td>
<td>Host name of this router.</td>
</tr>
<tr>
<td>192.68.191.83</td>
<td>IP address of this router.</td>
</tr>
<tr>
<td>1 msec 1 msec 1 msec</td>
<td>Round-trip time for each of the probes that are sent.</td>
</tr>
</tbody>
</table>

The following are characters that can appear in the traceroute command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output indicates that an access list is blocking traffic.</td>
</tr>
<tr>
<td>F</td>
<td>Fragmentation required and DF is set.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>R</td>
<td>Fragment reassembly time exceeded</td>
</tr>
</tbody>
</table>
5.3 telnet

The telnet EXEC mode command logs on to a host that supports Telnet.

Syntax

telnet {ip-address | hostname} [port] [keyword...]

Parameters

- **ip-address**—Specifies the destination host IPv4 address.
- **hostname**—Specifies the destination host name. (Length: 1-160 characters. Maximum label size for each part of the host name: 63.)
- **port**—Specifies the decimal TCP port number or one of the keywords listed in the Ports table in the User Guidelines.
- **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

Default Configuration

The default port is the Telnet port (23) on the host.

Command Mode

EXEC mode

User Guidelines

Telnet software supports special Telnet commands in the form of Telnet sequences that map generic terminal control functions to operating system-specific functions. To enter a Telnet sequence, press the escape sequence keys (Ctrl-shift-6) followed by a Telnet command character.
Special Telnet Sequences

<table>
<thead>
<tr>
<th>Telnet Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-shift-6-b</td>
<td>Break</td>
</tr>
<tr>
<td>Ctrl-shift-6-c</td>
<td>Interrupt Process (IP)</td>
</tr>
<tr>
<td>Ctrl-shift-6-h</td>
<td>Erase Character (EC)</td>
</tr>
<tr>
<td>Ctrl-shift-6-o</td>
<td>Abort Output (AO)</td>
</tr>
<tr>
<td>Ctrl-shift-6-t</td>
<td>Are You There? (AYT)</td>
</tr>
<tr>
<td>Ctrl-shift-6-u</td>
<td>Erase Line (EL)</td>
</tr>
</tbody>
</table>

At any time during an active Telnet session, available Telnet commands can be listed by pressing the `/help` keys at the system prompt.

A sample of this list follows.

```
switchxxxxxx# ?/help

[Special telnet escape help]

^^ B sends telnet BREAK
^^ C sends telnet IP
^^ H sends telnet EC
^^ O sends telnet AO
^^ T sends telnet AYT
^^ U sends telnet EL
?/help suspends the session (return to system command prompt)
```

Several concurrent Telnet sessions can be opened, enabling switching between the sessions. To open a subsequent session, the current connection has to be suspended by pressing the escape sequence keys (Ctrl-shift-6) and x to return to the system command prompt. Then open a new connection with the telnet EXEC mode command.

This command lists concurrent Telnet connections to remote hosts that were opened by the current Telnet session to the local device. It does not list Telnet connections to remote hosts that were opened by other Telnet sessions.
Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/echo</td>
<td>Enables local echo.</td>
</tr>
<tr>
<td>/quiet</td>
<td>Prevents onscreen display of all messages from the software.</td>
</tr>
<tr>
<td>/source-interface</td>
<td>Specifies the source interface.</td>
</tr>
<tr>
<td>/stream</td>
<td>Turns on stream processing, which enables a raw TCP stream with no Telnet control sequences. A stream connection does not process Telnet options and can be appropriate for connections to ports running UNIX-to-UNIX Copy Program (UUCP) and other non-Telnet protocols.</td>
</tr>
<tr>
<td>Ctrl-shift-6 x</td>
<td>Returns to the System Command Prompt.</td>
</tr>
</tbody>
</table>

Ports Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
<td>179</td>
</tr>
<tr>
<td>chargen</td>
<td>Character generator</td>
<td>19</td>
</tr>
<tr>
<td>cmd</td>
<td>Remote commands</td>
<td>514</td>
</tr>
<tr>
<td>daytime</td>
<td>Daytime</td>
<td>13</td>
</tr>
<tr>
<td>discard</td>
<td>Discard</td>
<td>9</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name Service</td>
<td>53</td>
</tr>
<tr>
<td>echo</td>
<td>Echo</td>
<td>7</td>
</tr>
<tr>
<td>exec</td>
<td>Exec</td>
<td>512</td>
</tr>
<tr>
<td>finger</td>
<td>Finger</td>
<td>79</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections</td>
<td>20</td>
</tr>
<tr>
<td>gopher</td>
<td>Gopher</td>
<td>70</td>
</tr>
<tr>
<td>hostname</td>
<td>NIC hostname server</td>
<td>101</td>
</tr>
<tr>
<td>ident</td>
<td>Ident Protocol</td>
<td>113</td>
</tr>
<tr>
<td>irc</td>
<td>Internet Relay Chat</td>
<td>194</td>
</tr>
<tr>
<td>klogin</td>
<td>Kerberos login</td>
<td>543</td>
</tr>
<tr>
<td>kshell</td>
<td>Kerberos shell</td>
<td>544</td>
</tr>
<tr>
<td>login</td>
<td>Login</td>
<td>513</td>
</tr>
<tr>
<td>lpd</td>
<td>Printer service</td>
<td>515</td>
</tr>
<tr>
<td>nntp</td>
<td>Network News Transport Protocol</td>
<td>119</td>
</tr>
<tr>
<td>pim-auto-rp</td>
<td>PIM Auto-RP</td>
<td>496</td>
</tr>
</tbody>
</table>
Example
The following example displays logging in to IP address 176.213.10.50 via Telnet.

```
switchxxxxxx# telnet 176.213.10.50
```

5.4 resume
The `resume` EXEC mode command enables switching to another open Telnet session.

Syntax

```
resume [connection]
```

Parameters

`connection`—Specifies the connection number. (Range: 1-4 connections.)

Default Configuration

The default connection number is that of the most recent connection.

Command Mode

EXEC mode
Example

The following command switches to open Telnet session number 1.

switchxxxxxx# resume 1

5.5 hostname

The hostname Global Configuration mode command specifies or modifies the device host name. Use the no form of the command to remove the existing host name.

Syntax

hostname name
no hostname

Parameters

Name—Specifies the device host name. (Length: 1-160 characters. Maximum label size for each part of the host name: 63). The hostname must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens.

Default Configuration

No host name is defined.

Command Mode

Global Configuration mode

Example

The following example specifies the device host name as ‘enterprise’.

switchxxxxxx(config)# hostname enterprise
enterprise(config)#
5.6 reload

The **reload** Privileged EXEC mode command reloads the operating system at a user-specified time.

Syntax

```
reload [[in [hhh:mm | mmm] | at hh:mm [day month]] | cancel]
```

Parameters

- **in hhh:mm | mmm**—Schedules a reload of the software to take effect in the specified minutes, hours and minutes. The reload must take place within 24 days.

- **at hh:mm**—Schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

- **day**—Number of the day in the range from 1 to 31.

- **month**—Month of the year.

- **cancel**— Cancels a scheduled reload.

Default Usage

N/A

Command Mode

Privileged EXEC mode

User Guidelines

The **at** keyword can be used only if the system clock has been set on the device. To schedule reloads across several devices to occur simultaneously, synchronize the time on each router with SNTP.

To display information about a scheduled reload, use the **show reload** command.
Examples

Example 1—The following example reloads the operating system.

```
switchxxxxxx# reload
This command will reset the whole system and disconnect your current session. 
Do you want to continue? (y/n) [Y]
```

Example 2—The following example reloads the operating system in 10 minutes.

```
switchxxxxxx# reload in 10
This command will reset the whole system and disconnect your current session. 
Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you 
want to continue? (y/n) [Y]
```

Example 3—The following example reloads the operating system at 13:00.

```
switchxxxxxx# reload at 13:00
This command will reset the whole system and disconnect your current session. 
Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3 
minutes). Do you want to continue? (y/n) [Y]
```

Example 4—The following example shows various usages of this command. Note
that reload in 10 can work without the system clock being set, but reload at
17:12 Jun 6 requires that the system clock be set.

```
switchxxxxxx# show clock
*16:12:16 UTC Jun 4 2012//please note the '*' on the left side of the time 
No time source
switchxxxxxx#reload in 10
This command will reset the whole system and disconnect your current session. 
Reload is scheduled to occur in 10 minutes. Do you want to continue ? 
(Y/N)[N] Y
switchxxxxxx#reload at 17:12 Jun 6
```
Schedule-Reload is already set to occur in 9 minutes. Do you wish to override? (Y/N) [N] Y

To use the 'reload at' command please set the system clock time first.
switchxxxxxx#clock set 16:37:00 Jun 6 2012
switchxxxxxx#reload at 17:12 Jun 6

Schedule-Reload is already set for 16:45:17 UTC Wed Jun 6 2012 (in 8 minutes). Do you wish to override? (Y/N) [N] Y

This command will reset the whole system and disconnect your current session. Reload is scheduled for 17:12:00 UTC Wed Jun 6 2012 (in 34 minutes). Do you want to continue? (Y/N) [N] Y

06-Jun-2012 16:37:18 %RNDMISC-N-SRACTIVE: system is scheduled to perform a restart at 17:12:00 Wed Jun 6 2012 (in 34 minutes).

Example 4—The following example cancels a reload.

switchxxxxxx# reload cancel

Reload cancelled.

5.7 show reload

The show reload Privileged EXEC mode command displays whether there is a pending reload for the device.

Syntax

show reload

Parameters

N/A

Default Usage

N/A

Command Mode

Privileged EXEC mode
User Guidelines

To cancel a pending reload, use the privileged EXEC command with the cancel parameter.

Example

The following example displays that a reboot is scheduled for 00:00 on Saturday, April-20.

```
switchxxxxxx# show reload
Reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)
or
Scheduled reload is not configured.
```

5.8 service cpu-utilization

The service cpu-utilization Global Configuration mode command enables measuring CPU utilization. Use the no form of this command to restore the default configuration.

Syntax

```
service cpu-utilization
no service cpu-utilization
```

Parameters

N/A

Default Configuration

Measuring CPU utilization is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the service cpu utilization command to measure information on CPU utilization.
Example
The following example enables measuring CPU utilization.

switchxxxxxx(config)# service cpu-utilization

5.9 show cpu utilization
The show cpu utilization Privileged EXEC mode command displays information about CPU utilization.

Syntax
show cpu utilization

Parameters
N/A

Default Usage
N/A

Command Mode
Privileged EXEC mode

User Guidelines
Use the show cpu-utilization command to enable measuring CPU utilization.

Example
The following example displays CPU utilization information.

switchxxxxxx# show cpu utilization
CPU utilization service is on.
CPU utilization

five seconds: 5%; one minute: 3%; five minutes: 3%
5.10 **show users**

The *show users* EXEC mode command displays information about the active users.

Syntax

```
show users
```

Parameters

N/A

Default Usage

N/A

Command Mode

EXEC mode

Example

The following example displays information about the active users.

```
switchxxxxxx# show users
Username         Protocol      Location
---------------- --------------- ---------
Bob              Serial         172.16.0.1
John             SSH            172.16.0.8
Robert           HTTP           172.16.1.7
Betty            Telnet         172.16.1.6
Sam              172.16.1.6
```

5.11 **show sessions**

The *show sessions* EXEC mode command displays open Telnet sessions.

Syntax

```
show sessions
```
Parameters
N/A

Default Usage
N/A

Command Mode
EXEC mode

User Guidelines
The `show sessions` command displays Telnet sessions to remote hosts opened by the current Telnet session to the local device. It does not display Telnet sessions to remote hosts opened by other Telnet sessions to the local device.

Example
The following example displays open Telnet sessions.

```
switchxxxxx# show sessions

Connection Host Address Port Byte
---------- --------- --------- ----- ----
1          Remote router 172.16.1.1 23 89
2         172.16.1.2    172.16.1.2 23 8
```

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The connection number.</td>
</tr>
<tr>
<td>Host</td>
<td>The remote host to which the device is connected through a Telnet session.</td>
</tr>
<tr>
<td>Address</td>
<td>The remote host IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>The Telnet TCP port number.</td>
</tr>
<tr>
<td>Byte</td>
<td>The number of unread bytes for the user to see on the connection.</td>
</tr>
</tbody>
</table>
5.12 show system

5.13 show system

The `show system` EXEC mode command displays various items of information about the device.

Syntax

`show system`

Parameters

N/A.

Command Mode

EXEC mode

Example

```
switchxxxxxx# show system
System Description: 20-port Gigabit Managed Switch
System Up Time (days,hour:min:sec): 03,02:27:46
System Contact:
System Name: switch151400
System Location:
System MAC Address: 00:24:ab:15:14:00
System Object ID: 1.3.6.1.4.1.9.6.1.83.20.1
Main Power Supply Status: OK

#Editor: For systems with a single Fan or single Fans' status
Fans Status: OK

#Editor: For systems with multiple Fans which support status per Fan
Fan 1 Status: OK
Fan 2 Status: NOT PRESENT
Fan 3 Status: FAILURE
Fan 4 Status: IDLE
```
5.14 show version

The `show version` EXEC mode command displays system version information.

Syntax

```
show version [md5]
```

Parameters

`md5`—Displays external MD5 digest of firmware.

Default Usage

N/A

Command Mode

EXEC mode

Example

The following example displays system version information.

```
switchxxxxxx# show version
SW Version  1.1.0.5 ( date  15-Sep-2010 time  10:31:33 )
Boot Version 1.1.0.2 ( date  04-Sep-2010 time  21:51:53 )
HW Version   V01
```

5.15 show version md5

Use the `show version md5` EXEC mode command to display external MD5 digest of firmware.

Syntax

```
show version md5
```
Parameters

Default Usage

N/A

Command Mode

EXEC mode

Example

switchxxxxxx# show version md5

Filename Status MD5 Digest
------------- ------- -------------------------------
image1 Active 23FA000012857D8855AABC7577AB5562
image2 Not Active 23FA000012857D8855AABEA7451265456
boot 23FA000012857D8855AABC7577AB8999
image1 Not Active 23FA000012857D8855AABC7577FE693844
image2 Active 23FA000012857D8855AABC7577AB5562
boot 23FA000012857D8855AABC7577AC9999

5.16 system resources routing

The **system resources routing** Global Configuration mode command configures the routing table maximum size. Use the no form of this command to return to the default size.

Syntax

system resources routing routes hosts interfaces

no system resources routing

Parameters

- **routes**—Specifies the maximum number of remote networks in the routing table.
- **hosts**—Specifies the maximum number of directly attached hosts.
• **interfaces**—Specifies the maximum number of IP interfaces.

Default Configuration

Hosts: 2-200, default = 200
Routes: 1-128, default = 128
IP Interfaces: 2-128, default = 128

Command Mode

Global Configuration mode

User Guidelines

The settings are effective after reboot.

Example

The following example configures the routing table maximum size.

```
switchxxxxxx# system resources routing 20 23 5
```

5.17 show system resources

The **show system resources routings** EXEC mode command displays system routing and tcam resource information.

Syntax

```
show system resources {routing | tcam}
```

Parameters

- **routing**—Displays the maximum number of hosts, routes, and IP interfaces that can be supported and the current number of existing hosts, routes, and IP interfaces.

- **tcam**—Displays the maximum of rules in the TCAM and the current number of rules configured.

Command Mode

EXEC mode
Examples

The following example displays the system routing resources information for a Sx300 device.

```
switchxxxxxx# show system resources routing
Routing
-------
Hosts: 100
Used Number of Hosts: 0
Routes: 32
Used Number of IPv4 Routes: 1
IP Interfaces: 32
Used Number of Interfaces: 1
```

5.18 set system mode

The **set system mode** Privileged EXEC mode command puts the device into switch mode (Layer 2 mode) or router mode (Layer 3 mode).

Syntax

```
set system mode {router | switch}
```

Parameters

- **router**—Specifies that the device functions as a switch-router.
- **switch**—Specifies that the device functions as a switch.

Default Configuration

The default configuration is switch mode (Layer 2).

Command Mode

Privileged EXEC mode
User Guidelines

If this command is entered manually, the Startup Configuration file is deleted and the device is rebooted. It is highly recommended to back up the Startup Configuration file before executing this command; otherwise the device is configured in the new system mode with an empty configuration.

If the set system mode command is contained in a configuration file that is downloaded to the device, if you do not change the current system mode, this command is ignored. Otherwise the following cases might occur:

- If this file is copied manually onto the device (using copy tftp, for example), the operation is aborted, and a message is displayed indicating that the system mode must be changed manually.

- If this file is downloaded during the automatic configuration process, the Startup Configuration file is deleted and the device reboots automatically in the new system mode and the device is configured with an empty configuration.

Example

The following example configures the device to function as a switch-router (Layer 3).

```
switchxxxxxx# set system mode router
```

5.19 show system languages

The show system languages EXEC mode command displays the list of supported languages.

Syntax

```
show system languages
```

Parameters

N/A

Default Usage

N/A
Command Mode
EXEC mode

Example
The following example displays the languages configured on the device. Number of Sections indicates the number of languages permitted on the device.

```
switchxxxxxx# show system languages
Language Name     Unicode Name     Code     Num of Sections
--------------- --------------- ------ --------------
    English        English        en-US       2
    Japanese       µûΝµ£¥F¬P        ja-JP       2
```

5.20 show system tcam utilization

The `show system tcam utilization` EXEC mode command displays the Ternary Content Addressable Memory (TCAM) utilization.

Syntax
```
show system tcam utilization
```

Parameters
N/A

Default Usage
N/A

Command Mode
EXEC mode

Example
The following example displays TCAM utilization information.

```
switchxxxxxx# show system tcam utilization
TCAM utilization: 58%
```
5.21 show services tcp-udp

Use the `show services tcp-udp` Privileged EXEC mode command to display information about the active TCP and UDP services.

Syntax

`show services tcp-udp`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The output does not show sessions where the device is a TCP/UDP client.

Examples

```
switchxxxxxx# show services tcp-udp
Type  Local IP Address  Remote IP address  Service Name  State
---------------------- ------------------- ------------- -----------
TCP    All:22               All:22             SSH           LISTEN
TCP    All:23               All:23             Telnet        LISTEN
TCP    All:80               All:80             HTTP          LISTEN
TCP    All:443              All:443            HTTPS         LISTEN
TCP    172.16.1.1:23 172.16.1.18:8789  Telnet        ESTABLISHED
TCP6   All:23               All:23             Telnet        LISTEN
TCP6   fe80::200:b0ff:fe00:0-23 fe80::200:b0ff:fe00:0-8999  Telnet        ESTABLISHED
UDP    All:161              All:161            SNMP
UDP6A  11-161               11-161            SNMP
```
5.22 show tech-support

Use the show tech-support EXEC mode command to display system and configuration information that can be provided to the Technical Assistance Center when reporting a problem.

Syntax

show tech-support [config] [memory]

Parameters

- **Memory**—Displays memory and processor state data.
- **Config**—Displays switch configuration within the CLI commands supported on the device.

Default Configuration

By default, this command displays the output for technical-support-related show commands. Use keywords to specify the type of information to be displayed. If you do not specify any parameters, the system displays all configuration and memory data.

Command Types

Switch command.

Command Mode

EXEC mode

User Guidelines

Caution: Avoid running multiple show tech-support commands on a switch or multiple switches on the network segment. Doing so may cause starvation of some time sensitive protocols, like STP.

The show tech-support command may timeout if the configuration file output takes longer to display than the configured session timeout time. If this happens, enter a set logout timeout value of 0 to disable automatic disconnection of idle sessions or enter a longer timeout value.

The show tech-support command output is continuous, it does not display one screen at a time. To interrupt the output, press Esc.
If you specify the `config` keyword, the `show tech-support` command displays the output of the following commands (depending on the commands supported on the device).

- show clock
- show system
- show version
- show system mode
- show ip interface
- show ipv6 interface
- show running-config
- show interfaces configuration
- show interfaces status
- show interfaces port-channel
- show vlan
- show interfaces switchport
- show bridge multicast address-table
- show spanning tree
- show ip igmp snooping groups
- show ipv6 mld snooping groups
- show dot1x
- show dot1x users
- show lldp configuration
- show lldp neighbors
- show errdisable interface
- show interfaces counters
- show power inline
- show cdp
- show cdp traffic global
- show cdp traffic
- show cdp neighbors
- show voice vlan
- show users
- show sessions
- show logging file
- show logging

If the user specifies the memory keyword, the show tech-support command displays the following output:

- Flash info (dir if existed, or flash mapping)
- Output of command show bootvar
- Buffers info (like print os buff)
- Memory info (like print os mem)
- Proc info (like print os tasks)
- Versions of software components
- Output of command show cpu utilization

5.23 show system id

The **show system id** EXEC mode command displays the system identity information.

Syntax

```
show system id
```

Parameters

N/A.

Command Mode

EXEC mode
Example
The following example displays the system identity information.

```
switchxxxxxx# show system id
serial number 114
```

5.24 show cpu input rate

The `show cpu input rate` EXEC mode command displays the rate of input frames to the CPU in packets per seconds (pps).

Syntax

```
show cpu input rate
```

Command Mode

EXEC mode

Example

The following example displays CPU input rate information.

```
switchxxxxxx# show cpu input rate
Input Rate to CPU is 1030 pps.
```

5.25 menu

The `menu` EXEC mode command opens the boot menu.

Syntax

```
menu
```

Command Mode

EXEC mode

Example
5.26 disable port leds

Use the disable ports leds Global Configuration mode command to turn off the LEDs of all the ports on a device.

Use no disable ports leds command to turn on the LEDs of all the ports on a device.

Syntax

disable ports leds

no disable ports leds

Parameters

N/A

Default Configuration

The default is no disable port leds; that is the LEDs of all the ports are turned on.

Command Mode

Global Configuration mode

User Guidelines

N/A

Examples

The following example turns off the port LEDs.

switchxxxxx# disable ports leds

5.27 show ports leds configuration

Use the show ports leds configuration EXEC mode command to display whether the LEDs of all the ports are enabled or disabled.

Syntax

show ports leds configuration
Command Mode
EXEC mode

Examples

Example 1 - The following example displays the status of the ports LEDs when the port LEDs are turned on.

```
show ports leds configuration
Port leds are not disabled
```

Example 2 - The following example displays the status of the ports LEDs when the port LEDs are turned off.

```
show ports leds configuration
Port leds are disabled
```

5.28 **show system fans**

Use the `show system fans` EXEC mode command to view the status of the fans on the device.

Syntax

```
show system fans
```

Parameters

- N/A

Default Usage

N/A

Command Mode
EXEC mode

Example

If the device does not support controlled fan direction, the column Fan Direction is not displayed.

```
switchxxxxxx# show system fans
```
<table>
<thead>
<tr>
<th>Unit</th>
<th>Speed</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Fan Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>auto</td>
<td>OK</td>
<td>back to front</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>auto</td>
<td>fail</td>
<td>unknown</td>
</tr>
</tbody>
</table>

5.29 show system sensors

Use the **show system sensors** EXEC mode command to view the temperature sensor status of the device.

Syntax

```
show system sensors
```

Parameters

N/A

Default Usage

N/A

Command Mode

EXEC mode

Examples

```
switchxxxxxx# show system sensors
Sensor Status: OK
Temperature(C): 37
Alarm Temp(C): 60
```
6.1 `ip ssh-client authentication`

Use the `ip ssh-client authentication` command in Global Configuration mode to define the SSH client authentication method used by the local SSH clients to be authenticated by remote SSH servers.

To return to default, use the `no` format of the command.

Syntax

```plaintext
ip ssh-client authentication {password | public-key {rsa | dsa}}

no ip ssh-client authentication
```

Parameters

- `password`— Username and password are used for authentication.
- `public-key rsa`— Username and RSA public key are used for authentication.
- `public-key dsa`— Username and DSA public key are used for authentication.

Default Configuration

Username and password are used for authentication by the local SSH clients.

Command Mode

Global Configuration

User Guidelines

A user can use the `ip ssh-client key` command to generate/configure RSA/DSA keys if SSH authentication is by public key. Otherwise, the default keys generated by the switch are used.
Example
The following example specifies that, username and public key are used for authentication:

```
switchxxxxxx(config)# ip ssh-client authentication public-key rsa
```

6.2 ip ssh-client change server password

Use the `ip ssh-client change server password` command in Global Configuration mode to change a password of an SSH client on a remote SSH server.

Syntax

```
ip ssh-client change server password server {host | ip-address | ipv6-address} username username old-password old-password new-password new-password
```

Parameters

- **host**—DNS name of a remote SSH server.
- **ip-address**—Specifies the IP address of a remote SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **username**—Username of the local SSH clients (1 - 70 characters).
- **old-password**—Old password of the local SSH client (1 - 70 characters).
- **new-password**—New password for the local SSH client (1 - 70 characters)

 The password cannot include the characters "@" and ".".

Default Configuration

N/A

Command Mode

Global configuration

User Guidelines

Use the command to change a password on a remote SSH server. Use `ip ssh-client password` to change the SSH client password of the switch's SSH client so that it matches the new password set on the remote SSH server.
Example
The following example changes a password of the local SSH clients:

```
switchxxxxx(config)# ip ssh-client change server password server 10.7.50.155
username john old-password &&@@aaff new-password &&@@aaee
```

6.3 ip ssh-client key
Use the ip ssh-client key command in Global Configuration mode to create a key pair for SSH client authentication by public key (either by generating a key or by importing a key). To enter the private key as encrypted, use the encrypted ip ssh-client key command.

To remove a key, use the no form of the command.

Syntax

```
ip ssh-client key {dsa | rsa} {generate | key-pair privkey pubkey}
encrypted ip ssh-client key {dsa | rsa} key-pair encrypted-privkey pubkey
no ip ssh-client key [dsa | rsa]
```

Parameters

- **dsa**—DSA key type.
- **rsa**—RSA key type.
- **key-pair**—Key that is imported to the device.
- **privkey**—Plaintext private key.
- **encrypted-privkey**—Private key is in encrypted format.
- **pubkey**—The plaintext public key.

Default Configuration

The application creates a key automatically, which is the default key.

Command Mode

Global configuration
User Guidelines

When using the keyword **generate**, a private key and a public key of the given type (RSA/DSA) are generated for the SSH client. Downloading a configuration file with a Key Generating command is not allowed, and such download will fail.

When using the keyword **key-pair**, the user can import a key-pair created by another device. In this case, the keys must follow the format specified by RFC 4716.

If the specified key already exists, a warning will be issued before replacing the existing key with a new key.

Use the **no ip ssh-client key** command to remove a key pair. Use this command without specifying a key-type to remove both key pairs.

Table 3 describes the expected behavior of keys, default and users within the various operations.

<table>
<thead>
<tr>
<th>From/To</th>
<th>Show</th>
<th>Show (detailed)</th>
<th>Copy/Upload of Running Config</th>
<th>Copy/Upload of Startup Config</th>
<th>Download text-based CLI (TFTP/Backup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined.</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>All keys (default and user)</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>Same as user configuration</td>
</tr>
<tr>
<td>Text-based CLI (TFTP/Backup)</td>
<td>As it was copied.</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>As a text file.</td>
</tr>
</tbody>
</table>

If no keys are included in text-based configuration file, the device generates its own keys during initialization. If the Running Configuration contains default keys (not user-defined), the same default keys remain.

Examples

Example 1 - In the following example, a key pair of the RSA type is created:

```
switchxxxxxx(config)# ip ssh-client key rsa generate
```

The SSH service is generating a private RSA key.
This may take a few minutes, depending on the key size.

Example 2. In the following example, both public and private keys of the RSA type are imported (private key as plaintext):

```
switchxxxxxxx(config)#ip ssh-client key rsa key-pair
Please paste the input now, add a period (.) on a separate line after the input
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDH6CU/2KYR18rYrK5+TIvw4zvhBmiC4I31m9cR/1iriTFV1MRuJ++TEr
p9ssqNyI1T19d0jzGM0N3jHzp2je5/DUTHZXvYaUzchBDnsPTJo8dyiB14yBqYHqgCjUhk
tXqvloy+1uxRJTAaLVXCBAmuIU/kMLoEox8/zwjB/js9wIB1wKBgC2xZ5mQmvy0+yo2GU
FwLQ0f0yweuM11j8McTmqDgfVTRrdbroxWbbs3evQsfaUPY9wa8Le6JPX+Dp4XovEfC/
iglZBSC8SeDmI2U7D6HrkAyD9HHf/r32jukB+527B1HP2Xcxs2c100wntoy+YTzjLUxy
WS7V/IxB1lipLAKEA/QluVSCFmdM11xaEfJVzqP0lcf8guosWLteBf/gqHuvbHuNyoT
OWeP0bKzs1m/mC9ppkgcqqgrB0oJaYbUFQJBAmo/cCrkyhsIV/+ZsryeD26NpBEKiak16V
Tz2ayDstdGuvcvm2Y7Dj5m6N6yz3+/ZLy5c5n82okbd1NhDONsCQQCmSaa+c4HaHQn
zSU/+1WlD188AsqJN2DMmGJbtsbVHhQxWIHAG4tBVWa8bV1z+RPyuan/jnk8irnIGyVza
FPakEAiq8oV+1XYxAB3V39V/a42d7FvRjMckUmKDl4Rmt32+u9i6sFzaWcdgs87+2vS3AZQ
afqDE5U6YSiGlVewC4YWWjBAOFZmhO+d11xT8Irzf2cU2GgópfonX6Y+L+Y109Mu2HbwH
TxAgj6ayMYVnlo0NecnApBjGEm37YVwKj02DV2w=
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIICHjAgIBADANBgkqhkiG9w0BAQEFAASCAIAAIdgTc5P3d+2624N0X8+Q2z9V9399w
B19RnYCoD3Lz4w96bP+9z2DxQp54nM3MDq8N9cK9/gaK/92K9KTo5M3jA+jw4OY
-----END RSA PUBLIC KEY-----
```

Example 3. In the following example, both public and private keys of the DSA type are imported (private key as encrypted):

```
switchxxxxxxx(config)# encrypted ip ssh-client key rsa key-pair
```

(Need to encrypted SSH client RSA key pair, for example:)

```
-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
gxeOjs6OzGRtL4qstmqQ1B/4geXQb1fa56RdjgHAMejvUT02e1YmNi+m4aTu6mLYXPHmYP
1X1Xmy7j2KrHv9g8EzcppEB0O3yQzq3Km756cmG40qkm7TU0tdqYFEdz/h8rJQ0qyUFh
BsEQ3e16E/OPitWgK43WTZedsvyFe0oMXR9BcuxPju2UeqQVM21Jt50MOFVt0S6cjXhG
sEEdoTlhlDwHWg97FcvV7x+bEnPffGrmbrUxcmOx1kFsuCN3/94PHK8zEXyWtr2KoCDQ
qFRuM8uecpjmDb6MO2GURVstctohEWEIVCIOr5SBCciaxv5oS0j1zXMrJA==
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBALLOeh3css8tBl8ujFt3trcX0XJLlxxt4sb8Q3EXlSRN25+Mcac6topgIEg
tIrK6t1IEJscuAih9BrwhelovgMLRae25j5Yj04xG6Fp42nh6iRcie+YTSlo309EdZkixa
QeJtLdnYL/r3uTIRVGbxI5nxwtfWpwEgxxDwqfzHAgEj
-----END RSA PUBLIC KEY-----
```

Example 4 - In the following example, a DSA key pair is removed:

```
switchxxxxxx(config)# no ip ssh-client key dsa
```

Example 5 - In the following example, all key pairs (RSA and DSA types) are removed.

```
switchxxxxxx(config)# no ip ssh-client key
```

6.4 ip ssh-client password

Use the `ip ssh-client password` command in Global Configuration mode to configure the password for SSH client authentication by password. To enter the password as encrypted, use the `encrypted ip ssh-client password` command.

To return to default, use the `no` form of the command.

Syntax

```
ip ssh-client password string
encrypted ip ssh-client password encrypted-string
```
no ip ssh-client password

Parameters

- **string**— Password for the SSH clients (1 - 70 characters). The username cannot include the characters "@" and ":".
- **encrypted-string** - Password for the SSH client in encrypted form.

Default Configuration

The default password is anonymous.

Command Mode

Global configuration

User Guidelines

The password cannot include the characters "@" and ":".

If authentication is configured to use a password (using the command `ip ssh-client authentication`), use the `ip ssh-client password` command to define the password.

If the encrypted key-word is used, the password must be in the encrypted form.

Use the command `ip ssh-client change server password` to change the password on the remote SSH server so that it will match the new password of the SSH client.

Example

The following example specifies a plaintext password for the local SSH clients:

```
switchxxxxxx(config)# ip ssh-client password &amp;111aaff
```

6.5 ip ssh-client server authentication

Use the `ip ssh-client server authentication` command in Global Configuration mode to enable remote SSH server authentication by the SSH client.

To disable remote SSH server authentication, use the `no` form of the command.

Syntax

```
ip ssh-client server authentication
```
no ip ssh-client server authentication

Parameters
None

Default Configuration
SSH server authentication is disabled

Command Mode
Global configuration

User Guidelines
When remote SSH server authentication is disabled, any remote SSH server is accepted (even if there is no entry for the remote SSH server in the SSH Trusted Remote Server table).

When remote SSH server authentication is enabled, only trusted SSH servers are accepted. Use the ip ssh-client server fingerprint command to configure trusted SSH servers.

Example
The following example enables SSH server authentication:

```
switchxxxxxx(config)# ip ssh-client server authentication
```

6.6 ip ssh-client server fingerprint

Use the `ip ssh-client server fingerprint` command in Global configuration mode to add a trusted server to the Trusted Remote SSH Server Table. To remove an entry or all entries from the Trusted Remote SSH Server Table, use the `no` form of the command.

Syntax
```
ip ssh-client server fingerprint \[host\ ip-address\] fingerprint
no ip ssh-client server fingerprint \[host\ ip-address\]
```

Parameters
- `host`—DNS name of a SSH server.
- **ip-address**—Specifies the address of a SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

- **fingerprint**—Fingerprint of the SSH server public key (32 Hex characters).

Default Configuration

The Trusted Remote SSH Server table is empty.

Command Mode

Global configuration

User Guidelines

Fingerprints are created by applying a cryptographic hash function to a public key. Fingerprints are shorter than the keys they refer to, making it simpler to use (easier to manually input than the original key). Whenever the switch is required to authenticate an SSH server’s public key, it calculates the received key’s fingerprint and compares it to the previously-configured fingerprint.

The fingerprint can be obtained from the SSH server (the fingerprint is calculated when the public key is generated on the SSH server).

The `no ip ssh-client server fingerprint` command removes all entries from the Trusted Remote SSH Server table.

Example

In the following example, a trusted server is added to the Trusted Servers table (with and without a separator ":"):

```
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1
DC789788DC88A988127897BCBB789788
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.2
```

6.7 ip ssh-client username

Use the `ip ssh-client username` command in Global Configuration mode to configure the SSH client username of the switch.

To return to default, use the `no` form of the command.
SSH Client Commands

Syntax

ip ssh-client username string

no ip ssh-client username

Parameters

string—Username of the SSH client. The length is 1 - 70 characters. The username cannot include the characters "@" and ":".

Default Configuration

The default username is anonymous

Command Mode

Global configuration

User Guidelines

The username cannot include the characters "@" and ":".

The configured username is used when SSH client authentication is done both by password or by key.

Example

The following example specifies a username of the SSH client:

switchxxxxxx(config)# ip ssh-client username jeff

6.8 show ip ssh-client

Use the show ip ssh-client command in Privilege EXEC mode to display the SSH client credentials, both default and user-defined keys.

Syntax

show ip ssh-client

show ip ssh-client {mypubkey | key} {dsa | rsa}

Parameters

- dsa—Specifies displaying the DSA key type.
SSH Client Commands

- **rsa**— Specifies displaying the RSA key type.
- **mypubkey**— Specifies that only the public key is selected to be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command with a specific key-type to display the SSH client key; You can either specify display of public key or private key, or with no parameter to display both private and public keys. The keys are displayed in the format specified by RFC 4716.

Examples

Example 1 - The following example displays the authentication method and the RSA public key:

```
switchxxxxxx# show ip ssh-client mypubkey rsa
```

Authentication method: RSA key

Username: John

Key Source: User Defined

---- BEGIN SSH2 PUBLIC KEY ----

Comment: RSA Public Key

AAAAB3NzaC1yc2EAAAABIwAAAIEAss56Hdyyzy0Evy6MW3e2txfRcnIkuXHG3iwanxDcTGvJE3bn4xpxzqiCkqSC0jOTq3UgQmxy4CKHOGvCHWi+AwtFox7bmPlim7jEboWnjaeEeJFyJ75hNLWjFT0RlmSdpB4m0t2dgve5MhFUZtcj

mfHCl9anASDHEPB+rMc=

---- END SSH2 PUBLIC KEY ----

Example 2. The following example displays the authentication method and DSA private key in encrypted format:

```
switchxxxxxx# show ip ssh-client key DSA
```

Authentication method: DSA key
Example 3. The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
```
Authentication method: password (default)
Username: anonymous (default)
password(Encrypted): KzGgzpYa7GzCHhaveSJDehGJ6L3Yf9ZBAU5nsxSxwic=

6.9 show ip ssh-client server

Use the `show ip ssh-client server` command in Privilege EXEC Configuration mode to display the SSH remote server authentication method and the Trusted Remote SSH Server table.

Syntax

```
show ip ssh-client server [host \ ip-address]
```

Parameters

- **host** — DNS name of an SSH server.
- **ip-address** — IP Address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

Default Configuration

N/A

Command Mode

Privilege EXEC configuration mode

User Guidelines

If a specific SSH server is specified, only the fingerprint of this SSH server is displayed. Otherwise, all known servers are displayed.

Examples

Example 1 - In the following example, the SSH remote server authentication method and all trusted remote SSH servers are displayed:

```
switchxxxxx# show ip ssh-client server
SSH Server Authentication is enabled
server address: 11.1.0.1
```
server address: 192.165.204.111

server address: 4002:0011::12

Clock Commands

7.1 clock set

The clock set Privileged EXEC mode command manually sets the system clock.

Syntax

clock set hh:mm:ss [day month] | [month day] year

Parameters

- hh:mm:ss—Specifies the current time in hours (military format), minutes, and seconds. (Range: hh: 0-23, mm: 0-59, ss: 0-59)
- day—Specifies the current day of the month. (Range: 1-31)
- month—Specifies the current month using the first three letters of the month name. (Range: Jan–Dec)
- year—Specifies the current year. (Range: 2000–2037)

Command Mode

Privileged EXEC mode

User Guidelines

It is recommended that the user enter the local clock time and date.

Example

The following example sets the system time to 13:32:00 on March 7th, 2005.

```
switchxxxxxx# clock set 13:32:00 7 Mar 2005
```

7.2 clock source

The clock source Global Configuration mode command configures an external time source for the system clock. Use the no form of this command to disable the external time source.
Clock Commands

7.3 clock timezone

Use the **clock timezone** Global Configuration command to set the time zone for display purposes. Use the **no** form of this command to set the time to Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT), which is the same.

Syntax

```plaintext
clock timezone zone hours-offset [minutes-offset]
no clock timezone
```

Parameters

- **zone**—The acronym of the time zone. (Range: Up to 4 characters)
- **hours-offset**—Hours difference from UTC. (Range: (-12)–(+13))
- **minutes-offset**—Minutes difference from UTC. (Range: 0–59)
Clock Commands

Default Configuration
Offsets are 0.
Acronym is empty.

Command Mode
Global Configuration mode

User Guidelines
The system internally keeps time in UTC, so this command is used only for display purposes and when the time is manually set.

Example

switchxxxxxx(config)# clock timezone abc +2 minutes 32

7.4 clock summer-time

Use one of the formats of the clock summer-time Global Configuration command to configure the system to automatically switch to summer time (Daylight Saving Time). Use the no form of this command to configure the software not to automatically switch to summer time.

Syntax

clock summer-time zone recurring {usa | eu} {week day month hh:mm week day month hh:mm} [offset]

clock summer-time zone date day month year hh:mm date month year hh:mm [offset]

clock summer-time zone date month day year hh:mm month day year hh:mm [offset]

no clock summer-time

Parameters

- zone—The acronym of the time zone to be displayed when summer time is in effect. (Range: up to 4 characters)
Clock Commands

- **recurring**—Indicates that summer time starts and ends on the corresponding specified days every year.
- **date**—Indicates that summer time starts on the first date listed in the command and ends on the second date in the command.
- **usa**—The summer time rules are the United States rules.
- **eu**—The summer time rules are the European Union rules.
- **week**—Week of the month. Can be 1–4, first, last.
- **day**—Day of the week (first three characters by name, such as Sun).
- **date**—Date of the month. (Range: 1–31)
- **month**—Month (first three characters by name, such as Feb).
- **year**—Year (no abbreviation). (Range: 2000–2097)
- **hh:mm**—Time (military format) in hours and minutes. (Range: hh:mm, mm: 0-59)
- **offset**—Number of minutes to add during summer time (default is 60). (Range: 1440)

Default Configuration

Summer time is disabled.

Command Mode

Global Configuration mode

User Guidelines

In both the **date** and **recurring** forms of the command, the first part of the command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is chronologically after the ending month, the system assumes that you are in the southern hemisphere.

USA rules for Daylight Saving Time:

- From 2007:
 - Start: Second Sunday in March
 - End: First Sunday in November
- Time: 2 AM local time
 - **Before 2007:**
 - Start: First Sunday in April
 - End: Last Sunday in October
 - Time: 2 AM local time

EU rules for Daylight Saving Time:
- Start: Last Sunday in March
- End: Last Sunday in October
- Time: 1.00 am (01:00) Greenwich Mean Time (GMT)

Example

```
switchxxxxxx(config)# clock summer-time abc date apr 1 2010 09:00 aug 2 2010 09:00
```

7.5 clock dhcp timezone

Use the `clock dhcp timezone` Global Configuration command to specify that the timezone and the Summer Time (Daylight Saving Time) of the system can be taken from the DHCP Timezone option. Use the `no` form of this command disable this option.

Syntax

clock dhcp timezone

no clock dhcp timezone

Parameters

N/A

Default Configuration

Disabled

Command Mode

Global Configuration mode
User Guidelines

The TimeZone taken from the DHCP server has precedence over the static TimeZone. If the TimeZone does not exist in the DHCP-TimeZone option, the static configuration will be active.

The Summer Time taken from the DHCP server has precedence over static SummerTime. If the Summer Time does not exist in the DHCP-TimeZone option, the static configuration will be active.

The TimeZone and SummerTime remain effective after the IP address lease time has expired.

The TimeZone and SummerTime that are taken from the DHCP server are cleared after reboot.

When the user disables taking the TimeZone and Summer Time from the DHCP server, the dynamic Time Zone and Summer Time from the DHCP server are cleared.

In case of multiple DHCP-enabled interfaces, the last accepted DHCP-Time Zone option overrides any previous DHCP-Time Zone option. This means that the last accepted DHCP-Time Zone option overrides the previous Time Zone and the Summer Time, even if it includes only one of them.

Disabling the DHCP client from where the DHCP-TimeZone option was taken, clears the dynamic Time Zone and Summer Time configuration.

Example

switchxxxxxx(config)# clock dhcp timezone

7.6 sntp authentication-key

The sntp authentication-key Global Configuration mode command defines an authentication key for Simple Network Time Protocol (SNTP). Use the no form of this command to remove the authentication key for SNTP.

Syntax

sntp authentication-key key-number md5 key-value

encrypted sntp authentication-key key-number md5 encrypted-key-value

no sntp authentication-key key-number
Parameters

- **key-number**—Specifies the key number. (Range: 1–4294967295)
- **key-value**—Specifies the key value. (Length: 1–8 characters)
- **encrypted-key-value**—Specifies the key value in encrypted format.

Default Configuration

No authentication key is defined.

Command Mode

Global Configuration mode

Examples

The following example defines the authentication key for SNTP.

```
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```

7.7 **sntp authenticate**

The **sntp authenticate** Global Configuration mode command enables authentication for received SNTP traffic from servers. Use the **no** form of this command to disable the feature.

Syntax

```
sntp authenticate
no sntp authenticate
```

Parameters

N/A

Default Configuration

Authentication is disabled.
Command Mode
Global Configuration mode

User Guidelines
The command is relevant for both Unicast and Broadcast.

Examples
The following example enables authentication for received SNTP traffic and sets the key and encryption key.

```
switchxxxxx(config)# sntp authenticate
switchxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxx(config)# sntp trusted-key 8
```

7.8 sntp trusted-key

The `sntp trusted-key` Global Configuration mode command authenticates the identity of the system with which SNTP synchronizes. Use the `no` form of this command to disable system identity authentication.

Syntax
```
sntp trusted-key key-number
no sntp trusted-key key-number
```

Parameters

- `key-number`—Specifies the key number of the authentication key to be trusted. (Range: 1–4294967295)

Default Configuration
No keys are trusted.

Command Mode
Global Configuration mode
User Guidelines
The command is relevant for both received unicast and broadcast.

Examples
The following example authenticates key 8.

```
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```

7.9 sntp broadcast client enable

The `sntp broadcast client enable` Global Configuration mode command enables SNTP Broadcast clients. Use the no form of this command to disable SNTP Broadcast clients.

Syntax

```
sntp broadcast client enable
no sntp broadcast client enable
```

Default Configuration

The SNTP Broadcast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp broadcast client enable` Interface Configuration mode command to enable the SNTP Broadcast client on a specific interface.

After entering this command, you must enter `clock source snmp` for the command to be run. If this command is not run, the switch will not synchronize with Broadcast servers.
Example

The following example enables SNTP Broadcast clients.

```
switchxxxxxx(config)# sntp broadcast client enable
```

7.10 sntp anycast client enable

The `sntp anycast client enable` Global Configuration mode command enables the SNTP Anycast client. Use the `no` form of this command to disable the SNTP Anycast client.

Syntax

```
sntp anycast client enable
no sntp anycast client enable
```

Parameters

N/A

Default Configuration

The SNTP anycast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use this command to enable the SNTP Anycast client.

Example

The following example enables SNTP Anycast clients.

```
switchxxxxxx(config)# sntp anycast client enable
```
7.11 sntp client enable

The sntp client enable Global Configuration mode command enables the SNTP Broadcast and Anycast client on an interface when the device is in Router mode (Layer 3). Use the no form of this command to disable the SNTP Broadcast and Anycast client.

Syntax

`sntp client enable {interface-id}`

`no sntp client enable {interface-id}`

Parameters

`interface-id`—Specifies an interface ID, which can be one of the following types: Ethernet port, Port-channel or VLAN.

Default Configuration

The SNTP client is disabled on an interface.

Command Mode

Global Configuration mode - Ethernet port, Port-channel or VLAN.

User Guidelines

This command only works when the device is in Router mode (Layer 3).

The sntp broadcast client enable Global Configuration mode command globally enables Broadcast clients.

This command enables both.

Example

The following example enables the SNTP Broadcast and Anycast client on port gi3.

```
switchxxxxxx(config)# sntp client enable gi3
```
7.12 sntp client enable (Interface)

To enable the SNTP Broadcast and Anycast client on an interface, use the sntp client enable Interface Configuration command. Use the no form of this command to disable the SNTP client.

This command enables the SNTP Broadcast and Anycast client on an interface. Use the no form of this command to disable the SNTP client.

Syntax

sntp client enable
no sntp client enable

Parameters

N/A

Default Configuration

The SNTP client is disabled on an interface.

Command Mode

Interface Configuration (Ethernet, Port-channel, VLAN) mode

User Guidelines

The sntp broadcast client enable Global Configuration mode command globally enables Broadcast clients.

Example

The following example enables the SNTP Broadcast and Anycast client on an interface.

```
switchxxxxxx(config-if)# sntp client enable
```

7.13 sntp unicast client enable

The sntp unicast client enable Global Configuration mode command enables the device to use Simple Network Time Protocol (SNTP)-predefined Unicast clients. Use the no form of this command to disable the SNTP Unicast clients.
Syntax

sntp unicast client enable

no sntp unicast client enable

Parameters

N/A

Default Configuration

The SNTP unicast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server` Global Configuration mode command to define SNTP servers.

Example

The following example enables the device to use SNTP Unicast clients.

```
switchxxxxxx(config)# sntp unicast client enable
```

7.14 `sntp unicast client poll`

The `sntp unicast client poll` Global Configuration mode command enables polling for the SNTP predefined Unicast clients. Use the `no` form of this command to disable the polling for the SNTP client.

Syntax

sntp unicast client poll

no sntp unicast client poll

Default Configuration

Polling is disabled.
Command Mode
Global Configuration mode

Example
The following example enables polling for SNTP predefined unicast clients.

```
switchxxxxxx(config)# sntp unicast client poll
```

7.15 sntp server
The sntp server Global Configuration mode command configures the device to use the SNTP to request and accept Network Time Protocol (NTP) traffic from a specified server (meaning to accept system time from an SNTP server). Use the no form of this command to remove a server from the list of SNTP servers.

Syntax
```
sntp server {ip-address | hostname} [poll] [key keyid]
no sntp server {ip-address | hostname}
```

Parameters
- ip-address—Specifies the server IP address. This can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions:
- hostname—Specifies the server hostname. Only translation to IPv4 addresses is supported. (Length: 1–158 characters. Maximum label length for each part of the hostname: 63 characters)
- poll—Enables polling.
- key keyid—Specifies the Authentication key to use when sending packets to this peer. (Range:1–4294967295)

Default Configuration
No servers are defined.

Command Mode
Global Configuration mode
User Guidelines

Up to 8 SNTP servers can be defined.

The `sntp unicast client enable` Global Configuration mode command enables predefined Unicast clients.

The `sntp unicast client poll` Global Configuration mode command globally enables polling.

Example

The following example configures the device to accept SNTP traffic from the server on 192.1.1.1 with polling.

```
switchxxxxxx(config)# sntp server 192.1.1.1 poll
```

7.16 show clock

The `show clock` EXEC mode command displays the time and date from the system clock.

Syntax

```
show clock [detail]
```

Parameters

detail—Displays the time zone and summer time configuration.

Command Mode

EXEC mode

Examples

Example 1 - The following example displays the system time and date.

```
switchxxxxxx# show clock
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP
```
Example 2 - The following example displays the system time and date along with the time zone and summer time configuration.

```
switchxxxxxx# show clock detail
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP
Time zone:
Acronym is PST
Offset is UTC-8
Summertime:
Acronym is PDT
Recurring every year.
Begins at first Sunday of April at 2:00.
Ends at last Sunday of October at 2:00.
Offset is 60 minutes.
DHCP timezone: Disabled
```

7.17 show sntp configuration

The `show sntp configuration` Privileged EXEC mode command displays the SNTP configuration on the device.

Syntax

`show sntp configuration`

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example

The following example displays the device's current SNTP configuration.

```
switchxxxxxx# show sntp configuration
SNTP port : 123 .
Polling interval: 1024 seconds.
MD5 authentication keys
-----------------------------------
  2   John123
  3   Alice456
-----------------------------------
Authentication is not required for synchronization.
No trusted keys.

Unicast Clients: Enabled
Unicast Clients Polling: Enabled
Server      Polling   Encryption Key
------------ -------   --------------
1.1.1.121    Disabled     Disabled

Broadcast Clients: disabled
Anycast Clients: disabled
No Broadcast Interfaces.
switchxxxxxx#
```

7.18 show sntp status

The `show sntp status` Privileged EXEC mode command displays the SNTP servers status.

Syntax

`show sntp status`
Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the SNTP servers status.

```
switchxxxxxx# show sntp status
```

Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is afe2525e.70597b34 (00:10:22.438 PDT Jul 5 1993)

Unicast servers:

<table>
<thead>
<tr>
<th>Server</th>
<th>Status</th>
<th>Last response</th>
<th>Offset [mSec]</th>
<th>Delay [mSec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.1.1.8</td>
<td>Up</td>
<td>19:58:22.289 PDT Feb 19</td>
<td>7.33</td>
<td>117.79</td>
</tr>
<tr>
<td>176.1.8.179</td>
<td>Unknown</td>
<td>12:17:17.987 PDT Feb 19</td>
<td>8.98</td>
<td>189.19</td>
</tr>
</tbody>
</table>

Anycast server:

<table>
<thead>
<tr>
<th>Server</th>
<th>Interface</th>
<th>Status</th>
<th>Last response</th>
<th>Offset [mSec]</th>
<th>Delay [mSec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.1.11.8</td>
<td>VLAN 118</td>
<td>Up</td>
<td>9:53:21.789 PDT Feb 19</td>
<td>7.19</td>
<td>119.89</td>
</tr>
</tbody>
</table>

Broadcast:

<table>
<thead>
<tr>
<th>Server</th>
<th>Interface</th>
<th>Last response</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.9.1.1</td>
<td>VLAN 119</td>
<td>19:17:59.792 PDT Feb 19</td>
</tr>
</tbody>
</table>
8.1 copy

The copy Privileged EXEC mode command copies a source file to a destination file.

Syntax

\`copy source-url destination-url[exclude | include-encrypted | include-plaintext]\`

Parameters

- `source-url`—Specifies the source file URL or source file reserved keyword to be copied. (Length: 1–160 characters)
- `destination-url`—Specifies the destination file URL or destination file reserved keyword. (Length: 1–160 characters).
- “Flash://” —The source or destination URL scheme that specifies the access method to the local flash memory. It stands for the root directory of the local flash. It is the default scheme for a URL that does not explicitly contain a scheme/access method (e.g. for copying the running configuration file, the user may either use flash://running-config or just running-config).
- `exclude`—Do not include sensitive data in the file being copied.
- `include-encrypted`—Include sensitive data in its encrypted form.
- `include-plaintext`—Include sensitive data in its plaintext form

The following table displays the URL options.

<table>
<thead>
<tr>
<th>Source and/or Destination URL</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>running-config</td>
<td>Currently running configuration file. This cannot be the destination file.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td>flash://startup-config</td>
<td></td>
</tr>
<tr>
<td>image</td>
<td>Image file. If specified as the source file, it is the active image file. If specified as the destination file, it is the non-active image file.</td>
</tr>
<tr>
<td>flash://image</td>
<td></td>
</tr>
<tr>
<td>Source and/or Destination URL</td>
<td>Source or Destination</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>boot</td>
<td>Boot file.</td>
</tr>
<tr>
<td>tftp://</td>
<td>Source or destination URL for a TFTP network server. The syntax for this alias is <code>tftp://host/[directory]/filename</code>. The host can be either an IP address or a host name.</td>
</tr>
<tr>
<td>scp://</td>
<td>Source or destination URL for a Secure Copy Protocol (SCP) network server. The syntax for this alias is: <code>scp://[username:password@]host/[directory]/filename</code>. The host can be either the IP address or hostname. The default on the switch is SSH authentication by password with username and password anonymous. The SSH authentication parameters can be reconfigured to match the SSH/SCP server’s parameters.</td>
</tr>
<tr>
<td>xmodem:</td>
<td>Source for the file from a serial connection that uses the Xmodem protocol.</td>
</tr>
<tr>
<td>null:</td>
<td>Null destination for copies or files. A remote file can be copied to null to determine its size. For instance <code>copy running-conf null</code> returns the size of the running configuration file.</td>
</tr>
<tr>
<td>backup-config</td>
<td>Backup configuration file. A configuration file can be downloaded to this file (without giving a file name). This can then be copied to the running-conf or startup-conf files.</td>
</tr>
<tr>
<td>mirror-config</td>
<td>Mirrored configuration file. If the running config and the startup config have been identical for 24 hours, the startup config is automatically copied to the mirror-conf file by the system. It can then be copied to the startup or running conf if required.</td>
</tr>
<tr>
<td>localization</td>
<td>This enables copying a language dictionary file to the secondary language file, such as in <code>copy tftp://10.5.234.203/french.txt localization</code>. This creates French as the second language. The file <code>french.txt</code> is the French dictionary.</td>
</tr>
</tbody>
</table>
Source and/or Destination URL | Source or Destination

| unit://member/localization | The secondary language file on one of the units. To copy to all units, specify * in the member field.
| logging | Specifies the SYSLOG file. |
| Word<1-128> | Name of file (e.g. backup-config). |

Default Configuration

Sensitive data is excluded if no method was specified

Command Mode

Privileged EXEC mode

User Guidelines

The location of the file system dictates the format of the source or destination URL.

The entire copying process may take several minutes and differs from protocol to protocol and from network to network.

IPv6z Address Format

If the IPv6 address is a Link Local address (IPv6z address), the outgoing interface name must be specified. The format of an IPv6z address is: `{ipv6-link-local-address}%{interface-id}`. The subparameters are:

- `ipv6-link-local-address` — Specifies the IPv6 Link Local address.
- `interface-id` — `{<port-type> [<port-number>] | [port-channel | po]<port-channel-number> | [tunnel | tu]<tunnel-number> | vlan[]<vlan-id>`

If the egress interface is not specified, the default interface is selected. The following combinations are possible:

- `ipv6_address%interface_id` - Refers to the IPv6 address on the interface specified.
- `ipv6_address%0` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- `ipv6_address` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.

Invalid Combinations of Source and Destination

`unit://member/localization The secondary language file on one of the units. To copy to all units, specify * in the member field.
The following are invalid combinations of source and destination files:

- The source file and destination file are the same file.
- `xmodem:` is the destination file. The source file can be copied to `image`, `boot` and `null` only.
- `tftp://` is the source file and destination file on the same copy.
- `*.prv` files cannot be copied.
- The destination file cannot be the Running Configuration file.
- `mirror-config` cannot be used as a destination

The following table describes the characters displayed by the system when `copy` is being run:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>For network transfers, indicates that the copy process is taking place. Each exclamation point indicates successful transfer of ten packets (512 bytes each).</td>
</tr>
<tr>
<td>.</td>
<td>For network transfers, indicates that the copy process timed out.</td>
</tr>
</tbody>
</table>

Various Copy Options Guidelines

- **Copying an Image File from a Server to Flash Memory**
 Use the `copy source-url flash://image` command to copy an image file from a server to flash memory. When the administrator copies an image file from the server to a device, the image file is saved to the “inactive” image. To use this image, the administrator must switch the inactive image to the active image and reboot. The device will then use this new image.

- **Copying a Boot File from a Server to Flash Memory**
 Use the `copy source-url boot` command to copy a boot file from a server to flash memory. Copying a Configuration File from a Server to the Startup Configuration
 Use the `copy source-url startup-config` command to copy a configuration file from a network server to the device startup configuration file. The startup configuration file is replaced by the copied configuration file.

- **Storing the Running Config or Startup Config on a Server**
 Use the `copy running-config destination-url` command to copy the current configuration file to a network server using TFTP.
Use the `copy startup-config destination-url` command to copy the startup configuration file to a network server.

- **Saving the Running Configuration to the Startup Configuration**

 Use the `copy running-config startup-config` command to copy the running configuration to the startup configuration file.

- **Backing Up the Running Configuration or Startup Configuration to the Backup Configuration**

 Use the `copy running-config backup-config` command to back up the running configuration to the backup configuration file.

 Use the `copy startup-config backup-config` command to back up the startup configuration to the backup configuration file.

- **Restoring the Mirror Configuration File.**

 Use `copy mirror-config startup-config` or `copy mirror-config running-config` to copy the mirror configuration file to one of the configuration files being used.

SCP Copy Authentication Options

The following options are possible for using the SCP copy feature:

- **scp://host/[directory]/filename**

 In this option, the SSH authentication method (either by password or by key) and the credentials are specified by the CLI commands for `ip ssh client` (`ip ssh-client authentication`, `ip ssh-client key-type` or `ip ssh-client password/username`, and also the server authentication configuration commands),

- **scp://username.password@host/[directory]/filename**.

 This option specifies SSH authentication by password, and the user name and password for this specific SCP session (one-time only).

Examples
Example 1 - The following example copies system image file1 from the TFTP server 172.16.101.101 to the non-active image file.

```
switchxxxxxx# copy tftp://172.16.101.101/file1 image

Accessing file 'file1' on 172.16.101.101...

Loading file1 from 172.16.101.101:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! [OK]

Copy took 0:01:11 [hh:mm:ss]
```

Example 2 - Copying an Image from a Server to Flash Memory

The following example copies a system image named file1 from the TFTP server with an IP address of 172.16.101.101 to a non-active image file.

```
switchxxxxxx# copy tftp://172.16.101.101/file1 flash://image

Accessing file 'file1' on 172.16.101.101...

Loading file1 from 172.16.101.101:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! [OK]

Copy took 0:01:11 [hh:mm:ss]
```

Example 3 - Copying the mirror-config file to the startup-configuration file

The following example copies the mirror configuration file, saved by the system, to the Startup Configuration file.

```
switchxxxxxx# copy mirror-config startup-config
```

Example 4 - Copy file1 from SSH server to startup config
The following example copies file1 to the Startup Configuration file. The username and password used for SCP session authentication are: jeff and admin1. The IP address of the server containing file1 is 102.1.2.2.

```
switchxxxxxx# copy scp://jeff:admin1@102.1.2.2/file1 startup-config
```
8.2 write

Use the write Privileged EXEC mode command to save the running configuration to the startup configuration file.

Syntax
write [memory]

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Examples
The following example shows how to overwrite the startup-config file with the running-config file with the write command.

switchxxxxxx# write
15-Sep-2010 11:27:50 %COPY-N-TRAP: The copy operation was completed successfully
Copy succeeded

8.3 delete

The delete Privileged EXEC mode command deletes a file from a flash memory device.

Syntax
delete url
Parameters

url—Specifies the location URL or reserved keyword of the file to be deleted. (Length: 1–160 characters)

"Flash://" is the source or destination URL scheme that specifies the access method to the local flash memory. It simply stands for the root directory of the local flash. It is the default scheme for a URL that does not explicitly contain a scheme/access method (e.g., for copying the running configuration file, the user may either use flash://running-config or just running-config).

The following table displays keywords and URL prefixes:

<table>
<thead>
<tr>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-config</td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td>WORD</td>
<td>Name of file (e.g., backup-config).</td>
</tr>
</tbody>
</table>

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

mirror-config, *.sys, *.prv, image-1 and image-2 files cannot be deleted.

Example

The following example deletes the file called ‘backup-config’ from the flash memory.

```
switchxxxxxx# delete flash://backup-config
Delete flash://backup-config? [confirm]
```

8.4 dir

The dir Privileged EXEC mode command displays the list of files on a flash file system.

Syntax

dir [directory-path]
Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the list of files on a flash file system

Total size of flash: 33292288 bytes
Free size of flash: 20708893 bytes

switchxxxxxx# dir

Directory of flash:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>Flash Size</th>
<th>Data Size</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>backuplo</td>
<td>rw</td>
<td>851760</td>
<td>525565</td>
<td>22-Dec-2010 10:50:32</td>
</tr>
<tr>
<td>backup-config</td>
<td>rw</td>
<td>524288</td>
<td>104</td>
<td>01-Jan-2010 05:35:04</td>
</tr>
<tr>
<td>image-1</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 06:10:23</td>
</tr>
<tr>
<td>image-2</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 05:43:54</td>
</tr>
<tr>
<td>mirror-config</td>
<td>rw</td>
<td>524288</td>
<td>104</td>
<td>01-Jan-2010 05:35:04</td>
</tr>
<tr>
<td>dhcpsn.prv</td>
<td>--</td>
<td>262144</td>
<td>--</td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>sshkeys.prv</td>
<td>--</td>
<td>262144</td>
<td>--</td>
<td>04-Jan-2010 06:05:00</td>
</tr>
<tr>
<td>syslog1.sys</td>
<td>r-</td>
<td>524288</td>
<td>--</td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>syslog2.sys</td>
<td>r-</td>
<td>524288</td>
<td>--</td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>directry.prv</td>
<td>--</td>
<td>262144</td>
<td>--</td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>startup-config</td>
<td>rw</td>
<td>786432</td>
<td>1081</td>
<td>01-Jan-2010 10:05:34</td>
</tr>
</tbody>
</table>

Total size of flash: 66322432 bytes
Free size of flash: 42205184 bytes
8.5 more

The more Privileged EXEC mode command displays a file.

Syntax

more url

Parameters

url—Specifies the location URL or reserved keyword of the source file to be displayed. (Length: 1–160 characters).

"Flash://" is the source or destination URL scheme that specifies the access method to the local flash memory. It simply stands for the root directory of the local flash. It is the default scheme for a URL that does not explicitly contain a scheme/access method (e.g. for copying the running configuration file, the user may either use flash://running-config or just running-config).

The following table displays options for the URL parameter:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>running-config</td>
<td>Current running configuration file.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td>mirror-config</td>
<td>Mirrored configuration file.</td>
</tr>
<tr>
<td>WORD</td>
<td>Name of file (e.g. backup-config).</td>
</tr>
</tbody>
</table>

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Files are displayed in ASCII format, except for the images, which are displayed in a hexadecimal format.

*.prv files cannot be displayed.

Example

The following example displays the running configuration file contents.

switchxxxxxx# more running-config
no spanning-tree
interface range gi1-48
speed 1000
exit
no lldp run
line console
exec-timeout 0

8.6 boot system

The boot system Privileged EXEC mode command specifies the active system image file that will be loaded by the device at startup.

Syntax

boot system \{image-1 | image-2\}

Parameters

- **image-1**—Specifies that image-1 is loaded as the system image during the next device startup.
- **image-2**—Specifies that image-2 is loaded as the system image during the next device startup.

Default Configuration

This command has no default configuration.

active system image file that will be loaded by the device at startup will be set only for the master

Command Mode

Privileged EXEC mode

User Guidelines

Use the rename command to display the active image.
Example

The following example specifies that `image-1` is the active system image file loaded by the device at startup. The results of this command is displayed in `rename`.

```
switchxxxxxx# boot system image-1
switchxxxxxx# show bootvar

<table>
<thead>
<tr>
<th>Image</th>
<th>Filename</th>
<th>Version</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>image-1</td>
<td>1.1.0.73</td>
<td>19-Jun-2011</td>
<td>18:10:49</td>
</tr>
<tr>
<td>2</td>
<td>image-2</td>
<td>1.1.0.73</td>
<td>19-Jun-2011</td>
<td>18:10:49</td>
</tr>
</tbody>
</table>
```

"*" designates that the image was selected for the next boot.

8.7 rename

The `rename` Privileged EXEC mode command renames a file.

Syntax

`rename url new-url`

Parameters

- `url`—Specifies the file location URL. (Length: 1–160 characters)
- `new-url`—Specifies the file’s new URL. (Length: 1–160 characters)

"Flash://" is the source or destination URL scheme that specifies the access method to the local flash memory. It simply stands for the root directory of the local flash. It is the default scheme for a URL that does not explicitly contain a scheme/access method (e.g. for copying the running configuration file, the user may either use flash://running-config or just running-config).

The following table displays options for the URL parameter:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORD<1-12 8></td>
<td>Name of file (e.g. backup-config).</td>
</tr>
</tbody>
</table>
Default Configuration
N/A

Command Mode
Privileged EXEC mode

User Guidelines

mirror-config, *.sys and *.prv files cannot be renamed.

Example
The following example renames the configuration backup file.

```
switchxxxxxx# rename backup-config m-config.bak
```

8.8 show bootvar

Use the show bootvar EXEC mode command to display the active system image file that was loaded by the device at startup, and to display the system image file that will be loaded after rebooting the switch.

Syntax

```
show bootvar
```

Parameters

N/A

Command Mode
EXEC mode
Example

The following example displays the active system image file that was loaded by the device at startup and the system image file that will be loaded after rebooting the switch.

```
switchxxxxxx# show bootvar
Image  filename  Version  Date            Status
       ------    -------    ------------    -------
  1  image-1  1.1.04     23-Jul-2010  Active
  2  image-2  1.1.0.5    22-Jan-2010  Not active*
```

"*": Designates that the image was selected for the next boot.

8.9 show running-config

The `show running-config` Privileged EXEC mode command displays the entire current Running Configuration file contents or the contents of the file for the specified interface(s).

Syntax

```
show running-config [interface interface-id-list | detailed | brief]
```

Parameters

- `interface interface-id-list`—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.
- `detailed`—Displays configuration with SSL and SSH keys.
- `brief`—Displays configuration without SSL and SSH keys.

Default Configuration

All interfaces are displayed. If `detailed` or `brief` is not specified, the default is `detailed`.

Command Mode

Privileged EXEC mode
User Guidelines

The Running Configuration file does not contain all the information that can be displayed in the output. Only non-default configurations are displayed.

Examples

The following example displays the Running Configuration file contents.

Example 1 - Show the entire Running Configuration file.

```
switchxxxxxx# show running-config
no spanning-tree
interface range gi1-48
  speed 1000
  exit
no lldp run
interface vlan 1
  ip address 1.1.1.1 255.0.0.0
  exit
line console
  exec-timeout 0
  exit
switchxxxxxx#
```

Example 2 - Show the entire Running Configuration file for ports 1 and 2.

```
switchxxxxxx# show running-config interface fastethernet1/1/1-2
interface fastethernet1/1/1
  back-pressure
duplex half
speed 10
flowcontrol on
negotiation 10h 100h 100f
dot1x max-req 8
```
description "Hello World String"
lacp timeout short
lacp port-priority 1234
garp timer join 100
garp timer leave 300
port security max 111
port security mode max-addresses
spanning-tree disable
spanning-tree portfast auto
spanning-tree link-type point-to-point
spanning-tree cost 200000
spanning-tree port-priority 224
spanning-tree guard root
spanning-tree mst 2 port-priority 64
spanning-tree mst 2 cost 2222
spanning-tree mst 4 port-priority 80
qos cos 6
traffic-shape 12345
switchport mode general
switchport general allowed vlan add 12,14-20 tagged
switchport general allowed vlan add 2-11,13,100,3000,3002,3004,3006,3008 untagged
switchport general map macs-group 1 vlan 111
switchport general ingress-filtering disable
switchport general acceptable-frame-type untagged-only
switchport general pvid 111
interface fastethernet1/1/2
ip address 1.100.100.100 255.0.0.0
switchport mode trunk
switchport general map macs-group 1 vlan 111
switchport general map subnets-group 1 vlan 113
switchport general map protocols-group 1 vlan 112
switchport general ingress-filtering disable
switchport general acceptable-frame-type untagged-only
switchport general pvid 111
switchport trunk native vlan 22

8.10 show startup-config

The `show startup-config` Privileged EXEC mode command displays the startup configuration file contents.

Syntax

`show startup-config [interface interface-id-list]`

Parameters

- `interface interface-id-list`—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.

Default Configuration

All interfaces are displayed.

Command Mode

Privileged EXEC mode

User Guidelines

The Startup Configuration file does not contain all the information that can be displayed in the output. Only non-default configurations are displayed.

Examples

Example 1 - The following example displays the Startup Configuration file contents.

```bash
switchxxxxxx# show startup-config
no spanning-tree
interface range gi1-48
```
Example 2 - The following example displays the Startup Configuration file contents for ports 1 and 2.

```
switchxxxxxx# show startup-config interface gi1-2
interface gi1
  back-pressure
  duplex half
  speed 10
  flowcontrol on
  negotiation 10h 100h 100f
  dot1x max-req 8
  description "Hello World String"
  lacp timeout short
  lacp port-priority 1234
  garp timer join 100
  garp timer leave 300
  port security max 111
  port security mode max-addresses
  spanning-tree disable
  spanning-tree portfast auto
  spanning-tree link-type point-to-point
```
spanning-tree cost 200000
spanning-tree port-priority 224
spanning-tree guard root
spanning-tree mst 2 port-priority 64
spanning-tree mst 2 cost 2222
spanning-tree mst 4 port-priority 80
qos cos 6
traffic-shape 12345
switchport mode general
switchport general allowed vlan add 12,14-20 tagged
switchport general allowed vlan add 2-11,13,100,3000,3002,3004,3006,3008 untagged
switchport general map macs-group 1 vlan 111
switchport general ingress-filtering disable
switchport general acceptable-frame-type untagged-only
switchport general pvid 111
interface fastethernet1/1/2
ip address 1.100.100.100 255.0.0.0
switchport mode trunk
switchport general map macs-group 1 vlan 111
switchport general map subnets-group 1 vlan 113
switchport general map protocols-group 1 vlan 112
switchport general ingress-filtering disable
switchport general acceptable-frame-type untagged-only
switchport general pvid 111
switchport trunk native vlan 22

8.11 service mirror-configuration

Use the service mirror-configuration Global Configuration mode command to enable the mirror-configuration service. Use no service mirror-configuration command to disable the service.
Syntax

```plaintext
service mirror-configuration
no service mirror-configuration
```

Parameters

N/A

Default Configuration

The default configuration is mirror-configuration service enabled.

Command Mode

Global Configuration mode

User Guidelines

The mirror-configuration service automatically keeps a copy of the last known stable configuration (startup configuration that wasn't modified for 24H). The mirror-configuration file is not deleted when restoring to factory defaults.

When this service is disabled, the mirror-configuration file is not created and if such file already exists, it is deleted.

Note that enabling the service doesn't implicitly creates a mirror-configuration file.

Examples

Example 1: The following example disables the mirror-configuration service

```plaintext
no service mirror-configuration
```

This operation will delete the mirror-config file if exists. Do you want to continue? (Y/N) [N]

Example 2: The following example enables the mirror-configuration service

```plaintext
service mirror-configuration
```

Service is enabled.

Note that the running-configuration must be first copied to the startup-configuration in order to initiate backing up the startup-config to the mirror-config.
8.12 show service mirror-configuration

Use the `show service mirror-configuration` EXEC mode command to display the mirror-configuration service status.

Syntax

```
show service mirror-configuration
```

Command Mode

EXEC mode

Example

The following example displays the status of the mirror-configuration service

```
show service mirror-configuration
```

Mirror-configuration service is enabled
Auto-Configuration

9.1 boot host auto-config

Use the boot host auto-config Global Configuration mode command to enable DHCP auto configuration via either the TFTP or SCP protocols. Use the no form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-config [tftp | scp | auto [extension]]
no boot host auto-config
```

Parameters

- ftp—Only the TFTP protocol is used by auto-configuration.
- scp—Only the SCP protocol is used by auto-configuration.
- auto—(Default) Auto-configuration uses the TFTP or SCP protocol depending on the configuration file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
- extension—The SCP file extension. When no value is specified, 'scp' is used. (Range: 0–128)

Default Configuration

The auto option is the default.

Command Mode

Global Configuration mode

Default Configuration

Enabled by default.

Examples

Example 1 - The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
boot host auto-config auto scon
```
Example 2 - The following example specifies the auto mode and does not provide an SCP extension. In this case “scp” is used.

```plaintext
boot host auto-config auto
```

Example 3. The following example specifies that only the SCP protocol will be used:

```plaintext
boot host auto-config scp
```

9.2 show boot

Use the show boot Privilege EXEC mode command to show the status of the IP DHCP Auto Config process.

Syntax

```
show boot
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privilege EXEC mode

Examples

```
switchxxxxxx show boot
Auto Config
---------
Config Download via DHCP: enabled
Download Protocol Mode is SCP
SCP extension is scp
Next Boot Config Download via DHCP: default
```
9.3 ip dhcp tftp-server ip address

Use the `ip dhcp tftp-server ip address` Global Configuration mode command to set the TFTP or SCP server’s IP address. This address server as the default address used by a switch when it has not been received from the DHCP server.

Use the `no` form of this command to remove the address.

Syntax

```
ip dhcp tftp-server ip address ip-addr
no ip dhcp tftp-server ip address
```

Parameters

`ip addr ip-addr`—Address of TFTP server

Default Configuration

No IP address

Command Mode

Global Configuration mode

User Guidelines

The backup server can be either a TFTP server or an SCP server.

Examples

```
switchxxxxxx(conf)# ip dhcp tftp-server ip address 10.5.234.232
```

9.4 ip dhcp tftp-server file

Use the `ip dhcp tftp-server file` Global Configuration mode command to set the full file name of the configuration file to be downloaded on the TFTP or SCP server when it has not been received from the DHCP server. This serves as the default configuration file.

Use the `no` form of this command to remove the name.

Syntax

```
ip dhcp tftp-server file file-path
```


no ip dhcp tftp-server file

Parameters
file-path—Full file path and name of the configuration file on TFTP server

Default Configuration
No file name

Command Mode
Global Configuration mode

User Guidelines
The path/file name, used in the download process, can be received from DHCP or this command as well.

Examples

switchxxxxxx(conf)# ip dhcp tftp-server file conf/conf-file

9.5 show ip dhcp tftp-server

Use the show ip dhcp tftp-server EXEC mode command to display information about the TFTP server.

Syntax
show ip dhcp tftp-server

Parameters
N/A

Default Configuration
N/A

Command Mode
EXEC
Example

```
swxxxxxx# show ip dhcp tftp server

tftp server address
server address
active   1.1.1.1 from sname
manual   2.2.2.2
file path on tftp server
file path on server
active   conf/conf-file from option 67
```
10.1 management access-list

The **management access-list** Global Configuration mode command configures a management access list (ACL) and enters the Management Access-List Configuration command mode. Use the **no** form of this command to delete an ACL.

Syntax

```
management access-list name
no management access-list name
```

Parameters

`name`—Specifies the ACL name. (Length: 1–32 characters)

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

Use this command to configure a management access list. This command enters the Management Access-List Configuration mode, where the denied or permitted access conditions are defined with the **deny** and **permit** commands.

If no match criteria are defined, the default value is **deny**.

When re-entering the access-list context, the new rules are entered at the end of the access list.

Use the **management access-class** command to select the active access list.

The active management list cannot be updated or removed.

For IPv6 management traffic that is tunneled in IPv4 packets, the management ACL is applied first on the external IPv4 header (rules with the service field are ignored), and then again on the inner IPv6 header.
Examples

Example 1 - The following example creates a management access list called mlist, configures management gi1 and gi9, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit gi1
switchxxxxxx(config-macl)# permit gi9
switchxxxxxx(config-macl)# exit
switchxxxxxx(config)# management access-class mlist
```

Example 2 - The following example creates a management access list called 'mlist', configures all interfaces to be management interfaces except gi1 and 9, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# deny gi1
switchxxxxxx(config-macl)# deny gi9
switchxxxxxx(config-macl)# permit
switchxxxxxx(config-macl)# exit
switchxxxxxx(config)# management access-class mlist
```

10.2 permit (Management)

The `permit` Management Access-List Configuration mode command sets permit rules (ACEs) for the management access list (ACL).

Syntax

```
permit [interface-id] [service service]
permit ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]
```

Parameters

- `interface-id:`—Specify an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
Management ACL Commands

- **service** *service* — Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address** — Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length** — Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask** *mask* — Specifies the source IPv4 address network mask. This parameter is relevant only to IPv4 addresses.
- **mask** *prefix-length* — Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). This parameter is relevant only to IPv4 addresses. (Range: 0–32)

Default Configuration

No rules are configured.

Command Mode

Management Access-List Configuration mode

User Guidelines

Rules with Ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example

The following example permits all ports in the ACL called *mlist*

```plaintext
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit
```

10.3 deny (Management)

The **deny** Management Access-List Configuration mode command sets permit rules (ACEs) for the management access list (ACL).

Syntax

deny [interface-id] [service service]
deny ip-source [ipv4-address | ipv6-address/ipv6-prefix-length] [mask [mask | prefix-length]] [interface-id] [service service]

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service**—Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address**—Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length**—Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask mask**—Specifies the source IPv4 address network mask. The parameter is relevant only to IPv4 addresses.
- **mask prefix-length**—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). The parameter is relevant only to IPv4 addresses. (Range: 0–32)

Default Configuration

No rules are configured.

Command Mode

Management Access-List Configuration mode

User Guidelines

Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example

The following example denies all ports in the ACL called mlist.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# deny
```
10.4 management access-class

The management access-class Global Configuration mode command restricts management connections by defining the active management access list (ACL). To disable management connection restrictions, use the no form of this command.

Syntax

management access-class {console-only | name}

no management access-class

Parameters

- console-only—Specifies that the device can be managed only from the console.
- name—Specifies the ACL name to be used. (Length: 1–32 characters)

Default Configuration

The default configuration is no management connection restrictions.

Command Mode

Global Configuration mode

Example

The following example defines an access list called mlist as the active management access list.

switchxxxxxx(config)# management access-class mlist

10.5 show management access-list

The show management access-list Privileged EXEC mode command displays management access lists (ACLs).

Syntax

show management access-list [name]
Parameters

name—Specifies the name of a management access list to be displayed. (Length: 1–32 characters)

Default Configuration

All management ACLs are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the mlist management ACL.

```
switchxxxxxx# show management access-list mlist
-only
-----------
deny
! (Note: all other access implicitly denied)
mlist
-----
permit gi1
permit gi9
! (Note: all other access implicitly denied)
switchxxxxxx#
```

10.6 show management access-class

The show management access-class Privileged EXEC mode command displays information about the active management access list (ACLs).

Syntax

show management access-class
Command Mode
Privileged EXEC mode

Example
The following example displays the active management ACL information.

```
switchxxxxxx# show management access-class
Management access-class is enabled, using access list mlist
```
Network Management Protocol (SNMP) Commands

11.1 snmp-server server

Use the `snmp-server server` Global Configuration mode command to enable the device to be configured by the SNMP protocol. Use the `no` form of this command to disable this function.

Syntax

`snmp-server server`

`no snmp-server server`

Parameters

N/A

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# snmp-server server
```

11.2 snmp-server community

Use the `snmp-server community` Global Configuration mode command to set the community access string (password) that permits access to SNMP commands (v1 and v2). This is used for SNMP commands, such as GETs and SETs.

This command configures both SNMP v1 and v2.

Use the `no` form of this command to remove the specified community string.
Syntax

```
snmp-server community community-string [ro | rw | su] [ip-address | ipv6-address] [mask mask | prefix prefix-length] [view view-name]
```

```
no snmp-server community community-string [ip-address]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters). This string is used as an input parameter to `snmp-server user` for SNMP v3.

- **ro**—Specifies read-only access (default)

- **rw**—Specifies read-write access

- **su**—Specifies SNMP administrator access

- **view view-name**—Specifies the name of a view configured using the command `snmp-server view` (no specific order of the command configurations is imposed on the user). The view defines the objects available to the community. It is not relevant for `su`, which has access to the whole MIB. If unspecified, all the objects, except the community-table and SNMPv3 user and access tables, are available. (Range: 1–30 characters)

- **ip-address**—Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.

- **mask**—Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet's source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.

- **prefix-length**—Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

Default Configuration

No community is defined

Command Mode

Global Configuration mode
User Guidelines

The logical key of the command is the pair (community, ip-address). If ip-address is omitted then the key is (community, All-IPs). This means that there cannot be two commands with the same community, ip address pair.

The view-name is used to restrict the access rights of a community string. When a view-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to an internal group-name.
- Maps the internal group-name for SNMPv1 and SNMPv2 security models to view-name (read-view and notify-view always, and for rw for write-view also).

Example

Defines a password for administrator access to the management station at IP address 1.1.1.121 and mask 255.0.0.0.

```console
switchxxxxxx(config)# snmp-server community abcd su 1.1.1.121 mask 255.0.0.0
```

11.3 snmp-server community-group

Use `snmp-server community-group` to configure access rights to a user group. The group must exist in order to be able to specify the access rights. This command configures both SNMP v1 and v2.

Syntax

```
snmp-server community-group community-string group-name [ip-address | ipv6-address] [mask mask /prefix prefix-length]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters). This string is used as an input parameter to `snmp-server user` for SNMP v3.
- **ip-address**—Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
Network Management Protocol (SNMP) Commands

- **mask**—Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.

- **prefix-length**—Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

- **group-name**—This is the name of a group configured using `snmp-server group` with v1 or v2 (no specific order of the two command configurations is imposed on the user). The group defines the objects available to the community. (Range: 1–30 characters)

Default Configuration

No community is defined

Command Mode

Global Configuration mode

User Guidelines

The **group-name** is used to restrict the access rights of a community string. When a group-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to the group-name.

Example

Defines a password **tom** for the group **abcd** that enables this group to access the management station 1.1.1.121 with prefix 8.

```
switchxxxxxx(config)# snmp-server community-group tom abcd 1.1.1.122 prefix 8
```

11.4 snmp-server view

The `snmp-server view` Global Configuration mode command creates or updates an SNMP view. Use the `no` form of this command to remove an SNMP view.
Syntax

snmp-server view view-name oid-tree {included / excluded}
no snmp-server view view-name [oid-tree]

Parameters

- **view-name**—Specifies the name for the view that is being created or updated. (Length: 1–30 characters)

- **oid-tree**—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System and, optionally, a sequence of numbers. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4. This parameter depends on the MIB being specified.

- **included**—Specifies that the view type is included.

- **excluded**—Specifies that the view type is excluded.

Default Configuration

The following views are created by default:

- **Default** - Contains all MIBs except for those that configure the SNMP parameters themselves.

- **DefaultSuper** - Contains all MIBs.

Command Mode

Global Configuration mode

User Guidelines

This command can be entered multiple times for the same view.

The command’s logical key is the pair (view-name, oid-tree). Therefore there cannot be two commands with the same view-name and oid-tree.

The number of views is limited to 64.

Default and DefaultSuper views are reserved for internal software use and cannot be deleted or modified.
Example

The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interface group (this format is specified on the parameters specified in ifEntry).

```
switchxxxxxxx(config)# snmp-server view user-view system included
switchxxxxxxx(config)# snmp-server view user-view system.7 excluded
switchxxxxxxx(config)# snmp-server view user-view ifEntry.*.1 included
```

11.5 show snmp views

Use the `show snmp views` Privileged EXEC mode command to display the SNMP views.

Syntax

```
show snmp views [viewname]
```

Parameters

- **viewname**—Specifies the view name. (Length: 1–30 characters)

Default Configuration

If `viewname` is not specified, all views are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP views.

```
switchxxxxxxx# show snmp views

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>iso</td>
<td>Included</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>snmpNotificationMIB</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>iso</td>
<td>Included</td>
</tr>
</tbody>
</table>
```
11.6 \texttt{snmp-server group}

Use the \texttt{snmp-server group} Global Configuration mode command to configure an SNMP group. Groups are used to map SNMP users to SNMP views (using \texttt{snmp-server user}). Use the \texttt{no} form of this command to remove an SNMP group.

\textbf{Syntax}

\begin{verbatim}
snmp-server group groupname \{v1 \textit{v2} v3 \{noauth \textit{auth} \textit{priv} \}
\[\textit{notify notifyview}\][\textit{read readview}\] \textit{write writeview}\]
\end{verbatim}

\texttt{no snmp-server group groupname \{v1 \textit{v2} v3 \{noauth \textit{auth} \textit{priv}\}}

\textbf{Parameters}

- \textit{group groupname}—Specifies the group name. (Length: 1–30 characters)
- \textit{v1}—Specifies the SNMP Version 1 security model.
- \textit{v2}—Specifies the SNMP Version 2 security model.
- \textit{v3}—Specifies the SNMP Version 3 security model.
- \textit{noauth}—Specifies that no packet authentication will be performed. Applicable only to the SNMP version 3 security model.
- \textit{auth}—Specifies that packet authentication without encryption will be performed. Applicable only to the SNMP version 3 security model.
- \textit{priv}—Specifies that packet authentication with encryption will be performed. Applicable only to the SNMP version 3 security model. Note that creation of SNMPv3 users with both authentication and privacy must be done in the GUI. All other users may be created in the CLI.
- \textit{notify notifyview}—Specifies the view name that enables generating informs or a traps. An inform is a trap that requires acknowledgement. Applicable only to the SNMP version 3 security model. (Length: 1–30 characters)
- \textit{read readview}—Specifies the view name that enables viewing only. (Length: 1–30 characters)
- \textit{write writeview}—Specifies the view name that enables configuring the agent. (Length: 1–30 characters)

\textbf{Default Configuration}

No group entry exists.
If `notifyview` is not specified, the notify view is not defined.

If `readview` is not specified, all objects except for the community-table and SNMPv3 user and access tables are available for retrieval.

If `writeview` is not specified, the write view is not defined.

Command Mode

Global Configuration mode

User Guidelines

The group defined in this command is used in `snmp-server user` to map users to the group. These users are then automatically mapped to the views defined in this command.

The command logical key is `(groupname, snmp-version, security-level)`. For `snmp-version v1/v2` the security-level is always `noauth`.

Example

The following example attaches a group called `user-group` to SNMPv3, assigns the encrypted security level to the group, and limits the access rights of a view called `user-view` to read-only. User `tom` is then assigned to `user-group`. So that user `tom` has the rights assigned in `user-view`.

```
switchxxxxxx(config)# snmp-server group user-group v3 priv read user-view
switchxxxxxx(config)# snmp-server user tom user-group v3
```

11.7 `show snmp groups`

Use the `show snmp groups` Privileged EXEC mode command to display the configured SNMP groups.

Syntax

`show snmp groups [groupname]`

Parameters

`groupname`—Specifies the group name. (Length: 1–30 characters)
Default Configuration
Display all groups.

Command Mode
Privileged EXEC mode

Example
The following example displays the configured SNMP groups.

```
switchxxxxxx# show snmp groups
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Security</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-group</td>
<td>V3</td>
<td>priv</td>
</tr>
<tr>
<td>managers-group</td>
<td>V3</td>
<td>priv</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Group name.</td>
</tr>
<tr>
<td>Security</td>
<td>Model</td>
</tr>
<tr>
<td>Security</td>
<td>Level</td>
</tr>
<tr>
<td>Views</td>
<td>Read</td>
</tr>
<tr>
<td></td>
<td>Write</td>
</tr>
<tr>
<td></td>
<td>Notify</td>
</tr>
</tbody>
</table>

11.8 snmp-server user

Use the `snmp-server user` Global Configuration mode command to configure a new SNMP Version user. Use the `no` form of the command to remove a user. Use the `encrypted` form of this command to enter the authentication and privacy passwords in encrypted form (see SSD).
Syntax

```
snmp-server user username groupname {v1 / v2c / [remote host] v3[auth { md5 / sha} auth-password [priv priv-password] ]}
```

```
encrypted snmp-server user username groupname {v1 / v2c / [remote host] v3[auth { md5 / sha} encrypted-auth-password [priv encrypted-priv-password] ]}
```

```
o snmp-server user username [remote host]
```

Parameters

- **username**—Define the name of the user on the host that connects to the agent. (Range: Up to 20 characters). For SNMP v1 or v2c, this username must match the community string entered in `snmp-server host`.

- **groupname**—The name of the group to which the user belongs. The group should be configured using the command `snmp-server group` with v1 or v2c parameters (no specific order of the 2 command configurations is imposed on the user). (Range: Up to 30 characters)

- **remote host**—IP address (IPv4, IPv6 or IPv6z) or host name of the remote SNMP host. See IPv6z Address Conventions.

- **v1**—Specifies that the user is a v1 user.

- **v2c**—Specifies that the user is a v2c user.

- **v3**—Specifies that the user is a v3 user.

- **auth**—Specifies which authentication level is to be used.

- **md5**—Specifies the HMAC-MD5-96 authentication level.

- **sha**—Specifies the HMAC-SHA-96 authentication level.

- **auth-password**—Specifies the authentication password. Range: Up to 32 characters.

- **encrypted-auth-password**—Specifies the authentication password in encrypted format.

- **priv-password**—Specifies the privacy password (The encryption algorithm used is data encryption standard - DES). Range: Up to 64 characters. `encrypted-priv-password`—Specifies the privacy password in encrypted format.
Default Configuration

No group entry exists.

Command Mode

Global configuration

User Guidelines

For SNMP v1 and v2, this performs the same actions as `snmp-server community-group`, except that `snmp-server community-group` configures both v1 and v2 at the same time. With this command, you must perform it once for v1 and once for v2.

When you enter a `show running-config` command, you do not see a line for this SNMP user. To see if this user has been added to the configuration, type the `show snmp user` command.

An SNMP EngineID must be defined in order to add SNMPv3 users to the device (in the `snmp-server engineID local` or `snmp-server engineID remote` commands).

Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users' database.

The logical key of the command is username.

Configuring a remote host is required in order to send informs to that host, because an inform is a trap that requires acknowledgement. A configured remote host is also able to manage the device (besides getting the informs).

To configure a remote user, specify the IP address for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID remote` command. The remote agent's SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command fails.

Since the same group may be defined several times, each time with different version or different access level (noauth, auth or auth & priv), when defining a user it is not sufficient to specify the group name, rather you must specify group name, version and access level for complete determination of how to handle packets from this user.
Example

This example assigns user *tom* to group *abcd* using SNMP v1 and v2c. The default is assigned as the engineID. User *tom* is assigned to group *abcd* using SNMP v1 and v2c.

```
switchxxxxxx(config)# snmp-server user tom abcd v1
switchxxxxxx(config)# snmp-server user tom abcd v2c
switchxxxxxx(config)# snmp-server user tom abcd v3
```

11.9 show snmp users

Use the **show snmp users** Privileged EXEC mode command to display the configured SNMP users.

Syntax

```
show snmp users [username]
```

Parameters

username—Specifies the user name. (Length: 1–30 characters)

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP users

```
Example

The following examples displays the configured SNMP users.

```

```
User name : u1rem
Group name : group1
Authentication Algorithm : None
```
Privacy Algorithm : None
Remote : 11223344556677
Auth Password :
Priv Password :

User name : qqq
Group name : www
Authentication Algorithm : MD5
Privacy Algorithm : None
Remote :
Auth Password : helloworld1234567890987665
Priv Password :

User name : hello
Group name : world
Authentication Algorithm : MD5
Privacy Algorithm : DES
Remote :
Auth Password (encrypted):
Z/tC3UF5j0pYfmXm8xeMvcIOQ6LQ4GOACCGYLRdAgOE6XQKTCqMlrnpWuHraRIZj
Priv Password (encrypted):
kN1ZHsSL06WWxIkZVzhL0o1gl5waaNf7Vq6yLBpJdS4N68t1tbTRSz2H4c4Q4
User name : u1noAuth
Group name : group1
Authentication Algorithm : None
Privacy Algorithm : None
Remote :
Auth Password (encrypted):
Priv Password (encrypted) :
User name : u1OnlyAuth
Group name : group1
Authentication Algorithm : SHA
Privacy Algorithm : None
Remote :
Auth Password (encrypted):
8nPzy2hzuba9pG3iiC/q0451RynUn7kq94L9WORFrRM=
Priv Password (encrypted) :

11.10 snmp-server filter

The snmp-server filter Global Configuration mode command creates or updates an SNMP server notification filter. Use the no form of this command to remove a notification filter.

Syntax

```
snmp-server filter filter-name oid-tree {included | excluded}
no snmp-server filter filter-name [oid-tree]
```

Parameters

- **filter-name**—Specifies the label for the filter record that is being updated or created. The name is used to reference the filter in other commands. (Length: 1–30 characters)

- **oid-tree**—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example, 1.3.*.4.

- **included**—Specifies that the filter type is included.

- **excluded**—Specifies that the filter type is excluded.
Default Configuration
No view entry exists.

Command Mode
Global Configuration mode

User Guidelines
This command can be entered multiple times for the same filter. If an object identifier is included in two or more lines, later lines take precedence. The command's logical key is the pair (filter-name, oid-tree).

Example
The following example creates a filter that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group (this format depends on the parameters define din ifEntry).

```
switchxxxxxx(config)# snmp-server filter f1 system included
switchxxxxxx(config)# snmp-server filter f2 system.7 excluded
switchxxxxxx(config)# snmp-server filter f3 ifEntry.*.1 included
```

11.11 show snmp filters
Use the show snmp filters Privileged EXEC mode command to display the defined SNMP filters.

Syntax
```
show snmp filters [filtername]
```

Parameters
```
filtername—Specifies the filter name. (Length: 1–30 characters)
```

Default Configuration
If filtername is not defined, all filters are displayed.

Command Mode
Privileged EXEC mode
Example

The following example displays the configured SNMP filters.

```
switchxxxxxx# show snmp filters user-filter
Name   OID Tree       Type
-------- --------------- ----- 
user-filter 1.3.6.1.2.1.1 Included
user-filter 1.3.6.1.2.1.1.7 Excluded
user-filter 1.3.6.1.2.1.2.2.1.*.1 Included
```

11.12 snmp-server host

Use the `snmp-server host` Global Configuration mode command to configure the host for SNMP notifications: (traps/informs). Use the `no` form of this command to remove the specified host.

Syntax

```
snmp-server host {host-ip / hostname} [traps / informs] [version {1 | 2c | 3 [auth / noauth / priv]}] community-string [udp-port port] [filter filtername] [timeout seconds] [retries retries]
```

```
o snmp-server host {ip-address / hostname} [traps / informs] [version {1 | 2c | 3}]
```

Parameters

- **host-ip**—IP address of the host (the targeted recipient). The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **hostname**—Hostname of the host (the targeted recipient). (Range: 1–158 characters. Maximum label size of each part of the host name: 63)
- **trap**—Sends SNMP traps to this host (default).
- **informs**—Sends SNMP informs to this host. An inform is a trap that requires acknowledgement. Not applicable to SNMPv1.
- **1**—SNMPv1 traps are used.
- **2c**—SNMPv2 traps or informs are used
- **3**—SNMPv2 traps or informs are used
- **community-string**—Password-like community string sent with the notification operation. (Range: 1–20 characters). For v1 and v2, any community string can be entered here. For v3, the community string must match the user name defined in `snmp-server user` for v3.

- Authentication options are available for SNMP v3 only. The following options are available:
 - `noauth`—Specifies no authentication of a packet.
 - `auth`—Specifies authentication of a packet without encryption.
 - `priv`—Specifies authentication of a packet with encryption.

- `udp-port port`—UDP port of the host to use. The default is 162. (Range: 1–65535)

- `filter filtername`—Filter for this host. If unspecified, nothing is filtered. The filter is defined using `snmp-server filter` (no specific order of commands is imposed on the user). (Range: Up to 30 characters)

- `timeout seconds`—(For informs only) Number of seconds to wait for an acknowledgment before resending informs. The default is 15 seconds. (Range: 1–300)

- `retries retries`—(For informs only) Maximum number of times to resend an inform request, when a response is not received for a generated message. The default is 3. (Range: 0–255)

Default Configuration

Version: SNMP V1

Type of notification: Traps

udp-port: 162

If informs are specified, the default for retries: 3

Timeout: 15

Command Mode

Global Configuration mode

User Guidelines

The logical key of the command is the pair (ip-address/hostname, traps/informs, version).
When configuring SNMP v1 or v2 notifications recipient, the software automatically generates a notification view for that recipient for all MIBs.

For SNMPv3 the software does not automatically create a user or a notify view.

Use the commands `snmp-server user`, `snmp-server group` and `snmp-server view` to create a user, a group or a notification group, respectively.

Example

The following defines a host at the IP address displayed.

```
switchxxxxxx(config)# snmp-server host 1.1.1.121 abc
```

11.13 snmp-server engineID remote

To specify the SNMP engine ID of a remote SNMP device, use the `snmp-server engineID remote` Global Configuration mode command. Use the `no` form of this command to remove the configured engine ID.

Syntax

```
snmp-server engineID remote [ip-address] engineid-string
no snmp-server engineID remote [ip-address]
```

Parameters

- `ip-address` — IPv4, IPv6 or IPv6z address of the remote device. See IPv6z Address Conventions.

- `engineid-string` — The character string that identifies the engine ID. The engine ID is a concatenated hexadecimal string. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon. If the user enters an odd number of hexadecimal digits, the system automatically prefixes the hexadecimal string with a zero. (Range: engineid-string 5–32 characters, 9–64 hexadecimal digits)

Default Configuration

The remote engineID is not configured by default.

Command Mode

Global Configuration mode
User Guidelines

A remote engine ID is required when an SNMP version 3 inform is configured. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

11.14 snmp-server engineID local

The **snmp-server engineID local** Global Configuration mode command specifies the SNMP engineID on the local device for SNMP v3. Use the **no** form of this command to remove this engine ID.

Syntax

```
snmp-server engineID local {engineid-string | default}
no snmp-server engineID local
```

Parameters

- `engineid-string`—Specifies a concatenated hexadecimal character string identifying the engine ID. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. If an odd number of hexadecimal digits are entered, the system automatically prefixes the digit 0 to the string. (Length: 5–32 characters, 9–64 hexadecimal digits)

- `default`—Specifies that the engine ID is created automatically based on the device MAC address.

Default Configuration

The default engine ID is defined per standard as:

- First 4 octets: First bit = 1, the rest is IANA Enterprise number = 674.
- Fifth octet: Set to 3 to indicate the MAC address that follows.
- Last 6 octets: The device MAC address.

Command Mode

Global Configuration mode
User Guidelines

To use SNMPv3, an engine ID must be specified for the device. Any ID can be specified or the default string, which is generated using the device MAC address, can be used.

Since the engineID should be unique within an administrative domain, use the default keyword to configure the Engine ID.

Changing or removing the value of snmpEngineID deletes the SNMPv3 users database.

The SNMP EngineID cannot be all 0x0 or all 0xF or 0x00000001

Example

The following example enables SNMPv3 on the device and sets the device local engine ID to the default value.

switchxxxxxx(config)# snmp-server engineid local default

The engine-id must be unique within your administrative domain.

Do you wish to continue? [Y/N] Y

The SNMPv3 database will be erased. Do you wish to continue? [Y/N] Y

11.15 show snmp engineID

Use the show snmp engineID Privileged EXEC mode command to display the local SNMP engine ID.

Syntax

 show snmp engineID

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example

The following example displays the SNMP engine ID.

```
switchxxxxxx # show snmp engineID
Local SNMP engineID: 08009009020C0B099C075878
IP address         Remote SNMP engineID
----------------- -------------------------------
172.16.1.1         08009009020C0B099C075879
```

11.16 snmp-server enable traps

Use the `snmp-server enable traps` Global Configuration mode command to enable the device to send all SNMP traps. Use the `no` form of the command to disable all SNMP traps.

Syntax

```
snmp-server enable traps
no snmp-server enable traps
```

Default Configuration

SNMP traps are enabled.

Command Mode

Global Configuration mode

User Guidelines

If `no snmp-server enable traps` has been entered, you can enable failure traps by using `snmp-server trap authentication` as shown in the example.

Example

The following example enables SNMP traps except for SNMP failure traps.

```
switchxxxxxx(config)# snmp-server enable traps
switchxxxxxx(config)# no snmp-server trap authentication
```
11.17 snmp-server trap authentication

Use the snmp-server trap authentication Global Configuration mode command to enable the device to send SNMP traps when authentication fails. Use the no form of this command to disable SNMP failed authentication traps.

Syntax

snmp-server trap authentication
no snmp-server trap authentication

Parameters

N/A

Default Configuration

SNMP failed authentication traps are enabled.

Command Mode

Global Configuration mode

User Guidelines

The command snmp-server enable traps enables all traps including failure traps. Therefore, if that command is enabled (it is enabled by default), this command is not necessary.

Example

The following example disables all SNMP traps and enables only failed authentication traps.

```
switchxxxxxx(config)# no snmp-server enable traps
switchxxxxxx(config)# snmp-server trap authentication
```

11.18 snmp-server contact

Use the snmp-server contact Global Configuration mode command to set the value of the system contact (sysContact) string. Use the no form of the command to remove the system contact information.
Syntax

snmp-server contact text
no snmp-server contact

Parameters

text—Specifies system contact information. (Length: 1–168 characters)

Default Configuration

N/A

Command Mode

Global Configuration mode

Example

The following example sets the system contact information to Technical_Support.

switchxxxxxx(config)# snmp-server contact Technical_Support

11.19 snmp-server location

Use the snmp-server location Global Configuration mode command to set the value of the system location string. Use the no form of this command to remove the location string.

Syntax

snmp-server location text
no snmp-server location

Parameters

text—Specifies the system location information. (Length: 1–160 characters)

Default Configuration

N/A
Command Mode
Global Configuration mode

Example
The following example sets the device location to New_York.

```
switchxxxxxx(config)# snmp-server location New_York
```

11.20 snmp-server set

Use the `snmp-server set` Global Configuration mode command to define SNMP MIB commands in the configuration file if a MIB performs an action for which there is no corresponding CLI command.

Syntax

```
snmp-server set variable-name name value [name2 value2..]
```

Parameters

- `variable-name`—Specifies an SNMP MIB variable name, which must be a valid string.
- `name value`—Specifies a list of names and value pairs. Each name and value must be a valid string. In the case of scalar MIBs, there is only a single name-value pair. In the case of an entry in a table, there is at least one name-value pair, followed by one or more fields.

Default Configuration
N/A

Command Mode
Global Configuration mode

User Guidelines
Although the CLI can set any required configuration, there might be a situation where an SNMP user sets a MIB variable that does not have an equivalent CLI command. To generate configuration files that support those situations, the system uses `snmp-server set`. This command is not intended for the end user.
Example
The following example configures the scalar MIB sysName with the value TechSupp.

```
switchxxxxxx(config)# snmp-server set sysName sysname TechSupp
```

11.21 show snmp
Use the `show snmp` Privileged EXEC mode command to display the SNMP status.

Syntax
```
show snmp
```

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the SNMP communications status.

```
switchxxxxxx# show snmp
SNMP is enabled

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>View name</th>
<th>IP Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>read only</td>
<td>user-view</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>read write</td>
<td>Default</td>
<td>172.16.1.1/10</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>su</td>
<td>DefaultSuper</td>
<td>172.16.1.1</td>
<td></td>
</tr>
<tr>
<td>Community-String</td>
<td>Group name</td>
<td>IP Address</td>
<td>Mask</td>
<td>Type</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>public</td>
<td>user-group</td>
<td>All</td>
<td></td>
<td>Router</td>
</tr>
</tbody>
</table>
```
Traps are enabled.
Authentication trap is enabled.

Version 1,2 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Community</th>
<th>Version</th>
<th>UDP Port</th>
<th>Filter Name</th>
<th>TO</th>
<th>Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Trap</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Version 3 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Username</th>
<th>Security Level</th>
<th>UDP Port</th>
<th>Filter Name</th>
<th>TO</th>
<th>Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>Bob</td>
<td>Priv</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

System Contact: Robert
System Location: Marketing

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-string</td>
<td>The community access string permitting access to SNMP.</td>
</tr>
<tr>
<td>Community-access</td>
<td>The permitted access type—read-only, read-write, super access.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The management station IP Address.</td>
</tr>
<tr>
<td>Target Address</td>
<td>The IP address of the targeted recipient.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version for the sent trap.</td>
</tr>
</tbody>
</table>
12.1 ip http server

Use the ip http server Global Configuration mode command to enable configuring and monitoring the device from a web browser. Use the no form of this command to disable this function.

Syntax

ip http server

no ip http server

Parameters

N/A

Default Configuration

HTTP server is enabled.

Command Mode

Global Configuration mode

Example

The following example enables configuring the device from a web browser.

switchxxxxxx(config)# ip http server

12.2 ip http timeout-policy

Use the ip http timeout-policy Global Configuration mode command to set the interval for the system to wait for user input in http/https sessions before automatic logoff. Use the no form of this command to return to the default value.

Syntax

ip http timeout-policy idle-seconds [http-only | https-only]
no ip http timeout-policy

Parameters

idle-seconds—Specifies the maximum number of seconds that a connection is kept open if no data is received or response data cannot be sent out. (Range: 0–86400)

http-only —The timeout is specified only for http

https-only— The timeout is specified only for https

Default Configuration

600 seconds

Command Mode

Global Configuration mode

User Guidelines

To specify no timeout, enter the ip http timeout-policy 0 command.

Example

The following example configures the http timeout to be 1000 seconds.

```
switchxxxxxx(config)# ip http timeout-policy 1000
```

12.3 ip http secure-server

Use the ip http secure-server Global Configuration mode command to enable the device to be configured or monitored securely from a browser. Use the no form of this command to disable this function.

Syntax

ip http secure-server

no ip http secure-server

Parameters

N/A
Default Configuration
Disabled

Command Mode
Global Configuration mode

User Guidelines
After this command is used, you must generate a certificate using crypto certificate generate. If no certificate is generated, this command has no effect.

Example

```
switchxxxxxx(config)# ip http secure-server
```

12.4 ip https certificate

Use the `ip https certificate` Global Configuration mode command to configure the active certificate for HTTPS. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip https certificate number
no ip https certificate
```

Parameters

number—Specifies the certificate number. (Range: 1–2)

Default Configuration

The default certificate number is 1.

Command Mode

Global Configuration mode

User Guidelines

First, use `crypto certificate generate` to generate one or two HTTPS certificates. Then use this command to specify which is the active certificate.
Example
The following example configures the active certificate for HTTPS.

```
switchxxxxxx(config)# ip https certificate 2
```

12.5 show ip http

The `show ip http` EXEC mode command displays the HTTP server configuration.

Syntax
```
show ip http
```

Command Mode
EXEC mode

Example
The following example displays the HTTP server configuration.

```
switchxxxxxx# show ip http
HTTP server enabled
Port: 80
Interactive timeout: 10 minutes
```

12.6 show ip https

The `show ip https` Privileged EXEC mode command displays the HTTPS server configuration.

Syntax
```
show ip https
```

Command Mode
Privileged EXEC mode
Example
The following example displays the HTTPS server configuration.

```
switchxxxxxxx# show ip https
HTTPS server enabled
Port: 443
Interactive timeout: Follows the HTTP interactive timeout (10 minutes)
Certificate 1 is active
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788
Certificate 2 is inactive
Issued by: self-signed
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: 1873B936 88DC3411 BC8932EF 782134BA
```
13.1 ip telnet server

Use the ip telnet server Global Configuration mode command to enable the device as a Telnet server that accepts connection requests from remote Telnet clients. Remote Telnet clients can configure the device through the Telnet connections.

Use the no form of this command to disable the Telnet server functionality on the device.

Syntax

 ip telnet server
 no ip telnet server

Default Configuration

The Telnet server functionality on the device is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

The device can be enabled to accept connection requests from both remote SSH and Telnet clients. It is recommended that the remote client connects to the device using SSH (as opposed to Telnet), since SSH is a secure protocol and Telnet is not. To enable the device to be a SSH server, use the ip ssh server Global Configuration mode command.

Example

The following example enables the device to be configured from a Telnet server.

 switchxxxxxx(config)# ip telnet server
13.2 ip ssh server

The ip ssh server Global Configuration mode command enables the device to be an SSH server and so to accept connection requests from remote SSH clients. Remote SSH clients can manage the device through the SSH connection.

Use the no form of this command to disable the SSH server functionality from the device.

Syntax

ip ssh server
no ip ssh server

Default Configuration

The SSH server functionality is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

The device as a SSH server generates the encryption keys automatically.

To generate new SSH server keys, use the crypto key generate dsa and crypto key generate rsa Global Configuration mode commands.

Example

The following example enables configuring the device from an SSH server.

```
switchxxxxxx(config)# ip ssh server
```

13.3 ip ssh port

The ip ssh port Global Configuration mode command specifies the port used by the SSH server. Use the no form of this command to restore the default configuration.

Syntax

ip ssh port port-number
no ip ssh port

Parameters

port-number—Specifies the port number to be used by the SSH server. (Range: 1–65535)

Default Configuration

The default port number is 22.

Command Mode

Global Configuration mode

Example

The following example specifies that port number 8080 is used by the SSH server.

```
switchxxxxxx(config)# ip ssh port 8080
```

13.4 ip ssh pubkey-auth

Use the `ip ssh pubkey-auth` Global Configuration mode command to enable public key authentication of incoming SSH sessions.

Use the `no` form of this command to disable this function.

Syntax

```
ip ssh pubkey-auth [auto-login]
no ip ssh pubkey-auth
```

Parameters

auto-login—Specifies that the device management AAA authentication is not needed. By default, this login is required after the SSH authentication.

Default Configuration

Public key authentication of incoming SSH sessions is disabled.

Auto-login is not enabled.
Command Mode
Global Configuration mode

User Guidelines
This command enables public key authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for selecting one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

The auto-login keyword works as follows:

- **Specified**—Management access is granted if SSH authentication succeeds and the name of SSH used is found in the local user database. The device management AAA authentication is transparent to the user. If the user name is not in the local user database, the user receives a warning message, and the user must pass the device management AAA authentication independently of the SSH authentication.

- **Not Specified**—Management access is granted only if the user passes both SSH authentication and device management AAA authentication independently. If no SSH authentication method is enabled, management access is granted only if the user is AAA-authenticated by the device management. No SSH authentication method means SSH is enabled, but neither SSH authentication by public key nor password is enabled.

Example
The following example enables authentication of the SSH client with no double authentication.

```
switchxxxxxx(config)# ip ssh pubkey-auth auto-login
```

13.5 ip ssh password-auth

Use the **ip ssh password-auth** Global Configuration mode command to enable password authentication of incoming SSH sessions.
Use the **no** form of this command to disable this function.

Syntax

```plaintext
ip ssh password-auth
no ip ssh password-auth
```

Default Configuration

Password authentication of incoming SSH sessions is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables password authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all locally-enabled SSH authentication methods and a remote SSH client must select one of them.

If the password method was chosen by the client, management access is granted after the client is authenticated by SSH using the regular user authentication (AAA). No login is needed from the device management.

If no SSH authentication method is enabled, management access is granted only if the user is authenticated by the device management (through AAA). If no SSH authentication method is selected, SSH is enabled, but neither SSH authentication by public key nor password is enabled.

Example

The following example enables password authentication of the SSH client.

```plaintext
switchxxxxxx(config)# ip ssh password-auth
```

13.6 **crypto key pubkey-chain ssh**

The **crypto key pubkey-chain ssh** Global Configuration mode command enters the SSH Public Key-chain Configuration mode. This mode is used to manually specify device public keys, such as SSH client public keys.
Syntax

crypto key pubkey-chain ssh

Default Configuration

Keys do not exist.

Command Mode

Global Configuration mode

User Guidelines

Use this command when you want to manually specify SSH client’s public keys.

Example

The following example enters the SSH Public Key-chain Configuration mode and manually configures the RSA key pair for SSH public key-chain to the user ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-pubkey-chain)# user-key bob rsa
switchxxxxxx(config-pubkey-key)# key-string
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWlAl4kpqIw9GBRonZQZxjHKcqKL6rM1Q+
ZNxfsZSkvHG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRfpSwoQUvV35LqJJK67IOU/zfwO11g
kTwm175QR9gHujS6KnZQWXGh3ub8gDjTSq
muSn/Wd05iDX2IExQWu08licglk02LYciz
+Z4TrEU/9FJxwPlVQojc+KBXuR0juNg5nFYsY
0ZckO/N9a/tnkm1shRE7Di71+w3fNlOA
6w9o44t6+AINEICBCCA4YcF6zMzaTLwefWwX6f+
Rmt5nhhqAtN/4oJfcej66DqVX1gWmN
zNR4DYDvSzg01DnwCAC8Qh
```
13.7 **user-key**

The **user-key** SSH Public Key-string Configuration mode command associates a username with a manually-configured SSH public key.

Use the **no user-key** command to remove an SSH user and the associated public key.

Syntax

user-key username {rsa | dsa}

no user-key username

Parameters

- **username**—Specifies the remote SSH client username. (Length: 1–48 characters)
- **rsa**—Specifies that the RSA key pair is manually configured.
- **dsa**—Specifies that the DSA key pair is manually configured.

Default Configuration

No SSH public keys exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

After entering this command, the existing key, if any, associated with the user will be deleted. You must follow this command with the **key-string** command to configure the key to the user.

Example

The following example enables manually configuring an SSH public key for SSH public key-chain **bob**.

```bash
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-pubkey-chain)# user-key bob rsa
switchxxxxxx(config-pubkey-key)# key-string row
```
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWl

13.8 **key-string**

The **key-string** SSH Public Key-string Configuration mode command manually specifies an SSH public key.

Syntax

`key-string [row key-string]`

Parameters

- `row`—Specifies the SSH public key row by row. The maximum length of a row is 160 characters.

- `key-string`—Specifies the key in UU-encoded DER format. UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Default Configuration

Keys do not exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

Use the **key-string** SSH Public Key-string Configuration mode command without the `row` parameter to specify which SSH public key is to be interactively configured next. Enter a row with no characters to complete the command.

Use the **key-string row** SSH Public Key-string Configuration mode command to specify the SSH public key, row by row. Each row must begin with a **key-string** `row` command.

The UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Example

The following example enters public key strings for SSH public key client ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
```
Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands

switchxxxxxx(config-pubkey-chain)# user-key bob rsa
switchxxxxxx(config-pubkey-key)# key-string
AAAAB3NzaC1yc2EAAADADAQABAAAABABCBvTrnRwpWl
Al4kq1w9GBRonZQZxjHKcqlKL6rMLQ+
ZNxfZSkvHG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRfpSw9QVuV35LqJk67IOU/zwWol1g
kTwm175QR9HujS6KwGN2QWXgh3ub8gDjTSq
muSn/WdO5iDXZIExQVu08lclgk02LYciz
+Z4TrEU/9FJwxPlVQOjc+KBXuR0juNg5nFysY
0ZckON/W9a/tnkm1shRE7Di71+w3fNiOA
6w9o44t+AINECBBCA4YcF6zMzaT1weFWwX6f+
Rmt5nhqAtN/4oJfce166DqVX1gWmN
zNR4DYDvSz01DnwCAC8Qh
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-pubkey-chain)# user-key bob rsa
switchxxxxxx(config-pubkey-chain)# key-string row AAAAB3Nza
switchxxxxxx(config-pubkey-key)# key-string row C1yc2

13.9 show ip ssh

The show ip ssh Privileged EXEC mode command displays the SSH server configuration.

Syntax

show ip ssh

Parameters

N/A

Command Mode

Privileged EXEC mode
Example
The following example displays the SSH server configuration.

switchxxxxxx# show ip ssh
SSH server enabled. Port: 22
RSA key was generated.
DSA (DSS) key was generated.
SSH Public Key Authentication is enabled with auto-login.
SSH Password Authentication is enabled.
Active incoming sessions:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>SSH Username</th>
<th>Version</th>
<th>Cipher</th>
<th>Auth Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.1</td>
<td>John Brown</td>
<td>1.5</td>
<td>3DES</td>
<td>HMAC-SHA1</td>
</tr>
<tr>
<td>182.20.2.1</td>
<td>Bob Smith</td>
<td>1.5</td>
<td>3DES</td>
<td>Password</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The client address</td>
</tr>
<tr>
<td>SSH Username</td>
<td>The user name</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number</td>
</tr>
<tr>
<td>Cipher</td>
<td>The encryption type (3DES, Blowfish, RC4)</td>
</tr>
<tr>
<td>Auth Code</td>
<td>The authentication Code (HMAC-MD5, HMAC-SHA1) or Password</td>
</tr>
</tbody>
</table>

13.10 show crypto key pubkey-chain ssh
The show crypto key pubkey-chain ssh Privileged EXEC mode command displays SSH public keys stored on the device.

Syntax

show crypto key pubkey-chain ssh [username username] [fingerprint {bubble-babble / hex}]
Parameters

- **username **username—Specifies the remote SSH client username. (Length: 1–48 characters)

- **fingerprint **{bubble-babble | hex}—Specifies the fingerprint display format. The possible values are:
 - bubble-babble—Specifies that the fingerprint is displayed in Bubble Babble format.
 - hex—Specifies that the fingerprint is displayed in hexadecimal format.

Default Configuration

The default fingerprint format is hexadecimal.

Command Mode

Privileged EXEC mode

Example

The following examples display SSH public keys stored on the device.

```
switchxxxxxx# show crypto key pubkey-chain ssh
Username      Fingerprint
-----------   ----------------------------------------------------------

switchxxxxxx# show crypto key pubkey-chain ssh username bob
Username      Fingerprint
-----------   ----------------------------------------------------------
```
14.1 line

The `line` Global Configuration mode command identifies a specific line for configuration and enters the Line Configuration command mode.

Syntax

```
line {console | telnet | ssh}
```

Parameters

- `console`—Enters the terminal line mode.
- `telnet`—Configures the device as a virtual terminal for remote access (Telnet).
- `ssh`—Configures the device as a virtual terminal for secured remote access (SSH).

Command Mode

Global Configuration mode

Example

The following example configures the device as a virtual terminal for remote (Telnet) access.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)#
```

14.2 speed

Use the `speed` command in Line Configuration mode to set the line baud rate.

Use the `no` form of this command to restore the default configuration.
Syntax
speed bps
no speed

Parameters
bps—Specifies the baud rate in bits per second (bps). Possible values are 4800, 9600, 19200, 38400, 57600, and 115200.

Default Configuration
The default speed is 115200 bps.

Command Mode
Line Configuration mode

User Guidelines
The configured speed is only applied when autobaud is disabled. This configuration applies to the current session only.

Example
The following example configures the line baud rate as 9600 bits per second.

```
switchxxxxxx(config-line)# speed 9600
```

14.3 autobaud

Use the autobaud command in Line Configuration mode to configure the line for automatic baud rate detection (autobaud).

Use the no form of this command to disable automatic baud rate detection.

Syntax
autobaud
no autobaud

Default Configuration
Automatic baud rate detection is enabled.
14 Line Commands

Command Mode

Line Configuration mode

User Guidelines

When this command is enabled, it is activated as follows: connect the console to the device and press the Enter key twice. The device detects the baud rate automatically.

Example

The following example enables autobaud.

```plaintext
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# autobaud
```

14.4 `exec-timeout`

The `exec-timeout` Line Configuration mode command sets the session idle time interval, during which the system waits for user input before automatic logoff. Use the `no` form of this command to restore the default configuration.

Syntax

`exec-timeout minutes [seconds]`

`no exec-timeout`

Parameters

- `minutes`—Specifies the number of minutes. (Range: 0-65535)
- `seconds`—Specifies the number of seconds. (Range: 0-59)

Default Configuration

The default idle time interval is 10 minutes.

Command Mode

Line Configuration mode
Example

The following example sets the HTTP session idle time interval before automatic logoff to 20 minutes and 10 seconds.

switchxxxxxx(config)# line
switchxxxxxx(config-line)# exec-timeout 20 10

14.5 show line

The show line EXEC mode command displays line parameters.

Syntax

show line [console / telnet / ssh]

Parameters

- **console**—Displays the console configuration.
- **telnet**—Displays the Telnet configuration.
- **ssh**—Displays the SSH configuration.

Default Configuration

If the line is not specified, all line configuration parameters are displayed.

Command Mode

EXEC mode

Example

The following example displays the line configuration.

switchxxxxxx# show line
configuration:
Interactive timeout: Disabled
History: 10
Baudrate: 9600
Databits: 8
Parity: none
Stopbits: 1
Telnet configuration:
Telnet is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
SSH configuration:
SSH is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
Bonjour Commands

15.1 bonjour enable

Use the **bonjour enable** Global Configuration mode command to enable Bonjour globally. Use the **no** format of the command to disable globally.

Syntax

```
bonjour enable
no bonjour enable.
```

Default Configuration

Enable

Command Mode

Global Configuration mode

Examples

```
switchxxxxxx(conf)# bonjour enable
```

15.2 bonjour interface range

Use the **bonjour interface range** Global Configuration mode command to add L2 interfaces to the Bonjour L2 Interface List. Use the **no** format of the command to remove L2 interfaces from the list.

Syntax

```
bonjour interface range {interface-list}
```

Parameters

- **interface-list**—Specifies a list of interfaces, which can be of the following types:
 - Ethernet port
 - Port-channel
Bonjour Commands

- VLAN

Default Configuration
The list is empty.

Command Mode
Global Configuration mode

User Guidelines
This command can only be used if the device is in Layer 3 (router) mode.

Examples

```
switchxxxxxx(config)# bonjour interface range gi1-3
```

15.3 show bonjour

Use the **show bonjour** Privileged EXEC mode command to display Bonjour information.

Syntax

`show bonjour [interface-id]`

Parameters

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types:

- Ethernet port
- Port-channel
- VLAN

Command Mode

Privileged EXEC mode
Examples

Layer 2:

```
switchxxxxxxx# show bonjour
Bonjour status: enabled
L2 interface status: Up
IP Address: 10.5.226.46
```

<table>
<thead>
<tr>
<th>Service</th>
<th>Admin Status</th>
<th>Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-sb</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>http</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>https</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>ssh</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>telnet</td>
<td>enabled</td>
<td>disabled</td>
</tr>
</tbody>
</table>

Layer 3:

```
switchxxxxxxx# show bonjour
Bonjour global status: enabled
Bonjour L2 interfaces port list: vlans 1
```

<table>
<thead>
<tr>
<th>Service</th>
<th>Admin Status</th>
<th>Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-sb</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>http</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>https</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>ssh</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>telnet</td>
<td>enabled</td>
<td>disabled</td>
</tr>
</tbody>
</table>
Authentication, Authorization and Accounting (AAA) Commands

16.1 aaa authentication login

Use the `aaa authentication login` Global Configuration mode command to set one or more authentication methods to be applied during login. A list of authentication methods may be assigned a list name, and this list name can be used in `aaa authentication enable`. Use the `no` form of this command to restore the default authentication method.

Syntax

```
aaa authentication login {default | list-name} method1 [method2...]
```

```
aaa authentication login list-name method1 method2...
```

```
no aaa authentication login {default | list-name}
```

Parameters

- `default`—Uses the authentication methods that follow this argument as the default method list when a user logs in (this list is unnamed).
- `list-name`—Specifies a name of a list of authentication methods activated when a user logs in. (Length: 1–12 characters)
- `method1 [method2...]`—Specifies a list of methods that the authentication algorithm tries (in the given sequence). Each additional authentication method is used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify `none` as the final method in the command line. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>local</td>
<td>Uses the locally-defined usernames for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
</tbody>
</table>
Authentication, Authorization and Accounting (AAA) Commands

Default Configuration

If no methods are specified, the default are the locally-defined users and passwords. This is the same as entering the command `aaa authentication login local`.

NOTE

If no authentication method is defined, console users can log in without any authentication verification.

Command Mode

Global Configuration mode

User Guidelines

Create a list of authentication methods by entering this command with the `list-name` parameter where `list-name` is any character string. The method arguments identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created with this command are used with `aaa authentication enable`.

`no aaa authentication login list-name` deletes a list-name only if it has not been referenced by another command.

Example

The following example sets the authentication login methods for the console.

```
switchxxxxxx (config)# aaa authentication login authen-list radius local none
switchxxxxxx (config)# line console
switchxxxxxx (config-line)# login authentication authen-list
```

16.2 aaa authentication enable

The `aaa authentication enable` Global Configuration mode command sets one or more authentication methods for accessing higher privilege levels. A user, who
logons with a lower privilege level, must pass these authentication methods to access a higher level.

To restore the default authentication method, use the no form of this command.

Syntax

```
aaa authentication enable {default | list-name} method [method2...]
```

```
no aaa authentication enable {default | list-name}
```

Parameters

- **default**—Uses the listed authentication methods that follow this argument as the default method list, when accessing higher privilege levels.

- **list-name** —Specifies a name for the list of authentication methods activated when a user accesses higher privilege levels. (Length: 1–12 characters)

- **method [method2...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify none as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication. Uses username "$enabx$,” where x is the privilege level.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS servers for authentication. Uses username "$enabx$,” where x is the privilege level.</td>
</tr>
</tbody>
</table>

Default Configuration

The enable password command defines the default authentication login method. This is the same as entering the command `aaa authentication enable default enable`.
On a console, the enable password is used if a password exists. If no password is set, authentication still succeeds. This is the same as entering the command `aaa authentication enable default enable none`.

Command Mode

Global Configuration mode

User Guidelines

Create a list by entering the `aaa authentication enable list-name method1 [method2...]` command where `list-name` is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created by this command are used with `enable authentication`.

All `aaa authentication enable default` requests sent by the device to a RADIUS or TACACS+ server include the username `$enabx$`, where x is the requested privilege level.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

`no aaa authentication enable list-name` deletes list-name if it has not been referenced.

Example

The following example sets the enable password for authentication for accessing higher privilege levels.

```
switchxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxx(config)# line console
switchxxxxx(config-line)# enable authentication enable-list
```

16.3 login authentication

The `login authentication` Line Configuration mode command specifies the login authentication method list for a remote Telnet or console session. Use the `no` form of this command to restore the default authentication method.
Syntax

login authentication {default | list-name}

no login authentication

Parameters

- **default**—Uses the default list created with the `aaa authentication login` command.
- **list-name**—Uses the specified list created with `aaa authentication login`.

Default Configuration

The default is the `aaa authentication login` command default.

Command Mode

Line Configuration mode

Examples

Example 1 - The following example specifies the login authentication method as the default method for a console session.

```
switchxxxxx(config)# line console
switchxxxxx(config-line)# login authentication default
```

Example 2 - The following example sets the authentication login methods for the console as a list of methods.

```
switchxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxx(config)# line console
switchxxxxx(config-line)# login authentication authen-list
```

16.4 **enable authentication**

The `enable authentication` Line Configuration mode command specifies the authentication method for accessing a higher privilege level from a remote Telnet or console. Use the `no` form of this command to restore the default authentication method.
Syntax

```enable authentication {default | list-name}
no enable authentication```

Parameters

- `default`—Uses the default list created with the `aaa authentication enable` command.
- `list-name`—Uses the specified list created with the `aaa authentication enable` command.

Default Configuration

The default is the `aaa authentication enable` command default.

Command Mode

Line Configuration mode

Examples

**Example 1** - The following example specifies the authentication method as the default method when accessing a higher privilege level from a console.

```switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication default```

Example 2 - The following example sets a list of authentication methods for accessing higher privilege levels.

```switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list```

### 16.5 ip http authentication

The `ip http authentication` Global Configuration mode command specifies authentication methods for HTTP server access. Use the `no` form of this command to restore the default authentication method.
Syntax

ip http authentication aaa login-authentication method1 [method2...] 
no ip http authentication aaa login-authentication

Parameters

method [method2... ]—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify none as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The local user database is the default authentication login method. This is the same as entering the ip http authentication local command.

Command Mode

Global Configuration mode

User Guidelines

The command is relevant for HTTP and HTTPS server users.

Example

The following example specifies the HTTP access authentication methods.

```
switchxxxxxx(config)# ip http authentication aaa login-authentication radius local none
```
16.6 aaa logging

Use the `aaa logging` Global Configuration mode command to enable logging of
the logins of authenticated users.

Use the `no` form of this command to disable logging of authenticated users.

Syntax

`aaa logging {login}`

`no aaa logging {login}`

Parameters

`login`—Enables logging messages related to successful AAA login events,
unsuccessful AAA login events and other AAA login-related events.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables logging messages related to successful login events,
unsuccessful login events and other login-related events. Other types of
authenticated user events are not subject to this command.

Example

The following example enables logging of authenticated users.

```
switchxxxxxx(config)# aaa logging login
```

16.7 show authentication methods

The `show authentication methods` Privileged EXEC mode command displays
information about the authentication methods.
Syntax
show authentication methods

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the authentication configuration.

```
switchxxxxxx# show authentication methods
Login Authentication Method Lists

Default: Radius, Local, Line
Console_Login: Line, None
Enable Authentication Method Lists

Default: Radius, Enable
Console_Enable: Enable, None
Line

Login Method List Enable Method List
------------------- ------------------
Console
Console_Login Console_Enable
Telnet
Default Default
SSH
Default Default
HTTP: Radius, local
HTTPS: Radius, local
Dot1x: Radius
```

16.8 password

Use the password Line Configuration mode command to specify a password on a line (also known as an access method, such as a console or Telnet). Use the no form of this command to return to the default password.
Syntax

password password [encrypted]

no password

Parameters

- password—Specifies the password for this line. (Length: 0–159 characters)
- encrypted—Specifies that the password is encrypted and copied from another device configuration.

Default Configuration

No password is defined.

Command Mode

Line Configuration mode

Example

The following example specifies the password ‘secret’ on a console.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# password secret
```
Syntax

```
enable password [level privilege-level] [unencrypted-password | encrypted-encrypted-password]
no enable password [level level]
```

Parameters

- **level privilege-level**—Level for which the password applies. If not specified the level is 15. (Range: 1–15)
- **password unencrypted-password**—Password for this level. (Range: 0–159 chars)
- **password encrypted encrypted-password**—Specifies that the password is encrypted. Use this keyword to enter a password that is already encrypted (for instance that you copied from another the configuration file of another device). (Range: 1–40)

Default Configuration

Default for level is 15.

Passwords are encrypted by default.

Command Mode

Global Configuration mode

User Guidelines

Passwords are encrypted by default. You only are required to use the **encrypted** keyword when you are actually entering an encrypted keyword.

Example

The first command sets an unencrypted password for level 7 (it will be encrypted in the configuration file).

The second command sets a password that has already been encrypted. It will copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

```
switchxxxxxxx(config)# enable password level 7 let-me-in

switchxxxxxxx(config)# enable password level 15 encrypted
4b529f21c93d4706090285b0c10172eb073ffebe4c4
```
16.10  service password-recovery

Use the service password-recovery Global Configuration mode command to enable the password-recovery mechanism. This mechanism allows an end user, with physical access to the console port of the device, to enter the boot menu and trigger the password recovery process. Use the no service password-recovery command to disable the password-recovery mechanism. When the password-recovery mechanism is disabled, accessing the boot menu is still allowed and the user can trigger the password recovery process. The difference is, that in this case, all the configuration files and all the user files are removed. The following log message is generated to the terminal: “All the configuration and user files were removed”.

Syntax

service password-recovery

no service password-recovery

Parameters

N/A

Default Configuration

The service password recovery is enabled by default.

Command Mode

Global Configuration mode

User Guidelines

- If password recovery is enabled, the user can access the boot menu and trigger the password recovery in the boot menu. All configuration files and user files are kept.

- If password recovery is disabled, the user can access the boot menu and trigger the password recovery in the boot menu. The configuration files and user files are removed.

- If a device is configured to protect its sensitive data with a user-defined passphrase for (Secure Sensitive Data), then the user cannot trigger the password recovery from the boot menu even if password recovery is enabled.

Example
The following command disables password recovery:

```
switchxxxxxx(config)# no service password recovery
```

Note that choosing to use Password recovery option in the Boot Menu during the boot process will remove the configuration files and the user files. Would you like to continue? Y/N.

### 16.11 username

Use the `username` Global Configuration mode command to establish a username-based authentication system. Use the `no` form to remove a user name.

**Syntax**

```
username name {nopassword | password password | privilege privilege-level | unencrypted-password | encrypted encrypted-password}
```

```
username name
no username name
```

**Parameters**

- **name**—The name of the user. (Range: 1–20 characters)
- **nopassword**—No password is required for this user to log in.
- **unencrypted-password**—The authentication password for the user. (Range: 1–159)
- **encrypted encrypted-password**—Specifies that the password is MD5 encrypted. Use this keyword to enter a password that is already encrypted (for instance that you copied from another the configuration file of another device). (Range: 1–40)
- **privilege privilege-level**—Privilege level for which the password applies. If not specified the level is 15. (Range: 1–15).

**Default Configuration**

No user is defined.

**Command Mode**

Global Configuration mode
Usage Guidelines

See "User (Privilege) Levels" for an explanation of privilege levels.

- The Last level 15 user (regardless of whether it is the default user or any user) cannot be removed.
- Last level 15 user (regardless of whether it is the default user or any user) cannot be demoted

Examples

Example 1 - Sets an unencrypted password for user tom (level 15). It will be encrypted in the configuration file.

```
switchxxxxxx(config)# username tom privilege 15 password 1234
```

Example 2 - Sets a password for user jerry (level 15) that has already been encrypted. It will be copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

```
switchxxxxxx(config)# username jerry privilege 15 encrypted
4b529f21c93d4706090285b0c10172eb073ffebc4
```

16.12 show users accounts

The **show users accounts** Privileged EXEC mode command displays information about the users local database.

Syntax

```
show user accounts
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example

The following example displays information about the users local database.

```
switchxxxxxx# show users accounts

Username Privilege
---------- --------
Bob 15
Robert 15
Smith 15
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level.</td>
</tr>
</tbody>
</table>

16.13  aaa accounting login

Use the `aaa accounting login` command in Global Configuration mode to enable accounting of device management sessions.

Use the `no` form of this command to disable accounting of device management sessions.

Syntax

```
aaa accounting login start-stop group {radius | tacacs+}
no aaa accounting login start-stop
```

Parameters

- `radius`—Uses a RADIUS server for accounting.
- `tacacs+`—Uses a TACACS+ server for accounting.

Default Configuration

Disabled

Command Mode

Global Configuration mode
User Guidelines

This command enables the recording of device management sessions (Telnet, serial and WEB but not SNMP).

It records only users that are identified with a username (e.g. a user that is logged in with a line password is not recorded).

If accounting is activated, the device sends “start/stop” messages to the RADIUS/TACACS+ server when a user logs in/logs out respectively.

The device uses the configured priorities of the available RADIUS/TACACS+ servers to select the RADIUS/TACACS+ server.

The following table describes the supported RADIUS accounting attributes values, and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Sent in Start Message</th>
<th>Sent in Stop Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>User’s identity.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>The switch IP address that is used for the session with the RADIUS server.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>The switch IP address that is used for the management session.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>The user IP address.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>A unique accounting identifier.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Acct-Authentic (45)</td>
<td>Indicates how the supplicant was authenticated.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Acct-Session-Time (46)</td>
<td>Indicates how long the user was logged in.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Acct-Terminate-Cause (49)</td>
<td>Reports why the session was terminated.</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The following table describes the supported TACAC+ accounting attributes values, and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sent in Start Message</th>
<th>Sent in Stop Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>task_id</td>
<td>Yes</td>
<td>Yes</td>
<td>A unique accounting session identifier.</td>
</tr>
<tr>
<td>user</td>
<td>Yes</td>
<td>Yes</td>
<td>Username that is entered for login authentication</td>
</tr>
<tr>
<td>rem-addr</td>
<td>Yes</td>
<td>Yes</td>
<td>IP address of the user</td>
</tr>
<tr>
<td>elapsed-time</td>
<td>No</td>
<td>Yes</td>
<td>Indicates how long the user was logged in.</td>
</tr>
<tr>
<td>reason</td>
<td>No</td>
<td>Yes</td>
<td>Reports why the session was terminated.</td>
</tr>
</tbody>
</table>

**Example**

```
switchxxxxxx(config)# aaa accounting login start-stop group tacacs
```

### 16.14 aaa accounting dot1x

To enable accounting of 802.1x sessions, use the `aaa accounting dot1x` Global Configuration mode command. Use the `no` form of this command to disable accounting.

**Syntax**

```
aaa accounting dot1x start-stop group radius

no aaa accounting dot1x start-stop group radius
```

**Parameters**

N/A

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode
User Guidelines

This command enables the recording of 802.1x sessions.

If accounting is activated, the device sends a “start”/“stop” messages to a Radius server when a user logs in / logs out to the network, respectively.

The device uses the configured priorities of the available Radius servers in order to select the Radius server.

If a new supplicant replaces an old supplicant (even if the port state remains authorized), the software sends a “stop” message for the old supplicant and a “start” message for the new supplicant.

In multiple sessions mode (dot1x multiple-hosts authentication), the software sends “start”/“stop” messages for each authenticated supplicant.

In multiple hosts mode (dot1x multiple-hosts), the software sends “start”/“stop” messages only for the supplicant that has been authenticated.

The software does not send “start”/“stop” messages if the port is force-authorized.

The software does not send “start”/“stop” messages for hosts that are sending traffic on the guest VLAN or on the unauthenticated VLANs.

The following table describes the supported Radius accounting Attributes Values and when they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Stop</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Supplicant’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the Radius server.</td>
</tr>
<tr>
<td>NAS-Port (5)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch port from where the supplicant has logged in.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch MAC address.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The supplicant MAC address.</td>
</tr>
</tbody>
</table>
Example

```
switchxxxxxx(config)# aaa accounting dot1x start-stop group radius
```

### 16.15 show accounting

The `show accounting` EXEC mode command displays information about the status of login accounting.

**Syntax**

```
show accounting
```

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

EXEC mode

**Example**

The following example displays information about the accounting status.

```
switchxxxxxx# show accounting
Login: TACACS+
802.1x: Disabled
```
16.16 passwords complexity enable

Use the **passwords complexity enable** Global Configuration mode command to enforce minimum password complexity. The **no** form of this command disables enforcing password complexity.

**Syntax**

`passwords complexity enable`

`no passwords complexity enable`

**Parameters**

N/A

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**User Guidelines**

If password complexity is enabled **by default**, the user is forced to enter a password that:

- Has a minimum length of 8 characters.
- Contains characters from at least 3 character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard).
- Are different from the current password.
- Contains no character that is repeated more than 3 times consecutively.
- Does not repeat or reverse the user name or any variant reached by changing the case of the characters.
- Does not repeat or reverse the manufacturer’s name or any variant reached by changing the case of the characters.

You can control the above attributes of password complexity with specific commands described in this section.
If you have previously configured other complexity settings, then those settings are used. This command does not wipe out the other settings. It works only as a toggle.

**Example**

The following example configures requiring complex passwords that fulfill the minimum requirements specified in the User Guidelines above.

```
switchxxxxxx(config)# passwords complexity enable
switchxxxxxx(config)# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Passwords complexity is enabled with the following attributes:
 Minimal length: 3 characters
 Minimal classes: 3
 New password must be different than the current: Enabled
 Maximum consecutive same characters: 3
 New password must be different than the user name: Enabled
 New password must be different than the manufacturer name: Enabled
switchcc293e#
```

### 16.17 passwords complexity <attributes>

Use the `passwords complexity <attributes>` Global Configuration mode commands to control the minimum requirements from a password when password complexity is enabled. Use the no form of these commands to return to default.

**Syntax**

- `passwords complexity min-length number`
- `no passwords complexity min-length`
- `passwords complexity min-classes number`
- `no passwords complexity min-classes`
- `passwords complexity not-current`
no passwords complexity not-current

passwords complexity no-repeat number

no password complexity no-repeat

passwords complexity not-username

no passwords complexity not-username

passwords complexity not-manufacturer-name

no passwords complexity not-manufacturer-name

Parameters

- min-length number—Sets the minimal length of the password. (Range: 0–64)

- min-classes number—Sets the minimal character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard). (Range: 0–4)

- not-current—Specifies that the new password cannot be the same as the current password.

- no-repeat number—Specifies the maximum number of characters in the new password that can be repeated consecutively. Zero specifies that there is no limit on repeated characters. (Range: 0–16)

- not-username—Specifies that the password cannot repeat or reverse the user name or any variant reached by changing the case of the characters.

- not-manufacturer-name—Specifies that the password cannot repeat or reverse the manufacturer’s name or any variant reached by changing the case of the characters.

Default Configuration

The minimal length is 8.

The number of classes is 3.

The default for no-repeat is 3.

All the other controls are enabled by default.

Command Mode

Global Configuration mode
Example
The following example configures the minimal required password length to 8 characters.

```
switchxxxxxx (config)# passwords complexity min-length 8
```

16.18 passwords aging
Use the `passwords aging` Global Configuration mode command to enforce password aging. Use the `no` form of this command to return to default.

Syntax
```
passwords aging days
no passwords aging
```

Parameters
- **days**—Specifies the number of days before a password change is forced. You can use 0 to disable aging. (Range: 0–365)

Default Configuration
Enabled and the number of days is 180.

Command Mode
Global Configuration mode

User Guidelines
Aging is relevant only to users of the local database with privilege level 15 and to “enable” a password of privilege level 15.

To disable password aging, use `passwords aging 0`. Using `no passwords aging` sets the aging time to the default.

Example
The following example configures the aging time to be 24 days.

```
switchxxxxxx (config)# passwords aging 24
```
16.19  show passwords configuration

The show passwords configuration Privileged EXEC mode command displays information about the password management configuration.

Syntax

show passwords configuration

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

switchxxxxxx#show passwords configuration

Passwords aging is enabled with aging time 180 days.

Passwords complexity is enabled with the following attributes:

Minimal length: 3 characters

Minimal classes: 3

New password must be different than the current: Enabled

Maximum consecutive same characters: 3

New password must be different than the user name: Enabled

New password must be different than the manufacturer name: Enabled

switchcc293e#
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal length</td>
<td>The minimal length required for passwords in the local database.</td>
</tr>
<tr>
<td>Minimal character classes</td>
<td>The minimal number of different types of characters (special characters, integers and so on) required to be part of the password.</td>
</tr>
<tr>
<td>Maximum number of repeated characters</td>
<td>The maximum number of times a single character can be repeated in the password.</td>
</tr>
<tr>
<td>Level</td>
<td>The applied password privilege level.</td>
</tr>
<tr>
<td>Aging</td>
<td>The password aging time in days.</td>
</tr>
</tbody>
</table>
17.1 radius-server host

Use the `radius-server host` Global Configuration mode command to configure a RADIUS server host. Use the no form of the command to delete the specified RADIUS server host.

Use the `encrypted` form of the command to enter a key in its encrypted form.

Syntax

```
radius-server host {ip-address | hostname} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key key-string] [source {source-ip}] [priority priority] [usage {login | 802.1x | all}]
```

```
encrypted radius-server host {ip-address | hostname} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key encrypted-key-string] [source {source-ip}] [priority priority] [usage {login | 802.1x | all}]
```

```
no radius-server host {ip-address | hostname}
```

Parameters

- **ip-address**—Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions
- **hostname**—Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. (Length: 1–158 characters. Maximum label length of each part of the hostname: 63 characters)
- **auth-port auth-port-number**—Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. (Range: 0–65535)
- **acct-port-number**—Port number for accounting requests. The host is not used for accountings if set to 0. If unspecified, the port number defaults to 1813.
- **timeout timeout**—Specifies the timeout value in seconds. (Range: 1–30)
- **retransmit retries**—Specifies the retransmit value. (Range: 1–10)
• **deadtime deadtime**—Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

• **key key-string**—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter "". (Length: 0–128 characters). If this parameter is omitted, the globally-configured radius key will be used.

• **key encrypted-key-string**—same as key-string, but the key is in encrypted format.

• **source source-ip**—Specifies the source IPv4 or IPv6 address to use for communication. 0.0.0.0 is interpreted as a request to use the IP address of the outgoing IP interface.

• **priority priority**—Specifies the order in which servers are used, where 0 has the highest priority. (Range: 0–65535)

• **usage {login | 802.1x | all}**—Specifies the RADIUS server usage type. The possible values are:
  - **login**—Specifies that the RADIUS server is used for user login parameters authentication.
  - **802.1x**—Specifies that the RADIUS server is used for 802.1x port authentication.
  - **all**—Specifies that the RADIUS server is used for user login authentication and 802.1x port authentication.

• **encrypted-key-string**—Same as the key-string parameter, but the key is in encrypted form.

**Default Configuration**

The default authentication port number is 1812.

If **timeout** is not specified, the global value (set in `radius-server timeout`) is used.

If **retransmit** is not specified, the global value (set in `radius-server retransmit`) is used.

If **key-string** is not specified, the global value (set in `radius-server key`) is used.

If the **source** value is not specified, the global value (set in `radius-server source-ip` or `radius-server source-ipv6`) is used.
If a parameter was not set in one of the above commands, the default for that command is used. For example, if a timeout value was not set in the current command or in `radius-server timeout`, the default timeout for `radius-server timeout` is used.

The default usage type is `all`.

**Command Mode**

Global Configuration mode

**User Guidelines**

To specify multiple hosts, this command is used for each host.

The `source` parameter address type (IPv4 or IPv6) must be the same as that of the `host` IP address type.

**Example**

The following example specifies a RADIUS server host with IP address 192.168.10.1, authentication request port number 20, and a 20-second timeout period.

```
switchxxxxxx(config)# radius-server host 192.168.10.1 auth-port 20 timeout 20
```

### 17.2 `radius-server key`

Use the `radius-server key` Global Configuration mode command to set the authentication and encryption key for RADIUS communications between the device and the RADIUS daemon.

Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server key [key-string]
```

```
encrypted radius-server key [encrypted-key-string]
```

```
no radius-server key
```

**Parameters**

- `key-string`—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must
match the encryption used on the RADIUS daemon. (Range: 0–128 characters)

- `encrypted-key-string`—Same as the key-string parameter, but the key is in encrypted form.

Default Configuration

The key-string is an empty string.

Command Mode

Global Configuration mode

Example

The following example defines the authentication and encryption key for all RADIUS communications between the device and the RADIUS daemon.

```
switchxxxxxx(config)# radius-server key enterprise-server
```

17.3 `radius-server retransmit`

Use the `radius-server retransmit` Global Configuration mode command to specify the number of times the software searches the list of RADIUS server hosts. Use the no form of this command to restore the default configuration.

Syntax

```
radius-server retransmit retries
no radius-server retransmit
```

Parameters

- `retransmit retries`—Specifies the retransmit value. (Range: 1–10)

Default Configuration

The software searches the list of RADIUS server hosts 3 times.

Command Mode

Global Configuration mode
Example

The following example configures the number of times the software searches all RADIUS server hosts as 5.

```
switchxxxxxx(config)# radius-server retransmit 5
```

17.4 radius-server source-ip

Use the `radius-server source-ip` Global Configuration mode command to specify the source IP address used for communication with RADIUS servers. Use the no form of this command to restore the default configuration.

Syntax

```
radius-server source-ip {source-ip-address}
no radius-server source-ip {source-ip-address}
```

Parameters

- `source-ip-address`—Specifies the source IP address.

Default Configuration

The source IP address is the IP address of the outgoing IP interface.

Command Mode

Global Configuration mode

User Guidelines

If there is no available IP interface of the configured IP source address, an error message is issued when attempting to communicate with the IP address.

Example

The following example configures the source IP address used for communication with all RADIUS servers to 10.1.1.1.

```
switchxxxxxx(config)# radius-server source-ip 10.1.1.1
```
17.5 radius-server source-ipv6

Use the radius-server source-ipv6 Global Configuration mode command to specify the source IPv6 address used for communication with RADIUS servers. Use the no form of this command to restore the default configuration.

**Syntax**

radius-server source-ipv6 {source}

no radius-server source-ipv6 {source}

**Parameters**

source—Specifies the source IPv6 address.

**Default Configuration**

The source IP address is the IP address of the outgoing IP interface.

**Command Mode**

Global Configuration mode

**User Guidelines**

If there is no available IP interface of the configured IP source address, an error message is issued when attempting to communicate with the IP address.

**Example**

The following example configures the source IP address used for communication with all RADIUS servers to 3ffe:1900:4545:3:200:f8ff:fe21:67cf.

```
switchxxxxxx(config)# radius-server source-ipv6
```

17.6 radius-server timeout

Use the radius-server timeout Global Configuration mode command to set how long the device waits for a server host to reply. Use the no form of this command to restore the default configuration.
**Syntax**

radius-server timeout timeout-seconds  
no radius-server timeout

**Parameters**

timeout timeout-seconds—Specifies the timeout value in seconds. (Range: 1–30)

**Default Configuration**

The default timeout value is 3 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the timeout interval on all RADIUS servers to 5 seconds.

```
switchxxxxxxx(config)# radius-server timeout 5
```

---

**17.7 radius-server deadtime**

Use the `radius-server deadtime` Global Configuration mode command to configure how long unavailable RADIUS servers are skipped over by transaction requests. This improves RADIUS response time when servers are unavailable. Use the `no` form of this command to restore the default configuration.

**Syntax**

radius-server deadtime deadtime  
no radius-server deadtime

**Parameters**

deadtime—Specifies the time interval in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

**Default Configuration**

The default deadtime interval is 0.
Command Mode
Global Configuration mode

Example
The following example sets all RADIUS server deadtimes to 10 minutes.

```
switchxxxxxx(config)# radius-server deadtime 10
```

### 17.8 show radius-servers

Use the **show radius-servers** Privileged EXEC mode command to display the RADIUS server settings.

Syntax
```
show radius-servers
```

Command Mode
Privileged EXEC mode

Example
The following example displays RADIUS server settings:

```
switchxxxxxx# show radius-servers

<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Port</th>
<th>Time</th>
<th>Dead time</th>
<th>Source IP</th>
<th>Priority</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>1812</td>
<td>1813</td>
<td>Global</td>
<td>Global</td>
<td>1</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>1812</td>
<td>1813</td>
<td>11</td>
<td>8</td>
<td>Global</td>
<td>Global</td>
<td></td>
</tr>
</tbody>
</table>

Global values

TimeOut: 3
Retransmit: 3
Deadtime: 0
Source IP: 172.16.8.1
17.9 show radius-servers key

Use the show radius-servers key Privileged EXEC mode command to display the RADIUS server key settings.

Syntax

show radius-servers key

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server key settings.

```
switchxxxxxx# show radius-servers key
IP address                  Key (Encrypted)
--------------------------  -----------------------------
172.16.1.1                  sdfskjlkoisjdoiklsjdf

Global key (Encrypted)
----------------------
sdklfjdkljfwkljksdj
```
TACACS+ Commands

18.1 tacacs-server host

Use the `tacacs-server host` Global Configuration mode command to specify a TACACS+ host. Use the `no` form of this command to delete the specified TACACS+ host.

Syntax

```
tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key key-string] [source source-ip] [priority priority]
```

```
encrypted tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key encrypted-key-string] [source source-ip] [priority priority]
```

```
no tacacs-server host {ip-address | hostname}
```

Parameters

- `host ip-address`—Specifies the TACACS+ server host IP address.
 Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

- `host hostname`—Specifies the TACACS+ server host name. (Length: 1-158 characters. Maximum label length of each part of the host name: 63 characters)

- `single-connection`—Specifies that a single open connection is maintained between the device and the daemon, instead of the device opening and closing a TCP connection to the daemon each time it communicates.

- `port port-number`—Specifies the TACACS server TCP port number. If the port number is 0, the host is not used for authentication. (Range: 0-65535)

- `timeout timeout`—Specifies the timeout value in seconds. (Range: 1-30)

- `key key-string`—Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. To specify an empty string, enter "". (Length: 0-128 characters). If this parameter is omitted, the globally-defined key (set in `tacacs-server key`) will be used.

- `source source-ip`—Specifies the source IP address for the TACACS+ communications.
- **key encrypted-key-string**—Same as key-string, but the key is in encrypted format.

- **source source-ip**—Specifies the source IPv4 or IPv6 address to use for communication. 0.0.0.0 is interpreted as a request to use the IP address of the outgoing IP interface.

- **priority priority**—Specifies the order in which the TACACS+ servers are used, where 0 is the highest priority. (Range: 0-65535)

Default Configuration

No TACACS+ host is specified.

The default **port-number** is 49.

The default authentication port number is 1812.

If **timeout** is not specified, the global value (set in `tacacs-server timeout`) is used.

If **key-string** is not specified, the global value (set in `tacacs-server key`) is used.

If the **source** value is not specified, the global value (set in `tacacs-server source-ip` or `tacacs-server source-ipv6`) is used.

If a parameter was not set in one of the above commands, the default for that command is used. For example, if a timeout value was not set in the current command or in `tacacs-server timeout`, the default timeout for `tacacs-server timeout` is used.

Command Mode

Global Configuration mode

User Guidelines

Multiple `tacacs-server host` commands can be used to specify multiple hosts.

Example

The following example specifies a TACACS+ host.

```
switchxxxxxx(config)# tacacs-server host 172.16.1.1
```
18.2 tacacs-server key

Use the `tacacs-server key` Global Configuration mode command to set the authentication encryption key used for all TACACS+ communications between the device and the TACACS+ daemon. Use the `no` form of this command to disable the key.

Syntax

```
tacacs-server key key-string
```

```
encrypted tacacs-server key encrypted-key-string
```

```
no tacacs-server key
```

Parameters

- `key-string`—Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. (Length: 0–128 characters)

- `encrypted-key-string`—Same as `key-string`, but the key is in encrypted format.

Default Configuration

The default key is an empty string.

Command Mode

Global Configuration mode

Example

The following example sets Enterprise as the authentication encryption key for all TACACS+ servers.

```
switchxxxxxx(config)# tacacs-server key enterprise
```

18.3 tacacs-server timeout

Use the `tacacs-server timeout` Global Configuration mode command to set the interval during which the device waits for a TACACS+ server to reply. Use the `no` form of this command to restore the default configuration.
Syntax

```plaintext
tacacs-server timeout `timeout`
no tacacs-server timeout
```

Parameters

- `timeout`—Specifies the timeout value in seconds. (Range: 1-30)

Default Configuration

The default timeout value is 5 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the timeout value to 30 for all TACACS+ servers.

```
switchxxxxx(config)# tacacs-server timeout 30
```

18.4 tacacs-server source-ip

Use the `tacacs-server source-ip` Global Configuration mode command to configure the source IP address to be used for communication with TACACS+ servers. Use the `no` form of this command to restore the default configuration.

Syntax

```plaintext
tacacs-server source-ip `source`
no tacacs-server source-ip `source`
```

Parameters

- `source`—Specifies the source IP address. (Range: Valid IP address)

Default Configuration

The default source IP address is the outgoing IP interface address.
Command Mode
Global Configuration mode

User Guidelines
If the configured IP source address has no available IP interface, an error message is issued when attempting to communicate with the IP address.

Example
The following example specifies the source IP address for all TACACS+ servers.

```
switchxxxxxx(config)# tacacs-server source-ip 172.16.8.1
```

18.5 **show tacacs**
Use the **show tacacs** Privileged EXEC mode command to display configuration and statistical information for a TACACS+ server.

Syntax
```
show tacacs [ip-address]
```

Parameters
- **ip-address**—Specifies the TACACS+ server name, IP or IPv6 address.

Default Configuration
If **ip-address** is not specified, information for all TACACS+ servers is displayed.

Command Mode
Privileged EXEC mode
Example

The following example displays configuration and statistical information for all TACACS+ servers.

```
switchxxxxxx# show tacacs

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Port</th>
<th>Single Connection</th>
<th>Time Out</th>
<th>Source IP</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>Connected</td>
<td>49</td>
<td>No</td>
<td>Global</td>
<td>Global</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Global values

Time Out: 3
Source IP: 172.16.8.1

18.6 show tacacs key

Use the `show tacacs key` Privileged EXEC mode command to display the configured key of the TACACS+ server.

Syntax

```
show tacacs key [ip-address]
```

Parameters

- `ip-address`—Specifies the TACACS+ server name or IP address.

Default Configuration

If `ip-address` is not specified, information for all TACACS+ servers is displayed.

Command Mode

Privileged EXEC mode
Example

The following example displays configuration and statistical information for all TACACS+ servers.

```
switchxxxxxxx# show tacacs key

IP address Key (Encrypted)

Global key (Encrypted)

--------------
```
19.1 logging on

Use the **logging on** Global Configuration mode command to control error message logging. This command sends debug or error messages asynchronously to designated locations. Use the **no** form of this command to disable the logging.

Syntax

```
logging on
no logging on
```

Parameters

N/A

Default Configuration

Message logging is enabled.

Command Mode

Global Configuration mode

User Guidelines

The logging process controls the logging messages distribution at various destinations, such as the logging buffer, logging file or SYSLOG server. Logging on and off at these destinations can be individually configured using the **logging buffered**, **logging file**, and **logging on** Global Configuration mode commands. However, if the **logging on** command is disabled, no messages are sent to these destinations. Only the console receives messages.

Example

The following example enables logging error messages.

```
switchxxxxxxx(config)# logging on
```
19.2 logging host

Use the logging host Global Configuration command to log messages to the specified SYSLOG server. Use the no form of this command to delete the SYSLOG server with the specified address from the list of SYSLOG servers.

Syntax

logging host {ip-address | ipv6-address | hostname} [port port] [severity level] [facility facility] [description text]

no logging host {ipv4-address | ipv6-address | hostname}

Parameters

- **ip-address**—IP address of the host to be used as a SYSLOG server. The IP address can be an IPv4, IPv6 or Ipv6z address. See IPv6z Address Conventions.

- **hostname**—Hostname of the host to be used as a SYSLOG server. Only translation to IPv4 addresses is supported. (Range: 1–158 characters. Maximum label size for each part of the host name: 63)

- **port port**—Port number for SYSLOG messages. If unspecified, the port number defaults to 514. (Range: 1–65535)

- **severity level**—Limits the logging of messages to the SYSLOG servers to a specified level: emergencies, alerts, critical, errors, warnings, notifications, informational, debugging.

- **facility facility**—The facility that is indicated in the message. It can be one of the following values: local0, local1, local2, local3, local4, local5, local 6, local7. If unspecified, the port number defaults to local7.

- **description text**—Description of the SYSLOG server. (Range: Up to 64 characters)

Default Configuration

No messages are logged to a SYSLOG server.

if unspecified, the severity level defaults to Informational.

Command Mode

Global Configuration mode
User Guidelines
You can use multiple SYSLOG servers.

Examples

```
switchxxxxx(config)# logging host 1.1.1.121
```

```
switchxxxxx(config)# logging host 3000::100/SYSLOG1
```

19.3 logging console

Use the logging console Global Configuration mode command to limit messages logged to the console to messages to a specific severity level. Use the no form of this command to restore the default.

Syntax

```
logging console level
```

```
no logging console
```

Parameters

- **level**—Specifies the severity level of logged messages displayed on the console. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

Informational.

Command Mode

Global Configuration mode

Example

The following example limits logging messages displayed on the console to messages with severity level **errors**.

```
switchxxxxx(config)# logging console errors
```
19.4 logging buffered

Use the logging buffered Global Configuration mode command to limit the SYSLOG message display to messages with a specific severity level, and to define the buffer size (number of messages that can be stored). Use the no form of this command to cancel displaying the SYSLOG messages, and to return the buffer size to default.

Syntax

logging buffered [buffer-size] [severity-level | severity-level-name]

no logging buffered

Parameters

- buffer-size—Specifies the maximum number of messages stored in the history table. (Range: 20–400)
- severity-level—Specifies the severity level of messages logged in the buffer. The possible values are: 1-7.
- severity-level-name—Specifies the severity level of messages logged in the buffer. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is informational.

The default buffer size is 200.

Command Mode

Global Configuration mode

User Guidelines

All the SYSLOG messages are logged to the internal buffer. This command limits the messages displayed to the user.

Example

The following example shows two ways of limiting the SYSLOG message display from an internal buffer to messages with severity level debugging. In the second example, the buffer size is set to 100.
Syslog Commands

switchxxxxxx(config)# logging buffered debugging
switchxxxxxx(config)# logging buffered 100 7

19.5 clear logging

Use the clear logging Privileged EXEC mode command to clear messages from the internal logging buffer.

Syntax

clear logging

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example clears messages from the internal logging buffer.

switchxxxxxx# clear logging
Clear logging buffer [confirm]

19.6 logging file

Use the logging file Global Configuration mode command to limit SYSLOG messages sent to the logging file to messages with a specific severity level. Use the no form of this command to cancel sending messages to the file.

Syntax

logging file level

no logging file
Parameters

level—Specifies the severity level of SYSLOG messages sent to the logging file. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is **errors**.

Command Mode

Global Configuration mode

Example

The following example limits SYSLOG messages sent to the logging file to messages with severity level **alerts**.

```
switchxxxxxx(config)# logging file alerts
```

19.7 clear logging file

Use the **clear logging file** Privileged EXEC mode command to clear messages from the logging file.

Syntax

clear logging file

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example
The following example clears messages from the logging file.

```
switchxxxxxx# clear logging file
Clear Logging File [y/n]
```

19.8 file-system logging

Use the `file-system logging` Global Configuration mode command to enable logging file system events. Use the `no` form of this command to disable logging file system events.

Syntax

```
file-system logging \{copy | delete-rename\}
no file-system logging \{copy | delete-rename\}
```

Parameters

- **copy**—Specifies logging messages related to file copy operations.
- **delete-rename**—Specifies logging messages related to file deletion and renaming operations.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

Example

The following example enables logging messages related to file copy operations.

```
switchxxxxxxx(config)# file-system logging copy
```
19.9 logging aggregation on

Use the logging aggregation on Global Configuration mode command to control aggregation of SYSLOG messages. If aggregation is enabled, logging messages are displayed every time interval (according to the aging time specified by logging aggregation aging-time). Use the no form of this command to disable aggregation of SYSLOG messages.

Syntax

logging aggregation on

no logging aggregation on

Parameters

N/A

Default Configuration

Enabled.

Command Mode

Global Configuration mode

Example

To turn off aggregation of SYSLOG messages:

```
switchxxxxxx(config)# no logging aggregation on
```

19.10 logging aggregation aging-time

Use the logging aggregation aging-time Global Configuration mode command to configure the aging time of the aggregated SYSLOG messages. The SYSLOG messages are aggregated during the time interval set by the aging-time parameter. Use the no form of this command to return to the default.

Syntax

logging aggregation aging-time sec

no logging aggregation aging-time
Parameters

aging-time *sec*—Aging time in seconds (Range: 15–3600)

Default Configuration

300 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# logging aggregation aging-time 300
```

19.11 show logging

Use the `show logging` Privileged EXEC mode command to display the logging status and SYSLOG messages stored in the internal buffer.

Syntax

`show logging`

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the internal buffer.

```
switchxxxxxx# show logging
Logging is enabled.
```
Console Logging: Level info. Console Messages: 0 Dropped.

4 messages were not logged

Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.

Aggregation aging time: 300 Sec

01-Jan-2010 05:29:46 :%INIT-I-Startup: Warm Startup
01-Jan-2010 05:29:02 :%LINK-I-Up: Vlan 1
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG6
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG7
01-Jan-2010 05:29:00 :%LINK-W-Down: SYSLOG8

19.12 show logging file

Use the `show logging file` Privileged EXEC mode command to display the logging status and the SYSLOG messages stored in the logging file.

Syntax

```
show logging file
```

Parameters

N/A

Default Configuration

N/A
Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the logging file.

```
switchxxxxxx# show logging file

Logging is enabled.

Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged

Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.

Aggregation aging time: 300 Sec

01-Jan-2010 05:57:00 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:56:36 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:37 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_read: key_from_blob bgEgGnt9r6NHzwK1xKqF7cbtd1lxmFgSEWuhho5UedydAjVkKS5X2... failed
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_from_blob: invalid key type.
01-Jan-2010 05:56:34 :%SSHD-E-ERROR: SSH error: bad sigbloblen 58 != SIGBLOB_LEN
```
19.13 show syslog-servers

Use the show syslog-servers Privileged EXEC mode command to display the SYSLOG server settings.

Syntax

```
show syslog-servers
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example provides information about the SYSLOG servers.

```
switchxxxxxx# show syslog-servers
Device Configuration
IP address    Port   Facility Severity Description
------------- ----   --------- -------- --------------
1.1.1.121     514    local7    info
3000::100     514    local7    info
```
Remote Network Monitoring (RMON) Commands

20.1 show rmon statistics

Use the show rmon statistics EXEC mode command to display RMON Ethernet statistics.

Syntax

show rmon statistics {interface-id}

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

Example

The following example displays RMON Ethernet statistics for gigabitethernet port gi1.

switchxxxxxx# show rmon statistics gi1
Port gi1
Dropped: 0
Octets: 0 Packets: 0
Broadcast: 0 Multicast: 0
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0 Oversize Pkts: 0
Fragments: 0 Jabbers: 0
64 Octets: 0 65 to 127 Octets: 1
128 to 255 Octets: 1 256 to 511 Octets: 1
512 to 1023 Octets: 0 1024 to max Octets: 0
The following table describes the significant fields displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped. It is the number of times this condition was detected.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets (including bad packets, broadcast packets, and multicast packets) received.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good packets received and directed to the broadcast address. This does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good packets received and directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>Total number of packets received with a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but with either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>Total number of packets received, less than 64 octets long (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Pkts</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received, less than 64 octets in length (excluding framing bits but including FCS octets) and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jabbers</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets), and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>64 Octets</td>
<td>Total number of packets (including bad packets) received that are 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>65 to 127 Octets</td>
<td>Total number of packets (including bad packets) received that are between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>128 to 255 Octets</td>
<td>Total number of packets (including bad packets) received that are between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>256 to 511 Octets</td>
<td>Total number of packets (including bad packets) received that are between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>512 to 1023 Octets</td>
<td>Total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>1024 to max</td>
<td>Total number of packets (including bad packets) received that were between 1024 octets and the maximum frame size in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>

20.2 rmon collection stats

Use the `rmon collection stats` Interface Configuration mode command to enable RMON MIB collecting history statistics (in groups) on an interface. Use the `no` form of this command to remove a specified RMON history group of statistics.

Syntax

```
rmon collection stats index [owner ownername] [buckets bucket-number] [interval seconds]
```

```
no rmon collection stats index
```
Parameters

- **index**—The requested group of statistics index. (Range: 1–65535)
- **owner ownername**—Records the name of the owner of the RMON group of statistics. If unspecified, the name is an empty string. (Range: Valid string)
- **buckets bucket-number**—A value associated with the number of buckets specified for the RMON collection history group of statistics. If unspecified, defaults to 50. (Range: 1–50)
- **interval seconds**—The number of seconds in each polling cycle. If unspecified, defaults to 1800. (Range: 1–3600)

Command Mode

Interface Configuration (Ethernet, Port-channel) mode. Cannot be configured for a range of interfaces (range context).

20.3 show rmon collection stats

Use the `show rmon collection stats` EXEC mode command to display the requested RMON history group statistics.

Syntax

`show rmon collection stats [interface-id]`

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode
Example

The following example displays all RMON history group statistics.

```
switchxxxxxx# show rmon collection stats
Index   Interface  Interval  Requested  Granted  Owner
        Samples    Samples
-----   ------      -------    -------    ------
1       gi1        30        50        50      CLI
2       gi1        1800      50        50      Manager
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The sampled Ethernet interface.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds between samples.</td>
</tr>
<tr>
<td>Requested Samples</td>
<td>The requested number of samples to be saved.</td>
</tr>
<tr>
<td>Granted Samples</td>
<td>The granted number of samples to be saved.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

20.4 show rmon history

Use the `show rmon history` EXEC mode command to display RMON Ethernet history statistics.

Syntax

```
show rmon history index {throughput / errors / other} [period seconds]
```

Parameters

- `index`—Specifies the set of samples to display. (Range: 1–65535)
- `throughput`—Displays throughput counters.
- `errors`—Displays error counters.
- `other`—Displays drop and collision counters.
- **period seconds**—Specifies the period of time in seconds to display. (Range: 1–2147483647)

Command Mode

EXEC mode

Example

The following examples display RMON Ethernet history statistics for index 1

```bash
switchxxxxxx# show rmon history 1 throughput
Sample Set: 1  Owner: CLI
Interface: gi1  Interval: 1800
Requested samples: 50  Granted samples: 50
Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Octets</th>
<th>Packets</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2005</td>
<td>303595962</td>
<td>357568</td>
<td>3289</td>
<td>7287</td>
<td>19%</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td>287696304</td>
<td>275686</td>
<td>2789</td>
<td>5878</td>
<td>20%</td>
</tr>
</tbody>
</table>
```

```bash
switchxxxxxx# show rmon history 1 errors
Sample Set: 1  Owner: Me
Interface: gi1  Interval: 1800
Requested samples: 50  Granted samples: 50
Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Time</th>
<th>CRC</th>
<th>Under size</th>
<th>Oversize</th>
<th>Fragments</th>
<th>Jabbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2005</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
</tr>
</tbody>
</table>
```
switchxxxxxx# show rmon history 1 other
Sample Set: 1 Owner: Me
Interface: gi1 Interval: 1800
Requested samples: 50 Granted samples: 50
Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Dropped</th>
<th>Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2005 21:57:00</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Jan 18 2005 21:57:30</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date and Time the entry is recorded.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets and excluding framing bits but including FCS octets) received on the network.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets (including bad packets) received during this sampling interval.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Number of good packets received during this sampling interval that were directed to the broadcast address.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Number of good packets received during this sampling interval that were directed to a multicast address. This number does not include packets addressed to the broadcast address.</td>
</tr>
<tr>
<td>Utilization</td>
<td>Best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.</td>
</tr>
<tr>
<td>CRC Align</td>
<td>Number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Undersize</td>
<td>Number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed.</td>
</tr>
</tbody>
</table>
20.5 rmon alarm

Use the rmon alarm Global Configuration mode command to configure alarm conditions. Use the no form of this command to remove an alarm.

Syntax

```
 rmon alarm index mib-object-id interval rising-threshold falling-threshold rising-event falling-event [type {absolute | delta}] [startup {rising | rising-falling | falling}] [owner name]
```

```
 no rmon alarm index
```

Parameters

- `index`—Specifies the alarm index. (Range: 1–65535)
- **mib-object-id**—Specifies the object identifier of the variable to be sampled. (Valid OID)

- **interval**—Specifies the interval in seconds during which the data is sampled and compared with rising and falling thresholds. (Range: 1–4294967295)

- **rising-threshold**—Specifies the rising threshold value. (Range: 0–4294967295)

- **falling-threshold**—Specifies the falling threshold value. (Range: 0–4294967295)

- **rising-event**—Specifies the index of the event triggered when a rising threshold is crossed. (Range: 0–65535)

- **falling-event**—Specifies the index of the event triggered when a falling threshold is crossed. (Range: 0–65535)

- **type {absolute | delta}**—Specifies the method used for sampling the selected variable and calculating the value to be compared against the thresholds. The possible values are:
 - **absolute**—Specifies that the selected variable value is compared directly with the thresholds at the end of the sampling interval.
 - **delta**—Specifies that the selected variable value of the last sample is subtracted from the current value, and the difference is compared with the thresholds.

- **startup {rising | rising-falling | falling}**—Specifies the alarm that may be sent when this entry becomes valid. The possible values are:
 - **rising**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated.
 - **rising-falling**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated. If the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.
 - **falling**—Specifies that if the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.

- **owner name**—Specifies the name of the person who configured this alarm. (Valid string)
Default Configuration

The default method type is absolute.

The default startup direction is rising-falling.

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an alarm with index 1000, MIB object ID D-Link, sampling interval 360000 seconds (100 hours), rising threshold value 1000000, falling threshold value 1000000, rising threshold event index 10, falling threshold event index 10, absolute method type and rising-falling alarm.

```
switchxxxxxx(config)# rmon alarm 1000 1.3.6.1.2.1.2.2.1.10.1 360000 1000000 1000000 10 20
```

20.6 show rmon alarm-table

Use the show rmon alarm-table EXEC mode command to display a summary of the alarms table.

Syntax

show rmon alarm-table

Command Mode

EXEC mode
Example

The following example displays the alarms table.

```
switchxxxxxx# show rmon alarm-table
```

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3.6.1.2.1.2.1.10.1</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>1.3.6.1.2.1.2.1.10.1</td>
<td>Manager</td>
</tr>
<tr>
<td>3</td>
<td>1.3.6.1.2.1.2.1.10.9</td>
<td>CLI</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

20.7 show rmon alarm

Use the `show rmon alarm` EXEC mode command to display alarm configuration.

Syntax

```
show rmon alarm number
```

Parameters

`alarm number`—Specifies the alarm index. (Range: 1–65535)

Command Mode

EXEC mode

Example

The following example displays RMON 1 alarms.

```
switchxxxxxx# show rmon alarm 1
Alarm 1
```

OID: 1.3.6.1.2.1.2.2.1.10.1
Last sample Value: 878128
Interval: 30
Sample Type: delta
Startup Alarm: rising
Rising Threshold: 8700000
Falling Threshold: 78
Rising Event: 1
Falling Event: 1
Owner: CLI

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarm index.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Last Sample Value</td>
<td>Value of the statistic during the last sampling period. For example, if the sample type is delta, this value is the difference between the samples at the beginning and end of the period. If the sample type is absolute, this value is the sampled value at the end of the period.</td>
</tr>
<tr>
<td>Interval</td>
<td>Interval in seconds over which the data is sampled and compared with the rising and falling thresholds.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Method of sampling the variable and calculating the value compared against the thresholds. If the value is absolute, the variable value is compared directly with the thresholds at the end of the sampling interval. If the value is delta, the variable value at the last sample is subtracted from the current value, and the difference is compared with the thresholds.</td>
</tr>
</tbody>
</table>
20.8 rmon event

Use the `rmon event` Global Configuration mode command to configure an event. Use the `no` form of this command to remove an event.

Syntax

```
rmon event index {none | log | trap | log-trap} [community text] [description text] [owner name]
```

```
no rmon event index
```

Parameters

- **index**—Specifies the event index. (Range: 1–65535)
- **none**—Specifies that no notification is generated by the device for this event.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Alarm</td>
<td>Alarm that is sent when this entry is first set. If the first sample is greater than or equal to the rising threshold, and startup alarm is equal to rising or rising-falling, then a single rising alarm is generated. If the first sample is less than or equal to the falling threshold, and startup alarm is equal falling or rising-falling, then a single falling alarm is generated.</td>
</tr>
<tr>
<td>Rising Threshold</td>
<td>Sampled statistic rising threshold. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>Sampled statistic falling threshold. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Rising Event</td>
<td>Event index used when a rising threshold is crossed.</td>
</tr>
<tr>
<td>Falling Event</td>
<td>Event index used when a falling threshold is crossed.</td>
</tr>
<tr>
<td>Owner</td>
<td>Entity that configured this entry.</td>
</tr>
</tbody>
</table>
Remote Network Monitoring (RMON) Commands

- **log**—Specifies that a notification entry is generated in the log table by the device for this event.
- **trap**—Specifies that an SNMP trap is sent to one or more management stations by the device for this event.
- **log-trap**—Specifies that an entry is generated in the log table and an SNMP trap is sent to one or more management stations by the device for this event.
- **community text**—Specifies the SNMP community (password) used when an SNMP trap is sent. (Octet string; length: 0–127 characters)
- **description text**—Specifies a comment describing this event. (Length: 0–127 characters)
- **owner name**—Specifies the name of the person who configured this event. (Valid string)

Default Configuration

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an event identified as index 10, for which the device generates a notification in the log table.

```plaintext
switchxxxxxx(config)# rmon event 10 log
```

20.9 show rmon events

Use the **show rmon events** EXEC mode command to display the RMON event table.

Syntax

```
show rmon events
```
Command Mode

EXEC mode

Example

The following example displays the RMON event table.

```
switchxxxxxx# show rmon events
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Type</th>
<th>Community</th>
<th>Owner</th>
<th>Last time sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors</td>
<td>Log</td>
<td>router</td>
<td>CLI</td>
<td>Jan 18 2006 23:58:17</td>
</tr>
<tr>
<td>2</td>
<td>High Broadcast</td>
<td>Log</td>
<td>Manager</td>
<td>Jan 18 2006 23:59:48</td>
<td></td>
</tr>
</tbody>
</table>

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Unique index that identifies this event.</td>
</tr>
<tr>
<td>Description</td>
<td>Comment describing this event.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of notification that the device generates about this event. Can have the following values: none, log, trap, log-trap. In the case of log, an entry is made in the log table for each event. In the case of trap, an SNMP trap is sent to one or more management stations.</td>
</tr>
<tr>
<td>Community</td>
<td>If an SNMP trap is to be sent, it is sent with the SNMP community string specified by this octet string.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this event.</td>
</tr>
<tr>
<td>Last time sent</td>
<td>The time this entry last generated an event. If this entry has not generated any events, this value is zero.</td>
</tr>
</tbody>
</table>

20.10 show rmon log

Use the `show rmon log` EXEC mode command to display the RMON log table.

Syntax

```
show rmon log [event]
```
Parameters

event—Specifies the event index. (Range: 0–65535)

Command Mode

EXEC mode

Example

The following example displays event 1 in the RMON log table.

```
switchxxxxxx# show rmon log 1
```

Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIB Var.:</td>
<td>Jan 18 2006 23:48:19</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.2.1.2.2.1.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53, Delta, Rising,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual Val: 800,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thres.Set: 100,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval (sec): 1</td>
<td></td>
</tr>
</tbody>
</table>

20.11 rmon table-size

Use the `rmon table-size` Global Configuration mode command to configure the maximum size of RMON tables. Use the no form of this command to return to the default size.

Syntax

```
rmon table-size {history entries | log entries}
no rmon table-size {history | log}
```

Parameters

- `history entries`—Specifies the maximum number of history table entries. (Range: 20–270)
- `log entries`—Specifies the maximum number of log table entries. (Range: 20–100)
Default Configuration
The default history table size is 270 entries.
The default log table size is 200 entries.

Command Mode
Global Configuration mode

User Guidelines
The configured table size takes effect after the device is rebooted.

Example
The following example configures the maximum size of RMON history tables to 100 entries.

```
switchxxxxxx(config)# rmon table-size history 100
```
21.1 aaa authentication dot1x

Use the `aaa authentication dot1x` Global Configuration mode command to specify how ports are authenticated when 802.1X is enabled. You can select either authentication by a RADIUS server, no authentication, or both methods. Use the `no` form of this command to restore the default configuration.

Syntax

```
aaa authentication dot1x default method1 [method2]
no aaa authentication dot1x default
```

Parameters

- `method1 [method2]`—Specify at least one method from the following:
 - `radius` - Uses the list of all RADIUS servers for authentication
 - `none` - Uses no authentication

Default Configuration

The default method is RADIUS.

Command Mode

Global Configuration mode

User Guidelines

You can select either authentication by a RADIUS server, no authentication (`none`), or both methods.

If you require that authentication succeeds even if the RADIUS server is not found or returns an error, specify `none` as the final method in the command line.
Example

The following example sets the 802.1X authentication mode to RADIUS server authentication. If no response is received, no authentication is performed.

```
switchxxxxxx(config)# aaa authentication dot1x default radius none
```

21.2 dot1x system-auth-control

Use the `dot1x system-auth-control` Global Configuration mode command to enable 802.1X globally. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x system-auth-control
no dot1x system-auth-control
```

Parameters

N/A

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

The following example enables 802.1X globally.

```
switchxxxxxx(config)# dot1x system-auth-control
```

21.3 dot1x port-control

Use the `dot1x port-control` Interface Configuration (Ethernet) mode command to enable manual control of the port authorization state. Use the `no` form of this command to restore the default configuration.
Syntax

```plaintext
dot1x port-control [auto / force-authorized / force-unauthorized][time-range time-range-name]
```

no dot1x port-control

Parameters

- **auto**—Enables 802.1X authentication on the port and causes it to transition to the authorized or unauthorized state, based on the 802.1X authentication exchange between the device and the client.
- **force-authorized**—Disables 802.1X authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port resends and receives normal traffic without 802.1X-based client authentication.
- **force-unauthorized**—Denies all access through this port by forcing it to transition to the unauthorized state and ignoring all attempts by the client to authenticate. The device cannot provide authentication services to the client through this port.
- **time-range** time-range-name—Specifies a time range. When the Time Range is not in effect, the port state is Unauthorized. (Range: 1–32 characters)

Default Configuration

The port is in the force-authorized state.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1X edge ports (ports in auto state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example

The following example sets 802.1X authentication on gi15 to auto mode.
21.4 dot1x reauthentication

Use the `dot1x reauthentication` Interface Configuration mode command to enable periodic re-authentication of the client. Use the `no` form of this command to return to the default setting.

Syntax

```
dot1x reauthentication
no dot1x reauthentication
```

Parameters

N/A

Default Configuration

Periodic re-authentication is disabled.

Command Mode

Interface configuration (Ethernet)

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x reauthentication
```

21.5 dot1x timeout reauth-period

Use the `dot1x timeout reauth-period` Interface Configuration mode command to set the number of seconds between re-authentication attempts. Use the `no` form of this command to return to the default setting.

Syntax

```
dot1x timeout reauth-period seconds
no dot1x timeout reauth-period
```
Parameters

`reauth-period seconds`—Number of seconds between re-authentication attempts. (Range: 300-4294967295)

Default Configuration

3600

Command Mode

Interface Configuration (Ethernet) mode

Example

```bash
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x timeout reauth-period 5000
```

21.6 dot1x re-authenticate

The `dot1x re-authenticate` Privileged EXEC mode command manually initiates re-authentication of all 802.1X-enabled ports or the specified 802.1X-enabled port.

Syntax

`dot1x re-authenticate [interface-id]`

Parameters

`interface-id`—Specifies an Ethernet port ID.

Default Configuration

If no port is specified, command is applied to all ports.

Command Mode

Privileged EXEC mode
Example
The following command manually initiates re-authentication of 802.1X-enabled gi15.

```
switchxxxxxx# dot1x re-authenticate gi15
```

21.7 dot1x timeout quiet-period

Use the `dot1x timeout quiet-period` Interface Configuration (Ethernet) mode command to set the time interval that the device remains in a quiet state following a failed authentication exchange (for example, the client provided an invalid password). Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x timeout quiet-period seconds

no dot1x timeout quiet-period
```

Parameters

- `seconds`—Specifies the time interval in seconds that the device remains in a quiet state following a failed authentication exchange with the client. (Range: 0–65535 seconds)

Default Configuration

The default quiet period is 60 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

During the quiet period, the device does not accept or initiate authentication requests.

The default value of this command should only be changed to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To provide faster response time to the user, a smaller number than the default value should be entered.
Example

The following example sets the time interval that the device remains in the quiet state following a failed authentication exchange to 10 seconds.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x timeout quiet-period 10
```

21.8 dot1x timeout tx-period

Use the `dot1x timeout tx-period` Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x timeout tx-period seconds
no dot1x timeout tx-period
```

Parameters

- `seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP-request/identity frame from the client before resending the request. (Range: 30–65535 seconds)

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Example
The following command sets the time interval during which the device waits for a response to an EAP request/identity frame to 60 seconds.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x timeout tx-period 60
```

21.9 **dot1x max-req**
Use the `dot1x max-req` Interface Configuration mode command to set the maximum number of times that the device sends an Extensible Authentication Protocol (EAP) request/identity frame (assuming that no response is received) to the client before restarting the authentication process. Use the `no` form of this command to restore the default configuration.

Syntax
```
dot1x max-req count
no dot1x max-req
```

Parameters
- `max-req count`—Specifies the maximum number of times that the device sends an EAP request/identity frame before restarting the authentication process. (Range: 1–10)

Default Configuration
The default maximum number of attempts is 2.

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Example
The following example sets the maximum number of times that the device sends an EAP request/identity frame to 6

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x max-req 6
```

21.10 dot1x timeout supp-timeout

Use the `dot1x timeout supp-timeout` Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request frame from the client before resending the request. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x timeout supp-timeout seconds
no dot1x timeout supp-timeout
```

Parameters

- `supp-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP request frame from the client before resending the request. (Range: 1–65535 seconds)

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Example

The following example sets the time interval during which the device waits for a response to an EAP request frame from the client before resending the request to 3600 seconds.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x timeout supp-timeout 3600
```

21.11 dot1x timeout server-timeout

Use the `dot1x timeout server-timeout` Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response from the authentication server. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x timeout server-timeout seconds
no dot1x timeout server-timeout
```

Parameters

- `server-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response from the authentication server. (Range: 1–65535 seconds)

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The actual timeout period can be determined by comparing the value specified by the `dot1x timeout server-timeout` command to the result of multiplying the number of retries specified by the `radius-server retransmit` command by the timeout period specified by the `radius-server retransmit` command, and selecting the lower of the two values.
Example

The following example sets the time interval between retransmission of packets to the authentication server to 3600 seconds.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x timeout server-timeout 3600
```

21.12 show dot1x

Use the `show dot1x` Privileged EXEC mode command to display the 802.1X interfaces or specified interface status.

Syntax

```
show dot1x [interface interface-id | detailed]
```

Parameters

- `interface-id`—Specify an Ethernet port ID.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode
Examples

Example 1 - The following example displays the status of a single 802.1X-enabled Ethernet ports.

```bash
switchxxxxxx# show dot1x interface gi3
802.1X is enabled.

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
<th>Reauth Control</th>
<th>Reauth Period</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi3</td>
<td>Auto</td>
<td>Unauthorized</td>
<td>Ena</td>
<td>3600</td>
<td>Clark</td>
</tr>
</tbody>
</table>

Time-range: work-hours (Inactive now)
Quiet period: 60 Seconds
Tx period: 30 Seconds
Max req: 2
Supplicant timeout: 30 Seconds
Server timeout: 30 Seconds
Session Time (HH:MM:SS): 08:19:17
MAC Address: 00:08:78:32:98:78
Authentication Method: Remote
Termination Cause: Supplicant logoff
Authenticator State Machine: HELD
Backend State Machine: IDLE
Authentication success: 9
Authentication fails: 1
```

Example 2 - The following example displays the status of all 802.1X-enabled Ethernet ports.

```bash
switchxxxxxx# show dot1x
802.1X is enabled
```
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Admin mode</td>
<td>The port administration (configured) mode. Possible values: Force-auth, Force-unauth, Auto.</td>
</tr>
<tr>
<td>Oper mode</td>
<td>The port operational (actual) mode. Possible values: Authorized, Unauthorized or Down.</td>
</tr>
<tr>
<td>Reauth Control</td>
<td>Reauthentication control.</td>
</tr>
<tr>
<td>Reauth Period</td>
<td>Reauthentication period.</td>
</tr>
<tr>
<td>Username</td>
<td>Username representing the supplicant identity. This field shows the username if the port control is auto. If the port is Authorized, it displays the username of the current user. If the port is Unauthorized, it displays the last user authenticated successfully.</td>
</tr>
<tr>
<td>Quiet period</td>
<td>Number of seconds that the device remains in the quiet state following a failed authentication exchange (for example, the client provided an invalid password).</td>
</tr>
<tr>
<td>Tx period</td>
<td>Number of seconds that the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td>Max req</td>
<td>Maximum number of times that the device sends an EAP request frame (assuming that no response is received) to the client before restarting the authentication process.</td>
</tr>
<tr>
<td>Supplicant timeout</td>
<td>Number of seconds that the device waits for a response to an EAP-request frame from the client before resending the request.</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
<th>Reauth Control</th>
<th>Reauth Period</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>Bob</td>
</tr>
<tr>
<td>gi2</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>John</td>
</tr>
<tr>
<td>gi3</td>
<td>Auto</td>
<td>Unauthorized</td>
<td>Ena</td>
<td>3600</td>
<td>Clark</td>
</tr>
<tr>
<td>gi4</td>
<td>Force-auth</td>
<td>Authorized</td>
<td>Dis</td>
<td>3600</td>
<td>n/a</td>
</tr>
<tr>
<td>gi5</td>
<td>Force-auth</td>
<td>Unauthorized</td>
<td>Dis</td>
<td>3600</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Port is down or not present.
21.13 show dot1x users

Use the `show dot1x users` Privileged EXEC mode command to display active 802.1X authenticated users for the device.

Syntax

```
show dot1x users [username username]
```

Parameters

`username`—Specifies the supplicant username (Length: 1–160 characters)

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server timeout</td>
<td>Number of seconds that the device waits for a response from the authentication server before resending the request.</td>
</tr>
<tr>
<td>Session Time</td>
<td>Amount of time (HH:MM:SS) that the user is logged in.</td>
</tr>
<tr>
<td>MAC address</td>
<td>Supplicant MAC address.</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Authentication method used to establish the session.</td>
</tr>
<tr>
<td>Termination Cause</td>
<td>Reason for the session termination.</td>
</tr>
<tr>
<td>State</td>
<td>Current value of the Authenticator PAE state machine and of the Backend state machine.</td>
</tr>
<tr>
<td>Authentication success</td>
<td>Number of times the state machine received a Success message from the Authentication Server.</td>
</tr>
<tr>
<td>Authentication fails</td>
<td>Number of times the state machine received a Failure message from the Authentication Server.</td>
</tr>
</tbody>
</table>
Example

The following example displays 802.1X user with supplicant username Bob.

```
switchxxxxxx# show dot1x users username Bob
Port Username Session Auth MAC VLAN
    -------- ------------------------------  -----------  ----
    gi1     Bob  1d 09:07:38 Remote 0008.3b79.8787  3
```

21.14 show dot1x statistics

Use the `show dot1x statistics` Privileged EXEC mode command to display 802.1X statistics for the specified port.

Syntax

```
show dot1x statistics interface interface-id
```

Parameters

`interface-id`—Specifies an Ethernet port ID.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays 802.1X statistics for gi1.

```
switchxxxxxx# show dot1x statistics interface gi1
EapolFramesRx: 11
EapolFramesTx: 12
EapolStartFramesRx: 1
EapolLogoffFramesRx: 1
EapolRespIdFramesRx: 3
```
EapolRespFramesRx: 6
EapolReqIdFramesTx: 3
EapolReqFramesTx: 6
InvalidEapolFramesRx: 0
EapLengthErrorFramesRx: 0
LastEapolFrameVersion: 1
LastEapolFrameSource: 00:08:78:32:98:78

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EapolFramesRx</td>
<td>Number of valid EAPOL frames of any type that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolFramesTx</td>
<td>Number of EAPOL frames of any type that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>Number of EAPOL Start frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>Number of EAPOL Logoff frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespIdFramesRx</td>
<td>Number of EAP Resp/Id frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespFramesRx</td>
<td>Number of valid EAP Response frames (other than Resp/Id frames) that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqIdFramesTx</td>
<td>Number of EAP Req/Id frames that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqFramesTx</td>
<td>Number of EAP Request frames (other than Req/Id frames) that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>InvalidEapolFramesRx</td>
<td>Number of EAPOL frames that have been received by this Authenticator for which the frame type is not recognized.</td>
</tr>
</tbody>
</table>
21.15 clear dot1x statistics

Use the `clear dot1x statistics` Privileged EXEC mode command to clear 802.1X statistics.

Syntax

`clear dot1x statistics [interface-id]`

Parameters

`interface-id`—Specify an Ethernet port ID.

Default Configuration

Statistics on all ports are cleared.

Command Mode

Privileged EXEC

User Guidelines

The command clears the statistics displayed in the `show dot1x statistics` command.

Example

```
switchxxxxxx# clear dot1x statistics
```
21.16 dot1x host-mode

Use the dot1x host-mode Interface Configuration mode command to allow a single host (client) or multiple hosts on an IEEE 802.1X-authorized port. Use the no form of this command to return to the default setting.

Syntax

dot1x host-mode {multi-host | single-host | multi-sessions}

Parameters

- multi-host—Enable multiple-hosts mode.
- single-host—Enable single-hosts mode.
- multi-sessions—Enable multiple-sessions mode.

Default Configuration

Default mode is multi-host.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

In multiple hosts mode only one of the attached hosts must be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized, all attached clients are denied access to the network.

In multiple sessions mode each host must be successfully authorized in order to grant network access. Please note that packets are NOT encrypted, and after success full authentication filtering is based on the source MAC address only.

Port security on a port cannot be enabled in single-host mode and in multiple-sessions mode.

It is recommended to enable reauthentication when working in multiple-sessions mode in order to detect user logout for users that have not logged off.

In single host mode there is only one attached host and only this authenticated host can access the network.

Example

switchxxxxxx(config)# interface gi1
21.17 **dot1x auth-not-req**

Use the `dot1x auth-not-req` Interface Configuration (VLAN) mode command to enable unauthorized devices access to the VLAN. Use the `no` form of this command to disable access to the VLAN.

Syntax

dot1x auth-not-req

no dot1x auth-not-req

Parameters

N/A

Default Configuration

Access is enabled.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

An access port cannot be a member in an unauthenticated VLAN.

The native VLAN of a trunk port cannot be an unauthenticated VLAN.

For a general port, the PVID can be an unauthenticated VLAN (although only tagged packets are accepted in the unauthorized state).

Example

The following example enables unauthorized devices access to VLAN 5.

```bash
switchxxxxxx(config)# interface vlan 5
switchxxxxxx(config-if)# dot1x auth-not-req
```
21.18 dot1x violation-mode

Use the dot1x violation-mode Interface Configuration (Ethernet) mode command to configure the action to be taken, when a station whose MAC address is not the supplicant MAC address, attempts to access the interface. Use the no form of this command to return to default.

Syntax

dot1x violation-mode {restrict / protect / shutdown} [traps seconds]

no dot1x violation-mode

Parameters

- **restrict**—Generates a trap when a station whose MAC address is not the supplicant MAC address, attempts to access the interface. The minimum time between the traps is 1 second. Those frames are forwarded but their source address are not learned.

- **protect**—Discard frames with source addresses not the supplicant address.

- **shutdown**—Discard frames with source addresses not the supplicant address and shutdown the port

- **trap seconds** - Send SNMP traps, and specifies the minimum time between consecutive traps. If seconds = 0 traps are disabled. If the parameter is not specified it defaults to 1 second for the restrict mode and 0 for the other modes.

Default Configuration

Protect

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The command is relevant only for single-host mode.

BPDU message whose MAC address is not the supplicant MAC address wouldn't be discarded in the protect mode.

BPDU message whose MAC address is not the supplicant MAC address would cause a shutdown in the shutdown mode.
Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x violation-mode protect
```

21.19 dot1x guest-vlan

Use the `dot1x guest-vlan` Interface Configuration (VLAN) mode command to define a guest VLAN. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x guest-vlan
no dot1x guest-vlan
```

Parameters

N/A

Default Configuration

No VLAN is defined as a guest VLAN.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

Use the `dot1x guest-vlan enable` Interface Configuration mode command to enable unauthorized users on an interface to access the guest VLAN.

If the guest VLAN is defined and enabled, the port automatically joins the guest VLAN when the port is unauthorized and leaves it when the port becomes authorized. To be able to join or leave the guest VLAN, the port should not be a static member of the guest VLAN.

Example

The following example defines VLAN 2 as a guest VLAN.

```
switchxxxxxxx(config)# interface vlan 2
```
21.20 dot1x guest-vlan timeout

Use the `dot1x guest-vlan timeout` Global Configuration mode command to set the
time delay between enabling 802.1X (or port up) and adding a port to the guest
VLAN. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x guest-vlan timeout timeout

no dot1x guest-vlan timeout
```

Parameters

- `timeout`—Specifies the time delay in seconds between enabling 802.1X (or port
 up) and adding the port to the guest VLAN. (Range: 30–180)

Default Configuration

The guest VLAN is applied immediately.

Command Mode

Global Configuration mode

User Guidelines

This command is relevant if the guest VLAN is enabled on the port. Configuring the
timeout adds delay from enabling 802.1X (or port up) to the time the device adds
the port to the guest VLAN.

Example

The following example sets the delay between enabling 802.1X and adding a port
to a guest VLAN to 60 seconds.

```
switchxxxxxxx(config)# dot1x guest-vlan timeout 60
```
21.21 dot1x guest-vlan enable

Use the `dot1x guest-vlan enable` Interface Configuration (Ethernet) mode command to enable unauthorized users on the interface access to the guest VLAN. Use the `no` form of this command to disable access.

Syntax

dot1x guest-vlan enable

no dot1x guest-vlan enable

Parameters

N/A

Default Configuration

The default configuration is disabled.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

A device can have only one global guest VLAN. The guest VLAN is defined using the `dot1x guest-vlan` Interface Configuration mode command.

Example

The following example enables unauthorized users on gi1 to access the guest VLAN.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# dot1x guest-vlan enable
```

21.22 dot1x mac-authentication

Use the `dot1x mac-authentication` Interface Configuration (Ethernet) mode command to enable authentication based on the station’s MAC address. Use the `no` form of this command to disable this feature.
Syntax

dot1x mac-authentication {mac-only | mac-and-802.1x}

no dot1x mac-authentication

Parameters

- **mac-only**—Enables authentication based on the station's MAC address only. 802.1X frames are ignored.

- **mac-and-802.1x**—Enables 802.1X authentication and MAC address authentication on the interface.

Default Configuration

Authentication based on the station's MAC address is disabled.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The guest VLAN must be enabled when MAC authentication is enabled.

Static MAC addresses cannot be authorized. Do not change an authenticated MAC address to a static address.

It is not recommended to delete authenticated MAC addresses.

Reauthentication must be enabled when working in this mode.

Example

The following example enables authentication based on the station's MAC address on gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x mac-authentication mac-only
```

21.23 dot1x radius-attributes vlan

Use the **dot1x radius-attributes vlan** Interface Configuration mode command to enable user-based VLAN assignment.
Use the `no` form of this command to disable user-based VLAN assignment.

Syntax

dot1x radius-attributes vlan [reject | vlan-id]

no dot1x radius-attributes vlan

Parameters

- `reject`—If the RADIUS server authenticated the supplicant, but did not provide a supplicant VLAN, the supplicant is rejected. If the parameter is omitted, this option is applied by default.

- `vlan-id`—If the RADIUS server authenticated the supplicant, but did not provide a supplicant VLAN, the supplicant is accepted, and the configured VLAN is assigned to the supplicant.

Default Configuration

Disabled

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The configuration of this command is allowed only when the port is Forced Authorized.

RADIUS attributes are supported only in Multiple Sessions mode (multiple hosts with authentication)

When RADIUS attributes are enabled and the RADIUS accept message does not contain the supplicant’s VLAN as an attribute, the supplicant is rejected.

Packets to the supplicant are sent untagged.

After successful authentication, the port remains a member in the unauthenticated VLANs and in the guest VLAN. Other static VLAN configurations are not applied on the port.
Example

Example 1—The example enables user-based VLAN assignment. If the RADIUS server authenticated the supplicant but did not provide a supplicant VLAN, the supplicant is rejected.

```plaintext
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# dot1x radius-attributes vlan
switchxxxxxx(config-if)# exit
```

Example 2—The example enables user-based VLAN assignment. If the RADIUS server authenticated the supplicant but did not provide a supplicant VLAN the supplicant is accepted and VLAN 100 is assigned to the supplicant.

```plaintext
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# dot1x radius-attributes vlan 100
switchxxxxxx(config-if)# exit
```

21.24 show dot1x advanced

Use the `show dot1x advanced` Privileged EXEC mode command to display 802.1x advanced features for the device or specified interface.

Syntax

```plaintext
show dot1x advanced [interface-id | detailed]
```

Parameters

- **interface-id**—Specify an Ethernet port ID.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If the `detailed` parameter is not used, only present ports are displayed.
Command Mode

Privileged EXEC mode

Examples

The following example displays the 802.1x advanced features for the device. Notice that port 3 has a user-defined alternative VLAN (1023).

```
switchxxxxxx# show dot1x advanced
Guest VLAN: 3978
Guest VLAN Timeout:
Unauthenticated VLANs: 91, 92
Interface Multiple Guest MAC VLAN
Hosts VLAN Authentication Assignment
------- ------- -------------- -----------
151 Disabled Enabled MAC-and-802.1X Enabled
152 Enabled Disabled Disabled Enabled
153 Disabled Enabled MAC-and-802.1X En[1023]
```

```
switchxxxxxx# show dot1x advanced 151
Interface Multiple Guest MAC VLAN
Hosts VLAN Authentication Assignment
------------------ ----------------------- -----------
151 Disabled Enabled MAC-and-802.1X Enabled
```

Legacy-Supp mode is disabled
Policy assignment resource err handling: Accept
Single host parameters
Violation action: Discard
Trap: Enabled
Status: Single-host locked
Violations since last trap: 9
22.1 interface

Use the interface Global Configuration mode command to enter Interface configuration mode in order to configure an interface.

Syntax

```
interface interface-id
```

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel, VLAN, range, IP interface or tunnel.

Default Configuration

N/A

Command Mode

Interface Configuration (Ethernet, Port-channel, VLAN, range, IP interface or tunnel) mode

Examples

Example 1 - For Gigabit Ethernet ports:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)#
```

Example 3 - For port channels (LAGs):

```
switchxxxxxx(config)# interface po1
switchxxxxxx(config-if)#
```
22.2 interface range

Use the interface range command to execute a command on multiple ports at the same time.

Syntax

interface range interface-id-list

Parameters

interface-id-list—Specify list of interface IDs. The interface ID can be one of the following types: Ethernet port, VLAN, or Port-channel

Default Configuration

N/A

Command Mode

Interface Configuration (Ethernet, Port-channel, or VLAN) mode

User Guidelines

Commands under the interface range context are executed independently on each interface in the range: If the command returns an error on one of the interfaces, it does not stop the execution of the command on other interfaces.

Example

switchxxxxxx(config)# interface range gi1-20
switchxxxxxx(config-if-range)#

22.3 shutdown

Use the shutdown Interface Configuration (Ethernet, Port-channel) mode command to disable an interface. Use the no form of this command to restart a disabled interface.

Syntax

shutdown

no shutdown
Parameters
N/A

Default Configuration
The interface is enabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Examples
Example 1 - The following example disables gi5 operations.

```
switchxxxxx(config)# interface gi5
switchxxxxx(config-if)# shutdown
switchxxxxx(config-if)#
```

Example 2 - The following example restarts the disabled Ethernet port.

```
switchxxxxx(config)# interface gi5
switchxxxxx(config-if)# no shutdown
switchxxxxx(config-if)
```

22.4 operation time
Use the operation time Interface Configuration (Ethernet) mode command to control the time that the port is up. Use the no form of this command to cancel the time range for the port operation time.

Syntax

operation time time-range-name

no operation time
Parameters

- `time-range-name`—Specifies a time range the port operates (in up state). When the Time Range is not in effect, the port is shutdown. (Range: 1–32 characters)

Default Configuration

There is no time range configured on the port authorized state.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1x edge ports (ports in `auto` state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example

The operation time command influences the port if the port status is up. This command defines the time frame during which the port stays up and at which time the port will be shutdown. While the port is in shutdown because of other reasons, this command has no effect.

The following example activates an operation time range (named “morning”) on gigabitethernet port 1/1/15.

```plaintext
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# operation time morning
```

22.5 `description`

Use the `description` Interface Configuration (Ethernet, Port-channel) mode command to add a description to an interface. Use the `no` form of this command to remove the description.

Syntax

```plaintext
description string
no description
```
Parameters

string—Specifies a comment or a description of the port to assist the user. (Length: 1–64 characters).

Default Configuration

The interface does not have a description.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example adds the description ‘SW#3’ to gi5.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# description SW#3
```
Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
The no speed command in a port-channel context returns each port in the port-channel to its maximum capability.

Example
The following example configures the speed of gi5 to 100 Mbps operation.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# speed 100
```

22.7 duplex

Use the duplex Interface Configuration (Ethernet, Port-channel) mode command to configure the full/half duplex operation of a given Ethernet interface when not using auto-negotiation. Use the no form of this command to restore the default configuration.

Syntax

duplex {half | full}

no duplex

Parameters

- **half**—Forces half-duplex operation.
- **full**—Forces full-duplex operation.

Default Configuration
The interface operates in full duplex mode.

Command Mode
Interface Configuration (Port-channel) mode
Example

The following example configures gi5 to operate in full duplex mode.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# duplex full
```

22.8 negotiation

Use the `negotiation` Interface Configuration (Ethernet, Port-channel) mode command to enable auto-negotiation operation for the speed and duplex parameters and master-slave mode of a given interface. Use the `no` form of this command to disable auto-negotiation.

Syntax

```
negotiation [capability [capability2... capability5]] [preferred {master | slave}]
negotiation

no negotiation
```

Parameters

- **Capability**—Specifies the capabilities to advertise. (Possible values: 10h, 10f, 100h, 100f, 1000f).
 - 10h - Advertise 10 half-duplex
 - 10f - Advertise 10 full-duplex
 - 100h - Advertise 100 half-duplex
 - 100f - Advertise 100 full-duplex
 - 1000f - Advertise 1000 full-duplex
- **Preferred** - Specifies the master-slave preference:
 - Master - Advertise master preference
 - Slave - Advertise slave preference

Default Configuration

If capability is unspecified, defaults to list of all the capabilities of the port and preferred master mode.
22.9 flowcontrol

Use the `flowcontrol` Interface Configuration (Ethernet, Port-channel) mode command to configure the Flow Control on a given interface. Use the `no` form of this command to disable Flow Control.

Syntax

`flowcontrol {auto | on | off}`

`no flowcontrol`

Parameters

- `auto`—Specifies auto-negotiation of Flow Control.
- `on`—Enables Flow Control.
- `off`—Disables Flow Control.

Default Configuration

Flow control is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

Use the `negotiation` command to enable `flow control auto`.
Example

The following example enables Flow Control on port gi1

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# flowcontrol on
```

22.10 mdix

Use the `mdix` Interface Configuration (Ethernet) mode command to enable cable crossover on a given interface. Use the `no` form of this command to disable cable crossover.

Syntax

```
mdix {on / auto}
```

Parameters

- `on`—Enables manual MDIX.
- `auto`—Enables automatic MDI/MDIX.

Default Configuration

The default setting is On.

Command Mode

Interface Configuration (Ethernet) mode

Example

The following example enables automatic crossover on port gi5.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# mdix auto
```
22.11 back-pressure

Use the back-pressure Interface Configuration (Ethernet) mode command to enable back pressure on a specific interface. Use the no form of this command to disable back pressure.

Syntax

back-pressure
no back-pressure

Default Configuration

Back pressure is disabled.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

Back-pressure cannot be enabled when EEE is enabled.

Example

The following example enables back pressure on port gi5.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# back-pressure
```

22.12 port jumbo-frame

Use the port jumbo-frame Global Configuration mode command to enable jumbo frames on the device. Use the no form of this command to disable jumbo frames.

Syntax

port jumbo-frame
no port jumbo-frame
Default Configuration
Jumbo frames are disabled on the device.

Command Mode
Global Configuration mode

User Guidelines
This command takes effect only after resetting the device.

Example
The following example enables jumbo frames on the device.

switchxxxxxx(config)# port jumbo-frame

22.13 clear counters
Use the clear counters EXEC mode command to clear counters on all or on a specific interface.

Syntax
clear counters [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration
All counters are cleared.

Command Mode
EXEC mode

Example
The following example clears the statistics counters for gi5.
22.14 set interface active

Use the set interface active EXEC mode command to reactivate an interface that was shut down.

Syntax

```
set interface active [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

User Guidelines

This command is used to activate interfaces that were configured to be active, but were shut down by the system.

Example

The following example reactivates gi1

```
switchxxxxxx# set interface active gi1
```

22.15 show interfaces configuration

Use the show interfaces configuration EXEC mode command to display the configuration for all configured interfaces or for a specific interface.

Syntax

```
show interfaces configuration [interface-id | detailed]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

EXEC mode

Example

The following example displays the configuration of all configured interfaces:

```
switchxxxxxx# show interfaces configuration
```

<table>
<thead>
<tr>
<th>Flow</th>
<th>Admin</th>
<th>Back</th>
<th>Mdix</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Port</td>
<td>Type</td>
<td>Duplex</td>
<td>Speed</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>gi1</td>
<td>1G-Copper Full</td>
<td>Full</td>
<td>10000</td>
</tr>
<tr>
<td>gi2</td>
<td>1G-Copper Full</td>
<td>Full</td>
<td>1000</td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th>Flow</th>
<th>Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
<td>Type</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Pol</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

---

**22.16 show interfaces status**

Use the `show interfaces status` EXEC mode command to display the status of all interfaces or of a specific interface.

**Syntax**

`show interfaces status [interface-id | detailed]`

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
• **detailed**—Displays information for non-present ports in addition to present ports.

**Command Mode**

EXEC mode

**Default Configuration**

Display for all interfaces. If detailed is not used, only present ports are displayed.

**Example**

The following example displays the status of all configured interfaces.

```
switchxxxxxx# show interfaces status

Flow Link Back Mdix
Port Type Duplex Speed Neg ctrl State Pressure Mode
------ --------- ------ ----- -------- ---- ------ -------- --
gi1 1G-Copper Full 1000 Disabled Off Up Disabled Off

Flow Link
Port Type Duplex Speed Neg ctrl State
----- ---- ------ ------ ------- ---- ----
P1 1G Full 10000 Disabled Off
```

22.17 **show interfaces advertise**

Use the **show interfaces advertise** EXEC mode command to display auto-negotiation advertisement information for all configured interfaces or for a specific interface.

**Syntax**

```
show interfaces advertise [interface-id | detailed]
```

**Parameters**

• **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Display for all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**
EXEC mode

**Examples**
The following examples display auto-negotiation information.

```
switchxxxxxx# show interfaces advertise
Port Type Neg Operational Link Advertisement
---- -------- ------ ---
gi1 1G-Copper Enable 1000f, 100f, 10f, 10h

switchxxxxxx# show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled
 10h 10f 100h 100f 1000f
 --- --- ---- ---- ------
Admin Local link Advertisement yes yes yes yes yes
Oper Local link Advertisement yes yes yes yes yes
Remote Local link Advertisement no no yes yes yes
Priority Resolution

switchxxxxxx# show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto negotiation: disabled.
```
22.18  show interfaces description

Use the `show interfaces description` EXEC mode command to display the description for all configured interfaces or for a specific interface.

**Syntax**

```
show interfaces description [interface-id | detailed]
```

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display description for all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**Example**

The following example displays the description of all configured interfaces.

```
switchxxxxxx# show interfaces description
Port Descriptions
gi1 ---
gi2 Port that should be used for management only
gi3
gi4
Po Description

Po1 Output
```
22.19 show interfaces counters

Use the `show interfaces counters` EXEC mode command to display traffic seen by all the physical interfaces or by a specific interface.

**Syntax**

```
show interfaces counters [interface-id | detailed]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display counters for all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**Example**

The following example displays traffic seen by all the physical interfaces.

```
switchxxxxx# show interfaces counters gi1
Port InUcastPkts InMcastPkts InBcastPkts InOctets
---------- ------------ ------------ ------------ ------------
gi1 0 0 0 0
Port OutUcastPkts OutMcastPkts OutBcastPkts OutOctets
---------- ------------ ------------ ------------ ------------
gi1 0 1 35 7051
Alignment Errors: 0
FCS Errors: 0
Single Collision Frames: 0
```
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
Symbol Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0
The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>Number of received unicast packets.</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>Number of received multicast packets.</td>
</tr>
<tr>
<td>InBcastPkts</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>Number of transmitted unicast packets.</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>Number of transmitted multicast packets.</td>
</tr>
<tr>
<td>OutBcastPkts</td>
<td>Number of transmitted broadcast packets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>Number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>Number of frames that are involved in a single collision, and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>Number of frames that are involved in more than one collision and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>Number of times that the SQE TEST ERROR is received. The SQE TEST ERROR is set in accordance with the rules for verification of the SQE detection mechanism in the PLS Carrier Sense Function as described in IEEE Std. 802.3, 2000 Edition, section 7.2.4.6.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>Number of frames for which the first transmission attempt is delayed because the medium is busy.</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>Number of times that a collision is detected later than one slotTime into the transmission of a packet.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>Number of frames for which transmission fails due to excessive collisions.</td>
</tr>
<tr>
<td>Oversize Packets</td>
<td>Number of frames received that exceed the maximum permitted frame size.</td>
</tr>
<tr>
<td>Internal MAC Rx Errors</td>
<td>Number of frames for which reception fails due to an internal MAC sublayer receive error.</td>
</tr>
</tbody>
</table>
22.20 show ports jumbo-frame

Use the `show ports jumbo-frame` EXEC mode command to display the whether jumbo frames are enabled on the device.

**Syntax**

`show ports jumbo-frame`

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

EXEC mode

**Example**

The following example displays whether jumbo frames are enabled on the device.

```
switchxxxxxx# show ports jumbo-frame
Jumbo frames are disabled
Jumbo frames will be enabled after reset
```
22.21 show errdisable interfaces

Use the `show errdisable interfaces` EXEC mode command to display the Err-Disable state of all interfaces or of a specific interface.

Syntax

```
show errdisable interfaces [interface-id]
```

Parameters

- `interface`—Interface number
- `port-channel-number`—Port channel index.

Default Configuration

Display for all interfaces.

Command Mode

EXEC mode

Example

The following example displays the Err-Disable state of all interfaces.

```
switchxxxxx# show errdisable interfaces
Interface Reason
------------------ ------------------
 gi20 stp-bpdu-guard
```

22.22 storm-control broadcast enable

Use the `storm-control broadcast enable` Interface Configuration mode command to enable storm control on a port. Use the `no` form of this command to disable storm control.

Syntax

```
storm-control broadcast enable
no storm-control broadcast enable
```
Parameters
This command has no arguments or keywords.

Default Configuration
Disabled

Command Mode
Interface Configuration mode (Ethernet)

User Guidelines
Use the storm-control include-multicast Interface Configuration command to count Multicast packets and optionally unknown Unicast packets in the storm control calculation.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# storm-control broadcast enable
```

### 22.23 storm-control broadcast level kbps

Use the `storm-control broadcast level` Interface Configuration mode command to configure the maximum rate of broadcast on a port. Use the `no` form of this command to return to default.

**Syntax**

```
storm-control broadcast level kbps kbps
no storm-control broadcast level
```

**Parameters**

- **kbps**—Maximum of kilo bits per second of Broadcast traffic on a port. (Range 70-1000000)

**Default Configuration**

```
kbps = 10000
```
Command Mode
Interface Configuration mode (Ethernet)

User Guidelines
Use the `storm-control broadcast enable` Interface Configuration command to enable storm control.

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Example

```
switchxxxxxxx(config)# interface gigabitethernet 1
switchxxxxxxx(config-if)# storm-control broadcast level kbps 12345
```

22.24 storm-control broadcast level

Use the `storm-control broadcast level` Interface Configuration mode command to configure the maximum rate of broadcast. Use the `no` form of this command to return to default.

Syntax

```
storm-control broadcast level [level|kbps kbps]
```

no storm-control broadcast level

Parameters

- `level`—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1 -100)
- `kbps`—Maximum of kilobits per second of broadcast traffic on a port. (Range 70–10000000)

Default Configuration

- `level`—10%
- `kbps`—10% of port speed in Kbps

Command Mode
Interface Configuration mode (Ethernet)
User Guidelines

Use the `storm-control broadcast enable` Interface Configuration command to enable storm control.

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# storm-control broadcast level 50 kbps 12345
```

### 22.25 storm-control include-multicast

Use the `storm-control include-multicast` Interface Configuration mode command to count Multicast packets in a Broadcast storm control. Use the `no` form of this command to disable counting of Multicast packets in the Broadcast storm control.

**Syntax**

```
storm-control include-multicast [unknown-unicast]
no storm-control include-multicast
```

**Parameters**

- `unknown-unicast`—Specifies also the count of unknown unicast packets.

**Default Configuration**

Disabled

**Command Mode**

Interface Configuration mode (Ethernet)

**Example**

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# storm-control include-multicast
```
22.26  show storm-control

Use the show storm-control EXEC mode command to display the configuration of
storm control for a port.

Syntax

show storm-control [interface-id]

Parameters

interface-id—Specifies the Ethernet port.

Default Configuration

Display for all interfaces.

Command Mode

EXEC mode

Example

switchxxxxxx# show storm-control

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Admin Rate</th>
<th>Oper Rate</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>12345 Kb/Sec</td>
<td>12345</td>
<td>Broadcast, Multicast, Unknown Unicast</td>
</tr>
<tr>
<td>gi2</td>
<td>Disabled</td>
<td>100000 Kb/Sec</td>
<td>100000</td>
<td>Broadcast</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>10%</td>
<td>000000</td>
<td>Broadcast</td>
</tr>
</tbody>
</table>
23.1 test cable-diagnostics tdr

Use the `test cable-diagnostics tdr` Privileged EXEC mode command to use Time Domain Reflectometry (TDR) technology to diagnose the quality and characteristics of a copper cable attached to a port.

**Syntax**

```plaintext
test cable-diagnostics tdr interface interface-id
```

**Parameters**

- `interface-id`—Specifies an Ethernet port ID.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The port to be tested should be shut down during the test, unless it is a combination port with fiber port active.

The maximum length of cable for the TDR test is 120 meters.

**Example**

The following examples test the copper cables attached to ports 7 and 8.

```plaintext
switchxxxxxx# test cable-diagnostics tdr interface gi7
Cable is open at 64 meters

switchxxxxxx# test cable-diagnostics tdr interface gi8
Can't perform the test on fiber ports
```
23.2 show cable-diagnostics tdr

Use the `show cable-diagnostics tdr` EXEC mode command to display information on the last Time Domain Reflectometry (TDR) test performed on all copper ports or on a specific copper port.

**Syntax**

```
show cable-diagnostics tdr [interface interface-id | detailed]
```

**Parameters**

- `interface-id`—Specify an Ethernet port ID.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

All ports are displayed. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**User Guidelines**

The maximum length of cable for the TDR test is 120 meters.

**Example**

The following example displays information on the last TDR test performed on all copper ports.

```
switchxxxxxx# show cable-diagnostics tdr

+----------+-------+---------+-------------------+
| Port | Result| Length | Date |
|----------+-------+---------+-------------------|
| gi1 | OK | | |
| gi2 | Short | 50 | 13:32:00 23 July 2010 |
| gi3 | Test has not been performed | |
| gi4 | Open | 64 | 13:32:00 23 July 2010 |
| gi5 | Fiber | - | - |
```
23.3 show cable-diagnostics cable-length

Use the `show cable-diagnostics cable-length` EXEC mode command to display the estimated copper cable length attached to all ports or to a specific port.

Syntax

```
show cable-diagnostics cable-length [interface interface-id | detailed]
```

Parameters

- `interface-id`—Specify an Ethernet port ID.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

All ports are displayed. If detailed is not used, only present ports are displayed.

Command Mode

EXEC mode

User Guidelines

The port must be active and working at 100 M or 1000 M.

Example

The following example displays the estimated copper cable length attached to all ports.

```
switchxxxxxx# show cable-diagnostics cable-length
Port Length [meters]
-------- -----------------
 gi1 < 50
 gi2 Copper not active
 gi3 110-140
 gi4 Fiber
```
23.4  **show fiber-ports optical-transceiver**

Use the `show fiber-ports optical-transceiver` EXEC mode command to display the optical transceiver diagnostics.

**Syntax**

```
show fiber-ports optical-transceiver [interface interface-id | detailed]
```

**Parameters**

- **interface-id**—Specify an Ethernet port ID.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

All ports are displayed. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**Example**

The following examples display the optical transceiver diagnostics results.

```
switchxxxxxx# show fiber-ports optical-transceiver
Port Temp Voltage Current Output Input LOS Power Power
----------- ------ ------- ------- ------ ----- --- ------ ------
gi1 W OK OK OK OK OK
 gi2 OK OK OK E OK OK
Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
```
N/A - Not Available, N/S - Not Supported,  
W - Warning, E - Error

```
switchxxxxxx# show fiber-ports optical-transceiver

<table>
<thead>
<tr>
<th>Port</th>
<th>Temp</th>
<th>Voltage</th>
<th>Current</th>
<th>Output Power</th>
<th>Input Power</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volt</td>
<td>mA</td>
<td>mWatt</td>
<td>mWatt</td>
<td></td>
</tr>
<tr>
<td>gi1</td>
<td>28</td>
<td>3.32</td>
<td>7.26</td>
<td>3.53</td>
<td>3.68</td>
<td>No</td>
</tr>
<tr>
<td>gi6</td>
<td>29</td>
<td>3.33</td>
<td>6.50</td>
<td>3.53</td>
<td>3.71</td>
<td>No</td>
</tr>
</tbody>
</table>

Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal

N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
```
Power over Ethernet (PoE) Commands

24.1 power inline

Use the `power inline` Interface Configuration mode command to configure the power on an interface.

Syntax

```
power inline {auto | never} [time-range time-range-name]
```

Parameters

- **auto**—Turns on the device discovery protocol and applies power to the device.
- **never**—Turns off the device discovery protocol and stops applying power to the device.
- **auto time-range-name**—Turns on the power in the specified time range. When the time range is not in effect the power is not supplied to the attached device. If a time range is not specified, there is no time range bound to the port.
- **never time-range-name**—Turns off the power to the device in the specified time range. When the time range is not in effect the power is supplied to the attached device. If a time range is not specified, there is no time range bound to the port.

Default Configuration

The default configuration is set to **auto**.

Command Mode

Interface Configuration (Ethernet) mode
Usage Guidelines

The time range is defined in the time-range command.

Examples

Exercise 1—The following example turns on the inline power administrative mode on an interface.

```
switchxxxxxx(config)# interface 154
switchxxxxxx(config-if)# power inline auto
```

Exercise 2—The following example shows defining a time range called morning, and then applying it to the power administrative mode.

```
switchxxxxxx(config)# time-range morning
switchxxxxxx(config-time-range)# periodic list 07:00 to 11:59 mon wed fri
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# power inline auto time-range morning
```

24.2 power inline powered-device

Use the power inline powered-device Interface Configuration mode command to add a description of the powered device type. Use the no form of this command to remove the description.

Syntax

```
power inline powered-device pd-type
no power inline powered-device
```

Parameters

pd-type—Enters a comment or a description to assist in recognizing the type of the powered device attached to this interface. (Length: 1–24 characters)

Default Configuration

There is no description.
**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example adds the description ‘ip phone’ of the device connected to port 4.

```plaintext
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# power inline powered-device ip_phone
```

### 24.3 power inline priority

Use the `power inline priority` Interface Configuration (Ethernet) mode command to configure the interface inline power management priority. Use the `no` form of this command to restore the default configuration.

**Syntax**

`power inline priority {critical | high | low}
no power inline priority`

**Parameters**

- **critical**—Specifies that the powered device operation is critical.
- **high**—Specifies that the powered device operation is high priority.
- **low**—Specifies that the powered device operation is low priority.

**Default Configuration**

The default configuration is set to low priority.

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example sets the inline power management priority of `gigabitethernet` port 4 to High.
Power over Ethernet (PoE) Commands

24.4 power inline usage-threshold

Use the `power inline usage-threshold` Global Configuration mode command to configure the threshold for initiating inline power usage alarms. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
power inline usage-threshold percent
```

```
no power inline usage-threshold
```

**Parameters**

- `percent`—Specifies the threshold in percent to compare to the measured power. (Range: 1–99)

**Default Configuration**

The default threshold is 95 percent.

**Command Mode**

Global Configuration mode

**Example**

The following example configures the threshold for initiating inline power usage alarms to 90 percent.

```
switchxxxxxxx(config)# power inline usage-threshold 90
```

24.5 power inline traps enable

Use the `power inline traps enable` Global Configuration mode command to enable inline power traps. Use the `no` form of this command to disable traps.

**Syntax**

```
power inline traps enable
```

```
```
no power inline traps enable

Default Configuration
Inline power traps are disabled.

Command Mode
Global Configuration mode

Example
The following example enables inline power traps.

```
switchxxxxxx(config)# power inline traps enable
```

## 24.6 power inline limit

Use the `power inline limit` Interface Configuration mode command to configure the power limit per port on an interface. Use the `no` form of the command to return to default.

Syntax

```
power inline limit power
no power inline limit
```

Parameters

- **power**—States the port power consumption limit in Milliwatts (Range: 0-15400)

Default Configuration

The default value is the maximum power allowed in the specific working mode: 15.4W.

Command Mode

Interface Configuration (Ethernet) mode
Example

The following example sets inline power on a port.

```
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# power inline limit 2222
```

24.7 power inline limit-mode

Use the `power inline limit-mode` Global Configuration mode command to set the power limit mode of the system. Use the no form of this command to return to default.

**Syntax**

```
power inline limit-mode {class | port}
no power inline limit-mode
```

**Parameters**

- **class**—The power limit of a port is based on the class of the PD (Power Device) as detected during the classification process
- **port**—The power limit of a port is fixed regardless of the class of the discovered PD.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the power limit to class.

```
switchxxxxx(config)# power inline limit-mode class
```

24.8 show power inline

Use the `show power inline` EXEC mode command to display information about the inline power for all interfaces or for a specific interface.
Syntax

`show power inline [interface-id | detailed]`

Parameters

- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Show information for all ports. If `detailed` is not used, only present ports are displayed.

Command Mode

EXEC mode

Example

The following example displays information about the inline power for all ports (port power based).

```
switchxxxxxx(config)# show power inline
Power limit: 15 W
Power limit (for port based power-limit mode): 15 W

Unit Power Nominal Consumed Usage Traps
 Power Power Threshold
 ---- ------- -------- ------ -------
 1 Off 1 Watts 0 Watts (0%) 95 Disable

Port Powered Device State Status Priority Class
----- --------------- ------ ------ -------- -----
 gi1 IP Phone Model A Auto On High Class0
 gi2 Wireless AP Model A Auto On Low Class1
 gi3 Auto Off Low N/A
```
Example

The following example displays information about the inline power for a specific port.

```
switchxxxxxx(config)# show power inline gi1
Power limit: 15 W
Power limit (for port based power-limit mode): 15 W

Port Powered Device State Status Priority Class
----- -------------- ----------- -------- -------- -------
 IP Phone Model A Auto On High Class0
```

The following table describes the fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Inline power sourcing equipment operational status.</td>
</tr>
<tr>
<td>Nominal Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Port</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>Powered device</td>
<td>Description of the powered device type.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Status</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the powered device.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
</tbody>
</table>
Following is a list of port status values:

Port is off - Underload disconnect detected
Port is off - Overload detected
Port is off - Short detected
Port is off - Invalid PD resistor signature detected
Port is on - Valid PD resistor signature detected
Port is off - Power was denied
Port is on - Valid capacitor signature detected
Port is off - Backoff state has occurred
Port is off - Class error has occurred

### 24.9 show power inline consumption

Use the `show power inline consumption` EXEC mode command to display information about the inline power consumption for all interfaces or for a specific interface.

**Syntax**

```
show power inline consumption [interface-id | detailed]
```

**Parameters**

- **Interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.
- **detailed**—Displays information for non-present ports in addition to present ports.
Default Configuration

Show information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

EXEC mode

Example

The following example displays information about the inline power consumption.

```
switchxxxxxxx# show power inline consumption

<table>
<thead>
<tr>
<th>Port</th>
<th>Power Limit (W)</th>
<th>Power (W)</th>
<th>Voltage (V)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>15.4</td>
<td>4.115</td>
<td>50.8</td>
<td>81</td>
</tr>
<tr>
<td>gi2</td>
<td>15.4</td>
<td>4.157</td>
<td>50.7</td>
<td>82</td>
</tr>
<tr>
<td>gi3</td>
<td>15.4</td>
<td>4.021</td>
<td>50.9</td>
<td>79</td>
</tr>
</tbody>
</table>
```
25.1 eee enable (global)

Use the `eee enable` Global Configuration command to enable the EEE mode globally. Use the `no` format of the command to disable the mode.

**Syntax**

```
eee enable
no eee enable
```

**Default Configuration**

EEE is enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

In order for EEE to work, the device at the other end of the link must also support EEE and have it enabled. In addition, for EEE to work properly, Auto-Negotiation must be enabled; however, if the port speed is negotiated as 1Giga, EEE always works regardless of the auto-negotiation status (meaning enable or disable).

If Auto-Negotiation is not enabled on the port and its speed is less than 1 Giga, the EEE Operational status is disabled.

**Example**

```
switchxxxxx(conf)# eee enable
```

25.2 eee enable (interface)

Use the `eee enable` Interface Configuration command to enable the EEE mode on an Ethernet port. Use the `no` format of the command to disable the mode.
**25.3 eee lldp enable**

Use the `eee lldp enable` Interface Configuration command to enable EEE support by LLDP on an Ethernet port. Use the `no` format of the command to disable the support.

**Syntax**

```
eee lldp enable
no eee lldp enable
```

**Parameters**

N/A
**Default Configuration**

Enabled

**Command Mode**

Interface Configuration mode (Ethernet)

**User Guidelines**

Enabling EEE LLDP advertisement enables devices to choose and change system wake-up times in order to get the optimal energy saving mode.

**Example**

```
witchxxxxxx(conf)#interface gi1
witchxxxxxx(conf-if)#eee lldp enable
```

## 25.4 *show eee*

Use the *show eee* EXEC command to display EEE information.

**Syntax**

```
show eee [interface-id]
```

**Parameters**

interface-id—Specify an interface ID. The interface ID must be an Ethernet port.

**Defaults**

N/A

**Command Mode**

EXEC

**Examples**

**Example 1** - The following displays brief information about all ports

```
switchxxxxx>show eee
EEE globally enabled
```
EEE Administrate status is enabled on ports: gi1-6, gi7
EEE Operational status is enabled on ports: gi1, gi3-6, gi2, gi5
EEE LLDP Administrate status is enabled on ports: gi1-5
EEE LLDP Operational status is enabled on ports: gi1-5

**Example 2** - The following is the information displayed when a port is in state not Present; no information is displayed if the port supports EEE.

```plaintext
switchxxxxxx> show eee gi10
Port Status: notPresent
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
```

**Example 3** - The following is the information displayed when the port is in status DOWN.

```plaintext
switchxxxxxx> show eee gi10
Port Status: DOWN
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 EEE Administrate status: enabled
 EEE LLDP Administrate status: enabled
```

**Example 4** - The following is the information displayed when the port is in status UP and does not support EEE,

```plaintext
switchxxxxxx> show eee gi2
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Current port speed: 1Gbps
 EEE Administrate status: enabled
```
EEE LLDP Administrate status: enabled

**Example 5** - The following is the information displayed when the neighbor does not support EEE.

switchxxxxxx>show eee gi5
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
Current port speed: 1Gbps
EEE Remote status: disabled
EEE Administrate status: enabled
EEE Operational status: disabled (neighbor does not support)
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

**Example 6** - The following is the information displayed when EEE is disabled on the port.

Switch>show eee gi1
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
Current port speed: 1Gbps
EEE Administrate status: disabled
EEE Operational status: disabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

**Example 7** - The following is the information displayed when EEE is running on the port, and EEE LLDP is disabled.

switchxxxxxx>show eee gi2
Port Status: UP

EEE capabilities:
  - Speed 10M: EEE not supported
  - Speed 100M: EEE supported
  - Speed 1G: EEE supported

Current port speed: 1Gbps

EEE Remote status: enabled

EEE Administrate status: enabled

EEE Operational status: enabled

EEE LLDP Administrate status: enabled

EEE LLDP Operational status: enabled

Resolved Tx Timer: 10 usec

Local Tx Timer: 10 usec

Resolved Timer: 25 usec

Local Rx Timer: 20 usec

---

**Example 8** - The following is the information displayed when EEE and EEE LLDP are running on the port.

```
switchxxxxxx>show eee gi3
```

Port Status: UP

EEE capabilities:
  - Speed 10M: EEE not supported
  - Speed 100M: EEE supported
  - Speed 1G: EEE supported

Current port speed: 1Gbps

EEE Remote status: enabled

EEE Administrate status: enabled

EEE Operational status: enabled

EEE LLDP Administrate status: enabled

EEE LLDP Operational status: enabled

Resolved Tx Timer: 10 usec

Local Tx Timer: 10 usec

Resolved Timer: 25 usec

Local Rx Timer: 20 usec

Remote Rx Timer: 5 usec
Example 9 - The following is the information displayed when EEE is running on the port, EEE LLDP is enabled but not synchronized with remote link partner.

```
switchxxxxxx>show eee gi9
Port Status: up
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1Gbps
EEE Remote status: enabled
EEEAdministrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Resolved Rx Timer: 16
Local Rx Timer: 16
```

Example 10 - The following is the information displayed when EEE and EEE LLDP are running on the port.

```
switchxxxxxx>show eee gi3
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1Gbps
EEE Remote status: enabled
```
EEE Commands

EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
26.1 green-ethernet energy-detect (global)

Use the `green-ethernet energy-detect` Global Configuration mode command to enable Green-Ethernet Energy-Detect mode globally. Use the `no` form of this command to disabled it.

**Syntax**

```
green-ethernet energy-detect
no green-ethernet energy-detect
```

**Parameters**

N/A

**Default Configuration**

Disabled.

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(config)# green-ethernet energy-detect
```

26.2 green-ethernet energy-detect (interface)

Use the `green-ethernet energy-detect` Interface configuration mode command to enable green-ethernet Energy-Detect mode on a port. Use the `no` form of this command, to disable it on a port.

**Syntax**

```
green-ethernet energy-detect
no green-ethernet energy-detect
```
Parameters
N/A

Default Configuration
Enabled

Command Mode
Interface configuration mode (Ethernet)

User Guidelines
Energy-Detect can work only when the port is a copper port. When a port is enabled for auto selection, copper/fiber Energy-Detect cannot work.

It takes the PHY ~5 seconds to fall into sleep mode when the link is lost after normal operation.

Example

```
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# green-ethernet energy-detect
```

26.3 green-ethernet short-reach (global)

Use the `green-ethernet short-reach` Global Configuration mode command to enable green-ethernet short-reach mode globally. Use the `no` form of this command to disabled it.

Syntax

```
green-ethernet short-reach
no green-ethernet short-reach
```

Parameters
N/A

Default Configuration
Disabled.
Command Mode
Global Configuration mode

Example

```
switchxxxxx(config)# green-ethernet short-reach
```

### 26.4 green-ethernet short-reach (interface)

Use the `green-ethernet short-reach` Interface Configuration mode command to enable green-ethernet short-reach mode on a port. Use the `no` form of this command to disable it on a port.

**Syntax**

```
green-ethernet short-reach
no green-ethernet short-reach
```

**Parameters**

N/A

**Default Configuration**

Disabled.

**Command Mode**

Interface Configuration mode (Ethernet)

**User Guidelines**

When **Short-Reach** mode is enabled and is not forced, the VCT (Virtual Cable Tester) length check must be performed. The VCT length check can be performed only on a copper port operating at a speed of 1000 Mbps. If the media is not copper or the link speed is not 1000 Mbps, Short-Reach mode is not applied.

When the interface is set to enhanced mode, after the VCT length check has completed and set the power to low, an active monitoring for errors is done continuously. In the case of errors crossing a certain threshold, the PHY will be reverted to long reach.

Note that EEE cannot be enabled if the Short-Reach mode is enabled.
Example

switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# green-ethernet short-reach

26.5 green-ethernet power-meter reset

Use the green-ethernet power-meter reset Privileged EXEC mode command to reset the power save meter.

Syntax

green-ethernet power-meter reset

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode.

Example

switchxxxxxx(config)# green-ethernet power-meter reset

26.6 show green-ethernet

Use the show green-ethernet Privileged EXEC mode command to display green-ethernet configuration and information.

Syntax

show green-ethernet [interface-id | detailed]

Parameters

- interface-id—Specifies an Ethernet port
• **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Display for all ports. If detailed is not used, only present ports are displayed.

**Command Mode**
Privileged EXEC mode

**User Guidelines**
The power savings displayed only includes the power saved by short reach, energy detect and the power saved by disabling the ports LEDs; the EEE power saving is dynamic by nature since it is based on port utilization and is therefore not taken into consideration.

The following describes the reasons for non-operation displayed by this command.

If there are a several reasons, then only the highest priority reason is displayed.

**Energy-detect Non-operational Reasons**

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber, auto media select)</td>
</tr>
<tr>
<td>3</td>
<td>LU</td>
<td>Port Link is up – NA</td>
</tr>
</tbody>
</table>

**Short-Reach Non-operational Reasons**

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber)</td>
</tr>
<tr>
<td>3</td>
<td>LS</td>
<td>Link Speed is not Supported (100M, 10M, 1G)</td>
</tr>
<tr>
<td>4</td>
<td>LL</td>
<td>Link Length received from VCT Test exceed threshold</td>
</tr>
<tr>
<td>6</td>
<td>LD</td>
<td>Port Link is Down – NA</td>
</tr>
</tbody>
</table>
Example

(If a mode is not supported, its columns are removed from the output).

```
switchxxxxxx# show green-ethernet

Energy-Detect mode: Enabled
Short-Reach mode: Disabled
Disable Port LEDs mode: Enabled
Power Consumption: 76% (3.31W out of maximum 4.33W)
Cumulative Energy Saved: 33 [Watt*Hour]
Short-Reach cable length threshold: 50m

<table>
<thead>
<tr>
<th>Port</th>
<th>Energy-Detect</th>
<th>Short-Reach</th>
<th>VCT Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin Oper Reason</td>
<td>Admin Force Oper Reason</td>
<td>Length</td>
</tr>
<tr>
<td>151</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>152</td>
<td>on</td>
<td>LU</td>
<td>on</td>
</tr>
<tr>
<td>153</td>
<td>on</td>
<td>LU</td>
<td>off</td>
</tr>
</tbody>
</table>
```


Port Channel Commands

27.1 channel-group

Use the channel-group Interface Configuration (Ethernet) mode command to associate a port with a port-channel. Use the no form of this command to remove a port from a port-channel.

Syntax

channel-group port-channel mode {on | auto}

no channel-group

Parameters

- port-channel—Specifies the port channel number for the current port to join.
- mode—Specifies the mode of joining the port channel. The possible values are:
  - on—Forces the port to join a channel without an LACP operation.
  - auto—Forces the port to join a channel as a result of an LACP operation.

Default Configuration

The port is not assigned to a port-channel.

Command Mode

Interface Configuration (Ethernet) mode

Default mode is on.

Example

The following example forces port gi1 to join port-channel 1 without an LACP operation.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# channel-group 1 mode on
```
27.2 port-channel load-balance

Use the port-channel load-balance Global Configuration mode command to configure the load balancing policy of the port channeling. Use the no form of this command to reset to default.

Syntax

port-channel load-balance {src-dst-mac | src-dst-mac-ip}
no port-channel load-balance

Parameters

- src-dst-mac—Port channel load balancing is based on the source and destination MAC address.
- src-dst-mac-ip—Port channel load balancing is based on the source and destination of MAC and IP addresses.

Default Configuration

src-dst-mac is the default option.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# port-channel load-balance src-dst-mac
switchxxxxxx(config)# port-channel load-balance src-dst-mac-ip
```

27.3 show interfaces port-channel

Use the show interfaces port-channel EXEC mode command to display port-channel information for all port channels or for a specific port channel.

Syntax

show interfaces port-channel [interface-id]
Parameters

interface-id—Specify an interface ID. The interface ID must be a Port Channel.

Command Mode

EXEC mode

Examples

Example 1 - The following example displays information on all port-channels.

```
switchxxxxxx# show interfaces port-channel
Load balancing: src-dst-mac.
Gathering information...
Channel Ports
--------- -----
Po1 Active: gi1,Inactive: gi2-3
Po2 Active: gi5 Inactive: gi4
```

Example 2 - The following example displays information on port-channels containing port 1

```
switchxxxxxx# show interfaces switchport gi1
Gathering information...
Name: gi1
Switchport: enable
Administrative Mode: access
Operational Mode: down
Access Mode VLAN: 1
Access Multicast TV VLAN: none
Trunking Native Mode VLAN: 1
Trunking VLANs Enabled: 1
2-4094 (Inactive)
General PVID: 1
General VLANs Enabled: none
```
General Egress Tagged VLANs Enabled: none
General Forbidden VLANs: none
General Ingress Filtering: enabled
General Acceptable Frame Type: all
General GVRP status: disabled
Customer Mode VLAN: none
Private-vlan promiscuous-association primary VLAN: none
Private-vlan promiscuous-association Secondary VLANs Enabled: none
Private-vlan host-association primary VLAN: none
Private-vlan host-association Secondary VLAN Enabled: none
DVA: disable
28.1 bridge multicast filtering

Use the `bridge multicast filtering` Global Configuration mode command to enable the filtering of Multicast addresses. Use the `no` form of this command to disable Multicast address filtering.

**Syntax**

```
bridge multicast filtering
no bridge multicast filtering
```

**Default Configuration**

Multicast address filtering is disabled. All Multicast addresses are flooded to all ports.

**Command Mode**

Global Configuration mode

**User Guidelines**

When this feature is enabled, unregistered Multicast traffic (as opposed to registered) will still be flooded.

All registered Multicast addresses will be forwarded to the Multicast groups. There are two ways to manage Multicast groups, one is the IGMP Snooping feature, and the other is the `bridge multicast forward-all` command.

**Example**

The following example enables bridge Multicast filtering.

```
switchxxxxxx(config)# bridge multicast filtering
```
28.2 bridge multicast mode

Use the bridge multicast mode Interface Configuration (VLAN) mode command to configure the Multicast bridging mode. Use the no form of this command to return to the default configuration.

Syntax

bridge multicast mode {mac-group / ip-group / ip-src-group}

no bridge multicast mode

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address.

- **ipv4-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN and IPv4 destination address for IPv4 packets.

- **ipv4-src-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN, IPv4 destination address and IPv4 source address for IPv4 packets.

Default Configuration

The default mode is mac-group.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

Use the mac-group option when using a network management system that uses a MIB based on the Multicast MAC address. Otherwise, it is recommended to use the ipv4-group or ipv4-src-group mode, because there is no overlapping of IPv4 Multicast addresses in these modes.
For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>bridge multicast ip-address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden ip-address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>bridge multicast source group</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden source group</td>
</tr>
</tbody>
</table>

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the IGMP version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>IGMP version 2</th>
<th>IGMP version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>IP group address</td>
<td>IP group address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>(*)</td>
<td>IP source and group addresses</td>
</tr>
</tbody>
</table>

(*) Note that (*,G) cannot be written to the FDB if the mode is ipv4-src-group. In that case, no new FDB entry is created, but the port is added to the static (S,G) entries (if they exist) that belong to the requested group. It is recommended to set the FDB mode to ipv4-group or mac-group for IGMP version 2.

If an application on the device requests (*,G), the operating FDB mode is changed to ipv4-group.

**Example**

The following example configures the Multicast bridging mode as an ipv4-group on VLAN 2.

```
switchxxxxxxx(config)# interface vlan 2
switchxxxxxxx(config-if)# bridge multicast mode ipv4-group
```
28.3 bridge multicast address

Use the bridge multicast address Interface Configuration (VLAN) mode command to register a MAC-layer Multicast address in the bridge table and statically add or remove ports to or from the group. Use the no form of this command to unregister the MAC address.

Syntax

bridge multicast address {mac-multicast-address | ipv4-multicast-address} [[add | remove] {ethernet interface-list | port-channel port-channel-list}]

no bridge multicast address {mac-multicast-address}

Parameters

- **mac-multicast-address | ipv4-multicast-address**—Specifies the group Multicast address.
- **add**—Addsf ports to the group.
- **remove**—Removes ports from the group.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

If ethernet interface-list or port-channel port-channel-list is specified without specifying add or remove, the default option is add.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the mac-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only.
You can execute the command before the VLAN is created.

Examples

Example 1 - The following example registers the MAC address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03
```

Example 2 - The following example registers the MAC address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03 add gi1-2
```

28.4 bridge multicast forbidden address

Use the `bridge multicast forbidden address` Interface Configuration (VLAN) mode command to forbid adding or removing a specific Multicast address to or from specific ports. Use the `no` form of this command to restore the default configuration.

Syntax

```
bridge multicast forbidden address {mac-multicast-address | ipv4-multicast-address} [add | remove] {ethernet interface-list | port-channel port-channel-list}
```

```
o bridge multicast forbidden address {mac-multicast-address}
```

Parameters

- `mac-multicast-address | ipv4-multicast-address`—Specifies the group Multicast address.
- `add`—Forbids adding ports to the group.
- `remove`—Forbids removing ports from the group.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
• **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

**Default Configuration**

No forbidden addresses are defined.

Default option is **add**.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

Before defining forbidden ports, the Multicast group should be registered, using **bridge multicast address**.

You can execute the command before the VLAN is created.

**Example**

The following example forbids MAC address 0100.5e02.0203 on port gi9 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 0100.5e02.0203
switchxxxxxx(config-if)# bridge multicast forbidden address 0100.5e02.0203 add gi9
```

**28.5 bridge multicast ip-address**

Use the **bridge multicast ip-address** Interface Configuration (VLAN) mode command to register IP-layer Multicast addresses to the bridge table, and statically add or remove ports to or from the group. Use the no form of this command to unregister the IP address.

**Syntax**

```
bridge multicast ip-address ip-multicast-address [add | remove] [ethernet interface-list | port-channel port-channel-list]
```

**no bridge multicast ip-address ip-multicast-address**
Parameters

- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—Adds ports to the group.
- **remove**—Removes ports from the group.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

Default option is **add**.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the **ip-multicast-address** parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Example

The following example registers the specified IP address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
```

The following example registers the IP address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
```
28.6 bridge multicast forbidden ip-address

Use the bridge multicast forbidden ip-address Interface Configuration (VLAN) mode command to forbid adding or removing a specific IP Multicast address to or from specific ports. Use the no form of this command to restore the default configuration.

Syntax

bridge multicast forbidden ip-address {ip-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}

no bridge multicast forbidden ip-address {ip-multicast-address}

Parameters

- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—Forbids adding ports to the group.
- **remove**—Forbids removing ports from the group.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.
Example

The following example registers IP address 239.2.2.2, and forbids the IP address on port gi9 within VLAN 8.

switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden ip-address 239.2.2.2 add gi9

28.7 bridge multicast source group

Use the bridge multicast source group Interface Configuration (VLAN) mode command to register a source IP address - Multicast IP address pair to the bridge table, and statically add or remove ports to or from the source-group. Use the no form of this command to unregister the source-group-pair.

Syntax

bridge multicast source ip-address group ip-multicast-address [add | remove] [ethernet interface-list | port-channel port-channel-list]

no bridge multicast source ip-address group ip-multicast-address

Parameters

- **ip-address**—Specifies the source IP address.
- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—Adds ports to the group for the specific source IP address.
- **remove**—Removes ports from the group for the specific source IP address.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.
The default option is `add`.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

You can execute the command before the VLAN is created.

**Example**

The following example registers a source IP address - Multicast IP address pair to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
```

### 28.8 bridge multicast forbidden source group

Use the `bridge multicast forbidden source group` Interface Configuration (VLAN) mode command to forbid adding or removing a specific IP source address - Multicast address pair to or from specific ports. Use the `no` form of this command to return to the default configuration.

**Syntax**

```
bridge multicast forbidden source ip-address group ip-multicast-address {add | remove} {ethernet interface-list | port-channel port-channel-list}
```

**Parameters**

- `ip-address`—Specifies the source IP address.
- `ip-multicast-address`—Specifies the group IP Multicast address.
- `add`—Forbids adding ports to the group for the specific source IP address.
- `remove`—Forbids removing ports from the group for the specific source IP address.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

**Default Configuration**

No forbidden addresses are defined.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

**Example**

The following example registers a source IP address - Multicast IP address pair to the bridge table, and forbids adding the pair to port gi9 on VLAN 8:

```plaintext
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden source 13.16.1.1 group 239.2.2.2 add gi9
```

**28.9 bridge multicast ipv6 mode**

Use the `bridge multicast ipv6 mode` Interface Configuration (VLAN) mode command to configure the Multicast bridging mode for IPv6 Multicast packets. Use the no form of this command to return to the default configuration.

**Syntax**

- `bridge multicast ipv6 mode {mac-group | ip-group | ip-src-group}`
- `no bridge multicast ipv6 mode`
Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC destination address.
- **ip-group**—Specifies that Multicast bridging is based on the packet's VLAN and IPv6 destination address for IPv6 packets.
- **ip-src-group**—Specifies that Multicast bridging is based on the packet's VLAN, IPv6 destination address and IPv6 source address for IPv6 packets.

Default Configuration

The default mode is **mac-group**.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

Use the **mac-group** mode when using a network management system that uses a MIB based on the Multicast MAC address.

For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries for IPv6 Multicast addresses in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>bridge multicast ipv6 ip-address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden ip-address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>bridge multicast ipv6 source group</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden source group</td>
</tr>
</tbody>
</table>

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the MLD version that is used in the network:(*)

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>MLD version 1</th>
<th>MLD version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>IPv6 group address</td>
<td>IPv6 group address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>(*)</td>
<td>IPv6 source and group addresses</td>
</tr>
</tbody>
</table>
Note that (*,G) cannot be written to the FDB if the mode is \texttt{ip-src-group}. In that case, no new FDB entry is created, but the port is added to the (S,G) entries (if they exist) that belong to the requested group. If an application on the device requests (*,G), the operating FDB mode is changed to \texttt{ip-group}.

You can execute the command before the VLAN is created.

\textbf{Example}

The following example configures the Multicast bridging mode as an \texttt{ip-group} on VLAN 2.

\begin{verbatim}
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast ipv6 mode ip-group
\end{verbatim}

### 28.10 bridge multicast ipv6 ip-address

Use the \texttt{bridge multicast ipv6 ip-address} Interface Configuration (VLAN) mode command to register an IPv6 Multicast address to the bridge table, and statically add or remove ports to or from the group. Use the \texttt{no} form of this command to unregister the IPv6 address.

\textbf{Syntax}

\texttt{bridge multicast ipv6 ip-address} \texttt{ipv6-multicast-address} \texttt{[add | remove]} \texttt{[ethernet interface-list | port-channel port-channel-list]}

\texttt{no bridge multicast ipv6 ip-address} \texttt{ip-multicast-address}

\textbf{Parameters}

- \texttt{ipv6-multicast-address}—Specifies the group IPv6 multicast address.
- \texttt{add}—Adds ports to the group.
- \texttt{remove}—Removes ports from the group.
- \texttt{ethernet interface-list}—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces; use a hyphen to designate a range of ports.
- \texttt{port-channel port-channel-list}—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.
Default Configuration
No Multicast addresses are defined.
The default option is add.

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
To register the group in the bridge database without adding or removing ports or port channels, specify the ipv6-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only.
You can execute the command before the VLAN is created.

Examples
Example 1 - The following example registers the IPv6 address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
```

Example 2 - The following example registers the IPv6 address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
 add gi1-2
```

28.11 bridge multicast ipv6 forbidden ip-address
Use the bridge multicast ipv6 forbidden ip-address Interface Configuration (VLAN) mode command to forbid adding or removing a specific IPv6 Multicast address to or from specific ports. To restore the default configuration, use the no form of this command.
Syntax

bridge multicast ipv6 forbidden ip-address \{ipv6-multicast-address\} \{add | remove\} \{ethernet interface-list | port-channel port-channel-list\}

no bridge multicast ipv6 forbidden ip-address \{ipv6-multicast-address\}

Parameters

- **ipv6-multicast-address**—Specifies the group IPv6 Multicast address.
- **add**—Forbids adding ports to the group.
- **remove**—Forbids removing ports from the group.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

The default option is **add**.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers an IPv6 Multicast address, and forbids the IPv6 address on port gi9 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
```
Use the `bridge multicast ipv6 source group` Interface Configuration (VLAN) mode command to register a source IPv6 address - Multicast IPv6 address pair to the bridge table, and statically add or remove ports to or from the source-group. Use the `no` form of this command to unregister the source-group-pair.

**Syntax**

```
bridge multicast ipv6 source ipv6-source-address group ipv6-multicast-address
[add | remove] {ethernet interface-list | port-channel port-channel-list}
```

```
no bridge multicast ipv6 source ipv6-address group ipv6-multicast-address
```

**Parameters**

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—Adds ports to the group for the specific source IPv6 address.
- `remove`—Removes ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

**Default Configuration**

No Multicast addresses are defined.

The default option is `add`.

**Command Mode**

Interface Configuration (VLAN) mode
Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 2001:0:0:4:4:4:1 group FF00:0:0:4:4:4:1
```

### 28.13 bridge multicast ipv6 forbidden source group

Use the `bridge multicast ipv6 forbidden source group` Interface Configuration (VLAN) mode command to forbid adding or removing a specific IPv6 source address - Multicast address pair to or from specific ports. Use the `no` form of this command to return to the default configuration.

**Syntax**

```
bridge multicast ipv6 forbidden source ipv6-source-address group ipv6-multicast-address {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast ipv6 forbidden source ipv6-address group ipv6-multicast-address
```

**Parameters**

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 multicast address.
- `add`—Forbids adding ports to the group for the specific source IPv6 address.
- `remove`—Forbids removing ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.
Default Configuration
No forbidden addresses are defined.

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
Before defining forbidden ports, the Multicast group should be registered.
You can execute the command before the VLAN is created.

Example
The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table, and forbids adding the pair to gi9 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 2001:0:0:0:4:4:4 group FF00:0:0:0:4:4:4:1
switchxxxxxx(config-if)# bridge multicast forbidden source 2001:0:0:0:4:4:4:1 group FF00:0:0:0:4:4:4:1 add gi9
```

28.14 bridge multicast unregistered
Use the bridge multicast unregistered Interface Configuration (Ethernet, Port-Channel) mode command to configure forwarding unregistered Multicast addresses. Use the no form of this command to restore the default configuration.

Syntax
bridge multicast unregistered [forwarding | filtering]
no bridge multicast unregistered

Parameters
- **forwarding**—Forwards unregistered Multicast packets.
- **filtering**—Filters unregistered Multicast packets.
Default Configuration
Unregistered Multicast addresses are forwarded.

Command Mode
Interface Configuration (Ethernet, Port-Channel) mode

User Guidelines
Do not enable unregistered Multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example
The following example specifies that unregistered Multicast packets are filtered on gi1:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# bridge multicast unregistered filtering
```

28.15 bridge multicast forward-all

Use the bridge multicast forward-all Interface Configuration (VLAN) mode command to enable forwarding all multicast packets for a range of ports or port channels. Use the no form of this command to restore the default configuration.

Syntax
```
bridge multicast forward-all {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast forward-all
```

Parameters
- **add**—Forces forwarding of all Multicast packets.
- **remove**—Does not force forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

**Default Configuration**

Forwarding of all Multicast packets is disabled.

**Command Mode**

Interface Configuration (VLAN) mode

**Example**

The following example enables all Multicast packets on port gi8 to be forwarded.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forward-all add gi8
```

**28.16 bridge multicast forbidden forward-all**

Use the `bridge multicast forbidden forward-all` Interface Configuration (VLAN) mode command to forbid a port to dynamically join Multicast groups. Use the no form of this command to restore the default configuration.

**Syntax**

```
bridge multicast forbidden forward-all [add | remove] [ethernet interface-list | port-channel port-channel-list]
```

**Parameters**

- **add**—Forbids forwarding of all Multicast packets.
- **remove**—Does not forbid forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

**Default Configuration**

Ports are not forbidden to dynamically join Multicast groups.

The default option is **add**.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

Use this command to forbid a port to dynamically join (by IGMP, for example) a Multicast group.

The port can still be a Multicast router port.

**Example**

The following example forbids forwarding of all Multicast packets to gi1 within VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forbidden forward-all add ethernet gi1
```

**28.17 bridge unicast unknown**

Use the **bridge unicast unknown** Interface Configuration mode command to enable egress filtering of Unicast packets where the destination MAC address is unknown to the device. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
bridge unicast unknown {filtering | forwarding}
no bridge unicast unknown
```
Parameters

- **filtering**— Filter unregistered Unicast packets.
- **forwarding**— Forward unregistered Unicast packets.

Default Configuration

Forwarding.

Command Mode

Interface Configuration mode

Example

The following example drops Unicast packets on VLAN 2 when the destination is unknown.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge unicast unknown filtering
```

### 28.18  mac address-table static

Use the `mac address-table static` Global Configuration mode command to add a MAC-layer station source address to the MAC address table. Use the `no` form of this command to delete the MAC address.

**Syntax**

```
mac address-table static mac-address vlan vlan-id interface interface-id [permanent /delete-on-reset /delete-on-timeout /secure]
```

**no mac address-table static [mac-address] vlan vlan-id**

**Parameters**

- **mac-address**— MAC address (Range: Valid MAC address)
- **vlan-id**— Specify the VLAN
- **interface-id**— Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel (Range: valid ethernet port, valid port-channel)
Address Table Commands

- **permanent**— The permanent static MAC address. The keyword is applied by the default.

- **delete-on-reset**— The delete-on-reset static MAC address.

- **delete-on-timeout**— The delete-on-timeout static MAC address.

- **secure**—The secure MAC address. May be used only in a secure mode.

Default Configuration

No static addresses are defined. The default mode for an added address is permanent.

Command Mode

Global Configuration mode

User Guidelines

Use the command to add a static MAC address with given time-to-live in any mode or to add a secure MAC address in a secure mode.

Each MAC address in the MAC address table is assigned two attributes: **type** and **time-to-live**.

The following value of time-of-live is supported:

- **permanent**— a MAC address is saved until it is removed manually.

- **delete-on-reset**— a MAC address is saved until the next reboot.

- **delete-on-timeout**— a MAC address that may be removed by the aging timer.

The following types are supported:

- **static**— MAC address manually added by the command with the following keywords specifying its time-of-live:
  
  - **permanent**
  
  - **delete-on-reset**
  
  - **delete-on-timeout**

A static MAC address may be added in any port mode.
Address Table Commands

- **secure**— A MAC address added manually or learned in a secure mode. Use the `mac address-table static` command with the `secure` keyword to add a secure MAC address. The MAC address cannot be relearned.

  A secure MAC address may be added only in a secure port mode.

- **dynamic**— A MAC address learned by the switch in non secure mode. A value of its time-to-live attribute is `delete-on-timeout`.

## Examples

**Example 1** - The following example adds two permanent static MAC address:

```bash
switchxxxxxx(conf)##mac address-table static 00:3f:bd:45:5a:b1 vlan 1 gi1
switchxxxxxx(conf)mac address-table static 00:3f:bd:45:5a:b2 vlan 1 gi1 permanent
```

**Example 2** - The following example adds a deleted-on-reset static MAC address:

```bash
switchxxxxxx(conf)mac address-table static 00:3f:bd:45:5a:b2 vlan 1 gi1 delete-on-reset
```

**Example 3** - The following example adds a deleted-on-timeout static MAC address:

```bash
switchxxxxxx(conf)mac address-table static 00:3f:bd:45:5a:b2 vlan 1 gi1 delete-on-timeout
```

**Example 4** - The following example adds a secure MAC address:

```bash
switchxxxxxx(conf)mac address-table static 00:3f:bd:45:5a:b2 vlan 1 gi1 secure
```

## 28.19 clear mac address-table

Use the `clear mac address-table` Privileged EXEC command to remove learned or secure entries from the forwarding database (FDB).
Syntax

clear mac address-table dynamic [interface interface-id]
clear mac address-table secure interface interface-id

Parameters

- **dynamic interface interface-id**—Delete all dynamic (learned) addresses on the specified interface. The interface ID can be one of the following types: Ethernet port or port-channel. If interface ID is not supplied, all dynamic addresses are deleted.

- **secure interface interface-id**—Delete all the secure addresses learned on the specific interface. A secure address on a MAC address learned on ports on which port security is defined.

Default Configuration

For dynamic addresses, if interface-id is not supplied, all dynamic entries are deleted.

Command Mode

Privileged EXEC mode

Examples

Example 1 - Delete all dynamic entries from the FDB.

```plaintext
switchxxxxxx# clear mac address-table dynamic
```

Example 2 - Delete all secure entries from the FDB learned on secure port gi1.

```plaintext
switchxxxxxx# clear mac address-table secure interface gi1
```

28.20  **show bridge unicast unknown**

Use the **show bridge unicast unknown** command to display the unknown Unicast filtering configuration.
**Address Table Commands**

### Syntax

```
show bridge unicast unknown [interface-id]
```

### Parameters

**interface-id**—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel

### Default

### Command Mode

EXEC

### Example

```
switchxxxxxx# show bridge unicast unknown

<table>
<thead>
<tr>
<th>Port</th>
<th>Unregistered</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>1/1</td>
<td>Forward</td>
</tr>
<tr>
<td>1/2</td>
<td>Filter</td>
</tr>
<tr>
<td>1/3</td>
<td>Filter</td>
</tr>
</tbody>
</table>
```

### 28.21 mac address-table aging-time

Use the **mac address-table aging-time** Global configuration command to set the aging time of the address table. Use the **no** form of this command to restore the default.

### Syntax

```
mac address-table aging-time seconds
no mac address-table aging-time
```

### Parameters

**seconds**—Time is number of seconds. (Range: 10–630)
Default Configuration

300

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# mac address-table aging-time 600

28.22 port security

Use the **port security** Interface Configuration (Ethernet, Port-channel) mode command to enable port security learning mode on an interface. Use the **no** form of this command to disable port security learning mode on an interface.

Syntax

```
port security [forward /discard /discard-shutdown] [trap seconds]
no port security
```

Parameters

- **forward**—Forwards packets with unlearned source addresses, but does not learn the address.
- **discard**—Discards packets with unlearned source addresses.
- **discard-shutdown**—Discards packets with unlearned source addresses and shuts down the port.
- **trap seconds**—Sends SNMP traps and specifies the minimum time interval in seconds between consecutive traps. (Range: 1–1000000)

Default Configuration

The feature is disabled by default.

The default mode is **discard**.

The default number of seconds is zero, but if **traps** is entered, a number of seconds must also be entered.
**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**User Guidelines**

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

See the `bridge unicast unknown` command for information about MAC address attributes (type and time-to-live) definitions.

When the `port security` command enables the `lock` mode on a port all dynamic addresses learned on the port are changed to `permanent secure` addresses.

When the `port security` command enables a mode on a port differing from the `lock` mode all dynamic addresses learned on the port are deleted.

When the `no port security` command cancels a secure mode on a port all secure addresses defined on the port are changed to `dynamic` addresses.

Additionally to set a mode, use the `port security` command to set an action that the switch should perform on a frame which source MAC address cannot be learned.

**Example**

The following example forwards all packets to port gi1 without learning addresses of packets from unknown sources and sends traps every 100 seconds, if a packet with an unknown source address is received.

```
switchxxxxxx(config) interface gi7
switchxxxxxx(config-if) port security mode lock
switchxxxxxx(config-if) port security forward trap 100
switchxxxxxx(config-if) exit
```

---

### 28.23 port security mode

Use the `port security mode` Interface Configuration (Ethernet, port-channel) mode command configures the port security learning mode. Use the `no` form of this command to restore the default configuration.

**Syntax**

`port security mode {max-addresses | lock | secure permanent | secure delete-on-reset}`
no port security mode

Parameters

- **max-addresses**— Non secure mode with limited learning dynamic MAC addresses. The static MAC addresses may be added on the port manually by the `bridge unicast unknown` command.

- **lock**— Secure mode without MAC learning. The static and secure MAC addresses may be added on the port manually by the `bridge unicast unknown` command.

- **secure permanent**— Secure mode with limited learning permanent secure MAC addresses with the `permanent` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

- **secure delete-on-reset**— Secure mode with limited learning secure MAC addresses with the `delete-on-reset` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

Default Configuration

The default port security mode is **lock**.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The default port mode is called regular. In this mode, the port allows unlimited learning of dynamic addresses. The static MAC addresses may be added on the port manually by the `bridge unicast unknown` command.

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Use the `port security mode` command to change the default mode before the `port security mode` command.

Example

The following example sets the port security mode to Lock for gi7.

```
switchxxxxxx(config) interface gi7
```
28.24  port security max

Use the port security max Interface Configuration (Ethernet, Port-channel) mode command to configure the maximum number of addresses that can be learned on the port while the port is in port, max-addresses or secure mode. Use the no form of this command to restore the default configuration.

Syntax

port security max max-addr

no port security max

Parameters

max-addr—Specifies the maximum number of addresses that can be learned on the port. (Range: 0–256)

Default Configuration

This default maximum number of addresses is 1.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Use this command to change the default value before the port security command.

Example

The following example sets the port to limited learning mode:

switchxxxxxx(config-if)#interface gi7
switchxxxxxx(config-if)port security mode max
switchxxxxxx(config-if) **port security max 20**
switchxxxxxx(config-if) **port security**
switchxxxxxx(config-if) **exit**

### 28.25 show mac address-table

Use the `show mac address-table` EXEC command to view entries in the MAC address table.

**Syntax**

```
show mac address-table [dynamic | static | secure] [vlan vlan] [interface interface-id] [address mac-address]
```

**Parameters**

- **dynamic**—Displays only dynamic MAC address table entries.
- **static**—Displays only static MAC address table entries.
- **secure**—Displays only secure MAC address table entries.
- **vlan**—Displays entries for a specific VLAN.
- **interface-id**—Displays entries for a specific interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **mac-address**—Displays entries for a specific MAC address.

**Default Configuration**

If no parameters are entered, the entire table is displayed.

**Command Mode**

EXEC mode

**User Guidelines**

Internal usage VLANs (VLANs that are automatically allocated on routed ports) are presented in the VLAN column by a port number and not by a VLAN ID.
Address Table Commands

Examples

Example 1 - Displays entire address table.

switchxxxxxx# show mac address-table
Aging time is 300 sec

VLAN  MAC Address         Port       Type
-------- --------------------- ---------- ----------
  1      00:00:26:08:13:23       0       self
  1      00:3f:bd:45:5a:b1     gi1       static
  1      00:a1:b0:69:63:f3     gi4       dynamic
  2      00:a1:b0:69:63:f3     gi5       dynamic

Example 2 - Displays address table entries containing the specified MAC address.

switchxxxxxx# show mac address-table 00:3f:bd:45:5a:b1
Aging time is 300 sec

VLAN  MAC Address         Port       Type
-------- --------------------- ---------- ----------
  1      00:3f:bd:45:5a:b1    static      gi9

28.26 show mac address-table count

Use the `show mac address-table count` EXEC mode command to display the number of addresses present in the Forwarding Database.

Syntax

```
show mac address-table count [vlan vlan] [interface interface-id]
```

Parameters

- `vlan`—Specifies VLAN.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
**Command Mode**

EXEC mode

**Example**

```
switchxxxxxx# show mac address-table count
```

Capacity: 8192
Free: 8083
Used: 109
Secure: 0
Dynamic: 25
Static: 1
Internal: 0

### 28.27 show bridge multicast mode

Use the `show bridge multicast mode` EXEC mode command to display the Multicast bridging mode for all VLANs or for a specific VLAN.

**Syntax**

```
show bridge multicast mode [vlan vlan-id]
```

**Parameters**

`vlan vlan-id`—Specifies the VLAN ID.

**Command Mode**

EXEC mode

**Example**

The following example displays the Multicast bridging mode for all VLANs.

```
switchxxxxxx# show bridge multicast mode
```
28.28  show bridge multicast address-table

Use the **show bridge multicast address-table** EXEC mode command to display Multicast MAC addresses or IP Multicast address table information.

**Syntax**

```
show bridge multicast address-table [vlan vlan-id] [address {mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address}] [format {ip | mac}] [source {ipv4-source-address | ipv6-source-address}]
```

**Parameters**

- **vlan-id** `vlan-id`—Display entries for specified VLAN ID.
- **address**—Display entries for specified Multicast address. The possible values are:
  - `mac-multicast-address`—Specifies the MAC Multicast address.
  - `ipv4-multicast-address`—Specifies the IPv4 Multicast address.
  - `ipv6-multicast-address`—Specifies the IPv6 Multicast address.
- **format**—(this applies if picked mac-multicast-address), then i can display it either in mac or ip format) Display entries for specified Multicast address format. The possible values are:
  - `ip`—Specifies that the Multicast address is an IP address.
  - `mac`—Specifies that the Multicast address is a MAC address.
- **source** `ipv4-source-address | ipv6-source-address`—Specifies the source address. The possible values are:
  - `ipv4-address`—Specifies the source IPv4 address.
  - `ipv6-address`—Specifies the source IPv6 address.
Default Configuration

If the format is not specified, it defaults to mac (only if mac-multicast-address was entered).

If VLAN ID is not entered, entries for all VLANs are displayed.

If MAC or IP address is not supplied, entries for all addresses are displayed.

Command Mode

EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000 through 0100.5e7f.ffff.

Multicast router ports (defined statically or discovered dynamically) are members in all MAC groups.

Ports that were defined via the bridge multicast forbidden forward-all command are displayed in all forbidden MAC entries.

Changing the Multicast mode can move static Multicast addresses that are written in the device FDB to a shadow configuration because of FDB hash collisions.

Example

The following example displays bridge Multicast address information.

switchxxxxxx# show bridge multicast address-table
Multicast address table for VLANs in MAC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>Static</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>gi9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.5.6.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>233.22.2.6</td>
<td></td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.2.2.251</td>
<td>11.2.2.3</td>
<td>Dynamic</td>
<td>gi1</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>*</td>
<td>gi9</td>
</tr>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>1.1.1.11</td>
<td>gi9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-GROUP bridging mode:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>Static</td>
<td>gi1-2, gi7, Po1</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>gi9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>Static</td>
<td>gi1-2,gi7, Po1</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:</td>
<td>Static</td>
<td>fe00:200</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
</table>
28.29  show bridge multicast address-table static

Use the show bridge multicast address-table static EXEC mode command to display the statically configured Multicast addresses.

Syntax

```
show bridge multicast address-table static [vlan vlan-id] [address mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address] [source ipv4-source-address | ipv6-source-address] [all | mac | ip]
```

Parameters

- **vlan vlan-id**—Specifies the VLAN ID.
- **address**—Specifies the Multicast address. The possible values are:
  - **mac-multicast-address**—Specifies the MAC Multicast address.
  - **ipv4-multicast-address**—Specifies the IPv4 Multicast address.
  - **ipv6-multicast-address**—Specifies the IPv6 Multicast address.
- **source**—Specifies the source address. The possible values are:
  - **ipv4-address**—Specifies the source IPv4 address.
  - **ipv6-address**—Specifies the source IPv6 address.

Default Configuration

When all/mac/ip is not specified, all entries (MAC and IP) will be displayed.

Command Mode

EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000—0100.5e7f.ffff.
### Example

The following example displays the statically configured Multicast addresses.

```bash
switchxxxxxx# show bridge multicast address-table static
```

**MAC-GROUP table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100.9923.8787</td>
<td>gi1, gi2</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100.9923.8787</td>
</tr>
</tbody>
</table>

**IPv4-GROUP Table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>gi1, gi2</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi-8</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi9-21</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
</tr>
</tbody>
</table>

**IPv4-SRC-GROUP Table:**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>------</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>------</td>
</tr>
</tbody>
</table>

**IPv6-GROUP Table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>FF12::8</td>
<td>gi1-8</td>
</tr>
</tbody>
</table>
28.30 show bridge multicast filtering

Use the \texttt{show bridge multicast filtering} EXEC mode command to display the Multicast filtering configuration.

Syntax

\texttt{show bridge multicast filtering \textit{vlan-id}}

Parameters

\textit{vlan-id}—Specifies the VLAN ID. (Range: Valid VLAN)

Default Configuration

N/A

Command Mode

EXEC mode
Example
The following example displays the Multicast configuration for VLAN 1.

```
switchxxxxxx# show bridge multicast filtering 1
Filtering: Enabled
VLAN: 1
Port Forward-All
----- Static Status
 gi1 --------- ------
 gi2 Forbidden Filter
 gi3 Forward Forward(s)
 - Forward(d)
```

### 28.31 show bridge multicast unregistered

Use the `show bridge multicast unregistered` EXEC mode command to display the unregistered Multicast filtering configuration.

**Syntax**

```
show bridge multicast unregistered [interface-id]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Default Configuration**

Display for all interfaces.

**Command Mode**

EXEC mode
Example

The following example displays the unregistered Multicast configuration.

```
switchxxxxxx# show bridge multicast unregistered
Port Unregistered
------ -----------
gi1 Forward
gi2 Filter
gi3 Filter
```

28.32 show ports security

Use the `show ports security` Privileged EXEC mode command to display the port-lock status.

Syntax

```
show ports security [interface-id | detailed]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the port-lock status of all ports.

```
switchxxxxxx# show ports security
```

### Address Table Commands

#### 28

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Action</th>
<th>Maximum</th>
<th>Trap</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>Max-</td>
<td>Discard</td>
<td>3</td>
<td>Enabled</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi2</td>
<td>Disabled</td>
<td>Max-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>Lock</td>
<td>Discard, 8</td>
<td>Disabled</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The following table describes the fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Status</td>
<td>The port security status. The possible values are: Enabled or Disabled.</td>
</tr>
<tr>
<td>Action</td>
<td>The action taken on violation.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of addresses that can be associated on this port in the Max-Addresses mode.</td>
</tr>
<tr>
<td>Trap</td>
<td>The status of SNMP traps. The possible values are: Enable or Disable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The minimum time interval between consecutive traps.</td>
</tr>
</tbody>
</table>

#### 28.33 show ports security addresses

Use the `show ports security addresses` Privileged EXEC mode command to display the current dynamic addresses in locked ports.

**Syntax**

`show ports security addresses [interface-id | detailed]`

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.
Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays dynamic addresses in all currently locked port:

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Current</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>gi2</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi4</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi5</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi6</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi7</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28.34 bridge multicast reserved-address

Use the `bridge multicast reserved-address` Global Configuration mode command to define the action on Multicast reserved-address packets. Use the `no` form of this command to revert to default.

Syntax

```
bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid] [discard | bridge]
```

```
no bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid]
```
Parameters

- **mac-multicast-address**—MAC Multicast address in the reserved MAC addresses range. (Range: 01-80-C2-00-00-00, 01-80-C2-00-00-02–01-80-C2-00-00-2F)

- **ethernet-v2 ethtype**—Specifies that the packet type is Ethernet v2 and the Ethernet type field (16 bits in hexadecimal format). (Range: 0x0600–0xFFFF)

- **llc sap**—Specifies that the packet type is LLC and the DSAP-SSAP field (16 bits in hexadecimal format). (Range: 0xFFFF)

- **llc-snap pid**—Specifies that the packet type is LLC-SNAP and the PID field (40 bits in hexadecimal format). (Range: 0x0000000000 - 0xFFFFFFFFFF)

- **discard**—Specifies discarding the packets.

- **bridge**—Specifies bridging (forwarding) the packets

Default Configuration

- If the user-supplied MAC Multicast address, ethtype and encapsulation (LLC) specifies a protocol supported on the device (called Peer), the default action (discard or bridge) is determined by the protocol.

- If not, the default action is as follows:
  - For MAC addresses in the range 01-80-C2-00-00-00, 01-80-C2-00-00-02–01-80-C2-00-00-0F, the default is **discard**.
  - For MAC addresses in the range 00-80-C2-00-00-10–01-80-C2-00-00-2F, the default is **bridge**.

Command Mode

Global Configuration mode

User Guidelines

If the packet/service type (ethertype/encapsulation) is not specified, the configuration is relevant to all the packets with the configured MAC address.

Specific configurations (that contain service type) have precedence over less specific configurations (contain only MAC address).

The packets that are bridged are subject to security ACLs.

The actions define by this command has precedence over forwarding rules defined by applications/protocols (STP, LLDP etc.) supported on the device.
Example

switchxxxxxx(conf)#bridge multicast reserved-address 00:3f:bd:45:5a:b1

28.35 show bridge multicast reserved-addresses

Use the show bridge multicast reserved-addresses EXEC mode command to display the Multicast reserved-address rules.

Syntax

show bridge multicast reserved-addresses

Command Mode

EXEC mode

Example

switchxxxxxx # show bridge multicast reserved-addresses

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Frame Type</th>
<th>Protocol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-00</td>
<td>LLC-SNAP</td>
<td>00-00-0C-01-29</td>
<td>Bridge</td>
</tr>
</tbody>
</table>
Port Monitor Commands

29.1 port monitor

Use the **port monitor** Interface Configuration (Ethernet) mode command to start a port monitoring session (mirroring). Use the **no** form of this command to stop a port monitoring session.

**Syntax**

```plaintext
port monitor src-interface-id [rx | tx]
no port monitor src-interface-id
port monitor vlan vlan-id
no port monitor vlan vlan-id
```

**Parameters**

- **rx**—Monitors received packets only. If no option is specified, it monitors both rx and tx.
- **tx**—Monitors transmitted packets only. If no option is specified, it monitors both rx and tx.
- **vlan vlan-id**—VLAN number
- **src-interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.

**Default Configuration**

Monitors both received and transmitted packets.

**Command Mode**

Interface Configuration (Ethernet) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

This command enables port copy between Source Port (src-interface) to a Destination Port (The port in context).
The analyzer port for port ingress traffic mirroring should be the same port for all mirrored ports.

The analyzer port for port egress traffic mirroring should be the same port for all mirrored ports.

The analyzer port for VLAN mirroring should be the same for all the mirrored VLANs, and should be the same port as the analyzer port for port ingress mirroring traffic.

The following restriction applies to ports that are configured to be source ports:

- The port cannot be a destination port.

The following restrictions apply to ports that are configured to be monitor ports:

- The port cannot be source port.
- The port is not a member in port-channel.
- IP interface is not configured on the port.
- GVRP is not enabled on the port.
- The port is not a member in any VLAN, except for the default VLAN (will be automatically removed from the default VLAN).
- L2 protocols, such as: LLDP, CDP, LBD, STP, LACP, are not active on the destination port.

Notes:

1. In this mode some traffic duplication on the analyzer port may be observed. For example:
   - Port 2 is being egress monitored by port 4.
   - Port 2 & 4 are members in VLAN 3.
   - Unknown Unicast packet sent to VLAN 3 will egress from port 4 twice, one instance as normal forward and another instance as mirrored from port 2.
   - Moreover, if port 2 is an untagged member in VLAN 3 and port 4 is a tagged member then both instances will look different (one tagged and the other is not).

2. When the port is configured to 802.1X auto mode it will forward any mirrored traffic regardless of the 1X state. However, it will operate as a normal network port (forward traffic) only after authorization is done.
3. Mirrored traffic is exposed to STP state, i.e. if the port is in STP blocking, it will not egress any mirrored traffic.

Example

The following example copies traffic for both directions (Tx and Rx) from the source port gi2 to destination port gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# port monitor gi2
```

29.2 show ports monitor

Use the `show ports monitor` EXEC mode command to display the port monitoring status.

Syntax

`show ports monitor`

Command Mode

EXEC mode

Example

The following example displays the port monitoring status.

```
switchxxxxxx# show ports monitor

<table>
<thead>
<tr>
<th>Source port</th>
<th>Destination Port</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi8</td>
<td>gi1</td>
<td>RX,TX</td>
<td>Active</td>
</tr>
<tr>
<td>gi2</td>
<td>gi1</td>
<td>RX,TX</td>
<td>Active</td>
</tr>
<tr>
<td>gi18</td>
<td>gi1</td>
<td>Rx</td>
<td>Active</td>
</tr>
<tr>
<td>VLAN 9</td>
<td>gi1</td>
<td>N/A</td>
<td>Active</td>
</tr>
</tbody>
</table>
```


Spanning-Tree Commands

30.1 spanning-tree

Use the `spanning-tree` Global Configuration mode command to enable spanning-tree functionality. Use the `no` form of this command to disable the spanning-tree functionality.

Syntax

```
spanning-tree
no spanning-tree
```

Parameters

N/A

Default Configuration

Spanning-tree is enabled.

Command Mode

Global Configuration mode

Example

The following example enables spanning-tree functionality.

```
switchxxxxxx(config)# spanning-tree
```

30.2 spanning-tree mode

Use the `spanning-tree mode` Global Configuration mode command to select which Spanning Tree Protocol (STP) protocol to run. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mode {stp / rstp / mst}
```
no spanning-tree mode

Parameters

- stp—Specifies that STP is enabled.
- rstp—Specifies that the Rapid STP is enabled.
- mst—Specifies that the Multiple STP is enabled.

Default Configuration

The default is RSTP.

Command Mode

Global Configuration mode

User Guidelines

In RSTP mode, the device uses STP when the neighbor device uses STP.

In MSTP mode, the device uses RSTP when the neighbor device uses RSTP, and uses STP when the neighbor device uses STP.

Example

The following example enables MSTP.

```
switchxxxxxx(config)# spanning-tree mode mstp
```

## 30.3 spanning-tree forward-time

Use the `spanning-tree forward-time` Global Configuration mode command to configure the spanning-tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree forward-time seconds
no spanning-tree forward-time
```
Parameters

seconds—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

Default Configuration

15 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the forwarding time, the following relationship should be maintained:

\[ 2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age} \]

Example

The following example configures the spanning tree bridge forwarding time to 25 seconds.

```bash
switchxxxxxx(config)# spanning-tree forward-time 25
```

30.4 spanning-tree hello-time

Use the `spanning-tree hello-time` Global Configuration mode command to configure how often the device broadcasts Hello messages to other devices. Use the `no` form of this command to restore the default configuration.

Syntax

`spanning-tree hello-time seconds`

`no spanning-tree hello-time`

Parameters

seconds—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)

Default Configuration

2 seconds.
Command Mode
Global Configuration mode

User Guidelines
When configuring the Hello time, the following relationship should be maintained:

Max-Age >= 2*(Hello-Time + 1)

Example
The following example configures the spanning-tree bridge hello time to 5 seconds.

switchxxxxxx(config)# spanning-tree hello-time 5

30.5 spanning-tree max-age

Use the spanning-tree max-age Global Configuration mode command to configure the STP maximum age. Use the no form of this command to restore the default configuration.

Syntax
spanning-tree max-age seconds
no spanning-tree max-age

Parameters
seconds—Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)

Default Configuration
The default maximum age is 20 seconds.

Command Mode
Global Configuration mode

User Guidelines
When configuring the maximum age, the following relationships should be maintained:
2*(Forward-Time - 1) >= Max-Age
Max-Age >= 2*(Hello-Time + 1)

Example
The following example configures the spanning-tree bridge maximum age to 10 seconds.

```
switchxxxxxx(config)# spanning-tree max-age 10
```

### 30.6 spanning-tree priority

Use the `spanning-tree priority` Global Configuration mode command to configure the device STP priority, which is used to determine which bridge is selected as the root bridge. Use the `no` form of this command to restore the default device spanning-tree priority.

**Syntax**

```
spanning-tree priority priority
go spanning-tree priority
```

**Parameters**

`priority`—Specifies the bridge priority. (Range: 0–61440)

**Default Configuration**

Default priority = 32768.

**Command Mode**

Global Configuration mode

**User Guidelines**

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree. When more than one switch has the lowest priority, the switch with the lowest MAC address is selected as the root.
Example

The following example configures the spanning-tree priority to 12288.

```
switchxxxxxx(config)# spanning-tree priority 12288
```

### 30.7 spanning-tree disable

Use the `spanning-tree disable` Interface Configuration (Ethernet, port-channel) mode command to disable the spanning tree on a specific port. Use the `no` form of this command to enable the spanning tree on a port.

**Syntax**

```
spanning-tree disable
no spanning-tree disable
```

**Parameters**

N/A

**Default Configuration**

Spanning tree is enabled on all ports.

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**Example**

The following example disables the spanning tree on gi5

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# spanning-tree disable
```

### 30.8 spanning-tree cost

Use the `spanning-tree cost` Interface Configuration (Ethernet, port-channel) mode command to configure the spanning-tree path cost for a port. Use the `no` form of this command to restore the default configuration.
Syntax

spanning-tree cost cost

no spanning-tree cost

Parameters

cost—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Command Mode

Interface Configuration (Ethernet, port-channel) mode

Example

The following example configures the spanning-tree cost on gi15 to 35000.

switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree cost 35000

30.9 spanning-tree port-priority

Use the spanning-tree port-priority Interface Configuration (Ethernet, port-channel) mode command to configure the port priority. Use the no form of this command to restore the default configuration.

Syntax

spanning-tree port-priority priority

no spanning-tree port-priority
Parameters

priority—Specifies the port priority. (Range: 0–240)

Default Configuration

The default port priority is 128.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the spanning priority on gi15 to 96

```
switchxxxxx(config)# interface gi15
switchxxxxx(config-if)# spanning-tree port-priority 96
```

30.10 spanning-tree portfast

Use the spanning-tree portfast Interface Configuration (Ethernet, port-channel) mode command to enable the PortFast mode. In PortFast mode, the interface is immediately put into the forwarding state upon linkup, without waiting for the standard forward time delay. Use the no form of this command to disable the PortFast mode.

Syntax

spanning-tree portfast [auto]

no spanning-tree portfast

Parameters

auto—Specifies that the software waits for 3 seconds (with no Bridge Protocol Data Units (BPDUs) received on the interface) before putting the interface into the PortFast mode.
**Default Configuration**
PortFast mode is disabled.

**Command Mode**
Interface Configuration (Ethernet, port-channel) mode

**Example**
The following example enables the PortFast mode on gi15.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree portfast
```

### 30.11 spanning-tree link-type
Use the `spanning-tree link-type` Interface Configuration (Ethernet, port-channel) mode command to override the default link-type setting determined by the port duplex mode, and enable RSTP transitions to the Forwarding state. Use the `no` form of this command to restore the default configuration.

**Syntax**
```
spanning-tree link-type {point-to-point | shared}
no spanning-tree spanning-tree link-type
```

**Parameters**
- `point-to-point`—Specifies that the port link type is point-to-point.
- `shared`—Specifies that the port link type is shared.

**Default Configuration**
The device derives the port link type from the duplex mode. A full-duplex port is considered a point-to-point link and a half-duplex port is considered a shared link.

**Command Mode**
Interface Configuration (Ethernet, port-channel) mode
Example
The following example enables shared spanning-tree on gi15.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree link-type shared
```

### 30.12 spanning-tree pathcost method

Use the `spanning-tree pathcost method` Global Configuration mode command to set the default path cost method. Use the `no` form of this command to return to the default configuration.

**Syntax**

```
spanning-tree pathcost method {long | short}
no spanning-tree pathcost method
```

**Parameters**

- **long**—Specifies that the default port path costs are within the range: 1–200,000,000.
- **short**—Specifies that the default port path costs are within the range: 1–65,535.

**Default Configuration**

Long path cost method.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command applies to all the spanning tree instances on the switch.

- If the short method is selected, the switch calculates cost in the range 1 through 65,535.
- If the long method is selected, the switch calculates cost in the range 1 through 200,000,000.
Example

The following example sets the default path cost method to Long.

```
switchxxxxxx(config)# spanning-tree pathcost method long
```

### 30.13 spanning-tree bpdu (Global)

Use the `spanning-tree bpdu` Global Configuration mode command to define Bridge Protocol Data Unit (BPDU) handling when the spanning tree is disabled globally or on a single interface. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

**Parameters**

- `filtering`—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- `flooding`—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to all ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

**Default Configuration**

The default setting is `flooding`.

**Command Mode**

Global Configuration mode

**User Guidelines**

The `filtering` and `flooding` modes are relevant when the spanning tree is disabled globally or on a single interface.
Example

The following example defines the BPDU packet handling mode as flooding when the spanning tree is disabled on an interface.

```
switchxxxxxx(config)# spanning-tree bpdu flooding
```

30.14 spanning-tree bpdu (Interface)

Use the spanning-tree bpdu Interface Configuration (Ethernet, Port-channel) mode command to define BPDU handling when the spanning tree is disabled on a single interface. Use the no form of this command to restore the default configuration.

Syntax

```plaintext
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

Parameters

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

Default Configuration

The spanning-tree bpdu (Global) command determines the default configuration.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example defines the BPDU packet as flooding when the spanning tree is disabled on gi3.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# spanning-tree bpdu flooding
```
30.15 spanning-tree guard root

use the spanning-tree guard root Interface Configuration (Ethernet, Port-channel) mode command to enable Root Guard on all spanning-tree instances on the interface. Root guard prevents the interface from becoming the root port of the device. Use the no form of this command to disable the root guard on the interface.

Syntax

spanning-tree guard root
no spanning-tree guard root

Default Configuration

Root guard is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

Root Guard can be enabled when the device operates in any mode (STP, RSTP and MSTP).

When Root Guard is enabled, the port changes to the alternate state if the spanning-tree calculations select the port as the root port.

Example

The following example prevents gi1 from being the root port of the device.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# spanning-tree guard root
```
Spanning-Tree Commands

Syntax

spanning-tree bpduguard {enable | disable}
no spanning-tree bpduguard

Parameters

bpduguard enable—Enables BPDU Guard.
bpduguard disable—Disables BPDU Guard.

Default Configuration

BPDU Guard is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

The command can be enabled when the spanning tree is enabled (useful when the port is in the PortFast mode) or disabled.

Example

The following example shuts down gi5 when it receives a BPDU.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# spanning-tree bpduguard enable
```

30.17 clear spanning-tree detected-protocols

Use the clear spanning-tree detected-protocols Privileged EXEC command to restart the STP migration process (force renegotiation with neighboring switches) on all interfaces or on the specified interface

Syntax

clear spanning-tree detected-protocols [interface interface-id]
Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This feature can only be used when working in RSTP or MSTP mode.

Example

This restarts the STP migration process on all interfaces.

switchxxxxxx# clear spanning-tree detected-protocols

30.18 spanning-tree mst priority

Use the spanning-tree mst priority Global Configuration mode command to configure the device priority for the specified spanning-tree instance. Use the no form of this command to restore the default configuration.

Syntax

spanning-tree mst instance-id priority priority

no spanning-tree mst instance-id priority

Parameters

- instance-id—Specifies the spanning-tree instance ID. (Range: 1–15)
- priority— Specifies the device priority for the specified spanning-tree instance. This setting determines the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. (Range: 0–61440)
Default Configuration
The default priority is 32768.

Command Mode
Global Configuration mode

User Guidelines
The priority value must be a multiple of 4096.
The switch with the lowest priority is the root of the spanning tree.

Example
The following example configures the spanning tree priority of instance 1 to 4096.

```
switchxxxxxx(config)# spanning-tree mst 1 priority 4096
```

30.19 spanning-tree mst max-hops
Use the `spanning-tree mst max-hops` Global Configuration mode command to configure the number of hops in an MST region before the BDPU is discarded and the port information is aged out. Use the `no` form of this command to restore the default configuration.

Syntax
```
spanning-tree mst max-hops hop-count
no spanning-tree mst max-hops
```

Parameters
```
max-hops hop-count—Specifies the number of hops in an MST region before the BDPU is discarded. (Range: 1–40)
```

Default Configuration
The default number of hops is 20.

Command Mode
Global Configuration mode
Example

The following example configures the maximum number of hops that a packet travels in an MST region before it is discarded to 10.

```
switchxxxxx(config)# spanning-tree mst max-hops 10
```

### 30.20 `spanning-tree mst port-priority`

Use the `spanning-tree mst port-priority` Interface Configuration (Ethernet, port-channel) mode command to configure the priority of a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

**Parameters**

- `instance-id`—Specifies the spanning tree instance ID. (Range: 1–15)
- `priority`—Specifies the port priority. (Range: 0–240 in multiples of 16)

**Default Configuration**

The default port priority is 128.

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**User Guidelines**

The priority value must be a multiple of 16.

**Example**

The following example configures the port priority of gi1 to 144.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# spanning-tree mst 1 port-priority 144
```
30.21 spanning-tree mst cost

Use the `spanning-tree mst cost` Interface Configuration (Ethernet, Port-channel) mode command to configure the path cost for MST calculations. If a loop occurs, the spanning tree considers path cost when selecting an interface to put in the Forwarding state. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst instance-id cost cost
no spanning-tree mst instance-id cost
```

**Default Configuration**

N/A

**Parameters**

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–15)
- `cost`—Specifies the port path cost. (Range: 1–200000000)

**Default Configuration**

Default path cost is determined by the port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**Example**

The following example configures the MSTP instance 1 path cost for gigabitethernet port 9 to 4.

```
switchxxxxxx(config)# interface gi9
```
30.22 spanning-tree mst configuration

Use the `spanning-tree mst configuration` Global Configuration mode command to enable configuring an MST region by entering the MST mode.

**Syntax**

```
spanning-tree mst configuration
```

**Command Mode**

Global Configuration mode

**User Guidelines**

For two or more switches to be in the same MST region, they must contain the same VLAN mapping, the same configuration revision number, and the same name.

**Example**

The following example configures an MST region.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
switchxxxxxx(config-mst)# name region1
switchxxxxxx(config-mst)# revision 1
```

30.23 instance (MST)

Use `instance` MST Configuration mode command to map VLANs to an MST instance. Use the `no` form of this command to restore the default mapping.

**Syntax**

```
instance instance-id vlan vlan-range
no instance instance-id vlan vlan-range
```
Parameters

- **instance-id**—MST instance (Range: 1–15)
- **vlan-range**—The specified range of VLANs is added to the existing ones. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 1–4094)

Default Configuration

All VLANs are mapped to the common and internal spanning tree (CIST) instance (instance 0).

Command Mode

MST Configuration mode

User Guidelines

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST.

For two or more devices to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

Example

The following example maps VLANs 10-20 to MST instance 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
```

### 30.24 name (MST)

Use the `name` MST Configuration mode command to define the MST instance name. Use the `no` form of this command to restore the default setting.

**Syntax**

```
name string
no name
```
Spanning-Tree Commands

Parameters

string—Specifies the MST instance name. (Length: 1–32 characters)

Default Configuration

The default name is the bridge MAC address.

Command Mode

MST Configuration mode

Example

The following example defines the instance name as Region1.

switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# name region1

30.25 revision (MST)

Use the revision MST Configuration mode command to define the MST configuration revision number. Use the no form of this command to restore the default configuration.

Syntax

revision value
no revision

Parameters

value—Specifies the MST configuration revision number. (Range: 0–65535)

Default Configuration

The default configuration revision number is 0.

Command Mode

MST Configuration mode
Example
The following example sets the configuration revision to 1.

```
switchxxxxxx(config) # spanning-tree mst configuration
switchxxxxxx(config-mst) # revision 1
```

### 30.26 show (MST)

Use the `show` MST Configuration mode command to display the current or pending MST region configuration.

**Syntax**

```
show {current | pending}
```

**Parameters**

- **current**—Displays the current MST region configuration.
- **pending**—Displays the pending MST region configuration.

**Default Configuration**

N/A

**Command Mode**

MST Configuration mode

**Example**

The following example displays a pending MST region configuration

```
switchxxxxxx(config-mst)# show pending
Gathering information
Current MST configuration
Name: Region1
Revision: 1
Instance VLANs Mapped State
-------- ------------------------ -----
```

---

78-20269-01  Command Line Interface Reference Guide
30.27 exit (MST)

Use the `exit` MST Configuration mode command to exit the MST region Configuration mode and apply all configuration changes.

**Syntax**
```
exit
```

**Parameters**
N/A

**Default Configuration**
N/A

**Command Mode**
MST Configuration mode

**Example**
The following example exits the MST Configuration mode and saves changes.

```
switchxxxxxx(config-mst)#
```

30.28 abort (MST)

Use the `abort` MST Configuration mode command to exit the MST Configuration mode without applying the configuration changes.

**Syntax**
```
abort
```

**Parameters**
N/A

**Default Configuration**
N/A

**Command Mode**
MST Configuration mode
Spanning-Tree Commands

Parameters
N/A

Default Configuration
N/A

Command Mode
MST Configuration mode

Example
The following example exits the MST Configuration mode without saving changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# abort
```

30.29 show spanning-tree

Use the `show spanning-tree` Privileged EXEC mode command to display the spanning-tree configuration.

Syntax

```
show spanning-tree [interface-id] [instance instance-id]
show spanning-tree [detail] [active | blockedports] [instance instance-id]
show spanning-tree mst-configuration
```

Parameters

- `instance instance-id`—Specifies the spanning tree instance ID. (Range: 1–15)
- `detail`—Displays detailed information.
- `active`—Displays active ports only.
- `blockedports`—Displays blocked ports only.
- `mst-configuration`—Displays the MST configuration identifier.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
**Default Configuration**

If no interface is specified, the default is all interfaces.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

This command only works when MST is enabled.

**Example**

The following examples display spanning-tree information in various configurations:

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled

Root ID Priority 32768
 Address 00:01:42:97:e0:00
 Cost 20000
 Port gi1
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 36864
 Address 00:02:4b:29:7a:00
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
```
Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. No</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFastType</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td>gi5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

switchxxxxxx# **show spanning-tree**

Spanning tree enabled mode RSTP

Default port cost method: long

Root ID | Priority | 36864  
Address | 00:02:4b:29:7a:00  
This switch is the Root.

Hello Time 2 sec  Max Age 20 sec  Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFastType</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>-</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>-</td>
</tr>
<tr>
<td>gi5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

switchxxxxxx# **show spanning-tree**

Spanning tree disabled (BPDU filtering) mode RSTP

Default port cost method: long

Root ID | Priority | N/A  
Address | N/A  
Path Cost | N/A  
Root Port | N/A  
Hello Time | N/A  Max Age N/A  Forward Delay N/A

Bridge ID | Priority | 36864  
Address | 00:02:4b:29:7a:00  
Hello Time 2 sec  Max Age 20 sec  Forward Delay 15 sec
Spanning-Tree Commands

Interfaces

Name	State	Prio.Nbr	Cost	Sts	Role	PortFast	Type
g1	Enabled	128.1	20000	-	-	-	-
g2	Enabled	128.2	20000	-	-	-	-
g3	Disabled	128.3	20000	-	-	-	-
g4	Enabled	128.4	20000	-	-	-	-
g5	Enabled	128.5	20000	-	-	-	-

switchxxxxxx# show spanning-tree active
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | g1
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Bridge ID | Priority | 36864
Address | 00:02:4b:29:7a:00
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Interfaces

Name	State	Prio.Nbr	Cost	Sts	Role	PortFast	Type
g1	Enabled	128.1	20000	FWD	Root	-	P2p (RSTP)
g2	Enabled	128.2	20000	FWD	Desg	No	Shared (STP)
g4	Enabled	128.4	20000	BLK	Altn	No	Shared (STP)

switchxxxxxx# show spanning-tree blockedports
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | g1
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec
Spanning Tree Commands

```
switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode RSTP
Default port cost method: long
Root ID Priority 32768
 Address 00:01:42:97:e0:00
 Path Cost 20000
 Root Port gi1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 36864
 Address 00:02:4b:29:7a:00
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
 hello 2, max age 20, forward delay 15

Port 1 (gi1) enabled
State: Forwarding Role: Root
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) RSTP Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:01:42:97:e0:00
Designated port id: 128.25 Designated path cost: 0
Guard root: Disabled BPDu guard: Disabled
Number of transitions to forwarding state: 1
BPDu: sent 2, received 120638
```
Port 2 (gi2) enabled
State: Forwarding  Role: Designated
Port id: 128.2      Port cost: 20000
Type: Shared (configured: auto) STP  Port Fast: No (configured:no)
Designated bridge Priority: 32768  Address: 00:02:4b:29:7a:00
Designated port id: 128.2        Designated path cost: 20000
Guard root: Disabled  BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi3) disabled
State: N/A          Role: N/A
Port id: 128.3      Port cost: 20000
Type: N/A (configured: auto)  Port Fast: N/A (configured:no)
Designated bridge Priority: N/A  Address: N/A
Designated port id: N/A        Designated path cost: N/A
Guard root: Disabled  BPDU guard: Disabled
Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

Port 4 (gi4) enabled
State: Blocking     Role: Alternate
Port id: 128.4      Port cost: 20000
Type: Shared (configured:auto) STP  Port Fast: No (configured:no)
Designated bridge Priority: 28672  Address: 00:30:94:41:62:c8
Designated port id: 128.25       Designated path cost: 20000
Guard root: Disabled  BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 5 (gi5) enabled
State: Disabled     Role: N/A
Port id: 128.5      Port cost: 20000
Type: N/A (configured: auto)  Port Fast: N/A (configured:no)
Designated bridge Priority: N/A  Address: N/A
Designated port id: N/A        Designated path cost: N/A
Guard root: Disabled  BPDU guard: Disabled
Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A
switchxxxxxx# show spanning-tree ethernet gi1
Port 1 (gi1) enabled
State: Forwarding  Role: Root
Port id: 128.1  Port cost: 20000
Type: P2p (configured: auto) RSTP  Port Fast: No (configured:no)
Designated bridge Priority: 32768  Address: 00:01:42:97:e0:00
Designated port id: 128.25  Designated path cost: 0
Guard root: Disabled  BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

switchxxxxxx# show spanning-tree mst-configuration
Name: Region1
Revision: 1
Instance  Vlans mapped  State
--------  --------------  -------
0  1-9, 21-4094  Enabled
1  10-20  Enabled

switchxxxxxx# show spanning-tree
Spanning tree enabled mode MSTP
Default port cost method: long
# MST 0 Vlans Mapped: 1-9
CST Root ID  Priority 32768
Address 00:01:42:97:e0:00
Path Cost 20000
Root Port gi1
Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec

IST Master ID  Priority 32768
Address 00:02:4b:29:7a:00
This switch is the IST master.
Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec
Max hops 20

Interfaces
Spanning Tree Commands

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No (RSTP)</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No Shared Bound</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No STP</td>
</tr>
</tbody>
</table>

#### MST 1 VLANs Mapped: 10-20
Root ID Priority 24576
Address 00:02:4b:29:89:76
Path Cost 20000
Root Port gi4
Rem hops 19

Bridge ID Priority 32768
Address 00:02:4b:29:7a:00

#### Interfaces
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Boun</td>
<td>No P2p Bound</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Boun</td>
<td>No (RSTP)</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No Shared Bound</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No STP</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode MSTP
Default port cost method: long

#### MST 0 VLANs Mapped: 1-9
CST Root ID Priority 32768
Address 00:01:42:97:e0:00
Path Cost 20000
Root Port gi1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

IST Master ID Priority 32768
Address 00:02:4b:29:7a:00
This switch is the IST master.
Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec
Max hops 20
Number of topology changes 2 last change occurred 2d18h ago
Times:  hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi1) enabled
State: Forwarding  Role: Root
Port id: 128.1  Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP  Port Fast: No (configured:no)
Designated bridge Priority: 32768  Address: 00:01:42:97:e0:00
Designated port id: 128.25  Designated path cost: 0
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 2 (gi2) enabled
State: Forwarding  Role: Designated
Port id: 128.2  Port cost: 20000
Type: Shared (configured: auto) Boundary STP  Port Fast: No (configured:no)
Designated bridge Priority: 32768  Address: 00:02:4b:29:7a:00
Designated port id: 128.2  Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi3) enabled
State: Forwarding  Role: Designated
Port id: 128.3  Port cost: 20000
Type: Shared (configured: auto) Internal  Port Fast: No (configured:no)
Designated bridge Priority: 32768  Address: 00:02:4b:29:7a:00
Designated port id: 128.3  Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Port 4 (gi4) enabled
State: Forwarding  Role: Designated
Port id: 128.4  Port cost: 20000
Type: Shared (configured: auto) Internal  Port Fast: No (configured: no)
Designated bridge Priority: 32768  Address: 00:02:4b:29:7a:00
Designated port id: 128.2  Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

#### MST 1 Vlans Mapped: 10-20

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24576</td>
<td>00:02:4b:29:89:76</td>
<td>20000</td>
<td>gi4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rem hops 19

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
<th>Number of topology changes 2 last change occurred 1d9h ago</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
<td>Times: hold 1, topology change 2, notification 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hello 2, max age 20, forward delay 15</td>
</tr>
</tbody>
</table>

Port 1 (gi1) enabled
State: Forwarding  Role: Boundary
Port id: 128.1  Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP  Port Fast: No (configured: no)
Designated bridge Priority: 32768  Address: 00:02:4b:29:7a:00
Designated port id: 128.1  Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638
Port 2 (gi2) enabled
State: Forwarding
Port id: 128.2
Port cost: 20000
Type: Shared (configured: auto) Boundary STP
Designated bridge Priority: 32768
Designated port id: 128.2
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Role: Designated
Port cost: 20000
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

Port 3 (gi3) disabled
State: Blocking
Port id: 128.3
Port cost: 20000
Type: Shared (configured: auto) Internal
Designated bridge Priority: 32768
Designated port id: 128.78
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Role: Alternate
Port cost: 20000
Address: 00:02:4b:29:1a:19
Designated path cost: 20000

Port 4 (gi4) enabled
State: Forwarding
Port id: 128.4
Port cost: 20000
Type: Shared (configured: auto) Internal
Designated bridge Priority: 32768
Designated port id: 128.2
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Role: Designated
Port cost: 20000
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

switchxxxxxx# show spanning-tree
Spanning tree enabled mode MSTP
Default port cost method: long
#### MST 0 Vlans Mapped: 1-9
CST Root ID Priority 32768
Address 00:01:42:97:e0:00
Path Cost 20000
Root Port gi1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
30.30 show spanning-tree bpdu

Use the show spanning-tree bpdu EXEC mode command to display the BPDU handling when spanning-tree is disabled.

Syntax

show spanning-tree bpdu [interface-id | detailed]

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.
Default Configuration

Show information for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

EXEC mode

Example

The following examples display spanning-tree BPDU information:

```
switchxxxxxx# show spanning-tree bpdu
```

The following is the output if the global BPDU handling command is not supported.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi2</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi3</td>
<td>Filtering</td>
<td>Guard</td>
</tr>
</tbody>
</table>

The following is the output if both the global BPDU handling command and the per-interface BPDU handling command are supported.

Global: Flooding

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Global</td>
<td>Flooding</td>
</tr>
<tr>
<td>gi2</td>
<td>Global</td>
<td>STP</td>
</tr>
<tr>
<td>gi3</td>
<td>Flooding</td>
<td>STP</td>
</tr>
</tbody>
</table>
Virtual Local Area Network (VLAN) Commands

31.1 vlan database

Use the vlan database Global Configuration mode command to enter the VLAN Configuration mode. This mode is used to create VLAN(s) and define the default VLAN.

Use the exit command to return to Global Configuration mode.

Syntax

vlan database

Parameters

N/A

Default Configuration

VLAN 1 exists by default.

Command Mode

Global Configuration mode

Example

The following example enters the VLAN Configuration mode, creates VLAN 1972 and exits VLAN Configuration mode.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 1972
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)#
```
31.2 vlan

Use the `vlan` VLAN Configuration mode command to create a VLAN. Use the `no` form of this command to delete the VLAN(s).

To assign the VLAN a name, use the Interface Configuration (VLAN) mode `name` command.

**Syntax**

```plaintext
vlan vlan-range
no vlan vlan-range
```

**Parameters**

- `vlan-range`—Specifies a list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs (range: 2-4094).

**Default Configuration**

VLAN 1 exists by default.

**Command Mode**

VLAN Configuration mode

**Example**

The following example creates VLANs 100 and 1972.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)#vlan 100,1972
switchxxxxxx(config-vlan)#
```

31.3 show vlan

Use the `show vlan` Privileged EXEC mode command to display the following VLAN information for all VLANs or for a specific VLAN:

- VLAN ID
- VLAN name
• Ports on the VLAN
• Whether the VLAN was is dynamic or permanent
• Whether authorization is required on the VLAN

Syntax
show vlan [tag vlan-id | name vlan-name]

Parameters
• tag vlan-id—Specifies a VLAN ID.
• name vlan-name—Specifies a VLAN name string (length: 1–32 characters)

Default Configuration
All VLANs are displayed.

Command Mode
Privileged EXEC mode
Examples

Example 1 - The following example displays information for all VLANs:

```
switchxxxxxx# show vlan

VLAN Name Ports Type Authorization
---- -------- ------ ------ ---------------
 1 default gi1-2 Default Required
 10 Marketing gi3-14 Static Required
 11 VLAN0011 gi5-16 Static Required
 20 VLAN0020 gi7-18 Static Required
 21 VLAN0021 Static Required
 30 VLAN0030 Static Required
 31 VLAN0031 Static Required
 91 VLAN0091 gi2 Dynamic Not Required
 3978 Guest VLAN gi7 Static Guest
```

Example 2 - The following example displays information for the default VLAN (VLAN 1):

```
switchxxxxxx# show vlan tag default

VLAN Name Ports Type Authorization
---- -------- ------ ------ ---------------
 1 default gi1-2 Default Required
```
Example 3 - The following example displays information for the VLAN named Marketing:

```
switchxxxxxxx# show vlan name Marketing

VLAN Name Ports Type Authorization
----- ---------- ------- -------- ---------------
 1 Marketing gi3-14 static Required
```

31.4 **default-vlan vlan**

Use the `default-vlan vlan` VLAN Configuration mode command to define the default VLAN. Use the `no` form of this command to set VLAN 1 as the default VLAN.

**Syntax**

```
default-vlan vlan vlan-id
no default-vlan vlan
```

**Parameters**

- `vlan vlan-id`—Specifies the default VLAN ID.

**Default Configuration**

The default VLAN is 1 by default.

**Command Mode**

VLAN Configuration mode

**User Guidelines**

This command becomes effective after reboot of the device.

**Example**

The following example defines the default VLAN as 2.

```
switchxxxxxxx(config)# vlan database
switchxxxxxxx(config-vlan)# default-vlan vlan 2
```
New Default VLAN ID will be active after save configuration and reboot device.

31.5  **show default-vlan-membership**

Use the `show default-vlan-membership` privileged EXEC command to view the default VLAN membership.

**Syntax**

`show default-vlan-membership [interface-id | detailed]`

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Membership in the default VLAN is displayed for all interfaces. If `detailed` is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC

**Example**

```
switchxxxxxx # show default-vlan-membership
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Forbidden</th>
<th>Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>gi2</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>gi3</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

31.6  **interface vlan**

Use the `interface vlan` Global Configuration mode command to enter the Interface Configuration (VLAN) mode for a specific VLAN. After this command is entered, all commands configure this VLAN. To configure a range of VLANs, use `interface range vlan`. 
Virtual Local Area Network (VLAN) Commands

Syntax

`interface vlan vlan-id`

Parameters

`vlan vlan-id`—Specifies the VLAN to be configured.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

If the VLAN does not exist (ghost VLAN), this command does not work.

Example

The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
switchxxxxxx (config)# interface vlan 1
switchxxxxxx (config-if)# ip address 131.108.1.27 255.255.255.0
```

### 31.7 `interface range vlan`

Use the `interface range vlan` Global Configuration mode command to configure multiple VLANs simultaneously.

Syntax

`interface range vlan vlan-range`

Parameters

`vlan vlan-range`—Specifies a list of VLANs. Separate nonconsecutive VLANs with a comma and no spaces. Use a hyphen to designate a range of VLANs.

Default Configuration

N/A
Virtual Local Area Network (VLAN) Commands

Command Mode
Global Configuration mode

User Guidelines
Commands under the interface VLAN range context are executed independently on each VLAN in the range. If the command returns an error on one of the VLANs, an error message is displayed, and the system attempts to configure the remaining VLANs.

If a VLAN does not exist (ghost VLAN), some commands are not available under the interface VLAN context. These are:

- IGMP snooping control commands
- Bridge Multicast configuration commands

Example
The following example groups VLANs 221 through 228 and 889 to receive the same command(s).

```
switchxxxxxx(config)# interface range vlan 221-228, vlan 889
switchxxxxxx(config-if)#
```

31.8 name

Use the name Interface Configuration (VLAN) mode command to name a VLAN. Use the no form of this command to remove the VLAN name.

Syntax

```
name string
no name
```

Parameters

```
string—Specifies a unique name associated with this VLAN. (Length: 1–32 characters)
```

Default Configuration

No name is defined.
**Command Mode**

Interface Configuration (VLAN) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

The VLAN name must be unique.

**Example**

The following example assigns VLAN 19 the name Marketing.

```
switchxxxxxx(config)# interface vlan 19
switchxxxxxx(config-if)# name Marketing
```

### 31.9 switchport protected-port

Use the `switchport protected-port` Interface Configuration mode command to isolate Unicast, Multicast, and Broadcast traffic at Layer 2 from other protected ports on the same switch. Use the `no` form of this command to disable protection on the port.

**Syntax**

```
switchport protected-port
no switchport protected-port
```

**Parameters**

N/A

**Default Configuration**

Unprotected

**Command Mode**

Interface configuration (Ethernet, port-channel)

**User Guidelines**

Note that packets are subject to all filtering rules and Filtering Database (FDB) decisions.
### Example

```bash
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# switchport protected-port
```

#### 31.10 show interfaces protected-ports

Use the `show interfaces protected-ports` EXEC mode command to display protected ports configuration.

**Syntax**

```
show interfaces protected-ports [interface-id | detailed]
```

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Show all protected interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**Example**

```
switchxxxxx#show interfaces protected-ports

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Protected</td>
</tr>
<tr>
<td>gi2</td>
<td>Protected</td>
</tr>
<tr>
<td>gi3</td>
<td>Unprotected</td>
</tr>
<tr>
<td>gi4</td>
<td>Unprotected</td>
</tr>
</tbody>
</table>
```
### 31.11 switchport mode

Use the `switchport mode` Interface Configuration (Ethernet, port-channel) mode command to configure the VLAN membership mode (access, trunk, general or customer) of a port. Use the `no` form of this command to restore the default configuration.

#### Syntax

```
switchport mode {access | trunk | general | customer}
no switchport mode
```

#### Parameters

- **access**—Specifies an untagged layer 2 VLAN port.
- **trunk**—Specifies a trunking layer 2 VLAN port.
- **general**—Specifies a full 802-1q-supported VLAN port.
- **customer**—Specifies that the port is connected to customer equipment. Used when the switch is in a provider network.

#### Default Configuration

Trunk mode.

#### Command Mode

Interface Configuration (Ethernet, port-channel) mode

#### User Guidelines

- When the port's mode is changed, it receives the configuration corresponding to the mode.
- If the port mode is changed to access and the access VLAN does not exist, then the port does not belong to any VLAN.
- Trunk and general mode ports can be changed to access mode only if all VLANs (except for an untagged PVID are first removed.

Example

The following example configures gi1 as an access port (untagged layer 2) VLAN port.

```plaintext
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

31.12 switchport access vlan

An interface in access mode can belong to only one VLAN. Use the switchport access vlan Interface Configuration command to reassign an interface to a different VLAN than it currently belongs to.

Use the no form of this command to restore the default configuration.

Syntax

```
switchport access vlan vlan-id
no switchport access vlan
```

Parameters

`vlan vlan-id`—Specifies the VLAN ID to which the port is configured.

Default Configuration

The interface belongs to the default VLAN.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The command automatically removes the port from its previous VLAN and adds it to the specified VLAN.

If the interface is a forbidden member of the specified VLAN, it does not become a member of the VLAN. An error message is displayed (“An interface cannot become a member of a forbidden VLAN. This message will only be displayed once.”) and the command continues to execute if there are more interfaces in the interface list.
Examples

Example 1—The following example sets 152 as an access port and assigns it to VLAN 2 (and removes it from its previous VLAN).

```
switchxxxxxx(config)# interface 152
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

```
switchxxxxxx# show vlan

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>gi1-28,Po1-8</td>
<td>Default</td>
<td>Required</td>
</tr>
</tbody>
</table>
```

Example 2—The following example shows a case where a macro is defined that adds ports to VLANs. Some of the ports are forbidden members in some of the VLANs. The example shows that the system notifies the user that it cannot add the forbidden ports, but does not fail the macro and it continues to a normal end.

```
switchxxxxxx# configure
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 2-5
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface range 151-2
switchxxxxxx(config-if-range)# switchport forbidden vlan add 2-3
switchxxxxxx(config-if-range)#exit
switch345780(config)#
switch345780(config)# macro name Trunk_VLAN
Enter macro commands one per line. End with the character '@'.
switchport mode trunk
switchport trunk allowed vlan add $1stVLAN-$2ndVLAN
@
switchxxxxxx(config)# interface range 151-4
```
switchxxxxxx(config-if-range)# macro apply Trunk_VLAN $1stVLAN 2 $2ndVLAN 5

An interface cannot become a member of a forbidden VLAN <System notifies user that an illegal action has been requested but continues executing the macro>

switchxxxxxx(config-if-range)# end

switchxxxxxx# show vlan

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>151-28,Po1-8</td>
<td>Default</td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>153-4</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>153-4</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>151-4</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>151-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 31.13 switchport trunk allowed vlan

A trunk interface is an untagged member of a single VLAN, and, in addition, it may be an tagged member of one or more VLANs. Use the `switchport trunk allowed vlan` Interface Configuration mode command to add/remove VLAN(s) to/from a trunk port.

**Syntax**

```
switchport trunk allowed vlan [add vlan-list | remove vlan-list]
```

**Parameters**

- `add vlan-list` — Specifies a list of VLAN IDs to add to a port. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

- `remove vlan-list` — Specifies a list of VLAN IDs to remove from a port. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

**Default Configuration**

By default, trunk ports belongs to all created VLANs.
Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

If the interface is a forbidden member of the specified VLAN, it does not become a member of the VLAN. An error message is displayed ("An interface cannot become a member of a forbidden VLAN. This message will only be displayed once.") and the command continues to execute if there are more VLANs in the VLAN list. See the example in switchport access vlan.

Example

To add VLANs 2,3 and 100 to trunk ports 1 to 13:

```
switchxxxxxx(config)# interface range 151-13
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed vlan add 2-3,100
switchxxxxxx(config-if)#
```

31.14 switchport trunk native vlan

If an untagged packet arrives on a trunk port, it is directed to the port’s native VLAN. Use the switchport trunk native vlan Interface Configuration (Ethernet, port-channel) mode command to define the native VLAN for a trunk interface. Use the no form of this command to restore the default native VLAN.

Syntax

```
switchport trunk native vlan vlan-id
no switchport trunk native vlan
```

Parameters

vlan-id—Specifies the native VLAN ID.

Default Configuration

The default VLAN is the native VLAN.
Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The command adds the port as a member of the VLAN. If the port is already a member of the VLAN (not a native), it must first be removed from the VLAN. If the interface is a forbidden member of the specified VLAN, it does not become a member of the VLAN, but the command does not fail. Instead, an error message is displayed (“An interface cannot become a member of a forbidden VLAN. This message will only be displayed once.”) and the command continues to execute if there are more VLANs in the VLAN list. See the example in `switchport access vlan`.

Examples

Example 1—The following example:

- Defines VLAN 2 as native VLAN for port 1
- Removes VLAN 2 from port 1 and then sets it as the native VLAN

```plaintext
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# switchport trunk native vlan 2
Port 1: Port is Trunk in VLAN 2.
switchxxxxxx(config-if)# switchport trunk allowed vlan remove 2
switchxxxxxx(config-if)# switchport trunk native vlan 2
switchxxxxxx(config-if)#
```

Example 2—The following example sets packets on port as untagged on ingress and untagged on egress:

```plaintext
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk native vlan 2
switchxxxxxx(config-if)#
```
Example 3—The following example sets packets on port as tagged on ingress and tagged on egress:

```
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed vlan add 2
switchxxxxxx(config-if)#
```

31.15 `switchport general allowed vlan`

31.16 `switchport general allowed vlan`

General ports can receive tagged or untagged packets. Use the `switchport general allowed vlan` Interface Configuration mode command to add/remove VLANs to/from a general port and configure whether packets on the egress are tagged or untagged.

Use the `no` form of this command to reset to the default.

**Syntax**

```
switchport general allowed vlan {[add vlan-list [tagged | untagged]] | [remove vlan-list]}
```

**Parameters**

- `add vlan-list`—Specifies the list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- `tagged`—Specifies that the port transmits tagged packets for the VLANs. This is the default value
- `untagged`—Specifies that the port transmits untagged packets for the VLANs.
- `remove vlan-list`—Specifies the list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
Default Configuration
The port is not member in any VLAN.
Packets are transmitted untagged.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
You can change the egress rule (for example, from tagged to untagged) without first removing the VLAN from the list.

If the interface is a forbidden member of the specified VLAN, it does not become a member of the VLAN, but the command does not fail. Instead, an error message is displayed ("An interface cannot become a member of a forbidden VLAN. This message will only be displayed once.") and the command continues to execute if there are more VLANs in the VLAN list. See the example in switchport access vlan.

Example
Sets port 1 to general mode and adds VLAN 2 and 3 to it. Packets are tagged on the egress.

```plaintext
switchxxxxxx(config)# interface 151
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
```

31.17 switchport general pvid
The port VLAN ID (PVID) is the VLAN to which incoming untagged and priority-tagged frames are classified on a general port. Use the switchport general pvid Interface Configuration (Ethernet, Port-channel) mode command to configure the Port VLAN ID (PVID) of an interface when it is in general mode. Use the no form of this command to restore the default configuration.

Syntax
```
switchport general pvid vlan-id
no switchport general pvid
```
**Parameters**

`pvid vlan-id`—Specifies the Port VLAN ID (PVID).

**Default Configuration**

The default VLAN is the PVID.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**Examples**

**Example 1** - The following example configures port 2 as a general port and sets its PVID to 234.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general pvid 234
```

**Example 2** - Performs the following:

- Adds VLANs 2&3 as tagged, and VLAN 100 as untagged to general mode port 14
- Defines VID 100 as the PVID
- Reverts to the default PVID (VID=1)

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
switchxxxxxx(config-if)# switchport general allowed vlan add 100 untagged
switchxxxxxx(config-if)# switchport general pvid 100
switchxxxxxx(config-if)# no switchport general pvid
switchxxxxxx(config-if)#
```
Example 3 - Configures VLAN on port 14 as untagged on input and untagged on output:

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general pvid 2
switchxxxxxx(config-if)# switchport general allowed vlan add 2 untagged
```

Example 4 - Configures VLAN on port 21 as untagged on input and tagged on output:

```
switchxxxxxx(config)# interface gi21
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general pvid 2
switchxxxxxx(config-if)# switchport general allowed vlan add 2 tagged
```

Example 5 - Configures VLAN on port 14 as tagged on input and tagged on output:

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2 tagged
```

Example 6 - Configures VLAN on port 23 as tagged on input and untagged on output:

```
switchxxxxxx(config)# interface gi23
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2 tagged
```
31.18 switchport general ingress-filtering disable

Use the `switchport general ingress-filtering disable` Interface Configuration (Ethernet, Port-channel) mode command to disable port ingress filtering (no packets are discarded at the ingress) on a general port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
switchport general ingress-filtering disable
no switchport general ingress-filtering disable
```

**Parameters**

N/A

**Default Configuration**

Ingress filtering is enabled.

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**Example**

The following example disables port ingress filtering on gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general ingress-filtering disable
```

31.19 switchport general acceptable-frame-type

The `switchport general acceptable-frame-type` Interface Configuration mode command configures the types of packets (tagged/untagged) that are filtered (discarded) on the interface. Use the `no` form of this command to return ingress filtering to the default.

**Syntax**

```
switchport general acceptable-frame-type [tagged-only | untagged-only | all]
```
no switchport general acceptable-frame-type

Parameters

- **tagged-only**—Ignore (discard) untagged packets and priority-tagged packets.
- **untagged-only**—Ignore (discard) VLAN-tagged packets (not including priority-tagged packets)
- **all**—Do not discard packets untagged or priority-tagged packets.

Default Configuration

All frame types are accepted at ingress (**all**).

Command Mode

Interface Configuration (Ethernet, port-channel) mode

Example

The following example configures port gi3 to be in general mode and to discard untagged frames at ingress.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general acceptable-frame-type tagged-only
```

31.20 switchport customer vlan

When a port is in customer mode it is in QinQ mode. This enables the user to use their own VLAN arrangements (PVID) across a provider network. The switch is in QinQ mode when it has one or more customer ports.

Use the **switchport customer vlan** Interface Configuration mode command to set the port’s VLAN when the interface is in customer mode (set by **switchport mode**). Use the no form of this command to restore the default configuration.

Syntax

```
switchport customer vlan vlan-id

no switchport customer vlan
```
Parameters

`vlan vlan-id`—Specifies the customer VLAN.

Default Configuration

No VLAN is configured as customer.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example defines gi5 as a member of customer VLAN 5.

```plaintext
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# switchport mode customer
switchxxxxxx(config-if)# switchport customer vlan 5
```

### 31.21 map mac macs-group

Forwarding of packets based on their MAC address requires setting up groups of MAC addresses and then mapping these groups to VLANs.

Use the `map mac macs-group` VLAN Configuration mode command to map a MAC address or range of MAC addresses to a group of MAC addresses, which is then used in `switchport general map macs-group vlan`. Use the `no` form of this command to delete the mapping.

This command can only be used when the device is in Layer 2 mode.

Syntax

```
map mac mac-address {prefix-mask | host} macs-group group
no map mac mac-address {prefix-mask | host}
```

Parameters

- `mac mac-address`—Specifies the MAC address to be mapped to the group of MAC addresses.
- `prefix-mask`—Specifies the number of ones in the mask.
- **host**—Specifies that the mask is comprised of all 1s.
- **macs-group group**—Specifies the group number (range: 1–2147483647)

### Default Configuration

N/A

### Command Mode

VLAN Configuration mode

### Example

The following example creates two groups of MAC addresses, sets a port to
general mode and maps the groups of MAC addresses to specific VLANs.

```plaintext
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3
```

### 31.22 switchport general map macs-group vlan

After groups of MAC addresses have been created (see `map mac macs-group`),
you can be mapped to specific VLANs.

Use the **switchport general map macs-group vlan** Interface Configuration
(Ethernet, Port-channel) mode command to set a MAC-based classification rule.
Use the **no** form of this command to delete a classification rule.

#### Syntax

```plaintext
switchport general map macs-group group vlan vlan-id
no switchport general map macs-group group
```
Parameters

- **macs-group group**—Specifies the group number (range: 1–2147483647)
- **vlan vlan-id**—Defines the VLAN ID associated with the rule.

Default Configuration

N/A

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

MAC-based VLAN rules cannot contain overlapping ranges on the same interface.

The VLAN classification rule priorities are:

1. MAC-based VLAN (Best match among the rules).
2. Subnet-based VLAN (Best match among the rules).
3. Protocol-based VLAN.
4. PVID.

Example

The following example creates two groups of MAC addresses, sets a port to general mode and maps the groups of MAC addresses to specific VLANs.

```bash
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3
```
31.23  show vlan macs-groups

Use the show vlan macs-groups EXEC mode command to display the MAC addresses that belong to the defined MACs-groups.

Syntax

show vlan macs-groups

Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC mode

Example

The following example displays macs-groups information.

```
switchxxxxxx# show vlan macs-groups

+---------------------+--------+-------+
| MAC Address | Mask | Group ID |
|---------------------+--------+---------|
| 00:12:34:56:78:90 | 20 | 22 |
| 00:60:70:4c:73:ff | 40 | 1 |
```

31.24  switchport forbidden default-vlan

Use the switchport forbidden default-vlan Interface Configuration command to forbid a port from being added to the default VLAN. Use the no form of this command to revert to default.

Syntax

switchport forbidden default-vlan
no switchport forbidden default-vlan

Parameters
N/A

Default Configuration
Membership in the default VLAN is allowed.

Command Mode
Interface and Interface range configuration (Ethernet, port-channel)

User Guidelines
The command may be used at any time regardless of whether the port belongs to
the default VLAN.

The no command does not add the port to the default VLAN, it only defines an
interface as permitted to be a member of the default VLAN, and the port will be
added only when conditions are met.

Example
The following example forbids the port gi1 from being added to the default VLAN.

switchxxxxxx(config)#interface gi1
switchxxxxxx(config-if)# switchport forbidden default-vlan

31.25 switchport forbidden vlan

The switchport forbidden vlan Interface Configuration (Ethernet, Port-channel)
mode command forbids adding or removing specific VLANs to or from a port. To
restore the default configuration, use the no form of this command.

Syntax

switchport forbidden vlan {add vlan-list | remove vlan-list}
no switchport forbidden vlan {add vlan-list | remove vlan-list}
Parameters

- **add vlan-list** — Specifies a list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

- **remove vlan-list** — Specifies a list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

Default Configuration

All VLANs are allowed.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example forbids adding VLAN IDs 234 to 256 to gi7.

```
switchxxxxxx(config)# interface gi7
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport forbidden vlan add 234-256
```

31.26  **switchport default-vlan tagged**

Use the **switchport default-vlan tagged** Interface Configuration command to configure the port as a tagged port in the default VLAN. Use the **no** form of the command to return the port to an untagged port.

Syntax

```
switchport default-vlan tagged
no switchport default-vlan tagged
```

Parameters

N/A
Default Configuration

If the port is a member in the default VLAN, by default, it is a member as an untagged port.

Command Mode

Interface configuration (Ethernet, port-channel)

User Guidelines

The command adds a port to the default VLAN as a tagged port.

The command is available only if the port mode is trunk or general.

When a trunk port is a member in the default VLAN as a tagged port then:

- The native VLAN cannot be the default VLAN
- The default of the native VLAN is 4095

Note: If the native VLAN of a port is the default VLAN when the port is added to the default VLAN as tagged, the native VLAN is set by the system to 4095.

When a general port is a member in the default VLAN as a tagged port then:

- The PVID can be the default VLAN.
- The default PVID is the default VLAN.

Note: The PVID is not changed when the port is added to the default VLAN as a tagged.

When executing the `switchport default-vlan tagged` command, the port is added (automatically by the system) to the default VLAN when the following conditions no longer exist:

- The port is a member in a LAG.
- The port is 802.1X unauthorized.
- An IP address is defined on the port.
- The port is a destination port of port mirroring.
- An IP address is defined on the default VLAN and the port is a PVE protected port.

The `no switchport default-vlan tagged` command removes the port from the default VLAN, and returns the default VLAN mode to untagged.

Note:
- If the native VLAN of a trunk port is 4095 when the port is removed from the default VLAN (as a tagged), the native VLAN is set by the system to the default VLAN.

- The PVID of a general port is not changed when the port is removed from the default VLAN (as a tagged). If the PVID is the default VLAN, the port is added by the system to the default VLAN as an untagged.

**Example**

The following example configures the port gi1 as a tagged port in the default VLAN.

```plaintext
switchxxxxxx(config)#interface gi1
switchxxxxxx(config-if)#switchport mode trunk
switchxxxxxx(config-if)#switchport default-vlan tagged
```

### 31.27 show interfaces switchport

Use the `show interfaces switchport` Privileged EXEC command to display the administrative and operational status of all interfaces or a specific interface.

**Syntax**

```
show interfaces switchport [interface-id]
```

**Parameters**

- `interface-id`—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel

**Default Configuration**

Displays information for all interfaces.

**Command Mode**

EXEC mode

**Examples**

**Example 1** - The following example displays the command output for a trunk port:

```plaintext
switchxxxxxx(config)#interface gi1
switchxxxxxx(config-if)#switchport mode trunk
switchxxxxxx(config-if)#switchport default-vlan tagged
```
switchxxxxxx# show interfaces switchport gi1

Port gi1:

Port Mode: Trunk
Gvrp Status: disabled
Ingress Filtering: true
Acceptable Frame Type: admitAll
Ingress UnTagged VLAN ( NATIVE ): 2
Protected: Enabled, Uplink is gi9.
Port gi1 is member in:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Egress Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>untagged</td>
<td>System</td>
</tr>
<tr>
<td>8</td>
<td>VLAN008</td>
<td>tagged</td>
<td>Dynamic</td>
</tr>
<tr>
<td>11</td>
<td>VLAN0011</td>
<td>tagged</td>
<td>Static</td>
</tr>
<tr>
<td>19</td>
<td>IPv6VLAN</td>
<td>untagged</td>
<td>Static</td>
</tr>
<tr>
<td>72</td>
<td>VLAN0072</td>
<td>untagged</td>
<td>Static</td>
</tr>
</tbody>
</table>

Forbidden VLANS:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Out</td>
</tr>
</tbody>
</table>

Classification rules:

Mac based VLANS:

| Group ID | Vlan ID |

Example 2 - The following example displays the output for a general port:

switchxxxxxx# show interfaces switchport gi2

Port gi2:

VLAN Membership mode: General
Operating Parameters:
PVID: 4095 (discard vlan)
Ingress Filtering: Enabled
Acceptable Frame Type: All
GVRP status: Enabled
Protected: Disabled
Port gi1 is member in:
VLAN   Name      Egress Rule Type
----   ---------    ----------- ----- 
91     IP Telephony   tagged    Static
Protected: Disabled
Port gi2 is statically configured to:
VLAN   Name         Egress Rule Type
----   ---------       ----------- ----- 
8 VLAN0072        untagged
91     IP Telephony     tagged
Forbidden VLANS:
VLAN   Name
----   --------- 
73     Out

Example 3 - The following example displays the command output for an access port:

switchxxxxxx# show interfaces switchport gi2
Port gi2:
Port Mode: Access
Gvrp Status: disabled
Ingress Filtering: true
Acceptable Frame Type: admitAll
Ingress UnTagged VLAN ( NATIVE ): 1
Port is member in:
Vlan   Name      Egress Rule Port Membership Type
---- -------------------------------- ----------- --------------------
1                  1                  Untagged          System

Forbidden VLANS:
Vlan   Name
----   ---------
Classification rules:

Mac based VLANs:

### 31.28 ip internal-usage-vlan

The system assigns a VLAN to every IP address. In rare cases, this might conflict with a user requirement for that VLAN. In this case, use the `ip internal-usage-vlan` Interface Configuration (Ethernet, Port-channel) mode command to reserve a different VLAN as the internal usage VLAN of an interface. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
ip internal-usage-vlan vlan-id
no ip internal-usage-vlan
```

**Parameters**

- `vlan-id`—Specifies the internal usage VLAN ID.

**Default Configuration**

No VLAN is reserved as an internal usage VLAN by default (using this command).

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

An internal usage VLAN is assigned by the system when an IP interface is defined on an Ethernet port or port-channel.

If an internal usage VLAN is not defined for a port, the software selects one of the unused VLANs.

If a VLAN was chosen by the software for internal usage, but you want to use that VLAN for a static or dynamic VLAN, do one of the following:

- Remove the IP address from the interface (this releases the internal usage VLAN).
- Recreate the VLAN on the required interface (now it will be assigned to the interface and not be used as an internal usage VLAN)
- Recreate the IP interface (another internal usage VLAN is assigned to this IP interface) or use this command to explicitly define the internal usage VLAN.

**Example**
The following example reserves unused VLAN 200 as the internal usage VLAN of gi3.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# ip internal-usage-vlan 200
```

### 31.29 show vlan internal usage

Use the `show vlan internal usage` Privileged EXEC mode command to display a list of VLANs used internally by the device (defined by the user).

**Syntax**

```
show vlan internal usage
```

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

Privileged EXEC mode
Example
The following example displays VLANs used internally by the device.

```
switchxxxxxx# show vlan internal usage
Usage VLAN Reserved IP address
------------ ---------- ---------- ----------
 gi21 1007 No Active
 gi22 1008 Yes Inactive
 gi23 1009 Yes Active
```

31.30 switchport access multicast-tv vlan

Use the switchport access multicast-tv vlan Interface Configuration (Ethernet, Port-channel) mode command to enable receiving Multicast transmissions on an interface that is not the access port VLAN, while keeping the L2 segregation with subscribers on different access port VLANs. Use the no form of this command to disable receiving Multicast transmissions.

Syntax

```
switchport access multicast-tv vlan vlan-id
no switchport access multicast-tv vlan
```

Parameters

- `vlan-id`—Specifies the Multicast TV VLAN ID.

Default Configuration

Receiving Multicast transmissions is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

- The user cannot transmit Multicast transmissions on the Multicast TV VLAN.
- A Multicast TV VLAN cannot be enabled if a Guest VLAN is enabled on the interface.
Example
The following example enables gi5 to receive Multicast transmissions from VLAN 11.

```
switchxxxxxxx(config)# interface gi5
switchxxxxxxx(config-if)# switchport access multicast-tv vlan 11
```

31.31 `switchport customer multicast-tv vlan`

Use the `switchport customer multicast-tv vlan` Interface Configuration mode command to enable receiving Multicast transmissions from a VLAN that is not the customer port's VLAN, while keeping the L2 segregation with subscribers on different customer port VLANs.

Syntax
```
switchport customer multicast-tv vlan {add vlan-list | remove vlan-list}
```

Parameters
- `add vlan-list`—Specifies a list of Multicast TV VLANs to add to interface.
- `remove vlan-list`—Specifies a list of Multicast TV VLANs to remove from interface.

Default Configuration
The port is not a member in any Multicast TV VLAN.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

User Guidelines
The user cannot transmit Multicast transmissions on Multicast TV VLANs.
A Multicast TV VLAN cannot be enabled if a Guest VLAN is enabled on the interface.
Example
The following example enables gi5 to receive Multicast transmissions from VLANs 5, 6, 7.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# switchport customer multicast-tv vlan add 5-7
```

### 31.32 show vlan multicast-tv

Use the `show vlan Multicast-tv` EXEC mode command to display the source and receiver ports of Multicast-TV VLAN. Source ports can transmit and receive traffic to/from the VLAN, while receiver ports can only receive traffic from the VLAN.

**Syntax**

```
show vlan Multicast-tv vlan vlan-id
```

**Parameters**

`vlan-id`—Specifies the VLAN ID.

**Default Configuration**

N/A

**Command Mode**

EXEC mode

**Example**

The following example displays information on the source and receiver ports of Multicast-TV VLAN 1000.

```
switchxxxxxx# show vlan multicast-tv vlan 1000
Source Ports Receiver Ports
------------ -------------------
gi8, gi9 gi1-18
```
IGMP Snooping Commands

32.1 ip igmp snooping (Global)

Use the `ip igmp snooping` Global Configuration mode command to enable Internet Group Management Protocol (IGMP) snooping. Use the `no` form of this command to disable IGMP snooping.

Syntax

```
ip igmp snooping
no ip igmp snooping
```

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

The following example enables IGMP snooping.

```
switchxxxxxx(config)# ip igmp snooping
```

32.2 ip igmp snooping vlan

Use the `ip igmp snooping vlan` Global Configuration mode command to enable IGMP snooping on a specific VLAN. Use the `no` form of this command to disable IGMP snooping on a VLAN interface.

Syntax

```
ip igmp snooping vlan vlan-id
no ip igmp snooping vlan vlan-id
```
Parameters

`vlan vlan-id`—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

IGMP snooping can be enabled only on static VLANs.

IGMPv1, IGMPv2 and IGMPv3 are supported.

To activate IGMP snooping, the bridge multicast filtering should be enabled.

The user guidelines of the bridge multicast mode Interface VLAN Configuration command describes the configuration that is written into the FDB as a function of the FDB mode and the IGMP version that is used in the network.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 2
```

### 32.3 ip igmp snooping vlan mrouter

Use the `ip igmp snooping vlan mrouter` Global Configuration mode command to enable automatic learning of Multicast router ports on a VLAN. Use the `no` form of this command to remove the configuration.

Syntax

```
ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
no ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
```

Parameters

`vlan vlan-id`—Specifies the VLAN.

Default Configuration

Learning pim-dvmrp is enabled.
**IGMP Snooping Commands**

**Command Mode**
Global Configuration mode

**User Guidelines**
Multicast router ports are learned according to:

- Queries received on the port
- PIM/PIMv2 received on the port
- DVMRP received on the port
- MRDISC received on the port
- MOSPF received on the port

You can execute the command before the VLAN is created.

**Example**

```
switchxxxxxxx(config)# ip igmp snooping vlan 1 mrouter learn pim-dvmrp
```

**32.4 ip igmp snooping vlan mrouter interface**

Use the `ip igmp snooping mrouter interface` Global Configuration mode command to define a port that is connected to a Multicast router port. Use the `no` form of this command to remove the configuration.

**Syntax**

```
ip igmp snooping vlan vlan-id mrouter interface interface-list
no ip igmp snooping vlan vlan-id mrouter interface interface-list
```

**Parameters**

- `vlan vlan-id`—Specifies the VLAN.
- `interface interface-list`—Specifies the list of interfaces. The interfaces can be one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No ports defined
**Command Mode**
Global Configuration mode

**User Guidelines**
A port that is defined as a Multicast router port receives all IGMP packets (reports and queries) as well as all Multicast data.

You can execute the command before the VLAN is created.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 mrouter interface gi1
```

### 32.5 ip igmp snooping vlan forbidden mrouter

Use the `ip igmp snooping vlan forbidden mrouter` Global Configuration mode command to forbid a port from being defined as a Multicast router port by static configuration or by automatic learning. Use the `no` form of this command to remove the configuration.

**Syntax**

```
ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
no ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
```

**Parameters**

- `vlan vlan-id`—Specifies the VLAN.
- `interface interface-list`—Specifies a list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No ports defined.

**Command Mode**

Global Configuration mode
User Guidelines

A port that is a forbidden mrouter port cannot be a Multicast router port (i.e. cannot be learned dynamically or assigned statically).

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 forbidden mrouter interface gi1
```

### 32.6  ip igmp snooping vlan static

Use the `ip igmp snooping vlan static` Global Configuration mode command to register an IP-layer Multicast address to the bridge table, and to add static ports to the group defined by this address. Use the `no` form of this command to remove ports specified as members of a static Multicast group.

**Syntax**

```
ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
no ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
```

**Parameter**

- `vlan vlan-id`—Specifies the VLAN.
- `static ip-address`—Specifies the IP Multicast address.
- `interface interface-list`—Specifies a list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No Multicast addresses are defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Static Multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.
You can register an entry without specifying an interface.
Using the **no** command without a port-list removes the entry.

**Example**

```
switchxxxxx(config)# ip igmp snooping vlan 1 static 239.2.2.2 interface gi1
```

### 32.7 ip igmp snooping vlan multicast-tv

Use the **ip igmp snooping vlan multicast-tv** Global Configuration mode command to define the Multicast IP addresses that are associated with a Multicast TV VLAN. Use the **no** form of this command to remove all associations.

**Syntax**

```
ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]
o no ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]
```

**Parameters**

- **vlan-id**—Specifies the VLAN
- **count number**—Configures multiple contiguous Multicast IP addresses. If not specified, the default is 1. (Range: 1–256)

**Default Configuration**

No Multicast IP address is associated.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to define the Multicast transmissions on a Multicast-TV VLAN. The configuration is only relevant for an Access port that is a member in the configured VLAN as a Multicast-TV VLAN.

If an IGMP message is received on such an Access port, it is associated with the Multicast-TV VLAN only if it is for one of the Multicast IP addresses that are associated with the Multicast-TV VLAN.

Up to 256 VLANs can be configured.
Example

switchxxxxxx(config)# ip igmp snooping vlan 1 multicast-tv 239.2.2.2 count 3

32.8 ip igmp snooping map cpe vlan

The **ip igmp snooping map cpe vlan** Global Configuration mode command maps CPE VLANs to Multicast-TV VLANs. Use the **no** form of this command to remove the mapping.

**Syntax**

```
ip igmp snooping map cpe vlan vlan-id multicast-tv vlan vlan-id
no ip igmp snooping map cpe vlan vlan-id
```

**Parameters**

- **cpe vlan vlan-id**—Specifies the CPE VLAN ID.
- **multicast-tv vlan vlan-id**—Specifies the Multicast-TV VLAN ID.

**Default Configuration**

No mapping exists.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to associate the CPE VLAN with a Multicast-TV VLAN.

If an IGMP message is received on a customer port tagged with a CPE VLAN, and there is mapping from that CPE VLAN to a Multicast-TV VLAN, the IGMP message is associated with the Multicast-TV VLAN.

**Example**

The following example maps CPE VLAN 2 to Multicast-TV VLAN 31.

```
switchxxxxxx(config)# ip igmp snooping map cpe vlan 2 multicast-tv vlan 31
```
32.9  ip igmp snooping vlan querier

Use the `ip igmp snooping vlan querier` Global Configuration mode command to enable the Internet Group Management Protocol (IGMP) querier on a specific VLAN. Use the `no` form of this command to disable the IGMP querier on a VLAN interface.

Syntax

```
ip igmp snooping vlan vlan-id querier
no ip igmp snooping vlan vlan-id querier
```

Parameters

- `vlan vlan-id`—Specifies the VLAN

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The IGMP snooping querier can be enabled on a VLAN only if IGMP snooping is enabled for that VLAN.

At most one switch can be configured as an IGMP Querier for a VLAN.

When the IGMP snooping querier is enabled, it starts after a host-time-out/2 with no IGMP traffic being detected from a Multicast router.

The IGMP Snooping Querier disables itself if it detects IGMP traffic from a Multicast router. It restarts automatically after host-time-out/2.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier
```
32.10 ip igmp snooping vlan querier address

Use the ip igmp snooping vlan querier address Global Configuration mode command to define the source IP address that the IGMP snooping querier uses. Use the no form of this command to return to default.

Syntax

ip igmp snooping vlan vlan-id querier address ip-address

no ip igmp snooping vlan vlan-id querier address

Parameters

- vlan vlan-id—Specifies the VLAN.
- querier address ip-address—Source IP address.

Default Configuration

If an IP address is configured for the VLAN, it is used as the source address of the IGMP snooping querier. If there are multiple IP addresses, the minimum IP address defined on the VLAN is used.

Command Mode

Global Configuration mode

User Guidelines

If an IP address is not configured by this command, and no IP address is configured for the querier’s VLAN, the querier is disabled.

Example

switchxxxxxx(config)# ip igmp snooping vlan 1 querier address 10.5.234.205

32.11 ip igmp snooping vlan querier version

Use the ip igmp snooping vlan querier version Global Configuration mode command to configure the IGMP version of an IGMP querier on a specific VLAN. Use the no form of this command to return to the default version.
Syntax

ip igmp snooping vlan vlan-id querier version {2 | 3}
no ip igmp snooping vlan vlan-id querier version

Parameters

- vlan vlan-id—Specifies the VLAN.
- querier version 2—Specifies that the IGMP version would be IGMPv2.
- querier version 3—Specifies that the IGMP version would be IGMPv3.

Default Configuration

IGMPv2.

Command Mode

Global Configuration mode

Example

switchxxxxxxx(config)# ip igmp snooping vlan 1 querier version 3

32.12 ip igmp robustness

Use the ip igmp robustness Interface Configuration (VLAN) mode command to set the IGMP robustness variable on a VLAN. Use the no format of the command to return to default.

Syntax

ip igmp robustness count
no ip igmp robustness

Parameters

- count—The number of expected packet loss on a link. Parameter range. (Range: 1–7)

Default Configuration

2
**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

You can execute the command before the VLAN is created, but you must enter the command in Interface VLAN mode.

**Example**

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp robustness 3
```

### 32.13 ip igmp query-interval

Use the `ip igmp query-interval` Interface Configuration (VLAN) mode command to configure the Query interval on a VLAN. Use the `no` format of the command to return to default.

**Syntax**

```
ip igmp query-interval seconds
no ip igmp query-interval
```

**Parameters**

- `seconds`—Frequency, in seconds, at which IGMP query messages are sent on the interface. (Range: 30–18000)

**Default Configuration**

125

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

You can execute the command before the VLAN is created.
Example

switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp query-interval 200

32.14 ip igmp query-max-response-time

Use the ip igmp query-max-response-time Interface Configuration (VLAN) mode command to configure the Query Maximum Response time on a VLAN. Use the no format of the command to return to default.

Syntax

ip igmp query-max-response-time seconds
no ip igmp query-max-response-time

Parameters

seconds—Maximum response time, in seconds, advertised in IGMP queries.
(Range: 5–20)

Default Configuration

10

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

You can execute the command before the VLAN is created.

Example

switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp query-max-response-time 20
32.15  ip igmp last-member-query-count

Use the \texttt{ip igmp last-member-query-count} Interface Configuration (VLAN) mode command to configure the Last Member Query Counter on a VLAN. Use the \texttt{no} format of the command to return to default.

Syntax

\texttt{ip igmp last-member-query-count \textit{count}}

\texttt{no ip igmp last-member-query-count}

Parameter

\textit{count}—The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

Default Configuration

A value of Robustness variable

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

You can execute the command before the VLAN is created.

Example

\begin{verbatim}
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp last-member-query-count 7
\end{verbatim}

32.16  ip igmp last-member-query-interval

Use the \texttt{ip igmp last-member-query-interval} Interface Configuration (VLAN) mode command to configure the Last Member Query interval on a VLAN. Use the \texttt{no} format of the command to return to default.

Syntax

\texttt{ip igmp last-member-query-interval \textit{milliseconds}}

\texttt{no ip igmp last-member-query-interval}
Parameters

milliseconds—Interval, in milliseconds, at which IGMP group-specific host query messages are sent on the interface. (Range: 100–25500)

Default Configuration

1000

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp last-member-query-interval 2000
```

### 32.17 ip igmp snooping vlan immediate-leave

Use the `ip igmp snooping vlan immediate-leave` Global Configuration mode command to enable the IGMP Snooping Immediate-Leave processing on a VLAN. Use the `no` format of the command to disable IGMP Snooping Immediate-Leave processing.

Syntax

```
ip igmp snooping vlan vlan-id immediate-leave
no ip igmp snooping vlan vlan-id immediate-leave
```

Parameters

`vlan vlan-id`—Specifies the VLAN ID value. (Range: 1–4094)

Default Configuration

Disabled
IGMP Snooping Commands

Command Mode
Global Configuration mode

User Guidelines
You can execute the command before the VLAN is created.

Example
The following example enables IGMP snooping immediate-leave feature on VLAN 1.

```
switchxxxxxx(config)# ip igmp snooping vlan 1 immediate-leave
```

32.18 show ip igmp snooping mrouter

The `show ip igmp snooping mrouter` EXEC mode command displays information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN.

Syntax
```
show ip igmp snooping mrouter [interface vlan-id]
```

Parameters
- `interface vlan-id`—Specifies the VLAN ID.

Command Mode
EXEC mode

Example
The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000.

```
switchxxxxxx# show ip igmp snooping mrouter interface 1000
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1000</td>
<td>gi1</td>
<td>gi2</td>
<td>gi3-23</td>
</tr>
</tbody>
</table>
### 32.19 show ip igmp snooping interface

The *show ip igmp snooping interface* EXEC mode command displays the IGMP snooping configuration for a specific VLAN.

**Syntax**

```
show ip igmp snooping interface vlan-id
```

**Parameters**

- `interface vlan-id`—Specifies the VLAN ID.

**Command Mode**

EXEC mode

**Example**

The following example displays the IGMP snooping configuration for VLAN 1000

```
switchxxxxxx# show ip igmp snooping interface 1000
IGMP Snooping is globally enabled
IGMP Snooping admin: Enabled
IGMP Snooping oper: Enabled
Routers IGMP version: 3
Groups that are in IGMP version 2 compatibility mode:
231.2.2.3, 231.2.2.3
Groups that are in IGMP version 1 compatibility mode:
IGMP snooping querier admin: Enabled
IGMP snooping querier oper: Enabled
IGMP snooping querier address admin:
IGMP snooping querier address oper: 172.16.1.1
IGMP snooping querier version admin: 3
IGMP snooping robustness: admin 2 oper 2
IGMP snooping query interval: admin 125 sec oper 125 sec
IGMP snooping query maximum response: admin 10 sec oper 10 sec
```
IGMP snooping last member query counter: admin 2 oper 2
IGMP snooping last member query interval: admin 1000 msec oper 500 msec
IGMP snooping last immediate leave: enable
Automatic learning of Multicast router ports is enabled

### 32.20 show ip igmp snooping groups

The `show ip igmp snooping groups` EXEC mode command displays the Multicast groups learned by the IGMP snooping.

**Syntax**

```
show ip igmp snooping groups [vlan vlan-id] [address ip-multicast-address] [source ip-address]
```

**Parameters**

- `vlan vlan-id`—Specifies the VLAN ID.
- `address ip-multicast-address`—Specifies the IP multicast address.
- `source ip-address`—Specifies the IP source address.

**Command Mode**

EXEC mode

**User Guidelines**

To see all Multicast groups learned by IGMP snooping, use the `show ip igmp snooping groups` command without parameters.

Use the `show ip igmp snooping groups` command with parameters to see a needed subset of all Multicast groups learned by IGMP snooping.

To see the full Multicast address table (including static addresses), use the `show bridge multicast address-table` command.
Example
The following example shows sample output for IGMP version 2.

```
switchxxxxxx# show ip igmp snooping groups
Vlan Group Address Source Address Include Ports Exclude Ports Comp-Mode
--- --------- -------- ------------ ------------ -------
1 239.255.250 * gi1 v3
```

32.21  `show ip igmp snooping multicast-tv`

The `show ip igmp snooping multicast-tv` EXEC mode command displays the IP addresses associated with Multicast TV VLANs.

Syntax
```
show ip igmp snooping multicast-tv [vlan vlan-id]
```

Parameters
`vlan vlan-id`—Specifies the VLAN ID.

Command Mode
EXEC mode

Example
The following example displays the IP addresses associated with all Multicast TV VLANs.

```
switchxxxxxx# show ip igmp snooping multicast-tv
VLAN IP Address
--- --------
1000 239.255.0.0
1000 239.255.0.1
1000 239.255.0.2
1000 239.255.0.3
1000 239.255.0.4
```
32.22 show ip igmp snooping cpe vlans

The show ip igmp snooping cpe vlans EXEC mode command displays the CPE VLAN to Multicast TV VLAN mappings.

Syntax

show ip igmp snooping cpe vlans [vlan vlan-id]

Parameters

vlan vlan-id — Specifies the CPE VLAN ID.

Command Mode

EXEC mode

Example

The following example displays the CPE VLAN to Multicast TV VLAN mappings.

switchxxxxxx# show ip igmp snooping cpe vlans

<table>
<thead>
<tr>
<th>CPE VLAN</th>
<th>Multicast-TV VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1118</td>
</tr>
<tr>
<td>3</td>
<td>1119</td>
</tr>
</tbody>
</table>
IPv6 MLD Snooping Commands

33.1 ipv6 mld snooping (Global)

The `ipv6 mld snooping` Global Configuration mode command enables IPv6 Multicast Listener Discovery (MLD) snooping. To disable IPv6 MLD snooping, use the `no` form of this command.

**Syntax**

ipv6 mld snooping

no ipv6 mld snooping

**Parameters**

N/A

**Default Configuration**

IPv6 MLD snooping is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables IPv6 MLD snooping.

```
switchxxxxxx(config)# ipv6 mld snooping
```

33.2 ipv6 mld snooping vlan

Use the `ipv6 mld snooping vlan` Global Configuration mode command to enable MLD snooping on a specific VLAN. Use the `no` form of this command to disable MLD snooping on a VLAN interface.

**Syntax**

ipv6 mld snooping vlan vlan-id
no ipv6 mld snooping vlan vlan-id

Parameters

vlan-id—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

MLD snooping can only be enabled on static VLANs.

MLDv1 and MLDv2 are supported.

To activate MLD snooping, the Bridge Multicast Filtering command must be enabled.

The user guidelines of the bridge multicast ipv6 mode Interface VLAN Configuration command describe the configuration that can be written into the FDB as a function of the FDB mode, and the MLD version that is used in the network.

Example

switchxxxxxx(config)# ipv6 mld snooping vlan 2

33.3 ipv6 mld robustness

Use the ipv6 mld robustness interface Configuration mode command to change a value of MLD robustness. Use the no format of the command to return to default.

Syntax

ipv6 mld robustness count

no ipv6 mld robustness

Parameters

count - The number of expected packet losses on a link. (Range: 1–7)
Default Configuration
2

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld robustness 3
```

### 33.4 ipv6 mld snooping vlan mrouter

Use the `ipv6 mld snooping vlan mrouter` Global Configuration mode command to enable automatic learning of Multicast router ports. Use the `no` form of this command to remove the configuration.

#### Syntax

```
ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
no ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
```

#### Parameters

- `vlan-id`—Specifies the VLAN.
- `pim-dvmrp`—Learn Multicast router port by PIM, DVMRP and MLD messages.

#### Default Configuration

Learning `pim-dvmrp` is enabled.

#### Command Mode

Global Configuration mode
User Guidelines

Multicast router ports can be configured statically with the `bridge multicast forward-all` command.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 mrouter learn pim-dvmrp
```

33.5 IPv6 mld snooping vlan mrouter

Use the `ipv6 mld snooping vlan mrouter` Interface Configuration mode command to define a port that is connected to a Multicast router port. Use the `no` form of this command to remove the configuration.

Syntax

```
ipv6 mld snooping vlan vlan-id mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies a list of interfaces. The interfaces can be from one of the following types: port or port-channel.

Default Configuration

No ports defined

Command Mode

Interface Configuration mode

User Guidelines

This command may be used in conjunction with the `bridge multicast forward-all` command, which is used in older versions to statically configure a port as a Multicast router.

A port that is defined as a Multicast router port receives all MLD packets (reports and queries) as well as all Multicast data.
You can execute the command before the VLAN is created and for a range of ports as shown in the example.

**Example**

```bash
switchxxxxxx(config)interface gi1/1/1
switchxxxxxx(config-if)# ipv6 mld snooping vlan 1 mrouter interface gi1/1/1 - 10
```

### 33.6 ipv6 mld snooping vlan forbidden mrouter

Use the `ipv6 mld snooping vlan forbidden mrouter` Global Configuration mode command to forbid a port from being defined as a Multicast router port by static configuration or by automatic learning. Use the `no` form of this command to remove the configuration.

**Syntax**

```
ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
```

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No forbidden ports by default

**Command Mode**

Global Configuration mode

**User Guidelines**

A port that is forbidden to be defined as a Multicast router port (mrouter port) cannot be learned dynamically or assigned statically.

The `bridge multicast forbidden forward-all` command was used in older versions to forbid dynamic learning of Multicast router ports.
You can execute the command before the VLAN is created.

**Example**

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 forbidden mrouter interface gi1
```

### 33.7 ipv6 mld snooping vlan static

Use the `ipv6 mld snooping vlan static` Global Configuration mode command to register a IPv6-layer Multicast address to the bridge table, and to add statically ports to the group. Use the `no` form of this command to remove ports specified as members of a static Multicast group.

**Syntax**

```
ipv6 mld snooping vlan vlan-id static ipv6-address interface [interface-list]
```

```
no ipv6 mld snooping vlan vlan-id static ipv6-address interface [interface-list]
```

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `ipv6-address`—Specifies the IP multicast address
- `interface-list`—Specifies list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No Multicast addresses are defined.

**Command Mode**

Global configuration mode

**User Guidelines**

Static multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.

You can register an entry without specifying an interface.

Using the `no` command without a port-list removes the entry.
Example

```plaintext
switchxxxxx(config)# ipv6 mld snooping vlan 1 static 239.2.2.2 gi1
```

### 33.8 ipv6 mld query-interval

Use the `ipv6 mld query-interval` Interface Configuration mode command to configure the Query interval. Use the `no` format of the command to return to default.

**Syntax**

```plaintext
ipv6 mld query-interval seconds
ipv6 mld query-interval
```

**Parameters**

- **seconds**—Frequency, in seconds, at which MLD query messages are sent on the interface. (Range: 30–18000)

**Default Configuration**

125

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

This command provides the frequency value if this value is not received in MLD general query messages. A field for this value is present in MLDv2 general query messages, but this field may be blank. There is no field for this value in MLDv1 general query messages.

**Example**

```plaintext
switchxxxxx(config)# interface vlan 1
switchxxxxx(config-if)# ipv6 mld query-interval 3000
```
33.9  ipv6 mld query-max-response-time

Use the `ipv6 mld query-max-response-time` Interface Configuration mode command to configure the Query Maximum Response time. Use the `no` format of the command to return to default.

**Syntax**

```
ipv6 mld query-max-response-time seconds
no ipv6 mld query-max-response-time
```

**Parameter**

`seconds`—Maximum response time, in seconds, advertised in MLD queries.
(Range: 5–20)

**Default Configuration**

10

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

This command provides the maximum response time value if this value is not received in MLD general query messages. A field for this value is present in MLDv2 general query messages, but this field may be blank. There is no field for this value in MLDv1 general query messages.

**Example**

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld query-max-response-time 5
```

33.10  ipv6 mld last-member-query-count

Use the `ipv6 mld last-member-query-count` Interface Configuration mode command to configure the Last Member Query Count. This is the number of Multicast address specific queries sent before the router assumes there are no local listeners. The Last Listener Query Count is also the number of Multicast
Address and Source Specific Queries sent before the router assumes there are no listeners for a particular source.

Use the no format of the command to return to default.

Syntax

ipv6 mld last-member-query-count count

no ipv6 mld last-member-query-count

Parameters

count—The number of times that group- or group-source-specific queries are sent upon receipt of a Leave message. (Range: 1–7)

Default Configuration

The value of the Robustness variable.

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

This command provides the maximum response time value if this value is not received in MLD general query messages. A field for this value is present in MLDv2 general query messages, but this field may be blank. There is no field for this value in MLDv1 general query messages.

Example

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld last-member-query-count 3
```

### 33.11 ipv6 mld last-member-query-interval

Use the `ipv6 mld last-member-query-interval` interface configuration command to configure the Last Member Query Interval. Use the no format of the command to return to default.

Syntax

```
ipv6 mld last-member-query-interval milliseconds
```
no ipv6 mld last-member-query-interval

Parameter

milliseconds—Interval, in milliseconds, at which MLD group-specific host query messages are sent on the interface. (Range: 100–64512).

Default Configuration

1000

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

This command provides this value if it is not is not received in MLD general query messages. A field for this value is present in MLDv2 general query messages, but this field may be blank. There is no field for this value in MLDv1 general query messages.

Example

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld last-member-query-interval 2000
```

### 33.12 ipv6 mld snooping vlan immediate-leave

Use the `ipv6 mld snooping vlan immediate-leave` Global Configuration mode command to enable MLD Snooping Immediate-Leave processing on a VLAN. When an MLD Leave Group message is received from a host, the system removes the host port from the table entry. After it relays the MLD queries from the Multicast router, it deletes entries periodically if it does not receive any MLD membership reports from the Multicast clients.

MLD snooping Immediate-Leave processing allows the switch to remove an interface that sends a leave message from the forwarding table without first sending out MAC-based general queries to the interface.

Use the `no` format of the command to return to disable MLD Snooping Immediate-Leave processing.
Syntax
ipv6 mld snooping vlan vlan-id immediate-leave
no ipv6 mld snooping vlan vlan-id immediate-leave

Parameters
vlan-id—Specifies the VLAN ID value. (Range: 1–4094)

Default Configuration
Disabled

Command Mode
Global Configuration mode

User Guidelines
You can execute the command before the VLAN is created.

Example

switchxxxxxx(config)# ipv6 mld snooping vlan 1 immediate-leave

33.13 show ipv6 mld snooping mrouter

The show ipv6 mld snooping mrouter EXEC mode command displays information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN.

Syntax
show ipv6 mld snooping mrouter [interface vlan-id]

Parameters
interface vlan-id—Specifies the VLAN ID.

Default Configuration
Display information for all VLANs.
Command Mode
EXEC mode

Example
The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000

```
switchxxxxxx# show ipv6 mld snooping mrouter interface 1000
VLAN Static Dynamic Forbidden
---- ------ -------
1000 gi1 gi2 gi3-23
```

33.14 show ipv6 mld snooping interface
The `show ipv6 mld snooping interface` EXEC mode command displays the IPv6 MLD snooping configuration for a specific VLAN.

Syntax
```
show ipv6 mld snooping interface vlan-id
```

Parameters
- `vlan-id`—Specifies the VLAN ID.

Default Configuration
Display information for all VLANs.

Command Mode
EXEC mode

Example
The following example displays the MLD snooping configuration for VLAN 1000.

```
switchxxxxxx# show ipv6 mld snooping interface 1000
MLD Snooping is globally enabled
```
MLD Snooping admin: Enabled
MLD snooping oper mode: Enabled
Routers MLD version: 2
Groups that are in MLD version 1 compatibility mode:
FF12::3, FF12::8
MLD snooping robustness: admin 2  oper 2
MLD snooping query interval: admin 125 sec  oper 125 sec
MLD snooping query maximum response: admin 10 sec  oper 10 sec
MLD snooping last member query counter: admin 2  oper 2
MLD snooping last member query interval: admin 1000 msec  oper 600 msec
MLD snooping last immediate leave: enable
Automatic learning of multicast router ports is enabled

### 33.15 show ipv6 mld snooping groups

The `show ipv6 mld snooping groups` EXEC mode command displays the multicast groups learned by the MLD snooping.

**Syntax**

```plaintext
show ipv6 mld snooping groups [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-address]
```

**Parameters**

- `vlan vlan-id`—Specifies the VLAN ID.
- `address ipv6-multicast-address`—Specifies the IPv6 multicast address.
- `source ipv6-address`—Specifies the IPv6 source address.

**Command Mode**

EXEC mode

**Default Configuration**

Display information for all VLANs and addresses defined on them.
User Guidelines

To see the full multicast address table (including static addresses), use the `show bridge multicast address-table` command.

The Include list contains the ports which are in a forwarding state for this group according to the snooping database. In general, the Exclude list contains the ports which have issued an explicit Exclude for that specific source in a multicast group.

The Reporters That Are Forbidden Statically list contains the list of ports which have asked to receive a multicast flow but were defined as forbidden for that multicast group in a multicast bridge.

Note: Under certain circumstances, the Exclude list may not contain accurate information; for example, in the case when two Exclude reports were received on the same port for the same group but for different sources, the port will not be in the Exclude list but rather in the Include list.

Example

The following example shows the output for `show ipv6 mld snooping groups`.

```
switchxxxxxx# show ipv6 mld snooping groups

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Include Ports</th>
<th>Exclude Ports</th>
<th>Compatibility Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8002</td>
<td>gi2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8003</td>
<td>gi9</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8004</td>
<td>gi1</td>
<td>gi2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8005</td>
<td>gi10-11</td>
<td>gi3</td>
<td>2</td>
</tr>
</tbody>
</table>

MLD Reporters that are forbidden statically:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Include Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi8</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi9</td>
</tr>
</tbody>
</table>
```
34.1 lACP system-priority

Use the `lACP system-priority` Global Configuration mode command to set the system priority. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lACP system-priority value
no lACP system-priority
```

**Parameters**

`value` — Specifies the system priority value. (Range: 1–65535)

**Default Configuration**

The default system priority is 1.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the system priority to 120.

```
switchxxxxxxx(config)# lACP system-priority 120
```

34.2 lACP port-priority

Use the `lACP port-priority` Interface Configuration (Ethernet) mode command to set the physical port priority. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lACP port-priority value
```
no lacp port-priority

Parameters

value—Specifies the port priority. (Range: 1use the no form of this command65535)

Default Configuration
The default port priority is 1.

Command Mode
Interface Configuration (Ethernet) mode

Example
The following example sets the priority of gi6.

```
switchxxxxx(config)# interface gi6
switchxxxxx(config-if)# lacp port-priority 247
```

34.3 lacp timeout

Use the lacp timeout Interface Configuration (Ethernet) mode command to assign an administrative LACP timeout to an interface. Use the no form of this command to restore the default configuration.

Syntax

lacp timeout /long /short/

no lacp timeout

Parameters

- long—Specifies the long timeout value.
- short—Specifies the short timeout value.

Default Configuration
The default port timeout value is Long.
Command Mode
Interface Configuration (Ethernet) mode

Example
The following example assigns a long administrative LACP timeout to gi6.

```
switchxxxxx(config)# interface gi6
switchxxxxx(config-if)# lacp timeout long
```

34.4 show lacp
Use the show lacp EXEC mode command to display LACP information for all Ethernet ports or for a specific Ethernet port.

Syntax
```
show lacp interface-id [parameters | statistics | protocol-state]
```

Parameters
- **interface-id** — Specify an interface ID. The interface ID must be an Ethernet port
- **parameters** — Displays parameters only.
- **statistics** — Displays statistics only.
- **protocol-state** — Displays protocol state only.

Command Mode
EXEC mode

Example
The following example displays LACP information for gi1.

```
switchxxxxx# show lacp ethernet gi1
Port gi1 LACP parameters:
 Actor
```
system priority: 1
system mac addr: 00:00:12:34:56:78
port Admin key: 30
port Oper key: 30
port Oper number: 21
port Admin priority: 1
port Oper priority: 1
port Admin timeout: LONG
port Oper timeout: LONG
LACP Activity: ACTIVE
Aggregation: AGGREGATABLE
synchronization: FALSE
collecting: FALSE
distributing: FALSE
expired: FALSE

Partner
system priority: 0
system mac addr: 00:00:00:00:00:00
port Admin key: 0
port Oper key: 0
port Oper number: 0
port Admin priority: 0
port Oper priority: 0
port Admin timeout: LONG
port Oper timeout: LONG
LACP Activity: PASSIVE
Aggregation: AGGREGATABLE
synchronization: FALSE
collecting: FALSE
distributing: FALSE
expired: FALSE

Port gi1 LACP Statistics:
LACP PDUs sent: 2
LACP PDUs received: 2

Port gi1 LACP Protocol State:
LACP State Machines:
Receive FSM: Port Disabled State
Mux FSM: Detached State
34.5  show lacp port-channel

Use the show lacp port-channel EXEC mode command to display LACP information for a port-channel.

Syntax

show lacp port-channel [port_channel_number]

Parameters

port_channel_number—Specifies the port-channel number.

Command Mode

EXEC mode

Example

The following example displays LACP information about port-channel 1.

switchxxxxxx# show lacp port-channel 1

Port-Channel 1:Port Type 1000 Ethernet
  Actor
System
Priority: 1
MAC Address: 000285:0E1C00
Admin Key: 29
Oper Key: 29

Partner
System 0
Priority: 00:00:00:00:00:00
MAC Address: 14
Oper Key:
35.1 gvrp enable (Global)

Use the `gvrp enable` Global Configuration mode command to enable the Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) globally. Use the `no` form of this command to disable GVRP on the device.

**Syntax**

gvrp enable
no gvrp enable

**Parameters**

N/A

**Default Configuration**

GVRP is globally disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables GVRP globally on the device.

```
switchxxxxxx(config)# gvrp enable
```

35.2 gvrp enable (Interface)

Use the `gvrp enable` Interface Configuration (Ethernet, Port-channel) mode command to enable GVRP on an interface. Use the `no` form of this command to disable GVRP on an interface.

**Syntax**

gvrp enable
no gvrp enable

Default Configuration
GVRP is disabled on all interfaces.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
An access port does not dynamically join a VLAN because it is always a member of a single VLAN only. Membership in an untagged VLAN is propagated in the same way as in a tagged VLAN. That is, the PVID must be manually defined as the untagged VLAN ID.

Example
The following example enables GVRP on gi6.

```
switchxxxxxx(config)# interface gi6
switchxxxxxx(config-if)# gvrp enable
```

35.3  gvrp vlan-creation-forbid

Use the `gvrp vlan-creation-forbid` Interface Configuration mode command to disable dynamic VLAN creation or modification. Use the `no` form of this command to enable dynamic VLAN creation or modification.

Syntax

```
gvrp vlan-creation-forbid
no gvrp vlan-creation-forbid
```

Default Configuration
Enabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode
Example

The following example disables dynamic VLAN creation on gi3.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# gvrp vlan-creation-forbid
```

35.4 gvrp registration-forbid

Use the `gvrp registration-forbid` Interface Configuration mode command to deregister all dynamic VLANs on a port and prevent VLAN creation or registration on the port. Use the `no` form of this command to allow dynamic registration of VLANs on a port.

Syntax

```
gvrp registration-forbid
no gvrp registration-forbid
```

Default Configuration

Dynamic registration of VLANs on the port is allowed.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example forbids dynamic registration of VLANs on gi2.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# gvrp registration-forbid
```

35.5 clear gvrp statistics

Use the `clear gvrp statistics` Privileged EXEC mode command to clear GVRP statistical information for all interfaces or for a specific interface.
Syntax

`clear gvrp statistics [interface-id]`

Parameters

`Interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears all GVRP statistical information on gi5.

```
switchxxxxxx# clear gvrp statistics gi5
```

### 35.6 show gvrp configuration

Use the `show gvrp configuration` EXEC mode command to display GVRP configuration information, including timer values, whether GVRP and dynamic VLAN creation are enabled, and which ports are running GVRP.

Syntax

`show gvrp configuration [interface-id | detailed]`

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

All GVRP statistics are displayed for all interfaces. If detailed is not used, only present ports are displayed.
### Command Mode

EXEC mode

### Example

The following example displays GVRP configuration.

```
switchxxxxxx# show gvrp configuration
GVRP Feature is currently Enabled on the device.
Maximum VLANs: 4094
Port(s) GVRP-Status Regist- Dynamic Timers(ms)
 ration VLAN Creation Join Leave Leave All
---- ----------- -------- ------------- ---- ----- ----------
gi1 Enabled Forbidden Disabled 600 200 10000
35.7 show gvrp statistics
Use the show gvrp statistics EXEC mode command to display GVRP statistics for all interfaces or for a specific interface.

Syntax

```
show gvrp statistics [interface-id]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are displayed.

Command Mode

EXEC mode
Example

The following example displays GVRP statistical information.

```
switchxxxxxx# show gvrp statistics
```

```
GVRP statistics:
--------------
Legend:
rJE : Join Empty Received  rJIn: Join In Received
rEmp: Empty Received       rLIn: Leave In Received
rLE : Leave Empty Received rLA : Leave All Received
sJE : Join Empty Sent      sJIn: Join In Sent
sEmp: Empty Sent           sLIn: Leave In Sent
sLE : Leave Empty Sent     sLA : Leave All Sent

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
</tr>
<tr>
<td>gi5</td>
<td>0</td>
</tr>
<tr>
<td>gi6</td>
<td>0</td>
</tr>
<tr>
<td>gi7</td>
<td>0</td>
</tr>
<tr>
<td>gi8</td>
<td>0</td>
</tr>
</tbody>
</table>
```

35.8 show gvrp error-statistics

Use the `show gvrp error-statistics` EXEC mode command to display GVRP error statistics for all interfaces or for a specific interface.

Syntax

```
show gvrp error-statistics [interface-id]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
Default Configuration

All GVRP error statistics are displayed.

Command Mode

EXEC mode

Example

The following example displays GVRP error statistics.

```plaintext
switchxxxxxx# show gvrp error-statistics
GVRP Error Statistics:
----------------------
Legend:
  INVPROT  : Invalid Protocol Id
  INVATYP  : Invalid Attribute Type
  INVALEN : Invalid Attribute Length
  INVAVAL  : Invalid Attribute Value
  INVEVENT: Invalid Event

<table>
<thead>
<tr>
<th>Port</th>
<th>INVPROT</th>
<th>INVATYP</th>
<th>INVAVAL</th>
<th>INVALEN</th>
<th>INVEVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
DHCP Snooping and ARP Inspection Commands

36.1 ip dhcp snooping

Use the ip dhcp snooping Global Configuration mode command to enable Dynamic Host Configuration Protocol (DHCP) Snooping globally. Use the no form of this command to restore the default configuration.

Syntax

ip dhcp snooping
no ip dhcp snooping

Parameters

N/A

Default Configuration

DHCP snooping is disabled.

Command Mode

Global Configuration mode

User Guidelines

For any DHCP Snooping configuration to take effect, DHCP Snooping must be enabled globally. DHCP Snooping on a VLAN is not active until DHCP Snooping on a VLAN is enabled by using the ip dhcp snooping vlan Global Configuration mode command.

Example

The following example enables DHCP Snooping on the device.

switchxxxxxx(config)# ip dhcp snooping
36.2 ip dhcp snooping vlan

Use the **ip dhcp snooping vlan** Global Configuration mode command to enable DHCP Snooping on a VLAN. Use the **no** form of this command to disable DHCP Snooping on a VLAN.

Syntax

```
ip dhcp snooping vlan vlan-id
no ip dhcp snooping vlan-id
```

Parameters

- **vlan-id**—Specifies the VLAN ID.

Default Configuration

DHCP Snooping on a VLAN is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP Snooping must be enabled globally before enabling DHCP Snooping on a VLAN.

Example

The following example enables DHCP Snooping on VLAN 21.

```
switchxxxxxxx(config)# ip dhcp snooping vlan 21
```

36.3 ip dhcp snooping trust

Use the **ip dhcp snooping trust** Interface Configuration (Ethernet, Port-channel) mode command to configure a port as trusted for DHCP snooping purposes. Use the **no** form of this command to restore the default configuration.

Syntax

```
ip dhcp snooping trust
```

```
no ip dhcp snooping trust

Parameters
N/A

Default Configuration
The interface is untrusted.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
Configure as trusted the ports that are connected to a DHCP server or to other switches or routers. Configure the ports that are connected to DHCP clients as untrusted.

Example
The following example configures gi5 as trusted for DHCP Snooping.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# ip dhcp snooping trust
```

36.4 ip dhcp snooping information option allowed-untrusted

Use the `ip dhcp snooping information option allowed-untrusted` Global Configuration mode command to allow a device to accept DHCP packets with option-82 information from an untrusted port. Use the `no` form of this command to drop these packets from an untrusted port.

Syntax

```
ip dhcp snooping information option allowed-untrusted
no ip dhcp snooping information option allowed-untrusted
```

Parameters
N/A
Default Configuration

DHCP packets with option-82 information from an untrusted port are discarded.

Command Mode

Global Configuration mode

Example

The following example allows a device to accept DHCP packets with option-82 information from an untrusted port.

switchxxxxxx(config)# ip dhcp snooping information option allowed-untrusted

36.5  ip dhcp snooping verify

Use the `ip dhcp snooping verify` Global Configuration mode command to configure a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address. Use the `no` form of this command to disable MAC address verification in a DHCP packet received on an untrusted port.

Syntax

`ip dhcp snooping verify`

`no ip dhcp snooping verify`

Default Configuration

The switch verifies that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address in the packet.

Command Mode

Global Configuration mode

Example

The following example configures a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address.

switchxxxxxx(config)# ip dhcp snooping verify
36.6  ip dhcp snooping database  

Use the `ip dhcp snooping database` Global Configuration mode command to enable the DHCP Snooping binding database file. Use the `no` form of this command to delete the DHCP Snooping binding database file.

Syntax

`ip dhcp snooping database`

`no ip dhcp snooping database`

Parameters

N/A

Default Configuration

The DHCP Snooping binding database file is not defined.

Command Mode

Global Configuration mode

User Guidelines

The DHCP Snooping binding database file resides on Flash.

To ensure that the lease time in the database is accurate, the Simple Network Time Protocol (SNTP) must be enabled and configured.

The device writes binding changes to the binding database file only if the device system clock is synchronized with SNTP.

Example

The following example enables the DHCP Snooping binding database file.

```
switchxxxxxx(config)# ip dhcp snooping database
```

36.7  ip dhcp snooping database update-freq  

Use the `ip dhcp snooping database update-freq` Global Configuration mode command to set the update frequency of the DHCP Snooping binding database file. Use the `no` form of this command to restore the default configuration.
### Syntax

**ip dhcp snooping database update-freq** *seconds*

no **ip dhcp snooping database update-freq**

**Parameters**

- **seconds**—Specifies the update frequency in seconds. (Range: 600–86400)

**Default Configuration**

The default update frequency value is 1200 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the DHCP Snooping binding database file update frequency to 1 hour.

```
switchxxxxxx(config)# ip dhcp snooping database update-freq 3600
```

### 36.8  **ip dhcp snooping binding**

Use the **ip dhcp snooping binding** Privileged EXEC mode command to configure the DHCP Snooping binding database and add binding entries to the database. Use the no form of this command to delete entries from the binding database.

**Syntax**

```
ip dhcp snooping binding mac-address vlan-id ip-address interface-id expiry [seconds / infinite]
```

no **ip dhcp snooping binding** mac-address vlan-id

**Parameters**

- **mac-address**— Specifies a MAC address.
- **vlan-id**— Specifies a VLAN number.
- **ip-address**— Specifies an IP address.
DHCP Snooping and ARP Inspection Commands

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

- **expiry**
  - **seconds**—Specifies the time interval, in seconds, after which the binding entry is no longer valid. (Range: 10–4294967295)
  - **infinite**—Specifies infinite lease time.

**Default Configuration**

No static binding exists.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

After entering this command, an entry is added to the DHCP Snooping database. If the DHCP Snooping binding file exists, the entry is also added to that file.

The entry is displayed in the show commands as a DHCP Snooping entry.

The user cannot delete dynamic temporary entries for which the IP address is 0.0.0.0.

The user can add static entry to the DHCP Snooping database by using the command `ip source-guard binding`.

**Example**

The following example adds a binding entry to the DHCP Snooping binding database.

```
switchxxxxxx# ip dhcp snooping binding 0060.704C.73FF 23 176.10.1.1 gi5 expiry 900
```

**36.9 clear ip dhcp snooping database**

Use the `clear ip dhcp snooping database` Privileged EXEC mode command to clear the DHCP Snooping binding database.
DHCP Snooping and ARP Inspection Commands

36

Syntax

clear ip dhcp snooping database

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

The following example clears the DHCP Snooping binding database.

```
switchxxxxx# clear ip dhcp snooping database
```

36.10 show ip dhcp snooping

Use the show ip dhcp snooping EXEC mode command to display the DHCP snooping configuration for all interfaces or for a specific interface.

Syntax

show ip dhcp snooping [interface-id]

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

Example

The following example displays the DHCP snooping configuration.

```
switchxxxxx# show ip dhcp snooping
DHCP snooping is Enabled
DHCP snooping is configured on following VLANs: 21
```
DHCP snooping database is Enabled
Relay agent Information option 82 is Enabled
Option 82 on untrusted port is allowed
Verification of hwaddr field is Enabled
DHCP snooping file update frequency is configured to: 6666 seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Yes</td>
</tr>
<tr>
<td>gi2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### 36.11 show ip dhcp snooping binding

Use the `show ip dhcp snooping binding` User EXEC mode command to display the DHCP Snooping binding database and configuration information for all interfaces or for a specific interface.

**Syntax**

`show ip dhcp snooping binding [mac-address mac-address] [ip-address ip-address] [vlan vlan-id] [interface-id]`

**Parameters**

- `mac-address mac-address`—Specifies a MAC address.
- `ip-address ip-address`—Specifies an IP address.
- `vlan vlan-id`—Specifies a VLAN ID.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

User EXEC mode
Example

The following examples displays the DHCP snooping binding database and configuration information for all interfaces on a device.

```
switchxxxxxx# show ip dhcp snooping binding
```

Update frequency: 1200
Total number of binding: 2

<table>
<thead>
<tr>
<th>Mac Address</th>
<th>IP Address</th>
<th>Lease (sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0060.704C.73FF</td>
<td>10.1.8.1</td>
<td>7983</td>
<td>snooping</td>
<td>3</td>
<td>gi21</td>
</tr>
<tr>
<td>0060.704C.7BC1</td>
<td>10.1.8.2</td>
<td>92332</td>
<td>snooping</td>
<td>3</td>
<td>gi22</td>
</tr>
</tbody>
</table>

36.12 ip source-guard

Use the `ip source-guard` command in Configuration mode to enable IP Source Guard globally on a device or in Interface Configuration (Ethernet, Port-channel) mode to enable IP Source Guard on an interface.

Use the `no` form of this command to disable IP Source Guard on the device or on an interface.

Syntax

```
ip source-guard
no ip source-guard
```

Parameters

N/A

Default Configuration

IP source guard is disabled.

Command Mode

Configuration or Interface Configuration (Ethernet, Port-channel) mode
User Guidelines

IP Source Guard must be enabled globally before enabling IP Source Guard on an interface.

IP Source Guard is active only on DHCP snooping untrusted interfaces, and if at least one of the interface VLANs are DHCP snooping enabled.

Example

The following example enables IP Source Guard on gi5.

```
switchxxxxxx(config)# interface gi5
switchxxxxxxx(config-if)# ip source-guard
```

36.13  ip source-guard binding

Use the `ip source-guard binding` Global Configuration mode command to configure the static IP source bindings on the device. Use the `no` form of this command to delete the static bindings.

Syntax

```
ip source-guard binding mac-address vlan-id ip-address {interface-id}
no ip source-guard binding mac-address vlan-id
```

Parameters

- **mac-address**—Specifies a MAC address.
- **vlan-id**—Specifies a VLAN number.
- **ip-address**—Specifies an IP address.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

No static binding exists.

Command Mode

Global Configuration mode
User Guidelines

The device currently supports filtering that is based only on the source IP address. In future, the device might support filtering that is based on the MAC address and IP source address. Currently the MAC address field is an informative field.

Example

The following example configures the static IP source bindings.

```
switchxxxxxx(config)# ip source-guard binding 0060.704C.73FF 23 176.10.1.1 gi5
```

36.14  ip source-guard tcam retries-freq

Use the `ip source-guard tcam retries-freq` Global Configuration mode command to set the frequency of retries for TCAM resources for inactive IP Source Guard addresses. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip source-guard tcam retries-freq {seconds / never}
no ip source-guard tcam retries-freq
```

Parameters

- `seconds`—Specifies the retries frequency in seconds. (Range: 10–600)
- `never`—Disables automatic searching for TCAM resources.

Default Configuration

The default retries frequency is 60 seconds.

Command Mode

Global Configuration mode

User Guidelines

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.
By default, once every minute the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses. Use this command to change the search frequency or to disable automatic retries for TCAM space.

The **ip source-guard tcam locate** Privileged EXEC mode command manually retries locating TCAM resources for the inactive IP Source Guard addresses.

The **show ip source-guard inactive** EXEC mode command displays the inactive IP Source Guard addresses.

**Example**

The following example sets the frequency of retries for TCAM resources to 2 minutes.

```
switchxxxxxx(config)# ip source-guard tcam retries-freq 120
```

### 36.15 ip source-guard tcam locate

Use the **ip source-guard tcam locate** Privileged EXEC mode command to manually retry to locate TCAM resources for inactive IP Source Guard addresses.

**Syntax**

```
ip source-guard tcam locate
```

**Parameters**

N/A

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.

By default, once every minute the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses.

Execute the **ip source-guard tcam retries-freq never** Global Configuration mode command to disable automatic retries for TCAM space, and then execute this
command to manually retry locating TCAM resources for the inactive IP Source Guard addresses.

The `show ip source-guard inactive` EXEC mode command displays the inactive IP source guard addresses.

**Example**

The following example manually retries to locate TCAM resources.

```
switchxxxxxxx# ip source-guard tcam locate
```

### 36.16  `show ip source-guard configuration`

Use the `show ip source-guard configuration` EXEC mode command to display the IP source guard configuration for all interfaces or for a specific interface.

**Syntax**

```
show ip source-guard configuration [interface-id]
```

**Parameters**

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

EXEC mode
Example

The following example displays the IP Source Guard configuration.

```
switchxxxxxx# show ip source-guard configuration
IP source guard is globally enabled.
Interface State
---------- ------
 gi21 Enabled
 gi22 Enabled
 gi23 Enabled
 gi24 Enabled
 gi32 Enabled
 gi33 Enabled
 gi34 Enabled
```

### 36.17 show ip source-guard status

Use the `show ip source-guard status` EXEC mode command to display the IP Source Guard status.

**Syntax**

```
show ip source-guard status [mac-address mac-address] [ip-address ip-address] [vlan vlan] [interface-id]
```

**Parameters**

- `mac-address mac-address`—Specifies a MAC address.
- `ip-address ip-address`—Specifies an IP address.
- `vlan vlan-id`—Specifies a VLAN ID.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

EXEC mode
Example
The following examples display the IP Source Guard status.

```
switchxxxxxx# show ip source-guard status
IP source guard is globally disabled.
```

```
switchxxxxxx# show ip source-guard status

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter</th>
<th>Status</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>VLAN</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi21</td>
<td>IP</td>
<td>Active</td>
<td>10.1.8.1</td>
<td>0060.704C.73FF</td>
<td>3</td>
<td>DHCP</td>
</tr>
<tr>
<td>gi22</td>
<td>IP</td>
<td>Active</td>
<td>10.1.8.2</td>
<td>0060.704C.7BC1</td>
<td>3</td>
<td>DHCP</td>
</tr>
<tr>
<td>gi23</td>
<td>IP</td>
<td>Active</td>
<td>10.1.12.2</td>
<td>0060.704C.7BC3</td>
<td>4</td>
<td>DHCP</td>
</tr>
<tr>
<td>gi24</td>
<td>IP</td>
<td>Active</td>
<td>Deny all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi25</td>
<td>IP</td>
<td>Active</td>
<td>10.1.8.218</td>
<td>0060.704C.7BAC</td>
<td>3</td>
<td>Static</td>
</tr>
<tr>
<td>gi32</td>
<td>IP</td>
<td>Inactive</td>
<td>10.1.8.32</td>
<td>0060.704C.83FF</td>
<td>3</td>
<td>DHCP</td>
</tr>
<tr>
<td>gi33</td>
<td>IP</td>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi34</td>
<td>IP</td>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi35</td>
<td>IP</td>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**36.18 show ip source-guard inactive**

Use the `show ip source-guard inactive` EXEC mode command to display the IP Source Guard inactive addresses.

**Syntax**

```
show ip source-guard inactive
```

**Parameters**

N/A

**Command Mode**

EXEC mode

**User Guidelines**

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.

By default, once every minute the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses.
Use the `ip source-guard tcam retries-freq` Global Configuration mode command to change the retry frequency or to disable automatic retries for TCAM space.

Use the `ip source-guard tcam locate` Privileged EXEC mode command to manually retry locating TCAM resources for the inactive IP Source Guard addresses.

This command displays the inactive IP source guard addresses.

**Example**

The following example displays the IP source guard inactive addresses.

```bash
switchxxxxx# show ip source-guard inactive
```

TBD: TCAM resources search frequency: 10 minutes

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>VLAN</th>
<th>Type</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi32</td>
<td>IP</td>
<td>10.1.8.32</td>
<td>0060.704C.83FF</td>
<td>3</td>
<td>DHCP</td>
<td>Resource Problem</td>
</tr>
<tr>
<td>gi33</td>
<td>IP</td>
<td>10.1.8.32</td>
<td>0060.704C.83FF</td>
<td>3</td>
<td>DHCP</td>
<td>Trust port</td>
</tr>
<tr>
<td>gi34</td>
<td>I</td>
<td>10.1.8.32</td>
<td>0060.704C.83FF</td>
<td>3</td>
<td>DHCP</td>
<td>No snooping VLAN</td>
</tr>
</tbody>
</table>

### 36.19 show ip source-guard statistics

Use the `show ip source-guard statistics` EXEC mode command to display the Source Guard dynamic information (permitted stations).

**Syntax**

```
show ip source-guard statistics [vlan vlan-id]
```

**Parameters**

`vlan-id`—Display the statistics on this VLAN.

**Command Mode**

EXEC mode

**Example**

```bash
switchxxxxx# show ip source-guard statistics
```
VLAN	Statically Permitted Stations	DHCP Snooping Permitted Stations
2    | 2                              | 3

### 36.20 ip arp inspection

Use the **ip arp inspection** Global Configuration mode command globally to enable Address Resolution Protocol (ARP) inspection. Use the **no** form of this command to disable ARP inspection.

**Syntax**

ip arp inspection

no ip arp inspection

**Parameters**

N/A

**Default Configuration**

ARP inspection is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Note that if a port is configured as an untrusted port, then it should also be configured as an untrusted port for DHCP Snooping, or the IP-address-MAC-address binding for this port should be configured statically. Otherwise, hosts that are attached to this port cannot respond to ARPs.

**Example**

The following example enables ARP inspection on the device.

```
switchxxxxxx(config)# ip arp inspection
```
36.21  ip arp inspection vlan

Use the `ip arp inspection vlan` Global Configuration mode command to enable ARP inspection on a VLAN, based on the DHCP Snooping database. Use the `no` form of this command to disable ARP inspection on a VLAN.

**Syntax**

```
ip arp inspection vlan vlan-id
no ip arp inspection vlan vlan-id
```

**Parameters**

- `vlan-id`: Specifies the VLAN ID.

**Default Configuration**

DHCP Snooping based ARP inspection on a VLAN is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables ARP inspection on a VLAN based on the DHCP snooping database. Use the `ip arp inspection list assign` Global Configuration mode command to enable static ARP inspection.

**Example**

The following example enables DHCP Snooping based ARP inspection on VLAN 23.

```
switchxxxxxx(config)# ip arp inspection vlan 23
```

36.22  ip arp inspection trust

Use the `ip arp inspection trust` Interface Configuration (Ethernet, Port-channel) mode command to configure an interface trust state that determines if incoming Address Resolution Protocol (ARP) packets are inspected. Use the `no` form of this command to restore the default configuration.
DHCP Snooping and ARP Inspection Commands

Syntax
ip arp inspection trust
no ip arp inspection trust

Parameters
N/A

Default Configuration
The interface is untrusted.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
The device does not check ARP packets that are received on the trusted interface; it only forwards the packets.

For untrusted interfaces, the device intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The device drops invalid packets and logs them in the log buffer according to the logging configuration specified with the ip arp inspection log-buffer vlan Global Configuration mode command.

Example
The following example configures gi3 as a trusted interface.

| switchxxxxxx(config)# interface gi3 |
| switchxxxxxx(config-if)# ip arp inspection trust |

36.23 ip arp inspection validate

Use the ip arp inspection validate Global Configuration mode command to perform specific checks for dynamic Address Resolution Protocol (ARP) inspection. Use the no form of this command to restore the default configuration.
Syntax

ip arp inspection validate
no ip arp inspection validate

Parameters

N/A

Default Configuration

ARP inspection validation is disabled.

Command Mode

Global Configuration mode

User Guidelines

The following checks are performed:

- **Source MAC address:** Compares the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses.

- **Destination MAC address:** Compares the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses.

- **IP addresses:** Compares the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses.

Example

The following example executes ARP inspection validation.

```
switchxxxxxx(config)# ip arp inspection validate
```
36.25 ip mac

Use the ip mac ARP-list Configuration mode command to create a static ARP binding. Use the no form of this command to delete a static ARP binding.

Syntax

ip ip-address mac mac-address
no ip ip-address mac mac-address

Parameters

- **ip-address**—Specifies the IP address to be entered to the list.
- **mac-address**—Specifies the MAC address associated with the IP address.
Default Configuration
No static ARP binding is defined.

Command Mode
ARP-list Configuration mode

Example
The following example creates a static ARP binding.

```
switchxxxxxx(config)# ip arp inspection list create servers
switchxxxxxx(config-ARP-list)# ip 172.16.1.1 mac 0060.704C.7321
switchxxxxxx(config-ARP-list)# ip 172.16.1.2 mac 0060.704C.7322
```

36.26 ip arp inspection list assign

Use the `ip arp inspection list assign` Global Configuration mode command to assign a static ARP binding list to a VLAN. Use the `no` form of this command to delete the assignment.

Syntax
```
ip arp inspection list assign vlan-id name
no ip arp inspection list assign vlan-id
```

Parameters
- `vlan-id`—Specifies the VLAN ID.
- `name`—Specifies the static ARP binding list name.

Default Configuration
No static ARP binding list assignment exists.

Command Mode
Global Configuration mode
Example

The following example assigns the static ARP binding list Servers to VLAN 37.

```
switchxxxxxx(config)# ip arp inspection list assign 37 servers
```

36.27 ip arp inspection logging interval

Use the `ip arp inspection logging interval` Global Configuration mode command to set the minimum time interval between successive ARP SYSLOG messages. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip arp inspection logging interval {seconds / infinite}
```

```
o ip arp inspection logging interval
```

Parameters

- **seconds**—Specifies the minimum time interval between successive ARP SYSLOG messages. A 0 value means that a system message is immediately generated. (Range: 0–86400)
- **infinite**—Specifies that SYSLOG messages are not generated.

Default Configuration

The default minimum ARP SYSLOG message logging time interval is 5 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the minimum ARP SYSLOG message logging time interval to 60 seconds.

```
switchxxxxxx(config)# ip arp inspection logging interval 60
```
36.28  show ip arp inspection

Use the show ip arp inspection EXEC mode command to display the ARP inspection configuration for all interfaces or for a specific interface.

Syntax

show ip arp inspection [interface-id]

Parameters

interface-id— Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

Example

The following example displays the ARP inspection configuration.

switchxxxxxx# show ip arp inspection
IP ARP inspection is Enabled
IP ARP inspection is configured on following VLANs: 1
Verification of packet header is Enabled
IP ARP inspection logging interval is: 222 seconds

----------  ----------
Interface  Trusted
----------  ----------
gi1        Yes
gi2        Yes

36.29  show ip arp inspection list

Use the show ip arp inspection list Privileged EXEC mode command to display the static ARP binding list.

Syntax

show ip arp inspection list
Parameters
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the static ARP binding list.

```
switchxxxxxx# show ip arp inspection list
List name: servers
Assigned to VLANs: 1,2
IP ARP
------ ---------
172.16.1.1 0060.704C.7322
172.16.1.2 0060.704C.7322
```

36.30 show ip arp inspection statistics

Use the `show ip arp inspection statistics` EXEC command to display Statistics For The Following Types Of Packets That Have Been Processed By This Feature: Forwarded, Dropped, IP/MAC Validation Failure.

Syntax
`show ip arp inspection statistics [vlan vlan-id]`

Parameters

`vlan-id`—Specifies VLAN ID.

Command Mode
EXEC mode

User Guidelines
To clear ARP Inspection counters use the `clear ip arp inspection statistics` CLI command. Counters values are kept when disabling the ARP Inspection feature.
Example

```
switchxxxxxx# show ip arp inspection statistics
Vlan Forwarded Packets Dropped Packets IP/MAC Failures
--- -------------------------------
2 1500100 80
```

36.31 clear ip arp inspection statistics

Use the `clear ip arp inspection statistics` Privileged EXEC mode command to clear statistics ARP Inspection statistics globally.

Syntax

clear ip arp inspection statistics [vlan vlan-id]

Parameters

vlan-id—Specifies VLAN ID

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear ip arp inspection statistics
```
IP Addressing Commands

37.1 ip address

Use the `ip address` Interface Configuration (Ethernet, VLAN, Port-channel) mode command to define an IP address for an interface. Use the `no` form of this command to remove an IP address definition.

Syntax

If the product is in router mode (Layer 3).

```
ip address ip-address \{mask \mid prefix-length\}
```

```
no ip address [ip-address]
```

If the product is in switch mode (Layer 2).

```
ip address ip-address \{mask \mid prefix-length\} [default-gateway ip-address]
```

```
no ip address [ip-address]
```

If the product can only be switch mode (Layer 2) and supports a single IP address:

```
ip address ip-address \{mask \mid prefix-length\} [default-gateway ip-address]
```

```
no ip address
```

Parameters

- `ip-address`—Specifies the IP address.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 8–30)
- `default-gateway ip-address`—Specifies the default gateway IP address.

Default Configuration

No IP address is defined for interfaces.
Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

Assigning an IP address to an interface does not disable L2 protocols, such as STP. In addition, if this interface is a member of a VLAN, it remains a member after receiving the IP address.

Defining a static IP address on an interface implicitly removes the DHCP client configuration on the interface.

If the device is in router mode, it supports multiple IP addresses:

- The product supports up to 32 IP addresses.
- The IP addresses must be from different IP subnets. When adding an IP address from a subnet that already exists in the list, the new IP address replaces the existing IP address from that subnet.

If the IP address is configured in Interface context, the IP address is bound to the interface in that context.

If a static IP address is already defined, the user must do no IP address in the relevant interface context before changing the IP address.

If a dynamic IP address is already defined, the user must do no ip address in the relevant interface context before configuring another dynamic IP address.

The Interface context may be a port, LAG or VLAN, depending on support that is defined for the product.

Example

The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0
```

37.2 ip address dhcp

Use the ip address dhcp Interface Configuration (Ethernet, VLAN, Port-channel) mode command to acquire an IP address for an Ethernet interface from the
Dynamic Host Configuration Protocol (DHCP) server. Use the no form of this command to release an acquired IP address.

**Syntax**

`ip address dhcp`

`no ip address dhcp`

**Parameters**

N/A

**Command Mode**

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

This command enables any interface to dynamically learn its IP address by using the DHCP protocol.

DHCP client configuration on an interface implicitly removes the static IP address configuration on the interface.

If the device is configured to obtain its IP address from a DHCP server, it sends a DHCPDISCOVER message to provide information about itself to the DHCP server on the network.

The no ip address dhcp command releases any IP address that was acquired, and sends a DHCPRELEASE message.

**Example**

The following example acquires an IP address for gi16 from DHCP.

```
switchxxxxxx(config)# interface gi16
switchxxxxxx(config-if)# ip address dhcp
```
### 37.3 renew dhcp

Use the `renew dhcp` Privileged EXEC mode command to renew an IP address that was acquired from a DHCP server for a specific interface.

**Syntax**

```
renew dhcp {interface-id} [force-autoconfig]
```

**Parameters**

- `interface-id`—Only required in router mode (Layer 3). Specifies an interface ID (Ethernet port, Port-channel or VLAN).
- `force-autoconfig` - If the DHCP server holds a DHCP option 67 record for the assigned IP address, the record overwrites the existing device configuration.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Note the following:

- When the device is in Layer 2 (switch mode), `interface-id` is not required.
- This command does not enable DHCP on an interface. If DHCP is not enabled on the requested interface, the command returns an error message.
- If DHCP is enabled on the interface and an IP address was already acquired, the command tries to renew that IP address.
- If DHCP is enabled on the interface and an IP address has not yet been acquired, the command initiates a DHCP request.

**Example**

The following example renews an IP address that was acquired from a DHCP server for VLAN 19. This assumes that the device is in Layer 3.

```
switchxxxxxx# renew dhcp vlan 19
```
### 37.4 ip default-gateway

The `ip default-gateway` Global Configuration mode command defines a default gateway (device). Use the `no` form of this command to restore the default configuration.

**Syntax**

```
ip default-gateway ip-address
no ip default-gateway
```

**Parameters**

- `ip-address`—Specifies the default gateway IP address.

**Command Mode**

Global Configuration mode

**Default Configuration**

No default gateway is defined.

**Example**

The following example defines default gateway 192.168.1.1.

```
switchxxxxxx(config)# ip default-gateway 192.168.1.1
```

### 37.5 show ip interface

Use the `show ip interface` EXEC mode command to display the usability status of configured IP interfaces.

**Syntax**

```
show ip interface [interface-id]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.
Default Configuration

All IP addresses.

Command Mode

EXEC mode

Examples

**Example 1** - The following example displays the configured IP interfaces and their types when the device is in Router mode.

```bash
switchxxxxxx# show ip interface
IP Address I/F Type Directed Precedence Status Broadcast
------------- ------ ------- -------- ---- ------- -------
10.5.234.232/24 vlan 1 Static disable No Valid
```

**Example 2** - The following example displays the configured IP interfaces and their types when the device is in Switch mode.

```bash
switchxxxxxx# show ip interface
Gateway IP Address Activity status Type
----------------------- -------------- --------
10.5.234.254 Active Static

IP Address I/F Type Status
------------- ------ --------
10.5.234.207/24 vlan 1 Static Valid
```

37.6 **arp**

Use the **arp** Global Configuration mode command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the **no** form of this command to remove an entry from the ARP cache.
Syntax

**arp ip-address mac-address [interface-id]**

**no arp ip-address**

**Parameters**

- **ip-address**—IP address or IP alias to map to the specified MAC address.
- **mac-address**—MAC address to map to the specified IP address or IP alias.
- **interface-id**—Address pair is added for specified interface that can be Ethernet port, Port-channel or VLAN.

**Command Mode**

Global Configuration mode

**Default Configuration**

No permanent entry is defined.

If no interface ID is entered, address pair is relevant to all interfaces.

**User Guidelines**

The software uses ARP cache entries to translate 32-bit IP addresses into 48-bit hardware (MAC) addresses. Because most hosts support dynamic address resolution, static ARP cache entries generally do not need to be specified.

**Example**

The following example adds IP address 198.133.219.232 and MAC address 00:00:0c:40:0f:bc to the ARP table.

```
switchxxxxxx(config)# arp 198.133.219.232 00:00:0c:40:0f:bc gi6
```

**37.7 arp timeout (Global)**

Use the **arp timeout** Global Configuration mode command to set the time interval during which an entry remains in the ARP cache. Use the **no** form of this command to restore the default configuration.
Syntax

```
arp timeout seconds

no arp timeout
```

Parameters

- **seconds**—Specifies the time interval (in seconds) during which an entry remains in the ARP cache.
  (Range: 1–40000000)

Default Configuration

The default ARP timeout is 60000 seconds in Router mode, and 300 seconds in Switch mode.

Command Mode

Global Configuration mode

Example

The following example configures the ARP timeout to 12000 seconds.

```
switchxxxxxx(config)# arp timeout 12000
```

37.8  **ip arp proxy disable**

Use the `ip arp proxy disable` Global Configuration mode command to globally disable proxy Address Resolution Protocol (ARP). Use the `no` form of this command to reenable proxy ARP.

This command can only be used when the device is in Router mode.

Syntax

```
ip arp proxy disable

no ip arp proxy disable
```

Parameters

- N/A
**Default**
Enabled by default.

**Command Mode**
Global Configuration mode

**User Guidelines**
This command overrides any proxy ARP interface configuration. To use this command, you must put the switch into router mode using `set system mode`.

**Example**
The following example globally disables ARP proxy when the switch is in router mode.

```
switchxxxxx(config)# ip arp proxy disable
```

### 37.9 ip proxy-arp

Use the `ip proxy-arp` Interface Configuration mode command to enable an ARP proxy on specific interfaces. Use the `no` form of this command disable it.

This command can only be used when the device is in Router mode.

**Syntax**

- `ip proxy-arp`
- `no ip proxy-arp`

**Default Configuration**
ARP Proxy is disabled.

**Command Mode**
Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).
**User Guidelines**

This configuration can be applied only if at least one IP address is defined on a specific interface. To use this command, you must put the switch into router mode using `set system mode`.

**Example**

The following example enables ARP proxy when the switch is in router mode.

```
switchxxxxxx(config-if)# ip proxy-arp
```

### 37.10 clear arp-cache

Use the `clear arp-cache` Privileged EXEC mode command to delete all dynamic entries from the ARP cache.

**Syntax**

`clear arp-cache`

**Command Mode**

Privileged EXEC mode

**Example**

The following example deletes all dynamic entries from the ARP cache.

```
switchxxxxxx# clear arp-cache
```

### 37.11 show arp

Use the `show arp` Privileged EXEC mode command to display entries in the ARP table.

**Syntax**

`show arp [ip-address ip-address] [mac-address mac-address] [interface-id]`

**Parameters**

- `ip-address ip-address`—Specifies the IP address.
### mac-address

*mac-address mac-address*—Specifies the MAC address.

### interface-id

*interface-id*—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

#### Command Mode

Privileged EXEC mode

#### User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

If an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

#### Example

The following example displays entries in the ARP table.

```
switchxxxxxx# show arp
ARP timeout: 80000 Seconds
VLAN Interface IP Address HW Address Status
------- --------- ------------ -------------- ------
VLAN 1 gi1 10.7.1.102 00:10:B5:04:DB:4B Dynamic
VLAN 1 gi2 10.7.1.135 00:50:22:00:2A:A4 Static
```

#### 37.12 show arp configuration

Use the `show arp configuration` privileged EXEC command to display the global and interface configuration of the ARP protocol.

#### Syntax

```
show arp configuration
```

#### Parameters

This command has no arguments or key words.

#### Command Mode

Privileged EXEC mode
### Example

```
switchxxxxxx# show arp configuration

Global configuration:
 ARP Proxy: enabled
 ARP timeout: 80000 Seconds

Interface configuration:

g2:
 ARP Proxy: disabled
 ARP timeout: 60000 Seconds

VLAN 1:
 ARP Proxy: enabled
 ARP timeout: 70000 Seconds

VLAN 2:
 ARP Proxy: enabled
 ARP timeout: 80000 Second (Global)
```

### 37.13 interface ip

Use the `interface ip` Global Configuration mode command to enter the IP Interface Configuration mode.

This command can only be used when the device is in Router mode.

**Syntax**

```
interface ip-address
```

**Parameters**

- `ip-address`—Specifies one of the IP addresses of the device.

**Command Mode**

Global Configuration mode
User Guidelines

To use this command, you must put the switch into router mode using `set system mode`.

Example

The following example enters the IP interface configuration mode.

```
switchxxxxxx(config)# interface ip 192.168.1.1
switchxxxxxx(config-ip)#
```

### 37.14 ip helper-address

Use the `ip helper-address` Global Configuration mode command to enable the forwarding of UDP Broadcast packets received on an interface to a specific (helper) address. Use the `no` form of this command to disable the forwarding of broadcast packets to a specific (helper) address.

This can be used in Router mode only.

Syntax

```
ip helper-address {ip-interface | all} address [udp-port-list]
no ip helper-address {ip-interface | all} address
```

Parameters

- `ip-interface`—Specifies the IP interface.
- `all`—Specifies all IP interfaces.
- `address`—Specifies the destination broadcast or host address to which to forward UDP broadcast packets. A value of 0.0.0.0 specifies that UDP broadcast packets are not forwarded to any host.
- `udp-port-list`—Specifies the destination UDP port number to which to forward Broadcast packets. (Range: 1–65535). This can be a list of port numbers separated by spaces.

Default Configuration

Forwarding of UDP Broadcast packets received on an interface to a specific (helper) address is disabled.
If `udp-port-list` is not specified, packets for the default services are forwarded to the helper address.

**Command Mode**

Global Configuration mode

**User Guidelines**

To use this command, you must put the switch into router mode using the `set system mode` command.

This command forwards specific UDP Broadcast packets from one interface to another, by specifying a UDP port number to which UDP broadcast packets with that destination port number are forwarded. By default, if no UDP port number is specified, the device forwards UDP broadcast packets for the following six services:

- IEN-116 Name Service (port 42)
- DNS (port 53)
- NetBIOS Name Server (port 137)
- NetBIOS Datagram Server (port 138)
- TACACS Server (port 49)
- Time Service (port 37)

Many helper addresses may be defined. However, the total number of address-port pairs is limited to 128 for the device.

The setting of a helper address for a specific interface has precedence over the setting of a helper address for all the interfaces.

Forwarding of BOOTP/DHCP (ports 67, 68) cannot be enabled with this command. Use the DHCP relay commands to relay BOOTP/DHCP packets.

**Example**

The following example enables the forwarding of UDP Broadcast packets received on all interfaces to the UDP ports of a destination IP address and UDP port 1 and 2.

```
switchxxxxxx(config)# ip helper-address all 172.16.9.9 49 53 1 2
```
37.15  show ip helper-address

Use the **show ip helper-address** Privileged EXEC mode command to display the IP helper addresses configuration on the system.

This can be used in Router mode only.

**Syntax**

```
show ip helper-address
```

**Parameters**

This command has no arguments or key words.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

To use this command, you must put the switch into router mode using the **set system mode** command.

**Example**

The following example displays the IP helper addresses configuration on the system.

```
switchxxxxxx# show ip helper-address
Interface Helper Address UDP Ports
------------------ --------------- --------------------
192.168.1.1 172.16.8.8 37, 42, 49, 53, 137, 138
192.168.2.1 172.16.9.9 37, 49
```

37.16  ip domain lookup

Use the **ip domain lookup** Global Configuration mode command to enable the IP Domain Name System (DNS)-based host name-to-address translation. Use the **no** form of this command to disable DNS-based host name-to-address translation.

**Syntax**

```
ip domain lookup
```
no ip domain lookup

Default Configuration
Enabled.

Command Mode
Global Configuration mode

Example
The following example enables DNS-based host name-to-address translation.

switchxxxxxx(config)# ip domain lookup

37.17  ip domain name

Use the ip domain name Global Configuration mode command to define a default domain name used by the software to complete unqualified host names (names without a dotted decimal domain name). Use the no form of this command to remove the default domain name.

Syntax

ip domain name name

no ip domain name

Parameters

name—Specifies the default domain name used to complete unqualified host names. Do not include the initial period that separates an unqualified name from the domain name. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters)

Default Configuration
A default domain name is not defined.

Command Mode
Global Configuration mode
User Guidelines

Domain names and host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

The maximum size of each domain level is 63 characters. The maximum name size is 158 bytes.

Example

The following example defines the default domain name as ‘www.website.com’.

```
switchxxxxxx(config)# ip domain name www.website.com
```

37.18 ip name-server

Use the `ip name-server` Global Configuration mode command to define the available name servers. Use the `no` form of this command to remove a name server.

Syntax

```
ip name-server {server1-ip-address} [server-address2 ... server-address8]
oip name-server [server-address ... server-address8]
```

Parameters

```
server-address—IP addresses of the name server. Up to 8 servers can be defined in one command or by using multiple commands. The IP address can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
```

Default Configuration

No name server IP addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

The preference of the servers is determined by the order in which they were entered.
Up to 8 servers can be defined using one command or using multiple commands.

Example

The following example defines the available name server.

```
switchxxxxxx(config)# ip name-server 176.16.1.18
```

### 37.19 ip host

Use the `ip host` Global Configuration mode command to define the static host name-to-address mapping in the host cache. Use the `no` form of this command to remove the static host name-to-address mapping.

#### Syntax

```
ip host name address [address2 address3 address4]
no ip host name
```

#### Parameters

- **name**—Specifies the host name. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters)
- **address**—Specifies the associated IP address. Up to 4 addresses can be defined separated by blanks.

#### Default Configuration

No host is defined.

#### Command Mode

Global Configuration mode

#### User Guidelines

Host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.
Example

The following example defines a static host name-to-address mapping in the host cache.

```
switchxxxxxxx(config)# ip host accounting.website.com 176.10.23.1
```

37.20 clear host

Use the `clear host` Privileged EXEC mode command to delete entries from the host name-to-address cache.

Syntax

```
clear host {name / *}
```

Parameters

- **name**—Specifies the host entry to remove. (Length: 1–158 characters. Maximum label length: of each domain level is 63 characters)
- *****—Removes all entries.

Command Mode

Privileged EXEC mode

Example

The following example deletes all entries from the host name-to-address cache.

```
switchxxxxxxx# clear host *
```

37.21 clear host dhcp

Use the `clear host dhcp` Privileged EXEC mode command to delete entries from the host name-to-address mapping received from the Dynamic Host Configuration Protocol (DHCP) server.

Syntax

```
clear host dhcp {name / *}
```
Parameters

- **name** — Specifies the host entry to remove. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters)
- 

Command Mode

Privileged EXEC mode

User Guidelines

This command deletes the host name-to-address mapping temporarily until the next refresh of the IP addresses.

Example

The following example deletes all entries from the host name-to-address mapping received from DHCP.

```
switchxxxxxx# clear host dhcp *
```

### 37.22 show hosts

Use the **show hosts** EXEC mode command to display the default domain name, the list of name server hosts, the static and the cached list of host names and addresses.

Syntax

```
show hosts [name]
```

Parameters

- **name** — Specifies the host name. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters).

Command Mode

EXEC mode
Example

The following example displays host information.

```
switchxxxxxx# show hosts

System name: Device
Default domain is gm.com, sales.gm.com, usa.sales.gm.com(DHCP)
Name/address lookup is enabled
Name servers (Preference order): 176.16.1.18 176.16.1.19
Configured host name-to-address mapping:

<table>
<thead>
<tr>
<th>Host</th>
<th>IP Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting.gm.com</td>
<td>176.16.8.8 176.16.8.9(DHCP)</td>
</tr>
<tr>
<td></td>
<td>2002:0:130F::0A0:1504:0BB4</td>
</tr>
</tbody>
</table>

Cache: TTL (Hours)

<table>
<thead>
<tr>
<th>Host</th>
<th>Total</th>
<th>Elapsed</th>
<th>Type</th>
<th>IP Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.stanford.edu</td>
<td>72</td>
<td>3</td>
<td>IP</td>
<td>171.64.14.203</td>
</tr>
</tbody>
</table>
```
38.1 ipv6 enable

Use the `ipv6 enable` Interface Configuration (Ethernet, VLAN, Port-channel) mode command to enable the IPv6 addressing mode on an interface. Use the `no` form of this command to disable the IPv6 addressing mode on an interface.

**Syntax**

```
ipv6 enable [no-autoconfig]
```

```
no ipv6 enable
```

**Parameters**

`no-autoconfig`—Enables processing of IPv6 on an interface without the stateless address autoconfiguration procedure. This procedure assigns link-local addresses.

**Default Configuration**

IPv6 addressing is disabled.

Unless you are using the no-autoconfig parameter, when the interface is enabled, stateless address autoconfiguration procedure is enabled.

**Command Mode**

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

This command automatically configures an IPv6 link-local Unicast address on the interface, while also enabling the interface for IPv6 processing. The `no ipv6 enable` command removes the entire IPv6 interface configuration.

To enable stateless address autoconfiguration on an enabled IPv6 interface, use the `ipv6 address autoconfig` command.
Example

The following example enables VLAN 1 for the IPv6 addressing.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 enable
```

### 38.2 ipv6 address autoconfig

Use the `ipv6 address autoconfig` Interface Configuration mode command to enable automatic configuration of IPv6 addresses, using stateless autoconfiguration on an interface. Addresses are configured depending on the prefixes received in Router Advertisement messages. Use the `no` form of this command to disable address autoconfiguration on the interface.

**Syntax**

```
ipv6 address autoconfig
no ipv6 address autoconfig
```

**Parameters**

N/A

**Default Configuration**

Address autoconfiguration is enabled on the interface, no addresses are assigned by default.

**Command Mode**

Interface Configuration (Ethernet, VLAN, Port-channel) mode.

**User Guidelines**

When `address autoconfig` is enabled, the router solicitation ND procedure is initiated to discover a router and assign IP addresses to the interface, based on the advertised on-link prefixes.

When disabling address autoconfig, automatically generated addresses that were assigned to the interface are removed.

The default state of the address autoconfig is **enabled**. Use the `ipv6 enable no-autoconfig` command to enable an IPv6 interface without address autoconfig.
Example

switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ipv6 address autoconfig

38.3 ipv6 icmp error-interval

Use the ipv6 icmp error-interval Global Configuration mode command to configure the rate limit interval and bucket size parameters for IPv6 Internet Control Message Protocol (ICMP) error messages. Use the no form of this command to return the interval to its default setting.

Syntax

ipv6 icmp error-interval milliseconds [bucketsize]

no ipv6 icmp error-interval

Parameters

- **milliseconds**—The time interval between tokens being placed in the bucket. Each token represents a single ICMP error message. The acceptable range is from 0–2147483647 with a default of 100 milliseconds. Setting milliseconds to 0 disables rate limiting. (Range: 0–2147483647)

- **bucketsize**—(Optional) The maximum number of tokens stored in the bucket. The acceptable range is from 1–200 with a default of 10 tokens.

Default Configuration

The default interval is 100ms and the default bucketsize is 10 i.e. 100 ICMP error messages per second.

Command Mode

Global Configuration mode

User Guidelines

To set the average ICMP error rate limit, calculate the interval with the following formula:

Average Packets Per Second = (1/ interval) * bucket size
Example

switchxxxxxx(config)# ipv6 icmp error-interval 123 45

38.4 show ipv6 icmp error-interval

Use the `show ipv6 icmp error-interval` command in the EXEC mode to display the IPv6 ICMP error interval.

Syntax

show ipv6 icmp error-interval

Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC mode

Example

switchxxxxxx# show ipv6 icmp error-interval

Rate limit interval: 100 ms
Bucket size: 10 tokens

38.5 ipv6 address

Use the `ipv6 address` Interface Configuration mode command to configure an IPv6 address for an interface. Use the `no` form of this command to remove the address from the interface.

Syntax

ipv6 address ipv6-address/prefix-length [eui-64] [anycast]

no ipv6 address [ipv6-address/prefix-length] [link-local] [eui-64]
Parameters

- **ipv6-address**—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

- **prefix-length**—Specifies the length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark (/) must precede the decimal.

- **eui-64**—(Optional) Builds an interface ID in the low order 64 bits of the IPv6 address based on the interface MAC address.

- **anycast**—(Optional) Indicates that this address is an anycast address.

- **prefix-length**—3–128 (64 when the **eui-64** parameter is used).

- **link-local**—Use the link-local address.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

If the value specified for the /prefix-length argument is greater than 64 bits, the prefix bits have precedence over the interface ID.

Using the **no IPv6 address** command without arguments removes all manually configured IPv6 addresses from an interface, including link-local manually-configured addresses.

Example

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 3000::123/64 eui-64 anycast
```
38.6 ipv6 address link-local

Use the `ipv6 address link-local` command to configure an IPv6 link-local address for an interface. Use the `no` form of this command to return to the default link-local address on the interface.

Syntax

`ipv6 address ipv6-address /prefix-length link-local`

`no ipv6 address [ipv6-address /prefix-length link-local]`

Parameters

- `ipv6-address`—Specifies the IPv6 network assigned to the interface. This argument must be in the format documented in RFC 2373, where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—Specifies the length of the IPv6 prefix. A decimal value indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark (/) must precede the decimal. Only 64-bit length is supported, according to IPv6 over Ethernet's well-known practice.

Default Configuration

IPv6 is enabled on the interface, the link-local address of the interface is FE80::EUI64 (interface MAC address).

Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

Using the `no ipv6 link-local address` command removes the manually configured link-local IPv6 address from an interface. Multiple IPv6 addresses can be configured per interface, but only one link-local address. When the `no ipv6 link-local address` command is used, the interface is reconfigured with the standard link-local address (the same IPv6 link-local address that is set automatically when the `enable ipv6` command is used). The system automatically generates a link-local address for an interface when IPv6 processing is enabled on the interface. To manually specify a link-local address to be used by an interface, use the `ipv6 link-local address` command. The system supports only 64 bits prefix length for link-local addresses.
38.7 ipv6 unreachables

Use the **ipv6 unreachables** Interface Configuration mode command to enable the generation of Internet Control Message Protocol for IPv6 (ICMPv6) unreachable messages for any packets arriving on a specified interface. Use the no form of this command to prevent the generation of unreachable messages.

**Syntax**

ipv6 unreachables

no ipv6 unreachables

**Parameters**

N/A

**Default Configuration**

ICMP unreachable messages are sent by default.

**Command Mode**

Interface Configuration (Ethernet, VLAN, Port-channel) mode.

**User Guidelines**

When ICMP unreachable messages are enabled, when receiving a packet addressed to one of the interface's IP address with TCP/UDP port not assigned, the device sends ICMP unreachable messages.

**Example**

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# ipv6 unreachables
```
38.8 ipv6 default-gateway

Use the `ipv6 default-gateway` Global Configuration mode command to define an IPv6 default gateway. Use the `no` form of this command to remove the default gateway.

Syntax

```
ipv6 default-gateway ipv6-address
no ipv6 default-gateway
```

Parameters

- `ipv6-address`—Specifies the IPv6 address of the next hop that can be used to reach the required network. When the IPv6 address is a link-local address (IPv6Z address), see IPv6z Address Conventions.

Default Configuration

No default gateway is defined.

Command Mode

Global Configuration mode

User Guidelines

Configuring a new default GW without deleting the previous configured information overwrites the previous configuration.

A configured default GW has a higher precedence over an automatically advertised (via router advertisement message).

Precedence takes effect after the configured default GW is reachable.

Reachability state is not verified automatically by the neighbor discovery protocol. Router reachability can be confirmed by either receiving a Router Advertisement message containing the router's MAC address or by manually configuring this using the `ipv6 neighbor` command. Another option to force reachability confirmation is to ping the router link-local address (this will initiate the neighbor discovery process).

If the egress interface is not specified, the default interface is selected. Specifying interface zone=0 is equal to not defining an egress interface.

Example
38.9  show ipv6 interface

Use the **show ipv6 interface** EXEC command mode to display the usability status of interfaces configured for IPv6.

**Syntax**

`show ipv6 interface [interface-id]`

**Parameters**

*interface-id*—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

**Default Configuration**

Displays all IPv6 interfaces.

**Command Mode**

EXEC mode

**User Guidelines**

Use the **show ipv6 neighbors** command in the privileged EXEC mode to display an IPv6 neighbor’s discovery cache information.

**Examples**

**Example 1 - Show all IPv6 interfaces.**

```
switchxxxxxx# show ipv6 interface

Interface IP addresses Type
----------- -------------------------------------- ------------
VLAN 1 4004::55/64 [ANY] manual
VLAN 1 fe80::200:b0ff:fe00:0 linklayer
VLAN 1 ff02::1 linklayer
VLAN 1 ff02::77 manual
VLAN 1 ff02::1:ff00:0 manual
```
Example 2 - Show IPv6 interfaces on VLAN 15 where IPv6 is not enabled.

```
switchxxxxxxx# show ipv6 interface Vlan 15
IPv6 is disabled
```

Example 3 - Show IPv6 interfaces on VLAN 15 where it is enabled.

```
switchxxxxxxx# show ipv6 interface Vlan 1
Number of ND DAD attempts: 1
MTU size: 1500
Stateless Address Autoconfiguration state: enabled
ICMP unreachable message state: enabled
MLD version: 2
```

<table>
<thead>
<tr>
<th>IP addresses</th>
<th>Type</th>
<th>DAD State</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004::55/64 [ANY]</td>
<td>manual</td>
<td>Active</td>
</tr>
<tr>
<td>fe80::200:b0ff:fe00:0</td>
<td>linklayer</td>
<td>Active</td>
</tr>
<tr>
<td>ff02::1</td>
<td>linklayer</td>
<td>------</td>
</tr>
<tr>
<td>ff02::77</td>
<td>manual</td>
<td>------</td>
</tr>
<tr>
<td>ff02::1:ff00:0</td>
<td>manual</td>
<td>------</td>
</tr>
<tr>
<td>ff02::1:ff00:1</td>
<td>manual</td>
<td>------</td>
</tr>
<tr>
<td>ff02::1:ff00:55</td>
<td>manual</td>
<td>------</td>
</tr>
</tbody>
</table>
**38.10  show IPv6 route**

Use the `show ipv6 route` Exec mode command to display the current state of the IPv6 routing table.

**Syntax**

`show ipv6 route`

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

EXEC mode

**Example**

```
switchxxxxxx# show ipv6 route
Codes: L - Local, S - Static, I - ICMP, ND - Router Advertisement
The number in the brackets is the metric.
S ::/0 via fe80::77 [0] VLAN 1 Lifetime Infinite
ND ::/0 via fe80::200:cff:fe4a:dfa8 [0] VLAN 1 Lifetime 1784 sec
L 2001::/64 is directly connected, g2 Lifetime Infinite
L 2002:1:1:1::/64 is directly connected, VLAN 1 Lifetime 2147467 sec
L 3001::/64 is directly connected, VLAN 1 Lifetime Infinite
L 4004::/64 is directly connected, VLAN 1 Lifetime Infinite
L 6001::/64 is directly connected, g2 Lifetime Infinite
```
the **no** form of this command to restore the number of messages to the default value.

**User Guidelines**

To use this command set the device in router mode with the command `set system mode`.

**Syntax**

`ipv6 nd dad attempts attempts`

**Parameters**

*attempts*—Specifies the number of neighbor solicitation messages. A value of 0 disables DAD processing on the specified interface. A value of 1 configures a single transmission without follow-up transmissions. (Range: 0–600)

**Default Configuration**

DAD on Unicast IPv6 addresses with the sending of one neighbor solicitation message is enabled.

**Command Mode**

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

**User Guidelines**

DAD verifies the uniqueness of new Unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while DAD is performed). DAD uses neighbor solicitation messages to verify the uniqueness of unicast IPv6 addresses.

An interface returning to the administrative Up state restarts DAD for all Unicast IPv6 addresses on the interface. While DAD is performed on the link-local address of an interface, the state of the other IPv6 addresses is still set to TENTATIVE. When DAD is completed on the link-local address, DAD is performed on the remaining IPv6 addresses.

When DAD identifies a duplicate address, the address state is set to DUPLICATE and the address is not used. If the duplicate address is the link-local address of the interface, the processing of IPv6 packets is disabled on the interface and an error message is displayed.

All configuration commands associated with the duplicate address remain as configured, while the address state is set to DUPLICATE.
If the link-local address for an interface changes, DAD is performed on the new link-local address and all of the other IPv6 address associated with the interface are regenerated (DAD is performed only on the new link-local address).

Configuring a value of 0 with this command disables duplicate address detection processing on the specified interface. A value of 1 configures a single transmission without follow-up transmissions. The default is 1 message.

Until the DAD process is completed, an IPv6 address is in the tentative state and cannot be used for data transfer. It is recommended to limit the configured value.

Example

The following example configures the number of consecutive neighbor solicitation messages sent during DAD processing to 2 on gi9.

```
switchxxxxxx (config)# interface gi9
switchxxxxxx (config-if)# ipv6 nd dad attempts 2
```

### 38.12 ipv6 host

Use the `ipv6 host` Global Configuration mode command to define a static host name-to-address mapping in the host name cache. Use the `no` form of this command to remove the host name-to-address mapping.

**Syntax**

```
ipv6 host name ipv6-address1 [ipv6-address2...ipv6-address4]
```

**Parameters**

- `host name` - Name of the host. (Range: 1–158 characters)
  - `ipv6-address1`—Associated IPv6 address. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. When the IPv6 address is a link-local address (IPv6Z address), the outgoing interface name must be specified. See IPv6z Address Conventions.
  - `ipv6-address2-4`—(Optional) Additional IPv6 addresses that may be associated with the host's name
Default Configuration
No host is defined.

Command Mode
Global Configuration mode

Example

switchxxxxxx(config)# ipv6 host server 3000::a31b

38.13 ipv6 neighbor

Use the ipv6 neighbor command to configure a static entry in the IPv6 neighbor discovery cache. Use the no form of this command to remove a static IPv6 entry from the IPv6 neighbor discovery cache.

Syntax

ipv6 neighbor ipv6_addr interface-id hw_addr
no ipv6 neighbor ipv6_addr interface-id

Parameters

- ipv6_addr—Specifies the IPv6 address to map to the specified MAC address.
- interface-id—Specifies the interface that is associated with the IPv6 address
- hw_addr—Specifies the MAC address to map to the specified IPv6 address.

Command Mode
Global Configuration mode

User Guidelines
The IPv6 neighbor command is similar to the arp command.

If an entry for the specified IPv6 address already exists in the neighbor discovery cache—learned through the IPv6 neighbor discovery process—the entry is automatically converted to a static entry.
A new static neighbor entry with a global address can be configured only if a manually configured subnet already exists in the device.

Use the `show ipv6 neighbors` command to view static entries in the IPv6 neighbor discovery cache.

**Example**

```
switchxxxxxx(config)# ipv6 neighbor 3000::a31b vlan 1 001b.3f9c.84ea
```

### 38.14 ipv6 set mtu

Use the `ipv6 mtu` Privileged EXEC mode command to set the maximum transmission unit (MTU) size of IPv6 packets sent on an interface. Use the default parameter to restore the default MTU size.

**Syntax**

```
ipv6 set mtu [interface-id] [bytes | default]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `bytes`—Specifies the MTU in bytes. Range is 1280-65535.
- `default`—Sets the default MTU size 1500 bytes. Minimum is 1280 bytes

**Default Configuration**

1500 bytes

**Command Mode**

Privileged EXEC mode

**User Guidelines**

This command is intended for debugging and testing purposes and should be used only by technical support personnel.

**Example**

```
switchxxxxxx# ipv6 set mtu gi1 default
```
38.15 show ipv6 neighbors

Use the `show ipv6 neighbors` Privileged EXEC mode command to display IPv6 neighbor discovery cache information.

Syntax

```
show ipv6 neighbors {static | dynamic}[ipv6-address ipv6-address] [mac-address mac-address] [interface-id]
```

Parameters

- **static**—Shows static neighbor discovery cash entries.
- **dynamic**—Shows dynamic neighbor discovery cash entries.
- **ipv6-address**—Shows the neighbor discovery cache information entry of a specific IPv6 address.
- **mac-address**—Shows the neighbor discovery cache information entry of a specific MAC address.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

Command Mode

Privileged EXEC mode

User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

When an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

The possible neighbor cash states are:

- **INCMP (Incomplete)**—Address resolution is being performed on the entry. Specifically, a Neighbor Solicitation has been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement has not yet been received.

- **REACH (Reachable)**—Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While REACHABLE, no special action takes place as packets are sent.
IPv6 Addressing Commands

- **STALE**—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While stale, no action takes place until a packet is sent.

- **DELAY**—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly, and a packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a Neighbor Solicitation and change the state to PROBE.

- **PROBE**—A reachability confirmation is actively sought by retransmitting Neighbor Solicitations every RetransTimer milliseconds until a reachability confirmation is received.

**Example**

```plaintext
switchxxxxxx# show ipv6 neighbors dynamic
Interface IPv6 Address HW Address State* Router
---------- ----------------------- ---------------- ------ -----
VLAN 1 fe80::200:cff:fe4a:dfa8 00:00:0c:4a:df:a8 stale yes
VLAN 1 fe80::2d0:b7ff:fea1:264d 00:d0:b7:a1:26:4d stale no
```

*See State values above.

38.16 **clear ipv6 neighbors**

Use the `clear ipv6 neighbors` Privileged EXEC mode command to delete all entries in the IPv6 neighbor discovery cache, except for static entries.

**Syntax**

clear ipv6 neighbors

**Parameters**

This command has no keywords or arguments.

**Command Mode**

Privileged EXEC mode
Example

switchxxxxxx# clear ipv6 neighbors
### 39.1 interface tunnel

Use the **interface tunnel** Global Configuration mode command to enter the Interface Configuration (Tunnel) mode.

**Syntax**

```
interface tunnel number
```

**Parameters**

- **number**—Specifies the tunnel index.

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**Example**

The following example enters the Interface Configuration (Tunnel) mode.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-tunnel)#
```

### 39.2 tunnel mode ipv6ip

Use the **tunnel mode ipv6ip** Interface Configuration (Tunnel) mode command to configure an IPv6 transition-mechanism global support mode. Use the **no** form of this command to remove an IPv6 transition mechanism.

**Syntax**

```
tunnel mode ipv6ip [isatap]
```
no tunnel mode ipv6ip

Parameters

isatap—Enables an automatic IPv6 over IPv4 ISATAP tunnel.

Default Configuration

Disabled.

Command Mode

Interface Configuration (Tunnel) mode

User Guidelines

The system can be enabled to support ISATAP tunnels. When enabled, an automatic tunnel interface is created on each interface that is assigned an IPv4 address.

Note that on a specific interface (for example, port or VLAN), both native IPv6 and transition-mechanisms can coexist. The host implementation chooses the egress interface according to the scope of the destination IP address (such as ISATAP or native IPv6).

Example

The following example configures an ISATAP tunnel mechanism.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-tunnel)# tunnel mode ipv6ip isatap
```

### 39.3 tunnel isatap router

Use the `tunnel isatap router` Interface Configuration (Tunnel) mode command to configure a global string that represents a specific automatic tunnel router domain name. Use the `no` form of this command to remove this router name and restore the default configuration.

**Syntax**

```
tunnel isatap router router-name

no tunnel isatap router
```
Parameters

router-name—Specifies the router’s domain name.

Default Configuration

The automatic tunnel router’s default domain name is ISATAP.

Command Mode

Interface Configuration (Tunnel) mode

User Guidelines

This command determines the string that the host uses for automatic tunnel router lookup in the IPv4 DNS procedure. By default, the string ISATAP is used for the corresponding automatic tunnel types.

Only one string can represent the automatic tunnel router name per tunnel. Using this command, therefore, overwrites the existing entry.

Example

The following example configures the global string ISATAP2 as the automatic tunnel router domain name.

```
switchxxxxxx(config)# tunnel 1
switchxxxxxxx(config-tunnel)# tunnel isatap router ISATAP2
```

39.4 tunnel source

Use the `tunnel source` Interface Configuration (Tunnel) mode command to set the local (source) IPv4 address of a tunnel interface. The `no` form deletes the tunnel local address.

Syntax

```
tunnel source {auto /ipv4-address ipv4-address}
no tunnel source
```
Parameters

- **auto**—The system minimum IPv4 address is used as the source address for packets sent on the tunnel interface. If the IPv4 address is changed, then the local address of the tunnel interface is changed too.

- **ip4-address**—Specifies the IPv4 address to use as the source address for packets sent on the tunnel interface. The local address of the tunnel interface is not changed when the IPv4 address is moved to another interface.

Default

No source address is defined.

Command Mode

Interface Configuration (Tunnel) mode

User Guidelines

The configured source IPv4 address is used for forming the tunnel interface identifier. The interface identifier is set to the 8 least significant bytes of the SIP field of the encapsulated IPv6 tunneled packets.

Example

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-tunnel)# tunnel source auto
```

39.5 `tunnel isatap query-interval`

Use the `tunnel isatap query-interval` Global Configuration mode command to set the time interval between DNS queries (before the ISATAP router IP address is known) for the automatic tunnel router domain name. Use the `no` form of this command to restore the default configuration.

Syntax

```
tunnel isatap query-interval seconds
no tunnel isatap query-interval
```
Parameters

seconds—Specifies the time interval in seconds between DNS queries. (Range: 10–3600)

Default Configuration

The default time interval between DNS queries is 10 seconds.

Command Mode

Global Configuration mode

User Guidelines

This command determines the time interval between DNS queries before the ISATAP router IP address is known. If the IP address is known, the robustness level that is set by the tunnel isatap robustness Global Configuration mode command determines the refresh rate.

Example

The following example sets the time interval between DNS queries to 30 seconds.

```
switchxxxxxx(config)# tunnel isatap query-interval 30
```

39.6 tunnel isatap solicitation-interval

Use the tunnel isatap solicitation-interval Global Configuration mode command to set the time interval between ISATAP router solicitation messages. Use the no form of this command to restore the default configuration.

Syntax

```
tunnel isatap solicitation-interval seconds
```

```
no tunnel isatap solicitation-interval
```

Parameters

seconds—Specifies the time interval in seconds between ISATAP router solicitation messages. (Range: 10–3600)
Default Configuration

The default time interval between ISATAP router solicitation messages is 10 seconds.

Command Mode

Global Configuration mode

User Guidelines

This command determines the interval between router solicitation messages when there is no active ISATAP router. If there is an active ISATAP router, the robustness level set by the `tunnel isatap robustness` Global Configuration mode command determines the refresh rate.

Example

The following example sets the time interval between ISATAP router solicitation messages to 30 seconds.

```
switchxxxxxx(config)# tunnel isatap solicitation-interval 30
```

39.7 `tunnel isatap robustness`

Use the `tunnel isatap robustness` Global Configuration mode command to configure the number of DNS query/router solicitation refresh messages that the device sends. Use the `no` form of this command to restore the default configuration.

Syntax

```
tunnel isatap robustness number
no tunnel isatap robustness
```

Parameters

- `number`—Specifies the number of DNS query/router solicitation refresh messages that the device sends. (Range: 1–20)

Default Configuration

The default number of DNS query/router solicitation refresh messages that the device sends is 3.
**Command Mode**

Global Configuration mode

**User Guidelines**

The DNS query interval (after the ISATAP router IP address is known) is the Time-To-Live (TTL) that is received from the DNS, divided by (Robustness + 1).

The router solicitation interval (when there is an active ISATAP router) is the minimum-router-lifetime that is received from the ISATAP router, divided by (Robustness + 1).

**Example**

The following example sets the number of DNS query/router solicitation refresh messages that the device sends to 5.

```
switchxxxxxx(config)# tunnel isatap robustness 5
```

### 39.8 `show ipv6 tunnel`

Use the `show ipv6 tunnel` EXEC mode command to display information on the ISATAP tunnel.

**Syntax**

```
show ipv6 tunnel
```

**Command Mode**

EXEC mode

**Example**

The following example displays information on the ISATAP tunnel.

```
switchxxxxxx# show ipv6 tunnel
Tunnel 1

Tunnel status : DOWN
Tunnel protocol: NONE
```
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Local address type</td>
<td>auto</td>
</tr>
<tr>
<td>Tunnel Local IPv4 address</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Router DNS name</td>
<td>ISATAP</td>
</tr>
<tr>
<td>Router IPv4 address</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>DNS Query interval</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Min DNS Query interval</td>
<td>0 seconds</td>
</tr>
<tr>
<td>Router Solicitation interval</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Min Router Solicitation interval</td>
<td>0 seconds</td>
</tr>
<tr>
<td>Robustness</td>
<td>2</td>
</tr>
</tbody>
</table>
40.1  ip dhcp relay enable (Global)

Use the ip dhcp relay enable Global Configuration mode command to enable the DHCP relay feature on the device. Use the no form of this command to disable the DHCP relay feature.

Syntax

ip dhcp relay enable
no ip dhcp relay enable

Parameters
N/A

Default Configuration
DHCP relay feature is disabled.

Command Mode
Global Configuration mode

Example

The following example enables the DHCP relay feature on the device.

switchxxxxxx(config)# ip dhcp relay enable

40.2  ip dhcp relay enable (Interface)

Use the ip dhcp relay enable Interface Configuration (VLAN, Ethernet, Port-channel) mode command to enable the DHCP relay feature on an interface. Use the no form of this command to disable the DHCP relay agent feature on an interface.
**Syntax**

ip dhcp relay enable

no ip dhcp relay enable

**Parameters**

N/A

**Default Configuration**

Disabled

**Command Mode**

Interface Configuration (VLAN, Ethernet, Port-channel) mode

**User Guidelines**

The operational status of DHCP Relay on an interface is active if one of the following conditions exist:

- DHCP Relay is globally enabled, and there is an IP address defined on the interface.

  Or

- DHCP Relay is globally enabled, there is no IP address defined on the interface, the interface is a VLAN, and option 82 is enabled.

**Example**

The following example enables DHCP Relay on VLAN 21.

```
switchxxxxxx(config)# interface vlan 21
switchxxxxxx(config-if)# ip dhcp relay enable
```

**40.3 ip dhcp relay address (Global)**

Use the `ip dhcp relay address` Global Configuration mode command to define the DHCP servers available for the DHCP relay. Use the `no` form of this command to remove the server from the list.
DHCP Relay Commands

Syntax

ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]

Parameters

ip-address—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the ip dhcp relay address command to define a global DHCP Server IP address. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the no form of the command with the ip-address argument.

The no form of the command without the ip-address argument deletes all global defined DHCP servers.

Example

The following example defines the DHCP server on the device.

switchxxxxxx(config)# ip dhcp relay address 176.16.1.1

40.4 ip dhcp relay address (Interface)

Use the ip dhcp relay address Interface Configuration (VLAN, Ethernet, Port-channel) command to define the DHCP servers available by the DHCP relay for DHCP clients connected to the interface. Use the no form of this command to remove the server from the list.

Syntax

ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]

Parameters

ip-address—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Interface Configuration (VLAN, Ethernet, Port-channel) mode

User Guidelines

Use the ip dhcp relay address command to define a DHCP Server IP address per the interface. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the no form of the command with the ip-address argument.

The no form of the command without the ip-address argument deletes all DHCP servers defined per the interface.

You can use the command regardless if DHCP Relay is enabled on the interface.

Example

The following example defines the DHCP server on the device.

```
switchxxxxxx(config)# ip dhcp relay address 176.16.1.1
```

40.5 show ip dhcp relay

Use the show ip dhcp relay EXEC mode command to display the DHCP relay information.

Syntax

show ip dhcp relay

Command Mode

EXEC mode
Examples

Example 1 - Option 82 is not supported:

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
Option 82 is Disabled
Maximum number of supported VLANs without IP Address is 256
Number of DHCP Relays enabled on VLANs without IP Address is 0
DHCP relay is not configured on any port.
DHCP relay is not configured on any vlan.
No servers configured
```

Example 2 - Option 82 is supported (disabled):

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally disabled
Option 82 is disabled
Maximum number of supported VLANs without IP Address: 0
Number of DHCP Relays enabled on VLANs without IP Address: 4
DHCP relay is enabled on Ports: gi5,po3-4
 Active:
 Inactive: gi5, po3-4
DHCP relay is enabled on VLANs: 1, 2, 4, 5
 Active:
 Inactive: 1, 2, 4, 5
Global Servers: 1.1.1.1, 2.2.2.2
```

Example 3. Option 82 is supported (enabled):

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
```
Option 82 is enabled
Maximum number of supported VLANs without IP Address is 4
Number of DHCP Relays enabled on VLANs without IP Address: 2
DHCP relay is enabled on Ports: gi5, po3-4
  Active: gi5
  Inactive: po3-4
DHCP relay is enabled on VLANs: 1, 2, 4, 5
  Active: 1, 2, 4, 5
  Inactive:
Global Servers: 1.1.1.1, 2.2.2.2

---

**Example 3.** Option 82 is supported (enabled) and there DHCP Servers defined per interface:

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
Option 82 is enabled
Maximum number of supported VLANs without IP Address is 4
Number of DHCP Relays enabled on VLANs without IP Address: 2
DHCP relay is enabled on Ports: gi5, po3-4
 Active: gi5
 Inactive: po3-4
DHCP relay is enabled on VLANs: 1, 2, 4, 5
 Active: 1, 2, 4, 5
 Inactive:
Global Servers: 1.1.1.1, 2.2.2.2
VLAN 1: 1.1.1.1, 100.10.1.1
VLAN 2: 3.3.3.3, 4.4.4.4, 5.5.5.5
VLAN 10: 6.6.6.6
```
40.6 ip dhcp information option

Use the **ip dhcp information option** Global Configuration command to enable DHCP option-82 data insertion. Use the **no** form of this command to disable DHCP option-82 data insertion.

**Syntax**

```
ip dhcp information option
no ip dhcp information option
```

**Parameters**

N/A

**Default Configuration**

DHCP option-82 data insertion is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

DHCP option 82 would be enabled only if DHCP snooping or DHCP relay are enabled.

**Example**

```
switchxxxxxx(config)# ip dhcp information option
```

40.7 show ip dhcp information option

The **show ip dhcp information option** EXEC mode command displays the DHCP Option 82 configuration.

**Syntax**

```
show ip dhcp information option
```

**Parameters**

N/A
Default Configuration
N/A

Command Mode
EXEC mode

Example
The following example displays the DHCP Option 82 configuration.

switchxxxxxx# show ip dhcp information option

Relay agent Information option is Enabled
41.1  ip route

Use the ip route Global Configuration mode command to configure static routes. Use the no form of this command to remove static routes.

Syntax

```
ip route prefix {mask | prefix-length} {{ip-address [metric distance]} | reject-route}
no ip route prefix {mask | prefix-length} [ip-address]
```

Parameters

- **prefix**—Specifies the IP address that is the IP route prefix for the destination IP.
- **mask**—Specifies the network subnet mask of the IP address prefix.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 0–32)
- **ip-address**—Specifies the IP address or IP alias of the next hop that can be used to reach the network.
- **metric distance**—Specifies an administrative distance. (Range: 1–255).
- **reject-route**—Stops routing to the destination network via all gateways.

Default Configuration

The default administrative distance is 1.

Command Mode

Global Configuration mode

User Guidelines

To use this command, set the device in router mode with the command set system mode.
Use the `no ip route` command with the `ip-address` parameter to remove a single static route to the given subnet via the given next hop.

Use the `no ip route` command without the `ip-address` parameter to remove all static routes to the given subnet.

**Examples**

**Example 1** - The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using mask:

```
switchxxxxxx(conf)# ip route 172.31.0.0 255.255.0.0 172.31.6.6 metric 2
```

**Example 2** - The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using prefix length:

```
switchxxxxxx(conf)# ip route 172.31.0.0 /16 172.31.6.6 metric 2
```

**Example 3** - The following example shows how to reject packets for network 194.1.1.0:

```
switchxxxxxx(conf)# ip route 194.1.1.0 255.255.255.0 reject-route
```

**Example 4** - The following example shows how to remove all static routes to network 194.1.1.0/24:

```
switchxxxxxx(conf)# no ip route 194.1.1.0 /24
```

**Example 5** - The following example shows how to remove one static route to network 194.1.1.0/24 via 1.1.1.1:

```
switchxxxxxx(conf)# no ip route 194.1.1.0 /24 1.1.1.1
```

### 41.2 show ip route

Use the `show ip route` EXEC mode command to display the current routing table state.
Syntax

`show ip route [connected | static | [address address [mask | prefix-length] [longer-prefixes]]]`

Parameters

- **connected**—Displays connected routing entries only.
- **static**—Displays static routing entries only.
- **address address**—Specifies the address for which routing information is displayed.
- **mask**—Specifies the network subnet mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 1–32)
- **longer-prefixes**—Specifies that the address and mask pair becomes a prefix and any routes that match that prefix are displayed.

Command Mode

EXEC mode

User Guidelines

To use this command set the device in router mode with the command `set system mode`.

Example

The following example displays the current routing table state.

```
switchxxxxxx# show ip route
switchxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled
Codes: C - connected, S - static, D - DHCP
S 0.0.0.0/0 [gil] via 10.5.234.254 119:9:27 vlan 1
C 10.5.234.0/24 is directly connected vlan 1
```
switchxxxxxx#show ip route

Maximum Parallel Paths: 1 (1 after reset)

IP Forwarding: enabled

Codes: C - connected, S - static, D - DHCP

S 0.0.0.0/0 [1/1] via 10.5.229.1 3:19:29 vlan 1
C 10.5.229.0/27 is directly connected vlan 1

switchxxxxxx#show ip route address 10.5.229.12

Maximum Parallel Paths: 1 (1 after reset)

IP Forwarding: enabled

Codes: C - connected, S - static, D - DHCP

C 10.5.229.0/27 is directly connected vlan 1

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>The protocol that derived the route.</td>
</tr>
<tr>
<td>10.8.1.0/24</td>
<td>The remote network address.</td>
</tr>
<tr>
<td>[30/2000]</td>
<td>The first number in the brackets is the administrative distance of the</td>
</tr>
<tr>
<td></td>
<td>information source; the second number is the metric for the route.</td>
</tr>
<tr>
<td>via 10.0.1.2</td>
<td>The address of the next router to the remote network.</td>
</tr>
<tr>
<td>00:39:08</td>
<td>The last time the route was updated in hours:minutes:seconds.</td>
</tr>
<tr>
<td>gi1</td>
<td>The interface through which the specified network can be reached.</td>
</tr>
</tbody>
</table>
ACL Commands

42.1 ip access-list (IP extended)

Use the `ip access-list extended` Global Configuration mode command to name an IPv4 access list (ACL) and to place the device in IPv4 Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IP)` and `deny (IP)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the no form of this command to remove the access list.

Syntax

```
ip access-list extended acl-name
no ip access-list extended acl-name
```

Parameters

- `acl-name`—Name of the IPv4 access list. (Range 1-32 characters)

Default Configuration

No IPv4 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

An IPv4 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)#
```
42.2  permit (IP)

Use the `permit IP` Access-list Configuration mode command to set permit conditions for an IPv4 access list (ACL). Permit conditions are also known as access control entries (ACEs).

Syntax

```
permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name]
permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name]
permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [time-range time-range-name]
permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name]
permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name]
```

Parameters

- `permit protocol`—The name or the number of an IP protocol. Available protocol names are: icmp, igmp, ip, tcp, egp, igrp, udp, hmp, rdp, idrp, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the `ip` keyword. (Range: 0–255)
- `source`—Source IP address of the packet.
- `source-wildcard`—Wildcard bits to be applied to the source IP address. Use ones in the bit position that you want to be ignored.
- `destination`—Destination IP address of the packet.
- `destination-wildcard`—Wildcard bits to be applied to the destination IP address. Use ones in the bit position that you want to be ignored.
- `dscp number`—Specifies the DSCP value.
- `precedence number`—Specifies the IP precedence value.
- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dns (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), on500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535).

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set, it is prefixed by “+”. If a flag should be unset, it is prefixed by “-“.
  Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

**Default Configuration**

No IPv4 access list is defined.
Command Mode

IP Access-list Configuration mode

User Guidelines

If a range of ports is used for source port in an ACE, it is not counted again, if it is also used for a source port in another ACE. If a range of ports is used for the destination port in an ACE, it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)# permit ip 176.212.0.0 00.255.255
```

42.3 deny (IP)

Use the `deny` IP Access-list Configuration mode command to set deny conditions for IPv4 access list. Deny conditions are also known as access control entries (ACEs).

Syntax

```
deny protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name]
deny icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [all but Cisco] [time-range time-range-name]
deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [all but Cisco] time-range time-range-name]
deny tcp {any | source source-wildcard} [any | source-port/port-range] [any | destination destination-wildcard] [any | destination-port/port-range] [dscp number | precedence number] [match-all list-of-flags] [all but Cisco] [time-range time-range-name]
```
deny udp \{any | source source-wildcard\} \{any | source-port/port-range\} \{any | destination destination-wildcard\} \{any | destination-port/port-range\} \{dscp number | precedence number\} \{time-range time-range-name\}

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names: icmp, igmp, ip, tcp, egp, ige, udp, idmp, rdp, idpr, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the Ip keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use 1s in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.

- **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use 1s in the bit position that you want to be ignored.

- **dscp number**—Specifies the DSCP value.

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), ldap (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds
For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp 161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177).

• source-port	Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)
• match-all list-of-flags	List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.
• time-range-name	Name of the time range that applies to this permit statement. (Range: 1–32)
• disable-port	The Ethernet interface is disabled if the condition is matched.
• log-input	Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding is done in hardware and logging is done in software, if a large number of packets match a deny ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.

Command Mode

IP Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for a source port in ACE it is not counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port, it is counted again if it is also used for destination port.

Example
switchxxxxx(config)# ip access-list extended server
switchxxxxx(config-ip-al)# deny ip 176.212.0.0 00.255.255

42.4 ipv6 access-list (IPv6 extended)

Use the ipv6 access-list Global Configuration mode command to define an IPv6 access list (ACL) and to place the device in IPv6 Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the permit (IPv6) and deny (IPv6) commands. The service-acl input command is used to attach this ACL to an interface.

Use the no form of this command to remove the access list.

Syntax

ipv6 access-list [acl-name]
no ipv6 access-list [acl-name]

Parameters

acl-name—Name of the IPv6 access list. Range 1-32 characters.

Default Configuration

No IPv6 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

IPv6 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Every IPv6 ACL has an implicit permit icmp any any nd-ns any, permit icmp any any nd-na any, and deny ipv6 any any statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.)

The IPv6 neighbor discovery process uses the IPv6 network layer service, therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.
Example

Switch (config)# ipv6 access-list acl1

Switch(config-ipv6-acl)# permit tcp 2001:0DB8:0300:0201::/64 any any 80

42.5 permit (IPv6)

Use the permit command in IPv6 Access-list Configuration mode to set permit conditions (ACEs) for IPv6 ACLs.

Syntax

permit protocol [any | {source-prefix/length}|any / destination- prefix/length] [dscp number | precedence number] [time-range time-range-name]

permit icmp [any | {source-prefix/length}|any / destination- prefix/length] [any icmp-type] [any icmp-code] [dscp number | precedence number] [all but Cisco] [time-range time-range-name]

permit tcp [any | {source-prefix/length}|any | source-port/port-range]|any / destination- prefix/length] [any destination-port/port-range] [dscp number | precedence number] [match-all list-of-flags] [all but Cisco] [time-range time-range-name]

permit udp [any | {source-prefix/length}|any | source-port/port-range]|any / destination- prefix/length] [any destination-port/port-range] [dscp number | precedence number][all but Cisco] [time-range time-range-name]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **dscp number**—Specifies the DSCP value. (Range: 0–63)
- **precedence** *number*—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all** *list-of-flag*—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

**Default Configuration**

No IPv6 access list is defined.

**Command Mode**

Ipv6 Access-list Configuration mode
User Guidelines

If a range of ports is used for source port in an ACE, it is not counted again, if it is also used for a source port in another ACE. If a range of ports is used for the destination port in an ACE, it is not counted again if it is also used for destination port in another ACE.

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for a source port in ACE, it is not counted again if it is also used for a source port in another ACE. If a range of ports is used for destination port in ACE it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

Example

This example defines an ACL by the name of server and enters a rule (ACE) for tcp packets.

```
switchxxxxxx(config)# ipv6 access-list server
switchxxxxxx(config-ipv6-al)# permit tcp 3001::2/64 any any 80
```

42.6 deny ( IPv6 )

Use the deny command in IPv6 Access List Configuration mode to set permit conditions (ACEs) for IPv6 ACLs.

Syntax

deny protocol {any | [source-prefix/length][any | destination-prefix/length]} [dscp number | precedence number][time-range time-range-name] [disable-port | log-input]

deny icmp {any | [source-prefix/length][any | destination-prefix/length]} [any | icmp-type] [any | icmp-code] [dscp number | precedence number][time-range time-range-name] [disable-port | log-input]

deny tcp {any | [source-prefix/length][any | source-port/port-range]} [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number] [match-all list-of-flags][time-range time-range-name] [disable-port | log-input]

deny udp {any | [source-prefix/length][any | source-port/port-range]} [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number][time-range time-range-name] [disable-port | log-input]
Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **dscp number**—Specifies the DSCP value. (Range: 0–63)

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs+ (49), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-iskamp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs+ (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)
match-all list-of-flags—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

time-range-name—Name of the time range that applies to this permit statement. (Range: 1–32)

disable-port—The Ethernet interface is disabled if the condition is matched.

log-input—Specifies to send an informational syslog message about the packet that matches the entry. Because forwarding is done in hardware and logging is done in software, if a large number of packets match a deny ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv6 access list is defined.

Command Mode

IPv6 Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for source port in ACE it is not counted again if it is also used for source port in another ACE. If a range of ports is used for a destination port in ACE it is not counted again if it is also used for a destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

Example

```
switchxxxxxx(config)# ipv6 access-list server

switchxxxxxx(config-ipv6-al)# deny tcp 3001::2/64 any any 80
```

42.7 mac access-list

Use the mac access-list Global Configuration mode command to define a Layer 2 access list (ACL) based on source MAC address filtering and to place the device in MAC Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the permit (MAC) and
deny (MAC) commands. The service-acl input command is used to attach this ACL to an interface.

Use the no form of this command to remove the access list.

Syntax

mac access-list extended acl-name
no mac access-list extended acl-name

Parameters

acl-name—Specifies the name of the MAC ACL (Range: 1–32 characters).

Default Configuration

No MAC access list is defined.

Command Mode

Global Configuration mode

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Example

switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any

42.8 permit (MAC)

Use the permit command in MAC Access List Configuration mode to set permit conditions (ACEs) for a MAC ACL.

Syntax

permit [any | source source-wildcard] [any | destination destination-wildcard] [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos-wildcard]
ACL Commands

/time-range time-range-name/

Parameters

- **source**—Source MAC address of the packet.
- **source-wildcard**—Wildcard bits to be applied to the source MAC address. Use 1s in the bit position that you want to be ignored.
- **destination**—Destination MAC address of the packet.
- **destination-wildcard**—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- **eth-type**—The Ethernet type in hexadecimal format of the packet.
- **vlan-id**—The VLAN ID of the packet. (Range: 1–4094)
- **cos**—The Class of Service of the packet. (Range: 0–7)
- **cos-wildcard**—Wildcard bits to be applied to the CoS.
- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode

User Guidelines

After an access control entry (ACE) is added to an access control list, an implicit **deny any any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```
42.9 deny (MAC)

Use the `deny` command in MAC Access List Configuration mode to set deny conditions (ACEs) for a MAC ACL.

**Syntax**

deny {any | source source-wildcard} {any | destination destination-wildcard} {eth-type 0} | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000} [vlan vlan-id] [cos cos-wildcard] [time-range time-range-name] [disable-port | log-input]

**Parameters**

- **source**—Source MAC address of the packet.
- **source-wildcard**—Wildcard bits to be applied to the source MAC address. Use ones in the bit position that you want to be ignored.
- **destination**—Destination MAC address of the packet.
- **destination-wildcard**—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- **eth-type**—The Ethernet type in hexadecimal format of the packet.
- **vlan-id**—The VLAN ID of the packet. (Range: 1–4094)
- **cos**—The Class of Service of the packet. (Range: 0–7)
- **cos-wildcard**—Wildcard bits to be applied to the CoS.
- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)
- **disable-port**—The Ethernet interface is disabled if the condition is matched.
- **log-input**—Sends an informational syslog message about the packet that matches the entry. Because forwarding is done in hardware and logging is done in software, if a large number of packets match a deny ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

**Default Configuration**

No MAC access list is defined.
Command Mode

MAC Access-list Configuration mode

User Guidelines

After an access control entry (ACE) is added to an access control list, an implicit `deny any any` condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# deny 00:00:00:00:00:01 00:00:00:00:ff any
```

42.10 service-acl input

Use the `service-acl input` command in interface Configuration mode to bind an access list(s) (ACL) to an interface.

Use the `no` form of this command to remove all ACLs from the interface.

Syntax

```
service-acl input acl-name1 [acl-name2] default-action {deny-any | permit-any}
no service-acl input
```

Parameters

- `acl-name`—Specifies an ACL to apply to the interface. See the user guidelines. (Range: 1–32 characters).
- `permit-any`—If the packet does not match the ACL criteria, it is forwarded by default.
- `deny-any`—If the packet does not match the ACL criteria, it is dropped by default.

Default Configuration

No ACL is assigned.
**Command Mode**

Interface Configuration (Ethernet, Port-Channel) mode.

**User Guidelines**

The following rules govern when ACLs can be bound or unbound from an interface:

- IPv4 ACLs and IPv6 ACLs can be bound together to an interface.
- A MAC ACL cannot be bound on an interface which already has an IPv4 ACL or IPv6 ACL bound to it.
- Two ACLs of the same type cannot be bound to a port.
- An ACL cannot be bound to a port that is already bound to an ACL, without first removing the current ACL. Both ACLs must be mentioned at the same time in this command.

**Example**

```plaintext
switchxxxxxx(config)# mac access-list extended server-acl
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
switchxxxxxx(config-mac-al)# exit
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# service-acl input server-acl default-action deny-any
```

### 42.11 time-range

Use the `time-range` Global Configuration mode command to define time ranges for functions or ACLs. In addition, this command enters the Time-range Configuration mode. All commands after this one refer to the time-range being defined.

This command sets a time-range name. Use the `absolute` and `periodic` commands to actually configure the time-range.

Use the `no` form of this command to remove the time range from the device.

**Syntax**

```plaintext
time-range time-range-name
no time-range time-range-name
```
Parameters

time-range-name—Specifies the name for the time range. (Range: 1–32 characters)

Default Configuration

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

After adding the name of a time range with this command, use the absolute and periodic commands to actually configure the time-range. Multiple periodic commands are allowed in a time range. Only one absolute command is allowed.

If a time-range command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range ACEs are not activated.

The user cannot delete a time-range that is bound to any features.

When a time range is defined, it can be used in the following commands:

- dot1x port-control
- power inline
- permit (IP)
- deny (IP)
- permit (IPv6)
- deny (IPv6)
- permit (MAC)
- deny (MAC)
- show access-lists
Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

42.12 absolute

Use the `absolute` Time-range Configuration mode command to specify an absolute time when a time range is in effect. Use the `no` form of this command to remove the time limitation.

**Syntax**

```
absolute start hh:mm day month year
no absolute start
absolute end hh:mm day month year
no absolute end
```

**Parameters**

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.

- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.

- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- **day**—Day (by date) in the month. (Range: 1–31)

- **month**—Month (first three letters by name). (Range: Jan...Dec)

- **year**—Year (no abbreviation) (Range: 2000–2097)

**Default Configuration**

There is no absolute time when the time range is in effect.
Command Mode

Time-range Configuration mode

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

42.13 periodic

Use the periodic Time-range Configuration mode command to specify a recurring (weekly) time range for functions that support the time-range feature. Use the no form of this command to remove the time limitation.

Syntax

```
periodic day-of-the-week hh:mm to day-of-the-week hh:mm
no periodic day-of-the-week hh:mm to day-of-the-week hh:mm
periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]
no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]
periodic list hh:mm to hh:mm all
no periodic list all hh:mm to hh:mm all
```

Parameters

- **day-of-the-week**—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

- **hh:mm**—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)
ACL Commands

- list day-of-the-week1—Specifies a list of days that the time range is in effect.

Default Configuration
There is no periodic time when the time range is in effect.

Command Mode
Time-range Configuration mode

User Guidelines
The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic Monday 12:00 to Wednesday 12:00
```

42.14 show time-range

Use the show time-range EXEC command to display the time range configuration.

Syntax

```
show time-range time-range-name
```

Parameters

time-range-name—Specifies the name of an existing time range.

Command Mode
EXEC mode

Example

```
switchxxxxxx# show time-range
http-allowed
```
-----
absolute start 12:00 1 jan 2005
absolute end 12:00 31 dec 2005
periodic monday 8:00 to friday 20:00

42.15  show access-lists

Use the show access-lists Privileged EXEC mode command to display access control lists (ACLs) configured on the switch.

Syntax

show access-lists [name]
show access-lists time-range-active [name]

Parameters

- name—Specifies the name of the ACL.
- time-range-active—Shows only the Access Control Entries (ACEs) whose time-range is currently active (including those that are not associated with time-range).

Command Mode

Privileged EXEC mode

Example

switchxxxxxx#show access-lists
Standard IP access list 1
deny any any
Standard IP access list 2
deny 192.168.0.0/24
permit any any
Standard IP access list 3
deny 192.168.0.1 10.0.0.0/8
permit any any
Standard IP access list ACL1
permit 192.168.0.0/16 10.1.1.1

Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any time-range weekdays
permit 234 172.30.23.8 0.0.0.255 any time-range weekdays

switchxxxxxx# show access-lists time-range-active

Extended IP access list ACL1
permit 234 172.30.40.1 0.0.0.0 any
permit 234 172.30.8.8 0.0.0.0 any

Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any time-range weekdays

switchxxxxxx# show access-lists ACL1

Standard IP access list ACL1
permit 0.0.0.0
permit 192.168.0.2, wildcard bits 0.0.0.255

Extended IP access list ACL1
permit 234 172.30.40.1 0.0.0.0 any
permit 234 172.30.8.8 0.0.0.0 any

42.16 show interfaces access-lists

Use the show interfaces access-lists Privileged EXEC mode command to display access lists (ACLs) applied on interfaces.

Syntax

show interfaces access-lists [interface-id]

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN.
**Command Mode**

Privileged EXEC mode

**Example**

```
switchxxxxx# show interfaces access-lists

Interface Ingress ACL Egress ACL
-------------------- ----------------
gi1 ACL1 ACL2
 ACL3
 blockcdp, blockvtp
```
Quality of Service (QoS) Commands

43.1 qos

Use the qos Global Configuration mode command to enable QoS on the device and set its mode. Use the no form of this command to disable QoS on the device.

Syntax

qos [basic | advanced [ports-not-trusted | ports-trusted]]

no qos

Parameters

- basic—QoS basic mode. If no option is specified, the QoS mode defaults to the basic mode.
- advanced—Specifies the QoS advanced mode, which enables the full range of QoS configuration.
- ports-not-trusted—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to egress queue 0. This is the default setting in advanced mode.
- ports-trusted—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to an egress queue based on the packet's fields. Use the qos advanced-mode trust command to specify the trust mode.

Default Configuration

If qos is entered without any keywords, the QoS basic mode is enabled.

If qos advanced is entered without a keyword, the default is ports-not-trusted.

Command Mode

Global Configuration mode
Examples

Example 1 - The following example enables QoS basic mode on the device.

```
switchxxxxxx(config)# qos
```

Example 2 - The following example enables QoS advanced mode on the device with the **ports-not-trusted** option.

```
switchxxxxxx(config)# qos advanced
```

### 43.2 qos advanced-mode trust

Use the `qos advanced-mode trust` Global Configuration command to configure the trust mode in advanced mode. Use the `no` form of this command to return to default.

**Syntax**

```
qos advanced-mode trust {cos | dscp | cos-dscp}
no qos advanced-mode trust
```

**Parameters**

- **cos**—Classifies ingress packets with the packet CoS values. For untagged packets, the port default CoS is used.
- **dscp**—Classifies ingress packets with the packet DSCP values.
- **cos-dscp**—Classifies ingress packets with the packet DSCP values for IP packets. For other packet types, use the packet CoS values.

**Default Configuration**

```
cos-dscp
```

**Command Mode**

Global Configuration

**User Guidelines**

The configuration is relevant for advanced mode in the following cases:
Quality of Service (QoS) Commands

- **ports-not-trusted mode**: For packets that are classified to the QoS action trust.
- **ports-trusted mode**: For packets that are not classified by to any QoS action or classified to the QoS action trust.

**Example**
The following example sets cos as the trust mode for QoS on the device.

```
switchxxxxxx(config)# qos advanced-mode trust cos
```

### 43.3 show qos

Use the `show qos` EXEC mode command to display the QoS information for the device. The trust mode is displayed for the QoS basic mode.

**Syntax**

```
show qos
```

**Parameters**

N/A

**Default Configuration**

Disabled Command Mode

**Command Mode**

EXEC mode

**User Guidelines**

Trust mode is displayed if QoS is enabled in basic mode.

**Examples**

**Example 1** - The following example displays QoS attributes when QoS is enabled in basic mode and the advanced mode is supported.

```
switchxxxxxx# show qos
```
Qos: basic
Basic trust: dscp

Example 2 - The following example displays QoS attributes when QoS is enabled in basic mode on the device and the advanced mode is not supported.

```
switchxxxxxx# show qos
Qos: disable
Trust: dscp
```

### 43.4 class-map

The `class-map` command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally-named service policy applied on a per-interface basis.

A class map consists of one or more ACLs (see ACL Commands). It defines a traffic flow by determining which packets match some or all of the criteria specified in the ACLs.

Use the `class-map` Global Configuration mode command to create or modify a class map and enter the Class-map Configuration mode (only possible when QoS is in the advanced mode).

Use the `no` form of this command to delete a class map.

All class map commands are only available when QoS is in advanced mode.

**Syntax**

```
class-map class-map-name [match-all | match-any]
no class-map class-map-name
```

**Parameters**

- `class-map-name`—Specifies the class map name.
- `match-all`—Performs a logical AND of all the criteria of the ACLs belonging to this class map. All match criteria in this class map must be matched.
• **match-any**—Performs a logical OR of the criteria of the ACLs belonging to this class map. Only a single match criteria in this class map must be matched.

**Default Configuration**

If neither **match-all** nor **match-any** is specified, the **match-all** parameter is selected by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

The **class-map** enters Class-map Configuration mode. In this mode, up to two **match** commands can be entered to configure the criteria for this class. Each **match** specifies an ACL.

When using two **match** commands, each must point to a different type of ACL, such as: one IP ACL and one MAC ACL. The classification is by first match, therefore, the order of the ACLs is important.

Error messages are generated in the following cases:

- There is more than one **match** command in a **match-all** class map
- There is a repetitive classification field in the participating ACLs.

After entering the Class-map Configuration mode, the following configuration commands are available:

- **exit**: Exits the Class-map Configuration mode.
- **match**: Configures classification criteria.
- **no**: Removes a match statement from a class map.

**Example**

The following example creates a class map called Class1 and configures it to check that packets match all classification criteria in the ACL specified.

```
switchxxxxxx(config)# class-map class1 match-all
switchxxxxxx(config-cmap)#match access-group acl-name
```
43.5  **show class-map**

The `show class-map` EXEC mode command displays all class maps when QoS is in advanced mode.

**Syntax**

```
show class-map [class-map-name]
```

**Parameters**

`class-map-name`—Specifies the name of the class map to be displayed.

**Command Mode**

EXEC mode

**Example**

The following example displays the class map for Class1.

```
switchxxxxxx# show class-map class1
Class Map match-any class1 (id4)
Match IP dscp 11 21
```

43.6  **match**

Use the `match` Class-map Configuration mode command to bind the ACLs that belong to the class-map being configured. Use the `no` form of this command to delete the ACLs.

This command is available only when the device is in QoS advanced mode.

**Syntax**

```
match access-group acl-name
no match access-group acl-name
```

**Parameters**

`acl-name`—Specifies the MAC or IP ACL name.
Default Configuration
No match criterion is supported.

Command Mode
Class-map Configuration mode.

Example
The following example defines a class map called Class1. Class1 contains an ACL called enterprise. Only traffic matching all criteria in enterprise belong to the class map.

```
switchxxxxxx(config)# class-map class1
switchxxxxxx(config-cmap)# match access-group enterprise
```

43.7 policy-map
A policy map contains one or more class maps and an action that is taken if the packet matches the class map. Policy maps may be bound to ports/port-channels.

Use the policy-map Global Configuration mode command to creates a policy map and enter the Policy-map Configuration mode. Use the no form of this command to delete a policy map.

This command is only available when QoS is in advanced mode.

Syntax
```
policy-map policy-map-name
no policy-map policy-map-name
```

Parameters
```
policy-map-name—Specifies the policy map name.
```

Default Configuration
N/A

Command Mode
Global Configuration mode
User Guidelines

Use the **policy-map** Global Configuration mode command to specify the name of the policy map to be created, added to, or modified before configuring policies for classes whose match criteria are defined in a class map.

Entering the **policy-map** Global Configuration mode command also enables configuring or modifying the class policies for that policy map. Class policies in a policy map can be configured only if the classes have match criteria defined for them.

Policy map is applied on the ingress path.

The match criteria is for a class map. Only one policy map per interface is supported. The same policy map can be applied to multiple interfaces and directions.

The **service-policy** command binds a policy map to a port/port-channel.

Example

The following example creates a policy map called Policy1 and enters the Policy-map Configuration mode.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)#
```

43.8 **class**

Use the **class** Policy-map Configuration mode command after the **policy-map** command to attach ACLs to a policy-map.

Use the **no** form of this command to detach a class map from a policy map.

This command is only available when QoS is in advanced mode.

**Syntax**

```
class class-map-name [access-group acl-name]
```

**Parameters**

- **class-map-name**—Specifies the name of an existing class map. If the class map does not exist, a new class map is created under the specified name.
Quality of Service (QoS) Commands

- **access-group acl-name**—Specifies the name of an IP or MAC Access Control List (ACL).

**Default Configuration**

No class map is defined for the policy map.

**Command Mode**

Policy-map Configuration mode

**User Guidelines**

This is the same as creating a class map and then binding it to the policy map.

You can specify an existing class map in this command, or you can use the `access-group` parameter to create a new class map.

After the policy-map is defined, use the `service-policy` command to attach it to a port/port-channel.

**Example**

The following example defines a traffic classification (class map) called `class1` containing an ACL called `enterprise`. The class is in a policy map called `policy1`. The policy-map `policy1` now contains the ACL `enterprise`.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1 access-group enterprise
```

43.9 **show policy-map**

Use the `show policy-map` EXEC mode command to display all policy maps or a specific policy map.

This command is only available when QoS is in advanced mode.

**Syntax**

```
show policy-map [policy-map-name]
```

**Parameters**

- `policy-map-name`—Specifies the policy map name.
**Default Configuration**

All policy-maps are displayed.

**Command Mode**

EXEC mode

**Example**

The following example displays all policy maps.

```plaintext
switchxxxxxx# show policy-map
Policy Map policy1
 class class1
 set IP dscp 7
Policy Map policy2
 class class2
 police 96000 4800 exceed-action drop
 class class3
 police 124000 96000 exceed-action policed-dscp-transmit
```

**43.10 trust**

Use the `trust` Policy-map Class Configuration mode command to configure the trust state. This command is relevant only when QoS is in advanced, ports-not-trusted mode. Trust indicates that traffic is sent to the queue according to the packet’s QoS parameters (UP or DSCP).

Use the `no` form of this command to return to the default trust state.

This command is only available when QoS is in advanced mode.

**Syntax**

```plaintext
trust
no trust
```

**Parameters**

N/A
Default Configuration

The default state is according to the mode selected in the qos command (advanced mode). The type of trust is determined in qos advanced-mode trust.

Command Mode

Policy-map Class Configuration mode

User Guidelines

Use this command to distinguish the QoS trust behavior for certain traffic from others. For example, incoming traffic with certain DSCP values can be trusted. A class map can be configured to match and trust the DSCP values in the incoming traffic.

The type of trust is determined in qos advanced-mode trust.

Trust values set with this command supersede trust values set on specific interfaces with the qos trust (Interface) Interface Configuration mode command.

The trust and set commands are mutually exclusive within the same policy map.

Policy maps, which contain set or trust commands or that have ACL classification to an egress interface, cannot be attached by using the service-policy Interface Configuration mode command.

If specifying trust cos, QoS maps a packet to a queue, the received or default port CoS value, and the CoS-to-queue map.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and configures the trust state using the DSCP value in the ingress packet.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-mac-al)# permit ip any any
switchxxxxxx(config-mac-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
```
43.11 set

Use the set Policy-map Class Configuration mode command to select the value that QoS uses as the DSCP value, the egress queue or to set user priority values.

This command is only available when QoS is in advanced mode.

Syntax

set {dscp new-dscp | queue queue-id | cos new-cos}

no set

Parameters

- **dscp new-dscp**—Specifies the new DSCP value for the classified traffic. (Range: 0–63)
- **queue queue-id**—Specifies the egress queue. (Range: 1-4)
- **cos new-cos**—Specifies the new user priority to be marked in the packet. (Range: 0–3)

Command Mode

Policy-map Class Configuration mode

User Guidelines

The set and trust commands are mutually exclusive within the same policy map.

To return to the Configuration mode, use the exit command. To return to the Privileged EXEC mode, use the end command.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and sets the DSCP value in the packet to 56 for classes in the policy map called p1.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-mac-al)# permit ip any any
switchxxxxxx(config-mac-al)# exit
```
43.12 police

Use the `police` Policy-map Class Configuration mode command to define the policer for classified traffic. This defines another group of actions for the policy map (per class map).

This command is used after the `policy-map` and `class` commands.

Use the `no` form of this command to remove a policer.

This command is only available when QoS is in advanced mode.

Syntax

```plaintext
police committed-rate-kbps committed-burst-byte [exceed-action {drop | policed-dscp-transmit}]
```

```plaintext
no police
```

Parameters

- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (kbps). Range: 100–10000000)

- **committed-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)

- **exceed-action {drop | policed-dscp-transmit}**—Specifies the action taken when the rate is exceeded. The possible values are:
  - **drop**—Drops the packet.
  - **policed-dscp-transmit**—Remarks the packet DSCP, according to the policed-DSCP map as configured by the `qos map policed-dscp` Global Configuration mode command.
Default Usage
N/A

Command Mode
Policy-map Class Configuration mode

User Guidelines
This command only exists in when the device is in Layer 2 mode.
Policing uses a token bucket algorithm. CIR represents the speed with which the
token is added to the bucket. CBS represents the depth of the bucket.

Example
The following example defines a policer for classified traffic. When the traffic rate
exceeds 124,000 kbps and the normal burst size exceeds 9600 bytes, the packet
is dropped. The class is called class1 and is in a policy map called policy1.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1
switchxxxxxx(config-pmap-c)# police 124000 9600 exceed-action drop
```

43.13 service-policy

Use the **service-policy** Interface Configuration (Ethernet, Port-channel) mode
command to bind a policy map to a port/port-channel. Use the **no** form of this
command to detach a policy map from an interface.

This command is only available in QoS advanced mode.

Syntax

```
service-policy input policy-map-name default-action [permit-any | deny-any]
no service-policy input
```

Parameters

- **policy-map-name**—Specifies the policy map name to apply to the input
  interface. (Length: 1–32 characters)
- **deny-any**—Deny all the packets (which were ingress of the port) that do not meet the rules in a policy.
- **permit-any**—Forward all the packets (which were ingress of the port) that do not meet the rules in a policy.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**

Only one policy map per interface per direction is supported.

**Example**

The following example attaches a policy map called Policy1 to the input interface.

```
switchxxxxxx(config-if)# service-policy input policy1 permit-any
```

### 43.14 qos aggregate-policer

Use the `qos aggregate-policer` Global Configuration mode command to define the policer parameters that can be applied to multiple traffic classes. Use the `no` form of this command to remove an existing aggregate policer.

This command is only available when QoS is in advanced mode.

**Syntax**

```
qos aggregate-policer aggregate-policer-name committed-rate-kbps excess-burst-byte [exceed-action {drop | policed-dscp-transmit}]
```

```
no qos aggregate-policer aggregate-policer-name
```

**Parameters**

- **aggregate-policer-name**—Specifies the aggregate policer name.
- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3–57982058)
- **excess-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
• **exceed-action** \{drop | policed-dscp-transmit\}—Specifies the action taken when the rate is exceeded. The possible values are:
  - **drop**—Drops the packet.
  - **policed-dscp-transmit**—Remarks the packet DSCP.

**Default Configuration**

No aggregate policer is defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command only exists when the device is in Layer 2.

Define an aggregate policer if the policer aggregates traffic from multiple class maps.

Aggregate policers cannot aggregate traffic from multiple devices. If the aggregate policer is applied to more than one device, the traffic on each device is counted separately and is limited per device.

Traffic from two different ports on the same device can be aggregated for policing purposes.

An aggregate policer can be applied to multiple classes in the same policy map.

An aggregate policer cannot be deleted if it is being used in a policy map. The **no police aggregate** Policy-map Class Configuration mode command must first be used to delete the aggregate policer from all policy maps before using the **no mls qos aggregate-policer** command.

Policing uses a token bucket algorithm. CIR represents the speed with which the token is added to the bucket. CBS represents the depth of the bucket.

**Example**

The following example defines the parameters of a policer called Policer1 that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
```
43.15  show qos aggregate-policer

Use the **show qos aggregate-policer** EXEC mode command to display aggregate policers.

This command is only available in QoS advanced mode.

**Syntax**

```
show qos aggregate-policer [aggregate-policer-name]
```

**Parameters**

- **aggregate-policer-name**—Specifies the aggregate policer name.

**Default Configuration**

All policers are displayed.

**Command Mode**

EXEC mode

**Example**

The following example displays the parameters of the aggregate policer called Policer1.

```
switchxxxxxx# show qos aggregate-policer policer1
aggregate-policer policer1 96000 4800 exceed-action drop
not used by any policy map
```

43.16  police aggregate

Use the **police aggregate** Policy-map Class Configuration mode command to apply an aggregate policer to multiple class maps within the same policy map. Use the no form of this command to remove an existing aggregate policer from a policy map.

This command is only available in QoS advanced mode.

**Syntax**

```
police aggregate aggregate-policer-name
```
no police aggregate aggregate-policer-name

Parameters
aggregate-policer-name—Specifies the aggregate policer name.

Command Mode
Policy-map Class Configuration mode

User Guidelines
An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps or interfaces.

Use the exit command to return to the Configuration mode. Use the end command to return to the Privileged EXEC mode.

Example
The following example applies the aggregate policer called Policer1 to a class called class1 in a policy map called policy1 and class2 in policy map policy2.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600
exceed-action drop
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1
switchxxxxxx(config-pmap-c)# police aggregate policer1
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap)# exit
switchxxxxxx(config)# policy-map policy2
switchxxxxxx(config-pmap)# class class2
switchxxxxxx(config-pmap-c)# police aggregate policer1
```

43.17 wrr-queue cos-map

Use the wrr-queue cos-map Global Configuration mode command to map Class of Service (CoS) values to a specific egress queue. Use the no form of this command to restore the default configuration.
Quality of Service (QoS) Commands

**Syntax**

```
wrr-queue cos-map queue-id cos0... cos7
no wrr-queue cos-map [queue-id]
```

**Parameters**

- `queue-id`—Specifies the queue number to which the CoS values are mapped.
- `cos0... cos7`—Specifies up to 8 CoS values to map to the specified queue number. (Range: 0–7)

**Default Configuration**

The default CoS value mapping to 4 queues is as follows:

- CoS value 0 is mapped to queue 1.
- CoS value 1 is mapped to queue 1.
- CoS value 2 is mapped to queue 2.
- CoS value 3 is mapped to queue 3.
- CoS value 4 is mapped to queue 3.
- CoS value 5 is mapped to queue 4.
- CoS value 6 is mapped to queue 4.
- CoS value 7 is mapped to queue 4.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to distribute traffic to different queues.

**Example**

The following example maps CoS value 4 and 6 to queue 2.

```
switchxxxxxx(config)# wrr-queue cos-map 2 4 6
```
43.18  wrr-queue bandwidth

Use the `wrr-queue bandwidth` global Configuration command to assign Weighted Round Robin (WRR) weights to egress queues. The weight ratio determines the frequency at which the packet scheduler removes packets from each queue. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
wrr-queue bandwidth weight1 weight2... weighting
```

```
no wrr-queue bandwidth
```

**Parameters**

`weight1 weight1... weighting` the ratio of bandwidth assigned by the WRR packet scheduler to the packet queues. See explanation in the User Guidelines. Separate each value by a space. (Range for each weight: 0–255)

**Default Configuration**

wrr is disabled by default. The default wrr weight is ‘1’ for all queues.

**Command Mode**

Global Configuration mode

**User Guidelines**

The ratio for each queue is defined as the queue weight divided by the sum of all queue weights (the normalized weight). This sets the bandwidth allocation of each queue.

A weight of 0 indicates that no bandwidth is allocated for the same queue, and the shared bandwidth is divided among the remaining queues. It is not recommended to set the weight of a queue to a 0 as it might stop transmission of control-protocols packets generated by the device.

All 3 queues participate in the WRR, excluding the expedite queues, whose corresponding weight is not used in the ratio calculation.

An expedite queue is a priority queue, which is serviced until empty before the other queues are serviced. The expedite queues are designated by the `priority-queue out num-of-queues` command.
Example
The following assigns WRR values to the queues.

```
switchxxxxxx(config)# wrr-queue bandwidth 6 6 6 6
```

43.19  priority-queue out num-of-queues
An expedite queue is a strict priority queue, which is serviced until empty before the other lower priority queues are serviced.

Use the `priority-queue out num-of-queues` Global Configuration mode command to configure the number of expedite queues. Use the `no` form of this command to restore the default configuration.

Syntax

```
priority-queue out num-of-queues number-of-queues
no priority-queue out num-of-queues
```

Parameters

- **number-of-queues**—Specifies the number of expedite (strict priority) queues. Expedite queues are assigned to the queues with the higher indexes. (Range: 0–4).
  
  There must be either 0 wrr queues or more than one.

- If **number-of-queues** = 0, all queues are assured forwarding (according to wrr weights) If the **number-of-queues** = 4, all queues are expedited (strict priority queues).

Default Configuration
All queues are expedite queues.

Command Mode
Global Configuration mode

User Guidelines
the weighted round robin (WRR) weight ratios are affected by the number of expedited queues, because there are fewer queues participating in WRR. This
indicates that the corresponding weight in the `wrr-queue bandwidth` Interface Configuration mode command is ignored (not used in the ratio calculation).

**Example**

The following example configures the number of expedite queues as 2.

```
switchxxxxx(config)# priority-queue out num-of-queues 2
```

### 43.20 traffic-shape

The egress port shaper controls the traffic transmit rate (Tx rate) on a port.

Use the `traffic-shape` Interface Configuration mode command to configure the egress port shaper. Use the `no` form of this command to disable the shaper.

**Syntax**

```
traffic-shape committed-rate [committed-burst]
```

```
no traffic-shape
```

**Parameters**

- **committed-rate**—Specifies the maximum average traffic rate (CIR) in kbits per second (kbps). (Range: GE: 64kbps–maximum port speed; 10GE: 64Kbps–maximum port speed)

- **committed-burst**—Specifies the maximum permitted excess burst size (CBS) in bytes. (Range: 4096 - 16762902 bytes)

**Default Configuration**

The shaper is disabled.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**Example**

The following example sets a traffic shaper on gi5 on queue 1 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.
43.21 traffic-shape queue

The egress port shaper controls the traffic transmit rate (Tx rate) on a queue on a port.

Use the traffic-shape queue Interface Configuration mode command to configure the egress queue shaper. Use the no form of this command to disable the shaper.

Syntax

traffic-shape queue queue-id committed-rate [committed-burst]

no traffic-shape queue queue-id

Parameters

- queue-id—Specifies the queue number to which the shaper is assigned. (Range: 1-4)
- committed-rate—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 64 kbps–maximum port speed)
- committed-burst—Specifies the excess burst size (CBS) in bytes. (Range: 4096 - 16762902 bytes)

Default Configuration

The shaper is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example sets a shaper on queue 1 on gi5 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# traffic-shape 1 124000 9600
43.22 rate-limit (Ethernet)

Use the `rate-limit` Interface Configuration mode command to limit the incoming traffic rate on a port. Use the `no` form of this command to disable the rate limit.

**Syntax**

```
rate-limit committed-rate-kbps [burst committed-burst-bytes]
no rate-limit
```

**Parameters**

- `committed-rate-kbps`—Specifies the maximum number of kilobits per second of ingress traffic on a port. The range is 100–max port speed.
- `burst committed-burst-bytes`—The burst size in bytes (3000–19173960). If unspecified, defaults to 128K.

**Default Configuration**

Rate limiting is disabled.

Committed-burst-bytes is 128K.

**Command Mode**

Interface Configuration (Ethernet) mode.

**User Guidelines**

Storm control and rate-limit (of Unicast packets) cannot be enabled simultaneously on the same port.

**Example**

The following example limits the incoming traffic rate on gi5 to 150,000 kbps.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# rate-limit 150000
```
43.23 rate-limit (VLAN)

Use the Layer 2 rate-limit (VLAN) Global Configuration mode command to limit the incoming traffic rate for a VLAN. Use the no form of this command to disable the rate limit.

Syntax
rate-limit vlan-id committed-rate committed-burst
no rate-limit vlan

Parameters
- vlan-id—Specifies the VLAN ID.
- committed-rate—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3-57982058)
- committed-burst—Specifies the maximum burst size (CBS) in bytes. (Range: 3000-19173960)

Default Configuration
Rate limiting is disabled.
Committed-burst-bytes is 128K.

Command Mode
Global Configuration mode

User Guidelines
Traffic policing in a policy map takes precedence over VLAN rate limiting. If a packet is subject to traffic policing in a policy map and is associated with a VLAN that is rate limited, the packet is counted only in the traffic policing of the policy map.

This command does not work in Layer 3 mode. It does not work in conjunction with IP Source Guard.

Example
The following example limits the rate on VLAN 11 to 150000 kbps or the normal burst size to 9600 bytes.
43.24  qos wrr-queue wrtd

Use the **qos wrr-queue wrtd** Global Configuration mode command to enable Weighted Random Tail Drop (WRTD). Use the **no** form of this command to disable WRTD.

**Syntax**

```
qos wrr-queue wrtd
no qos wrr-queue wrtd
```

**Parameters**

N/A

**Default**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

The command is effective after reset.

**Example**

```
switchxxxxxx(config)# rate-limit 11 150000 9600
```

```
switchxxxxxx(config)# qos wrr-queue wrtd
```

This setting will take effect only after copying running configuration to startup configuration and resetting the device.

```
switchxxxxxx(config)#
```

43.25  show qos wrr-queue wrtd

Use the **show qos wrr-queue wrtd** Exec mode command to display the Weighted Random Tail Drop (WRTD) configuration.
Quality of Service (QoS) Commands

43.26 show qos interface

Use the `show qos interface` EXEC mode command to display Quality of Service (QoS) information on the interface.

**Syntax**

```
show qos interface [buffers / queueing / policers / shapers / rate-limit] [interface-id]
```

**Parameters**

- **buffers**—Displays the buffer settings for the interface's queues. For GE ports, displays the queue depth for each of the 4 queues.
- **queueing**—Displays the queue's strategy (WRR or EF), the weight for WRR queues, the CoS to queue map and the EF priority.
- **policers**—Displays all the policers configured for this interface, their settings, and the number of policers currently unused (on a VLAN).
- **shapers**—Displays the shaper of the specified interface and the shaper for the queue on the specified interface.
- **rate-limit**—Displays the rate-limit configuration.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, or Port-channel.

**Default Configuration**

N/A

**Command Mode**

EXEC mode

**User Guidelines**

If no parameter is specified with the `show qos interface` command, the port QoS mode (DSCP trusted, CoS trusted, untrusted, and so on), default CoS value, DSCP-to-DSCP map (if any) attached to the port, and policy map (if any) attached to the interface are displayed. If a specific interface is not specified, the information for all interfaces is displayed.

**Examples**

**Example 1** - This is an example of the output from the `show qos interface queueing` command for 4 queues

```
witchxxxxxx# show qos interface queueing gi1
Ethertnet gi1
wrr bandwidth weights and EF priority:
qid-weights Ef - Priority
1 - N/A ena- 1
2 - N/A ena- 2
3 - N/A ena- 3
4 - N/A ena- 4
Cos-queue map:
cos-qid
 0 - 1
 1 - 1
 2 - 2
 3 - 3
 4 - 3
```
Example 2 - This is an example of the output from the `show qos interface shapers` command

Ethernet gi1
Port shaper: disable
Committed rate: N/A
Committed burst: N/A

<table>
<thead>
<tr>
<th>qid</th>
<th>Status</th>
<th>Committed Rate [Kbps]</th>
<th>Committed Burst [bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Example - 3 This is an example of the output from the `show qos interface policer` command.

```
switchxxxxxx# show qos interface policer gi1
Ethernet gi1
Class map: A
Policer type: aggregate
Committed rate: 192000 bps
Committed burst: 9600 bytes
Exceed-action: policed-dscp-transmit
Class map: B
Policer type: single
Committed rate: 192000 bps
Committed burst: 9600 bytes
Exceed-action: drop
Class map: C
Policer type: none
Committed rate: N/A
Committed burst: N/A
Exceed-action: N/A
```

Example 4 - This is an example of the output from the `show qos interface rate-limit` command.

```
switchxxxxxx# show qos interface rate-limit gi1
Port rate-limit [kbps] Burst [KBytes]
------ ------------------
gi1 1000 512K
```

### 43.27 wrr-queue

Use the `wrr-queue` Global Configuration mode command to enable the tail-drop mechanism on an egress queue. Use the `no` form of this command to disable the tail-drop mechanism on an egress queue.

**Syntax**

```
wrr-queue tail-drop
no wrr-queue
```
Parameters

**tail-drop**— Specifies the tail-drop mechanism.

Default Configuration

The tail-drop mechanism on an egress queue is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command can only be used if Advanced mode is enabled.

Example

The following example enables the tail-drop mechanism on an egress queue.

```
switchxxxxxx(config)# wrr-queue tail-drop
```

### 43.28 qos wrr-queue threshold

Use the **qos wrr-queue threshold** Global Configuration mode command to assign queue thresholds globally. Use the **no** form of this command to restore the default configuration.

This command is only available in QoS advanced mode.

Syntax

```
qos wrr-queue threshold gigabitethernet queue-id threshold-percentage
no qos wrr-queue threshold gigabitethernet queue-id
```

Parameters

- **gigabitethernet**—Specifies that the thresholds are to be applied to Gigabit Ethernet ports.
- **queue-id**—Specifies the queue number to which the tail-drop threshold is assigned.
- **threshold-percentage**—Specifies the queue threshold percentage value.

**Default Configuration**
The default threshold is 80 percent.

**Command Mode**
Global Configuration mode

**User Guidelines**
If the threshold is exceeded, packets with the corresponding Drop Precedence (DP) are dropped until the threshold is no longer exceeded.

**Example**
The following example assigns a threshold of 80 percent to WRR queue 1.

```
switchxxxxxx(config)# qos wrr-queue threshold gigabitethernet 1 80
```

### 43.29 qos map policed-dscp

Use the `qos map policed-dscp` Global Configuration mode command to configure the policed-DSCP map for remarking purposes. Use the `no` form of this command to restore the default configuration.

This command is only available in QoS advanced mode.

**Syntax**
```
qos map policed-dscp dscp-list to dscp-mark-down
no qos map policed-dscp [dscp-list]
```

**Parameters**
- **dscp-list**—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- **dscp-mark-down**—Specifies the DSCP value to mark down. (Range: 0–63)

**Default Configuration**
The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.
**Command Mode**
Global Configuration mode.

**User Guidelines**
The original DSCP value and policed-DSCP value must be mapped to the same queue in order to prevent reordering.

**Example**
The following example marks incoming DSCP value 3 as DSCP value 5 on the policed-DSCP map.

```
switchxxxxxx(config)# qos map policed-dscp 3 to 5
```

### 43.30 qos map dscp-queue

Use the `qos map dscp-queue` Global Configuration mode command to configure the DSCP to CoS map. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
qos map dscp-queue dscp-list to queue-id
no qos map dscp-queue [dscp-list]
```

**Parameters**

- `dscp-list`—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- `queue-id`—Specifies the queue number to which the DSCP values are mapped.

**Default Configuration**
The default map for 4 queues is as follows.

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>0-16</th>
<th>17-23</th>
<th>24-30,49-63</th>
<th>40-48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Command Mode
Global Configuration mode

Example
The following example maps DSCP values 33, 40 and 41 to queue 1.

```
switchxxxxxxx(config)# qos map dscp-queue 33 40 41 to 1
```

43.31  qos map dscp-dp

Use the qos map dscp-dp Global Configuration mode command to map the DSCP values to Drop Precedence. Use the no form of this command to restore the default configuration.

This command is only available in QoS advanced mode.

Syntax
```
qos map dscp-dp dscp-list to dp
no qos map dscp-dp [dscp-list]
```

Parameters
- **dscp-list**—Specifies up to 8 DSCP values, with values separated by a space. (Range: 0–63)
- **dp**—Specifies the Drop Precedence value to which the DSCP values are mapped. (values: 0,2) where 2 is the highest Drop Precedence).

Default Configuration
All the DSCPs are mapped to Drop Precedence 0.

Command Mode
Global Configuration mode.

Example
The following example maps DSCP values 25, 27 and 29 to Drop Precedence 2.

```
switchxxxxxxx(config)# qos map dscp-dp 25 27 29 to 2
```
43.32 qos trust (Global)

Use the `qos trust` Global Configuration mode command to configure the system to the basic mode and trust state. Use the `no` form of this command to return to the default configuration.

Syntax

```
qos trust {cos | dscp}
no qos trust
```

Parameters

- `cos`— Specifies that ingress packets are classified with packet CoS values. Untagged packets are classified with the default port CoS value.
- `dscp`— Specifies that ingress packets are classified with packet DSCP values.

Default Configuration

DSCP is the default trust mode.

Command Mode

Global Configuration mode

User Guidelines

This command can be used only in QoS basic mode.

Packets entering a QoS domain are classified at its edge. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain.

Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When the system is configured with trust DSCP, the traffic is mapped to the queue by the DSCP-queue map.

When the system is configured with trust CoS, the traffic is mapped to the queue by the CoS-queue map.
For an inter-QoS domain boundary, configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different in the QoS domains.

Example
The following example configures the system to the DSCP trust state.

```
switchxxxxxx(config)# qos trust dscp
```

### 43.33 qos trust (Interface)

Use the `qos trust` Interface Configuration (Ethernet, Port-channel) mode command to enable port trust state while the system is in the basic QoS mode. Use the `no` form of this command to disable the trust state on each port.

**Syntax**

```
qos trust
no qos trust
```

**Parameters**

N/A

**Default Configuration**

Each port is enabled while the system is in basic mode.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**Example**

The following example configures gi15 to the default trust state.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# qos trust
```
### 43.34  qos cos

Use the `qos cos` Interface Configuration (Ethernet, Port-channel) mode command to define the default CoS value of a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
qos cos default-cos
no qos cos
```

**Parameters**

- **default-cos**—Specifies the default CoS value (VPT value) of the port. If the port is trusted and the packet is untagged, then the default CoS value become the CoS value. (Range: 0–3)

**Default Configuration**

The default CoS value of a port is 0.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**

Use the default CoS value to assign a CoS value to all untagged packets entering the interface.

**Example**

The following example defines the port gi5 default CoS value as 3.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# qos cos 3
```

### 43.35  qos dscp-mutation

Use the `qos dscp-mutation` Global Configuration mode command to apply the DSCP Mutation map to system DSCP trusted ports. Use the `no` form of this command to restore the trusted port with no DSCP mutation.
Syntax

qos dscp-mutation

no qos dscp-mutation

Parameters

N/A

Default Configuration

N/A

Command Mode

Global Configuration mode.

User Guidelines

Apply the DSCP-to-DSCP-mutation map to a port at the boundary of a Quality of Service (QoS) administrative domain. If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of another domain. Apply the map to ingress and to DSCP-trusted ports only. Applying this map to a port causes IP packets to be rewritten with newly mapped DSCP values at the ingress ports. If applying the DSCP mutation map to an untrusted port, to class of service (CoS), or to an IP-precedence trusted port.

Global trust mode must be DSCP or CoS-DSCP. In advanced CoS mode, ports must be trusted.

Example

The following example applies the DSCP Mutation map to system DSCP trusted ports.

switchxxxxxx(config)# qos dscp-mutation

43.36  qos map dscp-mutation

Use the qos map dscp-mutation Global Configuration mode command to configure the DSCP to DSCP Mutation table. Use the no form of this command to restore the default configuration.
Quality of Service (QoS) Commands

### 43.37 show qos map

Use the `show qos map` EXEC mode command to display the various types of QoS mapping.

**Syntax**

```
show qos map [dscp-queue | dscp-dp | policed-dscp | dscp-mutation]
```
Parameters

- **dscp-queue**—Displays the DSCP to queue map.
- **dscp-dp**—Displays the DSCP to Drop Precedence map.
- **policed-dscp**—Displays the DSCP to DSCP remark table.
- **dscp-mutation**—Displays the DSCP-DSCP mutation table.

Default Configuration

Display all maps.

Command Mode

EXEC mode

Example

The following example displays the QoS mapping information

Dscp-queue map:

```
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 01 01 01 01 01 01 01 01 01 01
 1 : 01 01 01 01 01 01 02 02 02 02
 2 : 02 02 02 02 02 02 03 03 03 03
 3 : 03 03 03 03 03 03 03 03 03 03
 4 : 04 04 04 04 04 04 04 04 04 04
 5 : 03 03 03 03 03 03 03 03 03 03
 6 : 03 03 03 03
```

43.38 clear qos statistics

Use the **clear qos statistics** EXEC mode command to clear the QoS statistics counters.

Syntax

```
clear qos statistics
```
Parameters
N/A

Default Configuration
N/A

Command Mode
EXEC mode

Example
The following example clears the QoS statistics counters.

```
switchxxxxxx# clear qos statistics
```

**43.39 qos statistics policer**

Use the `qos statistics policer` Interface Configuration (Ethernet, Port-channel) mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

This command is relevant only when policers are defined.

**Syntax**

```
qos statistics policer policy-map-name class-map-name
no qos statistics policer policy-map-name class-map-name
```

**Parameters**

- `policy-map-name`—Specifies the policy map name.
- `class-map-name`—Specifies the class map name.

**Default Configuration**

Counting in-profile and out-of-profile is disabled.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode
Example
The following example enables counting in-profile and out-of-profile on the interface.

switchxxxxxx(config-if)# qos statistics policer policy1 class1

43.40  qos statistics aggregate-policer
Use the qos statistics aggregate-policer Global Configuration mode command to enable counting in-profile and out-of-profile. Use the no form of this command to disable counting.

Syntax
qos statistics aggregate-policer aggregate-policer-name
no qos statistics aggregate-policer aggregate-policer-name

Parameters
aggregate-policer-name—Specifies the aggregate policer name.

Default Configuration
Counting in-profile and out-of-profile is disabled.

Command Mode
Global Configuration mode

Example
The following example enables counting in-profile and out-of-profile on the interface.

switchxxxxxx(config)# qos statistics aggregate-policer policer1

43.41  qos statistics queues
Use the qos statistics queues Global Configuration mode command to enable QoS statistics for output queues. Use the no form of this command to disable QoS statistics for output queues.
### Quality of Service (QoS) Commands

#### 43.42 show qos statistics

Use the `show qos statistics` EXEC mode command to display Quality of Service statistical information.

**Syntax**

```
show qos statistics
```

**Example**

```
switchxxxxxx# show qos statistics
```

---

### Syntax

```
qos statistics queues set {queue | all} {dp | all} {interface | all}
no qos statistics queues set
```

**Parameters**

- **set**—Specifies the counter set number.
- **interface**—Specifies the Ethernet port.
- **queue**—Specifies the output queue number.
- **dp**—Specifies the drop precedence. The available values are: high, low.

**Default Configuration**

Set 1: All interfaces, all queues, high DP.
Set 2: All interfaces, all queues, low DP.

**Command Mode**

Global Configuration mode

**User Guidelines**

There are no user guidelines for this command.

If the queue parameter is all, traffic in cascading ports is also counted.

**Example**

The following example enables QoS statistics for output queues for counter set 1.

```
switchxxxxxx(config)# qos statistics queues 1 all all all
```
Parameters
N/A

Default Configuration
N/A

Command Mode
EXEC mode

User Guidelines
Up to 16 sets of counters can be enabled for policers. The counters can be enabled in the creation of the policers.

Use the `qos statistics queues` Global Configuration mode command to enable QoS statistics for output queues.

Example
The following example displays Quality of Service statistical information.

```
switchxxxxxx# show qos statistics
Policers

Interface Policy map Class Map In-profile Out-of-profile bytes bytes
--------- --------- ----- --- ---------- ----------------
 gi1 Policy1 Class1 Policy1 Class1 7564575 52
 gi1 Policy1 Class2 Policy1 Class2 8759 3214
 gi2 Policy1 Class1 Policy1 Class2 746587458 23
 gi2
Aggregate Policers

Name In-profile Out-of-profile
bytes bytes
--------- ----------------
Policer1 7985687 121322
```
Use the `security-suite enable` Global Configuration mode command to enable the security suite feature. This feature supports protection against various types of attacks.

When this command is used, hardware resources are reserved. These hardware resources are released when the `no security-suite enable` command is entered.

The security-suite feature can be enabled in one of the following ways:

- **Global-rules-only** - This enables the feature globally but per-interface features are not enabled.
- **All** (no keyword) - The feature is enabled globally and per-interface.

Use the no form of this command to disable the security suite feature.

When security-suite is enabled, you can specify the types of protection required. The following commands can be used:

- `security-suite dos protect`
- `security-suite dos syn-attack`
- `security-suite deny martian-addresses`
- `security-suite deny syn`
- `security-suite deny icmp`
- `security-suite deny fragmented`
- `show security-suite configuration`
- `security-suite dos protect`

**Syntax**

```
security-suite enable [global-rules-only]
```
no security-suite enable

Parameters

global-rules-only—Specifies that all the security suite commands are global commands only (they cannot be applied per-interface). This setting saves space in the Ternary Content Addressable Memory (TCAM). If this keyword is not used, security-suite commands can be used both globally on per-interface.

Default Configuration

The security suite feature is disabled.

If global-rules-only is not specified, the default is to enable security-suite globally and per interfaces.

Command Mode

Global Configuration mode

User Guidelines

MAC ACLs must be removed before the security-suite is enabled. The rules can be re-entered after the security-suite is enabled.

If ACLs or policy maps are assigned on interfaces, per interface security-suite rules cannot be enabled.

Examples

Example 1 - The following example enables the security suite feature and specifies that security suite commands are global commands only. When an attempt is made to configure security-suite on a port, it fails.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

Example 2 - The following example enables the security suite feature globally and on interfaces. The security-suite command succeeds on the port.

```
switchxxxxxx(config)# security-suite enable
switchxxxxxx(config)# interface gi1
```
43.44 security-suite dos protect

Use the `security-suite dos protect` Global Configuration mode command to protect the system from specific well-known Denial of Service (DoS) attacks. There are three types of attacks against which protection can be supplied (see parameters below).

Use the `no` form of this command to disable DoS protection.

**Syntax**

```
security-suite dos protect {add attack | remove attack}
```

**Parameters**

- `add/remove attack`—Specifies the attack type to add/remove. To add an attack is to provide protection against it; to remove the attack is to remove protection.

The possible attack types are:

- `stacheldraht`—Discards TCP packets with source TCP port 16660.
- `invasor-trojan`—Discards TCP packets with destination TCP port 2140 and source TCP port 1024.
- `back-orifice-trojan`—Discards UDP packets with destination UDP port 31337 and source UDP port 1024.

**Default Configuration**

No protection is configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

For this command to work, `security-suite enable` must be enabled globally.
Example
The following example protects the system from the Invasor Trojan DOS attack.

```
switchxxxxxxx(config)# security-suite dos protect add invasor-trojan
```

43.45 security-suite dos syn-attack

Use the `security-suite dos syn-attack` Interface Configuration mode command to rate limit Denial of Service (DoS) SYN attacks. This provides partial blocking of SYN packets (up to the rate that the user specifies).

Use the `no` form of this command to disable rate limiting.

Syntax
```
security-suite dos syn-attack syn-rate {any | ip-address} {mask | /prefix-length}
no security-suite dos syn-attack {any | ip-address} {mask | /prefix-length}
```

Parameters
- `syn-rate`—Specifies the maximum number of connections per second. (Range: 199–1000)
- `any | ip-address`—Specifies the destination IP address. Use `any` to specify all IP addresses.
- `mask`—Specifies the network mask of the destination IP address.
- `prefix-length`—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration
No rate limit is configured.

If `ip-address` is unspecified, the default is 255.255.255.255

If `prefix-length` is unspecified, the default is 32.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode
User Guidelines

For this command to work, `security-suite enable` must be enabled both globally and for interfaces.

This command rate limits ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses.

SYN attack rate limiting is implemented after the security suite rules are applied to the packets. The ACL and QoS rules are not applied to those packets.

Since the hardware rate limiting counts bytes, it is assumed that the size of “SYN” packets is short.

Example

The following example attempts to rate limit DoS SYN attacks on a port. It fails because security suite is enabled globally and not per interface.

```plaintext
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

43.46 security-suite deny martian-addresses

Use the `security-suite deny martian-addresses` Global Configuration mode command to deny packets containing system-reserved IP addresses or user-defined IP addresses.

Syntax

```
security-suite deny martian-addresses [add {ip-address [mask | /prefix-length]} | remove {ip-address [mask | /prefix-length]}] (Add/remove user-specified IP addresses)

security-suite deny martian-addresses reserved [add | remove] (Add/remove system-reserved IP addresses, see tables below)

no security-suite deny martian-addresses (This command removes addresses reserved by security-suite deny martian-addresses [add {ip-address [mask | /prefix-length]} | remove {ip-address [mask | /prefix-length]}], and removes all entries added by the user. The user can remove a specific entry by using remove ip-address [mask | /prefix-length] parameter.
```
There is no form of the `security-suite deny martian-addresses reserved [add | remove]` command. Use instead the `security-suite deny martian-addresses reserved remove` command to remove protection (and free up hardware resources).

**Parameters**

- **reserved add/remove**—Add or remove the table of reserved addresses below.
- **ip-address**—Adds/discards packets with the specified IP source or destination address.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).
- **reserved**—Discards packets with the source or destination IP address in the block of the reserved (Martian) IP addresses. See the User Guidelines for a list of reserved addresses.

**Default Configuration**

Martian addresses are allowed.

**Command Mode**

Global Configuration mode

**User Guidelines**

For this command to work, `security-suite enable` must be enabled globally.

`security-suite deny martian-addresses reserved` adds or removes the addresses in the following table:

<table>
<thead>
<tr>
<th>Address block</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/8 (except when 0.0.0.0/32 is the source address)</td>
<td>Addresses in this block refer to source hosts on &quot;this&quot; network.</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>This block is assigned for use as the Internet host loopback address.</td>
</tr>
<tr>
<td>192.0.2.0/24</td>
<td>This block is assigned as &quot;TEST-NET&quot; for use in documentation and example code.</td>
</tr>
</tbody>
</table>
Note that if the reserved addresses are included, individual reserved addresses cannot be removed.

Example
The following example discards all packets with a source or destination address in the block of the reserved IP addresses.

```
switchxxxxxx(config)# security-suite deny martian-addresses reserved add
```

<table>
<thead>
<tr>
<th>Address block</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.0/4 as source</td>
<td>This block, formerly known as the Class D address space, is allocated for use in IPv4 multicast address assignments.</td>
</tr>
<tr>
<td>240.0.0.0/4 (except when 255.255.255.255/32 is the destination address)</td>
<td>This block, formerly known as the Class E address space, is reserved.</td>
</tr>
</tbody>
</table>

### 43.47 security-suite deny syn

Use the `security-suite deny syn` Interface Configuration (Ethernet, Port-channel) mode command to block the creation of TCP connections from a specific interface. This a complete block of these connections.

Use the `no` form of this command to permit creation of TCP connections.

**Syntax**

```
security-suite deny syn {
 [add {tcp-port | any} {ip-address | any} {mask | /prefix-length}]
 | [remove {tcp-port | any} {ip-address | any} {mask | /prefix-length}]

no security-suite deny syn
```

**Parameters**

- `ip-address | any`—Specifies the destination IP address. Use `any` to specify all IP addresses.
- `mask`—Specifies the network mask of the destination IP address.
- `prefix-length`—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).
- **tcp-port | any**—Specifies the destination TCP port. The possible values are: http, ftp-control, ftp-data, ssh, telnet, smtp, dns, tftp, ntp, snmp or port number. Use any to specify all ports.

**Default Configuration**

Creation of TCP connections is allowed from all interfaces.

If the **mask** is not specified, it defaults to 255.255.255.255.

If the **prefix-length** is not specified, it defaults to 32.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**

For this command to work, **security-suite enable** must be enabled both globally and for interfaces.

The blocking of TCP connection creation from an interface is done by discarding ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses and destination TCP ports.

**Example**

The following example attempts to block the creation of TCP connections from an interface. It fails because security suite is enabled globally and not per interface.

```
switchxxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# security-suite deny syn add any /32 any
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

43.48 **security-suite deny icmp**

Use the **security-suite deny icmp** Interface Configuration (Ethernet, Port-channel) mode command to discard ICMP echo requests from a specific interface (to prevent attackers from knowing that the device is on the network).

Use the **no** form of this command to permit echo requests.
Quality of Service (QoS) Commands

Syntax

security-suite deny icmp {add {ip-address | any} {mask | /prefix-length}} | {remove {ip-address | any} {mask | /prefix-length}}

no security-suite deny icmp

Parameters

- ip-address | any—Specifies the destination IP address. Use any to specify all IP addresses.
- mask—Specifies the network mask of the IP address.
- prefix-length—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

Echo requests are allowed from all interfaces.

If mask is not specified, it defaults to 255.255.255.255.

If prefix-length is not specified, it defaults to 32.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

For this command to work, security-suite enable must be enabled both globally and for interfaces.

This command discards ICMP packets with "ICMP type= Echo request" that ingress the specified interface.

Example

The following example attempts to discard echo requests from an interface.

switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite deny icmp add any /32

To perform this command, DoS Prevention must be enabled in the per-interface mode.
43.49 security-suite deny fragmented

Use the `security-suite deny fragmented` Interface Configuration (Ethernet, Port-channel) mode command to discard IP fragmented packets from a specific interface.

Use the `no` form of this command to permit IP fragmented packets.

**Syntax**

```
security-suite deny fragmented {[add [ip-address | any] [mask | /prefix-length]] | [remove [ip-address | any] [mask | /prefix-length]]}
```

```
no security-suite deny fragmented
```

**Parameters**

- **ip-address | any**—Specifies the destination IP address. Use `any` to specify all IP addresses.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (`/`).

**Default Configuration**

Fragmented packets are allowed from all interfaces.

If `mask` is unspecified, the default is 255.255.255.255.

If `prefix-length` is unspecified, the default is 32.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**

For this command to work, `security-suite enable` must be enabled both globally and for interfaces.

**Example**

The following example attempts to discard IP fragmented packets from an interface.
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite deny fragmented add any /32

To perform this command, DoS Prevention must be enabled in the per-interface mode.

### 43.50 show security-suite configuration

Use the `show security-suite configuration` EXEC mode command to display the security-suite configuration.

**Syntax**

`show security-suite configuration`

**Command Mode**

EXEC mode

**Example**

The following example displays the security-suite configuration.

```
switchxxxxxx# show security-suite configuration
Security suite is enabled (Per interface rules are enabled).
Denial Of Service Protect: stacheldraht, invasor-trojan, back-office-trojan.
Denial Of Service SYN Attack
Interface IP Address SYN Rate (pps)
------------ ---------- ----------
gi1 176.16.23.0/24 100
Martian addresses filtering
Reserved addresses: enabled.
Configured addresses: 10.0.0.0/8, 192.168.0.0/16
SYN filtering
Interface IP Address TCP port
------------ ---------- ----------
gi2 176.16.23.0/24 FTP
ICMP filtering
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.
43.51  **security-suite deny syn-fin**

Use the **security-suite deny syn-fin** Global Configuration mode command to drop all ingressing TCP packets in which both SYN and FIN flags are set.

Use the **no** form of this command to permit TCP packets in which both SYN and FIN are set.

**Syntax**

```
security-suite deny syn-fin
no security-suite deny syn-fin
```

**Parameters**

N/A

**Default Configuration**

Drop all ingressing TCP packets in which both SYN and FIN are set.

**Command Mode**

Global Configuration mode

**Example**

The following example blocks TCP packets in which both SYN and FIN flags are set.

```
switchxxxxxxx(config)# security-suite deny syn-fin
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi2</td>
<td>176.16.23.0/24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi2s</td>
<td>176.16.23.0/24</td>
</tr>
</tbody>
</table>
43.52  security-suite syn protection mode

Use the `security-suite syn protection mode` Global Configuration mode command to set the TCP SYN protection mode.

Use the `no` form of this command to set the TCP SYN protection mode to default.

**Syntax**

```
security-suite syn protection mode {disabled | report | block}
no security-suite syn protection mode
```

**Parameters**

- **disabled**—The feature is disabled.
- **report**—The feature reports about TCP SYN traffic per port (including rate-limited SYSLOG messages when an attack is identified).
- **block** – the TCP SYN traffic from attacking ports destined to the local system is blocked, and a rate-limited SYSLOG message (one per minute) is generated.

**Default Configuration**

The default mode is **block**.

**Command Mode**

Global Configuration mode

**User Guidelines**

On ports in which an ACL is defined, this feature cannot block TCP SYN packets. If the protection mode is **block**, but SYN traffic cannot be blocked, a relevant SYSLOG message is created, e.g.: "port gi 1 is under TCP SYN attack. TCP SYN traffic cannot be blocked on this port since the port is bound to an ACL."

**Examples**

**Example 1**—The following example sets the TCP SYN protection feature to report TCP SYN attack on ports in case an attack is identified from these ports.

```
switchxxxxxx(config)# security-suite syn protection mode report
```

...
01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi1

Example 2—The following example sets the TCP SYN protection feature to block TCP SYN attack on ports if an attack is identified from these ports.

switchxxxxxx(config)#  security-suite syn protection mode block
...
01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi1. TCP SYN traffic destined to the local system is automatically blocked for 100 seconds.

43.53  security-suite syn protection threshold

Use the security-suite syn protection threshold Global Configuration mode command to set the threshold for the SYN protection feature.

Use the no form of this command to set the threshold to its default value.

Syntax

security-suite syn protection threshold syn-packet-rate

no security-suite syn protection threshold

Parameters

syn-packet-rate—Defines the rate from a specific port that triggers identification of a TCP SYN attack. (Range: 20-200 Packets Per Second (pps))

Default Configuration

The default threshold is 20 pps (packets per second).

Command Mode

Global Configuration mode

Example

The following example sets the TCP SYN protection threshold to 40 pps.

switchxxxxxxx(config)#  security-suite syn protection threshold 40
43.54 security-suite syn protection recovery

Use the **security-suite syn protection recovery** Global Configuration mode command to set the time period for the SYN Protection feature to block an attacked interface.

Use the **no** form of this command to reset the time period to its default value.

**Syntax**

```plaintext
security-suite syn protection recovery timeout
no security-suite syn protection recovery
```

**Parameters**

- **timeout**—Defines the timeout (in seconds) by which an interface from which SYN packets are blocked gets unblocked. Note that if a SYN attack is still active on this interface it might become blocked again. (Range: 10-600 secs)

**Default Configuration**

The default timeout is 60 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the timeout is modified, the new value is only used on interfaces that are not currently under attack.

**Example**

The following example sets the TCP SYN period to 100 seconds.

```
switchxxxxxx(config)# security-suite syn protection recovery 100
```

43.55 show security-suite syn protection

Use the **show security-suite syn protection** EXEC mode command to display the security-suite configuration.
Syntax

`show security-suite syn protection interface-id`

Parameters

`interface-id`—Specifies an interface-ID. The interface-ID can be one of the following types: Ethernet port or Port-Channel. If this parameter is not provided, information is displayed for all interfaces.

Command Mode

EXEC mode

Example

The following example displays the TCP SYN protection feature configuration and current status on all interfaces. In this example, port 152 is attacked but since there is a user-ACL on this port, it cannot become blocked so its status is `Reported` and not `Blocked and Reported`.

```
switchxxxxxx# show security-suite syn protection

Protection Mode: Block
Threshold: 40 Packets Per Second
Period: 100 Seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Current Status</th>
<th>Last Attack Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
<tr>
<td>152</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Reported</td>
</tr>
<tr>
<td>153</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
</tbody>
</table>
```
Voice VLAN Commands

44.1 voice vlan state

The voice vlan state Global Configuration mode command sets the type of voice VLAN that is functional on the device or disables voice VLAN entirely. The no format of the command returns to the default.

Syntax

voice vlan state {oui-enabled | auto-enabled | auto-triggered | disabled}
no voice vlan state

Parameters

- oui-enabled—Voice VLAN is of type OUI.
- auto-enabled—Auto Voice VLAN is enabled.
- auto-triggered—Auto Voice VLAN on the switch is in standby and is put into operation when the switch detects a CDP device advertising a voice VLAN or if a voice VLAN ID is configured manually on the switch.
- disabled—Voice VLAN is disabled.

Default Configuration

auto-triggered

Command Mode

Global Configuration mode

User Guidelines

By factory default, CDP, LLDP, and LLDP-MED are enabled on the switch. In addition, manual Smartport mode and Basic QoS with trusted DSCP is enabled.

All ports are members of default VLAN 1, which is also the default Voice VLAN.

In addition, dynamic voice VLAN (auto-triggered) mode is the default mode of auto voice VLAN. In this mode, voice VLAN is enabled by a trigger (advertisement received by voice device attached to port).
If the administrative state is:

- **disabled** — The operational state is **disabled**.
- **oui-enabled** — The operational state is **oui-enabled**.
- **auto-enabled** — The operational state is **auto-enabled**.
- **auto-triggered** — The operational state is **auto-enabled** only if one of the following occurs:
  - A static local configured voice VLAN ID, CoS/802.1p, and/or DSCP that is not factory default is configured.
  - A CDP voice VLAN advertisement is received from a neighboring CDP device that is not a device of the same family as the current device.
  - A Voice Service Discovery Protocol (VSDP) message was received from a neighbor switch. VSDP is a Cisco Small Business proprietary protocol for SF and SG series managed switches.

In all other cases the operational state is **disabled**.

**Notes:**

- To change the administrative state from **oui-enabled** to **auto-enabled** (or **auto-triggered**), or vice versa, you must first set the administrative state to **disabled**.
- The administrative state cannot be set to **oui-enabled** if the Auto SmartPort administrative state is **enabled**.
- The administrative state cannot be set to **oui-enabled** if the voice VLAN is the default VLAN (VLAN 1). For **oui-enabled** mode, the voice VLAN cannot be 1.

**Examples**

**Example 1** - The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

```
switchxxxxxx(config)# voice vlan state oui-enabled
```

Disable the voice VLAN before changing the voice VLAN trigger.

```
switchxxxxxx(config)# voice vlan state disabled
```

```
switchxxxxxx(config)# voice vlan state oui-enabled
```
Example 2 — The following example disables the Voice VLAN state. All auto Smartport configuration on ports are removed.

```
switchxxxxxx(config)#voice vlan state disabled
All interfaces with Auto Smartport dynamic type will be set to default.
Are you sure you want to continue? (Y/N)[Y] Y
switchxxxxxx(config)#
```

```
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 5
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 8
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 9
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 100
```

Example 3 — The following example sets the Voice VLAN state to auto-triggered. The VLANs are re-activated after auto SmartPort state is applied.

```
switchxxxxxx(config)#voice vlan state auto-triggered
```

```
switchxxxxxx(config)#
```

```
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 5
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 8
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 9
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 100
```

44.2 voice vlan refresh

The **voice vlan refresh** Global Configuration mode command restarts the Voice VLAN discovery process on all the Auto Voice VLAN-enabled switches in the VLAN by removing all externally learned voice VLAN attributes and resetting the voice VLAN to the default voice VLAN.

**Syntax**

```
voice vlan refresh
```

**Parameters**

N/A
Default Configuration

N/A

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# voice vlan refresh
switchxxxxxx(config)#
30-Apr-2011 02:01:02 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 100, VPT 5, DSCP 46 (Notification that Agreed Voice VLAN is updated) (Auto Smartport configuration is changed)
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 50
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 100
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 50
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 100
switchxxxxxx#show voice vlan
Administrate Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 100
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
(Following is the new active source)
Agreed Voice VLAN is received from switch b0:c6:9a:c1:da:00
Agreed Voice VLAN priority is 2 (active CDP device)
Agreed Voice VLAN-ID is 100
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Apr-30 02:01:02
```
44.3 voice vlan id

Use the **voice vlan id** Global Configuration mode command to statically configure the VLAN identifier of the voice VLAN. The **no** format of the command returns the voice VLAN to the default VLAN (1).

**Syntax**

```plaintext
voice vlan id vlan-id
no voice vlan id
```

**Parameters**

- **vlan id vlan-id**—Specifies the voice VLAN (range 1-4094).

**Default Configuration**

VLAN ID 1.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the Voice VLAN does not exist, it is created automatically. It will not be removed automatically by the **no** version of this command.

**Example**

The following example enables VLAN 35 as the voice VLAN on the device.

```plaintext
switchxxxxxx(config)# voice vlan id 35
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N) [Y]  Y

30-Apr-2011 00:19:36 %VLAN-I-VoiceVlanCreated: Voice Vlan ID 104 was created.

switchxxxxxx(config)#30-Apr-2011 00:19:51 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 5, DSCP 46
44.4 voice vlan vpt

Use the **voice vlan vpt** Global Configuration mode command to specify a value of VPT (802.1p VLAN priority tag) that will be advertised by LLDP in the Network Policy TLV. The **no** format of the command returns the value to the default.

**Syntax**

```
voice vlan vpt vpt-value
no voice vlan vpt
```

**Parameters**

- `vpt vpt-value`—The VPT value to be advertised (range 0-7).

**Default Configuration**

5

**Command Mode**

Global Configuration mode

**Example**

The following example sets 7 as the voice VLAN VPT. A notification that the new settings are different than the old ones is displayed.

```
switchxxxxxx(config)# voice vlan vpt 7

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y
```

30-Apr-2011 00:24:52 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 5, DSCP 46

```
switchxxxxxx(config)#30-Apr-2011 00:25:07 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 46
```
44.5 voice vlan dscp

Use the `voice vlan dscp` Global Configuration mode command to specify a value of DSCP that will be advertised by LLDP in the Network Policy TLV. The `no` format of the command returns the value to the default.

Syntax

```plaintext
voice vlan dscp dscp-value
no voice vlan dscp
```

Parameters

- `dscp dscp-value`—The DSCP value (range 0-63).

Default Configuration

46

Command Mode

Global Configuration mode

Example

The following example sets 63 as the voice VLAN DSCP.

```plaintext
switchxxxxxx(config)# voice vlan dscp 63
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y

30-Apr-2011 00:31:07 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 7, DSCP 46

switchxxxxxx(config)#30-Apr-2011 00:31:22 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 63
44.6 voice vlan oui-table

Use the `voice vlan oui-table` Global Configuration mode command to configure the voice OUI table. Use the `no` form of this command to restore the default configuration.

Syntax

```
voice vlan oui-table {add mac-address-prefix / remove mac-address-prefix} [text]
```

Parameters

- `add mac-address-prefix`—Adds the specified MAC address prefix to the voice VLAN OUI table (length: 3 bytes).
- `remove mac-address-prefix`—Removes the specified MAC prefix address from the voice VLAN OUI table (length: 3 bytes).
- `text`—Adds the specified text as a description of the specified MAC address to the voice VLAN OUI table (length: 1–32 characters).

Default Configuration

The default voice VLAN OUI table is:

<table>
<thead>
<tr>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:e0:bb</td>
<td>3COM Phone</td>
</tr>
<tr>
<td>00:03:6b</td>
<td>Cisco Phone</td>
</tr>
<tr>
<td>00:e0:75</td>
<td>Veritel Polycom Phone</td>
</tr>
<tr>
<td>00:d0:1e</td>
<td>Pingtel Phone</td>
</tr>
<tr>
<td>00:01:e3</td>
<td>Siemens AG Phone</td>
</tr>
<tr>
<td>00:60:b9</td>
<td>NEC/Philips Phone</td>
</tr>
<tr>
<td>00:0fe2</td>
<td>Huawei-3COM Phone</td>
</tr>
<tr>
<td>00:09:6e</td>
<td>Avaya Phone</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode
User Guidelines

The classification of a packet from VoIP equipment/phones is based on the packet’s OUI in the source MAC address. OUIs are globally assigned (administered) by the IEEE.

In MAC addresses, the first three bytes contain a manufacturer ID (Organizationally Unique Identifiers (OUI)) and the last three bytes contain a unique station ID.

Since the number of IP phone manufacturers that dominates the market is limited and well known, the known OUI values are configured by default and OUIs can be added/removed by the user when required.

Example

The following example adds an entry to the voice VLAN OUI table.

```
switchxxxxx(config)# voice vlan oui-table add 00:AA:BB description experimental
```

44.7 voice vlan cos mode

Use the `voice vlan cos mode` Interface Configuration mode command to select the OUI voice VLAN Class of Service (CoS) mode. Use the `no` form of this command to return to the default.

Syntax

```
voice vlan cos mode {src | all}
no voice vlan cos mode
```

Parameters

- `src`—QoS attributes are applied to packets with OUIs in the source MAC address. See the User Guidelines of `voice vlan oui-table`.

- `all`—QoS attributes are applied to packets that are classified to the Voice VLAN.

Default Configuration

The default mode is `src`. 
Command Mode
Global Configuration mode

Example
The following example applies QoS attributes to voice packets.

```
switchxxxxxx(config)# voice vlan cos mode all
```

44.8 voice vlan cos

Use the `voice vlan cos` Global Configuration mode command to set the OUI Voice VLAN Class of Service (CoS). Use the `no` form of this command to restore the default configuration.

Syntax

```
voice vlan cos cos [remark]
no voice vlan cos
```

Parameters

- `cos cos`—Specifies the voice VLAN Class of Service value. (Range: 0–7)
- `remark`—Specifies that the L2 user priority is remarked with the CoS value.

Default Configuration

The default CoS value is 5.

The L2 user priority is not remarked by default.

Command Mode

Global Configuration mode

Example

The following example sets the OUI voice VLAN CoS to 7 and does not do remarking.

```
switchxxxxxx(config)# voice vlan cos 7
```
44.9  voice vlan aging-timeout

Use the **voice vlan aging-timeout** Global Configuration mode command to set the OUI Voice VLAN aging timeout interval. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
voice vlan aging-timeout minutes
```

```
no voice vlan aging-timeout
```

**Parameters**

`aging-timeout minutes`—Specifies the voice VLAN aging timeout interval in minutes. (Range: 1–43200).

**Default Configuration**

1440 minutes

**Command Mode**

Global Configuration mode

**Example**

The following example sets the OUI Voice VLAN aging timeout interval to 12 hours.

```
switchxxxxxx(config)# voice vlan aging-timeout 720
```

44.10  voice vlan enable

Use the **voice vlan enable** Interface Configuration (Ethernet, Port-channel) mode command to enable OUI voice VLAN configuration on an interface. Use the **no** form of this command to disable OUI voice VLAN configuration on an interface.

**Syntax**

```
voice vlan enable
```

```
no voice vlan enable
```

Voice VLAN Commands

Default Configuration
Disabled

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
This command is applicable only if the voice VLAN state is globally configured as OUI voice VLAN (using voice vlan state).

The port is added to the voice VLAN if a packet with a source MAC address OUI address (defined by voice vlan oui-table) is trapped on the port. Note: The packet VLAN ID does not have to be the voice VLAN, it can be any VLAN.

The port joins the voice VLAN as a tagged port.

If the time since the last MAC address with a source MAC address OUI address was received on the interface exceeds the timeout limit (configured by voice vlan aging-timeout), the interface is removed from the voice VLAN.

Example
The following example enables OUI voice VLAN configuration on gi2.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# voice vlan enable
```

44.11 show voice vlan

Use the show voice vlan EXEC mode command to display the voice VLAN status for all interfaces or for a specific interface if the voice VLAN type is OUI.

Syntax
```
show voice vlan [type {oui | auto}] [interface-id | detailed]
```

Parameters
- **type oui**—Common and OUI-voice-VLAN specific parameters are displayed.
- **type auto**—Common and Auto Voice VLAN-specific parameters are displayed.
Voice VLAN Commands

- **interface-id**—Specifies an Ethernet port ID. Relevant only for the OUI type.
- **detailed**—Displays information for non-present ports in addition to present ports. Only valid when type is oui.

**Default Configuration**

If the **type** parameter is omitted the current Voice VLAN type is used.

If the **interface-id** parameter is omitted then information about all interfaces is displayed.

All ports are displayed. If detailed is not used, only present ports are displayed.

**Command Mode**

EXEC mode

**User Guidelines**

Using this command without parameters displays the current voice VLAN type parameters and local and agreed voice VLAN settings.

Using this command with the **type** parameter displays the voice VLAN parameters relevant to the type selected. The the local and agreed voice VLAN settings are displayed only if this is the current voice VLAN state.

The interface-id parameter is relevant only for the OUI VLAN type.

**Examples**

The following examples display the output of this command in various configurations.

**Example 1** - Displays the **auto** voice VLAN parameters (this is independent of the voice VLAN state actually enabled).

```
switch>show voice vlan type auto
switchxxxxxx#show voice vlan type auto
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
```
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51
switchxxxxxx#

**Example 2**—Displays the current voice VLAN parameters when the voice VLAN state is auto-enabled.

`switch>show voice vlan`

Administrate Voice VLAN state is auto-enabled
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 16:48:13
switchxxxxxx#

**Example 3**—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered but voice VLAN has not been triggered.

`switch>show voice vlan`

Administrate Voice VLAN state is auto-triggered
Operational Voice VLAN state is disabled
VSDP Authentication is disabled

**Example 4**—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered and it has been triggered.

`switchxxxxxx(config)#voice vlan state auto-triggered`
switchxxxxxx(config)#voice vlan state auto-triggered
operational voice vlan state is auto
admin state is auto triggered
switchxxxxxx#show voice vlan
Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51

Example 5—Displays the current voice VLAN parameters when both auto voice VLAN and OUI are disabled.

switch>show voice vlan
switchxxxxxx#show voice vlan
Administrative Voice VLAN state is disabled
Operational Voice VLAN state is disabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Aging timeout: 1440 minutes

Example 5—Displays the voice VLAN parameters when the voice VLAN operational state is OUI.

switch>show voice vlan
Administrative Voice VLAN state is oui-enabled
Operational Voice VLAN state is oui-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 4
Best Local DSCP is 1
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes
OUI table

<table>
<thead>
<tr>
<th>MAC Address - Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:E0:BB</td>
<td>3COM</td>
</tr>
<tr>
<td>00:03:6B</td>
<td>Cisco</td>
</tr>
<tr>
<td>00:E0:75</td>
<td>Veritel</td>
</tr>
<tr>
<td>00:D0:1E</td>
<td>Pingtel</td>
</tr>
<tr>
<td>00:01:E3</td>
<td>Simens</td>
</tr>
<tr>
<td>00:60:B9</td>
<td>NEC/Philips</td>
</tr>
<tr>
<td>00:0F:E2</td>
<td>Huawei-3COM</td>
</tr>
<tr>
<td>00:09:6E</td>
<td>Avaya</td>
</tr>
</tbody>
</table>

Interface	Enabled	Secure	Activated	CoS Mode
g1        | Yes     | Yes    | Yes       | all      |
gi2       | Yes     | Yes    | No        | src      |
gi3       | No      | No     |           |          |
...

### 44.12 show voice vlan local

The **show voice vlan local** EXEC mode command displays information about the auto voice VLAN local configuration, including the best local voice VLAN.

**Syntax**

```
show voice vlan local
```
Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC mode

Examples

Example 1 - A CDP device is connected to an interface and a conflict is detected:

30-Apr-2011 00:39:24 %VLAN-W-ConflictingCDPDetected: conflict detected between operational VLAN and new CDP device 00:1e:13:73:3d:62 on interface gi7. Platform TLV is -4FX0-K9, Voice VLAN-ID is 100...

switchxxxxxx#show voice vlan local

Administrate Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
VSDP Authentication is enabled, key string name is alpha
The character '*'; marks the best local Voice VLAN

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*104</td>
<td>7</td>
<td>63</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:1e:13:73:3d:62</td>
<td>gi7</td>
</tr>
</tbody>
</table>

Example 2—Displays the local voice VLAN configuration when the voice VLAN state is auto-triggered.

switchxxxxxx#show voice vlan local

Administrate Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Example 3—Displays the local voice VLAN configuration when the voice VLAN state is OUI.

```
switchxxxxxx# show voice vlan local
```

Administrate Voice VLAN state is auto-OUI
Operational Voice VLAN state is OUI
The character ‘*;’ marks the best local Voice VLAN

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*10</td>
<td>1</td>
<td>27</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>CDP</td>
<td>00:00:12:ea:87:dc</td>
<td>gil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CDP</td>
<td>00:00:aa:aa:89:dc</td>
<td>pol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The character "*" marks the best local voice VLAN.
45.1  macro auto (Global)

The macro auto Global Configuration mode command sets the Auto Smartports administrative global state. The no format of the command returns to the default.

Syntax

macro auto {enabled | disabled | controlled}

no macro auto

Parameters

- **enabled**—Auto Smartport administrative global and operational states are enabled.
- **disabled**—Auto Smartport administrative global and operational states are disabled.
- **controlled**—Auto Smartport administrative global and operational states are enabled when Auto Voice VLAN is in operation.

Default Configuration

Administrative state is **controlled**.

Command Mode

Global Configuration mode

User Guidelines

Regardless of the status of Auto Smartport, you can always manually apply a Smartport macro to its associated Smartport type. A Smartport macro is either a built-in macro or a user-defined macro. You can define and apply a macro using the CLI commands presented in the Macro Commands section.

If the Auto Smartport Administrative state is controlled, the Auto Smartport Operational state is managed by the Voice VLAN manager and is set as follows:

- Auto Smartport Operational state is disabled when the OUI Voice VLAN is enabled.
Auto Smartport Operational state is enabled when the Auto Voice VLAN is enabled.

A user cannot enable Auto Smartport globally if the OUI Voice VLAN is enabled.

Example

This example shows an attempt to enable the Auto Smartport feature globally in the controlled mode. This is not possible because the OUI voice feature is enabled. The voice VLAN state is then disabled, after which Auto Smartports can be enabled. The appropriate VLANs are automatically enabled because the ports are configured for Auto Smartports on these VLANs.

```
switchxxxxxx(config)# macro auto controlled
switchxxxxxx(config)#macro auto enabled
Auto smartports cannot be enabled because OUI voice is enabled.
switchxxxxxx(config)#voice vlan state disabled
switchxxxxxx(config)#macro auto enabled
switchxxxxxx(config)#10-Apr-2011 16:11:31 %LINK-I-Up: Vlan 20
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 5
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 6
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 7
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 8
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 9
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 10
```

45.2 macro auto smartport (Interface)

The `macro auto smartport` Interface Configuration mode command enables the Auto Smartport feature on a given interface. The `no` format of the command disables the feature on the interface.

Syntax

`macro auto smartport`  
`no macro auto smartport`
Parameters
N/A

Default Configuration
Enabled.

Command Mode
Interface Configuration mode (Ethernet Interface, Port Channel)

User Guidelines
This command is effective only when Auto Smartport is globally enabled.

Example
Enables the Auto Smartport feature on port 1:

```
switchxxxxxx(conf)#interface gi1
switchxxxxxx(conf-if)# macro auto smartport
```

45.3  macro auto trunk refresh

The `macro auto trunk refresh` Global Configuration command reapplies the Smartport macro on a specific interface, or to all the interfaces with the specified Smartport type.

Syntax
`macro auto trunk refresh [smartport-type] [interface-id]`

Parameters
- `smartport-type`—Smartport type (switch, router, wireless access point (ap))
- `interface-id`—Interface Identifier (port or port channel).

Default Configuration
See User Guidelines.
Command Mode
Global Configuration mode

User Guidelines
The `macro auto smartport` command becomes effective only when the Auto Smartport is globally enabled.

If both `smartport-type` and `interface-id` are defined, the attached Smartport macro is executed on the interface if it has the given Smartport type.

If only `smartport-type` is defined, the attached Smartport macro is executed on all interfaces having the given Smartport type.

If only `interface-id` is defined then the corresponding attached Smartport macro is executed if the interface has one of the following Smartport types: `switch`, `router` or wireless access point (`ap`).

If a Smartport macro contains configuration commands that are no longer current on one or more interfaces, you can update their configuration by reapplying the Smartport macro on the interfaces.

Example
Adds the ports of Smartport type `switch` to all existing VLANs by running the associated Smartport macros.

```
switchxxxxxx(config)#macro auto trunk refresh switch
```

45.4  `macro auto resume`

The `macro auto resume` Interface Configuration mode command changes the Smartport type from `unknown` to `default` and resumes the Smartport feature on a given interface (but does not reapply the Smartport macro; this is done by `macro auto trunk refresh`).

Syntax
`macro auto resume`

Parameters
N/A
Default Configuration
N/A

Command Mode
Interface Configuration mode (Ethernet Interface, Port Channel)

User Guidelines
When a Smartport macro fails at an interface, the Smartport type of the interface becomes Unknown. You must diagnose the reason for the failure on the interface and/or Smartport macro, and correct the error. Before you or Auto Smartport are allowed to reapply the desired Smartport macro, you must reset the interface using the macro auto resume command, which changes the Smartport type of the interface to Default. Then you can run macro auto trunk refresh.

Example
Changes the Smartport type from unknown to default and resumes the Smartport feature on port 1.

```
switchxxxxxx(conf) interface gi1
switchxxxxxx(conf-if)#macro auto resume
```

45.5 macro auto persistent

The macro auto persistent Interface Configuration mode command sets the interface as a Smartport persistent interface. The no format of the command returns it to default.

Syntax

```
macro auto persistent
no macro auto persistent
```

Parameters
N/A

Default Configuration
Not persistent.
Command Mode

Interface Configuration mode (Ethernet Interface, Port Channel)

User Guidelines

A Smartport’s persistent interface retains its dynamic configuration in the following cases: link down/up, the attaching device ages out, and reboot. Note that for persistence and the Smartport configuration to be effective across reboot, the Running Configuration file must be saved to the Startup Configuration file.

Example

The example establishes two port ranges and makes one persistent and the other not.

```
switchxxxxxx(config)#interface range gi1-2
switchxxxxxx(config-if-range)#macro auto persistent
switchxxxxxx(config-if-range)#exit
switchxxxxxx(config)#interface range gi3-4
switchxxxxxx(config-if-range)#no macro auto persistent
```

45.6 macro auto smartport type

The `macro auto smartport type` Interface Configuration mode command manually (statically) assigns a Smartport type to an interface. The `no` format of the command removes the manually-configured type and returns it to default.

Syntax

```
macro auto smartport type smartport-type [parameter-name value [parameter-name value [parameter-name value]]]
```

Parameters

- `smartport type smartport-type`—Smartport type.
- `parameter-name value`—Specifies the parameter name and its value (Range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).
**Default Configuration**

`parameter-name value`—Parameter default value. For instance, if the parameter is the voice VLAN, the default value is the default voice VLAN.

**Command Mode**

Interface Configuration mode (Ethernet Interface, Port Channel)

**User Guidelines**

A static type set by the command cannot be changed by a dynamic type.

**Example**

This example shows an attempt to set the Smartport type of port 1 to printer (statically). The macro fails at line 10. The `show parser macro name` command is run to display the contents of the macro printer in order to see which line failed.

```
switchxxxxx(conf) interface gi1
switchxxxxx(conf-if)#macro auto smartport type printer
30-May-2011 15:02:45 %AUTOSMARTPORT-E-FAILEDMACRO: Macro printer for auto smartport type Printer on interface gi1 failed at command number 10
switchxxxxx(conf-if)#exit
switchxxxxx(conf-if)#do show parser macro name printer
Macro name : printer
Macro type : default interface
 1. #macro description printer
 2. #macro keywords $native_vlan
 3. #
 4. #macro key description: $native_vlan: The untag VLAN which will be configured on the port
 5. #Default Values are
 6. #$native_vlan = Default VLAN
 7. #
 8. #the port type cannot be detected automatically
 9. #
```
10. switchport mode access
11. switchport access vlan $native_vlan
12. #
13. #single host
14. port security max 1
15. port security mode max-addresses
16. port security discard trap 60
17. #
18. smartport storm-control broadcast level 10
19. smartport storm-control include-multicast
20. smartport storm-control broadcast enable

switch030008(config)#

45.7 macro auto processing cdp

The macro auto processing cdp Global Configuration mode command enables using CDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the CDP capabilities advertised by the attaching device(s).

The no format of the command disables the feature.

Syntax

    macro auto processing cdp
    no macro auto processing cdp

Parameters

N/A

Default Configuration

Enabled

Command Mode

Global Configuration
Example

To enable CDP globally:

```
switchxxxxxx(conf)#macro auto processing cdp
```

### 45.8 macro auto processing lldp

The **macro auto processing lldp** Global Configuration mode command enables using the LLDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the LLDP capabilities advertised by the attaching device(s).

The `no` format of the command disables the feature.

**Syntax**

```
macro auto processing lldp
no macro auto processing lldp
```

**Parameters**

N/A

**Default Configuration**

Enabled

**Command Mode**

Global Configuration

**Example**

To enable LLDP globally:

```
switchxxxxxx(conf)#macro auto processing lldp
```
45.9 macro auto processing type

The macro auto processing type Global Configuration mode command enables or disables automatic detection of devices of given type. The no format of the command returns to the default.

Syntax

```
macro auto processing type smartport-type {enabled | disabled}
no macro auto processing type smartport-type
```

Parameters

- **smartport-type**—Smartport type (range: host, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

Default Configuration

By default, auto detection of ip_phone, ip_phone_desktop, switch, and wireless access point (ap) is enabled.

Command Mode

Global Configuration

Example

In this example, automatic detection of wireless access points (ap) is enabled.

```
switchxxxxxx(config)# macro auto processing type ?
host set type to host
ip_phone set type to ip_phone
ip_phone_desktop set type to ip_phone_desktop
switch set type to switch
router set type to router
ap set type to access point
switchxxxxxx(config)# macro auto processing type ap enabled
```
45.10 macro auto user smartport macro

The macro auto user smartport macro Global Configuration mode command links user-defined Smartport macros to a Smartport type. This is done by replacing the link to the built-in macro with the link to the user-defined macro. The no format of the command returns the link to the default built-in Smartport macro.

Syntax

```
macro auto user smartport macro smartport-type user-defined-macro-name
[parameter-name value [parameter-name value [parameter-name value]]]
```

```
no macro auto user smartport macro smartport-type
```

Parameters

- **smartport macro smartport-type**—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

- **smartport macro user-defined-macro-name**—Specifies the user-defined macro name that replaces the built-in Smartport macro.

- **parameter-name value**—Specifies the parameter name and its value in the user-defined macro.

Default Configuration

```
parameter-name value
```

Parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

Command Mode

Global Configuration

User Guidelines

The scope of each parameter is the macro in which it is defined, with the exception of the parameter $voice_vlan, which is a global parameter and its value is specified by the switch and cannot be defined in a macro.

The macros must be defined before linking them in this command.

Smartport macros must be disconnected from the Smartport type before removing them (using the no version of this command).

To associate a Smartport type with a user-defined macros, you must have defined a pair of macros: one to apply the configuration, and the other (anti macro) to
remove the configuration. The macros are paired by their name. The name of the anti macro is the concatenation of no_ with the name of the corresponding macro. Please refer to the Macro Command section for details about defining macro.

Example

To link the user-defined macro: my_ip_phone_desktop to the Smartport type: ip_phone_desktop and provide values for its two parameters:

```
switchxxxxx(conf)# macro auto user smartport macro ip_phone_desktop
my_ip_phone_desktop $p1 1 $p2 2
```

45.11 macro auto built-in parameters

The **macro auto built-in parameters** Global Configuration mode command replaces the default Auto Smartport values of built-in Smartport macros. The **no** format of the command returns to the default values.

Syntax

```
macro auto built-in parameters smartport-type [parameter-name value
[parameter-name value [parameter-name value]]]
```

```
no macro auto built-in parameters smartport-type
```

Parameters

- **smartport-type**—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

- **parameter-name value**—Specifies the parameter name and its value. These are the parameters of the built-in or user-defined macro defined in **macro auto user smartport macro**.

Default Configuration

The default value of parameter $native_vlan of the built-in Smartport macros is 1.

For other parameters, the default value is the parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.
Command Mode

Global Configuration

User Guidelines

By default, each Smartport type is associated with a pair of built-in macros: a macro that applies the configuration and the anti macro (no macro) to remove the configuration. The Smartport types are the same as the name of the corresponding built-in Smartport macros, with the anti macro prefixed with no_.

The value of the parameter $voice_vlan cannot be changed by this command.

Example

To change the parameters of a built-in macro:

```
switchxxxxxx(conf)#macro auto built-in parameters switch $native_vlan 2
```

### 45.12 show macro auto processing

The **show macro auto processing** EXEC mode command displays information about which protocols (CDP/LLDP) are enabled and which device types can be detected automatically.

Syntax

```
show macro auto processing
```

Parameters

N/A

Default Configuration

N/A

Command Mode

EXEC

Example

```
switchxxxxxx#show macro auto processing
```
45.13  show macro auto smart-macros

The **show macro auto smart-macros** EXEC mode command displays the name of Smartport macros, their type (built-in or user-defined) and their parameters. This information is displayed for all Smartport types or for the specified one.

**Syntax**

```
show macro auto smart-macros [smartport-type]
```

**Parameters**

- **smartport-type**—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

**Default Configuration**

N/A

**Command Mode**

EXEC

**Example**

```
switchxxxxxx#show macro auto smart-macros
SG300-52-R#show macro auto smart-macros
SmartPort type : printer
Parameters : $native_vlan=1
SmartPort Macro: printer (Built-In)
```
SmartPort type : desktop
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: desktop (Built-In)

SmartPort type : guest
Parameters : $native_vlan=1
SmartPort Macro: guest (Built-In)

SmartPort type : server
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: server (Built-In)

SmartPort type : host
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: host (Built-In)

SmartPort type : ip-camera
Parameters : $native_vlan=1
SmartPort Macro: ip_camera (Built-In)

SmartPort type : ip-phone
Parameters : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone (Built-In)

SmartPort type : ip-phone-desktop
Parameters : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone_desktop (Built-In)

SmartPort type : switch
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: switch (Built-In)

SmartPort type : router
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: router (Built-In)

SmartPort type : ap
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: ap (Built-In)

SG300-52-R#
45.14  show macro auto ports

The `show macro auto ports` EXEC mode command displays information about all Smartport ports or a specific one. If a macro was run on the port and it failed, the type of the port is displayed as Unknown.

Syntax

`show macro auto ports [interface-id | detailed]`

Parameters

- **interface-id**—Interface Identifier (Ethernet interface, port channel)
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display information for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

EXEC

Examples

Example 1 - Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically.

```
switchxxxxxx# show macro auto ports
Smartport is enabled
Administrative Globally Auto Smartport is enabled
Operational Globally Auto Smartport is enabled
Interface Auto Smartport Persistent Smartport Type
Admin State State
----------- ----------- ----------- ---------------
gi1 disabled enabled switch
 enabled enabled default
 enabled disabled phone
 enabled enabled router (static)
```
Smartport Commands

<table>
<thead>
<tr>
<th></th>
<th>enabled</th>
<th>enabled</th>
<th>switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi6</td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

**Example 2 - Disabling auto SmartPort on gi2:**

```bash
switchxxxxxx(config-if)#interface gi2
switchxxxxxx(config-if)#no macro auto smartport
switchxxxxxx(config-if)#end
switchxxxxxx#show macro auto ports gi2
SmartPort is Enabled
Administrative Globally Auto SmartPort is controlled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is disabled on gi2
Persistent state is not-persistent
Interface type is default
No macro has been activated
```

**Example 3—Enabling auto Smartport on gi1:**

```bash
switchxxxxxx(config-if)#interface gi1
switchxxxxxx(config-if)#macro auto smartport
switchxxxxxx(config-if)#end
switchxxxxxx#show macro auto ports gi1
SmartPort is Enabled
Administrative Globally Auto SmartPort is enabled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is enabled on gi1
Persistent state is persistent
Interface type is switch
Last activated macro is switch
```
45.15 smartport switchport trunk allowed vlan

The **smartport switchport trunk allowed vlan** Interface Configuration (Ethernet, port-channel) mode command adds/removes VLANs to/from a trunk port.

**Syntax**

```
smartport switchport trunk allowed vlan {add [vlan-list | all] | remove [vlan-list | all]}
```

**Parameters**

- `add vlan-list`—Specifies a list of VLAN IDs to add to interface. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- `add all`—Add all VLANs to interface.
- `remove vlan-list`—Specifies a list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- `remove all`—Remove all VLANs from interface.

**Default Configuration**

N/A

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**User Guidelines**

This command is an extension of the **switchport trunk allowed vlan** command. Unlike the **switchport trunk allowed vlan** command, the `vlan-list` parameter of this command may include the voice VLAN (when it is the default VLAN). If the default VLAN is the voice VLAN, the following occurs:

- `add all` — Adds the interface to the default VLAN as an egress tagged port.
- `remove all` — Removes the interface from the default VLAN.

**Example**

To add port 1 to VLANs 1-5:

```
switchxxxxxx(config)#interface gi1
```
45.16  **smartport switchport trunk native vlan**

Use the **smartport switchport trunk native vlan** Interface Configuration (Ethernet, port-channel) mode command to define the native VLAN when the interface is in trunk mode. Use the **no** form of this command to restore the default configuration.

**Syntax**

`smartport switchport trunk native vlan native-vlan-id`

**Parameters**

- `native-vlan-id`—Specifies the native VLAN ID.

**Default Configuration**

VLAN 1

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**User Guidelines**

This command is an extension of the `switchport trunk native vlan` CLI command. Unlike the `switchport trunk native vlan` CLI command, this command may also be applied to the default VLAN when the interface belongs to the default VLAN as egress tagged port.

**Example**

Define the native VLAN when port 1 is in trunk mode:

```plaintext
switchxxxxxx(conf-if)#smartport switchport trunk allowed vlan add 1-5
```

45.17  **smartport storm-control broadcast enable**

Use the **smartport storm-control broadcast enable** Interface Configuration (Ethernet, port-channel) mode command to enable storm control on a Smartport port. Use the **no** form of this command to disable storm control.
### Smartport Commands

#### 45.18 smartport storm-control broadcast level

Use the `smartport storm-control broadcast level` Interface Configuration (Ethernet, port-channel) mode command to control the amount of Broadcast traffic allowed on an interface.

**Syntax**

`smartport storm-control broadcast level {level | kbps kbps}`

**no smartport storm-control broadcast level**

**Parameters**

- `level`—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1 -100)
- `kbps`—Maximum of kilobits per second of broadcast traffic on a port. (Range 70–10000000)

**Default Configuration**

- `level`—10%
- `kbps`—10% of port speed in Kbps
Command Mode
Interface Configuration (Ethernet, port-channel) mode

Examples

Example 1 - Set the maximum number of kilobits per second of Broadcast traffic on port 1 to 10000.

```
switchxxxxxx(conf) interface gi1
switchxxxxxx(conf-if)#smartport storm-control broadcast level kpbs 10000
```

Example 2 - Set the maximum percentage of kilobits per second of Broadcast traffic on port 1 to 30%.

```
switchxxxxxx(conf) interface gi1
switchxxxxxx(conf-if)#smartport storm-control broadcast level 30
```

45.19 smartport storm-control include-multicast

Use the `smartport storm-control include-multicast` Interface Configuration mode command to count Multicast packets in a Broadcast storm control. Use the `no` form of this command to disable counting of Multicast packets in the Broadcast storm control.

Syntax

```
smartport storm-control include-multicast [unknown-unicast]
no smartport storm-control include-multicast
```

Parameters

- `unknown-unicast`—Specifies also the count of unknown Unicast packets.

Default Configuration

Disabled

Command Mode
Interface Configuration mode (Ethernet)
Example

switchxxxxxx(config)# interface gi1

switchxxxxxx(config-if)# smartport storm-control include-multicast
Link Layer Discovery Protocol (LLDP) Commands

46.1 lldp run

Use the lldp run Global Configuration mode command to enable LLDP. To disable LLDP, use the no form of this command.

Syntax
lldp run
no lldp run

Parameters
N/A.

Default Configuration
Enabled

Command Mode
Global Configuration mode

Example
switchxxxxxx(config)# lldp run

46.2 lldp transmit

Use the lldp transmit Interface Configuration mode command to enable transmitting LLDP on an interface. Use the no form of this command to stop transmitting LLDP on an interface.

Syntax
lldp transmit
no lldp transmit
Parameters
N/A

Default Configuration
Enabled

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
LLDP manages LAG ports individually. LLDP sends separate advertisements on each port in a LAG.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are sent on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp transmit
```

46.3  lldp receive

Use the `lldp receive` Interface Configuration mode command to enable receiving LLDP on an interface. Use the `no` form of this command to stop receiving LLDP on an interface.

Syntax
lldp receive
no lldp receive

Parameters
N/A

Default Configuration
Enabled
**Command Mode**

Interface Configuration (Ethernet) mode

**User Guidelines**

LLDP manages LAG ports individually. LLDP data received through LAG ports is stored individually per port.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are received on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

**Example**

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp receive
```

### 46.4 lldp timer

Use the `lldp timer` Global Configuration mode command to specify how often the software sends LLDP updates. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lldp timer seconds
no lldp timer
```

**Parameters**

- `timer seconds`—Specifies, in seconds, how often the software sends LLDP updates (range: 5-32768 seconds).

**Default Configuration**

30 seconds.

**Command Mode**

Global Configuration mode
Example
The following example sets the interval for sending LLDP updates to 60 seconds.

```
switchxxxxxx(config)# lldp timer 60
```

### 46.5 lldp hold-multiplier

Use the `lldp hold-multiplier` Global Configuration mode command to specify how long the receiving device holds a LLDP packet before discarding it. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lldp hold-multiplier number
no lldp hold-multiplier
```

**Parameters**

- `hold-multiplier number`—Specifies the LLDP packet hold time interval as a multiple of the LLDP timer value (range: 2-10).

**Default Configuration**

The default LLDP hold multiplier is 4.

**Command Mode**

Global Configuration mode

**User Guidelines**

The actual Time-To-Live (TTL) value of LLDP frames is calculated by the following formula:

\[
TTL = \min(65535, \text{LLDP-Timer} \times \text{LLDP-hold-multiplier})
\]

For example, if the value of the LLDP timer is 30 seconds, and the value of the LLDP hold multiplier is 4, then the value 120 is encoded in the TTL field of the LLDP header.
Example

The following example sets the LLDP packet hold time interval to 90 seconds.

```
switchxxxxxx(config)# lldp timer 30
switchxxxxxx(config)# lldp hold-multiplier 3
```

### 46.6 lldp reinit

Use the **lldp reinit** Global Configuration mode command to specify the minimum time an LLDP port waits before reinitializing LLDP transmission. Use the **no** form of this command to revert to the default setting.

**Syntax**

```
lldp reinit seconds
no lldp reinit
```

**Parameters**

- **reinit seconds**—Specifies the minimum time in seconds an LLDP port waits before reinitializing LLDP transmission. (Range: 1–10)

**Default Configuration**

2 seconds

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(config)# lldp reinit 4
```

### 46.7 lldp tx-delay

Use the **lldp tx-delay** Global Configuration mode command to set the delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB. Use the **no** form of this command to restore the default configuration.
Syntax

```
lldp tx-delay seconds
no lldp tx-delay
```

Parameters

- **tx-delay seconds**—Specifies the delay in seconds between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB (range: 1-8192 seconds).

Default Configuration

The default LLDP frame transmission delay is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

It is recommended that the tx-delay be less than 0.25 of the LLDP timer interval.

Example

The following example sets the LLDP transmission delay to 10 seconds.

```
switchxxxxxx(config)# lldp tx-delay 10
```

### 46.8 lldp optional-tlv

Use the **lldp optional-tlv** Interface Configuration (Ethernet) mode command to specify which optional TLVs are transmitted. Use the no form of this command to restore the default configuration.

For 802.1, see the **lldp optional-tlv 802.1** command.

Syntax

```
lldp optional-tlv tlv [tlv2 ... tlv5 | none]
```
Parameters

- **tlv**—Specifies the TLVs to be included. Available optional TLVs are: 802.1, port-desc, sys-name, sys-desc, sys-cap, 802.1, 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size.

- **none**—Clear all optional TLVs from the interface

If the 802.1 protocol is selected, see the command below.

**Default Configuration**

No optional TLV is transmitted.

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example specifies that the port description TLV is transmitted on gi2.

```plaintext
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# lldp optional-tlv port-desc
```

**46.9  lldp optional-tlv 802.1**

Use the `lldp optional-tlv` Interface Configuration mode command to specify which optional TLVs to transmit. Use the `no` form of this command to revert to the default setting.

**Syntax**

- `lldp optional-tlv 802.1 pvid` - The PVID is advertised.
- `no lldp optional-tlv 802.1 pvid` - The PVID is not advertised
- `lldp optional-tlv 802.1 ppvid add ppvid` - The Protocol Port VLAN ID (PPVID) is advertised. The PPVID is the PVID that is used depending on the packet's protocol.
- `lldp optional-tlv 802.1 ppvid remove ppvid` - The PPVID is not advertised.
- `lldp optional-tlv 802.1 vlan add vlan-id` - This `vlan-id` is advertised.
- `lldp optional-tlv 802.1 vlan remove vlan-id` - This `vlan-id` is not advertised.
lldp optional-tlv 802.1 protocol add {stp / rstp / mstp / pause / 802.1x / lacp / gvrp} - The protocols selected are advertised.

lldp optional-tlv 802.1 protocol remove {stp / rstp / mstp / pause / 802.1x / lacp / gvrp} - The protocols selected are not advertised.

Parameters

- **lldp optional-tlv 802.1 pvid**—Advertises the PVID of the port.
- **lldp optional-tlv 802.1 ppvid add/remove ppvid**—Adds/removes PPVID for advertising. (range: 0–4094). PPVID = 0 indicates that the port is not capable of supporting port and protocol VLANs and/or the port is not enabled with any protocol VLANs.
- **add/remove vlan-id**—Adds/removes VLAN for advertising (range: 0–4094).
- **add/remove {stp / rstp / mstp / pause / 802.1x / lacp / gvrp}**—Add specifies to advertise the specified protocols; remove specifies not to advertise the specified protocol.

Default Configuration

No optional TLV is transmitted.

Command Mode

Interface Configuration (Ethernet) mode

Example

```
switchxxxxxx(config)# lldp optional-tlv 802.1 protocol add stp
```

### 46.10 lldp management-address

Use the `lldp management-address` Interface Configuration (Ethernet) mode command to specify the management address advertised by an interface. Use the `no` form of this command to stop advertising management address information.

**Syntax**

```
lldp management-address [ip-address | none | automatic [interface-id]]

no lldp management-address
```
Parameters

- **ip-address**—Specifies the static management address to advertise.
- **none**—Specifies that no address is advertised.
- **automatic**—Specifies that the software automatically selects a management address to advertise from all the IP addresses of the product. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses.
- **automatic interface-id**—(Available only when the device is in Layer 3 (router mode)). Specifies that the software automatically selects a management address to advertise from the IP addresses that are configured on the interface ID. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses of the interface. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses of the interface. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN. Note that if the port or port-channel are members in a VLAN that has an IP address, that address is not included because the address is associated with the VLAN.

Default Configuration

No IP address is advertised.
The default advertisement is **automatic**.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

Each port can advertise one IP address.

Example

The following example sets the LLDP management address advertisement mode to **automatic** on gi2.

```
switchxxxxxxx(config)# interface gi2
switchxxxxxxx(config-if)# lldp management-address automatic
```
46.11 lldp notifications

Use the `lldp notifications` Interface Configuration (Ethernet) mode command to enable/disable sending LLDP notifications on an interface. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lldp notifications {enable | disable}
no lldp notifications
```

**Parameters**

- `enable`—Enables sending LLDP notifications.
- `disable`—Disables sending LLDP notifications.

**Default Configuration**

Disabled.

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example enables sending LLDP notifications on gi5.

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# lldp notifications enable
```

46.12 lldp notifications interval

Use the `lldp notifications interval` Global Configuration mode command to configure the maximum transmission rate of LLDP notifications. Use the `no` form of this command to return to the default.

**Syntax**

```
lldp notifications interval seconds
no lldp notifications interval
```
Parameters

interval seconds—The device does not send more than a single notification in the indicated period (range: 5–3600).

Default Configuration

5 seconds

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# lldp notifications interval 10

46.13 lldp lldpdu

The lldp lldpdu Global Configuration mode command defines LLDP packet handling when LLDP is globally disabled. To restore the default configuration, use the no form of this command.

Syntax

lldp lldpdu {filtering | flooding}
no lldp lldpdu

Parameters

- filtering — Specifies that when LLDP is globally disabled, LLDP packets are filtered (deleted).
- flooding — Specifies that when LLDP is globally disabled, LLDP packets are flooded (forwarded to all interfaces).

Default Configuration

LLDP packets are filtered when LLDP is globally disabled.

Command Mode

Global Configuration mode
User Guidelines

If the STP mode is MSTP, the LLDP packet handling mode cannot be set to flooding.

The STP mode cannot be set to MSTP if the LLDP packet handling mode is flooding.

If LLDP is globally disabled, and the LLDP packet handling mode is flooding, LLDP packets are treated as data packets with the following exceptions:

- VLAN ingress rules are not applied to LLDP packets. The LLDP packets are trapped on all ports for which the STP state is Forwarding.
- Default "deny-all" rules are not applied to LLDP packets.
- VLAN egress rules are not applied to LLDP packets. The LLDP packets are flooded to all ports for which the STP state is Forwarding.
- LLDP packets are sent as untagged.

Example

The following example sets the LLDP packet handling mode to Flooding when LLDP is globally disabled.

switchxxxxxx(config)# lldp lldpdud flooding

46.14 lldp med

Use the lldp med Interface Configuration (Ethernet) mode command to enable or disable LLDP Media Endpoint Discovery (MED) on a port. Use the no form of this command to return to the default state.

Syntax

lldp med {enable [tlv ... tlv4] | disable}
no lldp med

Parameters

- enable - Enable LLDP MED
- **tlv**—Specifies the TLV that should be included. Available TLVs are: network-policy, location, and poe-pse, inventory. The capabilities TLV is always included if LLDP-MED is enabled.

- **disable** - disable LLDP MED on the port

**Default Configuration**

Enabled with network-policy TLV

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example enables LLDP MED with the location TLV on gi3.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# lldp med enable location
```

### 46.15 lldp med notifications topology-change

Use the `lldp med notifications topology-change` Interface Configuration (Ethernet) mode command to enable sending LLDP MED topology change notifications on a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
lldp med notifications topology-change {enable | disable}
no lldp med notifications topology-change
```

**Parameters**

- **enable**—Enables sending LLDP MED topology change notifications.
- **disable**—Disables sending LLDP MED topology change notifications.

**Default Configuration**

Disable is the default.
Command Mode

Interface Configuration (Ethernet) mode

Example

The following example enables sending LLDP MED topology change notifications on gi2.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# lldp med notifications topology-change enable
```

46.16 lldp med fast-start repeat-count

When a port comes up, LLDP can send packets more quickly than usual using its fast-start mechanism.

Use the `lldp med fast-start repeat-count` Global Configuration mode command to configure the number of packets that is sent during the activation of the fast start mechanism. Use the `no` form of this command return to default.

Syntax

```
lldp med fast-start repeat-count number
no lldp med fast-start repeat-count
```

Parameters

- `repeat-count number`—Specifies the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism. The range is 1-10.

Default Configuration

3

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp med fast-start repeat-count 4
```
46.17 lldp med network-policy (global)

Use the lldp med network-policy Global Configuration mode command to define a LLDP MED network policy. For voice applications, it is simpler to use lldp med network-policy voice auto.

The lldp med network-policy command creates the network policy, which is attached to a port by lldp med network-policy (interface).

The network policy defines how LLDP packets are constructed.

Use the no form of this command to remove LLDP MED network policy.

Syntax

```
lldp med network-policy number application [vlan vlan-id] [vlan-type {tagged | untagged}] [up priority] [dscp value]
no lldp med network-policy number
```

Parameters

- **number**—Network policy sequential number. The range is 1-32.
- **application**—The name or the number of the primary function of the application defined for this network policy. Available application names are:
  - voice
  - voice-signaling
  - guest-voice
  - guest-voice-signaling
  - softphone-voice
  - video-conferencing
  - streaming-video
  - video-signaling.
- **vlan vlan-id**—VLAN identifier for the application.
- **vlan-type**—Specifies if the application is using a tagged or an untagged VLAN.
- **up priority**—User Priority (Layer 2 priority) to be used for the specified application.
• **dscp** *value*—DSCP value to be used for the specified application.

**Default Configuration**

No network policy is defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the **lldp med network-policy** Interface Configuration command to attach a network policy to a port.

Up to 32 network policies can be defined.

**Example**

This example creates a network policy for the voice-signaling application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
 vlan-type untagged up 1 dscp 2
switchxxx(config)# interface gi1
switchxxx(config-if)# lldp med network-policy add 1
```

### 46.18 **lldp med network-policy (interface)**

Use the **lldp med network-policy** Interface Configuration (Ethernet) mode command to attach or remove an LLDP MED network policy on a port. Network policies are created in **lldp med network-policy (global)**.

Use the **no** form of this command to remove all the LLDP MED network policies from the port.

**Syntax**

```
lldp med network-policy {add/remove} number

no lldp med network-policy number
```
Parameters

- **number**—Specifies the network policy sequential number. The range is 1-32
- **add/remove number**—Attaches/removes the specified network policy to the interface.

Default Configuration

No network policy is attached to the interface.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

For each port, only one network policy per application (voice, voice-signaling, etc.) can be defined.

Example

This example creates a network policy for the voice-signaling application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
 vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp med network-policy add 1
```

46.19 lldp med network-policy voice auto

A network policy for voice LLDP packets can be created by using the **lldp med network-policy (global)**. The **lldp med network-policy voice auto** Global Configuration mode is simpler in that it uses the configuration of the Voice application to create the network policy instead of the user having to manually configure it.

This command generates an LLDP MED network policy for voice, if the voice VLAN operation mode is **auto voice VLAN**. The voice VLAN, 802.1p priority, and the DSCP of the voice VLAN are used in the policy. Use the **no** form of this command...
to disable this mode. The network policy is attached automatically to the voice VLAN.

**Syntax**

```plaintext
lldp med network-policy voice auto
no lldp med network-policy voice auto
```

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**User Guidelines**

In Auto mode, the Voice VLAN feature determines on which interfaces to advertise the network policy TLV with application type `voice`, and controls the parameters of that TLV.

To enable the auto generation of a network policy based on the auto voice VLAN, there must be no manual pre-configured network policies for the voice application.

In Auto mode, you cannot manually define a network policy for the voice application using the `lldp med network-policy (global)` command.

**Example**

```plaintext
switchxxxxxx(config)# lldp med network-policy voice auto
```

### 46.20 clear lldp table

Use the `clear lldp table` command in Privileged EXEC mode to clear the neighbors table for all ports or for a specific port.

**Syntax**

```plaintext
clear lldp table [interface-id]
```
Parameters

interface-id—Specifies a port ID.

Default Configuration

If no interface is specified, the default is to clear the LLDP table for all ports.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear lldp table gi1
```

### 46.21  lldp med location

Use the lldp med location Interface Configuration (Ethernet) mode command to configure the location information for the LLDP Media Endpoint Discovery (MED) for a port. Use the no form of this command to delete location information for a port.

**Syntax**

```
lldp med location {{coordinate data} | {civic-address data} | {ecs-elin data}}
```

```
no lldp med location {coordinate | civic-address | ecs-elin}
```

**Parameters**

- **coordinate data**—Specifies the location data as coordinates in hexadecimal format.
- **civic-address data**—Specifies the location data as a civic address in hexadecimal format.
- **ecs-elin data**—Specifies the location data as an Emergency Call Service Emergency Location Identification Number (ECS ELIN) in hexadecimal format.
- **data**—Specifies the location data in the format defined in ANSI/TIA 1057: dotted hexadecimal data: Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. (Length: coordinate: 16 bytes. Civic-address: 6-160 bytes. Ecs-elin: 10-25 bytes)
Default Configuration
The location is not configured.

Command Mode
Interface Configuration (Ethernet) mode

Example
The following example configures the LLDP MED location information on gi2 as a civic address.

```
switchxxxxx(config)# interface gi2
switchxxxxx(config-if)# lldp med location civic-address 616263646566
```

**46.22  show lldp configuration**

Use the `show lldp configuration` Privileged EXEC mode command to display the LLDP configuration for all ports or for a specific port.

**Syntax**
```
show lldp configuration [interface-id | detailed]
```

**Parameters**
- `interface-id`—Specifies the port ID.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Display for all ports. If detailed is not used, only present ports are displayed.

**Command Mode**
Privileged EXEC mode

**Examples**
**Example 1** - Display LLDP configuration for all ports.
Switch# `show lldp configuration`

State: Enabled

Timer: 30 Seconds

Hold multiplier: 4

Reinit delay: 2 Seconds

Tx delay: 2 Seconds

Notifications interval: 5 seconds

LLDP packets handling: Filtering

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>RX,TX</td>
<td>PD, SN, SD, SC</td>
<td>172.16.1.1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi2</td>
<td>TX</td>
<td>PD, SN</td>
<td>172.16.1.1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi3</td>
<td>RX,TX</td>
<td>PD, SN, SD, SC</td>
<td>None</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi5</td>
<td>RX,TX</td>
<td>D, SN, SD, SC</td>
<td>automatic</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi6</td>
<td>RX,TX</td>
<td>PD, SN, SD, SC</td>
<td>auto vlan1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi7</td>
<td>RX,TX</td>
<td>PD, SN, SD, SC</td>
<td>auto g1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi8</td>
<td>RX,TX</td>
<td>PD, SN, SD, SC</td>
<td>auto ch1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

**Example 2 - Display LLDP configuration for port 1.**

Switch# `show lldp configuration gi1`

State: Enabled

Timer: 30 Seconds

Hold multiplier: 4

Reinit delay: 2 Seconds

Tx delay: 2 Seconds

Notifications interval: 5 seconds

LLDP packets handling: Filtering

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>72.16.1.1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
802.3 optional TLVs: 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size

802.1 optional TLVs

PVID: Enabled

PPVIDs: 0, 1, 92

VLANs: 1, 92

Protocols: 802.1x

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>The time interval between LLDP updates.</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>The amount of time (as a multiple of the timer interval) that the receiving device holds a LLDP packet before discarding it.</td>
</tr>
<tr>
<td>Reinit timer</td>
<td>The minimum time interval an LLDP port waits before re-initializing an LLDP transmission.</td>
</tr>
<tr>
<td>Tx delay</td>
<td>The delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>State</td>
<td>The port’s LLDP state.</td>
</tr>
<tr>
<td>Optional TLVs</td>
<td>Optional TLVs that are advertised. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>PD - Port description</td>
</tr>
<tr>
<td></td>
<td>SN - System name</td>
</tr>
<tr>
<td></td>
<td>SD - System description</td>
</tr>
<tr>
<td></td>
<td>SC - System capabilities</td>
</tr>
<tr>
<td>Address</td>
<td>The management address that is advertised.</td>
</tr>
<tr>
<td>Notifications</td>
<td>Indicates whether LLDP notifications are enabled or disabled.</td>
</tr>
<tr>
<td>PVID</td>
<td>Port VLAN ID advertised.</td>
</tr>
<tr>
<td>PPVID</td>
<td>Protocol Port VLAN ID advertised.</td>
</tr>
<tr>
<td>Protocols</td>
<td>Protocols advertised.</td>
</tr>
</tbody>
</table>
46.23 show lldp med configuration

Use the show lldp med configuration Privileged EXEC mode command to display the LLDP Media Endpoint Discovery (MED) configuration for all ports or for a specific port.

Syntax

show lldp med configuration [interface-id | detailed]

Parameters

- interface-id—Specifies the port ID.
- detailed—Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

Example 1 - The following example displays the LLDP MED configuration for all interfaces.

switchxxxxxx# show lldp med configuration
Fast Start Repeat Count: 4.
lldp med network-policy voice: manual
Network policy 1
--------------
Application type: voiceSignaling
VLAN ID: 1 untagged
Layer 2 priority: 0
DSCP: 0
<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network Policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>gi2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Enabled</td>
<td>No</td>
</tr>
<tr>
<td>gi3</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Enabled</td>
<td>No</td>
</tr>
</tbody>
</table>

**Example 2** - The following example displays the LLDP MED configuration for gi1.

```
switchxxxxxx# show lldp med configuration gi1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network Policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Network policies:
Location:

### 46.24 `show lldp local tlvs-overloading`

When an LLDP packet contains too much information for one packet, this is called overloading. Use the `show lldp local tlvs-overloading` EXEC mode command to display the status of TLVs overloading of the LLDP on all ports or on a specific port.

**Syntax**

`show lldp local tlvs-overloading [interface-id]`

**Parameters**

- `interface-id`—Specifies a port ID.

**Default Configuration**

If no port ID is entered, the command displays information for all ports.
**Command Mode**

EXEC mode

**User Guidelines**

The command calculates the overloading status of the current LLDP configuration, and not for the last LLDP packet that was sent.

**Example**

```
Switch# show lldp local tlvs-overloading gi1
TLVs Group Bytes Status
------------ ------ --------------
Mandatory 31 Transmitted
LLDP-MED Capabilities 9 Transmitted
LLDP-MED Location 200 Transmitted
802.1 1360 Overloading
Total: 1600 bytes
Left: 100 bytes
```

**46.25  show lldp local**

Use the `show lldp local` Privileged EXEC mode command to display the LLDP information that is advertised from a specific port.

**Syntax**

```
show lldp local interface-id
```

**Parameters**

- **Interface-id**—Specifies a port ID.

**Default Configuration**

If no port ID is entered, the command displays information for all ports.

**Command Mode**

Privileged EXEC mode
Example

The following examples display LLDP information that is advertised from gi1 and 2.

```
Switch# show lldp local gi1
Device ID: 0060.704C.73FF
Port ID: gi1
Capabilities: Bridge
System Name: ts-7800-1
System description:
Port description:
Management address: 172.16.1.8
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported
Auto-negotiation status: Enabled
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full
duplex
Operational MAU type: 1000BaseTFD
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Local Tx: 30 usec
Local Rx: 25 usec
Remote Tx Echo: 30 usec
Remote Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
```
Link Layer Discovery Protocol (LLDP) Commands

802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy, Location Identification
LLDP-MED Device type: Network Connectivity
LLDP-MED Network policy
Application type: Voice
Flags: Tagged VLAN
VLAN ID: 2
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Sourcing Entity
Power source: Primary Power Source
Power priority: High
Power value: 9.6 Watts
LLDP-MED Location
Hardware Revision: B1
Firmware Revision: A1
Software Revision: 3.8
Serial number: 7978399
Manufacturer name: Manufacturer
Model name: Model 1
Asset ID: Asset 123
Switch# show lldp local gi2
LLDP is disabled.

46.26 show lldp statistics

Use the show lldp statistics EXEC mode command to display LLDP statistics on all ports or a specific port.
Syntax

```
show lldp statistics [interface-id | detailed]
```

Parameters

- **interface-id**—Specifies the port ID.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

EXEC mode

Example

```
switchxxxxxx# show lldp statistics

Tables Last Change Time: 14-Oct-2010 32:08:18
Tables Inserts: 26
Tables Deletes: 2
Tables Dropped: 0
Tables Ageouts: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>TX Frames</th>
<th>RX Frame</th>
<th>RX TLVs</th>
<th>RX Ageouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>730</td>
<td>850</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi6</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi9</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
46.27  show lldp neighbors

Use the `show lldp neighbors` Privileged EXEC mode command to display information about neighboring devices discovered using LLDP. The information can be displayed for all ports or for a specific port.

**Syntax**

```
show lldp neighbors [interface-id][detail | secondary]
```

**Parameters**

- `interface-id`—Specifies a port ID.
- `detail`—Displays detailed information about a neighbor (or neighbors) from the main cache.
- `secondary`—Displays information about neighbors from the secondary cache.

**Default Configuration**

If no port ID is entered, the command displays information for all ports. Detail is the default parameter.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

A TLV value that cannot be displayed as an ASCII string is displayed as an hexadecimal string.

**Examples**

**Example 1** - The following example displays information about neighboring devices discovered using LLDP on all ports.

Location information, if it exists, is also displayed.

```
Switch# show lldp neighbors
```
Link Layer Discovery Protocol (LLDP) Commands

Example 2 - The following example displays information about neighboring devices discovered using LLDP port 1.

Switch# show lldp neighbors gi1
Device ID: 00:00:00:11:11:11
Port ID: gi
System Name: ts-7800-2
Capabilities: B
System description:
Port description:
Management address: 172.16.1.1
Time To Live: 90 seconds
802.3 MACPHY Configuration/Status
Auto-negotiation support: Supported.
Auto-negotiation status: Enabled.
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex.
Operational MAU type: 1000BaseTFD
802.3 Power via MDI
MDI Power support Port Class: PD
PSE MDI Power Support: Not Supported
PSE MDI Power State: Not Enabled
PSE power pair control ability: Not supported.
PSE Power Pair: Signal

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port ID</th>
<th>System Name</th>
<th>Capabilities</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1 00:00:00:11:11:11</td>
<td>gi1</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>gi1 00:00:00:11:11:11 D</td>
<td>gi1</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>gi2 00:00:26:08:13:24</td>
<td>gi3</td>
<td>ts-7900-1</td>
<td>B, R</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>gi3 00:00:26:08:13:24</td>
<td>gi2</td>
<td>ts-7900-2</td>
<td>W</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
PSE Power class: 1

802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Remote Tx: 25 usec
Remote Rx: 30 usec
Local Tx Echo: 30 usec
Local Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2(VLAN2)
802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy.
LLDP-MED Device type: Endpoint class 2.
LLDP-MED Network policy
Application type: Voice
Flags: Unknown policy
VLAN ID: 0
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Device
Power source: Primary power
Power priority: High
Power value: 9.6 Watts
Hardware revision: 2.1
Firmware revision: 2.3
Software revision: 2.7.1
Serial number: LM759846587
Manufacturer name: VP
Model name: TR12
Asset ID: 9
LLDP-MED Location

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>B - Bridge</td>
</tr>
<tr>
<td></td>
<td>R - Router</td>
</tr>
<tr>
<td></td>
<td>W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>T - Telephone</td>
</tr>
<tr>
<td></td>
<td>D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>H - Host</td>
</tr>
<tr>
<td></td>
<td>r - Repeater</td>
</tr>
<tr>
<td></td>
<td>O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port. (Supported or Not Supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port. (Enabled or Disabled)</td>
</tr>
</tbody>
</table>
### Field Description

**Auto-negotiation Advertised Capabilities**	The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.
**Operational MAU type**	The port MAU type.
**LLDP MED Capabilities**	The sender's LLDP-MED capabilities.
**Device type**	The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.
**LLDP MED - Network Policy Application type**	The primary function of the application defined for this network policy.
**Flags**	Flags. The possible values are: Unknown policy: Policy is required by the device, but is currently unknown. Tagged VLAN: The specified application type is using a Tagged VLAN. Un-tagged VLAN: The specified application type is using an Untagged VLAN.
**VLAN ID**	The VLAN identifier for the application.
**Layer 2 priority**	The Layer 2 priority used for the specified application.
**DSCP**	The DSCP value used for the specified application.
**LLDP MED - Power Over Ethernet Power type**	The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).
**Power Source**	The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.
### Power priority
The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.

### Power value
The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.

### LLDP MED - Location

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates, Civic address, ECS ELIN.</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
47.1  cdp run

The cdp run Global Configuration mode command enables CDP globally. The no format of this command disabled CDP globally.

Syntax

cdp run

no cdp run

Parameters

N/A

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

CDP is a link layer protocols for directly-connected CDP/LLDP-capable devices to advertise themselves and their capabilities. In deployments where the CDP/LLDP capable devices are not directly connected and are separated with CDP/LLDP incapable devices, the CDP/LLDP capable devices may be able to receive the advertisement from other device(s) only if the CDP/LLDP incapable devices flood the CDP/LLDP packets they receives. If the CDP/LLDP incapable devices perform VLAN-aware flooding, then CDP/LLDP capable devices can hear each other only if they are in the same VLAN. It should be noted that a CDP/LLDP capable device may receive advertisement from more than one device if the CDP/LLDP incapable devices flood the CDP/LLDP packets.

To learn and advertise CDP information, it must be globally enabled (it is so by default) and also enabled on interfaces (also by default).
47.2 cdp enable

The cdp enable Interface Configuration mode command enables CDP on interface. The no format of the CLI command disables CDP on an interface.

Syntax

cdp enable

Parameters

N/A

Default Configuration

Enabled

Command Mode

Ethernet Interface

User Guidelines

For CDP to be enabled on an interface, it must first be enabled globally using cdp run.

Example

switchxxxxxx(conf) cdp run

switchxxxxxx(conf) interface gi1

switchxxxxxx(conf-if) cdp enable

47.3 cdp pdu

Use the cdp pdu Global Configuration mode command when CDP is not enabled globally. It specifies CDP packets handling when CDP is globally disabled. The no format of this command returns to default.

Syntax

cdp pdu [filtering | bridging | flooding]
no cdp pdu

Parameters

- **filtering**—Specify that when CDP is globally disabled, CDP packets are filtered (deleted).
- **bridging**—Specify that when CDP is globally disabled, CDP packets are bridged as regular data packets (forwarded based on VLAN).
- **flooding**—Specify that when CDP is globally disabled, CDP packets are flooded to all the ports in the product that are in STP forwarding state, ignoring the VLAN filtering rules.

Default Configuration

bridging

Command Mode

Global Configuration mode

User Guidelines

When CDP is globally enabled, CDP packets are filtered (discarded) on CDP-disabled ports.

In the flooding mode, VLAN filtering rules are not applied, but STP rules are applied. In case of MSTP, the CDP packets are classified to instance 0.

Example

```
switchxxxxxx(conf) cdp run
switchxxxxxx(conf) cdp pdu flooding
```

47.4 cdp advertise-v2

The `cdp advertise-v2` Global Configuration mode command specifies version 2 of transmitted CDP packets. The `no` format of this command specifies version 1.

Syntax

- `cdp advertise-v2`
- `no cdp advertise-v2`
Parameters
N/A

Default Configuration
Version 2.

Command Mode
Global Configuration mode

Example

switchxxxxxx(conf) cdp run
switchxxxxxx(conf) cdp advertise-v2

47.5 cdp appliance-tlv enable

The cdp appliance-tlv enable Global Configuration mode command enables sending of the Appliance TLV. The no format of this command disables the sending of the Appliance TLV.

Syntax

cdp appliance-tlv enable

no cdp appliance-tlv enable

Parameters
N/A

Default Configuration
Enabled

Command Mode
Global Configuration mode

User Guidelines
This MIB specifies the Voice Vlan ID (VVID) to which this port belongs:
CDP Commands

- **0** - The CDP packets transmitting through this port would contain Appliance VLAN-ID TLV with value of 0. VoIP and related packets are expected to be sent and received with VLAN-id=0 and an 802.1p priority.

- **1..4094** - The CDP packets transmitting through this port would contain Appliance VLAN-ID TLV with N. VoIP and related packets are expected to be sent and received with VLAN-ID=N and an 802.1p priority.

- **4095** - The CDP packets transmitting through this port would contain Appliance VLAN-ID TLV with value of 4095. VoIP and related packets are expected to be sent and received untagged without an 802.1p priority.

- **4096** - The CDP packets transmitting through this port would not include Appliance VLAN-ID TLV; or, if the VVID is not supported on the port, this MIB object will not be configurable and will return 4096.

**Example**

```
switchxxxxxxx(conf) cdp appliance-tlv enable
```

### 47.6 cdp mandatory-tlvs validation

Use the `cdp mandatory-tlvs validation` Global Configuration mode command to validate that all mandatory (according to CDP protocol) TLVs are present in received CDP frames. The `no` format of this command disables the validation.

If the mandatory TLVs are not included in the packet, it is deleted.

**Syntax**

```
cdp mandatory-tlvs validation
no cdp mandatory-tlvs validation
```

**Parameters**

N/A

**Default Configuration**

Enabled.

**Command Mode**

Global Configuration mode
Example

Turns off mandatory TLV validation:

```
switchxxxxxx(config)
 no cdp mandatory-tlvs validation
```

### 47.7 cdp source-interface

The `cdp source-interface` Global Configuration mode command specifies the CDP source port used for source IP address selection. The `no` format of this command deletes the source interface.

**Syntax**

```
cdp source-interface interface-id
no cdp source-interface
```

**Parameters**

`interface-id`—Source port used for Source IP address selection.

**Default Configuration**

No CDP source interface is specified.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `cdp source-interface` command to specify an interface whose minimal IP address will be advertised in the TLV instead of the minimal IP address of the outgoing interface.

**Example**

```
switchxxxxxx(config)
 cdp source-interface g1
```
47.8 cdp log mismatch duplex

Use the `cdp log mismatch duplex` Global and Interface Configuration mode command to enable validating that the duplex status of a port received in a CDP packet matches the port's actual configuration. If not, a SYSLOG duplex mismatch message is generated. The `no` format of the CLI command disables the generation of the SYSLOG messages.

**Syntax**

```plaintext
cdp log mismatch duplex
no cdp log mismatch duplex
```

**Parameters**

N/A

**Default Configuration**

The switch reports duplex mismatches from all ports.

**Command Mode**

- Global Configuration mode
- Ethernet Interface

**Example**

```plaintext
switchxxxxxx(conf) interface gi1
switchxxxxxx(conf-if) cdp log mismatch duplex
```

47.9 cdp log mismatch voip

Use the `cdp log mismatch voip` Global and Interface Configuration mode command to enable validating that the VoIP status of the port received in a CDP packet matches its actual configuration. If not, a SYSLOG message is generated by CDP. The `no` format of the CLI command disables the generation of the SYSLOG messages.

**Syntax**

```plaintext
cdp log mismatch voip
```

```plaintext
```
no cdp log mismatch voip

Parameters
N/A

Default Configuration
The switch reports voip mismatches from all ports.

Command Mode
Global Configuration mode
Ethernet Interface

Example

switchxxxxxx(conf) interface gi1
switchxxxxxx(conf-if) cdp log mismatch voip

47.10 cdp log mismatch native

Use the **cdp log mismatch native** Global and Interface Configuration mode command to enable validating that the native VLAN received in a CDP packet matches the actual native VLAN of the port. If not, a SYSLOG native mismatch message is generated. The no format of the CLI command disables the generation of the SYSLOG messages.

Syntax

cdp log mismatch native
no cdp log mismatch native

Parameters
N/A

Default Configuration
The switch reports Native VLAN mismatches from all ports.
**47.11  cdp device-id format**

The `cdp device-id format` Global Configuration mode command specifies the format of the Device-ID TLV. The `no` format of this command returns to default.

**Syntax**

```
cdp device-id format {mac | serial-number}
no cdp device-id format
```

**Parameters**

- **mac**—Specifies that the Device-ID TLV contains the device’s MAC address.
- **serial-number**—Specifies that Device-ID TLV contains the device’s hardware serial number.

**Default Configuration**

MAC address is selected by default.

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(conf) cdp device-id format serial-number
```
### 47.12 cdp timer

The `cdp timer` Global Configuration mode command specifies how often CDP packets are transmitted. The `no` format of this command returns to default.

**Syntax**

```plaintext
cdp timer seconds
no cdp timer
```

**Parameters**


**Default Configuration**

60 seconds.

**Command Mode**

Global Configuration mode

**Example**

```plaintext
switchxxxxxx(conf) cdp timer 100
```

### 47.13 cdp holdtime

The `cdp holdtime` Global Configuration mode command specified a value of the Time-to-Live field into sent CDP messages. The `no` format of this command returns to default.

**Syntax**

```plaintext
cdp holdtime seconds
no cdp timer
```

**Parameters**

- `seconds` — Value of the Time-to-Live field in seconds. The value should be bigger than the value of Transmission Timer.
Parameters range
seconds—10 - 255.

Default Configuration
180 seconds.

Command Mode
Global Configuration mode

Example

switchxxxxxx(config) cdp holdtime 100

47.14 clear cdp counters

The clear cdp counters Global Configuration mode command resets the CDP traffic counters to 0.

Syntax
clear cdp counters

Parameters
N/A

Command Mode
Global Configuration mode

Example

switchxxxxxx(config) clear cdp counters

47.15 clear cdp table

The clear cdp table Global Configuration mode command deletes the CDP Cache tables.
47 CDP Commands

Syntax

clear cdp table

Parameters

N/A

Command Mode

Global Configuration mode

Example

switchxxxxxxx(conf) clear cdp table

47.16  show cdp

The show cdp Privileged EXEC mode command displays the interval between advertisements, the number of seconds the advertisements are valid and version of the advertisements.

Syntax

show cdp

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

switch>show cdp
Global CDP information:
  cdp is globally enabled
  cdp log duplex mismatch is globally enabled
  cdp log voice VLAN mismatch is globally enabled
  cdp log native VLAN mismatch is globally disabled
Mandatory TLVs are
  Device-ID TLV (0x0001
Address TLV (0x0002)
Port-ID TLV (0x0003)
Capabilities TLV (0x0004)
Version TLV (0x0005)
Platform TLV (0x0006)
Sending CDPv2 advertisements is enabled
Sending Appliance TLV is enabled
Device ID format is Serial Number
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds

47.17 show cdp entry

The `show cdp entry` Privileged EXEC mode command displays information about specific neighbor. Display can be limited to protocol or version information.

Syntax

```
show cdp entry {* | device-name} [protocol | version]
```

Parameters

- `*`—Specifies all neighbors
- `device-name`—Specifies the name of the neighbor.
- `protocol`—Limits the display to information about the protocols enabled on neighbors.
- `version`—Limits the display to information about the version of software running on the neighbors.

Default Configuration

Version

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx#show cdp entry device.cisco.com
Device ID: device.cisco.com
```
Advertisement version: 2
Entry address(es):
   IP address: 192.168.68.18
   CLNS address: 490001.1111.1111.1111.00
   DECnet address: 10.1
Platform: cisco 4500, Capabilities: Router
Interface: gi1, Port ID (outgoing port): Ethernet0
Holdtime: 125 sec
Version:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart

switchxxxxxx#show cdp entry device.cisco.com protocol
Protocol information for device.cisco.com:
   IP address: 192.168.68.18
   CLNS address: 490001.1111.1111.1111.00
   DECnet address: 10.1

switchxxxxxx#show cdp entry device.cisco.com version
Version information for device.cisco.com:
   Cisco Internetwork Operating System Software
   IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
   Copyright (c) 1986-1997 by cisco Systems, Inc.
   Compiled Mon 07-Apr-97 19:51 by dschwart

47.18  show cdp interface

The show cdp interface Privileged EXEC mode command displays information about ports on which CDP is enabled.

Syntax

   show cdp interface interface-id
Parameters

interface-id—Port ID.

Command Mode

Privileged EXEC mode

Example

switchxxxxxx#show cdp interface gi1
CDP is globally enabled
CDP log duplex mismatch
  Globally is enabled
  Per interface is enabled
CDP log voice VLAN mismatch
  Globally is enabled
  Per interface is enabled
CDP log native VLAN mismatch
  Globally is disabled
  Per interface is enabled
gi1 is Down, CDP is enabled
Sending CDP packets every 60 seconds
Holdtime is 180 seconds

47.19 show cdp neighbors

The show cdp neighbors Privileged EXEC mode command displays information about neighbors kept in the main or secondary cache.

Syntax

show cdp neighbors [interface-id] [detail | secondary]

Parameters

- interface-id—Displays the neighbors attached to this port.
- detail—Displays detailed information about a neighbor (or neighbors) from the main cache including network address, enabled protocols, hold time, and software version.
• **secondary**—Displays information about neighbors from the secondary cache.

**Default Configuration**

If interface-id is not specified, the command displays information for neighbors of all ports.

If detail or secondary are not specified, the default is secondary.

**Command Mode**

Privileged EXEC mode

**Example**

```
switchxxxxxx# show cdp neighbors
```

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone,

M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone,

M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local</th>
<th>Adv</th>
<th>Time To</th>
<th>Capability</th>
<th>Platform</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Ver.</td>
<td>Live</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>PTK-SW-A-86.marvel</td>
<td>gi48</td>
<td>2</td>
<td>147</td>
<td>S I</td>
<td>cisco</td>
<td>GigabitEthernet</td>
</tr>
<tr>
<td>l.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS-C4510R-E</td>
<td>rnet3/39</td>
</tr>
<tr>
<td>ESW-520-8P</td>
<td>gi48</td>
<td>2</td>
<td>153</td>
<td>S I M</td>
<td>ESW-520-8P</td>
<td>g1</td>
</tr>
<tr>
<td>ESW-540-8P</td>
<td>gi48</td>
<td>2</td>
<td>146</td>
<td>S I M</td>
<td>ESW-540-8P</td>
<td>g9</td>
</tr>
<tr>
<td>003106131611</td>
<td>gi48</td>
<td>2</td>
<td>143</td>
<td>S I</td>
<td>Cisco</td>
<td>fa2/2/1</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
<tr>
<td>0018281000211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Cisco SF</td>
<td>fa20</td>
</tr>
</tbody>
</table>

```

switchxxxxxx# show cdp neighbors detail
```
Device ID: lab-7206
Advertisement version: 2
Entry address(es):
  IP address: 172.19.169.83
Platform: cisco 7206VXR, Capabilities: Router
Interface: Ethernet0, Port ID (outgoing port): fa1/1/0
Time To Live : 123 sec
Version :
Cisco Internetwork Operating System Software
IOS (tm) 5800 Software (C5800-P4-M), Version 12.1(2)
Copyright (c) 1986-2002 by Cisco Systems, Inc.
Duplex: half

-------------------------
Device ID: lab-as5300-1
Entry address(es):
  IP address: 172.19.169.87
Platform: cisco AS5300, Capabilities: Router
Device ID: SEP000427D400ED
Advertisement version: 2
Entry address(es):
  IP address: 1.6.1.81
Platform: Cisco IP Phone 7940, Capabilities: Host
Interface: fa1/1/1, Port ID (outgoing port): Port 1
Time To Live: 150 sec
Version :
P00303020204
Duplex: full
sysName: a-switch
Power drawn: 6.300 Watts
CDP Commands

```
switchxxxxxx# show cdp neighbors secondary
```

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

<table>
<thead>
<tr>
<th>Local Interface</th>
<th>Mac Address</th>
<th>TimeToLive</th>
<th>Capability</th>
<th>VLAN-ID</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>fa1/1/1</td>
<td>00:00:01:23a:86:9c</td>
<td>157</td>
<td>R,S</td>
<td>10</td>
<td>206VXRYC</td>
</tr>
<tr>
<td>fa1/1/1</td>
<td>00:00:05:53a:86:9c</td>
<td>163</td>
<td>R,S</td>
<td>10</td>
<td>ABCD-VSD</td>
</tr>
<tr>
<td>fa1/1/3</td>
<td>00:00:01:23b:86:9c</td>
<td>140</td>
<td>R</td>
<td></td>
<td>QACSZ</td>
</tr>
<tr>
<td>fa1/1/3</td>
<td>00:00:ab:c2a:86:9c</td>
<td>132</td>
<td>T</td>
<td></td>
<td>CAT3000</td>
</tr>
</tbody>
</table>

Field Definitions:

- **Advertisement version**—The version of CDP being used for CDP advertisements.
- **Capabilities**—The device type of the neighbor. This device can be a router, a bridge, a transparent bridge, a source-routing bridge, a switch, a host, an IGMP device, or a repeater.
- **COS for Untrusted Ports**—The COS value with which all packets received on an untrusted port should be marked by a simple switching device which cannot itself classify individual packets.
- **Device ID**—The name of the neighbor device and either the MAC address or the serial number of this device.
- **Duplex**—The duplex state of connection between the current device and the neighbor device.
- **Entry address(es)**—A list of network addresses of neighbor devices.
- **Extended Trust**—The Extended Trust.
- **External Port-ID**—Identifies the physical connector port on which the CDP packet is transmitted. It is used in devices, such as those with optical ports, in which signals from multiple hardware interfaces are multiplexed through a single physical port. It contains the name of the external physical port through which the multiplexed signal is transmitted.
- **Interface**—The protocol and port number of the port on the current device.
- **IP Network Prefix**—It is used by On Demand Routing (ODR). When transmitted by a hub router, it is a default route (an IP address). When
transmitted by a stub router, it is a list of network prefixes of stub networks to which the sending stub router can forward IP packets.

- **Management Address**—When present, it contains a list of all the addresses at which the device will accept SNMP messages, including those it will only accept when received on interface(s) other than the one over which the CDP packet is being sent.

- **MTU**—The MTU of the interface via which the CDP packet is sent.

- **Native VLAN**—The ID number of the VLAN on the neighbor device.

- **Physical Location**—A character string indicating the physical location of a connector which is on, or physically connected to, the interface over which the CDP packet containing this TLV is sent.

- **Platform**—The product name and number of the neighbor device. In the case of the Secondary Cache only the 8 last characters of the value are printed.

- **Power Available**—Every switch interface transmits information in the Power Available TLV, which permits a device which needs power to negotiate and select an appropriate power setting. The Power Available TLV includes four fields.

- **Power Consumption**—The maximum amount of power, in milliwatts, expected to be obtained and consumed from the interface over which the CDP packet is sent.

- **Power Drawn**—The maximum requested power.

  Note: For IP Phones the value shown is the maximum requested power (6.3 Watts). This value can be different than the actual power supplied by the routing device (generally 5 watts; shown using the show power command).

- **Protocol-Hello**—Specifies that a particular protocol has asked CDP to piggyback its "hello" messages within transmitted CDP packets.

- **Remote Port_ID**—Identifies the port the CDP packet is sent on

- **sysName**—An ASCII string containing the same value as the sending device's sysName MIB object.

- **sysObjectId**—The OBJECT-IDENTIFIER value of the sending device's sysObjectID MIB object.
- **Time To Live**—The remaining amount of time, in seconds, the current device will hold the CDP advertisement from a transmitting router before discarding it.

- **Version**—The software version running on the neighbor device.

- **Voice VLAN-ID**—The Voice VLAN-ID.

- **VTP Management Domain**—A string that is the name of the collective group of VLANs associated with the neighbor device.

### 47.20  show cdp tlv

The `show cdp tlv` Privileged EXEC mode command displays information about TLVs sent by CDP on all ports or on a specific port.

**Syntax**

```
show cdp tlv [interface-id]
```

**Parameters**

- `interface-id`—Port ID.

**Default Configuration**

TLVs for all ports.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

You can use the `show cdp tlv` command to verify the TLVs configured to be sent in CDP packets. The `show cdp tlv` command displays information for a single port if specified or for all ports if not specified. Information for a port is displayed if only CDP is really running on the port, i.e. CDP is enabled globally and on the port, which is UP.

**Examples**

**Example 1** - In this example, CDP is disabled and no information is displayed.

```
switchxxxxxx#show cdp tlv
```
Example 2 - In this example, CDP is globally enabled but disabled on the port and no information is displayed.

```
switchxxxxxx# show cdp tlv gi2
```

cdp globally is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi2
CDP is disabled on gi2

Example 3 - In this example, CDP is globally enabled and enabled on the port, but the port is down and no information is displayed.

```
switchxxxxxx# show cdp tlv interface gi2
```

cdp globally is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi3
CDP is enabled on gi3
Ethernet gi3 is down

Example 4 - In this example, CDP is globally enabled and enabled on the port, which is up and information is displayed.

```
switchxxxxxx# show cdp tlv interface gi1
```

cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi1
CDP is enabled
Ethernet gi1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
Available-Power is 10;
Management-Power-Level is 0xFFFFFFFF

Example 5 - In this example, CDP is globally enabled, and no ports are specified, so information is displayed for all ports on which CDP is enabled who are up.

switchxxxxxx# show cdp tlv interface

CDP globally is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi1
CDP is enabled
Ethernet gi1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
Available-Power is 10;
Management-Power-Level is 0xFFFFFFFF

Interface TLV: gi2
CDP is disabled on gi2
Interface TLV: gi3
CDP is enabled on gi3
Ethernet gi3 is down

47.21 show cdp traffic

The show cdp traffic Privileged EXEC mode command displays the CDP counters, including the number of packets sent and received and checksum errors.

Syntax

show cdp traffic [global | interface-id]

Parameters

- global—Display only the global counters
- `interface-id`—Port for which counters should be displayed.

**Default Configuration**

If `interface-id` is not specified, global counters are displayed for all ports on which CDP is enabled and who are up.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `show cdp traffic global` to display only the global counters. Use the `show cdp traffic interface-id` command to display the counters of the given port. Use the command `show cdp traffic` without parameters to display all the counters.

**Example**

```
switchxxxxxx#show cdp traffic

CDP Global counters:
 Total packets output: 81684, Input: 81790
 Hdr syntax: 0, Chksum error: 0, Encaps: 0
 No memory: 0, Invalid packet: 0
 CDP version 1 advertisements output: 100, Input 0
 CDP version 2 advertisements output: 81784, Input 0

fastethernet 1/1/1
 Total packets output: 81684, Input: 81790
 Hdr syntax: 0, Chksum error: 0, Encaps: 0
 No memory: 0, Invalid packet: 0
 CDP version 1 advertisements output: 100, Input 0
 CDP version 2 advertisements output: 81784, Input 0

fastethernet 1/1/2
 Total packets output: 81684, Input: 81790
 Hdr syntax: 0, Chksum error: 0, Encaps: 0
 No memory: 0, Invalid packet: 0
 CDP version 1 advertisements output: 100, Input 0
```
CDP Commands

Field Definition:

- **Total packets output**—The number of CDP advertisements sent by the local device. Note that this value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.

- **Input**—The number of CDP advertisements received by the local device. Note that this value is the sum of the CDP Version 1 advertisements input and CDP Version 2 advertisements input fields.

- **Hdr syntax**—The number of CDP advertisements with bad headers, received by the local device.

- **Chksum error**—The number of times the checksum (verifying) operation failed on incoming CDP advertisements.

- **No memory**—The number of times the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.

- **Invalid**—The number of invalid CDP advertisements received.

- **CDP version**—Advertisements output The number of CDP Version 1 advertisements sent by the local device.

- **CDP version 1 advertisements input**—The number of CDP Version 1 advertisements received by the local device.

- **CDP version 2 advertisements output**—The number of CDP Version 2 advertisements sent by the local device.

- **CDP version 2 advertisements input**—The number of CDP Version 2 advertisements received by the local device.
48.1 ssd config

Use `ssd config` in Global Configuration to enter the Secure Sensitive Data (SSD) command mode. In this command mode, an administrator can configure how the sensitive data on the device, such as keys and passwords, is to be protected.

**Syntax**

```plaintext
ssd config
```

**Command Mode**

Global Configuration mode

**User Guidelines**

Only users with sufficient permission can use this command, which edits and displays the SSD configuration. See `ssd rule` for a description of these permissions.

**Example**

```plaintext
switchxxxxxx(config)# ssd config
switchxxxxxx(ssd-config)#
```

48.2 passphrase

Use `passphrase` in SSD Command mode to change the passphrase in the system. A device protects its sensitive data by encrypting them using the key generated from the passphrase.

Use the `no passphrase` to reset the passphrase to the default passphrase.

**Syntax**

```plaintext
passphrase [passphrase]
encrypted passphrase [encrypted-passphrase]
no passphrase
```
Parameters

- passphrase - New system passphrase.
- encrypted-passphrase - The passphrase in its encrypted form.

Default Usage

If this command is not entered, the default passphrase is used.

Command Mode

SSD Command Mode

User Guidelines

To use this command, enter passphrase and Enter, a confirmation message is displayed and the user must confirm the intention to change the passphrase. Then the passphrase can be entered (see example).

Encrypted passphrase is allowed only in the SSD Control Block of a source file that is being copied to the startup configuration file (user cannot manually enter this command).

When generating a passphrase, the user must use 4 different character classes (similar to strong password/passwords complexity). These can be: uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard.

Example

The following example defines a decrypted passphrase.

```
switchxxxxxx(ssd-config)# passphrase
This operation will change the system SSD passphrase. Are you sure? [Y/N] [N] Y
Please enter SSD passphrase:**********
Please reenter SSD passphrase:**********
```

48.3 ssd rule

Use `ssd rule` in SSD Command mode to configure an SSD rule. A device grants read permission of sensitive data to user based on the SSD rules. A user that is granted Both or Plaintext read permission is also granted permission to enter SSD Command Mode.

Use `no ssd rule` to delete user-defined rules and restore default rules.
Syntax

[encrypted] SSD rule {all | level-15 | default-user | user user-name}

{secure | insecure | secure-xml-snmp | insecure-xml-snmp}

permission {encrypted-only | plaintext-only | both | exclude}

default-read {encrypted | plaintext | exclude}

no ssd rule [ {all | level-15 | default-user | user user-name}

{secure | insecure | secure-xml-snmp | insecure-xml-snmp}]

Command Mode
SSD command mode.

Default Rules
The device has the following factory default rules;

Table 4: Default SSD Rules

<table>
<thead>
<tr>
<th>Rule Key</th>
<th>Rule Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Channel</td>
</tr>
<tr>
<td></td>
<td>Read Permission</td>
</tr>
<tr>
<td></td>
<td>Default Read Mode</td>
</tr>
<tr>
<td>level-15</td>
<td>secure-xml-snmp</td>
</tr>
<tr>
<td></td>
<td>Plaintext Only</td>
</tr>
<tr>
<td></td>
<td>Plaintext</td>
</tr>
<tr>
<td>level-15</td>
<td>secure</td>
</tr>
<tr>
<td></td>
<td>Both</td>
</tr>
<tr>
<td></td>
<td>Encrypted</td>
</tr>
<tr>
<td>level-15</td>
<td>insecure</td>
</tr>
<tr>
<td></td>
<td>Both</td>
</tr>
<tr>
<td></td>
<td>Encrypted</td>
</tr>
<tr>
<td>all</td>
<td>insecure-xml-snmp</td>
</tr>
<tr>
<td></td>
<td>Exclude</td>
</tr>
<tr>
<td></td>
<td>Exclude</td>
</tr>
<tr>
<td>all</td>
<td>secure</td>
</tr>
<tr>
<td></td>
<td>Encrypted Only</td>
</tr>
<tr>
<td></td>
<td>Encrypted</td>
</tr>
<tr>
<td>all</td>
<td>insecure</td>
</tr>
<tr>
<td></td>
<td>Encrypted Only</td>
</tr>
<tr>
<td></td>
<td>Encrypted</td>
</tr>
</tbody>
</table>

User Guidelines

Use no ssd rule to delete a user-defined rule or to restore the default of a modified default rule.

Use no ssd rule (without parameters) to remove all SSD rules and restore the default SSD rules. A confirmation message will be displayed asking permission to do this.

To delete specific rules (applicable for the user defined), provide parameters specifying the user and security of the channel.

encrypted SSD rule is used to copy an SSD rule from one device to another in a secure manner.
You can modify but cannot delete the default SSD rules.

The following is the order in which SSD rules are applied:

- The SSD rules for specified users.
- The SSD rule for the default-user (cisco).
- The SSD rules for level-15 users.
- The remaining SSD rules for all.

The user can enter the commands in any order. The ordering is done implicitly by the device.

**Examples**

**Example 1** - The following example modifies a rule.

```
switchxxxxxx(ssd-config)#ssd rule level-15 secure permission encrypted-only default-read encrypted
```

**Example 2** - The following example adds a rule.

```
switchxxxxxx(ssd-config)#ssd rule user james secure permission both default-read encrypted
```

**Example 3** - The following example adds a rule as encrypted format.

```
switchxxxxxx(ssd-config)#encrypted ssd rule iurwe874jho32iu9ufjo32i83232fdefsd
```

**Example 4** - The following example deletes a default rule.

```
switchxxxxxx(ssd-config)#no ssd rule all secure
```

**Example 5** - The following example deletes a user-defined rule.

```
switchxxxxxx(ssd-config)#no ssd rule user james secure
```

**Example 6** - The following example deletes all rules.

```
switchxxxxxx(ssd-config)#no ssd rule
```

This operation will delete all user-defined rules and retrieve the default rules instead.

Are you sure (Y/N): N
48.4 **show SSD**

Use **show ssd rules** in SSD Command mode to present the current SSD rules; the rules will be displayed as plaintext.

**Syntax**

```
show SSD \[rules\ brief\]
```

**Parameters**

- **rules** - Display only the SSD rules.
- **brief** - Display the encrypted passphrase, File Passphrase Control and File Integrity attributes.

**Command Mode**

SSD Command mode

Privileged EXEC mode

**Default Configuration**

Display all SSD information.

**Examples**

**Example 1** - The following example displays all SSD information.

```
switchxxxxxx(ssd-config)#show ssd
SSD current parameters:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled

SSD parameters after reset:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin11</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td>secure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>
Example 2 - The following example displays the SSD rules.

```
switchxxxxxx(xx)>
show ssd rules
```

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin1</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>secure</td>
<td>Encrypted</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>insecure</td>
<td>Both</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>*Default</td>
</tr>
</tbody>
</table>

* Modified default entry

Example 3 - The following example displays the SSD attributes.

```
switchxxxxxx(xx)>
show ssd brief
```

SSD current parameters:

- Local Passphrase: Default
- File Passphrase Control: Unrestricted
- File Integrity Control: Disabled

SSD parameters after reset:

- Local Passphrase: Default
- File Passphrase Control: Unrestricted
- File Integrity Control: Disabled

48.5 ssd session read

Use `ssd session read` in Global Configuration mode to override the current SSD default read of the current session
Syntax

ssd session read \{encrypted | plaintext | exclude\}

no ssd session read

Parameters

- **encrypted** - Override the SSD default option to encrypted
- **plaintext** - Override the SSD default option to plaintext
- **exclude** - Override the SSD default option to exclude

Command Mode

Global configuration mode.

Default

The command itself does not have a default. However, note that the read mode of the session itself, defaults to the default read mode of the SSD rule that the device uses to grant SSD permission to the user of the session.

User Guidelines

Use **no ssd session read** to restore the default read option of the SSD rules. This configuration will be allowed only if the user of the current session has sufficient read permissions; otherwise, the command will fail and an error will be displayed. The setting will take effect immediately and will terminate when the user restores the settings or exits the session.

Example

```
switchxxxxxxx(config)# ssd session read plaintext
```

48.6 show ssd session

Use **show ssd session** in Exec mode to view the SSD read permission and default read mode of the user of the current session.

Syntax

show ssd session
Command Mode
EXEC mode.

Default
N/A

Examples
switchxxxxxx# show ssd session
User Name/Level: James / Level 15
User Read Permission: Both
Current Session Read mode: Plaintext

48.7 ssd file passphrase control

Use ssd file passphrase control in SSD Command mode to provide an additional level of protection when copying configuration files to the startup configuration file. The passphrase in a configuration file is always encrypted with the default passphrase key.

Syntax
ssd file passphrase control {restricted | unrestricted}
no ssd file passphrase control

Parameters

- **Restricted** - In this mode, a device restricts its passphrase from being exported into a configuration file. Restricted mode protects the encrypted sensitive data in a configuration file from devices that do not have the passphrase. The mode should be used when a user does not want to expose the passphrase in a configuration file.

- **Unrestricted** - In this mode, a device will include its passphrase when creating a configuration file. This allows any devices accepting the configuration file to learn the passphrase from the file.

Default
The default is unrestricted.
Command Mode
SSD Command mode.

User Guidelines
To revert to the default state, use the `no ssd file passphrase control` command.

Note that after a device is reset to the factory default, its local passphrase is set to the default passphrase. As a result, the device will not be able to decrypt sensitive data encrypted with a user-defined passphrase key in its own configuration files until the device is manually configured with the user-passphrase again or the files are created in unrestricted mode.

If a user-defined passphrase in Unrestricted mode is configured, it is highly recommended to enable SSD File Integrity Control. Enabling SSD File Integrity Control protects configuration files from tampering.

Any modification made to a configuration file that is integrity-protected is considered to be tampering.

Examples
```bash
console(ssd-config)# ssd file passphrase control restricted
console(ssd-config)# no ssd file passphrase control
```

48.8 ssd file integrity control
Use `ssd file integrity control` command in SSD Command Mode to instruct the device to protect newly-generated configuration files that contain encrypted sensitive data from tampering.

Use `no ssd file integrity control` to disable Integrity Control.

Syntax
```text
ssd file integrity control enabled
no ssd file integrity control
```

Parameters
- `enabled` - Enable file integrity control to protect newly-generated configuration files from tampering.
Default
The default file input control associated with the default passphrase is disable.

Command Mode
SSD Command Mode.

User Guidelines
TA user can protect a configuration file from being tampered by creating the file with File Integrity Control enabled. It is recommended that File Integrity Control be enabled when a devices users a user-defined passphrase with Unrestricted Configuration File Passphrase Control.

A device determines whether the integrity of a configuration file is protected by examining the File Integrity Control command in the file. If a file in integrity-protected, but a device finds the integrity of the file is not intact, the device rejects the file. Otherwise, the file is accepted for further processing.

Examples

switchxxxxxx(ssl-config)# ssd file integrity control enabled

When File Integrity is enabled, an internal digest command is added to the end of the entire configuration file. This is used in downloading the configuration file to the startup configuration.

cfg-file-digest 0AC78001122334400AC780011223344