Cisco 300 Series Stackable Managed Switches Command Line Interface Reference Guide, Release 1.4
Table of Contents

1 Introduction .. 24

2 802.1X Commands .. 45
 aaa authentication dot1x .. 45
 authentication open ... 46
 clear dot1x statistics .. 47
 data ... 48
 dot1x auth-not-req ... 49
 dot1x authentication .. 50
 dot1x guest-vlan ... 51
 dot1x guest-vlan enable ... 52
 dot1x guest-vlan timeout ... 53
 dot1x host-mode .. 54
 dot1x max-hosts ... 57
 dot1x max-login-attempts ... 58
 dot1x max-req ... 59
 dot1x page customization .. 60
 dot1x port-control .. 61
 dot1x radius-attributes vlan ... 62
 dot1x re-authenticate ... 64
 dot1x reauthentication .. 65
 dot1x system-auth-control ... 65
 dot1x timeout quiet-period .. 66
 dot1x timeout reauth-period .. 67
 dot1x timeout server-timeout ... 68
 dot1x timeout silence-period ... 69
 dot1x timeout supp-timeout ... 70
 dot1x timeout tx-period .. 71
 dot1x traps authentication failure .. 72
 dot1x traps authentication quiet .. 73
 dot1x traps authentication success ... 74
 dot1x unlock client .. 75
 dot1x violation-mode .. 76
 show dot1x ... 77
 show dot1x locked clients ... 82
 show dot1x statistics .. 83
 show dot1x users ... 85

3 Authentication, Authorization and Accounting (AAA) Commands 87
 aaa authentication login ... 87
 aaa authentication enable ... 88
 login authentication .. 90
 enable authentication .. 91
 ip http authentication ... 92
4 ACL Commands .. 111
 ip access-list (IP extended) ... 111
 permit (IP) ... 112
 deny (IP) ... 115
 ipv6 access-list (IPv6 extended) .. 119
 permit (IPv6) ... 120
 deny (IPv6) ... 123
 mac access-list .. 126
 permit (MAC) ... 127
 deny (MAC) ... 129
 service-acl input ... 130
 time-range ... 132
 absolute .. 133
 periodic ... 134
 show time-range ... 136
 show access-lists ... 136
 show interfaces access-lists ... 137
 clear access-lists counters ... 138
 show interfaces access-lists trapped packets 139

5 Address Table Commands ... 141
 bridge multicast filtering ... 141
 bridge multicast mode ... 142
 bridge multicast address ... 144
 bridge multicast forbidden address .. 145
 bridge multicast ip-address ... 146
 bridge multicast forbidden ip-address .. 148
 bridge multicast source group .. 149
 bridge multicast forbidden source group 150
 bridge multicast ipv6 mode ... 152
 bridge multicast ipv6 ip-address .. 154
 bridge multicast ipv6 forbidden ip-address 155
 bridge multicast ipv6 source group .. 156
bridge multicast ipv6 forbidden source group .. 158
bridge multicast unregistered ... 159
bridge multicast forward-all ... 160
bridge multicast forbidden forward-all .. 161
bridge unicast unknown ... 162
show bridge unicast unknown .. 163
mac address-table static ... 164
clear mac address-table ... 166
mac address-table aging-time .. 167
port security ... 168
port security mode ... 169
port security max ... 171
port security routed secure-address .. 172
show mac address-table ... 173
show mac address-table count .. 174
show bridge multicast mode .. 175
show bridge multicast address-table .. 176
show bridge multicast address-table static ... 179
show bridge multicast filtering .. 182
show bridge multicast unregistered ... 183
show ports security ... 184
show ports security addresses ... 185
bridge multicast reserved-address .. 186
show bridge multicast reserved-addresses ... 188

6 Auto-Update and Auto-Configuration ... 189
boot host auto-config ... 189
boot host auto-update ... 190
show boot ... 191
ip dhcp tftp-server ip address .. 194
ip dhcp tftp-server file ... 195
ip dhcp tftp-server image file .. 196
show ip dhcp tftp-server ... 196

7 Bonjour Commands ... 198
bonjour enable ... 198
bonjour interface range ... 198
show bonjour ... 199

8 CDP Commands ... 201
cdp run ... 201
cdp enable ... 202
cdp pdu ... 203
cdp advertise-v2 ... 204
cdp appliance-tlv enable ... 204
cdp mandatory-tlvs validation .. 205
cdp source-interface ... 206
cdp log mismatch duplex ... 207
9 Clock Commands ... 227

absolute ... 227
clock dhcp timezone ... 228
clock set ... 229
clock source .. 230
clock summer-time ... 231
clock timezone .. 233
periodic ... 234
snmp anycast client enable ... 235
snmp authenticate ... 236
snmp authentication-key .. 237
snmp broadcast client enable 238
snmp client enable .. 239
snmp client enable (interface) 240
snmp server .. 241
snmp source-interface ... 242
snmp source-interface-ipv6 ... 243
snmp trusted-key ... 244
snmp unicast client enable ... 245
snmp unicast client poll .. 246
show clock .. 247
show snmp configuration .. 248
show snmp status ... 250
show time-range ... 252
time-range .. 252

10 Configuration and Image File Commands 254

copy ... 254
write ... 259
delete ... 260
dir ... 260
more ... 261
rename .. 263
Contents

- boot system .. 263
- show running-config .. 264
- show startup-config .. 266
- show bootvar .. 267
- service mirror-configuration .. 268
- show mirror-configuration service .. 269

11 DHCP Relay Commands .. 271
 - ip dhcp relay enable (Global) .. 271
 - ip dhcp relay enable (Interface) .. 272
 - ip dhcp relay address (Global) .. 273
 - ip dhcp relay address (Interface) .. 274
 - show ip dhcp relay .. 275
 - ip dhcp information option .. 277
 - show ip dhcp information option .. 278

12 DHCP Server Commands .. 279
 - address (DHCP Host) .. 279
 - address (DHCP Network) ... 280
 - bootfile ... 281
 - clear ip dhcp binding .. 282
 - client-name .. 283
 - default-router .. 284
 - dns-server ... 284
 - domain-name .. 285
 - ip dhcp excluded-address ... 286
 - ip dhcp pool host ... 287
 - ip dhcp pool network .. 288
 - ip dhcp server ... 289
 - lease .. 290
 - netbios-name-server ... 291
 - netbios-node-type ... 292
 - next-server ... 293
 - next-server-name ... 294
 - option ... 295
 - show ip dhcp ... 297
 - show ip dhcp allocated .. 297
 - show ip dhcp binding ... 299
 - show ip dhcp declined ... 301
 - show ip dhcp excluded-addresses .. 302
 - show ip dhcp expired .. 302
 - show ip dhcp pool host .. 303
 - show ip dhcp pool network ... 305
 - show ip dhcp pre-allocated ... 306
 - show ip dhcp server statistics .. 307
 - time-server .. 308

13 DHCP Snooping Commands ... 310
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection statistics</td>
<td>336</td>
</tr>
<tr>
<td>show ip arp inspection statistics</td>
<td>335</td>
</tr>
<tr>
<td>show ip arp inspection list</td>
<td>335</td>
</tr>
<tr>
<td>show ip arp inspection</td>
<td>334</td>
</tr>
<tr>
<td>ip arp inspection list assign</td>
<td>332</td>
</tr>
<tr>
<td>ip mac</td>
<td>331</td>
</tr>
<tr>
<td>ip arp inspection list create</td>
<td>331</td>
</tr>
<tr>
<td>show ip source-guard status</td>
<td>324</td>
</tr>
<tr>
<td>show ip source-guard inactive</td>
<td>325</td>
</tr>
<tr>
<td>show ip source-guard statistics</td>
<td>326</td>
</tr>
<tr>
<td>show ip arp inspection</td>
<td>327</td>
</tr>
<tr>
<td>show ip arp inspection binding</td>
<td>328</td>
</tr>
<tr>
<td>ip arp inspection vlan</td>
<td>331</td>
</tr>
<tr>
<td>ip arp inspection trust</td>
<td>329</td>
</tr>
<tr>
<td>show ip arp inspection log</td>
<td>333</td>
</tr>
<tr>
<td>show ip arp inspection list</td>
<td>334</td>
</tr>
<tr>
<td>show ip arp inspection list</td>
<td>335</td>
</tr>
<tr>
<td>clear ip arp inspection statistics</td>
<td>336</td>
</tr>
</tbody>
</table>

14 DHCPv6 Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 dhcp client</td>
<td>337</td>
</tr>
<tr>
<td>ipv6 dhcp client information refresh</td>
<td>338</td>
</tr>
<tr>
<td>ipv6 dhcp client information refresh minimum</td>
<td>339</td>
</tr>
<tr>
<td>ipv6 dhcp client stateless</td>
<td>340</td>
</tr>
<tr>
<td>ipv6 dhcp duid-en</td>
<td>342</td>
</tr>
<tr>
<td>ipv6 dhcp relay destination (Global)</td>
<td>343</td>
</tr>
<tr>
<td>ipv6 dhcp relay destination (Interface)</td>
<td>345</td>
</tr>
<tr>
<td>show ipv6 dhcp</td>
<td>348</td>
</tr>
<tr>
<td>show ipv6 dhcp interface</td>
<td>349</td>
</tr>
</tbody>
</table>

15 DNS Client Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear host</td>
<td>353</td>
</tr>
<tr>
<td>ip domain lookup</td>
<td>354</td>
</tr>
<tr>
<td>ip domain name</td>
<td>355</td>
</tr>
</tbody>
</table>
Contents

16 Denial of Service (DoS) Commands ... 363
 security-suite deny fragmented ... 363
 security-suite deny icmp .. 364
 security-suite deny martian-addresses .. 365
 security-suite deny syn .. 367
 security-suite deny syn-fin ... 369
 security-suite dos protect .. 370
 security-suite dos syn-attack .. 371
 security-suite enable .. 372
 security-suite syn protection mode ... 374
 security-suite syn protection recovery .. 375
 security-suite syn protection threshold .. 376
 show security-suite configuration ... 377
 show security-suite syn protection ... 378

17 EEE Commands ... 380
 eee enable (global) .. 380
 eee enable (interface) .. 381
 eee lldp enable ... 381
 show eee ... 382

18 Ethernet Configuration Commands ... 388
 interface ... 388
 interface range .. 389
 shutdown .. 389
 operation time ... 391
 description ... 392
 speed .. 393
 duplex .. 394
 negotiation .. 395
 flowcontrol .. 396
 mdix .. 397
 back-pressure .. 398
 port jumbo-frame ... 398
 clear counters ... 399
 set interface active .. 400
 errdisable recovery cause .. 401
 errdisable recovery interval .. 402
 errdisable recovery reset .. 403
 show interfaces configuration ... 404
 show interfaces status ... 405
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>IGMP Snooping Commands</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping (Global)</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan mrouter</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan mrouter interface</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan forbidden mrouter</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan static</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan multicast-tv</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping map cpe vlan</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping querier</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan querier</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan querier address</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan querier election</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan querier version</td>
</tr>
<tr>
<td></td>
<td>ip igmp snooping vlan immediate-leave</td>
</tr>
<tr>
<td></td>
<td>show ip igmp snooping cpe vlans</td>
</tr>
<tr>
<td></td>
<td>show ip igmp snooping groups</td>
</tr>
<tr>
<td></td>
<td>show ip igmp snooping interface</td>
</tr>
<tr>
<td></td>
<td>show ip igmp snooping mrouter</td>
</tr>
</tbody>
</table>

19 | Green Ethernet | 419 |
	green-ethernet energy-detect (global)	419
	green-ethernet energy-detect (interface)	419
	green-ethernet short-reach (global)	420
	green-ethernet short-reach (interface)	421
	green-ethernet power-meter reset	422
	show green-ethernet	422

20 | GARP VLAN Registration Protocol (GVRP) Commands | 425 |
	clear gvrp statistics	425
	gvrp enable (Global)	426
	gvrp enable (Interface)	426
	gvrp registration-forbid	427
	gvrp vlan-creation-forbid	428
	show gvrp configuration	429
	show gvrp error-statistics	430
	show gvrp statistics	431
22 IP Addressing Commands ... 450
 ip address ... 450
 ip address dhcp ... 452
 renew dhcp ... 453
 ip default-gateway .. 454
 show ip interface ... 455
 arp ... 457
 arp timeout (Global) .. 458
 ip arp proxy disable .. 458
 ip proxy-arp .. 459
 clear arp-cache ... 460
 show arp ... 460
 show arp configuration ... 461
 interface ip ... 462
 ip helper-address ... 463
 show ip helper-address ... 464
 show ip dhcp client interface ... 465

23 IP Routing Protocol-Independent Commands .. 467
 ip redirects .. 467
 ip route ... 468
 show ip route .. 469
 show ip route summary .. 472

24 IP System Management Commands .. 474
 ping ... 474
 telnet ... 477
 traceroute ... 480

25 IPv6 First Hop Security ... 484
 address-config ... 485
 address-prefix-validation ... 486
 clear ipv6 first hop security counters 487
 clear ipv6 first hop security error counters 488
 clear ipv6 neighbor binding prefix table 488
 clear ipv6 neighbor binding table 490
 device-role (IPv6 DHCP Guard) 491
 device-role (Neighbor Binding) 492
 device-role (ND Inspection Policy) 493
 device-role (RA Guard Policy) 495
 drop-unsecure .. 496
 hop-limit .. 497
 ipv6 dhcp guard ... 498
 ipv6 dhcp guard attach-policy (port mode) 500
 ipv6 dhcp guard attach-policy (VLAN mode) 502
 ipv6 dhcp guard policy ... 503

show ip igmp snooping multicast-tv .. 449
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp guard preference</td>
<td>505</td>
</tr>
<tr>
<td>ipv6 first hop security</td>
<td>507</td>
</tr>
<tr>
<td>ipv6 first hop security attach-policy (port mode)</td>
<td>508</td>
</tr>
<tr>
<td>ipv6 first hop security attach-policy (VLAN mode)</td>
<td>509</td>
</tr>
<tr>
<td>ipv6 first hop security logging packet drop</td>
<td>510</td>
</tr>
<tr>
<td>ipv6 first hop security policy</td>
<td>511</td>
</tr>
<tr>
<td>ipv6 nd inspection</td>
<td>512</td>
</tr>
<tr>
<td>ipv6 nd inspection sec-level minimum</td>
<td>514</td>
</tr>
<tr>
<td>ipv6 nd inspection validate source-mac</td>
<td>515</td>
</tr>
<tr>
<td>ipv6 nd inspection drop-unsecure</td>
<td>516</td>
</tr>
<tr>
<td>ipv6 nd inspection policy</td>
<td>517</td>
</tr>
<tr>
<td>ipv6 nd inspection address-prefix-validation</td>
<td>518</td>
</tr>
<tr>
<td>ipv6 nd raguard hop-limit</td>
<td>519</td>
</tr>
<tr>
<td>ipv6 nd raguard managed-config-flag</td>
<td>520</td>
</tr>
<tr>
<td>ipv6 nd raguard other-config-flag</td>
<td>521</td>
</tr>
<tr>
<td>ipv6 nd raguard policy</td>
<td>522</td>
</tr>
<tr>
<td>ipv6 nd raguard router-preference</td>
<td>523</td>
</tr>
<tr>
<td>ipv6 neighbor binding</td>
<td>524</td>
</tr>
<tr>
<td>ipv6 neighbor binding address-config</td>
<td>525</td>
</tr>
<tr>
<td>ipv6 neighbor binding address-prefix</td>
<td>526</td>
</tr>
<tr>
<td>ipv6 neighbor binding address-prefix-validation</td>
<td>527</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (port mode)</td>
<td>528</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (VLAN mode)</td>
<td>529</td>
</tr>
<tr>
<td>ipv6 neighbor binding lifetime</td>
<td>530</td>
</tr>
<tr>
<td>ipv6 neighbor binding logging</td>
<td>531</td>
</tr>
<tr>
<td>ipv6 neighbor binding max-entries</td>
<td>532</td>
</tr>
<tr>
<td>ipv6 neighbor binding policy</td>
<td>533</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (port mode)</td>
<td>534</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (VLAN mode)</td>
<td>535</td>
</tr>
<tr>
<td>ipv6 neighbor binding lifetime</td>
<td>536</td>
</tr>
<tr>
<td>ipv6 neighbor binding static</td>
<td>537</td>
</tr>
<tr>
<td>ipv6 neighbor binding address-prefix</td>
<td>538</td>
</tr>
<tr>
<td>ipv6 neighbor binding address-prefix-validation</td>
<td>539</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (port mode)</td>
<td>540</td>
</tr>
<tr>
<td>ipv6 neighbor binding attach-policy (VLAN mode)</td>
<td>541</td>
</tr>
<tr>
<td>ipv6 neighbor binding lifetime</td>
<td>542</td>
</tr>
<tr>
<td>ipv6 neighbor binding logging</td>
<td>543</td>
</tr>
<tr>
<td>ipv6 neighbor binding max-entries</td>
<td>544</td>
</tr>
<tr>
<td>ipv6 neighbor binding policy</td>
<td>545</td>
</tr>
<tr>
<td>ipv6 source guard</td>
<td>546</td>
</tr>
<tr>
<td>ipv6 source guard attach-policy (port mode)</td>
<td>547</td>
</tr>
<tr>
<td>ipv6 source guard policy</td>
<td>548</td>
</tr>
<tr>
<td>logging binding</td>
<td>549</td>
</tr>
<tr>
<td>logging packet drop</td>
<td>550</td>
</tr>
<tr>
<td>managed-config-flag</td>
<td>551</td>
</tr>
<tr>
<td>match ra address</td>
<td>552</td>
</tr>
<tr>
<td>match ra prefixes</td>
<td>553</td>
</tr>
<tr>
<td>match reply</td>
<td>554</td>
</tr>
<tr>
<td>match server address</td>
<td>555</td>
</tr>
<tr>
<td>max-entries</td>
<td>556</td>
</tr>
<tr>
<td>other-config-flag</td>
<td>557</td>
</tr>
<tr>
<td>preference</td>
<td>558</td>
</tr>
<tr>
<td>router-preference</td>
<td>559</td>
</tr>
<tr>
<td>sec-level minimum</td>
<td>560</td>
</tr>
</tbody>
</table>
Contents

show ipv6 dhcp guard ... 570
show ipv6 dhcp guard policy .. 571
show ipv6 first hop security ... 573
show ipv6 first hop security active policies 574
show ipv6 first hop security attached policies 576
show ipv6 first hop security counters ... 577
show ipv6 first hop security error counters 579
show ipv6 first hop security policy .. 579
show ipv6 nd inspection .. 581
show ipv6 nd inspection policy .. 582
show ipv6 nd raguard ... 583
show ipv6 nd raguard policy .. 584
show ipv6 neighbor binding .. 586
show ipv6 neighbor binding policy .. 587
show ipv6 neighbor binding prefix table 589
show ipv6 neighbor binding table .. 590
show ipv6 source guard .. 592
show ipv6 source guard policy .. 592
trusted-port (IPv6 Source Guard) ... 594
validate source-mac ... 595

26 IPv6 Prefix List Commands .. 597

- clear ipv6 prefix-list .. 597
- ipv6 prefix-list ... 598
- show ipv6 prefix-list .. 602

27 IPv6 Commands .. 606

- clear ipv6 neighbors .. 606
- ipv6 address .. 606
- ipv6 address autoconfig ... 608
- ipv6 address eui-64 .. 609
- ipv6 address link-local ... 610
- ipv6 default-gateway .. 611
- ipv6 enable .. 612
- ipv6 icmp error-interval ... 613
- ipv6 link-local default zone .. 615
- ipv6 nd dad attempts .. 615
- ipv6 neighbor ... 618
- ipv6 unreachable .. 619
- show ipv6 interface .. 620
- show ipv6 link-local default zone ... 621
- show ipv6 neighbors .. 628
- show ipv6 route ... 628
- show ipv6 route summary ... 630

28 Link Aggregation Control Protocol (LACP) Commands 633

- lACP port-priority ... 633
- lACP system-priority ... 634
29 Line Commands ... 639
- autobaud ... 639
- exec-timeout .. 640
- line .. 640
- speed .. 641
- show line ... 642

30 Link Layer Discovery Protocol (LLDP) Commands 644
- clear lldp table .. 644
- lldp chassis-id .. 644
- lldp hold-multiplier .. 645
- lldp lldpdu ... 646
- lldp management-address 648
- lldp med .. 649
- lldp med notifications topology-change 650
- lldp med fast-start repeat-count 651
- lldp med location ... 651
- lldp med network-policy (global) 652
- lldp med network-policy (interface) 654
- lldp med network-policy voice auto 655
- lldp notifications ... 656
- lldp notifications interval 657
- lldp optional-tlv ... 658
- lldp optional-tlv 802.1 ... 659
- lldp run .. 660
- lldp receive ... 660
- lldp reinit .. 661
- lldp timer .. 662
- lldp transmit .. 663
- lldp tx-delay ... 664
- show lldp configuration 665
- show lldp local .. 667
- show lldp local tlvsoverloading 669
- show lldp med configuration 670
- show lldp neighbors .. 672
- show lldp statistics ... 678

31 Loopback Detection Commands .. 681
- loopback-detection enable (Global) 681
- loopback-detection enable (Interface) 682
- loopback-detection interval 682
- show loopback-detection 683

32 Macro Commands ... 685
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show power inline consumption</td>
<td>734</td>
</tr>
<tr>
<td>37 Port Channel Commands</td>
<td>736</td>
</tr>
<tr>
<td>channel-group</td>
<td>736</td>
</tr>
<tr>
<td>port-channel load-balance</td>
<td>737</td>
</tr>
<tr>
<td>show interfaces port-channel</td>
<td>738</td>
</tr>
<tr>
<td>38 Port Monitor Commands</td>
<td>739</td>
</tr>
<tr>
<td>port monitor</td>
<td>739</td>
</tr>
<tr>
<td>show ports monitor</td>
<td>741</td>
</tr>
<tr>
<td>39 Quality of Service (QoS) Commands</td>
<td>742</td>
</tr>
<tr>
<td>qos</td>
<td>742</td>
</tr>
<tr>
<td>qos advanced-mode trust</td>
<td>743</td>
</tr>
<tr>
<td>show qos</td>
<td>744</td>
</tr>
<tr>
<td>class-map</td>
<td>745</td>
</tr>
<tr>
<td>show class-map</td>
<td>746</td>
</tr>
<tr>
<td>match</td>
<td>747</td>
</tr>
<tr>
<td>policy-map</td>
<td>748</td>
</tr>
<tr>
<td>class</td>
<td>749</td>
</tr>
<tr>
<td>show policy-map</td>
<td>750</td>
</tr>
<tr>
<td>trust</td>
<td>751</td>
</tr>
<tr>
<td>set</td>
<td>753</td>
</tr>
<tr>
<td>police</td>
<td>754</td>
</tr>
<tr>
<td>service-policy</td>
<td>755</td>
</tr>
<tr>
<td>qos aggregate-policer</td>
<td>756</td>
</tr>
<tr>
<td>show qos aggregate-policer</td>
<td>758</td>
</tr>
<tr>
<td>police aggregate</td>
<td>759</td>
</tr>
<tr>
<td>wrq-queue cos-map</td>
<td>760</td>
</tr>
<tr>
<td>wrq-queue bandwidth</td>
<td>761</td>
</tr>
<tr>
<td>priority-queue out num-of-queues</td>
<td>763</td>
</tr>
<tr>
<td>traffic-shape</td>
<td>764</td>
</tr>
<tr>
<td>traffic-shape queue</td>
<td>765</td>
</tr>
<tr>
<td>rate-limit (Ethernet)</td>
<td>766</td>
</tr>
<tr>
<td>rate-limit (VLAN)</td>
<td>767</td>
</tr>
<tr>
<td>qos wrq-queue wrtd</td>
<td>768</td>
</tr>
<tr>
<td>show qos wrq-queue wrtd</td>
<td>769</td>
</tr>
<tr>
<td>show qos interface</td>
<td>769</td>
</tr>
<tr>
<td>qos map policed-dscp</td>
<td>774</td>
</tr>
<tr>
<td>qos map dscp-queue</td>
<td>775</td>
</tr>
<tr>
<td>qos trust (Global)</td>
<td>776</td>
</tr>
<tr>
<td>qos trust (Interface)</td>
<td>778</td>
</tr>
<tr>
<td>qos cos</td>
<td>778</td>
</tr>
<tr>
<td>qos dscp-mutation</td>
<td>779</td>
</tr>
<tr>
<td>qos map dscp-mutation</td>
<td>780</td>
</tr>
<tr>
<td>show qos map</td>
<td>781</td>
</tr>
<tr>
<td>clear qos statistics</td>
<td>783</td>
</tr>
<tr>
<td>qos statistics policer</td>
<td>783</td>
</tr>
</tbody>
</table>
qos statistics aggregate-policer .. 784
qos statistics queues ... 785
show qos statistics .. 786

40 RADIUS Commands .. 788
radius-server host ... 788
radius-server key .. 790
radius-server retransmit .. 791
radius-server host source-interface ... 792
radius-server host source-interface-ipv6 ... 793
radius-server timeout .. 794
radius-server deadtime ... 794
show radius-servers ... 795
show radius-servers key ... 796

41 Remote Network Monitoring (RMON) Commands 797
rmon alarm .. 797
show rmon alarm-table .. 799
show rmon alarm .. 800
rmon event .. 801
show rmon events .. 803
show rmon log .. 804
rmon table-size ... 805
show rmon statistics ... 806
rmon collection stats ... 808
show rmon collection stats ... 809
show rmon history .. 810

42 Router Resources Commands .. 813
system router resources ... 813
show system router resources ... 815

43 RSA and Certificate Commands ... 817
crypto key generate dsa ... 818
crypto key generate rsa .. 820
crypto key import ... 820
show crypto key .. 822
crypto certificate generate ... 823
crypto certificate request ... 825
crypto certificate import ... 827
show crypto certificate .. 833

44 Smartport Commands .. 835
macro auto (Global) ... 835
macro auto smartport (Interface) .. 836
macro auto trunk refresh .. 837
macro auto resume .. 838
macro auto persistent ... 839
45 Network Management Protocol (SNMP) Commands ... 858

snmp-server community ... 858
snmp-server community-group .. 860
snmp-server server .. 861
snmp-server source-interface ... 862
snmp-server source-interface-ipv6 863
snmp-server view ... 864
snmp-server group .. 866
show snmp views ... 867
show snmp groups .. 868
snmp-server user ... 869
show snmp users ... 872
snmp-server filter ... 874
show snmp filters ... 875
snmp-server host ... 876
snmp-server engineID local .. 878
snmp-server engineID remote .. 879
show snmp engineID ... 880
snmp-server enable traps ... 881
snmp-server trap authentication .. 882
snmp-server contact ... 882
snmp-server location .. 883
snmp-server set ... 884
snmp trap link-status .. 885
show snmp ... 885

46 Spanning-Tree Commands .. 888

spanning-tree ... 888
spanning-tree mode .. 889
spanning-tree forward-time ... 890
spanning-tree hello-time .. 891
spanning-tree max-age ... 891
spanning-tree priority ... 892
spanning-tree disable ... 893
spanning-tree cost ... 894
spanning-tree port-priority ... 895
spanning-tree portfast .. 896
spanning-tree link-type .. 897
spanning-tree pathcost method ... 897
spanning-tree bpdu (Global) ... 898
spanning-tree bpdu (Interface) ... 899
spanning-tree guard root ... 900
spanning-tree bpdu-guard .. 901
clear spanning-tree detected-protocols 902
spanning-tree mst priority ... 903
spanning-tree mst max-hops .. 904
spanning-tree mst port-priority ... 905
spanning-tree mst cost .. 905
spanning-tree mst configuration ... 907
instance (MST) ... 907
name (MST) ... 908
revision (MST) .. 909
show (MST) ... 910
exit (MST) ... 911
abort (MST) .. 911
show spanning-tree .. 912
show spanning-tree bpdu ... 923
spanning-tree loopback-guard .. 924

47 SSD Commands .. 926

ssd config ... 926
passphrase ... 926
ssd rule ... 928
show SSD ... 930
ssd session read .. 932
show ssd session .. 933
ssd file passphrase control ... 934
ssd file integrity control .. 935

48 SSH Client Commands .. 937

ip ssh-client authentication ... 937
ip ssh-client change server password 938
ip ssh-client key .. 939
ip ssh-client password .. 942
ip ssh-client server authentication 943
ip ssh-client server fingerprint ... 944
ip ssh-client source-interface .. 945
ipv6 ssh-client source-interface 946
ip ssh-client username .. 947
show ip ssh-client .. 948
show ip ssh-client server ... 951

49 SYSLOG Commands .. 954
 aaa logging ... 954
 clear logging .. 955
 clear logging file .. 955
 file-system logging .. 956
 logging buffered ... 957
 logging console ... 958
 logging file ... 959
 logging host .. 960
 logging on ... 961
 logging source-interface .. 962
 logging source-interface-ipv6 963
 logging aggregation on .. 964
 logging aggregation aging-time 965
 logging origin-id ... 965
 show logging ... 966
 show logging file .. 968
 show syslog-servers .. 969

50 System Management Commands 971
 disable ports leds ... 971
 hostname ... 972
 reload ... 972
 resume ... 974
 service cpu-input-rate .. 975
 service cpu-utilization .. 976
 set system .. 976
 show cpu input rate .. 979
 show cpu utilization .. 979
 show environment ... 980
 show inventory ... 982
 show reload .. 982
 show sessions ... 983
 show system .. 984
 show system mode ... 985
 show system languages .. 986
 show system tcam utilization 987
 show services tcp-udp ... 987
 show tech-support .. 988
 show system fans .. 990
 show system sensors .. 991
 show system id ... 992
 show ports leds configuration 993
 show users ... 993
51 TACACS+ Commands ... 997
 tacacs-server host ... 997
 tacacs-server host source-interface ... 998
 tacacs-server host source-interface-ipv6 999
 tacacs-server key ... 1000
 tacacs-server timeout ... 1001
 show tacacs .. 1002
 show tacacs key ... 1003

52 Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands 1005
 ip telnet server ... 1005
 ip ssh server ... 1006
 ip ssh port ... 1006
 ip ssh password-auth .. 1007
 ip ssh pubkey-auth .. 1008
 crypto key pubkey-chain ssh .. 1009
 user-key ... 1010
 key-string ... 1012
 show ip ssh ... 1013
 show crypto key pubkey-chain ssh .. 1014

53 IPv6 Tunnel Commands .. 1016
 interface tunnel ... 1016
 tunnel isatap solicitation-interval .. 1017
 tunnel isatap robustness ... 1017
 tunnel isatap router .. 1018
 tunnel mode ipv6ip ... 1019
 tunnel source ... 1021
 show ipv6 tunnel ... 1022

54 UDLD Commands .. 1024
 show udlld ... 1024
 udlld ... 1028
 udlld message time ... 1029
 udlld port ... 1030

55 User Interface Commands .. 1032
 banner exec ... 1032
 banner login ... 1033
 configure ... 1035
 disable ... 1036
 do ... 1036
 enable ... 1037
 end ... 1038
<table>
<thead>
<tr>
<th>Command Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit (Configuration)</td>
<td>1039</td>
</tr>
<tr>
<td>exit (EXEC)</td>
<td>1040</td>
</tr>
<tr>
<td>help</td>
<td>1040</td>
</tr>
<tr>
<td>history</td>
<td>1041</td>
</tr>
<tr>
<td>history size</td>
<td>1042</td>
</tr>
<tr>
<td>login</td>
<td>1044</td>
</tr>
<tr>
<td>terminal datadump</td>
<td>1044</td>
</tr>
<tr>
<td>terminal history</td>
<td>1045</td>
</tr>
<tr>
<td>terminal history size</td>
<td>1046</td>
</tr>
<tr>
<td>terminal prompt</td>
<td>1047</td>
</tr>
<tr>
<td>terminal width</td>
<td>1048</td>
</tr>
<tr>
<td>show banner</td>
<td>1049</td>
</tr>
<tr>
<td>show history</td>
<td>1050</td>
</tr>
<tr>
<td>show privilege</td>
<td>1051</td>
</tr>
<tr>
<td>56 Virtual Local Area Network (VLAN) Commands</td>
<td></td>
</tr>
<tr>
<td>vlan database</td>
<td>1052</td>
</tr>
<tr>
<td>vlan</td>
<td>1053</td>
</tr>
<tr>
<td>show vlan</td>
<td>1053</td>
</tr>
<tr>
<td>default-vlan vlan</td>
<td>1054</td>
</tr>
<tr>
<td>show default-vlan-membership</td>
<td>1055</td>
</tr>
<tr>
<td>interface vlan</td>
<td>1056</td>
</tr>
<tr>
<td>interface range vlan</td>
<td>1057</td>
</tr>
<tr>
<td>name</td>
<td>1058</td>
</tr>
<tr>
<td>switchport protected-port</td>
<td>1058</td>
</tr>
<tr>
<td>show interfaces protected-ports</td>
<td>1059</td>
</tr>
<tr>
<td>switchport community</td>
<td>1060</td>
</tr>
<tr>
<td>switchport mode</td>
<td>1061</td>
</tr>
<tr>
<td>switchport access vlan</td>
<td>1062</td>
</tr>
<tr>
<td>switchport trunk allowed vlan</td>
<td>1063</td>
</tr>
<tr>
<td>switchport trunk native vlan</td>
<td>1064</td>
</tr>
<tr>
<td>switchport general allowed vlan</td>
<td>1065</td>
</tr>
<tr>
<td>switchport general pvid</td>
<td>1066</td>
</tr>
<tr>
<td>switchport general ingress-filtering disable</td>
<td>1068</td>
</tr>
<tr>
<td>switchport general acceptable-frame-type</td>
<td>1068</td>
</tr>
<tr>
<td>switchport customer vlan</td>
<td>1069</td>
</tr>
<tr>
<td>map mac macs-group</td>
<td>1070</td>
</tr>
<tr>
<td>switchport general map macs-group vlan</td>
<td>1071</td>
</tr>
<tr>
<td>show vlan macs-groups</td>
<td>1073</td>
</tr>
<tr>
<td>switchport forbidden default-vlan</td>
<td>1074</td>
</tr>
<tr>
<td>switchport forbidden vlan</td>
<td>1074</td>
</tr>
<tr>
<td>switchport default-vlan tagged</td>
<td>1075</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>1077</td>
</tr>
<tr>
<td>private-vlan</td>
<td>1080</td>
</tr>
<tr>
<td>private-vlan association</td>
<td>1081</td>
</tr>
<tr>
<td>switchport private-vlan mapping</td>
<td>1082</td>
</tr>
<tr>
<td>switchport private-vlan host-association</td>
<td>1083</td>
</tr>
</tbody>
</table>
Contents

show vlan private-vlan ... 1084
switchport access multicast-tv vlan .. 1085
switchport customer multicast-tv vlan ... 1086
show vlan multicast-tv ... 1087
vlan prohibit-internal-usage ... 1088
show vlan internal usage .. 1090

57 Voice VLAN Commands ... 1091
 show voice vlan ... 1091
 show voice vlan local ... 1095
 voice vlan state .. 1097
 voice vlan refresh ... 1100
 voice vlan id .. 1101
 voice vlan vpt .. 1102
 voice vlan dscp ... 1103
 voice vlan oui-table ... 1104
 voice vlan cos mode ... 1106
 voice vlan cos .. 1106
 voice vlan aging-timeout ... 1107
 voice vlan enable ... 1108

58 Web Server Commands .. 1110
 ip https certificate ... 1110
 ip http port ... 1111
 ip http server .. 1111
 ip http secure-server ... 1112
 ip http timeout-policy .. 1113
 show ip http .. 1114
 show ip https ... 1114

Appendix A: Where to Go From Here .. 1116
Introduction

This section describes how to use the Command Line Interface (CLI). It contains the following topics:

- User (Privilege) Levels
- CLI Command Modes
- Accessing the CLI
- CLI Command Conventions
- Editing Features
- Interface Naming Conventions
- System Modes
- Loopback Interface
- Auto-Negotiation
- Port Speed
- PHY Diagnostics

Overview

The CLI is divided into various command modes. Each mode includes a group of commands. These modes are described in CLI Command Modes.

Users are assigned privilege levels. Each user privilege level can access specific CLI modes. User levels are described in the section below.

User (Privilege) Levels

Users can be created with one of the following user levels:
Level 1—Users with this level can only run User EXEC mode commands. Users at this level cannot access the web GUI or commands in the Privileged EXEC mode.

Level 7—Users with this level can run commands in the User EXEC mode and a subset of commands in the Privileged EXEC mode. Users at this level cannot access the web GUI.

Level 15—Users with this level can run all commands. Only users at this level can access the web GUI.

A system administrator (user with level 15) can create passwords that allow a lower level user to temporarily become a higher level user. For example, the user may go from level 1 to level 7, level 1 to 15, or level 7 to level 15.

The passwords for each level are set (by an administrator) using the following command:

```
enable password [level privilege-level] {password | encrypted}
```

Using these passwords, you can raise your user level by entering the command: `enable` and the password for level 7 or 15. You can go from level 1 to level 7 or directly to level 15. The higher level holds only for the current session.

The `disable` command returns the user to a lower level.

To create a user and assign it a user level, use the `username` command. Only users with command level 15, can create users at this level.

Example—Create passwords for level 7 and 15 (by the administrator):

```
switchxxxxxx#configure
switchxxxxxx<conf># enable password level 7 level7@abc
switchxxxxxx<conf># enable password level 15 level15@abc
switchxxxxxx<conf>#
```

Create a user with user level 1:

```
switchxxxxxx#configure
switchxxxxxx<conf> username john password john1234 privilege 1
switchxxxxxx<conf>#
```
Example 2— Switch between Level 1 to Level 15. The user must know the password:

```
switchxxxxxx#
switchxxxxxx# enable
Enter Password: ****** (this is the password for level 15 - level15@abc)
switchxxxxxx#
```

NOTE If authentication of passwords is performed on RADIUS or TACACS+ servers, the passwords assigned to user level 7 and user level 15 must be configured on the external server and associated with the $enable7$ and $enable15$ user names, respectively. See the Authentication, Authorization and Accounting (AAA) Commands chapter for details.

CLI Command Modes

The CLI is divided into four command modes. The command modes are (in the order in which they are accessed):

- User EXEC mode
- Privileged EXEC mode
- Global Configuration mode
- Interface Configuration mode

Each command mode has its own unique console prompt and set of CLI commands. Entering a question mark at the console prompt displays a list of available commands for the current mode and for the level of the user. Specific commands are used to switch from one mode to another.

Users are assigned privilege levels that determine the modes and commands available to them. User levels are described in User (Privilege) Levels.

User EXEC Mode

Users with level 1 initially log into User EXEC mode. User EXEC mode is used for tasks that do not change the configuration, such as performing basic tests and listing system information.
The user-level prompt consists of the switch host name followed by a #. The default host name is `switchxxxxxx` where `xxxxxx` is the last six digits of the device’s MAC address, as shown below:

```
switchxxxxxx#
```

The default host name can be changed via the `hostname` command in Global Configuration mode.

Privileged EXEC Mode

A user with level 7 or 15 automatically logs into Privileged EXEC mode.

Users with level 1 can enter Privileged Exec mode by entering the `enable` command, and when prompted, the password for level 15.

To return from the Privileged EXEC mode to the User EXEC mode, use the `disable` command.

Global Configuration Mode

The Global Configuration mode is used to run commands that configure features at the system level, as opposed to the interface level.

Only users with command level of 7 or 15 can access this mode.

To access Global Configuration mode from Privileged EXEC mode, enter the `configure` command at the Privileged EXEC mode prompt and press `Enter`. The Global Configuration mode prompt, consisting of the device host name followed by `(config)#`, is displayed:

```
switchxxxxxx(config)#
```

Use any of the following commands to return from Global Configuration mode to the Privileged EXEC mode:

- `exit`
- `end`
- `Ctrl+Z`
The following example shows how to access Global Configuration mode and return to Privileged EXEC mode:

```
switchxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# exit
switchxxxxxx#
```

Interface or Line Configuration Modes

Various submodes may be entered from Global Configuration mode. These submodes enable performing commands on a group of interfaces or lines.

For instance to perform several operations on a specific port or range of ports, you can enter the Interface Configuration mode for that interface.

The following example enters Interface Configuration mode for ports gi1-5 and then sets their speed:

The `exit` command returns to Global Configuration mode.

```
switchxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# interface range gi1-5
switchxxxxxx(config-if)# speed 10
switchxxxxxx(config-if)# exit
switchxxxxxx(config)#
```

The following submodes are available:

- **Interface**—Contains commands that configure a specific interface (port, VLAN, port channel, or tunnel) or range of interfaces. The Global Configuration mode command interface is used to enter the Interface
Configuration mode. The `interface` Global Configuration command is used to enter this mode.

- **Line Interface**—Contains commands used to configure the management connections for the console, Telnet and SSH. These include commands such as line timeout settings, etc. The `line` Global Configuration command is used to enter the Line Configuration command mode.

- **VLAN Database**—Contains commands used to configure a VLAN as a whole. The `vlan database` Global Configuration mode command is used to enter the VLAN Database Interface Configuration mode.

- **Management Access List**—Contains commands used to define management access-lists. The `management access-list` Global Configuration mode command is used to enter the Management Access List Configuration mode.

- **Port Channel**—Contains commands used to configure port-channels; for example, assigning ports to a port-channel. Most of these commands are the same as the commands in the Ethernet interface mode, and are used to manage the member ports as a single entity. The `interface port-channel` Global Configuration mode command is used to enter the Port Channel Interface Configuration mode.

- **QoS**—Contains commands related to service definitions. The `qos` Global Configuration mode command is used to enter the QoS services configuration mode.

- **MAC Access-List**—Configures conditions required to allow traffic based on MAC addresses. The `mac access-list` Global Configuration mode command is used to enter the MAC access-list configuration mode.

To return from any Interface Configuration mode to the Global Configuration mode, use the `exit` command.

Accessing the CLI

The CLI can be accessed from a terminal or computer by performing one of the following tasks:

- Running a terminal application, such as HyperTerminal, on a computer that is directly connected to the switch’s console port,

 —or—
• Running a Telnet session from a command prompt on a computer with a network connection to the switch.
• Using SSH.

NOTE Telnet and SSH are disabled by default on the switch.

If access is via a Telnet connection, ensure that the following conditions are met before using CLI commands:

• The switch has a defined IP address.
• Corresponding management access is granted.
• There is an IP path such that the computer and the switch can reach each other.

Using HyperTerminal over the Console Interface

The switch’s RS-232 serial console port provides a direct connection to a computer’s serial port using a standard DB-9 null-modem or crossover cable. After the computer and switch are connected, run a terminal application to access the CLI.

The terminal emulator must be configured to databits=8 and parity=none.

Click **Enter** twice, so that the device sets the serial port speed to match the PC’s serial port speed.

When the *CLI* appears, enter **cisco** at the *User Name* prompt and press **Enter**.

The switchxxxxxx# prompt is displayed. You can now enter CLI commands to manage the switch. For detailed information on CLI commands, refer to the appropriate chapter(s) of this reference guide.

Using Telnet over an Ethernet Interface

Telnet provides a method of connecting to the CLI over an IP network.

To establish a telnet session from the command prompt, perform the following steps:
STEP 1 Click **Start**, then select **All Programs > Accessories > Command Prompt** to open a command prompt.

Figure 1 Start > All Programs > Accessories > Command Prompt

STEP 2 At the prompt, enter **telnet <IP address of switch>**, then press **Enter**.

Figure 2 Command Prompt

STEP 3 The **CL/** will be displayed.

CLI Command Conventions

When entering commands there are certain command entry standards that apply to all commands. The following table describes the command conventions.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>In a command line, square brackets indicate an optional entry.</td>
</tr>
<tr>
<td>{ }</td>
<td>In a command line, curly brackets indicate a selection of compulsory parameters separated the</td>
</tr>
<tr>
<td>parameter</td>
<td>Italic text indicates a parameter.</td>
</tr>
</tbody>
</table>
Editing Features

Entering Commands

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command `show interfaces status Gigabitethernet 1`, `show`, `interfaces` and `status` are keywords, `Gigabitethernet` is an argument that specifies the interface type, and `1` specifies the port.

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
switchxxxxxx(config)# username admin password alansmith
```

When working with the CLI, the command options are not displayed. The standard command to request help is `?`.

There are two instances where help information can be displayed:

- Keyword lookup—The character `?` is entered in place of a command. A list of all valid commands and corresponding help messages are displayed.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>press key</td>
<td>Names of keys to be pressed are shown in bold.</td>
</tr>
<tr>
<td>Ctrl+F4</td>
<td>Keys separated by the + character are to be pressed simultaneously on the keyboard</td>
</tr>
<tr>
<td>Screen Display</td>
<td>Fixed-width font indicates CLI prompts, CLI commands entered by the user, and system messages displayed on the console.</td>
</tr>
<tr>
<td>all</td>
<td>When a parameter is required to define a range of ports or parameters and all is an option, the default for the command is all when no parameters are defined. For example, the command <code>interface range port-channel</code> has the option of either entering a range of channels, or selecting all. When the command is entered without a parameter, it automatically defaults to all.</td>
</tr>
<tr>
<td>text</td>
<td>When free text can be entered as a parameter for a command (for example in command: <code>snmp-server contact</code>) if the text consists of multiple words separated by blanks, the entire string must appear in double quotes. For example: <code>snmp-server contact "QA on floor 8"</code></td>
</tr>
</tbody>
</table>
• Partial keyword lookup—If a command is incomplete and or the character ? is entered in place of a parameter, the matched keyword or parameters for this command are displayed.

To assist in using the CLI, there is an assortment of editing features. The following features are described:

• Terminal Command Buffer
• Command Completion
• Interface Naming Conventions
• Keyboard Shortcuts

Terminal Command Buffer

Every time a command is entered in the CLI, it is recorded on an internally managed Command History buffer. Commands stored in the buffer are maintained on a First In First Out (FIFO) basis. These commands can be recalled, reviewed, modified, and reissued. This buffer is not preserved across device resets.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-Arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td></td>
</tr>
<tr>
<td>Down-Arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with the up-arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
</tbody>
</table>

By default, the history buffer system is enabled, but it can be disabled at any time. For more information on enabling or disabling the history buffer, refer to the history command.

There is a standard default number of commands that are stored in the buffer. The standard number of 10 commands can be increased to 216. By configuring 0, the effect is the same as disabling the history buffer system. For more information on configuring the command history buffer, refer to the history size command.

To display the history buffer, refer to the show history command.
Negating the Effect of Commands

For many configuration commands, the prefix keyword `no` can be entered to cancel the effect of a command or reset the configuration to the default value. This Reference Guide provides a description of the negation effect for each CLI command.

Command Completion

If the command entered is incomplete, invalid or has missing or invalid parameters, then the appropriate error message is displayed. This assists in entering the correct command. By pressing Tab after an incomplete command is entered, the system will attempt to identify and complete the command. If the characters already entered are not enough for the system to identify a single matching command, press ? to display the available commands matching the characters already entered.

Keyboard Shortcuts

The CLI has a range of keyboard shortcuts to assist in editing the CLI commands. The following table describes the CLI shortcuts.

<table>
<thead>
<tr>
<th>Keyboard Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-arrow</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-arrow</td>
<td>Returns the most recent commands from the history buffer after recalling commands with the up arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+Z / End</td>
<td>Returns back to the Privileged EXEC mode from any configuration mode.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Deletes one character left to the cursor position.</td>
</tr>
</tbody>
</table>
Copying and Pasting Text

Up to 1000 lines of text (or commands) can be copied and pasted into the device.

NOTE It is the user’s responsibility to ensure that the text copied into the device consists of legal commands only.

When copying and pasting commands from a configuration file, make sure that the following conditions exist:

- A device Configuration mode has been accessed.

The commands contain no encrypted data, like encrypted passwords or keys. Encrypted data cannot be copied and pasted into the device except for encrypted passwords where the keyword encrypted is used before the encrypted data (for instance in the `enable password` command).

Interface Naming Conventions

Interface ID

Within the CLI, interfaces are denoted by concatenating the following elements:

- **Type of Interface**—The following types of interfaces are found on the various types of devices:
 - *(For supporting devices only)* FastEthernet (10/100 bits) ports—This can be written as `FastEthernet`, `fa` or `fe`.
 - GigabitEthernet ports (10/100/1000 bits) ports—This can be written as either `GigabitEthernet` or `gi` or `GE`.
 - LAG (Port Channel)—This can be written as either `Port-Channel` or `po`.
 - VLAN—This is written as `VLAN`
 - Tunnel—This is written as `tunnel` or `tu`
 - Interface Number—Port, LAG, tunnel or VLAN ID
Sample of these various options are shown in the example below:

```
switchxxxxxx(config)#interface GigabitEthernet 1
switchxxxxxx(config)#interface GE1
switchxxxxxx(config)#interface gil
switchxxxxxx(config)#interface pol
switchxxxxxx(config)#interface vlan 1
```

NOTE See Loopback Interface for a description of the loopback interface.

Interface Range

Interfaces may be described on an individual basis or within a range. The interface range command has the following syntax:

```
<interface-range> ::= 
{<port-type>[ ][/<first-port-number>[ - <last-port-number>]}
| port-channel[ ]<first-port-channel-number>[ - 
<last-port-channel-number>] |
| tunnel[ ]<first-tunnel-number>[ - <last-tunnel-number>] |
| vlan[ ]<first-vlan-id>[ - <last-vlan-id>] |
```

A sample of this command is shown in the example below:

```
switchxxxxxx#configure
switchxxxxxx(config-if)#interface range gi1-5
```

Interface List

A combination of interface types can be specified in the interface range command in the following format:

```
<range-list> ::= <interface-range> | <range-list><interface-range>
```

Up to five ranges can be included.
NOTE

Range lists can contain either ports and port-channels or VLANs. Combinations of port/port-channels and VLANs are not allowed.

The space after the comma is optional.

When a range list is defined, a space after the first entry and before the comma (,) must be entered.

A sample of this command is shown in the example below:

```
switchxxxxxx#configure
switchxxxxxx(config)#interface range gi1-5, vlan 1-2
```

IPv6z Address Conventions

The following describes how to write an IPv6z address, which is a link-local IPv6 address.

The format is: `<ipv6-link-local-address>%<egress-interface>`

where:

- **egress-interface (also known as zone)** = `vlan<vlan-id> | po<number> | tunnel<number> | port<number> | 0`

If the egress interface is not specified, the default interface is selected. Specifying `egress interface = 0` is equal to not defining an egress interface.

The following combinations are possible:

- **ipv6_address%egress-interface**—Refers to the IPv6 address on the interface specified.
- **ipv6_address%0**—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- **ipv6_address**—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
System Modes

Sx300/ESW2-350 and Sx500 devices function in either Router (Layer 3) or Switch (Layer 2) system mode, while SG500X devices always function in Switch plus Router system mode. Therefore, the parts of this section that refer to switching between the two system modes are not relevant for SG500X devices.

In Switch system mode, the switch forwards packets as a VLAN-aware bridge. In Router system mode, the switch performs both IPv4 routing and VLAN-aware bridging.

If Router system mode is selected, a single IP address is supported on the default VLAN. The user also must configure a default gateway.

If Switch system mode is selected, the user can manage the device on any IP interface configured on the device, as long as a default route is configured. In Router system mode, the switch routes traffic between IP VLANs, and bridges traffic within VLANs.

When the switch operates in Router system mode, the following features are not supported:

- Protocol-based VLANs
- MAC-based VLANs
- DVA, Multicast TV VLAN
- Per flow policing

Loopback Interface

When an IP application on a router wants to communicate with a remote IP application, it must select the local IP address to be used as its IP address. It can use any IP address defined on the router, but if this link goes down, the communication is aborted, even though there might well be another IP route between these IP applications.

The loopback interface is a virtual interface whose operational state is always up. If the IP address that is configured on this virtual interface is used as the local address when communicating with remote IP applications, the communication will not be aborted even if the actual route to the remote application was changed.

The name of the loopback interface is `loopback1`.
A loopback interface does not support bridging; it cannot be a member of any VLAN, and no layer 2 protocol can be enabled on it.

Layer 3 Specification

IP Interface

IPv4 and IPv6 addresses can be assigned to a loopback interface.

The IPv6 link-local interface identifier is 1.

Routing Protocols

A routing protocol running on the switch supports the advertising of the IP prefixes defined on the loopback interfaces via the routing protocol redistribution mechanism.

If a layer 2 switch with one IPv4 address supports a loopback interface, the above rules are replaced by the following ones:

This is the definition of the IP configuration when the device is in layer 2 mode:

- Only one loopback interface is supported.
- Two IPv4 interfaces can be configured: one on a VLAN and one on the loopback interface.
- If the IPv4 address was configured on the default VLAN and the default VLAN is changed, the switch moves the IPv4 address to the new default VLAN.
- The `ip address` command does the following:
 - In VLAN context, it replaces the existing configured IPv4 address on the specified interface by the new one.
 - In VLAN context, it supports the keyword `default-gateway`.
 - In Loopback Interface context, it replaces the existing, configured IPv4 address on the loopback interface with the new one.
 - In the Loopback Interface context, it does not support the keyword `default-gateway`.
Configuration Examples

Layer 2 Switch

The following example shows how to configure IP on a Layer 2 switch:

```
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
default-gateway 10.10.10.1
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# ipv6 address
2001:DB8:2222:7272::72/128
Switch(config-if)# exit
```

The router with IP Address 10.10.10.1 should be configured with the following static route: ip route 172.25.13.2 /32 10.10.10.2.
Layer 3 Switch with Static Routing

The following example shows you how to configure IP on a Layer 3 switch with static routing:

```
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
Switch(config-if)# ipv6 address 2001:DB8:2222:7270::2312/64
Switch(config-if)# exit
Switch(config)# interface vlan 2
Switch(config-if)# ip address 10.11.11.2 /24
Switch(config-if)# ipv6 address 2001:DB8:3333:7271::2312/64
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# ipv6 address 2001:DB8:2222:7272::72/128
Switch(config-if)# exit
Switch(config)# ip route 0.0.0.0/0 10.10.11.1
Switch(config)# ip route 10.11.0.0 /16 10.11.11.1
Switch(config)# ipv6 route 0::/0 2001:DB8:2222:7270::1
Switch(config)# ipv6 route 2001:DB8:3333::/48 2001:DB8:3333:7271::1
```

The neighbor router 10.10.11.1 should be configured with the following static route: ip route 172.25.13.2 /32 10.10.10.2.

The neighbor router 10.11.11.1 should be configured with the following static route: ip route 172.25.13.2 /32 10.11.11.2.

The neighbor router 2001:DB8:2222:7270::1 connected to VLAN 1 should be configured with the following static route:

```
ipv6 route 2001:DB8:2222:7272::72/128 2001:DB8:2222:7270::2312
```
The neighbor router 2001:DB8:3333:7271::1 connected to VLAN 1 should be configured with the static route defined immediately below.

Without RIP

The following example describes how to configure IP on a Layer 3 switch with RIP not running on the loopback interface:

```bash
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
Switch(config-if)# exit
Switch(config)# interface vlan 2
Switch(config-if)# ip address 10.11.11.2 /24
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-rip)# network 10.10.10.2
Switch(config-rip)# network 10.11.10.2
Switch(config-rip)# redistribute connected
Switch(config-rip)# exit
```

The other routers need static routes for 172.25.13.2/32, because the route is advertised by RIP.
With RIP

The following example describes how to configure IP on a Layer 3 switch with RIP running on the loopback interface:

```
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
Switch(config-if)# exit
Switch(config)# interface vlan 2
Switch(config-if)# ip address 10.11.11.2 /24
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-rip)# network 10.10.10.2
Switch(config-rip)# network 10.11.10.2
Switch(config-rip)# network 172.25.13.2
Switch(config-rip)# exit
Switch(config)# interface ip 172.25.13.2
Switch(config-ip)# ip rip passive-interface
Switch(config-ip)# exit
```

The other routers do not need static routes for 172.25.13.2/32, because the route is advertised by RIP.

Auto-Negotiation

On devices with less than 20 ports, the two highest ports (e.g. ports 9-10 on SG300-10P) cannot be configured with auto-negotiation.
On all other devices, the four highest ports (e.g. ports 49-52 on SG300-52) cannot be configured with auto-negotiation.

PHY Diagnostics

The following exceptions exist:

- Copper Ports—PHY diagnostics are only supported on copper ports.
- FE ports—Only basic tests are supported (no cable length).
- 10G ports—TDR test is supported when the operational port speed is 10G. Cable length resolution is 20 meters.
802.1X Commands

Dependencies Between Multi-Session Mode and System Mode

Multi-session mode works differently in switch mode and router mode, as described below:

- Multi-Session mode (called Full Multi-Session mode) supports Guest VLAN, RADIUS VLAN attributes, and WEB-Based authentication are supported in Sx300 in switch mode.
- Multi-Session mode (called Lite Multi-Session mode) does not support Guest VLAN, RADIUS VLAN attributes, and WEB-Based authentication in Sx300 in router mode.

List of Commands

2.1 aaa authentication dot1x

Use the `aaa authentication dot1x` Global Configuration mode command to specify which servers are used for authentication when 802.1X authentication is enabled. Use the `no` form of this command to restore the default configuration.

Syntax

```
aaa authentication dot1x default {radius | none} | (radius | none)
```

Parameters

- `radius` - Uses the list of all RADIUS servers for authentication
- `none` - Uses no authentication

Default Configuration

RADIUS server.
Command Mode

Global Configuration mode

User Guidelines

You can select either authentication by a RADIUS server, no authentication (`none`), or both methods.

If you require that authentication succeeds even if no RADIUS server response was received, specify `none` as the final method in the command line.

Example

The following example sets the 802.1X authentication mode to RADIUS server authentication. Even if no response was received, authentication succeeds.

```
switchxxxxxx(config)# aaa authentication dot1x default radius none
```

2.2 authentication open

To enable open access (monitoring mode) on this port, use the `authentication open` command in interface configuration mode. To disable open access on this port, use the `no` form of this command.

Syntax

```
authentication open
no authentication open
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines

Open Access or Monitoring mode allows clients or devices to gain network access before authentication is performed. In the mode the switch performs failure replies received from a Radius server as success.

Example

The following example enables open mode on interface gi1/1:

```
switchxxxxxx(config)# interface gi1/1
switchxxxxxx(config-if)# authentication open
```

2.3 clear dot1x statistics

Use the `clear dot1x statistics` Privileged EXEC mode command to clear 802.1X statistics.

Syntax

```
clear dot1x statistics [interface-id]
```

Parameters

- `interface-id`—Specify an Ethernet port ID.

Default Configuration

Statistics on all ports are cleared.

Command Mode

Privileged EXEC mode

User Guidelines

This command clears all the counters displayed in the `show dot1x` and `show dot1x statistics` command.

Example

```
switchxxxxxx# clear dot1x statistics
```
2.4 data

To specify web-based page customization, the data command in Web-Based Page Customization Configuration mode is used.

Syntax

data value

Parameters

- value—String of hexadecimal digit characters up to 320 characters.

Default Configuration

No user customization.

Command Mode

Web-Based Page Customization Configuration mode

User Guidelines

The command should not be entered or edited manually (unless using copy-paste). It is a part of the configuration file produced by the switch.

A user can only customize the web-based authentication pages by using the WEB interface.

Examples

Example 1—The following example shows a partial web-based page customization configuration:

```
switchxxxxxx(config)# dot1x page customization
switchxxxxxx(config-web-page)# data 1feabcde
switchxxxxxx(config-web-page)# data 17645874
switchxxxxxx(config-web-page)# exit
```

Example 2—The following example shows how Web-Based Page customization is displayed when running the show running-config command:
switchxxxxxx# show running-config
.
.
.
dot1x page customization
data ********
exit
.
.
.

2.5 dot1x auth-not-req

Use the `dot1x auth-not-req` Interface Configuration (VLAN) mode command to enable unauthorized devices access to a VLAN. Use the `no` form of this command to disable access to a VLAN.

Syntax

dot1x auth-not-req

no dot1x auth-not-req

Parameters

N/A

Default Configuration

Access is enabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

A VLAN cannot be defined as an unauthenticated VLAN if it is an access VLAN or it is the native VLAN for some ports.
If a VLAN is configured as an unauthenticated VLAN, traffic tagged with that VLAN and received from a member port of that VLAN will be bridged regardless of whether the port/host is authorized or not.

The guest VLAN cannot be configured as an unauthorized VLAN.

Example

The following example enables unauthorized devices access to VLAN 5.

```
switchxxxxxx(config)# interface vlan 5
switchxxxxxx(config-if)# dot1x auth-not-req
```

2.6 dot1x authentication

Use the `dot1x authentication` Interface Configuration mode command to enable authentication methods on a port. Use the `no` format of the command to return to the default.

Syntax

```
dot1x authentication [802.1x] [mac] [web]
```

Parameters

- **802.1x**—Enables authentication based on 802.1X (802.1X-based authentication).
- **mac**—Enables authentication based on the station's MAC address (MAC-Based authentication).
- **web**—Enables WEB-Based authentication.

Default Configuration

802.1X-Based authentication is enabled.

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines

Static MAC addresses cannot be authorized by the MAC-based method.

It is not recommended to change a dynamic MAC address to a static one or delete it if the MAC address was authorized by the MAC-based authentication:

a. If a dynamic MAC address authenticated by MAC-based authentication is changed to a static one, it will not be manually re-authenticated.

b. Removing a dynamic MAC address authenticated by the MAC-based authentication causes its re-authentication.

Example

The following example enables authentication based on 802.1x and the station's MAC address on port gi11:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x authentication 802.1x mac
```

2.7 dot1x guest-vlan

Use the `dot1x guest-vlan` Interface Configuration (VLAN) mode command to define a guest VLAN. Use the `no` form of this command to restore the default configuration.

Syntax

dot1x guest-vlan
no dot1x guest-vlan

Parameters

N/A

Default Configuration

No VLAN is defined as a guest VLAN.

Command Mode

Interface (VLAN) Configuration mode
User Guidelines

Use the `dot1x guest-vlan enable` command to enable unauthorized users on an interface to access the guest VLAN.

A device can have only one global guest VLAN.

The guest VLAN must be a static VLAN and it cannot be removed.

The Default VLAN cannot be configured as guest VLAN.

An unauthorized VLAN cannot be configured as guest VLAN.

The guest VLAN cannot be configured on a monitoring port.

Example

The following example defines VLAN 2 as a guest VLAN.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# dot1x guest-vlan
```

2.8 `dot1x guest-vlan enable`

Use the `dot1x guest-vlan enable` Interface Configuration mode command to enable unauthorized users on the access interface to the guest VLAN. Use the `no` form of this command to disable access.

Syntax

```
dot1x guest-vlan enable
no dot1x guest-vlan enable
```

Parameters

N/A

Default Configuration

The default configuration is disabled.

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines
The port cannot belong to the guest VLAN.
The guest VLAN and the WEB-Based authentication cannot be configured on a
port at the same time.
This command cannot be configured if the monitoring VLAN is enabled on the
interface.
The port is added to the guest VLAN as an egress untagged port.
If the authentication mode is single-host or multi-host, the value of PVID is set to
the guest VLAN_ID.
If the authentication mode is multi-sessions mode, the PVID is not changed and all
untagged traffic and tagged traffic not belonging to the unauthenticated VLANs
from unauthorized hosts are mapped to the guest VLAN.
If 802.1X is disabled, the port static configuration is reset.
See the User Guidelines of the dot1x host-mode command for more information.

Example
The following example enables unauthorized users on gi11 to access the guest
VLAN.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x guest-vlan enable
```

2.9 dot1x guest-vlan timeout

Use the dot1x guest-vlan timeout Global Configuration mode command to set the
time delay between enabling 802.1X (or port up) and adding a port to the guest
VLAN. Use the no form of this command to restore the default configuration.

Syntax

```
dot1x guest-vlan timeout timeout
no dot1x guest-vlan timeout
```
802.1X Commands

Parameters

- **timeout**—Specifies the time delay in seconds between enabling 802.1X (or port up) and adding the port to the guest VLAN. (Range: 30–180).

Default Configuration

The guest VLAN is applied immediately.

Command Mode

Global Configuration mode

User Guidelines

This command is relevant if the guest VLAN is enabled on the port. Configuring the timeout adds a delay from enabling 802.1X (or port up) to the time the device adds the port to the guest VLAN.

Example

The following example sets the delay between enabling 802.1X and adding a port to a guest VLAN to 60 seconds.

```
switchxxxxxx(config)# dot1x guest-vlan timeout 60
```

2.10 dot1x host-mode

Use the `dot1x host-mode` Interface Configuration mode command to allow a single host (client) or multiple hosts on an IEEE 802.1X-authorized port. Use the no form of this command to return to the default setting.

Syntax

```
dot1x host-mode {multi-host /single-host /multi-sessions}
```

Parameters

- **multi-host**—Enable multiple-hosts mode.
- **single-host**—Enable single-hosts mode.
- **multi-sessions**—Enable multiple-sessions mode.
Default Configuration

Default mode is multi-host.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Single-Host Mode

The single-host mode manages the authentication status of the port: the port is authorized if there is an authorized host. In this mode, only a single host can be authorized on the port.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from the authorized host is bridged based on the static vlan membership configured at the port. Traffic from other hosts is dropped.

A user can specify that untagged traffic from the authorized host will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. In this case, tagged traffic is dropped unless the VLAN tag is the RADIUS-assigned VLAN or the unauthenticated VLANs. See the `dot1x radius-attributes vlan` command to enable RADIUS VLAN assignment at a port.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.

Multi-Host Mode

The multi-host mode manages the authentication status of the port: the port is authorized after at least one host is authorized.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from all hosts connected to the port is bridged based on the static vlan membership configured at the port.

A user can specify that untagged traffic from the authorized port will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. In this case, tagged traffic is dropped unless the VLAN tag
is the RADIUS assigned VLAN or the unauthenticated VLANs. See the `dot1x radius-attributes vlan` command to enable RADIUS VLAN assignment at a port.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.

Multi-Sessions Mode

Unlike the single-host and multi-host modes (port-based modes) the multi-sessions mode manages the authentication status for each host connected to the port (session-based mode). If the multi-sessions mode is configured on a port the port does have any authentication status. Any number of hosts can be authorized on the port. The `dot1x max-hosts` command can limit the maximum number of authorized hosts allowed on the port.

See “Dependencies Between Multi-Session Mode and System Mode” for more information about the multi-sessions mode.

In Sx300 in switch mode each authorized client requires a TCAM rule. If there is no available space in the TCAM, the authentication is rejected.

When using the `dot1x host-mode` command to change the port mode to `single-host` or `multi-host` when authentication is enabled, the port state is set to unauthorized.

If the `dot1x host-mode` command changes the port mode to `multi-session` when authentication is enabled, the state of all attached hosts is set to unauthorized.

To change the port mode to single-host or multi-host, set the port (`dot1x port-control`) to force-unauthorized, change the port mode to single-host or multi-host, and set the port to authorization auto.

In Sx300 multi-sessions mode cannot be configured on the same interface together with Policy Based VLANs configured by the following commands:

- Tagged traffic belonging to the unauthenticated VLANs is always bridged regardless if a host is authorized or not.
- When the guest VLAN is enabled, untagged and tagged traffic from unauthorized hosts not belonging to the unauthenticated VLANs is bridged via the guest VLAN.
- Traffic from an authorized hosts is bridged in accordance with the port static configuration. A user can specify that untagged and tagged traffic from the authorized host not belonging to the unauthenticated VLANs will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. See the `dot1x radius-attributes vlan` command to enable RADIUS VLAN assignment at a port.
- The switch does not remove from FDB the host MAC address learned on the port when its authentication status is changed from authorized to unauthorized. The MAC address will be removed after the aging timeout expires.
Example

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x host-mode multi-host
```

2.11 dot1x max-hosts

Use the `dot1x max-hosts` interface configuration command to configure the maximum number of authorized hosts allowed on the interface. Use the `no` format of the command to return to the default.

Syntax

```
dot1x max-hosts count
no dot1x max-hosts
```

Parameters

- `count`—Specifies the maximum number of authorized hosts allowed on the interface. May be any 32 bits positive number.

Default Configuration

No limitation.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

By default, the number of authorized hosts allowed on an interface is not limited. To limit the number of authorized hosts allowed on an interface, use the `dot1x max-hosts` command.

This command is relevant only for multi-session mode.

Example

The following example limits the maximum number of authorized hosts on Ethernet port gi11 to 6:

```
switchxxxxxx(config)# interface gi11
```
2.12 *dot1x max-login-attempts*

To set the maximum number of allowed login attempts, use this command in Interface Configuration mode. To return to the default setting, use the **no** form of this command.

Syntax

```
dot1x max-login-attempts count
```

```
no dot1x max-login-attempts
```

Parameters

- *count*—Specifies the maximum number of allowed login attempts. A value of 0 means an infinite numbers of attempts. The valid range is 3-10.

Default Configuration

Unlimited.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

By default, the switch does not limit the number of failed login attempts. To specify the number of allowed fail login attempts, use this command. After this number of failed login attempts, the switch does not allow the host to be authenticated for a period defined by the *dot1x timeout quiet-period* command.

The command is applied only to the Web-based authentication.

Example

The following example sets maximum number of allowed login attempts to 5:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x max-login-attempts 5
```
2.13 `dot1x max-req`

Use the `dot1x max-req` Interface Configuration mode command to set the maximum number of times that the device sends an Extensible Authentication Protocol (EAP) request/identity frame (assuming that no response is received) to the client before restarting the authentication process. Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x max-req count
no dot1x max-req
```

Parameters

- `count`—Specifies the maximum number of times that the device sends an EAP request/identity frame before restarting the authentication process. (Range: 1–10).

Default Configuration

The default maximum number of attempts is 2.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Example

The following example sets the maximum number of times that the device sends an EAP request/identity frame to 6.

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)# dot1x max-req 6
```
2.14 dot1x page customization

Use the `dot1x page customization` command in Global Configuration mode command to enter the Web-Based Page Customization Configuration mode,

Syntax

`dot1x page customization`

Parameters

N/A

Default Configuration

No user customization.

Command Mode

Web-Based Page Customization Configuration mode

User Guidelines

The command should not be entered or edited manually (unless when using copy-paste). It is a part of the configuration file produced by the switch.

A user must customize the web-based authentication pages by using the browser Interface.

Example

The following example shows part of a web-based page customization configuration:

```
switchxxxxxx(config)# dot1x page customization
switchxxxxxx(config-web-page)# data 1feabcde
switchxxxxxx(config-web-page)# data 17645874
switchxxxxxx(config-web-page)# exit
```
2.15 **dot1x port-control**

Use the `dot1x port-control` Interface Configuration mode command to enable manual control of the port authorization state. Use the `no` form of this command to restore the default configuration.

Syntax

```plaintext
dot1x port-control {auto | force-authorized | force-unauthorized} [time-range time-range-name]
```

Parameters

- **auto**—Enables 802.1X authentication on the port and causes it to transition to the authorized or unauthorized state, based on the 802.1X authentication exchange between the device and the client.

- **force-authorized**—Disables 802.1X authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives traffic without 802.1X-based client authentication.

- **force-unauthorized**—Denies all access through this port by forcing it to transition to the unauthorized state and ignoring all attempts by the client to authenticate. The device cannot provide authentication services to the client through this port.

- **time-range time-range-name**—Specifies a time range. When the Time Range is not in effect, the port state is Unauthorized. (Range: 1-32 characters).

Default Configuration

The port is in the force-authorized state.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The switch removes all MAC addresses learned on a port when its authorization control is changed from `force-authorized` to another.

Note. It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1X edge ports in `auto` state that are connected to end
stations, in order to proceed to the forwarding state immediately after successful authentication.

Example

The following example sets 802.1X authentication on gi11 to auto mode.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x port-control auto
```

2.16 dot1x radius-attributes vlan

Use the `dot1x radius-attributes vlan` Interface Configuration mode command to enable RADIUS-based VLAN assignment. Use the `no` form of this command to disable RADIUS-based VLAN assignment.

Syntax

```
dot1x radius-attributes vlan [reject | static]
no dot1x radius-attributes vlan
```

Parameters

- **reject**—If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN the supplicant is rejected. If the parameter is omitted, this option is applied by default.
- **static**—If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN, the supplicant is accepted.

Default Configuration

`reject`

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

If RADIUS provides invalid VLAN information, the authentication is rejected.
If a RADIUS server assigns a client with a non-existing VLAN, the switch creates the VLAN. The VLAN is removed when it is no longer being used.

If RADIUS provides valid VLAN information and the port does not belong to the VLAN received from RADIUS, it is added to the VLAN as an egress untagged port. When the last authorized client assigned to the VLAN becomes unauthorized or 802.1x is disabled on the port, the port is excluded from the VLAN.

If the authentication mode is single-host or multi-host, the value of PVID is set to the VLAN_ID.

If an authorized port in the single-host or multi-host mode changes its status to unauthorized, the port static configuration is reset.

If the authentication mode is multi-sessions mode, the PVID is not changed and all untagged traffic and tagged traffic not belonging to the unauthenticated VLANs are mapped to the VLAN using TCAM.

If the last authorized host assigned to a VLAN received from RADIUS connected to a port in the multi-sessions mode changes its status to unauthorized, the port is removed from the VLAN if it is not in the static configuration.

See the User Guidelines of the `dot1x host-mode` command for more information.

If 802.1X is disabled the port static configuration is reset.

If the reject keyword is configured and the RADIUS server authorizes the host but the RADIUS accept message does not assign a VLAN to the supplicant, authentication is rejected.

If the static keyword is configured and the RADIUS server authorizes the host then even though the RADIUS accept message does not assign a VLAN to the supplicant, authentication is accepted and the traffic from the host is bridged in accordance with port static configuration.

If this command is used when there are authorized ports/hosts, it takes effect at subsequent authentications. To manually re-authenticate, use the `dot1x re-authenticate` command.

The command cannot be configured on a port if it together with

- WEB-Based authentication
- Multicast TV-VLAN
- Q-in-Q
- Voice VLAN
Examples

Example 1. This example enables user-based VLAN assignment. If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN, the supplicant is rejected.

```
switchxxxxxx(config)# interface gill
switchxxxxxx(config-if)# dot1x radius-attributes vlan
switchxxxxxx(config-if)# exit
```

Example 2. This example enables user-based VLAN assignment. If the RADIUS server authorized the supplicant but did not provide a supplicant VLAN, the supplicant is accepted and the static VLAN configurations is used.

```
switchxxxxxx(config)# interface gill
switchxxxxxx(config-if)# dot1x radius-attributes static
switchxxxxxx(config-if)# exit
```

2.17 dot1x re-authenticate

The **dot1x re-authenticate** Privileged EXEC mode command manually initiates re-authentication of all 802.1X-enabled ports or the specified 802.1X-enabled port.

Syntax

```
dot1x re-authenticate [interface-id]
```

Parameters

- **interface-id**—Specifies an Ethernet port.

Default Configuration

If no port is specified, command is applied to all ports.

Command Mode

Privileged EXEC mode
Example

The following command manually initiates re-authentication of 802.1X-enabled gi11:

```
switchxxxxxx# dot1x re-authenticate gi11
```

2.18 **dot1x reauthentication**

Use the **dot1x reauthentication** Interface Configuration mode command to enable periodic re-authentication of the client. Use the **no** form of this command to return to the default setting.

Syntax

```
dot1x reauthentication
no dot1x reauthentication
```

Parameters

N/A

Default Configuration

Periodic re-authentication is disabled.

Command Mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x reauthentication
```

2.19 **dot1x system-auth-control**

Use the **dot1x system-auth-control** Global Configuration mode command to enable 802.1X globally. Use the **no** form of this command to restore the default configuration.
802.1X Commands

2.20 dot1x timeout quiet-period

Use the `dot1x timeout quiet-period` Interface Configuration mode command to set the time interval that the device remains in a quiet state following a failed authentication exchange (for example, if the client provided an invalid password). Use the `no` form of this command to restore the default configuration.

Syntax

```
dot1x timeout quiet-period seconds
no dot1x timeout quiet-period
```

Parameters

- `seconds`—Specifies the time interval in seconds that the device remains in a quiet state following a failed authentication exchange with a client. (Range: 10–65535 seconds).
Default Configuration
The default quiet period is 60 seconds.

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
During the quiet period, the device does not accept or initiate authentication requests.

The default value of this command should only be changed to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To provide faster response time to the user, a smaller number than the default value should be entered.

For 802.1x and MAC-based authentication, the number of failed logins is 1.

For WEB-based authentication, the quite period is applied after a number of failed attempts. This number is configured by the dot1x max-login-attempts command.

For 802.1x-based and MAC-based authentication methods, the quite period is applied after each failed attempt.

Example
The following example sets the time interval that the device remains in the quiet state following a failed authentication exchange to 120 seconds.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x timeout quiet-period 120
```

2.21 dot1x timeout reauth-period

Use the dot1x timeout reauth-period Interface Configuration mode command to set the number of seconds between re-authentication attempts. Use the no form of this command to return to the default setting.

Syntax
```
dot1x timeout reauth-period seconds
```
no dot1x timeout reauth-period

Parameters

- \texttt{reauth-period seconds}—Number of seconds between re-authentication attempts. (Range: 300-4294967295).

Default Configuration

3600

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The command is only applied to the 802.1x authentication method.

Example

```
switchxxxxxx(config)# interface gil
switchxxxxxx(config-if)# dot1x timeout reauth-period 5000
```

2.22 dot1x timeout server-timeout

Use the \texttt{dot1x timeout server-timeout} Interface Configuration mode command to set the time interval during which the device waits for a response from the authentication server. Use the \texttt{no} form of this command to restore the default configuration.

Syntax

\texttt{dot1x timeout server-timeout seconds}

\texttt{no dot1x timeout server-timeout}

Parameters

- \texttt{server-timeout seconds}—Specifies the time interval in seconds during which the device waits for a response from the authentication server. (Range: 1–65535 seconds).
Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The actual timeout period can be determined by comparing the value specified by this command to the result of multiplying the number of retries specified by the `radius-server retransmit` command by the timeout period specified by the `radius-server retransmit` command, and selecting the lower of the two values.

Example

The following example sets the time interval between retransmission of packets to the authentication server to 3600 seconds.

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)# dot1x timeout server-timeout 3600
```

2.23 dot1x timeout silence-period

To set the authentication silence time, use the `dot1x timeout silence-period` command in Interface Configuration mode. The silence time is the number of seconds that if an authorized client does not send traffic during this period, the client is changed to unauthorized.

To return to the default setting, use the `no` form of this command.

Syntax

```
dot1x timeout silence-period seconds
no dot1x timeout silence-period
```

Parameters

- `seconds`—Specifies the silence interval in seconds. The valid range is 60 - 65535.
2.24 dot1x timeout supp-timeout

Use the dot1x timeout supp-timeout Interface Configuration mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request frame from the client before resending the request. Use the no form of this command to restore the default configuration.

Syntax

dot1x timeout supp-timeout seconds
no dot1x timeout supp-timeout

Parameters

- supp-timeout seconds—Specifies the time interval in seconds during which the device waits for a response to an EAP request frame from the client before resending the request. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.
Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.

Example

The following example sets the time interval during which the device waits for a response to an EAP request frame from the client before resending the request to 3600 seconds.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# dot1x timeout supp-timeout 3600
```

2.25 dot1x timeout tx-period

Use the `dot1x timeout tx-period` Interface Configuration mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request. Use the `no` form of this command to restore the default configuration.

Syntax

`dot1x timeout tx-period seconds`

`no dot1x timeout tx-period`

Parameters

- `seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP-request/identity frame from the client before resending the request. (Range: 30–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.
802.1X Commands

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.

Example
The following command sets the time interval during which the device waits for a response to an EAP request/identity frame to 60 seconds.

```
switchxxxxxx(config)# interface gi1:
switchxxxxxx(config-if)# dot1x timeout tx-period 60
```

2.26 dot1x traps authentication failure

Use the `dot1x traps authentication failure` Global Configuration mode command to enable sending traps when an 802.1X authentication method failed. Use the `no` form of this command to return to the default.

Syntax
```
dot1x traps authentication failure {[802.1x] [mac] [web]}
```
```
no dot1x traps authentication failure
```

Parameters
- 802.1x—Enables traps for 802.1X-based authentication.
- mac—Enables traps for MAC-based authentication.
- web—Enables traps for WEB-based authentication.

Default Configuration
All traps are disabled.
Command Mode

Global Configuration mode

User Guidelines

Any combination of the keywords are allowed. At least one keyword must be configured.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a MAC address fails to be authorized by the 802.1X mac-authentication access control.

switchxxxxxx(config)# dot1x traps authentication failure 802.1x

2.27 dot1x traps authentication quiet

Use the **dot1x traps authentication quiet** Global Configuration mode command to enable sending traps when a host state is set to the quiet state after failing the maximum sequential attempts of login. Use the **no** form of this command to disable the traps.

Syntax

dot1x traps authentication quiet

no dot1x traps authentication quiet

Parameters

N/A

Default Configuration

Quiet traps are disabled.

Command Mode

Global Configuration mode
User Guidelines

The traps are sent after the client is set to the quiet state after the maximum sequential attempts of login.

The command is only applied to the web-based authentication.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a host is set in the quiet state:

```
switchxxxxxx(config)# dot1x traps authentication quiet
```

2.28 dot1x traps authentication success

Use the `dot1x traps authentication success` Global Configuration mode command to enable sending traps when a host is successfully authorized by an 802.1X authentication method. Use the `no` form of this command to disable the traps.

Syntax

```
dot1x traps authentication success {[802.1x] [mac] [web]}
```

```
no dot1x traps authentication success
```

Parameters

- **802.1x**—Enables traps for 802.1X-based authentication.
- **mac**—Enables traps for MAC-based authentication.
- **web**—Enables traps for WEB-based authentication.

Default Configuration

Success traps are disabled.

Command Mode

Global Configuration mode
User Guidelines

Any combination of the keywords are allowed. At least one keyword must be configured.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a MAC address is successfully authorized by the 802.1X MAC-authentication access control.

```
switchxxxxxx(config)# dot1x traps authentication success mac
```

2.29 dot1x unlock client

Use the `dot1x unlock client` Privileged EXEC mode command to unlock a locked (in the quiet period) client.

Syntax

```
dot1x unlock client interface-id mac-address
```

Parameters

- `interface-id`—Interface ID where the client is connected to.
- `mac-address`—Client MAC address.

Default Configuration

The client is locked until the silence interval is over.

Command Mode

Privileged EXEC mode

User Guidelines

Use this command to unlock a client that was locked after the maximum allowed authentication failed attempts and to end the quiet period. If the client is not in the quiet period, the command has no affect.
Example

switchxxxxxxx# dot1x unlock client gill 00:01:12:af:00:56

2.30 dot1x violation-mode

Use the dot1x violation-mode Interface Configuration mode command to configure the action to be taken when an unauthorized host on authorized port in single-host mode attempts to access the interface. Use the no form of this command to return to default.

Syntax

dot1x violation-mode {restrict /protect /shutdown} [traps seconds]

no dot1x violation-mode

Parameters

- **restrict**—Generates a trap when a station, whose MAC address is not the supplicant MAC address, attempts to access the interface. The minimum time between the traps is 1 second. Those frames are forwarded but their source addresses are not learned.

- **protect**—Discard frames with source addresses that are not the supplicant address.

- **shutdown**—Discard frames with source addresses that are not the supplicant address and shutdown the port.

- **trap seconds** - Send SNMP traps, and specifies the minimum time between consecutive traps. If seconds = 0 traps are disabled. If the parameter is not specified, it defaults to 1 second for the restrict mode and 0 for the other modes.

Default Configuration

Protect

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines
The command is relevant only for single-host mode.

For BPDU messages whose MAC addresses are not the supplicant MAC address are not discarded in Protect mode.

BPDU message whose MAC addresses are not the supplicant MAC address cause a shutdown in Shutdown mode.

Example

```
switchxxxxxx(config)# interface gill
switchxxxxxx(config-if)# dot1x violation-mode protect
```

show dot1x

Use the `show dot1x` Privileged EXEC mode command to display the 802.1X interfaces or specified interface status.

Syntax

```
show dot1x [interface interface-id /detailed]
```

Parameters

- `interface-id`—Specifies an Ethernet port.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If `detailed` is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

The following example displays authentication information for all interfaces of the switch supporting the full multi-sessions mode:

```
switchxxxxxx# show dot1x
```
Authentication is enabled
Authentication Servers: Radius, None
Unauthenticated VLANs: 100, 1000, 1021
Guest VLAN: VLAN 11, timeout 30 sec
Authentication failure traps are enables for 802.1x+mac
Authentication success traps are enables for 802.1x
Authentication quiet traps are enables for 802.1x

gill

 Host mode: multi-sessions
 Authentication methods: 802.1x+mac
 Port Adminstrated status: auto
 Guest VLAN: enabled
 VLAN Radius Attribute: enabled, static
 Open access: disabled
 Time range name: work_hours (Active now)
 Server-timeout: 30 sec
 Maximum Hosts: unlimited
 Maximum Login Attempts: 3
 Reauthentication is enabled
 Reauthentication period: 3600 sec
 Silence period: 1800 sec
 Quiet Period: 60 sec

Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
 Authentication success: 9
 Authentication fails: 1
 Number of Authorized Hosts: 10

gil2

 Host mode: single-host
Authentication methods: 802.1x+mac
Port Adminstrated status: auto
Port Operational status: authorized
Guest VLAN: disabled
VLAN Radius Attribute: enabled
Open access: enabled
Time range name: work_hours (Active now)
Server-timeout: 30 sec
Aplied Authenticating Server: Radius
Aplied Authentication method: 802.1x
Session Time (HH:MM:SS): 00:25:22
MAC Address: 00:08:78:32:98:66
Username: Bob
Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
 Violations were detected: 9
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
 Authentication success: 2
 Authentication fails: 0

Host mode: multi-host
Authentication methods: 802.1x+mac
Port Adminstrated status: auto
Port Operational status: authorized
Guest VLAN: disabled
VLAN Radius Attribute: disabled
Time range name: work_hours (Active now)
Open access: disabled
Server-timeout: 30 sec
Aplied Authenticating Server: Radius
Applied Authentication method: 802.1x
Session Time (HH:MM:SS): 00:25:22
MAC Address: 00:08:78:32:98:66
Username: Bob
Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
 Violations were detected: 0
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
 Authentication success: 20
 Authentication fails: 0

The following describes the significant fields shown in the display:

- Port—The port interface-id.
Host mode—The port authentication configured mode. Possible values: single-host, multi-host, multi-sessions.
 - single-host
 - multi-host
 - multi-sessions

Authentication methods—Authentication methods configured on port. Possible values are combinations of the following methods:
 - 802.1x
 - mac
 - wba

Port Administered status—The port administration (configured) mode. Possible values: force-auth, force-unauth, auto.

Port Operational status—The port operational (actual) mode. Possible values: authorized or unauthorized.

Username—Username representing the supplicant identity. This field shows the username if the port control is auto. If the port is Authorized, it displays the username of the current user. If the port is Unauthorized, it displays the last user authorized successfully.

Quiet period—Number of seconds that the device remains in the quiet state following a failed authentication exchange (for example, the client provided an invalid password).

Silence period—Number of seconds that if an authorized client does not send traffic during the silence period specified by the command, the state of the client is changed to unauthorized.

Tx period—Number of seconds that the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request.

Max req—Maximum number of times that the device sends an EAP request frame (assuming that no response is received) to the client before restarting the authentication process.

Supplicant timeout—Number of seconds that the device waits for a response to an EAP-request frame from the client before resending the request.
2.32 show dot1x locked clients

Use the `show dot1x locked clients` Privileged EXEC mode command to display all clients who are locked and in the quiet period.

Syntax

```
show dot1x locked clients
```

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show dot1x locked clients` command to display all locked (in the quiet period) clients.

Examples

The following example displays locked clients:

```
Example 1
switchxxxxxx# show dot1x locked clients
```
2.33 show dot1x statistics

Use the `show dot1x statistics` Privileged EXEC mode command to display 802.1X statistics for the specified port.

Syntax

```
show dot1x statistics interface interface-id
```

Parameters

- `interface-id`—Specifies an Ethernet port.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays 802.1X statistics for gi11.

```
switchxxxxxx# show dot1x statistics interface gi11

EapolFramesRx: 11
EapolFramesTx: 12
EapolStartFramesRx: 1
EapolLogoffFramesRx: 1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>Remaining Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>0008.3b79.8787</td>
<td>20</td>
</tr>
<tr>
<td>gi11</td>
<td>0008.3b89.3128</td>
<td>40</td>
</tr>
<tr>
<td>gi12</td>
<td>0008.3b89.3129</td>
<td>10</td>
</tr>
</tbody>
</table>
EapolRespIdFramesRx: 3
EapolRespFramesRx: 6
EapolReqIdFramesTx: 3
EapolReqFramesTx: 6
InvalidEapolFramesRx: 0
EapLengthErrorFramesRx: 0
LastEapolFrameVersion: 1
LastEapolFrameSource: 00:08:78:32:98:78

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EapolFramesRx</td>
<td>Number of valid EAPOL frames of any type that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolFramesTx</td>
<td>Number of EAPOL frames of any type that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>Number of EAPOL Start frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>Number of EAPOL Logoff frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespIdFramesRx</td>
<td>Number of EAP Resp/Id frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespFramesRx</td>
<td>Number of valid EAP Response frames (other than Resp/Id frames) that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqIdFramesTx</td>
<td>Number of EAP Req/Id frames that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqFramesTx</td>
<td>Number of EAP Request frames (other than Req/Id frames) that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>InvalidEapolFramesRx</td>
<td>Number of EAPOL frames that have been received by this Authenticator for which the frame type is not recognized.</td>
</tr>
</tbody>
</table>
2.34 show dot1x users

Use the show dot1x users Privileged EXEC mode command to display active 802.1X authorized users for the device.

Syntax

show dot1x users [username username]

Parameters

- **username username**—Specifies the supplicant username (Length: 1–160 characters).

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

Examples

The following commands displays all 802.1x users:

```bash
switchxxxxxx# show dot1x users
```
<table>
<thead>
<tr>
<th>Port</th>
<th>Username</th>
<th>MAC Address</th>
<th>Auth Method</th>
<th>Auth Server</th>
<th>Session Time</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Bob</td>
<td>0008.3b71.11</td>
<td>802.1x</td>
<td>Remote</td>
<td>09:01:00</td>
<td>1020</td>
</tr>
<tr>
<td>gi12</td>
<td>Allan</td>
<td>111</td>
<td>MAC</td>
<td>Remote</td>
<td>00:11:12</td>
<td></td>
</tr>
<tr>
<td>gi12</td>
<td>John</td>
<td>0008.3b79.8787</td>
<td>WBA</td>
<td>Remote</td>
<td>00:27:16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0008.3baa.0</td>
<td>022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1 aaa authentication login

Use the `aaa authentication login` Global Configuration mode command to set one or more authentication methods to be applied during login. Use the `no` form of this command to restore the default authentication method.

Syntax

```
aaa authentication login [default | list-name] method1 [method2...]
no aaa authentication login [default | list-name]
```

Parameters

- **default**—Uses the authentication methods that follow this argument as the default method list when a user logs in (this list is unnamed).
- **list-name**—Specifies a name of a list of authentication methods activated when a user logs in. (Length: 1–12 characters)
- **method1 [method2...]**—Specifies a list of methods that the authentication algorithm tries (in the given sequence). Each additional authentication method is used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify `none` as the final method in the command line. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>local</td>
<td>Uses the locally-defined usernames for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
</tbody>
</table>
Default Configuration

If no methods are specified, the default are the locally-defined users and passwords. This is the same as entering the command `aaa authentication login local`.

Command Mode

Global Configuration mode

User Guidelines

Create a list of authentication methods by entering this command with the `list-name` parameter where `list-name` is any character string. The method arguments identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created with this command are used with the `login authentication` command.

`no aaa authentication login list-name` deletes a list-name only if it has not been referenced by another command.

Example

The following example sets the authentication login methods for the console.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```

3.2 aaa authentication enable

The `aaa authentication enable` Global Configuration mode command sets one or more authentication methods for accessing higher privilege levels. To restore the default authentication method, use the `no` form of this command.
Syntax

```
aaa authentication enable {default | list-name} method [method2...]
```

```
no aaa authentication enable {default | list-name}
```

Parameters

- **default**—Uses the listed authentication methods that follow this argument as the default method list, when accessing higher privilege levels.

- **list-name**—Specifies a name for the list of authentication methods activated when a user accesses higher privilege levels. (Length: 1–12 characters)

- **method [method2...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify none as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The **enable password** command defines the default authentication login method. This is the same as entering the command **aaa authentication enable default enable**.

On a console, the enable password is used if a password exists. If no password is set, authentication still succeeds. This is the same as entering the command **aaa authentication enable default enable none**.

Command Mode

Global Configuration mode
User Guidelines

Create a list by entering the `aaa authentication enable list-name method1 [method2...]` command where `list-name` is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created by this command are used with the `enable authentication` command.

All `aaa authentication enable` requests sent by the device to a RADIUS server include the username `$enabx$`, where x is the requested privilege level.

All `aaa authentication enable` requests sent by the device to a TACACS+ server include the username that is entered for login authentication.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

`no aaa authentication enable list-name` deletes list-name if it has not been referenced.

Example

The following example sets the enable password for authentication for accessing higher privilege levels.

```plaintext
switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list
```

3.3 login authentication

The `login authentication` Line Configuration mode command specifies the login authentication method list for a remote Telnet or console session. Use the `no` form of this command to restore the default authentication method.

Syntax

```
login authentication {default | list-name}
no login authentication
```
Parameters

- **default**—Uses the default list created with the `aaa authentication login` command.
- **list-name**—Uses the specified list created with the `aaa authentication login` command.

Default Configuration

default

Command Mode

Line Configuration Mode

Examples

Example 1 - The following example specifies the login authentication method as the default method for a console session.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication default
```

Example 2 - The following example sets the authentication login methods for the console as a list of methods.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```

3.4 enable authentication

The **enable authentication** Line Configuration mode command specifies the authentication method for accessing a higher privilege level from a remote Telnet or console. Use the **no** form of this command to restore the default authentication method.

Syntax

```
enable authentication [default | list-name]
```
no enable authentication

Parameters

- **default**—Uses the default list created with the `aaa authentication enable` command.
- **list-name**—Uses the specified list created with the `aaa authentication enable` command.

Default Configuration
default.

Command Mode
Line Configuration Mode

Examples

Example 1 - The following example specifies the authentication method as the default method when accessing a higher privilege level from a console.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication default
```

Example 2 - The following example sets a list of authentication methods for accessing higher privilege levels.

```
switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list
```

3.5 ip http authentication

The `ip http authentication` Global Configuration mode command specifies authentication methods for HTTP server access. Use the `no` form of this command to restore the default authentication method.
Syntax

```
ip http authentication aaa login-authentication method1 [method2...]
no ip http authentication aaa login-authentication
```

Parameters

- `method [method2...]`—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The local user database is the default authentication login method. This is the same as entering the `ip http authentication local` command.

Command Mode

Global Configuration mode

User Guidelines

The command is relevant for HTTP and HTTPS server users.

Example

The following example specifies the HTTP access authentication methods.

```
switchxxxxxx(config)# ip http authentication aaa login-authentication radius local none
```
3.6 show authentication methods

The show authentication methods Privileged EXEC mode command displays information about the authentication methods.

Syntax

show authentication methods

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays the authentication configuration:

```
switchxxxxxx# show authentication methods
Login Authentication Method Lists
---------------------------------
Default: Radius, Local, Line
Console_Login: Line, None

Enable Authentication Method Lists
----------------------------------
Default: Radius, Enable
```
3.7 **password**

Use the `password` Line Configuration mode command to specify a password on a line (also known as an access method, such as a console or Telnet). Use the `no` form of this command to return to the default password.

Syntax

```plaintext
password password [encrypted]
no password
```

Parameters

- `password`—Specifies the password for this line. (Length: 0–159 characters)
- `encrypted`—Specifies that the password is encrypted and copied from another device configuration.

Default Configuration

No password is defined.

Command Mode

Line Configuration Mode

Example

The following example specifies the password 'secret' on a console.

```plaintext
switchxxxxxxx(config)# line console
```
switchxxxxxx(config-line)# password secret

3.8 enable password

Use the `enable password` Global Configuration mode command to set a local password to control access to normal and privilege levels. Use the `no` form of this command to return to the default password.

Syntax

```plaintext
enable password [level privilege-level] {unencrypted-password | encrypted encrypted-password}
no enable password [level level]
```

Parameters

- `level privilege-level`—Level for which the password applies. If not specified, the level is 15. (Range: 1–15)
- `unencrypted-password`—Password for this level. (Range: 0–159 chars)
- `password encrypted encrypted-password`—Specifies that the password is encrypted. Use this keyword to enter a password that is already encrypted (for instance that you copied from another the configuration file of another device). (Range: 1–40)

Default Configuration

Default for `level` is 15.

Passwords are encrypted by default.

Command Mode

Global Configuration mode

User Guidelines

When the administrator configures a new `enable password`, this password is encrypted automatically and saved to the configuration file. No matter how the password was entered, it appears in the configuration file with the keyword `encrypted` and the encrypted value.

If the administrator wants to manually copy a password that was configured on one switch (for instance, switch B) to another switch (for instance, switch A), the
administrator must add **encrypted** in front of this encrypted password when entering the **enable** command in switch A. In this way, the two switches will have the same password.

Passwords are encrypted by default. You only are required to use the **encrypted** keyword when you are actually entering an encrypted keyword.

Examples

Example 1 - The command sets a password that has already been encrypted. It will copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

```
switchxxxxxx(config)# enable password encrypted
4b529f21c93d4706090285b0c10172eb073ffebe4
```

Example 2 - The command sets an unencrypted password for level 7 (it will be encrypted in the configuration file).

```
switchxxxxxx(config)# enable password level 7 let-me-in
```

3.9 service password-recovery

Use the **service password-recovery** Global Configuration mode command to enable the password-recovery mechanism. This mechanism allows an end user, with physical access to the console port of the device, to enter the boot menu and trigger the password recovery process. Use the **no service password-recovery** command to disable the password-recovery mechanism. When the password-recovery mechanism is disabled, accessing the boot menu is still allowed and the user can trigger the password recovery process. The difference is, that in this case, all the configuration files and all the user files are removed. The following log message is generated to the terminal: “All the configuration and user files were removed”.

Syntax

```
service password-recovery
no service password-recovery
```
Parameters
N/A

Default Configuration
The service password recovery is enabled by default.

Command Mode
Global Configuration mode

User Guidelines
- If password recovery is enabled, the user can access the boot menu and
 trigger the password recovery in the boot menu. All configuration files and
 user files are kept.
- If password recovery is disabled, the user can access the boot menu and
 trigger the password recovery in the boot menu. The configuration files
 and user files are removed.
- If a device is configured to protect its sensitive data with a user-defined
 passphrase for (Secure Sensitive Data), then the user cannot trigger the
 password recovery from the boot menu even if password recovery is
 enabled.
- If a device is configured to protect its sensitive data with a user-defined
 passphrase for (Secure Sensitive Data), then the user cannot trigger the
 password recovery from the boot menu even if password recovery is
 enabled.

Example
The following command disables password recovery:

switchxxxxxxx(config)# no service password recovery

Note that choosing to use Password recovery option in the Boot Menu during
the boot process will remove the configuration files and the user files.
Would you like to continue? Y/N.
3.10 username

Use the **username** Global Configuration mode command to establish a
username-based authentication system. Use the **no** form to remove a user name.

Syntax

```plaintext
username name {nopassword | [password {unencrypted-password | [encrypted
encrypted-password]}] | [privilege privilege-level {unencrypted-password|
encrypted encrypted-password}]}

no username name
```

Parameters

- **name**—The name of the user. (Range: 1–20 characters)
- **nopassword**—No password is required for this user to log in.
- **password**—Specifies the password for this username. (Range: 1–64)
- **unencrypted-password**—The authentication password for the user. (Range:
1–159)
- **encrypted encrypted-password**—Specifies that the password is MD5
encrypted. Use this keyword to enter a password that is already encrypted
(for instance that you copied from another the configuration file of another
device). (Range: 1–40)
- **privilege privilege-level**—Privilege level for which the password applies. If
not specified the level is 1. (Range: 1–15).

Default Configuration

No user is defined.

Command Mode

Global Configuration mode

Usage Guidelines

The switch allows deleting the last level 15 user, except the default user
account cannot be removed.
Examples

Example 1 - Sets an unencrypted password for user tom (level 15). It will be encrypted in the configuration file.

switchxxxxxxx(config)# username tom password 1234

Example 2 - Sets a password for user jerry (level 15) that has already been encrypted. It will be copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

switchxxxxxxx(config)# username jerry privilege 15 encrypted 4b529f21c93d4706090285b0c10172eb073ffebc4

3.11 show users accounts

The show users accounts Privileged EXEC mode command displays information about the users local database.

Syntax

show users accounts

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example

The following example displays information about the users local database:

```
switchxxxxxx# show users accounts

Username  Privilege  Expiry date
--------  --------  ----------
Bob       15        Jan 18 2005
Robert    15        Jan 19 2005
Smith     15
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level.</td>
</tr>
<tr>
<td>Password Expiry date</td>
<td>The user’s password expiration date.</td>
</tr>
</tbody>
</table>

3.12 aaa accounting login

Use the `aaa accounting login` command in Global Configuration mode to enable accounting of device management sessions. Use the `no` form of this command to disable accounting.

Syntax

```
aaa accounting login start-stop group {radius | tacacs+}
no aaa accounting login start-stop [group {radius | tacacs+}]
```

Parameters

- `group radius`—Uses a RADIUS server for accounting.
- `group tacacs+`—Uses a TACACS+ server for accounting.

Default Configuration

Disabled
Command Mode

Global Configuration mode

User Guidelines

This command enables the recording of device management sessions (Telnet, serial and WEB but not SNMP).

It records only users that were identified with a username (e.g. a user that was logged in with a line password is not recorded).

If accounting is activated, the device sends a “start”/“stop” messages to a RADIUS server when a user logs in / logs out respectively.

The device uses the configured priorities of the available RADIUS/TACACS+ servers in order to select the RADIUS/TACACS+ server.

The following table describes the supported RADIUS accounting attributes values, and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start Message</th>
<th>Stop Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>User’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the RADIUS server.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the management session.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The user IP address.</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>Yes</td>
<td>Yes</td>
<td>A unique accounting identifier.</td>
</tr>
<tr>
<td>Acct-Authentic (45)</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates how the supplicant was authenticated.</td>
</tr>
<tr>
<td>Acct-Session-Time (46)</td>
<td>No</td>
<td>Yes</td>
<td>Indicates how long the user was logged in.</td>
</tr>
<tr>
<td>Acct-Terminate-Cause (49)</td>
<td>No</td>
<td>Yes</td>
<td>Reports why the session was terminated.</td>
</tr>
</tbody>
</table>
The following table describes the supported TACACS+ accounting arguments and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Start Message</th>
<th>Stop Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>task_id</td>
<td>A unique accounting session identifier.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>user</td>
<td>username that is entered for login authentication</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>rem-addr</td>
<td>IP address of the user</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>elapsed-time</td>
<td>Indicates how long the user was logged in.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>reason</td>
<td>Reports why the session was terminated.</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example

```
switchxxxxxx(config)# aaa accounting login start-stop group radius
```

3.13 aaa accounting dot1x

To enable accounting of 802.1x sessions, use the `aaa accounting dot1x` Global Configuration mode command. Use the `no` form of this command to disable accounting.

Syntax

```
aaa accounting dot1x start-stop group radius
no aaa accounting dot1x start-stop group radius
```

Parameters

N/A

Default Configuration

Disabled

Command Mode

Global Configuration mode
User Guidelines

This command enables the recording of 802.1x sessions.

If accounting is activated, the device sends start/stop messages to a RADIUS server when a user logs in / logs out to the network, respectively.

The device uses the configured priorities of the available RADIUS servers in order to select the RADIUS server.

If a new supplicant replaces an old supplicant (even if the port state remains authorized), the software sends a stop message for the old supplicant and a start message for the new supplicant.

In multiple sessions mode (dot1x multiple-hosts authentication), the software sends start/stop messages for each authenticated supplicant.

In multiple hosts mode (dot1x multiple-hosts), the software sends start/stop messages only for the supplicant that has been authenticated.

The software does not send start/stop messages if the port is force-authorized.

The software does not send start/stop messages for hosts that are sending traffic on the guest VLAN or on the unauthenticated VLANs.

The following table describes the supported Radius accounting Attributes Values and when they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Stop</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Supplicant's identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the RADIUS server.</td>
</tr>
<tr>
<td>NAS-Port (5)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch port from where the supplicant has logged in.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>The arbitrary value that is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch MAC address.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The supplicant MAC address.</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>Yes</td>
<td>Yes</td>
<td>A unique accounting identifier.</td>
</tr>
</tbody>
</table>
Example

```
switchxxxxxx(config)# aaa accounting dot1x start-stop group radius
```

3.14 `show accounting`

The `show accounting` EXEC mode command displays information as to which type of accounting is enabled on the switch.

Syntax

```
show accounting
```

Parameters

- N/A

Default Configuration

- N/A

Command Mode

- User EXEC mode

Example

The following example displays information about the accounting status.

```
```
3.15 passwords complexity enable

Use the **passwords complexity enable** Global Configuration mode command to enforce minimum password complexity. The **no** form of this command disables enforcing password complexity.

Syntax

`passwords complexity enable`

`no passwords complexity enable`

Parameters

N/A

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

If password complexity is enabled, the user is forced to enter a password that:

- Has a minimum length of 8 characters.
- Contains characters from at least 3 character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard).
- Is different from the current password.
- Contains no character that is repeated more than 3 times consecutively.
- Does not repeat or reverse the user name or any variant reached by changing the case of the characters.
• Does not repeat or reverse the manufacturer’s name or any variant reached by changing the case of the characters.

You can control the above attributes of password complexity with specific commands described in this section.

If you have previously configured other complexity settings, then those settings are used. This command does not wipe out the other settings. It works only as a toggle.

Example

The following example configures requiring complex passwords that fulfill the minimum requirements specified in the User Guidelines above.

```plaintext
switchxxxxxx(config)# passwords complexity enable
switchxxxxxx# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Passwords complexity is enabled with the following attributes:
Minimal length: 3 characters
Minimal classes: 3
New password must be different than the current: Enabled
Maximum consecutive same characters: 3
New password must be different than the user name: Enabled
New password must be different than the manufacturer name: Enabled
switchxxxxxx#
```

3.16 passwords complexity

Use the `passwords complexity` Global Configuration mode commands to control the minimum requirements from a password when password complexity is enabled. Use the `no` form of these commands to return to default.

Syntax

```
passwords complexity [min-length number] | [min-classes number] | not-current |
{no-repeat number} | not-username | not-manufacturer-name
```
no passwords complexity min-length | min-classes | not-current | no-repeat | not-username | not-manufacturer-name

Parameters

- **min-length number**—Sets the minimal length of the password. (Range: 0–64)
- **min-classes number**—Sets the minimal character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard). (Range: 0–4)
- **not-current**—Specifies that the new password cannot be the same as the current password.
- **no-repeat number**—Specifies the maximum number of characters in the new password that can be repeated consecutively. Zero specifies that there is no limit on repeated characters. (Range: 0–16)
- **not-username**—Specifies that the password cannot repeat or reverse the user name or any variant reached by changing the case of the characters.
- **not-manufacturer-name**—Specifies that the password cannot repeat or reverse the manufacturer’s name or any variant reached by changing the case of the characters.

Default Configuration

The minimal length is 8.
The number of classes is 3.
The default for no-repeat is 3.
All the other controls are enabled by default.

Command Mode

Global Configuration mode

Example

The following example configures the minimal required password length to 8 characters.

```
switchxxxxxx(config)# passwords complexity min-length 8
```
3.17 passwords aging

Use the passwords aging Global Configuration mode command to enforce password aging. Use the no form of this command to return to default.

Syntax

passwords aging days

no passwords aging

Parameters

- days—Specifies the number of days before a password change is forced. You can use 0 to disable aging. (Range: 0–365).

Default Configuration

180

Command Mode

Global Configuration mode

User Guidelines

Aging is relevant only to users of the local database with privilege level 15 and to enable a password of privilege level 15.

To disable password aging, use passwords aging 0.

Using no passwords aging sets the aging time to the default.

Example

The following example configures the aging time to be 24 days.

```
switchxxxxxx(config)# passwords aging 24
```

3.18 show passwords configuration

The show passwords configuration Privileged EXEC mode command displays information about the password management configuration.
Syntax

```
show passwords configuration
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Passwords complexity is enabled with the following attributes:
   Minimal length: 3 characters
   Minimal classes: 3
   New password must be different than the current: Enabled
   Maximum consecutive same characters: 3
   New password must be different than the user name: Enabled
   New password must be different than the manufacturer name: Enabled
Enable Passwords
Level
-----
1
15
Line Passwords
Line
-----
Console
Telnet
SSH
```
4.1 ip access-list (IP extended)

Use the `ip access-list extended` Global Configuration mode command to name an IPv4 access list (ACL) and to place the device in IPv4 Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IP)` and `deny (IP)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
ip access-list extended acl-name
no ip access-list extended acl-name
```

Parameters

- `acl-name`—Name of the IPv4 access list. (Range 1-32 characters)

Default Configuration

No IPv4 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

An IPv4 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)#
```
4.2 permit (IP)

Use the `permit` IP Access-list Configuration mode command to set permit conditions for an IPv4 access list (ACL). Permit conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [log-input]
```
no permit igmp \{any | source source-wildcard\} \{any | destination destination-wildcard\} [igmp-type] \{dscp number | precedence number\} \{time-range time-range-name\}

no permit tcp \{any | source source-wildcard\} \{any | source-port/port-range\} \{any | destination destination-wildcard\} \{any | destination-port/port-range\} \{dscp number | precedence number\} \{match-all list-of-flags\} \{time-range time-range-name\}

no permit udp \{any | source source-wildcard\} \{any | source-port/port-range\} \{any | destination destination-wildcard\} \{any | destination-port/port-range\} \{dscp number | precedence number\} \{time-range time-range-name\}

Parameters

- **permit protocol** — The name or the number of an IP protocol. Available protocol names are: icmp, igmp, ip, tcp, egp, igrp, udp, hmp, rdp, idpr, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the ip keyword. (Range: 0–255)

- **source** — Source IP address of the packet.

- **source-wildcard** — Wildcard bits to be applied to the source IP address. Use ones in the bit position that you want to be ignored.

- **destination** — Destination IP address of the packet.

- **destination-wildcard** — Wildcard bits to be applied to the destination IP address. Use ones in the bit position that you want to be ignored.

- **priority** — Specify the priority of the access control entry (ACE) in the access control list (ACL). "I" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

- **dscp number** — Specifies the DSCP value.

- **precedence number** — Specifies the IP precedence value.

- **icmp-type** — Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request,
ACL Commands

information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), on500-isakmp (4500), ntp (123), rip (520), smtp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535).

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set, it is prefixed by “+.” If a flag should be unset, it is prefixed by “-.” Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.
Default Configuration
No IPv4 access list is defined.

Command Mode
IP Access-list Configuration mode

User Guidelines
If a range of ports is used for source port in an ACE, it is not counted again, if it is also used for a source port in another ACE. If a range of ports is used for the destination port in an ACE, it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxx(config)# ip access-list extended server
switchxxxxx(config-ip-al)# permit ip 176.212.0.0 00.255.255 any
```

4.3 deny (IP)

Use the **deny** IP Access-list Configuration mode command to set deny conditions for IPv4 access list. Deny conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol [any | source source-wildcard] [any | destination destination-wildcard] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port log-input]
deny icmp [any | source source-wildcard] [any | destination destination-wildcard] [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port log-input]
```
deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

deny tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input]

deny udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

no deny protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

no deny icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

no deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

no deny tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input]

no deny udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names: icmp, igmp, ip, tcp, egp, igrp, udp, hmp, rdp, idpr, ipv6, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the ip keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use 1s in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.
• **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use 1s in the bit position that you want to be ignored.

• **priority**—Specify the priority of the access control entry (ACE) in the access control list (ACL). “1” value represents the highest priority and “2147483647” number represents the lowest priority. (Range: 1-2147483647)

• **dscp number**—Specifies the DSCP value.

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), smtp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

• **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available
options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **disable-port**—The Ethernet interface is disabled if the condition is matched.

- **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.

Command Mode

IP Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for a source port in ACE it is not counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port, it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxx(config)# ip access-list extended server
switchxxxxx(config-ip-al)# deny ip 176.212.0.0 00.255.255 any
```
4.4 ipv6 access-list (IPv6 extended)

Use the `ipv6 access-list` Global Configuration mode command to define an IPv6 access list (ACL) and to place the device in ipv6 Access-list Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IPv6)` and `deny (IPv6)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
ipv6 access-list [acl-name]
no ipv6 access-list [acl-name]
```

Parameters

`acl-name`—Name of the IPv6 access list. Range 1-32 characters.

Default Configuration

No IPv6 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

IPv6 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Every IPv6 ACL has an implicit `permit icmp any any nd-ns any, permit icmp any any nd-na any, and deny ipv6 any any` statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.)

The IPv6 neighbor discovery process uses the IPv6 network layer service, therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Example

```
switchxxxxxx(config)# ipv6 access-list acl1
```
4.5 permit (IPv6)

Use the `permit` command in IPv6 Access-list Configuration mode to set permit conditions (ACEs) for IPv6 ACLs. Use the no form of the command to remove the access control entry.

Syntax

```
permit protocol {any | [source-prefix/length][any | destination-prefix/length] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit icmp {any | [source-prefix/length][any | destination-prefix/length] [any][icmp-type] [any|icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit tcp [any | [source-prefix/length] [any | source-port/port-range]] [any | destination-prefix/length] [any|destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

permit udp [any | [source-prefix/length] [any | source-port/port-range]] [any | destination-prefix/length] [any|destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit protocol {any | [source-prefix/length][any | destination-prefix/length] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit icmp {any | [source-prefix/length][any | destination-prefix/length] [any|icmp-type] [any|icmp-code] [dscp number | precedence number] [time-range time-range-name] [log-input]
```
no permit tcp {any | [source-prefix/length] [any | source-port/port-range]} [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

no permit udp {any | [source-prefix/length]} [any | source-port/port-range]} [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number] [time-range time-range-name] [log-input]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **priority**—Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

- **dscp number**—Specifies the DSCP value. (Range: 0–63)

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a number or
one of the following values: bgp (179), chargen (19), daytime (13), discard (9),
domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher
(70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119),
pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds
(49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For
UDP enter a number or one of the following values: biff (512), bootpc (68),
bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434),
nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp
(4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog
(514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177).
(Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names
 are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flag**—List of TCP flags that should occur. If a flag should be
 set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available
 options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and
 -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit
 statement. (Range: 1–32)

- **log-input**—Specifies sending an informational SYSLOG message about
 the packet that matches the entry. Because forwarding/dropping is done in
 hardware and logging is done in software, if a large number of packets
 match an ACE containing a log-input keyword, the software might not be
 able to match the hardware processing rate, and not all packets will be
 logged.

Default Configuration

No IPv6 access list is defined.

Command Mode

Ipv6 Access-list Configuration mode

User Guidelines

If a range of ports is used for the destination port in an ACE, it is not counted again
if it is also used for destination port in another ACE.

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of
ports is used for a source port in ACE, it is not counted again if it is also used for a
source port in another ACE. If a range of ports is used for destination port in ACE it
is not counted again if it is also used for destination port in another ACE.
If a range of ports is used for source port it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

This example defines an ACL by the name of server and enters a rule (ACE) for tcp packets.

```
switchxxxxx(config)# ipv6 access-list server
switchxxxxx(config-ipv6-al)# permit tcp 3001::2/64 any any 80
```

4.6 deny (IPv6)

Use the `deny` command in Ipv6 Access-list Configuration mode to set permit conditions (ACEs) for IPv6 ACLs. Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol {any | [source-prefix/length][any | destination-prefix/length]} [ace-priority priority][dscp number | precedence number] [time-range time-range-name] [disable-port log-input]

deny icmp {any | [source-prefix/length][any | destination-prefix/length]} {any | icmp-type} {any | icmp-code} [ace-priority priority][dscp number | precedence number] [time-range time-range-name] [disable-port log-input]

deny tcp {any | [source-prefix/length]} [any | source-port/port-range]} [any | destination-prefix/length][any | destination-port/port-range] [ace-priority priority][dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port log-input]

deny udp {any | [source-prefix/length]} [any | source-port/port-range]} [any | destination-prefix/length][any | destination-port/port-range] [ace-priority priority][dscp number | precedence number] [time-range time-range-name] [disable-port log-input]

no deny protocol {any | [source-prefix/length][any | destination-prefix/length]} [dscp number | precedence number] [time-range time-range-name] [disable-port log-input]
```
no deny icmp {any | [source-prefix/length][any | destination-prefix/length]} {any | icmp-type} {any | icmp-code} [dscp number | precedence number] [time-range time-range-name] [disable-port log-input]

no deny tcp {any | [source-prefix/length] [any | source-port/port-range]} [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port log-input]

no deny udp {any | [source-prefix/length]} [any | source-port/port-range] [any | destination-prefix/length] [any | destination-port/port-range] [dscp number | precedence number] [time-range time-range-name] [disable-port log-input]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **priority**—Specify the priority of the access control entry (ACE) in the access control list (ACL). “1” value represents the highest priority and “2147483647” number represents the lowest priority. (Range: 1-2147483647)

- **dscp number**—Specifies the DSCP value. (Range: 0–63)

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)
- **destination-port**—Specifies the UDP/TCP destination port. You can enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discart (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **disable-port**—The Ethernet interface is disabled if the condition is matched.

- **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv6 access list is defined.

Command Mode

Ipv6 Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for source port in ACE it is not counted again if it is also used for
source port in another ACE. If a range of ports is used for a destination port in ACE it is not counted again if it is also used for a destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# ipv6 access-list server
switchxxxxxx(config-ipv6-al)# deny tcp 3001::2/64 any any 80
```

4.7 mac access-list

Use the `mac access-list` Global Configuration mode command to define a Layer 2 access list (ACL) based on source MAC address filtering and to place the device in MAC Access-list Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (MAC)` and `deny (MAC)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
mac access-list extended acl-name
no mac access-list extended acl-name
```

Parameters

`acl-name`—Specifies the name of the MAC ACL (Range: 1–32 characters).

Default Configuration

No MAC access list is defined.

Command Mode

Global Configuration mode
User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any

4.8 permit (MAC)

Use the permit command in MAC Access-list Configuration mode to set permit conditions (ACEs) for a MAC ACL. Use the no form of the command to remove the access control entry.

Syntax

permit {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name] [log-input]

no permit {any | source source-wildcard} {any | destination destination-wildcard} [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name] [log-input]

Parameters

- **source**—Source MAC address of the packet.
- **source-wildcard**—Wildcard bits to be applied to the source MAC address. Use 1s in the bit position that you want to be ignored.
- **destination**—Destination MAC address of the packet.
- **destination-wildcard**—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

- **eth-type**—The Ethernet type in hexadecimal format of the packet.

- **vlan-id**—The VLAN ID of the packet. (Range: 1–4094)

- **cos**—The Class of Service of the packet. (Range: 0–7)

- **cos-wildcard**—Wildcard bits to be applied to the CoS.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```
4.9

deny (MAC)

Use the `deny` command in MAC Access-list Configuration mode to set deny conditions (ACEs) for a MAC ACL. Use the no form of the command to remove the access control entry.

Syntax

```plaintext
deny {any | source source-wildcard} {any | destination destination-wildcard} 
[| ace-priority priority]|||eth-type 0| aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | vlan vlan-id | cos cos-wildcard | time-range time-range-name | disable-port | log-input
no deny {any | source source-wildcard} {any | destination destination-wildcard} 
||eth-type 0| aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | vlan vlan-id | cos cos-wildcard | time-range time-range-name | disable-port | log-input
```

Parameters

- `source`—Source MAC address of the packet.
- `source-wildcard`—Wildcard bits to be applied to the source MAC address. Use ones in the bit position that you want to be ignored.
- `destination`—Destination MAC address of the packet.
- `destination-wildcard`—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- `priority`—Specify the priority of the access control entry (ACE) in the access control list (ACL). “1” value represents the highest priority and “2147483647” number represents the lowest priority. (Range: 1–2147483647)
- `eth-type`—The Ethernet type in hexadecimal format of the packet.
- `cos`—The Class of Service of the packet. (Range: 0–7).
- `cos-wildcard`—Wildcard bits to be applied to the CoS.
- `time-range-name`—Name of the time range that applies to this permit statement. (Range: 1–32)
- `disable-port`—The Ethernet interface is disabled if the condition is matched.
- `log-input`—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in
hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```sh
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# deny 00:00:00:00:00:01 00:00:00:00:ff any
```

4.10 service-acl input

Use the `service-acl input` command in Interface Configuration mode to bind an access list(s) (ACL) to an interface.

Use the `no` form of this command to remove all ACLs from the interface.

Syntax

```sh
service-acl input acl-name1 [acl-name2] [default-action {deny-any | permit-any}]
no service-acl input
```

Parameters

- `acl-name`—Specifies an ACL to apply to the interface. See the user guidelines. (Range: 1–32 characters).
• **deny-any**—Deny all packets (that were ingress at the port) that do not meet the rules in this ACL.

• **permit-any**—Forward all packets (that were ingress at the port) that do not meet the rules in this ACL.

Default Configuration

No ACL is assigned.

Command Mode

Interface Configuration mode (Ethernet, Port-Channel, VLAN)

User Guidelines

The following rules govern when ACLs can be bound or unbound from an interface:

- IPv4 ACLs and IPv6 ACLs can be bound together to an interface.
- A MAC ACL cannot be bound on an interface which already has an IPv4 ACL or IPv6 ACL bound to it.
- Two ACLs of the same type cannot be bound to a port.
- An ACL cannot be bound to a port that is already bound to an ACL, without first removing the current ACL. Both ACLs must be mentioned at the same time in this command.
- MAC ACLs that include a VLAN as match criteria cannot be bound to a VLAN.
- ACLs with time-based configuration on one of its ACEs cannot be bound to a VLAN.
- ACLs with the action Shutdown cannot be bound to a VLAN.
- When the user binds ACL to an interface, TCAM resources will be consumed. One TCAM rule for each MAC or IP ACE and two TCAM rules for each IPv6 ACE. The TCAM consumption is always even number, so in case of odd number of rules the consumption will be increased by 1.

Example

```
switchxxxxxx(config)# mac access-list extended server-acl
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```
4.11 time-range

Use the **time-range** Global Configuration mode command to define time ranges for different functions. In addition, this command enters the Time-range Configuration mode. All commands after this one refer to the time-range being defined.

This command sets a time-range name. Use the **absolute** and **periodic** commands to actually configure the time-range.

Use the **no** form of this command to remove the time range from the device.

Syntax

```
time-range time-range-name
no time-range time-range-name
```

Parameters

- **time-range-name**—Specifies the name for the time range. (Range: 1–32 characters)

Default Configuration

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

After adding the name of a time range with this command, use the **absolute** and **periodic** commands to actually configure the time-range. Multiple periodic commands are allowed in a time range. Only one absolute command is allowed.

If a time-range command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.
To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range ACEs are not activated.

The user cannot delete a time-range that is bound to any features.

When a time range is defined, it can be used in the following commands:

- `dot1x port-control`
- `power inline`
- `operation time`
- `permit (IP)`
- `deny (IP)`
- `permit (IPv6)`
- `deny (IPv6)`
- `permit (MAC)`
- `deny (MAC)`

Example

```
switchxxxxxx(config)# time-range http-allowed
console(config-time-range)#periodic mon 12:00 to wed 12:00
```

4.12 **absolute**

Use the `absolute` Time-range Configuration mode command to specify an absolute time when a time range is in effect. Use the `no` form of this command to remove the time limitation.

Syntax

```
absolute start hh:mm day month year
no absolute start

absolute end hh:mm day month year
no absolute end
```
Parameters

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.

- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.

- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- **day**—Day (by date) in the month. (Range: 1–31)

- **month**—Month (first three letters by name). (Range: Jan...Dec)

- **year**—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode

Example

```plaintext
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

4.13 periodic

Use the **periodic** Time-range Configuration mode command to specify a recurring (weekly) time range for functions that support the time-range feature. Use the **no** form of this command to remove the time limitation.

Syntax

- **periodic** `day-of-the-week hh:mm to day-of-the-week hh:mm`
- **no periodic** `day-of-the-week hh:mm to day-of-the-week hh:mm`
periodic list \texttt{hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]}

\texttt{no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]}

periodic list \texttt{hh:mm to hh:mm all}

\texttt{no periodic list hh:mm to hh:mm all}

Parameters

- **day-of-the-week**—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

- \texttt{hh:mm}—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- \texttt{list day-of-the-week1}—Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.

Command Mode

Time-range Configuration mode

User Guidelines

The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

```
switchxxxxxxx(config)# time-range http-allowed
switchxxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
4.14 show time-range

Use the show time-range User EXEC mode command to display the time range configuration.

Syntax

show time-range time-range-name

Parameters

time-range-name—Specifies the name of an existing time range.

Command Mode

User EXEC mode

Example

switchxxxxxx> show time-range
http-allowed

absolute start 12:00 1 Jan 2005 end 12:00 31 Dec 2005
periodic Monday 12:00 to Wednesday 12:00

4.15 show access-lists

Use the show access-lists Privileged EXEC mode command to display access control lists (ACLs) configured on the switch.

Syntax

show access-lists [name]
show access-lists time-range-active [name]

Parameters

- name—Specifies the name of the ACL.(Range: 1-160 characters).
- **time-range-active**—Shows only the Access Control Entries (ACEs) whose time-range is currently active (including those that are not associated with time-range).

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show access-lists
Standard IP access list 1
Extended IP access list ACL2
  permit 234 172.30.19.1 0.0.0.255 any priority 20 time-range weekdays
  permit 234 172.30.23.8 0.0.0.255 any priority 40 time-range weekdays

switchxxxxxx# show access-lists time-range-active
Extended IP access list ACL1
  permit 234 172.30.40.1 0.0.0.0 any priority 20
time-range weekdays
  permit 234 172.30.8.8 0.0.0.0 any priority 40
time-range weekdays

switchxxxxxx# show access-lists ACL1
Extended IP access list ACL1
  permit 234 172.30.40.1 0.0.0.0 any priority 20
  permit 234 172.30.8.8 0.0.0.0 any priority 40
```

4.16 show interfaces access-lists

Use the `show interfaces access-lists` Privileged EXEC mode command to display access lists (ACLs) applied on interfaces.

Syntax

```
show interfaces access-lists [interface-id]
```
Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN.

Command Mode

Privileged EXEC mode

Example

<table>
<thead>
<tr>
<th>Interface</th>
<th>ACLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>blockcdp, blockvtp</td>
</tr>
<tr>
<td>gi12</td>
<td>Ingress: server1</td>
</tr>
</tbody>
</table>

4.17 clear access-lists counters

Use the clear access-lists counters Privileged EXEC mode command to clear access-lists (ACLs) counters.

Syntax

clear access-lists counters [interface-id]

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

Example

switchxxxxxx# clear access-lists counters gi11
4.18 show interfaces access-lists trapped packets

Use the show interfaces access-lists trapped packets Privileged EXEC mode command to display Access List (ACLs) trapped packets.

Syntax

show interfaces access-lists trapped packets [interface-id | port-channel-number | VLAN]

Parameters

- interface-id—Specifies an interface ID, the interface ID is an Ethernet port port-channel.
- port-channel—Specifies a port-channel.
- VLAN—Specifies a VLAN

Command Mode

Privileged EXEC mode

User Guidelines

This command shows whether packets were trapped from ACE hits with logging enable on an interface.

Examples

Example 1:

switchxxxxxx# show interfaces access-lists trapped packets

Ports/LAGs: gi11-gi13, ch1-ch3, ch4

VLANs: VLAN1, VLAN12-VLAN15

Packets were trapped globally due to lack of resources
Example 2:

```
switchxxxxxx# show interfaces access-lists trapped packets gi1

Packets were trapped on interface gi1
```
5.1 bridge multicast filtering

To enable the filtering of Multicast addresses, use the `bridge multicast filtering` Global Configuration mode command. To disable Multicast address filtering, use the `no` form of this command.

Syntax

```
bridge multicast filtering
no bridge multicast filtering
```

Parameters

This command has no arguments or keywords.

Default Configuration

Multicast address filtering is disabled. All Multicast addresses are flooded to all ports.

Command Mode

Global Configuration mode

User Guidelines

When this feature is enabled, unregistered Multicast traffic (as opposed to registered) will still be flooded.

All registered Multicast addresses will be forwarded to the Multicast groups. There are two ways to manage Multicast groups, one is the IGMP Snooping feature, and the other is the `bridge multicast forward-all` command.
Example

The following example enables bridge Multicast filtering.

```
switchxxxxxx(config)# bridge multicast filtering
```

5.2 bridge multicast mode

To configure the Multicast bridging mode, use the `bridge multicast mode` Interface (VLAN) Configuration mode command. To return to the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast mode {mac-group | ipv4-group | ipv4-src-group}
```

```
no bridge multicast mode
```

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address.

- **ipv4-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN and IPv4 destination address for IPv4 packets.

- **ipv4-src-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN, IPv4 destination address and IPv4 source address for IPv4 packets.

Default Configuration

The default mode is `mac-group`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the mac-group option when using a network management system that uses a MIB based on the Multicast MAC address. Otherwise, it is recommended to use
the ipv4 mode, because there is no overlapping of IPv4 Multicast addresses in these modes.

For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>bridge multicast ip-address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>bridge multicast source group</td>
</tr>
</tbody>
</table>

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the IGMP version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>IGMP version 2</th>
<th>IGMP version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>IP group address</td>
<td>IP group address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>(*)</td>
<td>IP source and group addresses</td>
</tr>
</tbody>
</table>

(*) Note that (*,G) cannot be written to the FDB if the mode is ipv4-src-group. In that case, no new FDB entry is created, but the port is added to the static (S,G) entries (if they exist) that belong to the requested group. It is recommended to set the FDB mode to ipv4-group or mac-group for IGMP version 2.

If an application on the device requests (*,G), the operating FDB mode is changed to ipv4-group.

Example

The following example configures the Multicast bridging mode as an mac-group on VLAN 2.

```bash
switchxxxxxxx(config)# interface vlan 2
switchxxxxxxx(config-if)# bridge multicast mode mac-group
```
5.3 bridge multicast address

To register a MAC-layer Multicast address in the bridge table and statically add or remove ports to or from the group, use the `bridge multicast address` Interface (VLAN) Configuration mode command. To unregister the MAC address, use the `no` form of this command.

Syntax

```
bridge multicast address {mac-multicast-address | ipv4-multicast-address} 
[add | remove] 
[ethernet interface-list | port-channel port-channel-list]
```

```
no bridge multicast address {mac-multicast-address}
```

Parameters

- `mac-multicast-address | ipv4-multicast-address`—Specifies the group Multicast address.
- `add`—(Optional) Adds ports to the group.
- `remove`—(Optional) Removes ports from the group.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

If `ethernet interface-list` or `port-channel port-channel-list` is specified without specifying `add` or `remove`, the default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the `mac-multicast-address` parameter only.

Static Multicast addresses can be defined on static VLANs only.
You can execute the command before the VLAN is created.

Examples

Example 1 - The following example registers the MAC address to the bridge table:

```plaintext
switchxxxxx(config)# interface vlan 8
switchxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03
```

Example 2 - The following example registers the MAC address and adds ports statically.

```plaintext
switchxxxxx(config)# interface vlan 8
switchxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03 add gi11-2
```

5.4 bridge multicast forbidden address

To forbid adding or removing a specific Multicast address to or from specific ports, use the **bridge multicast forbidden address** Interface (VLAN) Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
bridge multicast forbidden address {mac-multicast-address | ipv4-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast forbidden address {mac-multicast-address}
```

Parameters

- **mac-multicast-address | ipv4-multicast-address**—Specifications the group Multicast address.
- **add**—Forbids adding ports to the group.
- **remove**—Forbids removing ports from the group.
Address Table Commands

- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered, using `bridge multicast address`.

You can execute the command before the VLAN is created.

Example

The following example forbids MAC address 0100.5e02.0203 on port gi14 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 0100.5e02.0203
switchxxxxxx(config-if)# bridge multicast forbidden address 0100.5e02.0203 add gi14
```

5.5 bridge multicast ip-address

To register IP-layer Multicast addresses to the bridge table, and statically add or remove ports to or from the group, use the `bridge multicast ip-address` Interface (VLAN) Configuration mode command. To unregister the IP address, use the no form of this command.
Syntax

bridge multicast ip-address ip-multicast-address [[add | remove] [interface-list | port-channel port-channel-list]]

no bridge multicast ip-address ip-multicast-address

Parameters

- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—(Optional) Adds ports to the group.
- **remove**—(Optional) Removes ports from the group.
- **interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

Default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the ip-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Example

The following example registers the specified IP address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
```
The following example registers the IP address and adds ports statically.

The following example registers the IP address and adds ports statically.

```
switchxxxxxx(config-if)#  bridge multicast ip-address 239.2.2.2
```

To forbid adding or removing a specific IP Multicast address to or from specific ports, use the `bridge multicast forbidden ip-address` Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

```
bridge multicast forbidden ip-address {ip-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}
```

```
no bridge multicast forbidden ip-address {ip-multicast-address}
```

Parameters

- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—(Optional) Forbids adding ports to the group.
- **remove**—(Optional) Forbids removing ports from the group.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.
Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.
You can execute the command before the VLAN is created.

Example

The following example registers IP address 239.2.2.2, and forbids the IP address on port gi14 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden ip-address 239.2.2.2 add gi14
```

5.7 bridge multicast source group

To register a source IP address - Multicast IP address pair to the bridge table, and statically add or remove ports to or from the source-group, use the bridge multicast source group Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the no form of this command.

Syntax

```
bridge multicast source ip-address group ip-multicast-address [[add | remove] [ethernet interface-list | port-channel port-channel-list]]
no bridge multicast source ip-address group ip-multicast-address
```

Parameters

- `ip-address`—Specifies the source IP address.
- `ip-multicast-address`—Specifies the group IP Multicast address.
- `add`—(Optional) Adds ports to the group for the specific source IP address.
- `remove`—(Optional) Removes ports from the group for the specific source IP address.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined. The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

You can execute the command before the VLAN is created.

Example

The following example registers a source IP address - Multicast IP address pair to the bridge table:

```plaintext
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
```

5.8 **bridge multicast forbidden source group**

To forbid adding or removing a specific IP source address - Multicast address pair to or from specific ports, use the **bridge multicast forbidden source group** Interface (VLAN) Configuration mode command. To return to the default configuration, use the no form of this command.

Syntax

```plaintext
bridge multicast forbidden source ip-address group ip-multicast-address [add | remove] [ethernet interface-list | port-channel port-channel-list]

no bridge multicast forbidden source ip-address group ip-multicast-address
```
Parameters

- **ip-address**—Specifies the source IP address.
- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—(Optional) Forbids adding ports to the group for the specific source IP address.
- **remove**—(Optional) Forbids removing ports from the group for the specific source IP address.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers a source IP address - Multicast IP address pair to the bridge table, and forbids adding the pair to port gi14 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden source 13.16.1.1 group 239.2.2.2 add gi14
```
5.9 bridge multicast ipv6 mode

To configure the Multicast bridging mode for IPv6 Multicast packets, use the `bridge multicast ipv6 mode` Interface (VLAN) Configuration mode command. To return to the default configuration, use the no form of this command.

Syntax

```
bridge multicast ipv6 mode {mac-group / ip-group / ip-src-group}
no bridge multicast ipv6 mode
```

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC destination address.
- **ip-group**—Specifies that Multicast bridging is based on the packet's VLAN and IPv6 destination address for IPv6 packets.
- **ip-src-group**—Specifies that Multicast bridging is based on the packet's VLAN, IPv6 destination address and IPv6 source address for IPv6 packets.

Default Configuration

The default mode is **mac-group**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the **mac-group** mode when using a network management system that uses a MIB based on the Multicast MAC address.
For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries for IPv6 Multicast addresses in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>bridge multicast ipv6 ip-address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden ip-address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>bridge multicast ipv6 source group</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden source group</td>
</tr>
</tbody>
</table>

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the MLD version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>MLD version 1</th>
<th>MLD version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>IPv6 group address</td>
<td>IPv6 group address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>(*)</td>
<td>IPv6 source and group addresses</td>
</tr>
</tbody>
</table>

(*) Note that (*,G) cannot be written to the FDB if the mode is ip-src-group. In that case, no new FDB entry is created, but the port is added to the (S,G) entries (if they exist) that belong to the requested group.

If an application on the device requests (*,G), the operating FDB mode is changed to ip-group.

You can execute the command before the VLAN is created.

Example

The following example configures the Multicast bridging mode as an ip-group on VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast ipv6 mode
ip-group
```
5.10 `bridge multicast ipv6 ip-address`

To register an IPv6 Multicast address to the bridge table, and statically add or remove ports to or from the group, use the `bridge multicast ipv6 ip-address` Interface (VLAN) Configuration mode command. To unregister the IPv6 address, use the no form of this command.

Syntax

```
bridge multicast ipv6 ip-address ipv6-multicast-address [[add | remove] {ethernet interface-list / port-channel port-channel-list}]
```

no bridge multicast ipv6 ip-address ip-multicast-address

Parameters

- **ipv6-multicast-address**—Specifies the group IPv6 multicast address.
- **add**—(Optional) Adds ports to the group.
- **remove**—(Optional) Removes ports from the group.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces; use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the **ipv6-multicast-address** parameter only.

Static Multicast addresses can be defined on static VLANs only.
You can execute the command before the VLAN is created.

Examples

Example 1 - The following example registers the IPv6 address to the bridge table:

```plaintext
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
```

Example 2 - The following example registers the IPv6 address and adds ports statically.

```plaintext
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
   add gi11-2
```

5.11 bridge multicast ipv6 forbidden ip-address

To forbid adding or removing a specific IPv6 Multicast address to or from specific ports, use the `bridge multicast ipv6 forbidden ip-address` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 forbidden ip-address {ipv6-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast ipv6 forbidden ip-address {ipv6-multicast-address}
```

Parameters

- **ipv6-multicast-address**—Specifies the group IPv6 Multicast address.
- **add**—(Optional) Forbids adding ports to the group.
- **remove**—(Optional) Forbids removing ports from the group.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

The default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers an IPv6 Multicast address, and forbids the IPv6 address on port gi14 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:4:4:1
switchxxxxxx(config-if)# bridge multicast ipv6 forbidden ip-address FF00:0:0:4:4:1 add gi14
```

5.12 bridge multicast ipv6 source group

To register a source IPv6 address - Multicast IPv6 address pair to the bridge table, and statically add or remove ports to or from the source-group, use the `bridge multicast ipv6 source group` Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the `no` form of this command.
Syntax

`bridge multicast ipv6 source ipv6-source-address group ipv6-multicast-address [add | remove] [ethernet interface-list | port-channel port-channel-list]`

`no bridge multicast ipv6 source ipv6-address group ipv6-multicast-address`

Parameters

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—(Optional) Adds ports to the group for the specific source IPv6 address.
- `remove`—(Optional) Removes ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

The default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table:

```
switchxxxxxx(config)#  interface vlan 8
switchxxxxxx(config-if)#  bridge multicast source 2001:0:0:0:4:4:4 group FF00:0:0:0:4:4:4:1
```
5.13 bridge multicast ipv6 forbidden source group

To forbid adding or removing a specific IPv6 source address - Multicast address pair to or from specific ports, use the `bridge multicast ipv6 forbidden source group` Interface (VLAN) Configuration mode command. To return to the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 forbidden source ipv6-source-address group
ipv6-multicast-address {add | remove} {ethernet interface-list | port-channel port-channel-list}

no bridge multicast ipv6 forbidden source ipv6-address group
ipv6-multicast-address
```

Parameters

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—Forbids adding ports to the group for the specific source IPv6 address.
- `remove`—Forbids removing ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode
User Guidelines

Before defining forbidden ports, the Multicast group should be registered.
You can execute the command before the VLAN is created.

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table, and forbids adding the pair to gi14 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 2001:0:0:0:4:4:4:1 group FF00:0:0:0:4:4:4:1
switchxxxxxx(config-if)# bridge multicast forbidden source 2001:0:0:0:4:4:4:1 group FF00:0:0:0:4:4:4:1 add gi14
```

5.14 bridge multicast unregistered

To configure forwarding unregistered Multicast addresses, use the `bridge multicast unregistered` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast unregistered {forwarding / filtering}
no bridge multicast unregistered
```

Parameters

- `forwarding`—Forwards unregistered Multicast packets.
- `filtering`—Filters unregistered Multicast packets.

Default Configuration

Unregistered Multicast addresses are forwarded.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode
User Guidelines

Do not enable unregistered Multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example

The following example specifies that unregistered Multicast packets are filtered on gi11:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# bridge multicast unregistered filtering
```

5.15 bridge multicast forward-all

To enable forwarding all multicast packets for a range of ports or port channels, use the bridge multicast forward-all Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

```
bridge multicast forward-all [add | remove] [ethernet interface-list | port-channel port-channel-list]
no bridge multicast forward-all
```

Parameters

- **add**—Forces forwarding of all Multicast packets.
- **remove**—Does not force forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.
Default Configuration
Forwarding of all Multicast packets is disabled.

Command Mode
Interface (VLAN) Configuration mode

Example
The following example enables all Multicast packets on port gi14 to be forwarded.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forward-all add gi14
```

5.16 bridge multicast forbidden forward-all
To forbid a port to dynamically join Multicast groups, use the bridge multicast forbidden forward-all Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax
bridge multicast forbidden forward-all [add / remove] [ethernet interface-list / port-channel port-channel-list]

no bridge multicast forbidden forward-all

Parameters
- **add**—Forbids forwarding of all Multicast packets.
- **remove**—Does not forbid forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.
Default Configuration
Ports are not forbidden to dynamically join Multicast groups.
The default option is **add**.

Command Mode
Interface (VLAN) Configuration mode

User Guidelines
Use this command to forbid a port to dynamically join (by IGMP, for example) a Multicast group.
The port can still be a Multicast router port.

Example
The following example forbids forwarding of all Multicast packets to gi1 within VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forbidden forward-all add ethernet gi1
```

5.17 bridge unicast unknown

To enable egress filtering of Unicast packets where the destination MAC address is unknown to the device, use the **bridge unicast unknown** Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
bridge unicast unknown {filtering | forwarding}
no bridge unicast unknown
```

Parameters

- **filtering**—Filter unregistered Unicast packets.
- **forwarding**—Forward unregistered Unicast packets.
Default Configuration
Forwarding.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode.

Example
The following example drops Unicast packets on gi11 when the destination is unknown.

```
switchxxxxx(config)# interface gi11
switchxxxxx(config-if)# bridge unicast unknown filtering
```

5.18 show bridge unicast unknown

To display the unknown Unicast filtering configuration, use the `show bridge unicast unknown` Privileged EXEC mode command.

Syntax
```
show bridge unicast unknown [interface-id]
```

Parameters
interface-id—(Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel

Command Mode
Privileged EXEC mode

Example
```
Console # show bridge unicast unknown

<table>
<thead>
<tr>
<th>Port</th>
<th>Unregistered</th>
</tr>
</thead>
<tbody>
<tr>
<td>gil1</td>
<td>Forward</td>
</tr>
<tr>
<td>gil2</td>
<td>Filter</td>
</tr>
</tbody>
</table>
```
5.19 **mac address-table static**

To add a MAC-layer station source address to the MAC address table, use the `mac address-table static` Global Configuration mode command. To delete the MAC address, use the `no` form of this command.

Syntax

```
mac address-table static mac-address vlan vlan-id interface interface-id [permanent /delete-on-reset /delete-on-timeout /secure]
no mac address-table static [mac-address] vlan vlan-id
```

Parameters

- **mac-address**—MAC address (Range: Valid MAC address)
- **vlan-id**—Specify the VLAN
- **interface-id**—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel (Range: valid ethernet port, valid port-channel)
- **permanent**—(Optional) The permanent static MAC address. The keyword is applied by the default.
- **delete-on-reset**—(Optional) The delete-on-reset static MAC address.
- **delete-on-timeout**—(Optional) The delete-on-timeout static MAC address.
- **secure**—(Optional) The secure MAC address. May be used only in a secure mode.

Default Configuration

No static addresses are defined. The default mode for an added address is permanent.

Command Mode

Global Configuration mode
User Guidelines

Use the command to add a static MAC address with given time-to-live in any mode or to add a secure MAC address in a secure mode.

Each MAC address in the MAC address table is assigned two attributes: **type** and **time-to-live**.

The following value of time-of-live is supported:

- **permanent**—MAC address is saved until it is removed manually.
- **delete-on-reset**—MAC address is saved until the next reboot.
- **delete-on-timeout**—MAC address that may be removed by the aging timer.

The following types are supported:

- **static**—MAC address manually added by the command with the following keywords specifying its time-of-live:
 - permanent
 - delete-on-reset
 - delete-on-timeout

 A static MAC address may be added in any port mode.

- **secure**—A MAC address added manually or learned in a secure mode. Use the **mac address-table static** command with the **secure** keyword to add a secure MAC address. The MAC address cannot be relearned.

 A secure MAC address may be added only in a secure port mode.

- **dynamic**—a MAC address learned by the switch in non-secure mode. A value of its **time-to-live** attribute is **delete-on-timeout**.

Examples

Example 1 - The following example adds two permanent static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b1 vlan 1
interface gi1

switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi1 permanent
```
Example 2 - The following example adds a deleted-on-reset static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi11 delete-on-reset
```

Example 3 - The following example adds a deleted-on-timeout static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi11 delete-on-timeout
```

Example 4 - The following example adds a secure MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi11 secure
```

5.20 clear mac address-table

To remove learned or secure entries from the forwarding database (FDB), use the `clear mac address-table` Privileged EXEC mode command.

Syntax

```
clear mac address-table dynamic interface interface-id

clear mac address-table secure interface interface-id
```

Parameters

- **dynamic interface interface-id**—Delete all dynamic (learned) addresses on the specified interface. The interface ID can be one of the following types: Ethernet port or port-channel. If interface ID is not supplied, all dynamic addresses are deleted.

- **secure interface interface-id**—Delete all the secure addresses learned on the specific interface. A secure address on a MAC address learned on ports on which port security is defined.
Default Configuration

For dynamic addresses, if interface-id is not supplied, all dynamic entries are deleted.

Command Mode

Privileged EXEC mode

Examples

Example 1 - Delete all dynamic entries from the FDB.

```
switchxxxxxx# clear mac address-table dynamic
```

Example 2 - Delete all secure entries from the FDB learned on secure port gi1.

```
switchxxxxxx# clear mac address-table secure interface gi1
```

5.21 mac address-table aging-time

To set the aging time of the address table, use the `mac address-table aging-time` Global configuration command. To restore the default, use the `no` form of this command.

Syntax

```
mac address-table aging-time seconds
no mac address-table aging-time
```

Parameters

seconds—Time is number of seconds. (Range:10-630)

Default Configuration

300

Command Mode

Global Configuration mode
Example

switchxxxxx(config)# mac address-table aging-time 600

5.22 port security

To enable port security learning mode on an interface, use the `port security` Interface (Ethernet, Port Channel) Configuration mode command. To disable port security learning mode on an interface, use the `no` form of this command.

Syntax

```
port security [forward /discard /discard-shutdown] [trap seconds]
no port security
```

Parameters

- **forward**—(Optional) Forwards packets with unlearned source addresses, but does not learn the address.
- **discard**—(Optional) Discards packets with unlearned source addresses.
- **discard-shutdown**—(Optional) Discards packets with unlearned source addresses and shuts down the port.
- **trap seconds**—(Optional) Sends SNMP traps and specifies the minimum time interval in seconds between consecutive traps. (Range: 1–1000000)

Default Configuration

The feature is disabled by default.

The default mode is `discard`.

The default number of seconds is zero, but if `traps` is entered, a number of seconds must also be entered.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.
See the `mac address-table static` command for information about MAC address attributes (type and time-to-live) definitions.

When the `port security` command enables the `lock` mode on a port all dynamic addresses learned on the port are changed to `permanent secure` addresses.

When the `port security` command enables a mode on a port differing from the `lock` mode all dynamic addresses learned on the port are deleted.

When the `no port security` command cancels a secure mode on a port all secure addresses defined on the port are changed to `dynamic` addresses.

Additionally to set a mode, use the `port security` command to set an action that the switch should perform on a frame which source MAC address cannot be learned.

Example

The following example forwards all packets to port gi11 without learning addresses of packets from unknown sources and sends traps every 100 seconds, if a packet with an unknown source address is received.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# port security mode lock
switchxxxxxx(config-if)# port security forward trap 100
switchxxxxxx(config-if)# exit
```

5.23 port security mode

To configure the port security learning mode, use the `port security mode` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
port security mode {max-addresses | lock | secure permanent | secure delete-on-reset}

no port security mode
```
Parameters

- **max-addresses**— Non-secure mode with limited learning dynamic MAC addresses. The static MAC addresses may be added on the port manually by the `mac address-table static` command.

- **lock**— Secure mode without MAC learning. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

- **secure permanent**— Secure mode with limited learning permanent secure MAC addresses with the `permanent` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

- **secure delete-on-reset**— Secure mode with limited learning secure MAC addresses with the `delete-on-reset` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

Default Configuration

The default port security mode is **lock**.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The default port mode is called regular. In this mode, the port allows unlimited learning of dynamic addresses.

The static MAC addresses may be added on the port manually by the `mac address-table static` command.

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Use the `port security mode` command to change the default mode before the `port security` command.

Example

The following example sets the port security mode to
Lock for gi14.

```
switchxxxxxxx(config)# interface gi14
switchxxxxxxx(config-if)# port security mode
lock
switchxxxxxxx(config-if)# port security
switchxxxxxxx(config-if)# exit
```

5.24 port security max

To configure the maximum number of addresses that can be learned on the port while the port is in port, max-addresses or secure mode, use the `port security max` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
port security max max-addr
no port security max
```

Parameters

- `max-addr`—Specifies the maximum number of addresses that can be learned on the port. (Range: 0–256)

Default Configuration

This default maximum number of addresses is 1.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Use this command to change the default value before the `port security` command.
Example
The following example sets the port to limited learning mode:

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# port security mode max
switchxxxxxx(config-if)# port security max 20
switchxxxxxx(config-if)# port security
switchxxxxxx(config-if)# exit
```

5.25 port security routed secure-address

To add a MAC-layer secure address to a routed port, (port that has an IP address defined on it), use the `port security routed secure-address` Interface (Ethernet, Port Channel) Configuration mode command. To delete a MAC address from a routed port, use the no form of this command.

Syntax

```
port security routed secure-address mac-address
no port security routed secure-address mac-address
```

Parameters

`mac-address`—Specifies the MAC address.

Default Configuration

No addresses are defined.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

This command enables adding secure MAC addresses to a routed port in port security mode. The command is available when the port is a routed port and in port security mode. The address is deleted if the port exits the security mode or is not a routed port.
Example

The following example adds the MAC-layer address 00:66:66:66:66:66 to gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# port security routed secure-address
```

5.26 show mac address-table

To display entries in the MAC address table, use the `show mac address-table` Privileged EXEC mode command.

Syntax

```
show mac address-table [dynamic | static | secure] [vlan vlan] [interface interface-id] [address mac-address]
```

Parameters

- `dynamic`—(Optional) Displays only dynamic MAC address table entries.
- `static`—(Optional) Displays only static MAC address table entries.
- `secure`—(Optional) Displays only secure MAC address table entries.
- `vlan`—(Optional) Displays entries for a specific VLAN.
- `interface interface-id`—(Optional) Displays entries for a specific interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `address mac-address`—(Optional) Displays entries for a specific MAC address.

Default Configuration

If no parameters are entered, the entire table is displayed.

Command Mode

Privileged EXEC mode
User Guidelines

Internal usage VLANs (VLANs that are automatically allocated on routed ports) are presented in the VLAN column by a port number and not by a VLAN ID.

Examples

Example 1 - Displays entire address table.

```plaintext
switchxxxxxx# show mac address-table
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:26:08:13:23</td>
<td>0</td>
<td>self</td>
</tr>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>gi11</td>
<td>static</td>
</tr>
<tr>
<td>1</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi12</td>
<td>dynamic</td>
</tr>
<tr>
<td>2</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi13</td>
<td>dynamic</td>
</tr>
<tr>
<td>gi14</td>
<td>00:a1:b0:69:61:12</td>
<td>gi14</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
```

Example 2 - Displays address table entries containing the specified MAC address.

```plaintext
switchxxxxxx# show mac address-table address 00:3f:bd:45:5a:b1
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td></td>
<td>static</td>
</tr>
</tbody>
</table>

```

5.27 show mac address-table count

To display the number of addresses present in the Forwarding Database, use the `show mac address-table count` Privileged EXEC mode command.

Syntax

```plaintext
show mac address-table count [vlan vlan / interface interface-id]
```
Parameters

- `vlan vlan`—(Optional) Specifies VLAN.
- `interface-id interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show mac address-table count
This may take some time.
Capacity : 16384
Free     : 16379
Used     : 5
Secure   : 0
Dynamic  : 2
Static   : 2
Internal : 1
console#
```

5.28 show bridge multicast mode

To display the Multicast bridging mode for all VLANs or for a specific VLAN, use the `show bridge multicast mode` Privileged EXEC mode command.

Syntax

```
show bridge multicast mode [vlan vlan-id]
```

Parameters

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.

Command Mode

Privileged EXEC mode
Example

The following example displays the Multicast bridging mode for all VLANs.

```
switchxxxxx# show bridge multicast mode
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IPv4 Multicast Mode</th>
<th>IPv6 Multicast Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin</td>
<td>Oper</td>
</tr>
<tr>
<td>1</td>
<td>MAC-GROUP</td>
<td>MAC-GROUP</td>
</tr>
<tr>
<td>11</td>
<td>IPv4-GROUP</td>
<td>IPv4-GROUP</td>
</tr>
<tr>
<td>12</td>
<td>IPv4-SRC- GROUP</td>
<td>IPv4-SRC- GROUP</td>
</tr>
</tbody>
</table>

5.29 show bridge multicast address-table

To display Multicast MAC addresses or IP Multicast address table information, use the **show bridge multicast address-table** Privileged EXEC mode command.

Syntax

```
show bridge multicast address-table [vlan vlan-id]
show bridge multicast address-table [vlan vlan-id] [address mac-multicast-address] [format {ip | mac}]
show bridge multicast address-table [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]
show bridge multicast address-table [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]
```

Parameters

- **vlan-id vlan-id**—(Optional) Display entries for specified VLAN ID.
- **address**—(Optional) Display entries for specified Multicast address. The possible values are:
 - **mac-multicast-address**—(Optional) Specifies the MAC Multicast address.
- **ipv4-multicast-address**—(Optional) Specifies the IPv4 Multicast address.
- **ipv6-multicast-address**—(Optional) Specifies the IPv6 Multicast address.

- **format**—(Optional) Applies if mac-multicast-address was selected. In this case either MAC or IP format can be displayed. Display entries for specified Multicast address format. The possible values are:
 - **ip**—Specifies that the Multicast address is an IP address.
 - **mac**—Specifies that the Multicast address is a MAC address.

- **source**—(Optional) Specifies the source address. The possible values are:
 - **ipv4-address**—(Optional) Specifies the source IPv4 address.
 - **ipv6-address**—(Optional) Specifies the source IPv6 address.

Default Configuration

If the **format** is not specified, it defaults to **mac** (only if mac-multicast-address was entered).

If VLAN ID is not entered, entries for all VLANs are displayed.

If MAC or IP address is not supplied, entries for all addresses are displayed.

Command Mode

Privileged EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000 through 0100.5e7f.ffff.

Multicast router ports (defined statically or discovered dynamically) are members in all MAC groups.

Ports that were defined via the **bridge multicast forbidden forward-all** command are displayed in all forbidden MAC entries.

Changing the Multicast mode can move static Multicast addresses that are written in the device FDB to a shadow configuration because of FDB hash collisions.
Example

The following example displays bridge Multicast address information.

```
switchxxxxxx# show bridge multicast address-table

Multicast address table for VLANs in MAC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>Static</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>gi14</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.0.0.251</td>
<td>Dynamic</td>
<td>gi12</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.5.6.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>233.22.2.6</td>
<td></td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.2.2.251</td>
<td>11.2.2.3</td>
<td>Dynamic</td>
<td>gi11</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>*</td>
<td>gi14</td>
</tr>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>1.1.1.11</td>
<td>gi14</td>
</tr>
</tbody>
</table>
```
Multicast address table for VLANs in IPv6-GROUP bridging mode:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>Static</td>
<td>gi11-2, gi13, Po1</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>gi14</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>Static</td>
<td>gi11-2, gi13, Po1</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:</td>
<td>Static</td>
<td>fe00:200</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>gi14</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:f</td>
<td>gi14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e00:200</td>
</tr>
</tbody>
</table>

5.30 show bridge multicast address-table static

To display the statically-configured Multicast addresses, use the show bridge multicast address-table static Privileged EXEC mode command.

Syntax

```
show bridge multicast address-table static [vlan vlan-id] [all]
show bridge multicast address-table static [vlan vlan-id] [address mac-multicast-address] [mac/ip]
```
show bridge multicast address-table static [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]

show bridge multicast address-table static [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]

Parameters

- **vlan vlan-id**—(Optional) Specifies the VLAN ID.
- **address**—(Optional) Specifies the Multicast address. The possible values are:
 - **mac-multicast-address**—(Optional) Specifies the MAC Multicast address.
 - **ipv4-multicast-address**—(Optional) Specifies the IPv4 Multicast address.
 - **ipv6-multicast-address**—(Optional) Specifies the IPv6 Multicast address.
- **source**—(Optional) Specifies the source address. The possible values are:
 - **ipv4-address**—(Optional) Specifies the source IPv4 address.
 - **ipv6-address**—(Optional) Specifies the source IPv6 address.

Default Configuration

When **all/mac/ip** is not specified, all entries (MAC and IP) will be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000—0100.5e7f.ffff.
Example

The following example displays the statically-configured Multicast addresses.

```
switchxxxxxx# show bridge multicast address-table static

MAC-GROUP table
Vlan  MAC Address  Ports
----  -----------  ------
  1  0100.9923.8787  gi11, gi12

Forbidden ports for multicast addresses:
Vlan  MAC Address  Ports
----  -----------  ------

IPv4-GROUP Table
Vlan  IP Address  Ports
----  ---------  ------
  1  231.2.2.3  gi11, gi12
  19 231.2.2.8  gi12-3

Forbidden ports for multicast addresses:
Vlan  IP Address  Ports
----  ---------  ------
  1  231.2.2.3  gi14
  19 231.2.2.8  gi13

IPv4-SRC-GROUP Table:
Vlan  Group Address  Source address  Ports
----  -----------  ---------  ------

Forbidden ports for multicast addresses:
Vlan  Group Address  Source address  Ports
----  -----------  ---------  ------

IPv6-GROUP Table
```
5.31 show bridge multicast filtering

To display the Multicast filtering configuration, use the **show bridge multicast filtering** Privileged EXEC mode command.

Syntax

```
show bridge multicast filtering vlan-id
```

Parameters

- **vlan-id**—Specifies the VLAN ID. *(Range: Valid VLAN)*

Default Configuration

None
Command Mode

Privileged EXEC mode

Example

The following example displays the Multicast configuration for VLAN 1.

```
switchxxxxxxx# show bridge multicast filtering 1
Filtering: Enabled
VLAN: 1
Forward-All
Port   Static   Status
-----   --------  ------
gi11    Forbidden Filter
         Forward   Forward(s)
gi13    -        Forward(d)
```

5.32 **show bridge multicast unregistered**

To display the unregistered Multicast filtering configuration, use the `show bridge multicast unregistered` Privileged EXEC mode command.

Syntax

```
show bridge multicast unregistered [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

Display for all interfaces.

Command Mode

Privileged EXEC mode
Example

The following example displays the unregistered Multicast configuration.

```
switchxxxxxx# show bridge multicast unregistered
Port Unregistered
-------  ----------------
gi11  Forward
gi12  Filter
gi13  Filter
```

5.33 show ports security

To display the port-lock status, use the `show ports security` Privileged EXEC mode command.

Syntax

```
show ports security [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the port-lock status of all ports.

```
switchxxxxxx# show ports security
```
Port Status Learning Action Maximum Trap Frequency

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Action</th>
<th>Maximum</th>
<th>Trap</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>Max-</td>
<td>Discard</td>
<td>3</td>
<td>Enabled</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi12</td>
<td>Disabled</td>
<td>Max-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi13</td>
<td>Enabled</td>
<td>Lock</td>
<td>Discard</td>
<td>8</td>
<td>Disabled</td>
<td>-</td>
</tr>
</tbody>
</table>

The following table describes the fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Status</td>
<td>The port security status. The possible values are: Enabled or Disabled.</td>
</tr>
<tr>
<td>Action</td>
<td>The action taken on violation.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of addresses that can be associated on this port in the Max-Addresses mode.</td>
</tr>
<tr>
<td>Trap</td>
<td>The status of SNMP traps. The possible values are: Enable or Disable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The minimum time interval between consecutive traps.</td>
</tr>
</tbody>
</table>

5.34 show ports security addresses

To display the current dynamic addresses in locked ports, use the `show ports security addresses` Privileged EXEC mode command.

Syntax

```
show ports security addresses [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.
Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays dynamic addresses in all currently locked port:

```
<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Current</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>gi12</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi13</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi14</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

5.35 bridge multicast reserved-address

To define the action on Multicast reserved-address packets, use the `bridge multicast reserved-address` Global Configuration mode command. To revert to default, use the `no` form of this command.

Syntax

```
bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid] [discard | bridge]
```

```
no bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid]
```

Parameters

- `mac-multicast-address`—MAC Multicast address in the reserved MAC addresses range. (Range: 01-80-C2-00-00-00, 01-80-C2-00-00-02-01-80-C2-00-00-2F)
ethernet-v2 ethtype—(Optional) Specifies that the packet type is Ethernet v2 and the Ethernet type field (16 bits in hexadecimal format). (Range: 0x0600–0xFFFF)

llc sap—(Optional) Specifies that the packet type is LLC and the DSAP-SSAP field (16 bits in hexadecimal format). (Range: 0xFFFF)

llc-snap pid—(Optional) Specifies that the packet type is LLC-SNAP and the PID field (40 bits in hexadecimal format). (Range: 0x0000000000 - 0xFFFFFFFFFF)

discard—Specifies discarding the packets.

bridge—Specifies bridging (forwarding) the packets

Default Configuration

If the user-supplied MAC Multicast address, ethertype and encapsulation (LLC) specifies a protocol supported on the device (called Peer), the default action (discard or bridge) is determined by the protocol.

If not, the default action is as follows:

- For MAC addresses in the range 01-80-C2-00-00-00, 01-80-C2-00-00-02– 01-80-C2-00-00-0F, the default is discard.
- For MAC addresses in the range 00-80-C2-00-00-10– 01-80-C2-00-00-2F, the default is bridge.

Command Mode

Global Configuration mode

User Guidelines

If the packet/service type (ethertype/encapsulation) is not specified, the configuration is relevant to all the packets with the configured MAC address.

Specific configurations (that contain service type) have precedence over less specific configurations (contain only MAC address).

The packets that are bridged are subject to security ACLs.

The actions defined by this command have precedence over forwarding rules defined by applications/protocols (STP, LLDP etc.) supported on the device.

Example
5.36 show bridge multicast reserved-addresses

To display the Multicast reserved-address rules, use the show bridge multicast reserved-addresses Privileged EXEC mode command.

Syntax

show bridge multicast reserved-addresses

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx # show bridge multicast reserved-addresses

+-----------------+--------+----------+--------+
<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Frame</th>
<th>Protocol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-00</td>
<td>LLC-SNAP</td>
<td>00-00-00-00-01-29</td>
<td>Bridge</td>
</tr>
</tbody>
</table>
```
6 Auto-Update and Auto-Configuration

6.1 boot host auto-config

Use the `boot host auto-config` Global Configuration mode command to enable auto configuration via DHCP. Use the `no` form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-config [tftp | scp | auto [extension]]
no boot host auto-config
```

Parameters

- **tftp**: Only the TFTP protocol is used by auto-configuration.
- **scp**: Only the SCP protocol is used by auto-configuration.
- **auto**: (Default) Auto-configuration uses the TFTP or SCP protocol depending on the configuration file’s extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
 - **extension**: The SCP file extension. When no value is specified, ‘scp’ is used. (Range: 1-16 characters)

Default Configuration

Enabled by default with the `auto` option.

Command Mode

Global Configuration mode

User Guidelines

The TFTP or SCP protocol is used to download/upload a configuration file.
Examples

Example 1. The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
switchxxxxxx# boot host auto-config auto scon
```

Example 2. The following example specifies the auto mode and does not provide an SCP extension.

```
In this case "scp" is used.
switchxxxxxx# boot host auto-config auto
```

Example 3. The following example specifies that only the SCP protocol will be used:

```
switchxxxxxx# boot host auto-config scp
```

6.2 boot host auto-update

Use the `boot host auto-update` Global Configuration mode command to enable the support of auto update via DHCP. Use the no form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-update [tftp | scp | auto [extension]]
```

```
no boot host auto-update
```

Parameters

- **tftp**—Only the TFTP protocol is used by auto-update.
- **scp**—Only the SCP protocol is used by auto-update.
- **auto** (Default)—Auto-configuration uses the TFTP or SCP protocol depending on the Indirect image file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
- **extension**—The SCP file extension. When no value is specified, 'scp' is used. (Range: 1-16 characters)

Default Configuration

Enabled by default with the **auto** option.

Command Mode

Global Configuration mode

User Guidelines

The TFTP or SCP protocol is used to download/upload an image file.

Examples

Example 1—The following example specifies the auto mode and specifies "scon" as the SCP extension:

```plaintext
switchxxxxxx# boot host auto-update auto scon
```

Example 2—The following example specifies the auto mode and does not provide an SCP extension. In this case "scp" is used.

```plaintext
switchxxxxxx# boot host auto-update auto
```

Example 3—The following example specifies that only the SCP protocol will be used:

```plaintext
switchxxxxxx# boot host auto-update scp
```

6.3 show boot

Use the **show boot** Privilege EXEC mode command to show the status of the IP DHCP Auto Config process.

Syntax

```
show boot
```
Auto-Update and Auto-Configuration

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Examples

```bash
switchxxxxxx# show boot
Auto Config
----------
Config Download via DHCP: enabled
Download Protocol: auto
SCP protocol will be used for files with extension: scp
Configuration file auto-save: enabled
Auto Config State: Finished successfully
Server IP address: 1.2.20.2
Configuration filename: /config/configfile1.cfg
Auto Update
----------
Image Download via DHCP: enabled
```

```bash
switchxxxxxx# show boot
Auto Config
----------
Config Download via DHCP: enabled
Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Opening <hostname>-config file
Auto Update
```

Image Download via DHCP: enabled

switchxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
"Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Downloading configuration file
Auto Update

Image Download via DHCP: enabled

switchxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
Auto Config State: Searching device hostname in indirect file
Auto Update

Image Download via DHCP: enabled

switchxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
Auto Update
Image Download via DHCP: enabled
Auto Update State: Downloaded indirect image file
Indirect Image filename: /image/indirectimage.txt

6.4 ip dhcp tftp-server ip address

Use the ip dhcp tftp-server ip address Global Configuration mode command to set the backup server’s IP address. This address server as the default address used by a switch when it has not been received from the DHCP server. Use the no form of the command to return to default.

Syntax

ip dhcp tftp-server ip address ip-addr
no ip dhcp tftp-server ip address

Parameters

- ip-addr—IPv4 Address, or IPv6 Address or DNS name of TFTP or SCP server.

Default Configuration

No IP address

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Examples

Example 1. The example specifies the IPv4 address of TFTP server:

switchxxxxxx# ip dhcp tftp-server ip address 10.5.234.232
Example 2. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx# ip dhcp tftp-server ip address 3000:1::12
```

Example 3. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx# ip dhcp tftp-server ip address tftp-server.company.com
```

6.5 ip dhcp tftp-server file

Use the `ip dhcp tftp-server file` Global Configuration mode command to set the full file name of the configuration file to be downloaded from the backup server when it has not been received from the DHCP server. Use the `no` form of this command to remove the name.

Syntax

```
ip dhcp tftp-server file file-path
no ip dhcp tftp-server file
```

Parameters

- `file-path`—Full file path and name of the configuration file on the server.

Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or an SCP server.

Examples

```
switchxxxxxx# ip dhcp tftp-server file conf/conf-file
```
6.6 ip dhcp tftp-server image file

Use the `ip dhcp tftp-server image file` Global Configuration mode command to set the indirect file name of the image file to be downloaded from the backup server when it has not been received from the DHCP server. Use the `no` form of this command to remove the file name.

Syntax

```
ip dhcp tftp-server image file file-path
no ip dhcp tftp-server image file
```

Parameters

- `file-path`—Full indirect file path and name of the configuration file on the server.

Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Examples

```
switchxxxxxx# ip dhcp tftp-server image file imag/imag-file
```

6.7 show ip dhcp tftp-server

Use the `show ip dhcp tftp-server` EXEC mode command to display information about the backup server.

Syntax

```
show ip dhcp tftp-server
```

Parameters
N/A

Default Configuration
N/A

Command Mode
User EXEC mode

User Guidelines
The backup server can be a TFTP server or a SCP server.

Example

```
show ip dhcp tftp-server
server address
active 1.1.1.1 from sname
manual 2.2.2.2
file path on server
active conf/conf-file from option 67
manual conf/conf-file1
```
7.1 bonjour enable

Use the `bonjour enable` Global Configuration mode command to enable Bonjour globally. Use the `no` format of the command to disable Bonjour globally.

Syntax

`bonjour enable`

`no bonjour enable`.

Default Configuration

Enable

Command Mode

Global Configuration mode

Examples

```
switchxxxxxx(config)# bonjour enable
```

7.2 bonjour interface range

Use the `bonjour interface range` Global Configuration mode command to add L2 interfaces to the Bonjour L2 interface list. Use the `no` format of the command to remove L2 interfaces from this list.

Syntax

`bonjour interface range {interface-list}`
Parameters

- `interface-list`—Specifies a list of interfaces, which can be of the following types: Ethernet port, Port-channel and VLAN.

Default Configuration

The list is empty.

Command Mode

Global Configuration mode

User Guidelines

This command can only be used in router mode.

Examples

```
switchxxxxxx(config)# bonjour interface range VLAN 100-103
```

7.3 `show bonjour`

Use the `show bonjour` Privileged EXEC mode command to display Bonjour information.

Syntax

```
show bonjour [interface-id]
```

Parameters

- `interface-list`—Specifies a list of interfaces, which can be of the following types: Ethernet port, Port-channel and VLAN.

Command Mode

Privileged EXEC mode

Examples

The example displays Bonjour status.
In router mode:

```
switchxxxxxx# show bonjour

Bonjour status: enabled
L2 interface status: Up
IP Address: 10.5.226.46

<table>
<thead>
<tr>
<th>Service</th>
<th>Admin Status</th>
<th>Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>csco-sb</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>http</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>https</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>ssh</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>telnet</td>
<td>enabled</td>
<td>disabled</td>
</tr>
</tbody>
</table>
```

In router mode:

```
switchxxxxxx# show bonjour

Bonjour global status: enabled
Bonjour L2 interfaces list: vlans 1

<table>
<thead>
<tr>
<th>Service</th>
<th>Admin Status</th>
<th>Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>csco-sb</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>http</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>https</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>ssh</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>telnet</td>
<td>enabled</td>
<td>disabled</td>
</tr>
</tbody>
</table>
```
8.1 cdp run

The `cdp run` Global Configuration mode command enables CDP globally. The `no` format of this command disabled CDP globally.

Syntax

```
cdp run
no cdp run
```

Parameters

N/A

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

CDP is a link layer protocols for directly-connected CDP/LLDP-capable devices to advertise themselves and their capabilities. In deployments where the CDP/LLDP capable devices are not directly connected and are separated with CDP/LLDP incapable devices, the CDP/LLDP capable devices may be able to receive the advertisement from other device(s) only if the CDP/LLDP incapable devices flood the CDP/LLDP packets they receives. If the CDP/LLDP incapable devices perform VLAN-aware flooding, then CDP/LLDP capable devices can hear each other only if they are in the same VLAN. It should be noted that a CDP/LLDP capable device may receive advertisement from more than one device if the CDP/LLDP incapable devices flood the CDP/LLDP packets.

To learn and advertise CDP information, it must be globally enabled (it is so by default) and also enabled on interfaces (also by default).
Example

```
switchxxxxxx(config)# cdp run
```

8.2 cdp enable

The `cdp enable` Interface Configuration mode command enables CDP on interface. The `no` format of the CLI command disables CDP on an interface.

Syntax

```
cdp enable
```

Parameters

N/A

Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

For CDP to be enabled on an interface, it must first be enabled globally using `cdp run`.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config-if)# interface gi1
switchxxxxxx(config-if)# cdp enable
```
8.3 cdp pdu

Use the `cdp pdu` Global Configuration mode command when CDP is not enabled globally. It specifies CDP packets handling when CDP is globally disabled. The `no` format of this command returns to default.

Syntax

```
cdp pdu [filtering | bridging | flooding]
no cdp pdu
```

Parameters

- **filtering**—Specify that when CDP is globally disabled, CDP packets are filtered (deleted).
- **bridging**—Specify that when CDP is globally disabled, CDP packets are bridged as regular data packets (forwarded based on VLAN).
- **flooding**—Specify that when CDP is globally disabled, CDP packets are flooded to all the ports in the product that are in STP forwarding state, ignoring the VLAN filtering rules.

Default Configuration

```
bridging
```

Command Mode

Global Configuration mode

User Guidelines

When CDP is globally enabled, CDP packets are filtered (discarded) on CDP-disabled ports.

In the flooding mode, VLAN filtering rules are not applied, but STP rules are applied. In case of MSTP, the CDP packets are classified to instance 0.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config)# cdp pdu flooding
```
8.4 cdp advertise-v2

The `cdp advertise-v2` Global Configuration mode command specifies version 2 of transmitted CDP packets. The `no` format of this command specifies version 1.

Syntax

```
cdp advertise-v2
no cdp advertise-v2
```

Parameters

N/A

Default Configuration

Version 2.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config)# cdp advertise-v2
```

8.5 cdp appliance-tlv enable

The `cdp appliance-tlv enable` Global Configuration mode command enables sending of the Appliance TLV. The `no` format of this command disables the sending of the Appliance TLV.

Syntax

```
cdp appliance-tlv enable
no cdp appliance-tlv enable
```

Parameters

N/A
Default Configuration
Enabled

Command Mode
Global Configuration mode

User Guidelines
This MIB specifies the Voice VLAN ID (VVID) to which this port belongs:

- **0**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 0. VoIP and related packets are expected to be sent and received with VLAN-ID=0 and an 802.1p priority.
- **1..4094**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with VLAN-ID=N. VoIP and related packets are expected to be sent and received with VLAN-ID=N and an 802.1p priority.
- **4095**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 4095. VoIP and related packets are expected to be sent and received untagged without an 802.1p priority.
- **4096**—The CDP packets transmitting through this port do not include Appliance VLAN-ID TLV; or, if the VVID is not supported on the port, this MIB object will not be configurable and will return 4096.

Example

```
switchxxxxxx(config)# cdp appliance-tlv enable
```

8.6 cdp mandatory-tlvs validation

Use the `cdp mandatory-tlvs validation` Global Configuration mode command to validate that all mandatory (according to the CDP protocol) TLVs are present in received CDP frames. The `no` format of this command disables the validation.

If the mandatory TLVs are not included in the packet, it is deleted.

Syntax

- `cdp mandatory-tlvs validation`
- `no cdp mandatory-tlvs validation`
Parameters
N/A

Default Configuration
Enabled.

Command Mode
Global Configuration mode

Example
This example turns off mandatory TLV validation:

switchxxxxxx(config)# no cdp mandatory-tlvs validation

8.7 cdp source-interface
The cdp source-interface Global Configuration mode command specifies the CDP source port used for source IP address selection. The no format of this command deletes the source interface.

Syntax

```plaintext
cdp source-interface interface-id
no cdp source-interface
```

Parameters

- `interface-id`—Source port used for Source IP address selection.

Default Configuration
No CDP source interface is specified.

Command Mode
Global Configuration mode
User Guidelines

Use the `cdp source-interface` command to specify an interface whose minimal IP address will be advertised in the TVL instead of the minimal IP address of the outgoing interface.

Example

```
switchxxxxxx(config)# cdp source-interface gill
```

8.8 `cdp log mismatch duplex`

Use the `cdp log mismatch duplex` Global and Interface Configuration mode command to enable validating that the duplex status of a port received in a CDP packet matches the ports actual configuration. If not, a SYSLOG duplex mismatch message is generated. The `no` format of the CLI command disables the generation of the SYSLOG messages.

Syntax

```
cdp log mismatch duplex
no cdp log mismatch duplex
```

Parameters

N/A

Default Configuration

The switch reports duplex mismatches from all ports.

Command Mode

Global Configuration mode
Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gill
switchxxxxxx(config-if)# cdp log mismatch duplex
```
8.9 cdp log mismatch voip

Use the `cdp log mismatch voip` Global and Interface Configuration mode command to enable validating that the VoIP status of the port received in a CDP packet matches its actual configuration. If not, a SYSLOG message is generated by CDP. The `no` format of the CLI command disables the generation of the SYSLOG messages.

Syntax

```
cdp log mismatch voip
no cdp log mismatch voip
```

Parameters

N/A

Default Configuration

The switch reports VoIP mismatches from all ports.

Command Mode

- Global Configuration mode
- Interface (Ethernet) Configuration mode

Example

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# cdp log mismatch voip
```

8.10 cdp log mismatch native

Use the `cdp log mismatch native` Global and Interface Configuration mode command to enable validating that the native VLAN received in a CDP packet matches the actual native VLAN of the port. If not, a SYSLOG native mismatch message is generated. The `no` format of the CLI command disables the generation of the SYSLOG messages.
Syntax

```
cdp log mismatch native
no cdp log mismatch native
```

Parameters
N/A

Default Configuration

The switch reports native VLAN mismatches from all ports.

Command Mode

Global Configuration mode
Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# cdp log mismatch native
```

8.11 cdp device-id format

The `cdp device-id format` Global Configuration mode command specifies the format of the Device-ID TLV. The `no` format of this command returns to default.

Syntax

```
cdp device-id format {mac | serial-number | hostname}
no cdp device-id format
```

Parameters

- `mac`—Specifies that the Device-ID TLV contains the device’s MAC address.
- `serial-number`—Specifies that Device-ID TLV contains the device’s hardware serial number.
- `hostname`—Specifies that Device-ID TLV contains the device’s hostname.
Default Configuration

MAC address is selected by default.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp device-id format serial-number
```

8.12 cdp timer

The `cdp timer` Global Configuration mode command specifies how often CDP packets are transmitted. The `no` format of this command returns to default.

Syntax

```
cdp timer seconds
no cdp timer
```

Parameters

Default Configuration

60 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp timer 100
```
8.13 cdp holdtime

The `cdp holdtime` Global Configuration mode command specifies a value of the Time-to-Live field into sent CDP messages. The `no` format of this command returns to default.

Syntax

```plaintext
cdp holdtime seconds
no cdp holdtime
```

Parameters

- `seconds`—Value of the Time-to-Live field in seconds. The value should be greater than the value of the Transmission Timer. The value range is 10 - 255.

Default Configuration

180 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp holdtime 100
```

8.14 clear cdp counters

The `clear cdp counters` Global Configuration mode command resets the CDP traffic counters to 0.

Syntax

```plaintext
clear cdp counters [global | interface-id]
```

Parameters

- `global`—Clear only the global counters.
- `interface-id`—Specifies the interface identifier of the counters that should be cleared.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command `clear cdp counters` without parameters to clear all the counters. Use the `clear cdp counters global` to clear only the global counters. Use the `clear cdp counters interface-id` command to clear the counters of the given interface.

Examples

Example 1. The example clears all the CDP counters:

```
switchxxxxxx# clear cdp counters
```

Example 2. The example clears the CDP global counters.

```
switchxxxxxx# clear cdp counters global
```

Example 3. The example clears the CDP counters of Ethernet port `gi1`:

```
switchxxxxxx# clear cdp counters interface gi1
```

8.15 **clear cdp table**

The `clear cdp table` Global Configuration mode command deletes the CDP Cache tables.

Syntax

clear cdp table
8.16 show cdp

The `show cdp` Privileged EXEC mode command displays the interval between advertisements, the number of seconds the advertisements are valid and version of the advertisements.

Syntax

```
show cdp
```

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp
```

Global CDP information:

- `cdp` is globally enabled
- `cdp log duplex mismatch` is globally enabled
- `cdp log voice VLAN mismatch` is globally enabled
- `cdp log native VLAN mismatch` is globally enabled

Mandatory TLVs are:

- `Device-ID TLV (0x0001`
- `Address TLV (0x0002)`
- `Port-ID TLV (0x0003)`
- `Capabilities TLV (0x0004)`
8.17 show cdp entry

The **show cdp entry** Privileged EXEC mode command displays information about specific neighbor. Display can be limited to protocol or version information.

Syntax

```
show cdp entry {[* | device-name] [protocol | version]}
```

Parameters

- `*`—Specifies all neighbors
- `device-name`—Specifies the name of the neighbor.
- `protocol`—Limits the display to information about the protocols enabled on neighbors.
- `version`—Limits the display to information about the version of software running on the neighbors.

Default Configuration

Version

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp entry

device.cisco.com
Device ID: device.cisco.com
```
Advertisement version: 2
Entry address(es):
 IP address: 192.168.68.18
 CLNS address: 490001.1111.1111.1111.00
 DECnet address: 10.1
Platform: cisco 4500, Capabilities: Router
Interface: gi11, Port ID (outgoing port): Ethernet0
Holdtime: 125 sec
Version:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart

switchxxxxxx# show cdp entry device.cisco.com protocol
Protocol information for device.cisco.com:
 IP address: 192.168.68.18
 CLNS address: 490001.1111.1111.1111.00
 DECnet address: 10.1

switchxxxxxx# show cdp entry device.cisco.com version
Version information for device.cisco.com:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart

8.18 show cdp interface

The show cdp interface Privileged EXEC mode command displays information about ports on which CDP is enabled.

Syntax

show cdp interface interface-id
Parameters

- interface-id—Interface ID.

Command Mode

Privileged EXEC mode

Example

```bash
switchxxxxxx# show cdp interface gi11
CDP is globally enabled
CDP log duplex mismatch
  Globally is enabled
  Per interface is enabled
CDP log voice VLAN mismatch
  Globally is enabled
  Per interface is enabled
CDP log native VLAN mismatch
  Globally is disabled
  Per interface is enabled
gi11 is Down, CDP is enabled
Sending CDP packets every 60 seconds
Holdtime is 180 seconds
```

8.19 show cdp neighbors

The show cdp neighbors Privileged EXEC mode command displays information about neighbors kept in the main or secondary cache.

Syntax

```bash
show cdp neighbors [interface-id] [detail | secondary]
```

Parameters

- interface-id—Displays the neighbors attached to this port.
- detail—Displays detailed information about a neighbor (or neighbors) from the main cache including network address, enabled protocols, hold time, and software version.
- **secondary**—Displays information about neighbors from the secondary cache.

Default Configuration

If an interface ID is not specified, the command displays information for the neighbors of all ports.

If `detail` or `secondary` are not specified, the default is `secondary`.

Command Mode

Privileged EXEC mode

User Guidelines

CDP supports two caches to save received CDP messages:

- main cache
- secondary cache

The main cache contains the full received CDP messages about limited number of the neighbors.

The secondary cache contains partially information about all neighbors.

Use the `show cdp neighbors [interface-id] detail` command to display the main cache.

Use the `show cdp neighbors [interface-id] secondary` command to display the Secondary cache.

Example

```
switchxxxxxx# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,P - VoIP Phone,
M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay
```
CDP Commands

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone
M - Remotely-Managed Device, C - CAST Phone Port,
W - Two-Port MAC Relay

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local</th>
<th>Adv</th>
<th>Time To Capability</th>
<th>Platform</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTK-SW-A-86.company</td>
<td>gi48</td>
<td>2</td>
<td>147</td>
<td>S I</td>
<td>Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gi3/39</td>
<td></td>
</tr>
<tr>
<td>ESW-520-8P</td>
<td>gi48</td>
<td>2</td>
<td>153</td>
<td>S I M</td>
<td>ESW-520-8P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g1</td>
<td></td>
</tr>
<tr>
<td>ESW-540-8P</td>
<td>gi48</td>
<td>2</td>
<td>146</td>
<td>S I M</td>
<td>ESW-540-8P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g9</td>
<td></td>
</tr>
<tr>
<td>003106131611</td>
<td>gi48</td>
<td>2</td>
<td>143</td>
<td>S I</td>
<td>Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fa2/1</td>
<td></td>
</tr>
<tr>
<td>001828100211</td>
<td>gi48</td>
<td>2</td>
<td>173</td>
<td>S I</td>
<td>Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fa2/2</td>
<td></td>
</tr>
<tr>
<td>c47d4fed9302</td>
<td>gi48</td>
<td>2</td>
<td>137</td>
<td>S I</td>
<td>Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fa2/5</td>
<td></td>
</tr>
</tbody>
</table>

```
switchxxxxxxx# show cdp neighbors detail

-------------------------
Device ID: lab-7206
Advertisement version: 2
Entry address(es):
  IP address: 172.19.169.83
Platform: company x5660, Capabilities: Router
Interface: Ethernet0, Port ID (outgoing port): gi10
Time To Live : 123 sec
Version :
Company Network Operating System Software
NOS (tm) x5660 Software (D5660-I-N), Version 18.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by company Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by xxdeeert
Duplex: half
-------------------------
Device ID: lab-as5300-1```
Entry address(es):
  IP address: 172.19.169.87
Platform: company TD6780, Capabilities: Router
Device ID: SEP000427D400ED
Advertisement version: 2
Entry address(es):
  IP address: 1.6.1.81
Platform: Company IP Phone x8810, Capabilities: Host
Interface: gi11, Port ID (outgoing port): Port 1
Time To Live: 150 sec
Version:
P00303020204
Duplex: full
sysName: a-switch
Power drawn: 6.300 Watts

Field Definitions:

- **Advertisement version**—The version of CDP being used for CDP advertisements.

- **Capabilities**—The device type of the neighbor. This device can be a router, a bridge, a transparent bridge, a source-routing bridge, a switch, a host, an IGMP device, or a repeater.

- **COS for Untrusted Ports**—The COS value with which all packets received on an untrusted port should be marked by a simple switching device which cannot itself classify individual packets.

- **Device ID**—The name of the neighbor device and either the MAC address or the serial number of this device.

- **Duplex**—The duplex state of connection between the current device and the neighbor device.

- **Entry address(es)**—A list of network addresses of neighbor devices.

- **Extended Trust**—The Extended Trust.
- **External Port-ID**—Identifies the physical connector port on which the CDP packet is transmitted. It is used in devices, such as those with optical ports, in which signals from multiple hardware interfaces are multiplexed through a single physical port. It contains the name of the external physical port through which the multiplexed signal is transmitted.

- **Interface**—The protocol and port number of the port on the current device.

- **IP Network Prefix**—It is used by On Demand Routing (ODR). When transmitted by a hub router, it is a default route (an IP address). When transmitted by a stub router, it is a list of network prefixes of stub networks to which the sending stub router can forward IP packets.

- **Management Address**—When present, it contains a list of all the addresses at which the device will accept SNMP messages, including those it will only accept when received on interface(s) other than the one over which the CDP packet is being sent.

- **MTU**—The MTU of the interface via which the CDP packet is sent.

- **Native VLAN**—The ID number of the VLAN on the neighbor device.

- **Physical Location**—A character string indicating the physical location of a connector which is on, or physically connected to, the interface over which the CDP packet containing this TLV is sent.

- **Platform**—The product name and number of the neighbor device. In the case of the Secondary Cache only the 8 last characters of the value are printed.

- **Power Available**—Every switch interface transmits information in the Power Available TLV, which permits a device which needs power to negotiate and select an appropriate power setting. The Power Available TLV includes four fields.

- **Power Consumption**—The maximum amount of power, in milliwatts, expected to be obtained and consumed from the interface over which the CDP packet is sent.

- **Power Drawn**—The maximum requested power.

  Note: For IP Phones the value shown is the maximum requested power (6.3 Watts). This value can be different than the actual power supplied by the routing device (generally 5 watts; shown using the show power command).

- **Protocol-Hello**—Specifies that a particular protocol has asked CDP to piggyback its "hello" messages within transmitted CDP packets.
### 8.20 show cdp tlv

The `show cdp tlv` Privileged EXEC mode command displays information about TLVs sent by CDP on all ports or on a specific port.

**Syntax**

```
show cdp tlv [interface-id]
```

**Parameters**

- `interface-id`—Interface ID.

**Default Configuration**

TLVs for all ports.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

You can use the `show cdp tlv` command to verify the TLVs configured to be sent in CDP packets. The `show cdp tlv` command displays information for a single port if specified or for all ports if not specified. Information for a port is displayed if only
CDP is really running on the port, i.e. CDP is enabled globally and on the port, which is UP.

Examples

Example 1 - In this example, CDP is disabled and no information is displayed.

```
switchxxxxxx# show cdp tlv
cdp globally is disabled
```

Example 2 - In this example, CDP is globally enabled but disabled on the port and no information is displayed.

```
switchxxxxxx# show cdp tlv gi12
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi12
CDP is disabled on gi12
```

Example 3 - In this example, CDP is globally enabled and enabled on the port, but the port is down and no information is displayed.

```
switchxxxxxx# show cdp tlv interface gi12
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi13
CDP is enabled on gi13
```
Ethernet gi13 is down

**Example 4** - In this example, CDP is globally enabled and enabled on the port, which is up and information is displayed.

```
switchxxxxxx# show cdp tlv interface gi11
```

cdp globally is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi11
CDP is enabled
Ethernet gi11 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi11
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
                           Available-Power is 10;
                           Management-Power-Level is 0xFFFFFFFF
```

Example 5 - In this example, CDP is globally enabled, and no ports are specified, so information is displayed for all ports on which CDP is enabled who are up.

```
switchxxxxxx# show cdp tlv interface
```
cdp globally is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay

Interface TLV: gi11
CDP is enabled
Ethernet gi11 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi11
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
 Available-Power is 10;
 Management-Power-Level is 0xFFFFFFFF

Interface TLV: gi12
CDP is disabled on gi12

Interface TLV: gi13
CDP is enabled on gi13
Ethernet gi13 is down
8.21 show cdp traffic

The **show cdp traffic** Privileged EXEC mode command displays the CDP counters, including the number of packets sent and received and checksum errors.

Syntax

```
show cdp traffic [global | interface-id]
```

Parameters

- `global`—Display only the global counters
- `interface-id`—Port for which counters should be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command **show cdp traffic** without parameters to display all the counters.

Use the **show cdp traffic global** to display only the global counters.

Use the **show cdp traffic interface-id** command to display the counters of the given port.

Example

```
switchxxxxxx# show cdp traffic
CDP Global counters:
  Total packets output: 81684, Input: 81790
 Hdr syntax: 0, Chksum error: 0, Encaps: 0
  No memory: 0, Invalid packet: 0
  CDP version 1 advertisements output: 100, Input 0
  CDP version 2 advertisements output: 81784, Input 0

  gi11
  Total packets output: 81684, Input: 81790
  Hdr syntax: 0, Chksum error: 0, Encaps: 0
  No memory: 0, Invalid packet: 0
```
CDP Commands

CDP version 1 advertisements output: 100, Input 0
CDP version 2 advertisements output: 81784, Input 0

gil2
Total packets output: 81684, Input: 81790
Hdr syntax: 0, Chksum error: 0, Encaps: 0
No memory: 0, Invalid packet: 0
CDP version 1 advertisements output: 100, Input 0
CDP version 2 advertisements output: 81784, Input 0

Field Definition:

- **Total packets output**—The number of CDP advertisements sent by the local device. Note that this value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.

- **Input**—The number of CDP advertisements received by the local device. Note that this value is the sum of the CDP Version 1 advertisements input and CDP Version 2 advertisements input fields.

- **Hdr syntax**—The number of CDP advertisements with bad headers, received by the local device.

- **Chksum error**—The number of times the checksum (verifying) operation failed on incoming CDP advertisements.

- **No memory**—The number of times the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.

- **Invalid**—The number of invalid CDP advertisements received.

- **CDP version 1 advertisements output**—The number of CDP Version 1 advertisements sent by the local device.

- **CDP version 1 advertisements input**—The number of CDP Version 1 advertisements received by the local device.

- **CDP version 2 advertisements output**—The number of CDP Version 2 advertisements sent by the local device.

- **CDP version 2 advertisements input**—The number of CDP Version 2 advertisements received by the local device.
9.1 absolute

To specify an absolute time when a time range is in effect, use the `absolute` command in Time-range Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
absolute start hh:mm day month year
no absolute start
absolute end hh:mm day month year
no absolute end
```

Parameters

- `start`—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.
- `end`—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.
- `hh:mm`—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)
- `day`—Day (by date) in the month. (Range: 1–31)
- `month`—Month (first three letters by name). (Range: Jan...Dec)
- `year`—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode
Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

9.2 clock dhcp timezone

To specify that the timezone and the Summer Time (Daylight Saving Time) of the system can be taken from the DHCP Timezone option, use the `clock dhcp timezone` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock dhcp timezone
no clock dhcp timezone
```

Parameters

N/A

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The TimeZone taken from the DHCP server has precedence over the static TimeZone.

The Summer Time taken from the DHCP server has precedence over static SummerTime.

The TimeZone and SummerTime remain effective after the IP address lease time has expired.

The TimeZone and SummerTime that are taken from the DHCP server are cleared after reboot.
The `no` form of the command clears the dynamic Time Zone and Summer Time from the DHCP server are cleared.

In case of multiple DHCP-enabled interfaces, the following precedence is applied:

- information received from DHCPv6 precedes information received from DHCPv4

- information received from DHCP client running on lower interface precedes information received from DHCP client running on higher interface

Disabling the DHCP client from where the DHCP-TimeZone option was taken, clears the dynamic Time Zone and Summer Time configuration.

Example

```
switchxxxxxx(config)# clock dhcp timezone
```

9.3 clock set

To set the system clock manually, use the `clock set` command in Privileged EXEC mode.

Syntax

```
clock set hh:mm:ss [[day month] | [month day]] year
```

Parameters

- `hh:mm:ss`—Specifies the current time in hours (military format), minutes, and seconds. (Range: hh: 0-23, mm: 0-59, ss: 0-59)
- `day`—Specifies the current day of the month. (Range: 1-31)
- `month`—Specifies the current month using the first three letters of the month name. (Range: Jan–Dec)
- `year`—Specifies the current year. (Range: 2000–2037)

Default Configuration

The time of the image creation.

Command Mode

Privileged EXEC mode
User Guidelines

After boot the system clock is set to the time of the image creation.

Example

The following example sets the system time to 13:32:00 on March 7th, 2005.

```
switchxxxxxx# clock set 13:32:00 7 Mar 2005
```

9.4 clock source

To configure an external time source for the system clock, use the `clock source` command in Global Configuration mode. To disable the external time source, use the `no` form of this command.

Syntax

```
clock source [sntp | browser]
no clock source
```

Parameters

- `sntp`—(Optional) Specifies that an SNTP server is the external clock source.
- `browser`—(Optional) Specifies that if the system clock is not already set (either manually or by SNTP) and a user login to the device using a WEB browser (either via HTTP or HTTPS), the system clock will be set according to the browser’s time information.

Default Configuration

There is no external clock source.

Command Mode

Global Configuration mode

User Guidelines

After boot the system clock is set to the time of the image creation.

If no parameter is specified, SNTP will be configured as the time source.
if the command is executed twice, each time with a different clock source, both sources will be operational, SNTP has higher priority than time from browser.

Example

The following example configures an SNTP server as an external time source for the system clock.

```
switchxxxxxx(config)# clock source sntp
switchxxxxxx(config)# clock source browser
switchxxxxxx(config)# exit
switchxxxxxx# show clock
*10:46:48 UTC May 28 2013
Time source is sntp
Time from Browser is enabled
```

9.5 clock summer-time

To configure the system to automatically switch to summer time (Daylight Saving Time), use the `clock summer-time` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock summer-time zone recurring {usa / eu / [{week day month hh:mm week day month hh:mm}] [offset]}
clock summer-time zone date day month year hh:mm date month year hh:mm [offset]
clock summer-time zone date month day year hh:mm month day year hh:mm [offset]
no clock summer-time
```

Parameters

- `zone`—The acronym of the time zone to be displayed when summer time is in effect. (Range: up to 4 characters)
Clock Commands

- **recurring**—Indicates that summer time starts and ends on the corresponding specified days every year.
- **date**—Indicates that summer time starts on the first date listed in the command and ends on the second date in the command.
- **usa**—The summer time rules are the United States rules.
- **eu**—The summer time rules are the European Union rules.
- **week**—Week of the month. Can be 1–5, first to last.
- **day**—Day of the week (first three characters by name, such as Sun).
- **date**—Date of the month. (Range: 1–31)
- **month**—Month (first three characters by name, such as Feb).
- **year**—year (no abbreviation). (Range: 2000–2097)
- **hh:mm**—Time (military format) in hours and minutes. (Range: hh:mm 0-23, mm: 0-59)
- **offset**—(Optional) Number of minutes to add during summer time (default is 60). (Range: 1440)

Default Configuration

Summer time is disabled.

Command Mode

Global Configuration mode

User Guidelines

In both the **date** and **recurring** forms of the command, the first part of the command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is chronologically after the ending month, the system assumes that you are in the southern hemisphere.

USA rules for Daylight Saving Time:

- From 2007:
 - **Start**: Second Sunday in March
 - **End**: First Sunday in November
- Time: 2 AM local time
 - Before 2007:
 - Start: First Sunday in April
 - End: Last Sunday in October
 - Time: 2 AM local time

EU rules for Daylight Saving Time:
 - Start: Last Sunday in March
 - End: Last Sunday in October
 - Time: 1.00 am (01:00) Greenwich Mean Time (GMT)

Example

```
switchxxxxxxx(config)# clock summer-time abc date apr 1 2010 09:00 aug 2 2010 09:00
```

9.6 clock timezone

To set the time zone for display purposes, use the `clock timezone` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock timezone zone hours-offset [minutes-offset]
no clock timezone
```

Parameters

- `zone`—The acronym of the time zone. (Range: Up to 4 characters)
- `hours-offset`—Hours difference from UTC. (Range: (-12)–(+13))
- `minutes-offset`—(Optional) Minutes difference from UTC. (Range: 0–59)
Default Configuration

Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT), which is the same:

- Offsets are 0.
- Acronym is empty.

Command Mode

Global Configuration mode

User Guidelines

The system internally keeps time in UTC, so this command is used only for display purposes and when the time is manually set.

Example

```
switchxxxxxx(config)# clock timezone abc +2 minutes 32
```

9.7 periodic

To specify a recurring (weekly) time range for functions that support the time-range feature, use the periodic command in Time-range Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

```
periodic day-of-the-week hh:mm to day-of-the-week hh:mm

no periodic day-of-the-week hh:mm to day-of-the-week hh:mm

periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]

no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]

periodic list hh:mm to hh:mm all

no periodic list hh:mm to hh:mm all
```
Parameters

- **day-of-the-week**—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

- **hh:mm**—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- **list day-of-the-week**—Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.

Command Mode

Time-range Configuration mode

User Guidelines

The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```

9.8 sntp anycast client enable

To enable the SNTP Anycast client, use the `sntp anycast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.
Clock Commands

9

Syntax

sntp anycast client enable [both | ipv4 | ipv6]

Parameters

- both—(Optional) Specifies the IPv4 and IPv6 SNTP Anycast clients are enabled. If the parameter is not defined it is the default value.
- ipv4—(Optional) Specifies the IPv4 SNTP Anycast clients are enabled.
- ipv6—(Optional) Specifies the IPv6 SNTP Anycast clients are enabled.

Default Configuration

The SNTP anycast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use this command to enable the SNTP Anycast client.

Example

The following example enables SNTP Anycast clients.

```
switchxxxxxx(config)# sntp anycast client enable
```

9.9 sntp authenticate

To enable authentication for received SNTP traffic from servers, use the `sntp authenticate` command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

sntp authenticate

no sntp authenticate
Parameters
N/A

Default Configuration
Authentication is disabled.

Command Mode
Global Configuration mode

Examples
The following example enables authentication for received SNTP traffic and sets the key and encryption key.

```
switchxxxxxx(config)# sntp authenticate
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
```

9.10 sntp authentication-key

To define an authentication key for Simple Network Time Protocol (SNTP), use the `sntp authentication-key` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax
```
sntp authentication-key key-number md5 key-value
encrypted sntp authentication-key key-number md5 encrypted-key-value
no sntp authentication-key key-number
```

Parameters
- `key-number`—Specifies the key number. (Range: 1–4294967295)
- `key-value`—Specifies the key value. (Length: 1–8 characters)
- `encrypted-key-value`—Specifies the key value in encrypted format.
Default Configuration

No authentication key is defined.

Command Mode

Global Configuration mode

Examples

The following example defines the authentication key for SNTP.

```
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```

9.11 `sntp broadcast client enable`

To enable SNTP Broadcast clients, use the `sntp broadcast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp broadcast client enable [both | ipv4 | ipv6]
no sntp broadcast client enable
```

Parameters

- **both**—(Optional) Specifies the IPv4 and IPv6 SNTP Broadcast clients are enabled. If the parameter is not defined it is the default value.

- **ipv4**—(Optional) Specifies the IPv4 SNTP Broadcast clients are enabled.

- **ipv6**—(Optional) Specifies the IPv6 SNTP Broadcast clients are enabled.

Default Configuration

The SNTP Broadcast client is disabled.
Command Mode

Global Configuration mode

User Guidelines

Use the `sntp broadcast client enable` Interface Configuration mode command to enable the SNTP Broadcast client on a specific interface.

After entering this command, you must enter the `clock source` command with the `sntp` keyword for the command to be run. If this command is not run, the switch will not synchronize with Broadcast servers.

Example

The following example enables SNTP Broadcast clients.

```
switchxxxxxx(config)# sntp broadcast client enable
```

9.12 `sntp client enable`

To enable the SNTP Broadcast and Anycast client, use the `sntp client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

In switch mode:

```
sntp client enable
```

```
no sntp client enable
```

In router mode:

```
sntp client enable interface-id
```

```
no sntp client enable interface-id
```

Parameters

- `interface-id`—Specifies an interface ID, which can be one of the following types: Ethernet port, Port-channel or VLAN.
Default Configuration

The SNTP client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp client enable` command to enable SNTP Broadcast and Anycast clients.

Example

The following example enables the SNTP Broadcast and Anycast clients on VLAN 100:

```
switchxxxxxx(config)# sntp client enable vlan 100
```

9.13 `sntp client enable` (interface)

To enable the SNTP Broadcast and Anycast client on an interface, use the `sntp client enable` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp client enable
no sntp client enable
```

Parameters

N/A

Default Configuration

The SNTP client is disabled on an interface.

Command Mode

Interface Configuration mode
User Guidelines

This command enables the SNTP Broadcast and Anycast client on an interface. Use the no form of this command to disable the SNTP client.

Example

The following example enables the SNTP broadcast and anycast client on an interface.

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# sntp client enable
switchxxxxxx(config-if)# exit
```

9.14 snntp server

To configure the device to use the SNTP to request and accept Network Time Protocol (NTP) traffic from a specified server (meaning to accept system time from an SNTP server), use the snntp server command in Global Configuration mode. To remove a server from the list of SNTP servers, use the no form of this command.

Syntax

```
snntp server {ip-address | hostname} [poll] [key keyid]
no snntp server [ip-address | hostname]
```

Parameters

- `ip-address`—Specifies the server IP address. This can be an IPv4, IPv6 or IPv6z address.
- `hostname`—Specifies the server hostname. Only translation to IPv4 addresses is supported. (Length: 1–158 characters. Maximum label length for each part of the hostname: 63 characters)
- `poll`—(Optional) Enables polling.
- `key keyid`—(Optional) Specifies the Authentication key to use when sending packets to this peer. (Range: 1–4294967295)

Default Configuration

No servers are defined.
Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server {ip-address | hostname} [poll] [key keyid]` command to define a SNTP server. The switch supports up to 8 SNTP servers.

Use the `no sntp server ip-address | hostname` command to remove one SNTP server.

Use the `no sntp server` to remove all SNTP servers.

Example

The following example configures the device to accept SNTP traffic from the server on 192.1.1.1 with polling.

```
snmp server 192.1.1.1 poll
```

9.15 `sntp source-interface`

To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SNTP servers, use the `sntp source-interface` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp source-interface interface-id

no sntp source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.
Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SNTP server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sntp source-interface vlan 10
```

9.16 sntp source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SNTP servers, use the `sntp source-interface-ipv6` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp source-interface-ipv6 interface-id
```

```
no sntp source-interface-ipv6
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC6724.
Command Mode
Global Configuration mode

User Guidelines

The outgoing interface is selected based on the SNTP server's IP address. If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SNTP server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sntp source-interface-ipv6 vlan 10
```

9.17 sntp trusted-key

To define the trusted key, use the `sntp trusted-key` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp trusted-key  key-number
no sntp trusted-key  key-number
```

Parameters

- `key-number`—Specifies the key number of the authentication key to be trusted. (Range: 1–4294967295).

Default Configuration

No keys are trusted.
Command Mode
Global Configuration mode

User Guidelines
The trusted key is used for authentication of all servers not having personal keys assigned by the `sntp server` command.

Examples
The following example authenticates key 8.

```text
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```

9.18 sntp unicast client enable

To enable the device to use Simple Network Time Protocol (SNTP) Unicast clients, use the `sntp unicast client enable` command in Global Configuration mode. To disable the SNTP Unicast clients, use the `no` form of this command.

Syntax
```
sntp unicast client enable
no sntp unicast client enable
```

Parameters
N/A

Default Configuration
The SNTP unicast clients are disabled.

Command Mode
Global Configuration mode
User Guidelines
Use the `sntp server` Global Configuration mode command to define SNTP servers.

Example
The following example enables the device to use SNTP Unicast clients.

```
switchxxxxxx(config)# sntp unicast client enable
```

9.19 sntp unicast client poll
To enable polling for the SNTP Unicast clients, use the `sntp unicast client poll` command in Global Configuration mode. To disable the polling, use the `no` form of this command.

Syntax
```
sntp unicast client poll
no sntp unicast client poll
```

Parameters
N/A

Default Configuration
Polling is disabled.

Command Mode
Global Configuration mode

User Guidelines
The polling interval is 1024 seconds.

Example
The following example enables polling for SNTP unicast clients.

```
switchxxxxxxx(config)# sntp unicast client poll
```
9.20 show clock

To display the time and date from the system clock, use the show clock command in User EXEC mode.

Syntax

show clock [detail]

Parameters

- **detail**—(Optional) Displays the time zone and summer time configuration.

Command Mode

User EXEC mode

User Guidelines

Before the time, there is displayed either a star (*), period (.), or blank:

- **star (*)**—The clock is invalid.
- **period (.)**—The clock was set manually or by Browser.
- **blank**—The clock was set by SNTP.

Examples

Example 1 - The following example displays the system time and date.

```
switchxxxxxx# show clock
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP
Time from Browser is enabled
```

Example 2 - The following example displays the system time and date along with the time zone and summer time configuration.

```
switchxxxxxx# show clock detail
```
Time source is sntp
Time from Browser is enabled
Time zone (DHCPv4 on VLAN1):
 Acronym is RAIN
 Offset is UTC+2
Time zone (Static):
 Offset is UTC+0
Summertime (DHCPv4 on VLAN1):
 Acronym is SUN
 Recurring every year.
 Begins at first Sunday of Apr at 02:00.
 Ends at first Tuesday of Sep at 02:00.
 Offset is 60 minutes.
Summertime (Static):
 Acronym is GMT
 Recurring every year.
 Begins at first Sunday of Mar at 10:00.
 Ends at first Sunday of Sep at 10:00.
 Offset is 60 minutes.
DHCP timezone: Enabled

9.21 show sntp configuration

To display the SNTP configuration on the device, use the `show sntp configuration` command in Privileged EXEC mode.

Syntax

show sntp configuration

Parameters

N/A
Default Configuration
N/A

Command Mode
Privileged EXEC mode

Examples
The following example displays the device's current SNTP configuration.

```
switchxxxxxx# show sntp configuration
SNTP port : 123
Polling interval: 1024 seconds
MD5 Authentication Keys
-----------------------------------
2   John123
3   Alice456
-----------------------------------
Authentication is not required for synchronization.
No trusted keys
Unicast Clients: enabled
Unicast Clients Polling: enabled
Server: 1.1.1.121
  Polling: disabled
  Encryption Key: disabled
Server: 3001:1:1::1
  Polling: enabled
  Encryption Key: disabled
Server: dns_server1.comapany.com
  Polling: enabled
  Encryption Key: disabled
Server: dns_server2.comapany.com
```
Clock Commands

Polling: enabled
Encryption Key: disabled
Broadcast Clients: enabled for IPv4 and IPv6
Anycast Clients: disabled
No Broadcast Interfaces
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10

9.22 show sntp status

To display the SNTP servers status, use the `show sntp status` command in Privileged EXEC mode.

Syntax

```
show sntp status
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays the SNTP servers status:

```
switchxxxxxx# show sntp status
Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is afe2525e.70597b34 (00:10:22.438 PDT Jul 5 1993)
Unicast servers:
Server: 176.1.1.8
    Source: DHCPv4 on VLAN 1
    Status: Up
    Last response: 19:58:22.289 PDT Feb 19 2005
```
Stratum Level: 1
Offset: 7.33mSec
Delay: 117.79mSec
Server: dns_server.comapany.com
Source: static
Status: Unknown
Last response: 12:17.17.987 PDT Feb 19 2005
Stratum Level: 1
Offset: 8.98mSec
Delay: 189.19mSec
Server: 3001:1:1::1
Source: DHCPv6 on VLAN 2
Status: Unknown
Last response:
Offset: mSec
Delay: mSec
Server: dns1.company.com
Source: DHCPv6 on VLAN 20
Status: Unknown
Last response:
Offset: mSec
Delay: mSec
Anycast servers:
Server: 176.1.11.8
Interface: VLAN 112
Status: Up
Stratum Level: 10
Offset: 9.98mSec
Delay: 289.19mSec
Broadcast servers:
Server: 3001:1:1::12
Interface: VLAN 101
Stratum Level: 255
9.23 show time-range

To display the time range configuration, use the `show time-range` command in User EXEC mode.

Syntax

```
show time-range time-range-name
```

Parameters

- `time-range-name`—Specifies the name of an existing time range.

Command Mode

User EXEC mode

Example

```
switchxxxxx# show time-range
http-allowed
----------------
absolute start 12:00 1 Jan 2005 end  12:00 31 Dec 2005
periodic Monday 12:00 to Wednesday 12:00
```

9.24 time-range

To define time ranges and to enter to Time-range Configuration mode, use the `time-range` command to define time ranges and to enter to Time-range Configuration mode in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
time-range time-range-name
no time-range time-range-name
```

Parameters

- `time-range-name`—Specifies the name for the time range. (Range: 1–32 characters).
Default Configuration
No time range is defined

Command Mode
Global Configuration mode

User Guidelines
After entering to Time-range Configuration mode with this command, use the `absolute` and `periodic` commands to actually configure the time-range. Multiple `periodic` commands are allowed in a time range. Only one `absolute` command is allowed.

If a `time-range` command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range is not activated.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
10.1 copy

The `copy` Privileged EXEC mode command copies a source file to a destination file.

Syntax

```
copy source-url destination-url [exclude | include-encrypted | include-plaintext]
```

Parameters

- `source-url`—Specifies the source file URL or source file reserved keyword to be copied. (Length: 1–160 characters)
- `destination-url`—Specifies the destination file URL or destination file reserved keyword. (Length: 1–160 characters).
- `exclude`—Do not include sensitive data in the file being copied.
- `include-encrypted`—Include sensitive data in its encrypted form.
- `include-plaintext`—Include sensitive data in its plaintext form

The following URL options are supported:

- `running-config`—Currently running configuration file.
- `startup-config, flash://startup-config`—Startup configuration file.
- `image, flash://image`—Image file. If specified as the source file, it is the active image file. If specified as the destination file, it is the non-active image file.
- `boot`—Boot file.
- `tftp://`—Source or destination URL for a TFTP network server. The syntax for this alias is `tftp://host/[directory]/filename`. The host can be either an IP address or a host name.
null—Null destination for copies or files. A remote file can be copied to null to determine its size. For instance `copy running-conf null` returns the size of the running configuration file.

mirror-config—Mirrored configuration file. If the running config and the startup config have been identical for 24 hours, the startup config is automatically copied to the mirror-conf file by the system. It can then be copied to the startup or running config if required.

localization—This enables copying a language dictionary file to the secondary language file, such as in `copy tftp://10.5.234.203/french.txt localization`. This creates French as the second language. The file `french.txt` is the French dictionary.

logging—Specifies the SYSLOG file.

scp://—Source or destination URL for a Secure Copy Protocol (SCP) network server. The syntax for this alias is: `scp://[username:password@]host[|directory]/filename`. The host can be either the IP address or hostname. The default on the switch is SSH authentication by password with username and password anonymous. The SSH authentication parameters can be reconfigured to match the SSH/SCP server’s parameters.

xmodem—Source for the file from a serial connection that uses the Xmodem protocol.

Default Configuration

Sensitive data is excluded if no method was specified

Command Mode

Privileged EXEC mode

User Guidelines

The location of the file system dictates the format of the source or destination URL.

The entire copying process may take several minutes and differs from protocol to protocol and from network to network.

IPv6z Address Format

If the IPv6 address is a Link Local address (IPv6z address), the outgoing interface name must be specified. The format of an IPv6z address is: `{ipv6-link-local-address}%{interface-id}`. The subparameters are:

- `ipv6-link-local-address`—Specifies the IPv6 Link Local address.
- `interface-id`—`{<port-type>[]<port-number>[]<port-channel [,]<port-number>]}|{port-channel [,]<port-number>}`

If the egress interface is not specified, the default interface is selected. The following combinations are possible:
Configuration and Image File Commands

- `ipv6_address%interface_id` - Refers to the IPv6 address on the interface specified.
- `ipv6_address%0` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- `ipv6_address` - Refers to the IPv6 address on the single interface on which an IPv6 address is defined.

Invalid Combinations of Source and Destination

The following are invalid combinations of source and destination files:

- The source file and destination file are the same file.
- `xmodem:` is the destination file. The source file can be copied to `image`, `boot` and `null` only.
- `tftp://` is the source file and destination file on the same copy.
- `*.prv` files cannot be copied.
- `mirror-config` cannot be used as a destination

The following table describes the characters displayed by the system when `copy` is being run:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>For network transfers, indicates that the copy process is taking place. Each exclamation point indicates successful transfer of ten packets (512 bytes each).</td>
</tr>
<tr>
<td>.</td>
<td>For network transfers, indicates that the copy process timed out.</td>
</tr>
</tbody>
</table>

Various Copy Options Guidelines

- **Copying an Image File from a Server to Flash Memory**

 Use the `copy source-url flash://image` command to copy an image file from a server to flash memory. When the administrator copies an image file from the server to a device, the image file is saved to the "inactive" image. To use this image, the administrator must switch the inactive image to the active image and reboot. The device will then use this new image.

- **Copying a Boot File from a Server to Flash Memory**

 Use the `copy source-url boot` command to copy a boot file from a server to flash memory.

 "Copying a Configuration File from a Server to the Running Configuration File"
Use the `copy source-url running-config` command to load a configuration file from a network server to the running configuration file of the device. The commands in the loaded configuration file are added to those in the running configuration file as if the commands were typed in the command-line interface (CLI). The resulting configuration file is a combination of the previous running configuration and the loaded configuration files, with the loaded configuration file taking precedence.

- **Copying a Configuration File from a Server to the Startup Configuration**
 Use the `copy source-url startup-config` command to copy a configuration file from a network server to the device startup configuration file. The startup configuration file is replaced by the copied configuration file.

- **Storing the Running Config or Startup Config on a Server**
 Use the `copy running-config destination-url` command to copy the current configuration file to a network server using TFTP.

 Use the `copy startup-config destination-url` command to copy the startup configuration file to a network server.

- **Saving the Running Configuration to the Startup Configuration**
 Use the `copy running-config startup-config` command to copy the running configuration to the startup configuration file.

- **Restoring the Mirror Configuration File.**
 Use `copy mirror-config startup-config` or `copy mirror-config running-config` to copy the mirror configuration file to one of the configuration files being used.

SCP Copy Authentication Options

The following options are possible for using the SCP copy feature:

- **scp://host/[directory]/filename**

 In this option, the SSH authentication method (either by password or by key) and the credentials are specified by the CLI commands for `ip ssh client` authentication (`ip ssh-client authentication`, `ip ssh-client key-type`, or `ip ssh-client password/username`, and also the server authentication configuration commands),

- **scp://username:password@host/[directory]/filename.**

 This option specifies SSH authentication by password, and the user name and password for this specific SCP session (one-time only).
Examples

Example 1 - The following example copies system image file1 from the TFTP server 172.16.101.101 to the non-active image file.

```
switchxxxxxx# copy tftp://172.16.101.101/file1 image
Accessing file 'file1' on 172.16.101.101...
Loading file1 from 172.16.101.101:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! [OK]
Copy took 0:01:11 [hh:mm:ss]
```

Example 2 - Copying an Image from a Server to Flash Memory

The following example copies a system image named file1 from the TFTP server with an IP address of 172.16.101.101 to a non-active image file.

```
switchxxxxxx# copy tftp://172.16.101.101/file1 flash://image
Accessing file 'file1' on 172.16.101.101...
Loading file1 from 172.16.101.101:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! [OK]
Copy took 0:01:11 [hh:mm:ss]
```

Example 3 - Copying the mirror-config file to the startup-configuration file

The following example copies the mirror configuration file, saved by the system, to the Startup Configuration file.

```
switchxxxxxx# copy mirror-config startup-config
```

Example 4 - Copy file1 from SCP server to startup config
The following example copies file1 to the Startup Configuration file. The username and password used for SCP session authentication are: jeff and admin1. The IP address of the server containing file1 is 102.1.2.2.

```
switchxxxxxx# copy scp://jeff:admin1@102.1.2.2/file1 startup-config
```

10.2 write

Use the `write` Privileged EXEC mode command to save the running configuration to the startup configuration file.

Syntax

`write [memory]`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Examples

The following example shows how to overwrite the startup-config file with the running-config file with the `write` command.

```
switchxxxxxx# write
15-Sep-2010 11:27:50 %COPY-N-TRAP: The copy operation was completed successfully
Copy succeeded
```
10.3 delete

The **delete** Privileged EXEC mode command deletes a file from a flash memory device.

Syntax

delete url

Parameters

- `url`—Specifies the location URL or reserved keyword of the file to be deleted. (Length: 1–160 characters)

Command Mode

Privileged EXEC mode

User Guidelines

The following keywords and URL prefixes are supported

- `flash://`—URL of the FLASH file.
- `startup-config`—Startup configuration file.
- `WORD`—Name of file (e.g. backup-config).

*mirror-config, *.sys, *.prv, image-1 and image-2 files cannot be deleted.*

Example

The following example deletes the file called 'backup-config' from the flash memory.

```
switchxxxxxx# delete flash://backup-config
Delete flash://backup-config? [confirm]
```

10.4 dir

The **dir** Privileged EXEC mode command displays the list of files on the flash file system.
Syntax

dir

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Examples

Example 1. The following example displays the list of files on a flash file system with static images. The Flash size column for all files except dynamic image specifies the maximum allowed size. The Data size column for dynamic images specifies the real size in the FLASH occupied by the file.

switchxxxxxx# dir

Directory of flash:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>Flash Size</th>
<th>Data Size</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>image-1</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 06:10:23</td>
</tr>
<tr>
<td>image-2</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 05:43:54</td>
</tr>
<tr>
<td>mirror-config</td>
<td>rw</td>
<td>524288</td>
<td>104</td>
<td>01-Jan-2010 05:35:04</td>
</tr>
<tr>
<td>dhcpsn.prv</td>
<td>--</td>
<td>262144</td>
<td>--</td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>syslog1.sys</td>
<td>r-</td>
<td>524288</td>
<td>--</td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>syslog2.sys</td>
<td>r-</td>
<td>524288</td>
<td>--</td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>directry.prv</td>
<td>--</td>
<td>262144</td>
<td>--</td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>startup-config</td>
<td>rw</td>
<td>786432</td>
<td>1081</td>
<td>01-Jan-2010 10:05:34</td>
</tr>
</tbody>
</table>

Total size of flash: 66322432 bytes
Free size of flash: 42205184 bytes

10.5 more

The more Privileged EXEC mode command displays a file.
Syntax

more url

Parameters

- url—Specifies the location URL or reserved keyword of the source file to be displayed. (Length: 1–160 characters).

Default Configuration

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The following keywords and URL prefixes are supported

- flash://—URL of the FLASH file.
- startup-config—Startup configuration file.
- WORD—Name of file (e.g. backup-config).

Files are displayed in ASCII format, except for the images, which are displayed in a hexadecimal format.

*.prv files cannot be displayed.

Example

The following example displays the running configuration file contents.

```
switchxxxxxxx# more running-config
no spanning-tree
interface range gi11-4
  speed 1000
exit
no lldp run
line console
exec-timeout 0
```
10.6 rename

The `rename` Privileged EXEC mode command renames a file.

Syntax

```
rename url new-url
```

Parameters

- `url`—Specifies the file location URL. (Length: 1–160 characters)
- `new-url`—Specifies the file's new URL. (Length: 1–160 characters)

Default Configuration

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The following keywords and URL prefixes are supported

- `flash://`—URL of the FLASH file.
- `startup-config`—Startup configuration file.
- `WORD`—Name of file (e.g. backup-config).

`mirror-config`, `*.sys` and `*.prv` files cannot be renamed.

Example

The following example renames the configuration backup file.

```
switchxxxxxx# rename backup-config m-config.bak
```

10.7 boot system

The `boot system` Privileged EXEC mode command specifies the active system image file that will be loaded by the device at startup.
Syntax

```
boot system {image-1 | image-2}
```

Parameters

- **image-1**—Specifies that image-1 is loaded as the system image during the next device startup.
- **image-2**—Specifies that image-2 is loaded as the system image during the next device startup.

Default Configuration

This command has no default configuration.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show bootvar` command to display the active image.

Example

The following example specifies that **image-1** is the active system image file loaded by the device at startup. The results of this command is displayed in `show bootvar`.

```
switchxxxxxx# boot system image-1
```

10.8 show running-config

Use the `show running-config` privileged EXEC command to display the contents of the currently running configuration file.

```
show running-config [interface interface-id-list | detailed | brief]
```

Parameters

- **interface interface-id-list**—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.
- **detailed**—Displays configuration with SSL and SSH keys.
- **brief**—Displays configuration without SSL and SSH keys.

Default Configuration

All interfaces are displayed. If the **detailed** or **brief** keyword is not specified, the **detailed** keyword is applied.

Command Mode

Privileged EXEC mode

Examples

The following example displays the running configuration file contents.

```
switchxxxxxxx# show running-config
config-file-header
AA307-02
v1.2.5.76 / R750_NIK_1_2_584_002
CLI v1.0
file SSD indicator encrypted
@
ssd-control-start
ssd config
ssd file passphrase control unrestricted
no ssd file integrity control
ssd-control-end cb0a3fdbc1f3a1af4e4430033719968c0
!
no spanning-tree
interface range gi11-4
speed 1000
exit
no lldp run
interface vlan 1
ip address 1.1.1.1 255.0.0.0
```
exit
line console
exec-timeout 0
exit
switchxxxxxx#

10.9 show startup-config

Use the show startup-config Privileged EXEC mode command to display the Startup Configuration file contents.

Syntax

show startup-config [interface interface-id-list]

Parameters

- interface interface-id-list—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.

Command Mode

Privileged EXEC mode

Examples

The following example displays the startup configuration file contents.

switchxxxxxx# show startup-config
config-file-header
AA307-02
v1.2.5.76 / R750_NIK_1_2_584_002
CLI v1.0
file SSD indicator encrypted
@
ssd-control-start
ssd config
ssd file passphrase control unrestricted
no ssd file integrity control
ssd-control-end cb0a3f0b1f3a1af4e4430033719968c0
!
no spanning-tree
interface range gi1-4
speed 1000
exit
no lldp run
interface vlan 1
ip address 1.1.1.1 255.0.0.0
exit
line console
exec-timeout 0
exit
switchxxxxxx#

10.10 show bootvar

Use the `show bootvar` EXEC mode command to display the active system image file that was loaded by the device at startup, and to display the system image file that will be loaded after rebooting the switch.

Syntax

show bootvar

show bootvar [unit unit-id]

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode
Example

The following example displays the active system image file that was loaded by the device at startup and the system image file that will be loaded after rebooting the switch:

```
switchxxxxxx# show bootvar
```

<table>
<thead>
<tr>
<th>Image</th>
<th>Filename</th>
<th>Version</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>image-1</td>
<td>1.1.0.73</td>
<td>19-Jun-2011</td>
<td>18:10:49</td>
</tr>
<tr>
<td>2</td>
<td>image-2</td>
<td>1.1.0.73</td>
<td>19-Jun-2011</td>
<td>18:10:49</td>
</tr>
</tbody>
</table>

"*" designates that the image was selected for the next boot

10.11 service mirror-configuration

Use the `service mirror-configuration` Global Configuration mode command to enable the mirror-configuration service. Use `no service mirror-configuration` command to disable the service.

Syntax

```
service mirror-configuration
```

```
no service mirror-configuration
```

Parameters

This command has no arguments or keywords.

Default Configuration

The default configuration is mirror-configuration service enabled.

Command Mode

Global Configuration mode
User Guidelines

The mirror-configuration service automatically keeps a copy of the last known stable configuration (startup configuration that has not been modified for 24H). The mirror-configuration file is not deleted when restoring to factory default.

When this service is disabled, the mirror-configuration file is not created and if such file already exists, it is deleted.

Note that enabling the service doesn’t implicitly creates a mirror-configuration file.

Examples

Example 1 - The following example disables the mirror-configuration service

```
switchxxxxxx(config)# no service mirror-configuration
```

This operation will delete the mirror-config file if exists. Do you want to continue? (Y/N) [N]

Example 2 - The following example enables the mirror-configuration service

```
switchxxxxxx(config)# service mirror-configuration
```

Service is enabled.

Note that the running-configuration must be first copied to the startup-configuration in order to initiate backing up the startup-config to the mirror-config.

10.12 show mirror-configuration service

Use the show mirror-configuration service EXEC mode command to display the mirror-configuration service status set by the service mirror-configuration command.

Syntax

```
show mirror-configuration service
```

Command Mode

User EXEC mode
Example

The following example displays the status of the mirror-configuration service

switchxxxxxx# show mirror-configuration service

Mirror-configuration service is enabled
11.1

ip dhcp relay enable (Global)

Use the `ip dhcp relay enable` Global Configuration mode command to enable the DHCP relay feature on the device. Use the `no` form of this command to disable the DHCP relay feature.

Syntax

```
ip dhcp relay enable
no ip dhcp relay enable
```

Parameters

N/A

Default Configuration

DHCP relay feature is disabled.

Command Mode

Global Configuration mode

Example

The following example enables the DHCP relay feature on the device.

```
switchxxxxxx(config)# ip dhcp relay enable
```
11.2 ip dhcp relay enable (Interface)

Use the `ip dhcp relay enable` Interface Configuration mode command to enable the DHCP relay feature on an interface. Use the `no` form of this command to disable the DHCP relay agent feature on an interface.

Syntax

```
ip dhcp relay enable
no ip dhcp relay enable
```

Parameters

N/A

Default Configuration

Disabled

Command Mode

Interface Configuration mode

User Guidelines

The operational status of DHCP Relay on an interface is active if one of the following conditions exist:

- DHCP Relay is globally enabled, and there is an IP address defined on the interface.
- Or
- DHCP Relay is globally enabled, there is no IP address defined on the interface, the interface is a VLAN, and option 82 is enabled.

Example

The following example enables DHCP Relay on VLAN 21.

```
switchxxxxxx(config)# interface vlan 21
switchxxxxxx(config-if)# ip dhcp relay enable
```
11.3 ip dhcp relay address (Global)

Use the `ip dhcp relay address` Global Configuration mode command to define the DHCP servers available for the DHCP relay. Use the `no` form of this command to remove the server from the list.

Syntax

```
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters

- `ip-address`—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip dhcp relay address` command to define a global DHCP Server IP address. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the `no` form of the command with the `ip-address` argument.

The `no` form of the command without the `ip-address` argument deletes all global defined DHCP servers.

Example

The following example defines the DHCP server on the device.

```
switchxxxxxx(config)# ip dhcp relay address 176.16.1.1
```
11.4 **ip dhcp relay address (Interface)**

Use the `ip dhcp relay address` Interface Configuration (VLAN, Ethernet, Port-channel) command to define the DHCP servers available by the DHCP relay for DHCP clients connected to the interface. Use the `no` form of this command to remove the server from the list.

Syntax

```
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters

- `ip-address`—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip dhcp relay address` command to define a DHCP Server IP address per the interface. To define multiple DHCP Servers, use the command multiple times.

To remove a DHCP server, use the `no` form of the command with the `ip-address` argument.

The `no` form of the command without the `ip-address` argument deletes all DHCP servers.

Example

The following example defines the DHCP server on the device.

```
switchxxxxxx(config)# interface vlan 21
switchxxxxxx(config-if)# ip dhcp relay address 176.16.1.1
```
11.5 show ip dhcp relay

Use the `show ip dhcp relay` EXEC mode command to display the DHCP relay information.

Syntax

`show ip dhcp relay`

Command Mode

User EXEC mode

Examples

Example 1. Option 82 is not supported:

```bash
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
Option 82 is Disabled
Maximum number of supported VLANs without IP Address is 256
Number of DHCP Relays enabled on VLANs without IP Address is 0
DHCP relay is not configured on any port.
DHCP relay is not configured on any vlan.
No servers configured
```

Example 2. Option 82 is supported (disabled):

```bash
switchxxxxxx# show ip dhcp relay
DHCP relay is globally disabled
Option 82 is disabled
Maximum number of supported VLANs without IP Address: 0
Number of DHCP Relays enabled on VLANs without IP Address: 4
DHCP relay is enabled on Ports: gi11,po1-2
     Active:
     Inactive: gi11, po1-4
```
DHCP relay is enabled on VLANs: 1, 2, 4, 5

Active:

Inactive: 1, 2, 4, 5

Global Servers: 1.1.1.1, 2.2.2.2

Example 3. Option 82 is supported (enabled):

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
Option 82 is enabled
Maximum number of supported VLANs without IP Address is 4
Number of DHCP Relays enabled on VLANs without IP Address: 2
DHCP relay is enabled on Ports: gi11, po1-2
   Active: gi11
   Inactive: po1-2
DHCP relay is enabled on VLANs: 1, 2, 4, 5
   Active: 1, 2, 4, 5
   Inactive: 
Global Servers: 1.1.1.1, 2.2.2.2
```

Example 3. Option 82 is supported (enabled) and there DHCP Servers defined per interface:

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
Option 82 is enabled
Maximum number of supported VLANs without IP Address is 4
Number of DHCP Relays enabled on VLANs without IP Address: 2
DHCP relay is enabled on Ports: gi11, po1-2
   Active: gi11
   Inactive: po1-2
```
DHCP relay is enabled on VLANs: 1, 2, 4, 5
Active: 1, 2, 4, 5
Inactive:
Global Servers: 1.1.1.1, 2.2.2.2
VLAN 1: 1.1.1.1, 100.10.1.1
VLAN 2: 3.3.3.3, 4.4.4.4, 5.5.5.5
VLAN 10: 6.6.6.6

11.6 ip dhcp information option

Use the ip dhcp information option Global Configuration command to enable DHCP option-82 data insertion. Use the no form of this command to disable DHCP option-82 data insertion.

Syntax

ip dhcp information option
no ip dhcp information option

Parameters

N/A

Default Configuration

DHCP option-82 data insertion is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP option 82 would be enabled only if DHCP snooping or DHCP relay are enabled.

Example

switchxxxxxx(config)# ip dhcp information option
11.7 show ip dhcp information option

The `show ip dhcp information option` EXEC mode command displays the DHCP Option 82 configuration.

Syntax

```
show ip dhcp information option
```

Parameters

N/A

Default Configuration

N/A

Command Mode

User EXEC mode

Example

The following example displays the DHCP Option 82 configuration.

```
switchxxxxxx# show ip dhcp information option
Relay agent Information option is Enabled
```
12.1 address (DHCP Host)

To manually bind an IP address to a DHCP client, use the address command in DHCP Pool Host Configuration mode. To remove the IP address binding to the client, use the no form of this command.

Syntax

```
address ip-address [mask | prefix-length] [client-identifier unique-identifier]
hardware-address mac-address
```

no address

Parameters

- **address**—Specifies the client IP address.
- **mask**—Specifies the client network mask.
- **prefix-length**—Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (/).
- **unique-identifier**—Specifies the distinct client identification in dotted hexadecimal notation. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. For example, 01b70813.8811.66.
- **mac-address**—Specifies the client MAC address.

Default Configuration

No address are bound.

Command Mode

DHCP Pool Host Configuration mode
User Guidelines

To classify the DHCP client, DHCP server uses either the client identifier passed in Option 61, if the `client-identifier` keyword is configured or the client MAC address, if the `hardware-address` keyword is configured.

Example

The following example manually binds an IP address to a DHCP client.

```
switchxxxxxx(config)# ip dhcp pool host aaaa
switchxxxxxx(config-dhcp)# address 10.12.1.99 255.255.255.0 client-identifier 01b7.0813.8811.66
switchxxxxxx(config-dhcp)# exit
switchxxxxxx(config)# ip dhcp pool host bbbb
switchxxxxxx(config-dhcp)# address 10.12.1.88 255.255.255.0 hardware-address 00:01:b7:08:13:88
switchxxxxxx(config-dhcp)# exit
switchxxxxxx(config)#
```

12.2 address (DHCP Network)

To configure the subnet number and mask for a DHCP address pool on a DHCP server, use the `address` command in DHCP Pool Network Configuration mode. To remove the subnet number and mask, use the `no` form of this command.

Syntax

```
address {network-number| low low-address high high-address} {mask| prefix-length}
no address
```

Parameters

- `network-number`—Specifies the IP address of the DHCP address pool.
- `mask`—Specifies the pool network mask.
DHCP Server Commands

- **prefix-length**— Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (/).

- **low low-address**— Specifies the first IP address to use in the address range.

- **high high-address**— Specifies the last IP address to use in the address range.

Default Configuration

DHCP address pools are not configured.

If the low address is not specified, it defaults to the first IP address in the network.

If the high address is not specified, it defaults to the last IP address in the network.

Command Mode

DHCP Pool Network Configuration mode

Example

The following example configures the subnet number and mask for a DHCP address pool on a DHCP server.

```
switchxxxxxx(config-dhcp)# address 10.12.1.0 255.255.255.0
```

12.3 bootfile

To specify the default boot image file name for a DHCP client, use the `bootfile` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To delete the boot image file name, use the `no` form of this command.

Syntax

```
bootfile filename
no bootfile
```
Parameters

- **filename**—Specifies the file name used as a boot image. (Length: 1–128 characters).

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

Example

The following example specifies *boot_image_file* as the default boot image file name for a DHCP client.

```
switchxxxxxx(config-dhcp)# bootfile boot_image_file
```

12.4 clear ip dhcp binding

To delete the dynamic address binding from the DHCP server database, use the `clear ip dhcp binding` command in Privileged EXEC mode.

Syntax

```
clear ip dhcp binding {address | *}
```

Parameters

- **address**—Specifies the binding address to delete from the DHCP database.

- *****—Clears all dynamic bindings.

Command Mode

Privileged EXEC mode

User Guidelines

Typically, the address supplied denotes the client IP address. If the asterisk (*) character is specified as the address parameter, DHCP clears all dynamic bindings.
Use the no ip dhcp pool Global Configuration mode command to delete a manual binding.

Example

The following example deletes the address binding 10.12.1.99 from a DHCP server database:

```
switchxxxxxx# clear ip dhcp binding 10.12.1.99
```

12.5 client-name

To define the name of a DHCP client, use the `client-name` command in DHCP Pool Host Configuration mode. To remove the client name, use the `no` form of this command.

Syntax

```
client-name name
no client-name
```

Parameters

- `name`—Specifies the client name, using standard ASCII characters. The client name should not include the domain name. For example, the .name Mars should not be specified as mars.yahoo.com. (Length: 1–32 characters).

Command Mode

DHCP Pool Host Configuration mode

Default Configuration

No client name is defined.

Example

The following example defines the string `client1` as the client name.

```
switchxxxxxx(config-dhcp)# client-name client1
```
12.6 default-router

To configure the default router list for a DHCP client, use the `default-router` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the default router list, use the `no` form of this command.

Syntax

`default-router ip-address [ip-address2 ... ip-address8]`

`no default-router`

Parameters

- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of default routers. Up to eight addresses can be specified in one command line.

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration

No default router is defined.

User Guidelines

The router IP address should be on the same subnet as the client subnet.

Example

The following example specifies 10.12.1.99 as the default router IP address.

```
switchxxxxxx(config-dhcp)# default-router 10.12.1.99
```

12.7 dns-server

To configure the Domain Name System (DNS) IP server list available to a DHCP client, use the `dns-server` command in DHCP Pool Network Configuration mode or
in DHCP Pool Host Configuration mode. To remove the DNS server list, use the no form of this command.

Syntax

dns-server ip-address [ip-address2 ... ip-address8]

no dns-server

Parameters

- ip-address [ip-address2 ... ip-address8]—Specifies the IP addresses of DNS servers. Up to eight addresses can be specified in one command line.

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

Default Configuration

No DNS server is defined.

User Guidelines

If DNS IP servers are not configured for a DHCP client, the client cannot correlate host names to IP addresses.

Example

The following example specifies 10.12.1.99 as the client domain name server IP address.

```
switchxxxxxx(config-dhcp)# dns-server 10.12.1.99
```

12.8 domain-name

To specify the domain name for a DHCP client, use the domain-name command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the domain name, use the no form of this command.
Syntax

domain-name domain
no domain-name

Parameters

• domain—Specifies the DHCP client domain name string. (Length: 1–32 characters).

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode

Default Configuration

No domain name is defined.

Example

The following example specifies yahoo.com as the DHCP client domain name string.

switchxxxxxx(config-dhcp)# domain-name yahoo.com

12.9 ip dhcp excluded-address

To specify IP addresses that a DHCP server must not assign to DHCP clients, use the ip dhcp excluded-address command in Global Configuration mode. To remove the excluded IP addresses, use the no form of this command.

Syntax

ip dhcp excluded-address low-address [high-address]
no ip dhcp excluded-address low-address [high-address]

Parameters

• low-address—Specifies the excluded IP address, or first IP address in an excluded address range.
- high-address—(Optional) Specifies the last IP address in the excluded address range.

Default Configuration

All IP pool addresses are assignable.

Command Mode

Global Configuration mode

User Guidelines

The DHCP server assumes that all pool addresses can be assigned to clients. Use this command to exclude a single IP address or a range of IP addresses.

Example

The following example configures an excluded IP address range from 172.16.1.100 through 172.16.1.199.

```
switchxxxxxx(config)# ip dhcp excluded-address 172.16.1.100 172.16.1.199
```

12.10 ip dhcp pool host

To configure a DHCP static address on a DHCP server and enter the DHCP Pool Host Configuration mode, use the `ip dhcp pool host` command in Global Configuration mode. To remove the address pool, use the `no` form of this command.

Syntax

```
ip dhcp pool host name
no ip dhcp pool host name
```

Parameters

- `name`—Specifies the DHCP address pool name. It can be either a symbolic string (such as Engineering) or an integer (such as 8). (Length: 1–32 characters).
Default Configuration
DHCP hosts are not configured.

Command Mode
Global Configuration mode

User Guidelines
During execution of this command, the configuration mode changes to the DHCP Pool Configuration mode. In this mode, the administrator can configure host parameters, such as the IP subnet number and default router list.

Example
The following example configures station as the DHCP address pool:

```
switchxxxxxx(config)# ip dhcp pool host station
switchxxxxxx(config-dhcp)#
```

12.11 ip dhcp pool network

To configure a DHCP address pool on a DHCP Server and enter DHCP Pool Network Configuration mode, use the `ip dhcp pool network` command in Global Configuration mode. To remove the address pool, use the `no` form of this command.

Syntax
```
ip dhcp pool network name
no ip dhcp pool network name
```

Parameters

- `name`—Specifies the DHCP address pool name. It can be either a symbolic string (such as ‘engineering’) or an integer (such as 8). (Length: 1–32 characters).

Default Configuration
DHCP address pools are not configured.
Command Mode
Global Configuration mode

User Guidelines
During execution of this command, the configuration mode changes to DHCP Pool Network Configuration mode. In this mode, the administrator can configure pool parameters, such as the IP subnet number and default router list.

Example
The following example configures Pool1 as the DHCP address pool.

```
switchxxxxxx(config)# ip dhcp pool network Pool1
switchxxxxxx(config-dhcp)#
```

12.12 ip dhcp server

To enable the DHCP server features on the device, use the `ip dhcp server` command in Global Configuration mode. To disable the DHCP server, use the `no` form of this command.

Syntax

```
ip dhcp server
no ip dhcp server
```

Default Configuration
The DHCP server is disabled.

Command Mode
Global Configuration mode

Example
The following example enables the DHCP server on the device:

```
switchxxxxxx(config)# ip dhcp server
```
12.13 lease

To configure the time duration of the lease for an IP address that is assigned from a DHCP server to a DHCP client, use the `lease` command in DHCP Pool Network Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

```plaintext
lease days [hours [minutes]] | infinite
no lease
```

Parameters

- `days`—Specifies the number of days in the lease.
- `hours`—(Optional) Specifies the number of hours in the lease. A `days` value must be supplied before configuring an `hours` value.
- `minutes`—(Optional) Specifies the number of minutes in the lease. A `days` value and an `hours` value must be supplied before configuring a `minutes` value.
- `infinite`—Specifies that the duration of the lease is unlimited.

Default Configuration

The default lease duration is 1 day.

Command Mode

DHCP Pool Network Configuration mode

Examples

The following example shows a 1-day lease.

```
switchxxxxxx(config-dhcp)# lease 1
```

The following example shows a one-hour lease.

```
switchxxxxxx(config-dhcp)# lease 0 1
```
The following example shows a one-minute lease.

```
switchxxxxxxx(config-dhcp)# lease 0 0 1
```

The following example shows an infinite (unlimited) lease.

```
switchxxxxxxx(config-dhcp)# lease infinite
```

12.14 `netbios-name-server`

To configure the NetBIOS Windows Internet Naming Service (WINS) server list that is available to Microsoft DHCP clients, use the `netbios-name-server` in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the NetBIOS name server list, use the no form of this command.

Syntax

```
netbios-name-server ip-address [ip-address2 ... ip-address8]
no netbios-name-server
```

Parameters

- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of NetBIOS WINS name servers. Up to eight addresses can be specified in one command line.

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration

No bios server is defined.

Example

The following example specifies the IP address of a NetBIOS name server available to the DHCP client.
switchxxxxxx(config-dhcp)# netbios-name-server 10.12.1.90

12.15 netbios-node-type

To configure the NetBIOS node type for Microsoft DHCP clients, use the netbios-node-type command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To return to default, use the no form of this command.

Syntax

netbios-node-type {b-node | p-node | m-node | h-node}

no netbios-node-type

Parameters

- **b-node**—Specifies the Broadcast NetBIOS node type.
- **p-node**—Specifies the Peer-to-peer NetBIOS node type.
- **m-node**—Specifies the Mixed NetBIOS node type.
- **h-node**—Specifies the Hybrid NetBIOS node type.

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

Default Configuration

h-node (Hybrid NetBIOS node type).

Example

The following example specifies the client's NetBIOS type as mixed.

switchxxxxxx(config-dhcp)# netbios node-type m-node
12.16 next-server

To configure the next server (siaddr) in the boot process of a DHCP client, use the next-server command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the next server, use the no form of this command.

Syntax

next-server ip-address

no next-server

Parameters

- ip-address—Specifies the IP address of the next server in the boot process.

Default Configuration

If the next-server command is not used to configure a boot server list, the DHCP server uses inbound interface helper addresses as boot servers.

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode

User Guidelines

The client will connect, using the SCP/TFTP protocol, to this server in order to download the configuration file.

Example

The following example specifies 10.12.1.99 as the IP address of the next server:

```
switchxxxxxx(config-dhcp)# next-server 10.12.1.99
```
12.17 next-server-name

To configure the next server name (sname) in the boot process of a DHCP client, use the `next-server-name` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the boot server name, use the `no` form of this command.

Syntax

```
next-server-name name
no next-server-name
```

Parameters

- `name`—Specifies the name of the next server in the boot process. (Length: 1–64 characters).

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration

No next server name is defined.

User Guidelines

The client will connect, using the SCP/TFTP protocol, to this server in order to download the configuration file.

Example

The following example specifies www.bootserver.com as the name of the next server in the boot process of a DHCP client.

```
switchxxxxxx(config-dhcp) # next-server www.bootserver.com
```
12.18 option

To configure the DHCP server options, use the `option` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the options, use the `no` form of this command.

Syntax

```
option code {boolean {false | true} | integer value | ascii string | hex {string | none} | ip {address} | ip-list {ip-address1 [ip-address2 ...]} | description text}
```

```
no option code
```

Parameters

- `code`—Specifies the DHCP option code. The supported values are defined in the User Guidelines.
- `boolean {false | true}`—Specifies a boolean value. The values are coded by integer values of one octet: 0 = false and 1 = true.
- `integer value`—Specifies an integer value. The option size depends on the option code.
- `ascii string`—Specifies a network virtual terminal (NVT) ASCII character string. ASCII character strings that contain white spaces must be delimited by quotation marks. The ASCII value is truncated to the first 160 characters entered.
- `ip address`—Specifies an IP address.
- `ip-list {ip-address1 [ip-address2 ...]}`—Specifies up to 8 IP addresses.
- `hex string`—Specifies dotted hexadecimal data. The hexadecimal value is truncated to the first 320 characters entered. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period, colon, or white space.
- `hex none`—Specifies the zero-length hexadecimal string.
- `description text`—User description

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode
User Guidelines

The option command enables defining any option that cannot be defined by other special CLI commands. A new definition of an option overrides the previous definition of this option.

The boolean keyword may be configured for the following options: 19, 20, 27, 29-31, 34, 36, and 39.

The integer keyword may be configured for the following options: 2, 13, 22-26, 35, 37-38, 132-134, and 211. The switch checks the value range and builds the value field of the size in accordance with the option definition.

The ascii keyword may be configured for the following options: 14, 17-18, 40, 64, 130, 209, and 210.

The ip keyword may be configured for the following options: 16, 28, 32, 128-129, 131, 135, and 136.

The ip-list keyword may be configured for the following options: 5, 7-11, 33, 41, 42, 45, 48, 49, 65, 68-76, and 150.

The hex keyword may be configured for any option in the range 1-254 except for the following: 1, 3-4, 6, 12, 15, 44, 46, 50-51, 53-54, 56, 66-67, 82, and 255. The switch does not validate the syntax of an option defined by this format.

Examples

Example 1. The following example configures DHCP option 19, which specifies whether the client should configure its IP layer for packet forwarding:

```
switchxxxxxx(config-dhcp)## option 19 boolean true description "IP Forwarding Enable/Disable Option"
```

Example 2. The following example configures DHCP option 2, which specifies the offset of the client in seconds from Coordinated Universal Time (UTC):

```
switchxxxxxx(config-dhcp)## option 2 integer 3600
```

Example 3. The following example configures DHCP option 72, which specifies the World Wide Web servers for DHCP clients. World Wide Web servers 172.16.3.252 and 172.16.3.253 are configured in the following example:

```
switchxxxxxx(config-dhcp)## option 72 ip-list 172.16.3.252 172.16.3.253
```
12.19 show ip dhcp

To display the DHCP configuration, use the `show ip dhcp` command in User EXEC mode.

Syntax

```
show ip dhcp
```

Command Mode

User EXEC mode

Example

The following example displays the DHCP configuration.

```
switchxxxxxx# show ip dhcp
DHCP server is enabled.
```

12.20 show ip dhcp allocated

To display the allocated address or all the allocated addresses on the DHCP server, use the `show ip dhcp allocated` command in User EXEC mode.

Syntax

```
show ip dhcp allocated [ip-address]
```

Parameters

- `ip-address` — (Optional) Specifies the IP address.

Command Mode

User EXEC mode

Example

The following example displays the output of various forms of this command:
switchxxxxxxx# show ip dhcp allocated

DHCP server enabled
The number of allocated entries is 3

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.11</td>
<td>00a0.9802.32de</td>
<td>Feb 01 1998 12:00 AM</td>
<td>Dynamic</td>
</tr>
<tr>
<td>172.16.3.253</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Automatic</td>
</tr>
<tr>
<td>172.16.3.254</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Static</td>
</tr>
</tbody>
</table>

switchxxxxxxx# show ip dhcp allocated 172.16.1.11

DHCP server enabled
The number of allocated entries is 2

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.11</td>
<td>00a0.9802.32de</td>
<td>Feb 01 1998 12:00 AM</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>

switchxxxxxxx# show ip dhcp allocated 172.16.3.254

DHCP server enabled
The number of allocated entries is 2

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.3.254</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Static</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
</tbody>
</table>
12.21 show ip dhcp binding

To display the specific address binding or all the address bindings on the DHCP server, use the `show ip dhcp binding` command in User EXEC mode.

Syntax

```
show ip dhcp binding [ip-address]
```

Parameters

- `ip-address`—(Optional) Specifies the IP address.

Command Mode

User EXEC mode

Examples

The following examples display the DHCP server binding address parameters.

```
switchxxxxxx# show ip dhcp binding

DHCP server enabled

The number of used (all types) entries is 6
The number of pre-allocated entries is 1
The number of allocated entries is 1
The number of expired entries is 1
The number of declined entries is 2
The number of static entries is 1
The number of dynamic entries is 2
The number of automatic entries is 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware Address</th>
<th>Lease Expiration</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
</table>
```


show ip dhcp binding 1.16.1.11

switchxxxxxx# show ip dhcp binding 1.16.1.11

DHCP server enabled

IP address Hardware Address Lease Expiration Type State
---------- ----------------- --------------- ------- --------
1.16.1.11 00a0.9802.32de Feb 01 1998 dynamic allocated
12:00 AM

switchxxxxxx# show ip dhcp binding 1.16.3.24

IP address Hardware Address Lease Expiration Type State
---------- ----------------- --------------- ------- --------
1.16.3.24 02c7.f802.0422 dynamic declined

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The lease expiration date of the host IP address.</td>
</tr>
<tr>
<td>Type</td>
<td>The manner in which the IP address was assigned to the host.</td>
</tr>
<tr>
<td>State</td>
<td>The IP Address state.</td>
</tr>
</tbody>
</table>
12.22 show ip dhcp declined

To display the specific declined address or all of the declined addresses on the DHCP server, use the `show ip dhcp declined` command in User EXEC mode.

Syntax

`show ip dhcp declined [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP address.

Command Mode

User EXEC mode

Example

The following example displays the output of various forms of this command:

```
switchxxxxxx# show ip dhcp declined
DHCP server enabled
The number of declined entries is 2
IP address   Hardware address
172.16.1.11  00a0.9802.32de
172.16.3.254 02c7.f800.0422

switchxxxxxx# show ip dhcp declined 172.16.1.11
DHCP server enabled
The number of declined entries is 2
IP address   Hardware address
172.16.1.11  00a0.9802.32de
```

12.23 show ip dhcp excluded-addresses

To display the excluded addresses, use the `show ip dhcp excluded-addresses` command in User EXEC mode.

Syntax

`show ip dhcp excluded-addresses`

Command Mode

User EXEC mode

Example

The following example displays excluded addresses.

```
switchxxxxxx# show ip dhcp excluded-addresses
The number of excluded addresses ranges is 2
Excluded addresses:
10.1.1.212- 10.1.1.219, 10.1.2.212- 10.1.2.219
```

12.24 show ip dhcp expired

To display the specific expired address or all of the expired addresses on the DHCP server, use the `show ip dhcp expired` command in User EXEC mode.

Syntax

`show ip dhcp expired [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP.

Command Mode

User EXEC mode

Example

OL-32830-01 Command Line Interface Reference Guide 302
switchxxxxxx# show ip dhcp expired
DHCP server enabled
The number of expired entries is 1
IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.3.254 02c7.f800.0422

switchxxxxxx# show ip dhcp expired 172.16.1.11
DHCP server enabled
The number of expired entries is 1
IP address Hardware address
172.16.1.13 00a0.9802.32de

12.25 show ip dhcp pool host

To display the DHCP pool host configuration, use the show ip dhcp pool host command in User EXEC mode.

Syntax

show ip dhcp pool host [address | name]

Parameters

- **address**—(Optional) Specifies the client IP address.
- **name**—(Optional) Specifies the DHCP pool name. (Length: 1-32 characters)

Command Mode

User EXEC mode

Examples

Example 1. The following example displays the configuration of all DHCP host pools:

switchxxxxxx# show ip dhcp pool host
The number of host pools is 1

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
<th>Hardware Address</th>
<th>Client Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>station</td>
<td>172.16.1.11</td>
<td></td>
<td>01b7.0813.8811.66</td>
</tr>
</tbody>
</table>

Example 2. The following example displays the DHCP pool host configuration of the pool named station:

```
switchxxxxxx# show ip dhcp pool host station
```

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
<th>Hardware Address</th>
<th>Client Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>station</td>
<td>172.16.1.11</td>
<td></td>
<td>01b7.0813.8811.66</td>
</tr>
</tbody>
</table>

Mask: 255.255.0.0
Default router: 172.16.1.1
Client name: client1
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99
Options:

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Len</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>integer</td>
<td>4</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ascii</td>
<td>16</td>
<td>qq/aaaa/bbb.txt</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>boolean</td>
<td>1</td>
<td>false</td>
<td>"IP Forwarding Enable/Disable Option"</td>
</tr>
</tbody>
</table>
12.26 show ip dhcp pool network

To display the DHCP network configuration, use the show ip dhcp pool network command in User EXEC mode.

Syntax

show ip dhcp pool network [name]

Parameters

- name—(Optional) Specifies the DHCP pool name. (Length: 1-32 characters).

Command Mode

User EXEC mode

Examples

Example 1—The following example displays configuration of all DHCP network pools:

```
switchxxxxxx# show ip dhcp pool network
The number of network pools is 2
Name Address range mask Lease
-----------------------------------------------
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m
finance 10.1.2.8-10.1.2.178 255.255.255.0 0d:12h:0m
```

Example 2—The following example displays configuration of the DHCP network pool marketing:

```
switchxxxxxx# show ip dhcp pool network marketing
Name Address range mask Lease
```
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m

Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Available</th>
<th>Free</th>
<th>Pre-allocated</th>
<th>Allocated</th>
<th>Expired</th>
<th>Declined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>162</td>
<td>150</td>
<td>68</td>
<td>50</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

Default router: 10.1.1.1
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99

Options:

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Len</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>integer</td>
<td>4</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ascii</td>
<td>16</td>
<td>qq/aaaa/bbb.txt</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>boolean</td>
<td>1</td>
<td>false</td>
<td>"IP Forwarding Enable/Disable Option"</td>
</tr>
<tr>
<td>21</td>
<td>ip</td>
<td>4</td>
<td>134.14.14.1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>ip-list</td>
<td>8</td>
<td>1.1.1.1, 12.23.45.2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>hex</td>
<td>5</td>
<td>02af00aa00</td>
<td></td>
</tr>
</tbody>
</table>

12.27 show ip dhcp pre-allocated

To display the specific pre-allocated address or all the pre-allocated addresses on the DHCP server, use the show ip dhcp pre-allocated command in User EXEC mode.
Syntax

`show ip dhcp pre-allocated [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP.

Command Mode

User EXEC mode

Examples

```
switchxxxxxx# show ip dhcp pre-allocated
DHCP server enabled
The number of pre-allocated entries is 1
IP address     Hardware address
172.16.1.11    00a0.9802.32de
172.16.3.254    02c7.f800.0422

switchxxxxxx# show ip dhcp pre-allocated 172.16.1.11
DHCP server enabled
The number of pre-allocated entries is 1
IP address     Hardware address
172.16.1.15    00a0.9802.32de
```

12.28 show ip dhcp server statistics

To display DHCP server statistics, use the `show ip dhcp server statistics` command in User EXEC mode.

Syntax

`show ip dhcp server statistics`

Command Mode

User EXEC mode
Example

The following example displays DHCP server statistics

```
switchxxxxxx# show ip dhcp server statistics
DHCP server enabled
The number of network pools is 7
The number of excluded pools is 2
The number of used (all types) entries is 7
The number of pre-allocated entries is 1
The number of allocated entries is 3
The number of expired entries is 1
The number of declined entries is 2
The number of static entries is 1
The number of dynamic entries is 2
The number of automatic entries is 1
```

12.29 time-server

To specify the time servers list for a DHCP client, use the `time-server` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the time servers list, use the `no` form of this command.

Syntax

```
time-server ip-address[ip-address2 ... ip-address8]
no time-server
```

Parameters

- `ip-address[ip-address2 ... ip-address8]`—Specifies the IP addresses of Time servers. Up to eight addresses can be specified in one command line.

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode
Default Configuration
No time server is defined.

User Guidelines
The time server’s IP address should be on the same subnet as the client subnet.

Example
The following example specifies 10.12.1.99 as the time server IP address.

```
switchxxxxxx(config-dhcp)# time-server 10.12.1.99
```
DHCP Snooping Commands

13.1 ip dhcp snooping

Use the `ip dhcp snooping` Global Configuration mode command to enable Dynamic Host Configuration Protocol (DHCP) Snooping globally. Use the `no` form of this command to restore the default configuration.

Syntax

- `ip dhcp snooping`
- `no ip dhcp snooping`

Parameters

N/A

Default Configuration

DHCP snooping is disabled.

Command Mode

Global Configuration mode

User Guidelines

For any DHCP Snooping configuration to take effect, DHCP Snooping must be enabled globally. DHCP Snooping on a VLAN is not active until DHCP Snooping on a VLAN is enabled by using the `ip dhcp snooping vlan` Global Configuration mode command.

Example

The following example enables DHCP Snooping on the device.

```
switchxxxxxx(config)# ip dhcp snooping
```
13.2 ip dhcp snooping vlan

Use the `ip dhcp snooping vlan` Global Configuration mode command to enable DHCP Snooping on a VLAN. Use the `no` form of this command to disable DHCP Snooping on a VLAN.

Syntax

```
ip dhcp snooping vlan vlan-id
no ip dhcp snooping vlan vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

DHCP Snooping on a VLAN is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP Snooping must be enabled globally before enabling DHCP Snooping on a VLAN.

Example

The following example enables DHCP Snooping on VLAN 21.

```
switchxxxxxx(config)# ip dhcp snooping vlan 21
```

13.3 ip dhcp snooping trust

Use the `ip dhcp snooping trust` Interface Configuration (Ethernet, Port-channel) mode command to configure a port as trusted for DHCP snooping purposes. Use the `no` form of this command to restore the default configuration.
DHCP Snooping Commands

Syntax

```
ip dhcp snooping trust
no ip dhcp snooping trust
```

Parameters

N/A

Default Configuration

The interface is untrusted.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Configure as trusted the ports that are connected to a DHCP server or to other switches or routers. Configure the ports that are connected to DHCP clients as untrusted.

Example

The following example configures gi14 as trusted for DHCP Snooping.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# ip dhcp snooping trust
```

13.4 ip dhcp snooping information option allowed-untrusted

Use the `ip dhcp snooping information option allowed-untrusted` Global Configuration mode command to allow a device to accept DHCP packets with option-82 information from an untrusted port. Use the `no` form of this command to drop these packets from an untrusted port.

Syntax

```
ip dhcp snooping information option allowed-untrusted
no ip dhcp snooping information option allowed-untrusted
```
Parameters
N/A

Default Configuration
DHCP packets with option-82 information from an untrusted port are discarded.

Command Mode
Global Configuration mode

Example
The following example allows a device to accept DHCP packets with option-82 information from an untrusted port.

```
switchxxxxxx(config)# ip dhcp snooping information option allowed-untrusted
```

13.5 `ip dhcp snooping verify`

Use the **ip dhcp snooping verify** Global Configuration mode command to configure a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address. Use the **no** form of this command to disable MAC address verification in a DHCP packet received on an untrusted port.

Syntax

```
ip dhcp snooping verify
no ip dhcp snooping verify
```

Default Configuration

The switch verifies that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address in the packet.

Command Mode

Global Configuration mode
Example
The following example configures a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address.

```
switchxxxxxx(config)# ip dhcp snooping verify
```

13.6 ip dhcp snooping database
Use the `ip dhcp snooping database` Global Configuration mode command to enable the DHCP Snooping binding database file. Use the `no` form of this command to delete the DHCP Snooping binding database file.

Syntax
```
ip dhcp snooping database
no ip dhcp snooping database
```

Parameters
N/A

Default Configuration
The DHCP Snooping binding database file is not defined.

Command Mode
Global Configuration mode

User Guidelines
The DHCP Snooping binding database file resides on Flash.

To ensure that the lease time in the database is accurate, the Simple Network Time Protocol (SNTP) must be enabled and configured.

The device writes binding changes to the binding database file only if the device system clock is synchronized with SNTP.
Example

The following example enables the DHCP Snooping binding database file.

switchxxxxxx(config)# ip dhcp snooping database

13.7 ip dhcp snooping database update-freq

Use the `ip dhcp snooping database update-freq` Global Configuration mode command to set the update frequency of the DHCP Snooping binding database file. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip dhcp snooping database update-freq seconds
no ip dhcp snooping database update-freq
```

Parameters

- `seconds`—Specifies the update frequency in seconds. (Range: 600–86400).

Default Configuration

The default update frequency value is 1200 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the DHCP Snooping binding database file update frequency to 1 hour.

```
switchxxxxxx(config)# ip dhcp snooping database update-freq 3600
```
13.8 ip dhcp snooping binding

Use the `ip dhcp snooping binding` Privileged EXEC mode command to configure the DHCP Snooping binding database and add dynamic binding entries to the database. Use the `no` form of this command to delete entries from the binding database.

Syntax

```
ip dhcp snooping binding mac-address vlan-id ip-address interface-id expiry {seconds | infinite}
no ip dhcp snooping binding mac-address vlan-id
```

Parameters

- `mac-address`—Specifies a MAC address.
- `vlan-id`—Specifies a VLAN number.
- `ip-address`—Specifies an IP address.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `expiry`
 - `seconds`—Specifies the time interval, in seconds, after which the binding entry is no longer valid. (Range: 10–4294967294).
 - `infinite`—Specifies infinite lease time.

Default Configuration

No static binding exists.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `ip dhcp snooping binding` command to add manually a dynamic entry to the DHCP database.

After entering this command, an entry is added to the DHCP Snooping database. If the DHCP Snooping binding file exists, the entry is also added to that file.
The entry would not be added to the configuration files. The entry would be displayed in the show commands as a “DHCP Snooping” entry.

An entry added by this command can override the existed dynamic entry.

An entry added by this command cannot override the existed static entry added by the `ip source-guard binding` command.

The entry is displayed in the show commands as a DHCP Snooping entry.

Use the `no ip dhcp snooping binding` command to delete manually a dynamic entry from the DHCP database.

A dynamic temporary entries for which the IP address is 0.0.0.0 cannot be deleted.

Example

The following example adds a binding entry to the DHCP Snooping binding database.

```
switchxxxxxx# ip dhcp snooping binding 0060.704C.73FF 23 176.10.1.1 gi14 expiry 900
```

13.9 `clear ip dhcp snooping database`

Use the `clear ip dhcp snooping database` Privileged EXEC mode command to clear the DHCP Snooping binding database.

Syntax

```
clear ip dhcp snooping database
```

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

The following example clears the DHCP Snooping binding database.
13.10 show ip dhcp snooping

Use the `show ip dhcp snooping` EXEC mode command to display the DHCP snooping configuration for all interfaces or for a specific interface.

Syntax

```
show ip dhcp snooping [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode

Example

The following example displays the DHCP snooping configuration.

```
switchxxxxxx# show ip dhcp snooping
DHCP snooping is Enabled
DHCP snooping is configured on following VLANs: 21
DHCP snooping database is Enabled
Relay agent Information option 82 is Enabled
Option 82 on untrusted port is allowed
Verifications of hwaddr field is Enabled
DHCP snooping file update frequency is configured to: 6666 seconds

Interface          Trusted
------------------  ------
        gi11        Yes
        gi12        Yes
```
13.11 show ip dhcp snooping binding

Use the **show ip dhcp snooping binding** User EXEC mode command to display the DHCP Snooping binding database and configuration information for all interfaces or for a specific interface.

Syntax

```
show ip dhcp snooping binding [mac-address mac-address] [ip-address ip-address] [vlan vlan-id] [interface-id]
```

Parameters

- **mac-address mac-address**—Specifies a MAC address.
- **ip-address ip-address**—Specifies an IP address.
- **vlan vlan-id**—Specifies a VLAN ID.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode

Example

The following examples displays the DHCP snooping binding database and configuration information for all interfaces on a device.

```
switchxxxxxx# show ip dhcp snooping binding

Update frequency: 1200
Total number of binding: 2

<table>
<thead>
<tr>
<th>Mac Address</th>
<th>IP Address</th>
<th>Lease (sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0060.704C.73FF</td>
<td>10.1.8.1</td>
<td>7983</td>
<td>snooping</td>
<td>3</td>
<td>gi11</td>
</tr>
<tr>
<td>0060.704C.7BC1</td>
<td>10.1.8.2</td>
<td>92332</td>
<td>snooping</td>
<td>3</td>
<td>gi12</td>
</tr>
</tbody>
</table>
```
13.12 ip source-guard

Use the \texttt{ip source-guard} command in Configuration mode or Interface Configuration mode to enable IP Source Guard globally on a device or in Interface Configuration (Ethernet, Port-channel) mode to enable IP Source Guard on an interface.

Use the \texttt{no} form of this command to disable IP Source Guard on the device or on an interface.

\textbf{Syntax}

\begin{verbatim}
 ip source-guard
 no ip source-guard
\end{verbatim}

\textbf{Parameters}

N/A

\textbf{Default Configuration}

IP Source Guard is disabled.

\textbf{Command Mode}

Interface (Ethernet, Port Channel) Configuration mode

\textbf{User Guidelines}

IP Source Guard must be enabled globally before enabling IP Source Guard on an interface.

IP Source Guard is active only on DHCP snooping untrusted interfaces, and if at least one of the interface VLANs are DHCP snooping enabled.

\textbf{Example}

The following example enables IP Source Guard on gi14.

\begin{verbatim}
switchxxxxxxx(config)# interface gi14
switchxxxxxxx(config-if)# ip source-guard
\end{verbatim}
13.13 ip source-guard binding

Use the `ip source-guard binding` Global Configuration mode command to configure the static IP source bindings on the device. Use the `no` form of this command to delete the static bindings.

Syntax

```
ip source-guard binding mac-address vlan-id ip-address interface-id
no ip source-guard binding mac-address vlan-id
```

Parameters

- `mac-address`—Specifies a MAC address.
- `vlan-id`—Specifies a VLAN number.
- `ip-address`—Specifies an IP address.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

No static binding exists.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip source-guard binding` command to add a static entry to the DHCP database.

An entry added by this command can override the existed entry.

Use the `no ip source-guard binding` command to delete an entry from the DHCP database.

Example

The following example configures the static IP source bindings.

```
switchxxxxxxx(config)# ip source-guard binding 0060.704C.73FF 23 176.10.1.1 gi14
```
13.14 ip source-guard tcam retries-freq

Use the ip source-guard tcam retries-freq Global Configuration mode command to set the frequency of retries for TCAM resources for inactive IP Source Guard addresses. Use the no form of this command to restore the default configuration.

Syntax

ip source-guard tcam retries-freq {seconds/never}
no ip source-guard tcam retries-freq

Parameters

- seconds—Specifies the retries frequency in seconds. (Range: 10–600)
- never—Disables automatic searching for TCAM resources.

Default Configuration

The default retries frequency is 60 seconds.

Command Mode

Global Configuration mode

User Guidelines

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.

By default, once every minute the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses. Use this command to change the search frequency or to disable automatic retries for TCAM space.

The ip source-guard tcam locate command manually retries locating TCAM resources for the inactive IP Source Guard addresses.

The show ip source-guard inactive EXEC mode command displays the inactive IP Source Guard addresses.

Example

The following example sets the frequency of retries for TCAM resources to 2 minutes.
13.15 ip source-guard tcam locate

Use the **ip source-guard tcam locate** Privileged EXEC mode command to manually retry to locate TCAM resources for inactive IP Source Guard addresses.

Syntax

`ip source-guard tcam locate`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.

By default, once every 60 seconds the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses.

Execute the `ip source-guard tcam retries-freq` command with the `never` keyword to disable automatic retries for TCAM space, and then execute this command to manually retry locating TCAM resources for the inactive IP Source Guard addresses.

The **show ip source-guard inactive** EXEC mode command displays the inactive IP source guard addresses.

Example

The following example manually retries to locate TCAM resources.

```
switchxxxxxx# ip source-guard tcam locate
```
13.16 show ip source-guard configuration

Use the show ip source-guard configuration EXEC mode command to display the IP source guard configuration for all interfaces or for a specific interface.

Syntax

show ip source-guard configuration [interface-id]

Parameters

- interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode

Example

The following example displays the IP Source Guard configuration.

```
switchxxxxxx# show ip source-guard configuration
IP source guard is globally enabled.
Interface State
--------- -------
gi11 Enabled
gi12 Enabled
gi13 Enabled
gi14 Enabled
```

13.17 show ip source-guard status

Use the show ip source-guard status EXEC mode command to display the IP Source Guard status.

Syntax

show ip source-guard status [mac-address mac-address] [ip-address ip-address] [vlan vlan] [interface-id]
Parameters

- **mac-address** *mac-address*—Specifies a MAC address.
- **ip-address** *ip-address*—Specifies an IP address.
- **vlan** *vlan-id*—Specifies a VLAN ID.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode

Example

The following examples display the IP Source Guard status.

```
switchxxxxxxx# show ip source-guard status
IP source guard is globally enabled.

Interface      Filter Status IP Address    MAC Address   VLAN Type
-------------- ----- ------ --------------- --------------- --- -----       
  gi11          IP    Active 10.1.8.1     0060.704C.73FF 3  DHCP
  gi12          IP    Active 10.1.8.2     0060.704C.7BC1 3  Static
  gi13          IP    Active Deny all    0060.704C.7BC3 4  DHCP
  gi14          IP    Inactive
```

13.18 show ip source-guard inactive

Use the **show ip source-guard inactive** EXEC mode command to display the IP Source Guard inactive addresses.

Syntax

```
show ip source-guard inactive
```

Parameters

N/A

Command Mode

User EXEC mode
User Guidelines

Since the IP Source Guard uses the Ternary Content Addressable Memory (TCAM) resources, there may be situations when IP Source Guard addresses are inactive because of a lack of TCAM resources.

By default, once every minute the software conducts a search for available space in the TCAM for the inactive IP Source Guard addresses.

Use the `ip source-guard tcam retries-freq` command to change the retry frequency or to disable automatic retries for TCAM space.

Use the `ip source-guard tcam locate` command to manually retry locating TCAM resources for the inactive IP Source Guard addresses.

This command displays the inactive IP source guard addresses.

Example

The following example displays the IP source guard inactive addresses.

```
switchxxxxxx# show ip source-guard inactive

TCAM resources search frequency: 60 seconds

Interface  Filter  IP Address  MAC Address  VLAN  Type     Reason
----------  -------  ----------  -----------  -----  -------  --------
gi12       IP       10.1.8.32   0060.704C.83FF  3   DHCP     Resource
          IP       10.1.8.32   0060.704C.83FF  3   DHCP     Problem
          IP       10.1.8.32   0060.704C.83FF  3   DHCP     Trust port
```

13.19 show ip source-guard statistics

Use the `show ip source-guard statistics` EXEC mode command to display the Source Guard dynamic information (permitted stations).

Syntax

```
show ip source-guard statistics [vlan vlan-id]
```

Parameters

- `vlan-id`—Display the statistics on this VLAN.
Command Mode

User EXEC mode

Example

```
switchxxxxxx# show ip source-guard statistics
VLAN  Statically Permitted Stations  DHCP Snooping Permitted Stations
    --- ------------------------------- --------------------------------
    22 3
```

13.20 ip arp inspection

Use the `ip arp inspection` Global Configuration mode command globally to enable Address Resolution Protocol (ARP) inspection. Use the `no` form of this command to disable ARP inspection.

Syntax

```
ip arp inspection
no ip arp inspection
```

Parameters

N/A

Default Configuration

ARP inspection is disabled.

Command Mode

Global Configuration mode

User Guidelines

Note that if a port is configured as an untrusted port, then it should also be configured as an untrusted port for DHCP Snooping, or the IP-address-MAC-address binding for this port should be configured statically. Otherwise, hosts that are attached to this port cannot respond to ARPs.
Example
The following example enables ARP inspection on the device.

```
switchxxxxxx(config)# ip arp inspection
```

13.21 ip arp inspection vlan

Use the `ip arp inspection vlan` Global Configuration mode command to enable ARP inspection on a VLAN, based on the DHCP Snooping database. Use the `no` form of this command to disable ARP inspection on a VLAN.

Syntax

```
ip arp inspection vlan vlan-id
no ip arp inspection vlan vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

DHCP Snooping based ARP inspection on a VLAN is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables ARP inspection on a VLAN based on the DHCP snooping database. Use the `ip arp inspection list assign` command to enable static ARP inspection.

Example

The following example enables DHCP Snooping based ARP inspection on VLAN 23.

```
switchxxxxxx(config)# ip arp inspection vlan 23
```
13.22 ip arp inspection trust

Use the ip arp inspection trust Interface Configuration (Ethernet, Port-channel) mode command to configure an interface trust state that determines if incoming Address Resolution Protocol (ARP) packets are inspected. Use the no form of this command to restore the default configuration.

Syntax

ip arp inspection trust
no ip arp inspection trust

Parameters

N/A

Default Configuration

The interface is untrusted.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The device does not check ARP packets that are received on the trusted interface; it only forwards the packets.

For untrusted interfaces, the device intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The device drops invalid packets and logs them in the log buffer according to the logging configuration specified with the ip arp inspection logging interval command.

Example

The following example configures gi13 as a trusted interface.

```
switchxxxxxx(config)# interface gi13
switchxxxxxx(config-if)# ip arp inspection trust
```
13.23 ip arp inspection validate

Use the `ip arp inspection validate` Global Configuration mode command to perform specific checks for dynamic Address Resolution Protocol (ARP) inspection. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip arp inspection validate
no ip arp inspection validate
```

Parameters

N/A

Default Configuration

ARP inspection validation is disabled.

Command Mode

Global Configuration mode

User Guidelines

The following checks are performed:

- **Source MAC address**: Compares the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses.

- **Destination MAC address**: Compares the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses.

- **IP addresses**: Compares the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses.

Example

The following example executes ARP inspection validation.

```
switchxxxxxx(config)# ip arp inspection validate
```
13.24 ip arp inspection list create

Use the `ip arp inspection list create` Global Configuration mode command to create a static ARP binding list and enters the ARP list configuration mode. Use the `no` form of this command to delete the list.

Syntax

```
ip arp inspection list create name
```

```
no ip arp inspection list create name
```

Parameters

- `name`—Specifies the static ARP binding list name. (Length: 1–32 characters).

Default Configuration

No static ARP binding list exists.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip arp inspection list assign` command to assign the list to a VLAN.

Example

The following example creates the static ARP binding list ‘servers’ and enters the ARP list configuration mode.

```
switchxxxxxxx(config)# ip arp inspection list create servers
```

13.25 ip mac

Use the `ip mac` ARP-list Configuration mode command to create a static ARP binding. Use the `no` form of this command to delete a static ARP binding.
13.26 ip arp inspection list assign

Use the `ip arp inspection list assign` Global Configuration mode command to assign a static ARP binding list to a VLAN. Use the `no` form of this command to delete the assignment.

Syntax

```plaintext
ip arp inspection list assign vlan-id name
no ip arp inspection list assign vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.
13 DHCP Snooping Commands

- name—Specifies the static ARP binding list name.

Default Configuration

No static ARP binding list assignment exists.

Command Mode

Global Configuration mode

Example

The following example assigns the static ARP binding list Servers to VLAN 37.

```
switchxxxxxx(config)# ip arp inspection list assign 37 servers
```

13.27 ip arp inspection logging interval

Use the `ip arp inspection logging interval` Global Configuration mode command to set the minimum time interval between successive ARP SYSLOG messages. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip arp inspection logging interval {seconds | infinite}
no ip arp inspection logging interval
```

Parameters

- `seconds`—Specifies the minimum time interval between successive ARP SYSLOG messages. A 0 value means that a system message is immediately generated. (Range: 0–86400)

- `infinite`—Specifies that SYSLOG messages are not generated.

Default Configuration

The default minimum ARP SYSLOG message logging time interval is 5 seconds.

Command Mode

Global Configuration mode
Example

The following example sets the minimum ARP SYSLOG message logging time interval to 60 seconds.

```
switchxxxxxx(config)# ip arp inspection logging interval 60
```

13.28 show ip arp inspection

Use the `show ip arp inspection` EXEC mode command to display the ARP inspection configuration for all interfaces or for a specific interface.

Syntax

```
show ip arp inspection [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode

Example

The following example displays the ARP inspection configuration.

```
switchxxxxxx# show ip arp inspection
IP ARP inspection is Enabled
IP ARP inspection is configured on following VLANs: 1
Verification of packet header is Enabled
IP ARP inspection logging interval is: 222 seconds

Interface     Trusted
-------------- --------
gi11            Yes

gi12            Yes
```
13.29 show ip arp inspection list

Use the `show ip arp inspection list` Privileged EXEC mode command to display the static ARP binding list.

Syntax

```
show ip arp inspection list
```

Parameters

- N/A

Command Mode

Privileged EXEC mode

Example

The following example displays the static ARP binding list.

```
switchxxxxxx# show ip arp inspection list
List name: servers
Assigned to VLANs: 1,2
IP          ARP
-----------  -----------
172.16.1.1   0060.704C.7322
172.16.1.2   0060.704C.7322
```

13.30 show ip arp inspection statistics

Use the `show ip arp inspection statistics` EXEC command to display statistics for the following types of packets that have been processed by this feature: Forwarded, Dropped, IP/MAC Validation Failure.

Syntax

```
show ip arp inspection statistics [vlan vlan-id]
```
Parameters

- **vlan-id**—Specifies VLAN ID.

Command Mode

User EXEC mode

User Guidelines

To clear ARP Inspection counters use the `clear ip arp inspection statistics` command. Counters values are kept when disabling the ARP Inspection feature.

Example

```
switchxxxxxx# show ip arp inspection statistics
Vlan  Forwarded  Packets Dropped  Packets  IP/MAC Failures
---  ------------------------------
 2    1500100  80
```

13.31 clear ip arp inspection statistics

Use the `clear ip arp inspection statistics` Privileged EXEC mode command to clear statistics ARP Inspection statistics globally.

Syntax

clear ip arp inspection statistics [vlan vlan-id]

Parameters

- **vlan-id**—Specifies VLAN ID.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear ip arp inspection statistics
```
DHCPv6 Commands

14.1 clear ipv6 dhcp client

Use the `clear ipv6 dhcp client` command in Privileged EXEC mode to restart DHCP for an IPv6 client on an interface.

Syntax

`clear ipv6 dhcp client interface-id`

Parameters

- `interface-id`—Interface identifier.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command restarts DHCP for an IPv6 client on a specified interface after first releasing and unconfiguring previously-acquired prefixes and other configuration options (for example, Domain Name System [DNS] servers).

Example

The following example restarts the DHCP for IPv6 client on VLAN 100:

```
switchxxxxxx# clear ipv6 dhcp client vlan 100
```
14.2 ipv6 dhcp client information refresh

To configure the refresh time for IPv6 client information refresh time on a specified interface if the DHCPv6 server reply does not include the Information Refresh Time, use the ipv6 dhcp client information refresh command in Interface Configuration mode. To return to the default value of the refresh time, use the no form of this command.

Syntax

ipv6 dhcp client information refresh seconds/infinite

no ipv6 dhcp client information refresh

Parameters

- **seconds**—The refresh time, in seconds. The value cannot be less than the minimal acceptable refresh time configured by the ipv6 dhcp client information refresh command. The maximum value that can be used is 4,294967,294 seconds (0xFFFFFFFF).

- **infinite**—Infinite refresh time.

Default Configuration

The default is 86,400 seconds (24 hours).

Command Mode

Interface Configuration mode

User Guidelines

The ipv6 dhcp client information refresh command specifies the information refresh time. If the server does not sends an information refresh time option then a value configured by the command is used.

Use the infinite keyword, to prevent refresh, if the server does not send an information refresh time option.

Example

The following example configures an upper limit of 2 days:

switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client stateless
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
switchxxxxxx(config-if)# exit

14.3 ipv6 dhcp client information refresh minimum

To configure the minimum acceptable refresh time on the specified interface, use the `ipv6 dhcp client information refresh minimum` command in Interface Configuration mode. To remove the configured refresh time, use the `no` form of this command.

Syntax

`ipv6 dhcp client information refresh minimum seconds/infinite`

`no ipv6 dhcp client information refresh minimum`

Parameters

- `seconds`—The refresh time, in seconds. The minimum value that can be used is 600 seconds. The maximum value that can be used is 4,294,967,294 seconds (0xFFFFFFFE).

- `infinite`—Infinite refresh time.

Default Configuration

The default is 86,400 seconds (24 hours).

Command Mode

Interface Configuration mode

User Guidelines

The `ipv6 dhcp client information refresh minimum` command specifies the minimum acceptable information refresh time. If the server sends an information refresh time option of less than the configured minimum refresh time, the configured minimum refresh time will be used instead.

This command may be configured in the following situations:

- In unstable environments where unexpected changes are likely to occur.
• For planned changes, including renumbering. An administrator can gradually decrease the time as the planned event nears.

• Limit the amount of time before new services or servers are available to the client, such as the addition of a new Simple Network Time Protocol (SNTP) server or a change of address of a Domain Name System (DNS) server.

If you configure the infinite keyword client never refreshes the information.

Example

The following example configures an upper limit of 2 days:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client stateless
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
switchxxxxxx(config-if)# exit
```

14.4 ipv6 dhcp client stateless

Use the ipv6 dhcp client stateless command in Interface Configuration mode to enable DHCP for an IPv6 client process and to enable request for stateless configuration through the interface on which the command is run. To disable requests for stateless configuration, use the no form of this command.

Syntax

ipv6 dhcp client stateless

no ipv6 dhcp client stateless

Parameters

This command has no arguments or keywords.

Default Configuration

Information request is disabled on an interface.

Command Mode

Global Configuration mode
User Guidelines

Enabling this command starts the DHCPv6 client process if this process is not yet running and IPv6 interface is enabled on the interface.

This command enables the DHCPv6 Stateless service on the interface. The service allows to receive the configuration from a DHCP server, passed in the following options:

- Option 7: OPTION_PREFERENCE - The preference value for the server in this message
- Option 12: OPTION_UNICAST - The IP address to which the client should send messages delivered using unicast
- Option 23: OPTION_DNS_SERVERS - List of DNS Servers IPv6 Addresses
- Option 24: OPTION_DOMAIN_LIST - Domain Search List
- Option 31: OPTION_SNTP_SERVERS - List of SNTP Servers IPv6 Addresses
- Option 32: OPTION_INFORMATION_REFRESH_TIME - Information Refresh Time Option
- Option 41: OPTION_NEW_POSIX_TIMEZONE - New Timezone Posix String
- Option 59: OPT_BOOTFILE_URL - Configuration Server URL
- Option 60: OPT_BOOTFILE_PARAM, the first parameter - Configuration File Path Name

DHCPv6 client and relay functions are mutually exclusive on an interface.

Example

The following example enables the Stateless service:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client stateless
switchxxxxxx(config-if)# exit
```
14.5 ipv6 dhcp duid-en

Use the `ipv6 dhcp duid-en` command in Global Configuration mode to set the Vendor Based on Enterprise Number DHCPv6 Unique Identified (DUID-EN) format.

To return to the default value, use the `no` form of this command.

Syntax

```
ipv6 dhcp duid-en enterprise-number identifier

no ipv6 dhcp duid-en
```

Parameters

- `enterprise-number`—The vendor’s registered Private Enterprise number as maintained by IANA.
- `identifier`—The vendor-defined non-empty hex string (up to 64 hex characters). If the number of the character is not even ‘0’ is added at the right. Each 2 hex characters can be separated by a period or colon.

Default Configuration

DUID Based on Link-layer Address (DUID-LL) is used. The base MAC Address is used as a Link-layer Address.

Command Mode

Global Configuration mode

User Guidelines

By default, the DHCPv6 uses the DUID Based on Link-layer Address (see RFC3315) with the Base MAC Address as a Link-layer Address.

Use this command to change the UDID format to the Vendor Based on Enterprise Number.

Examples

Example 1. The following sets the DUID-EN format:

```
ipv6 dhcp duid-en 9 0CC084D303000912
```
Example 2. The following sets the DIID-EN format using colons as delimiter:

```
switchxxxxxx(config)# ipv6 dhcp udid-en 9 0C:C0:84:D3:03:00:09:12
```

14.6 ipv6 dhcp relay destination (Global)

To specify a globally-defined relay destination address to which client messages are forwarded, use the `ipv6 dhcp relay destination` command in global configuration mode. To remove a relay destination address, use the `no` form of this command.

Syntax

```
ipv6 dhcp relay destination {ipv6-address [interface-id]} | interface-id
no ipv6 dhcp relay destination [ipv6-address [interface-id]] | interface-id
```

Parameters

- `ipv6-address [interface-id]`—Relay destination IPv6 address in the form documented in RFC 4291 where the address is specified in hexadecimal using 16-bit values between colons. There are the following types of relay destination address:
 - Link-local Unicast address. A user must specify the `interface-id` argument for this kind of address.
 - Global Unicast IPv6 address. If the `interface-id` argument is omitted then the Routing table is used.

- `interface-id`—Interface identifier that specifies the output interface for a destination. If this argument is configured, client messages are forwarded to the well-known link-local Multicast address
 All_DHCP_Relay_Agents_and_Servers (FF02::1:2) through the link to which the output interface is connected.

Default Configuration

There is no globally-defined relay destination.

Command Mode

Global Configuration mode
User Guidelines

The `ipv6 dhcp relay destination` command specifies a destination address to which client messages are forwarded. The address is used by all DHCPv6 relays running on the switch.

When a relay service is running on an interface, a DHCP for IPv6 message received on that interface will be forwarded to all configured relay destinations configured per interface and globally.

Multiple destinations can be configured on one interface, and multiple output interfaces can be configured for one destination.

Unspecified, loopback, and Multicast addresses are not acceptable as the relay destination.

Use the `no` form of the command with the `ipv6-address` and `interface-id` arguments to remove only the given globally-defined address with the given output interface.

Use the `no` form of the command with the `ipv6-address` argument to remove only the given globally-defined address for all output interfaces.

The `no` form of the command without the arguments removes all the globally-defined addresses.

Examples

Example 1. The following example sets the relay unicast link-local destination address per VLAN 200:

```
switchxxxxxx(config)# ipv6 dhcp relay destination FE80::1:2 vlan 200
```

Example 2. The following example sets that client messages are forwarded to VLAN 200:

```
switchxxxxxx(config)# ipv6 dhcp relay destination vlan 200
```

Example 3. The following example sets the unicast global relay destination address:

```
switchxxxxxx(config)# ipv6 dhcp relay destination 3002::1:2
```
14.7 ipv6 dhcp relay destination (Interface)

To specify a destination address to which client messages are forwarded and to enable DHCP for IPv6 relay service on the interface, use the `ipv6 dhcp relay destination` command in Interface configuration mode. To remove a relay destination on the interface or to delete an output interface for a destination, use the `no` form of this command.

Syntax

```
ipv6 dhcp relay destination [ipv6-address [interface-id]] | interface-id
no ipv6 dhcp relay destination [ipv6-address [interface-id]] | interface-id
```

Parameters

- `ipv6-address [interface-id]`—Relay destination IPv6 address in the form documented in RFC 4291 where the address is specified in hexadecimal using 16-bit values between colons. There are the following types of relay destination address:
 - Link-local Unicast address. A user must specify the `interface-id` argument for this kind of address.
 - Global Unicast IPv6 address. If the `interface-id` argument is omitted then the Routing table is used.
- `interface-id`—Interface identifier that specifies the output interface for a destination. If this argument is configured, client messages are forwarded to the well-known link-local Multicast address `All_DHCP_Relay_Agents_and_Servers` (FF02::1:2) through the link to which the output interface is connected.

Default Configuration

The relay function is disabled, and there is no relay destination on an interface.

Command Mode

Interface Configuration mode

User Guidelines

This command specifies a destination address to which client messages are forwarded, and it enables DHCP for IPv6 relay service on the interface.
DHCPv6 Relay inserts the Interface-id option if an IPv6 global address is not defined on the interface on which the relay is running. The Interface-id field of the option is the interface name (a value of the ifName field of the ifTable) on which the relay is running.

When relay service is running on an interface, a DHCP for IPv6 message received on that interface will be forwarded to all configured relay destinations configured per interface and globally.

The incoming DHCP for IPv6 message may have come from a client on that interface, or it may have been relayed by another relay agent.

The relay destination can be a Unicast address of a server or another relay agent, or it may be a Multicast address. There are two types of relay destination addresses:

- A link-local Unicast or Multicast IPv6 address, for which a user must specify an output interface.
- A global Unicast IPv6 address. A user can optionally specify an output interface for this kind of address.

If no output interface is configured for a destination, the output interface is determined by routing tables. In this case, it is recommended that a Unicast or Multicast routing protocol be running on the router.

Multiple destinations can be configured on one interface, and multiple output interfaces can be configured for one destination. When the relay agent relays messages to a Multicast address, it sets the hop limit field in the IPv6 packet header to 32.

Unspecified, loopback, and node-local Multicast addresses are not acceptable as the relay destination.

Note that it is not necessary to enable the relay function on an interface for it to accept and forward an incoming relay reply message from servers. By default, the relay function is disabled, and there is no relay destination on an interface.

Use the no form of the command with arguments to remove a specific address.

Use the no form of the command without arguments to remove all the defined addresses and to disable the relay on the interface.

Examples

Example 1. The following example sets the relay Unicast link-local destination address per VLAN 200 and enables the DHCPv6 Relay on VLAN 100 if it was not enabled:
Example 2. The following example sets the relay well known Multicast link-local
destination address per VLAN 200 and enables the DHCPv6 Relay on VLAN 100 if
it was not enabled:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination FE80::1:2 vlan 200
switchxxxxxx(config-if)# exit
```

Example 3. The following example sets the Unicast global relay destination
address and enables the DHCPv6 Relay on VLAN 100 if it was not enabled:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination 3002::1:2
switchxxxxxx(config-if)# exit
```

Example 4. The following example enables DHCPv6 relay on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination
switchxxxxxx(config-if)# exit
```

Example 5. The following example disables DHCPv6 relay on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 dhcp relay destination
switchxxxxxx(config-if)# exit
```
14.8 show ipv6 dhcp

Use the `show ipv6 dhcp` command in User EXEC or Privileged EXEC mode to display the Dynamic DHCP unique identifier (DUID) on a specified device. This information is relevant for DHCPv6 clients and DHCPv6 relays.

Syntax

`show ipv6 dhcp`

Parameters

NA

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

This command uses the DUID, which is based on the link-layer address for both client and server identifiers. The device uses the MAC address from the lowest-numbered interface to form the DUID. The network interface is assumed to be permanently attached to the device.

Examples

Example 1. The following is sample output from this command when the switch’s UDID format is vendor based on enterprise number:

```
switchxxxxxx# show ipv6 dhcp

The switch’s DHCPv6 unique identifier(DUID) is 0002000000090CC084D303000912

  Format: 2
  Enterprise Number: 9
  Identifier: 0CC084D303000912
```

Example 2. The following is sample output from this command when the switch’s UDID format is the vendor-based on link-layer address:
switchxxxxxx# show ipv6 dhcp

The switch’s DHCPv6 unique identifier(DUID) is 000300010024012607AA

Format: 3
Hardware type: 1
MAC Address: 0024.0126.07AA

Example 3. The following is sample output from this command when the switch’s UDID format is vendorbased on link-layer address and DHCPv6 Relay is supported:

switchxxxxxx# show ipv6 dhcp

The switch’s DHCPv6 unique identifier(DUID) is 000300010024012607AA

Format: 3
Hardware type: 1
MAC Address: 0024.0126.07AA

Relay Destinations:
 FE80::250:A2FF:FEBF:A056 via VLAN 100
 FE80::250:A2FF:FEBF:A056 via VLAN 200

14.9 show ipv6 dhcp interface

Use the show ipv6 dhcp interface command in User EXEC or Privileged EXEC mode to display DHCP for IPv6 interface information.

Syntax

show ipv6 dhcp interface [interface-id]

Parameters

- interface-id—Interface identifier.
Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

If no interfaces are specified in the command, all interfaces on which DHCP for IPv6 (client or server) is enabled are displayed. If an interface is specified in the command, only information about the specified interface is displayed.

Examples

Example 1. The following is sample output from this command when only the Stateless service is enabled:

```
switchxxxxxx# show ipv6 dhcp interface
VLAN 100 is in client mode
    DHCP Operational mode is enabled
    Stateless Service is enabled
    Reconfigure service is enabled
    Information Refresh Minimum Time: 600 seconds
    Information Refresh Time: 86400 seconds
    Received Information Refresh Time: 3600 seconds
    Remain Information Refresh Time: 411 seconds
    DHCP server:
        Address FE80::202:FCFF:FEA1:7439, DUID 000300010002FCA17400
        Preference: 20
        DNS Servers: 1001::1, 2001::10
        DNS Domain Search List: company.com beta.org
        SNTP Servers: 2004::1
        POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
        Configuration Server: config.company.com
        Configuration Path Name: qqq/config/aaa_config.dat
        Indirect Image Path Name: qqq/config/aaa_image_name.txt
```
VLAN 110 is in client mode
DHCP Operational mode is disabled (IPv6 is not enabled)
Stateless Service is enabled
Reconfigure service is enabled
Information Refresh Minimum Time: 600 seconds
Information Refresh Time: 86400 seconds
Remain Information Refresh Time: 0 seconds

VLAN 1000 is in client mode
DHCP Operational mode is disabled (Interface status is DOWN)
Stateless Service is enabled
Reconfigure service is enabled
Information Refresh Minimum Time: 600 seconds
Information Refresh Time: 86400 seconds
Remain Information Refresh Time: 0 seconds

VLAN 1010 is in relay mode
DHCP Operational mode is enabled
Relay source interface: VLAN 101
Relay destinations:
 FE80::250:A2FF:FEBF:A056 via FastEthernet 1/0/10

VLAN 2000 is in client mode
DHCP Operational mode is disabled (Interface status is DOWN)
Stateless Service is enabled
Reconfigure service is enabled
Information Refresh Minimum Time: 600 seconds
Information Refresh Time: 86400 seconds
Remain Information Refresh Time: 0 seconds
DHCP server:
 Address FE80::202:FCFF:FEA1:7439, DUID 000300010002FCA17400
Preference: 20
Received Information Refresh Time: 3600 seconds
DNS Servers: 1001::1, 2001::10
DNS Domain Search List: company.com beta.org
SNTP Servers: 2004::1
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt
15.1 clear host

Use the clear host command in privileged EXEC mode to delete dynamic hostname-to-address mapping entries from the DNS client name-to-address cache.

Syntax

clear host {hostname | *}

Parameters

- **hostname**—Name of the host for which hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.
- ***/**—Specifies that all the dynamic hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.

Default Configuration

No hostname-to-address mapping entries are deleted from the DNS client name-to-address cache.

Command Mode

Privileged EXEC mode

User Guidelines

To remove the dynamic entry that provides mapping information for a single hostname, use the **hostname** argument. To remove all the dynamic entries, use the */ keyword.

To define a static hostname-to-address mappings in the DNS hostname cache, use the **ip host** command.

To delete a static hostname-to-address mappings in the DNS hostname cache, use the **no ip host** command.
Example
The following example deletes all dynamic entries from the DNS client name-to-address cache.

switchxxxxxx# clear host *

15.2 ip domain lookup
Use the ip domain lookup command in Global Configuration mode to enable the IP Domain Naming System (DNS)-based host name-to-address translation.

To disable the DNS, use the no form of this command.

Syntax
ip domain lookup
no ip domain lookup

Parameters
N/A

Default Configuration
Enabled.

Command Mode
Global Configuration mode

Example
The following example enables DNS-based host name-to-address translation.

switchxxxxxx(config)# ip domain lookup
15.3 ip domain name

Use the ip domain name command in Global Configuration mode, to define a default domain name that the switch uses to complete unqualified hostnames (names without a dotted-decimal domain name).

To delete the static defined default domain name, use the no form of this command.

Syntax

`ip domain name name`

`no ip domain name`

Parameters

`name`—Default domain name used to complete unqualified host names. Do not include the initial period that separates an unqualified name from the domain name. Length: 1–158 characters. Maximum label length of each domain level is 63 characters.

Default Configuration

No default domain name is defined.

Command Mode

Global Configuration mode

User Guidelines

Any IP hostname that does not contain a domain name (that is, any name without a dot) will have the dot and the default domain name appended to it before being added to the host table.

Domain names and host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

The maximum size of each domain level is 63 characters. The maximum name size is 158 bytes.

Example

The following example defines the default domain name as 'www.website.com'.
15.4 **ip domain polling-interval**

Use the `ip domain polling-interval` command in Global Configuration mode to specify the polling interval.

Use the `no` form of this command to return to the default behavior.

Syntax

```
ip domain polling-interval seconds
no ip domain polling-interval
```

Parameters

- `seconds`—Polling interval in seconds. The range is from \(2 \times (R+1) \times T\) to 3600.

Default Configuration

The default value is \(2 \times (R+1) \times T\), where

- \(R\) is a value configured by the `ip domain retry` command.
- \(T\) is a value configured by the `ip domain timeout` command.

Command Mode

Global Configuration mode

User Guidelines

Some applications communicate with the given IP address continuously. DNS clients for such applications, which have not received resolution of the IP address or have not detected a DNS server using a fixed number of retransmissions, return an error to the application and continue to send DNS Request messages for the IP address using the polling interval.

Example

The following example shows how to configure the polling interval of 100 seconds:

```
switchxxxxxxx(config)# ip domain polling-interval 100
```
15.5 ip domain retry

Use the `ip domain retry` command in Global Configuration mode to specify the number of times the device will send Domain Name System (DNS) queries when there is no replay.

To return to the default behavior, use the `no` form of this command.

Syntax

```
ip domain retry number
no ip domain retry
```

Parameters

- `number`—Number of times to retry sending a DNS query to the DNS server. The range is from 0 to 16.

Default Configuration

The default value is 1.

Command Mode

Global Configuration mode

User Guidelines

The number argument specifies how many times the DNS query will be sent to a DNS server until the switch decides that the DNS server does not exist.

Example

The following example shows how to configure the switch to send out 10 DNS queries before giving up:

```
switchxxxxxxx(config)# ip domain retry 10
```

15.6 ip domain timeout

Use the `ip domain timeout` command in Global Configuration mode to specify the amount of time to wait for a response to a DNS query.
To return to the default behavior, use the `no` form of this command.

Syntax

```
ip domain timeout seconds
no ip domain timeout
```

Parameters

`seconds`—Time, in seconds, to wait for a response to a DNS query. The range is from 1 to 60.

Default Configuration

The default value is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

Use the command to change the default time out value. Use the `no` form of this command to return to the default time out value.

Example

The following example shows how to configure the switch to wait 50 seconds for a response to a DNS query:

```
switchxxxxxx(config)# ip domain timeout 50
```

15.7 ip host

Use the `ip host` Global Configuration mode command to define the static host name-to-address mapping in the DNS host name cache.

Use the `no` form of this command to remove the static host name-to-address mapping.

Syntax

```
ip host hostname address1 [address2...address8]
```
no ip host name ip host name [address1...address8]

Parameters

- hostname—Name of the host. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters).
- address1—Associated host IP address (IPv4 or IPv6, if IPv6 stack is supported).
- address2...address8—Up to seven additional associated IP addresses, delimited by a single space (IPv4 or IPv6, if IPv6 stack is supported).

Default Configuration

No host is defined.

Command Mode

Global Configuration mode

User Guidelines

Host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

An IP application will receive the IP addresses in the following order:

1. IPv6 addresses in the order specified by the command.
2. IPv4 addresses in the order specified by the command.

Use the no format of the command with the address1...address8 argument to delete the specified addresses. The entry is deleted if all its addresses are deleted.

Example

The following example defines a static host name-to-address mapping in the host cache.

```
switchxxxxxxx(config)# ip host accounting.website.com 176.10.23.1
```
15.8 **ip name-server**

Use the `ip name-server` command in Global Configuration mode to specify the address of one or more name servers to use for name and address resolution. Use the `no` form of this command to remove the static specified addresses.

Syntax

```
ip name-server server1-address [server-address2...server-address8]
no ip name-server [server-address1...server-address8]
```

Parameters

- `server-address1`—IPv4 or IPv6 addresses of a single name server.
- `server-address2...server-address8`—IPv4 or IPv6 addresses of additional name servers.

Default Configuration

No name server IP addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

The preference of the servers is determined by the order in which they were entered.

Each `ip name-server` command replaces the configuration defined by the previous one (if one existed).

Example

The following example shows how to specify IPv4 hosts 172.16.1.111, 172.16.1.2, and IPv6 host 2001:0DB8::3 as the name servers:

```
switchxxxxxx(config)# ip name-server 172.16.1.111 172.16.1.2 2001:0DB8::3
```
15.9 show hosts

Use the **show hosts** command in privileged EXEC mode to display the default domain name, the style of name lookup service, a list of name server hosts, and the cached list of hostnames and addresses.

Syntax

```
show hosts [all | hostname]
```

Parameters

- **all**—The specified host name cache information is to be displayed for all configured DNS views. This is the default.
- **hostname**—The specified host name cache information displayed is to be limited to entries for a particular host name.

Command Mode

Privileged EXEC mode

Default Configuration

Default is all.

User Guidelines

This command displays the default domain name, a list of name server hosts, and the cached list of host names and addresses.

Example

The following is sample output with no parameters specified:

```
switchxxxxxx# show hosts
Name/address lookup is enabled
Domain Timeout: 3 seconds
Domain Retry: 4 times
Domain Polling Interval: 10 seconds

Default Domain Table
```
Source Interface Preference Domain

<table>
<thead>
<tr>
<th>Source</th>
<th>Interface</th>
<th>Preference</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td></td>
<td></td>
<td>website.com</td>
</tr>
<tr>
<td>dhcpv6</td>
<td>vlan 100</td>
<td>1</td>
<td>qqtca.com</td>
</tr>
<tr>
<td>dhcpv6</td>
<td>vlan 100</td>
<td>2</td>
<td>company.com</td>
</tr>
<tr>
<td>dhcpv6</td>
<td>vlan 1100</td>
<td>1</td>
<td>pptca.com</td>
</tr>
</tbody>
</table>

Name Server Table

<table>
<thead>
<tr>
<th>Source</th>
<th>Interface</th>
<th>Preference</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td></td>
<td>1</td>
<td>192.0.2.204</td>
</tr>
<tr>
<td>static</td>
<td></td>
<td>2</td>
<td>192.0.2.205</td>
</tr>
<tr>
<td>static</td>
<td></td>
<td>3</td>
<td>192.0.2.105</td>
</tr>
<tr>
<td>DHCPv6</td>
<td>vlan 100</td>
<td>1</td>
<td>2002:0:22AC::11:231A:0BB4</td>
</tr>
<tr>
<td>DHCPv4</td>
<td>vlan 1</td>
<td>1</td>
<td>192.1.122.20</td>
</tr>
<tr>
<td>DHCPv4</td>
<td>vlan 1</td>
<td>2</td>
<td>154.1.122.20</td>
</tr>
</tbody>
</table>

Cache Table

Flags: (static/dynamic, OK/Ne/??)

OK - Okay, Ne - Negative Cache, ?? - No Response

Host Flag Address;Age...in preference order

example1.company.com (dynamic, OK) 2002:0:130F::0A0:1504:0BB4;1 112.0.2.10
176.16.8.8;123 124 173.0.2.30;39
example2.company.com (dynamic, ??)
example3.company.com (static, OK) 120.0.2.27
example4.company.com (dynamic, OK) 24 173.0.2.30;15
example5.company.com (dynamic, Ne); 12
Denial of Service (DoS) Commands

16.1 security-suite deny fragmented

To discard IP fragmented packets from a specific interface, use the `security-suite deny fragmented` Interface (Ethernet, Port Channel) Configuration mode command.

To permit IP fragmented packets, use the `no` form of this command.

Syntax

```
security-suite deny fragmented [(add [ip-address | any] [mask /prefix-length]) | (remove [ip-address | any] [mask /prefix-length])]
no security-suite deny fragmented
```

Parameters

- `add ip-address | any`—Specifies the destination IP address. Use `any` to specify all IP addresses.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (`/`).

Default Configuration

Fragmented packets are allowed from all interfaces.

If `mask` is unspecified, the default is 255.255.255.255.

If `prefix-length` is unspecified, the default is 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode
User Guidelines

For this command to work, show security-suite configuration must be enabled both globally and for interfaces.

Example

The following example attempts to discard IP fragmented packets from an interface.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite deny fragmented add any /32
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

16.2 security-suite deny icmp

To discard ICMP echo requests from a specific interface (to prevent attackers from knowing that the device is on the network), use the security-suite deny icmp Interface (Ethernet, Port Channel) Configuration mode command.

To permit echo requests, use the no form of this command.

Syntax

```
security-suite deny icmp {add [ip-address /any] [mask /prefix-length]} | {remove [ip-address /any] [mask /prefix-length]}
```

Parameters

- **ip-address /any**—Specifies the destination IP address. Use any to specify all IP addresses.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

Echo requests are allowed from all interfaces.
If \texttt{mask} is not specified, it defaults to 255.255.255.255.

If \texttt{prefix-length} is not specified, it defaults to 32.

\textbf{Command Mode}

Interface (Ethernet, Port Channel) Configuration mode

\textbf{User Guidelines}

For this command to work, \texttt{show security-suite configuration} must be enabled both globally and for interfaces.

This command discards ICMP packets with "ICMP type= Echo request" that ingress the specified interface.

\textbf{Example}

The following example attempts to discard echo requests from an interface.

\begin{verbatim}
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite deny icmp add any /32
\end{verbatim}

To perform this command, DoS Prevention must be enabled in the per-interface mode.

\subsection{16.3 \texttt{security-suite deny martian-addresses}}

To deny packets containing system-reserved IP addresses or user-defined IP addresses, use the \texttt{security-suite deny martian-addresses} Global Configuration mode command.

To restore the default, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
security-suite deny martian-addresses \{add \{ip-address \{mask \}|\{prefix-length\} \} | remove \{ip-address \{mask \}|\{prefix-length\}\} \} (Add/remove user-specified IP addresses)

security-suite deny martian-addresses reserved \{add | remove\} (Add/remove system-reserved IP addresses, see tables below)

no security-suite deny martian-addresses \{add \{ip-address \{mask \}|\{prefix-length\}\} \} (This command removes addresses reserved by security-suite deny martian-addresses)
\end{verbatim}
Denial of Service (DoS) Commands

`/prefix-length}] | remove {ip-address {mask [/prefix-length]}}`, and removes all entries added by the user. The user can remove a specific entry by using `remove ip-address {mask [/prefix-length]}` parameter.

There is no `no` form of the `security-suite deny martian-addresses reserved {add | remove}` command. Use instead the `security-suite deny martian-addresses reserved remove` command to remove protection (and free up hardware resources).

Parameters

- **reserved add/remove**—Add or remove the table of reserved addresses below.
- **ip-address**—Adds/discards packets with the specified IP source or destination address.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).
- **reserved**—Discards packets with the source or destination IP address in the block of the reserved (Martian) IP addresses. See the User Guidelines for a list of reserved addresses.

Default Configuration

Martian addresses are allowed.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration` must be enabled globally.
security-suite deny martian-addresses reserved adds or removes the addresses in the following table:

<table>
<thead>
<tr>
<th>Address Block</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/8 (except when 0.0.0.0/32 is the source address)</td>
<td>Addresses in this block refer to source hosts on “this” network.</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>This block is assigned for use as the Internet host loopback address.</td>
</tr>
<tr>
<td>192.0.2.0/24</td>
<td>This block is assigned as “TEST-NET” for use in documentation and example code.</td>
</tr>
<tr>
<td>224.0.0.0/4 as source</td>
<td>This block, formerly known as the Class D address space, is allocated for use in IPv4 multicast address assignments.</td>
</tr>
<tr>
<td>240.0.0.0/4 (except when 255.255.255.255/32 is the destination address)</td>
<td>This block, formerly known as the Class E address space, is reserved.</td>
</tr>
</tbody>
</table>

Note that if the reserved addresses are included, individual reserved addresses cannot be removed.

Example

The following example discards all packets with a source or destination address in the block of the reserved IP addresses.

```
switchxxxxxx(config)# security-suite deny martian-addresses reserved add
```

16.4 security-suite deny syn

To block the creation of TCP connections from a specific interface, use the `security-suite deny syn` Interface (Ethernet, Port Channel) Configuration mode command. This a complete block of these connections.

To permit creation of TCP connections, use the `no` form of this command.
Denial of Service (DoS) Commands

Syntax

```
security-suite deny syn [add {tcp-port | any} {ip-address | any} [mask | /prefix-length]] / 
[remove {tcp-port | any} {ip-address | any} [mask | /prefix-length]]]

no security-suite deny syn
```

Parameters

- **ip-address | any**—Specifies the destination IP address. Use **any** to specify all IP addresses.
- **mask**—Specifies the network mask of the destination IP address.
- **prefix-length**—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).
- **tcp-port | any**—Specifies the destination TCP port. The possible values are: http, ftp-control, ftp-data, ssh, telnet, smtp, or port number. Use **any** to specify all ports.

Default Configuration

Creation of TCP connections is allowed from all interfaces.

If the **mask** is not specified, it defaults to 255.255.255.255.

If the **prefix-length** is not specified, it defaults to 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, **show security-suite configuration** must be enabled both globally and for interfaces.

The blocking of TCP connection creation from an interface is done by discarding ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses and destination TCP ports.

Example

The following example attempts to block the creation of TCP connections from an interface. It fails because security suite is enabled globally and not per interface.
Denial of Service (DoS) Commands

To perform this command, DoS Prevention must be enabled in the per-interface mode.

16.5 security-suite deny syn-fin

To drop all ingressing TCP packets in which both SYN and FIN are set, use the `security-suite deny syn-fin` Global Configuration mode command.

To permit TCP packets in which both SYN and FIN are set, use the `no` form of this command.

Syntax

```plaintext
security-suite deny syn-fin
no security-suite deny syn-fin
```

Parameters

This command has no arguments or keywords.

Default Configuration

The feature is disabled by default.

Command Mode

Global Configuration mode

Example

The following example blocks TCP packets in which both SYN and FIN flags are set.

```plaintext
switchxxxxxx(config)# security-suite deny syn-fin
```
16.6 security-suite dos protect

To protect the system from specific well-known Denial of Service (DoS) attacks, use the `security-suite dos protect` Global Configuration mode command. There are three types of attacks against which protection can be supplied (see parameters below).

To disable DoS protection, use the `no` form of this command.

Syntax

```
security-suite dos protect {add attack | remove attack}
no security-suite dos protect
```

Parameters

`add/remove attack`—Specifies the attack type to add/remove. To add an attack is to provide protection against it; to remove the attack is to remove protection.

The possible attack types are:

- `stacheldraht`—Discards TCP packets with source TCP port 16660.
- `invasor-trojan`—Discards TCP packets with destination TCP port 2140 and source TCP port 1024.
- `back-orifice-trojan`—Discards UDP packets with destination UDP port 31337 and source UDP port 1024.

Default Configuration

No protection is configured.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration` must be enabled globally.

Example

The following example protects the system from the Invasor Trojan DOS attack.
16.7 security-suite dos syn-attack

To rate limit Denial of Service (DoS) SYN attacks, use the security-suite dos syn-attack Interface Configuration mode command. This provides partial blocking of SNY packets (up to the rate that the user specifies).

To disable rate limiting, use the no form of this command.

Note: This feature is only supported when the device is in Layer 2 switch mode.

Syntax

security-suite dos syn-attack syn-rate \{any | ip-address\} \{mask | prefix-length\}

no security-suite dos syn-attack \{any | ip-address\} \{mask | prefix-length\}

Parameters

- \textit{syn-rate}—Specifies the maximum number of connections per second. (Range: 199–1000)
- \textit{any | ip-address}—Specifies the destination IP address. Use \textit{any} to specify all IP addresses.
- \textit{mask}—Specifies the network mask of the destination IP address.
- \textit{prefix-length}—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

No rate limit is configured.

If \textit{ip-address} is unspecified, the default is 255.255.255.255

If \textit{prefix-length} is unspecified, the default is 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, show security-suite configuration must be enabled both globally and for interfaces.
Denial of Service (DoS) Commands

This command rate limits ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses.

SYN attack rate limiting is implemented after the security suite rules are applied to the packets. The ACL and QoS rules are not applied to those packets.

Since the hardware rate limiting counts bytes, it is assumed that the size of “SYN” packets is short.

Example

The following example attempts to rate limit DoS SYN attacks on a port. It fails because security suite is enabled globally and not per interface.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
```
To perform this command, DoS Prevention must be enabled in the per-interface mode.

16.8 security-suite enable

To enable the security suite feature, use the `security-suite enable` Global Configuration mode command. This feature supports protection against various types of attacks.

When this command is used, hardware resources are reserved. These hardware resources are released when the `no security-suite enable` command is entered.

The security-suite feature can be enabled in one of the following ways:

- **Global-rules-only**—This enables the feature globally but per-interface features are not enabled.
- **All** (no keyword)—The feature is enabled globally and per-interface.

To disable the security suite feature, use the `no` form of this command.

When security-suite is enabled, you can specify the types of protection required. The following commands can be used:

- `show security-suite configuration`
- `show security-suite configuration`
- `show security-suite configuration`
show security-suite configuration

Syntax

security-suite enable [global-rules-only]
no security-suite enable

Parameters

global-rules-only—(Optional) Specifies that all the security suite commands are
global commands only (they cannot be applied per-interface). This setting saves
space in the Ternary Content Addressable Memory (TCAM). If this keyword is not
used, security-suite commands can be used both globally on per-interface.

Default Configuration

The security suite feature is disabled.

If global-rules-only is not specified, the default is to enable security-suite globally
and per interfaces.

Command Mode

Global Configuration mode

User Guidelines

MAC ACLs must be removed before the security-suite is enabled. The rules can
be re-entered after the security-suite is enabled.

If ACLs or policy maps are assigned on interfaces, per interface security-suite
rules cannot be enabled.

Examples

Example 1—The following example enables the security suite feature and
specifies that security suite commands are global commands only. When an
attempt is made to configure security-suite on a port, it fails.

switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
To perform this command, DoS Prevention must be enabled in the per-interface mode.

Example 2—The following example enables the security suite feature globally and on interfaces. The security-suite command succeeds on the port.

switchxxxxxx(config)# security-suite enable
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10

16.9 security-suite syn protection mode

To set the TCP SYN protection mode, use the `security-suite syn protection mode` Global Configuration mode command.

To set the TCP SYN protection mode to default, use the `no` form of this command.

Syntax

For `security-suite syn protection mode {disabled | report | block}`

no security-suite syn protection mode

Parameters

- `disabled`—Feature is disabled
- `report`—Feature reports about TCP SYN traffic per port (including rate-limited SYSLOG message when an attack is identified)
- `block`—TCP SYN traffic from attacking ports destined to the local system is blocked, and a rate-limited SYSLOG message (one per minute) is generated

Default Configuration

The default mode is block.

Command Mode

Global Configuration mode
User Guidelines

On ports in which an ACL is defined (user-defined ACL etc.), this feature cannot block TCP SYN packets. In case the protection mode is block but SYN Traffic cannot be blocked, a relevant SYSLOG message will be created, e.g.: “port gi11 is under TCP SYN attack. TCP SYN traffic cannot be blocked on this port since the port is bound to an ACL.”

Examples

Example 1: The following example sets the TCP SYN protection feature to report TCP SYN attack on ports in case an attack is identified from these ports.

```
switchxxxxxx(config)# security-suite syn protection mode report
...
01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi11
```

Example 2: The following example sets the TCP SYN protection feature to block TCP SYN attack on ports in case an attack is identified from these ports.

```
switchxxxxxx(config)# security-suite syn protection mode block
...
01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi11. TCP SYN traffic destined to the local system is automatically blocked for 100 seconds.
```

16.10 security-suite syn protection recovery

To set the time period for the SYN Protection feature to block an attacked interface, use the `security-suite syn protection period` Global Configuration mode command.

To set the time period to its default value, use the `no` form of this command.

Syntax

```
security-suite syn protection recovery timeout
no security-suite syn protection recovery
```
Parameters

`timeout`—Defines the timeout (in seconds) by which an interface from which SYN packets are blocked gets unblocked. Note that if a SYN attack is still active on this interface it might become blocked again. (Range: 10-600)

Default Configuration
The default timeout is 60 seconds.

Command Mode
Global Configuration mode

User Guidelines
If the timeout is modified, the new value will be used only on interfaces which are not currently under attack.

Example
The following example sets the TCP SYN period to 100 seconds.

```plaintext
switchxxxxxx(config)# security-suite syn protection recovery 100
```

16.11 `security-suite syn protection threshold`

To set the threshold for the SYN protection feature, use the `security-suite syn protection threshold` Global Configuration mode command.

To set the threshold to its default value, use the `no` form of this command.

Syntax

```
security-suite syn protection threshold syn-packet-rate
no security-suite syn protection threshold
```

Parameters

`syn-packet-rate`—defines the rate (number of packets per second) from each specific port that triggers identification of TCP SYN attack. (Range: 20-200)

Default Configuration
The default threshold is 80pps (packets per second).

Command Mode
Global Configuration mode
Example

The following example sets the TCP SYN protection threshold to 40 pps.

```
switchxxxxxx(config)# security-suite syn protection threshold 40
```

16.12 show security-suite configuration

To display the security-suite configuration, use the `show security-suite configuration` command.

Syntax

```
show security-suite configuration
```

Command Mode

User EXEC mode

Example

The following example displays the security-suite configuration.

```
switchxxxxxx# show security-suite configuration
Security suite is enabled (Per interface rules are enabled).
Denial Of Service Protect: stacheldraht, invasor-trojan, back-office-trojan.
Denial Of Service SYN-FIN Attack is enabled
Denial Of Service SYN Attack
Interface   IP Address   SYN Rate (pps)
------------ -------------- --------------
gi1         176.16.23.0\24 100

Martian addresses filtering
Reserved addresses: enabled.
Configured addresses: 10.0.0.0/8, 192.168.0.0/16
SYN filtering
Interface   IP Address   TCP port
------------ -------------- --------------
gi12        176.16.23.0\24 FTP
```

ICMP filtering
16.13 show security-suite syn protection

To display the SYN Protection feature configuration and the operational status per interface-id, including the time of the last attack per interface, use the `show security-suite syn protection` command.

Syntax

```
show security-suite syn protection [interface-id]
```

Parameters

- `interface-id` (Optional) Specifies an interface-ID. The interface-ID can be one of the following types: Ethernet port or Port-Channel.

Command Mode

User EXEC mode

User Guidelines

Use the Interface-ID to display information on a specific interface.

Example

The following example displays the TCP SYN protection feature configuration and current status on all interfaces. In this example, port gi12 is attacked but since there is a user-ACL on this port, it cannot become blocked so its status is **Reported** and not **Blocked and Reported**.

```
switchxxxxxx# show security-suite syn protection
Protection Mode: Block
Threshold: 40 Packets Per Second
Period: 100 Seconds

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Current Status</th>
<th>Last Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Fragmented packets filtering

Interface

```
----------------
<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi12</td>
<td>176.16.23.0/24</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Device</th>
<th>Status</th>
<th>Time/Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012</td>
<td>Blocked and Reported</td>
</tr>
<tr>
<td>gi12</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012</td>
<td>Reported</td>
</tr>
<tr>
<td>gi13</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012</td>
<td>Blocked and Reported</td>
</tr>
</tbody>
</table>
17.1 eee enable (global)

To enable the EEE mode globally, use the `eee enable` Global Configuration command. To disable the mode, use the `no` format of the command.

Syntax

```plaintext
eee enable
no eee enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

EEE is enabled.

Command Mode

Global Configuration mode

User Guidelines

In order for EEE to work, the device at the other end of the link must also support EEE and have it enabled. In addition, for EEE to work properly, auto-negotiation must be enabled; however, if the port speed is negotiated as 1Giga, EEE always works regardless of whether the auto-negotiation status is enabled or disabled.

If auto-negotiation is not enabled on the port and its speed is less than 1 Giga, the EEE operational status is disabled.

Example

```
switchxxxxxx(config)# eee enable
```
17.2 eee enable (interface)

To enable the EEE mode on an Ethernet port, use the `eee enable` Interface Configuration command. To disable the mode, use the `no` format of the command.

Syntax

```plaintext
eee enable
no eee enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

EEE is enabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

If auto-negotiation is not enabled on the port and its speed is 1 Giga, the EEE operational status is disabled.

Example

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# eee enable
```

17.3 eee lldp enable

To enable EEE support by LLDP on an Ethernet port, use the `eee lldp enable` Interface Configuration command. To disable the support, use the `no` format of the command.

Syntax

```plaintext
eee lldp enable
no eee lldp enable
```
Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
Enabling EEE LLDP advertisement enables devices to choose and change system wake-up times in order to get the optimal energy saving mode.

Example

```
switchxxxxxx(config)# interface gil1
switchxxxxxx(config-if)# eee lldp enable
```

17.4 show eee
Use the `show eee` EXEC command to display EEE information.

Syntax

```
show eee [interface-id]
```

Parameters

interface-id—(Optional) Specify an Ethernet port.

Defaults

None

Command Mode

Privileged EXEC mode

Examples
Example 1 - The following displays brief information about all ports.

```
switchxxxxxx# show eee
EEE globally enabled
EEE Administtrate status is enabled on ports: gi11-2, gi14
EEE Operational status is enabled on ports: gi11-2, gi14
EEE LLDP Administtrate status is enabled on ports: gi11-3
EEE LLDP Operational status is enabled on ports: gi11-2
```

Example 2 - The following is the information displayed when a port is in the Not Present state; no information is displayed if the port supports EEE.

```
switchxxxxxx# show eee gi11
Port Status: notPresent
EEE Administtrate status: enabled
EEE LLDP Administtrate status: enabled
```

Example 3 - The following is the information displayed when the port is in status DOWN.

```
switchxxxxxx# show eee gi11
Port Status: DOWN
EEE capabilities:
    Speed 10M: EEE not supported
    Speed 100M: EEE supported
    Speed 1G: EEE supported
EEE Administtrate status: enabled
EEE LLDP Administtrate status: enabled
```

Example 4 - The following is the information displayed when the port is in status UP and does not support EEE.

```
switchxxxxxx# show eee gi12
```
Port Status: UP

EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported

Current port speed: 1000Mbps

EEE Administrate status: enabled
EEE LLDP Administrate status: enabled

Example 5 - The following is the information displayed when the neighbor does not support EEE.

switchxxxxxx# show eee gi14

Port Status: UP

EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported

Current port speed: 1000Mbps

EEE Remote status: disabled
EEE Administrate status: enabled
EEE Operational status: disabled (neighbor does not support)
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

Example 6 - The following is the information displayed when EEE is disabled on the port.

switchxxxxxx# show eee gi11

Port Status: UP

EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1000Mbps
EEE Administrate status: disabled
EEE Operational status: disabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

Example 7 - The following is the information displayed when EEE is running on the port, and EEE LLDP is disabled.

switchxxxxxx# show eee gi12
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: disabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec

Example 8 - The following is the information displayed when EEE and EEE LLDP are running on the port.

switchxxxxxx# show eee gi13
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
EEE Commands

Example 9 - The following is the information displayed when EEE is running on the port, EEE LLDP is enabled but not synchronized with the remote link partner.

switchxxxxxx# show eee gi14

Port Status: up
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec

Example 9 - The following is the information displayed when EEE is running on the port, EEE LLDP is enabled but not synchronized with the remote link partner.

switchxxxxxx# show eee gi14

Port Status: up
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
Local Rx Timer: 16

Example 10 - The following is the information displayed when EEE and EEE LLDP are running on the port.

```
show eee gi13
```

Port Status: UP

EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported

Current port speed: 1000Mbps

EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled

Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
18.1 interface

To enter Interface configuration mode in order to configure an interface, use the
`interface` Global Configuration mode command.

Syntax

interface interface-id

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the
following types: Ethernet port, port-channel, VLAN, range, IP interface or tunnel.

Default Configuration

None

Command Mode

Global Configuration mode

Examples

Example 1—For Ethernet ports:

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)#
```

Example 2—For port channels (LAGs):

```
switchxxxxxx(config)# interface pol
switchxxxxxx(config-if)#
```
18.2 interface range

To execute a command on multiple ports at the same time, use the **interface range** command.

Syntax

```plaintext
interface range interface-id-list
```

Parameters

- **interface-id-list**—Specify list of interface IDs. The interface ID can be one of the following types: Ethernet port, VLAN, or port-channel

Default Configuration

None

Command Mode

Interface (Ethernet, Port Channel, VLAN) Configuration mode

User Guidelines

Commands under the interface range context are executed independently on each interface in the range. If the command returns an error on one of the interfaces, it does not stop the execution of the command on other interfaces.

Example

```plaintext
switchxxxxxxx(config)# interface range gi11-4
switchxxxxxxx(config-if-range)#
```

18.3 shutdown

To disable an interface, use the **shutdown** Interface Configuration mode command. To restart a disabled interface, use the **no** form of this command.

Syntax

```plaintext
shutdown
no shutdown
```
Parameters

This command has no arguments or keywords.

Default Configuration

The interface is enabled.

Command Mode

Interface Configuration mode

User Guidelines

The shutdown command set a value of ifAdminStatus (see RFC 2863) to DOWN. When ifAdminStatus is changed to DOWN, ifOperStatus will be also changed to DOWN.

The DOWN state of ifOperStatus means that the interface does not transmit/receive messages from/to higher levels. For example, if you shut down a VLAN, on which an IP interface is configured, bridging into the VLAN continues, but the switch cannot transmit and receive IP traffic on the VLAN.

Notes:

- If the switch shuts down an Ethernet port it additionally shuts down the port MAC sublayer too.
- If the switch shuts down a port channel it additionally shuts down all ports of the port channel too.

Examples

Example 1—The following example disables gi14 operations.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

Example 2—The following example restarts the disabled Ethernet port.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# no shutdown
```
Example 3—The following example shuts down vlan 100.

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

Example 4—The following example shuts down tunnel 1.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

Example 5—The following example shuts down Port Channel 3.

```
switchxxxxxx(config)# interface po3
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

18.4 operation time

To control the time that the port is up, use the `operation time` Interface (Ethernet, Port Channel) Configuration mode command. To cancel the time range for the port operation time, use the `no` form of this command.

Syntax

```
operation time time-range-name

no operation time
```
Parameters

- time-range-name—Specifies a time range the port operates (in up state). When the Time Range is not in effect, the port is shutdown. (Range: 1–32 characters)

Default Configuration

There is no time range configured on the port authorized state.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1x edge ports (ports in auto state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example

The operation time command influences the port if the port status is up. This command defines the time frame during which the port stays up and at which time the port will be shutdown. While the port is in shutdown because of other reasons, this command has no effect.

The following example activates an operation time range (named “morning”) on port gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# operation time morning
```

18.5 description

To add a description to an interface, use the description Interface (Ethernet, Port Channel) Configuration mode command. To remove the description, use the no form of this command.

Syntax

description string
no description

Parameters

string—Specifies a comment or a description of the port to assist the user. (Length: 1–64 characters).

Default Configuration

The interface does not have a description.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example adds the description ‘SW#3’ to gi14.

```
switchxxxxxxx(config)# interface gi14
switchxxxxxxx(config-if)# description SW#3
```

18.6 speed

To configure the speed of a given Ethernet interface when not using auto-negotiation, use the `speed` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
speed {10 | 100 | 1000}
no speed
```

Parameters

- 10—Forces 10 Mbps operation
- 100—Forces 100 Mbps operation
- 1000—Forces 1000 Mbps operation
Default Configuration

The port operates at its maximum speed capability.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The no speed command in a port-channel context returns each port in the port-channel to its maximum capability.

Example

The following example configures the speed of gi14 to 100 Mbps operation.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# speed 100
```

18.7 duplex

To configure the full/half duplex operation of a given Ethernet interface when not using auto-negotiation, use the duplex Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

duplex {half | full}

no duplex

Parameters

- half—Forces half-duplex operation.
- full—Forces full-duplex operation.

Default Configuration

The interface operates in full duplex mode.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode
Example

The following example configures gi11 to operate in full duplex mode.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# duplex full
```

18.8 negotiation

To enable auto-negotiation operation for the speed and duplex parameters and master-slave mode of a given interface, use the `negotiation` Interface (Ethernet, Port Channel) Configuration mode command. To disable auto-negotiation, use the `no` form of this command.

Syntax

```
negotiation [capability [capability2... capability5]] [preferred {master | slave}]
```

no negotiation

Parameters

- **Capability**—(Optional) Specifies the capabilities to advertise. (Possible values: 10h, 10f, 100h, 100f, 1000f).
 - 10h—Advertise 10 half-duplex
 - 10f—Advertise 10 full-duplex
 - 100h—Advertise 100 half-duplex
 - 100f—Advertise 100 full-duplex
 - 1000f—Advertise 1000 full-duplex
- **Preferred**—(Optional) Specifies the master-slave preference:
 - Master—Advertise master preference
 - Slave—Advertise slave preference

Default Configuration

If capability is unspecified, defaults to list of all the capabilities of the port and preferred slave mode.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables auto-negotiation on gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# negotiation
```

18.9 **flowcontrol**

To configure the Flow Control on a given interface, use the `flowcontrol` Interface (Ethernet, Port Channel) Configuration mode command. To disable Flow Control, use the `no` form of this command.

Syntax

```
flowcontrol {auto | on | off}
no flowcontrol
```

Parameters

- **auto**—Specifies auto-negotiation of Flow Control.
- **on**—Enables Flow Control.
- **off**—Disables Flow Control.

Default Configuration

Flow control is Disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `negotiation` command to enable `flow control auto`.
Example
The following example enables Flow Control on port gi1

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# flowcontrol on
```

18.10 mdix
To enable cable crossover on a given interface, use the `mdix` Interface (Ethernet) Configuration mode command. To disable cable crossover, use the `no` form of this command.

Syntax
```
mdix {on | auto}
no mdix
```

Parameters
- `on`—Enables manual MDIX.
- `auto`—Enables automatic MDI/MDIX.

Default Configuration
The default setting is Auto.

Command Mode
Interface (Ethernet) Configuration mode

Example
The following example enables automatic crossover on port gi1

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# mdix auto
```
18.11 back-pressure

To enable back pressure on a specific interface, use the back-pressure Interface (Ethernet) Configuration mode command. To disable back pressure, use the no form of this command.

Syntax

back-pressure

no back-pressure

Parameters

This command has no arguments or keywords.

Default Configuration

Back pressure is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Back-pressure cannot be enabled when EEE is enabled.

Example

The following example enables back pressure on port gi11.

```bash
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# back-pressure
```

18.12 port jumbo-frame

To enable jumbo frames on the device, use the port jumbo-frame Global Configuration mode command. To disable jumbo frames, use the no form of this command.
Syntax

```plaintext
port jumbo-frame
no port jumbo-frame
```

Parameters

This command has no arguments or keywords.

Default Configuration

Jumbo frames are disabled on the device.

Command Mode

Global Configuration mode

User Guidelines

This command takes effect only after resetting the device.

Example

The following example enables jumbo frames on the device.

```
switchxxxxxx(config)# port jumbo-frame
```

18.13 clear counters

To clear counters on all or on a specific interface, use the `clear counters` Privileged EXEC mode command.

Syntax

```plaintext
clear counters [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Default Configuration

All counters are cleared.
Command Mode

Privileged EXEC mode

Example

The following example clears the statistics counters for gi11.

```
switchxxxxx# clear counters gi11
```

18.14 set interface active

To reactivate an interface that was shut down, use the `set interface active` Privileged EXEC mode command.

Syntax

```
set interface active [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

This command is used to activate interfaces that were configured to be active, but were shut down by the system.

Example

The following example reactivates gi11.

```
switchxxxxx# set interface active gi11
```
18.15 errdisable recovery cause

To enable automatic re-activation of an interface after an Err-Disable shutdown, use the `errdisable recovery cause` Global Configuration mode command. To disable automatic re-activation, use the `no` form of this command.

Syntax

`errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-bpdu-guard | loopback-detection | udld }`

`no errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-bpdu-guard | loopback-detection | udld }`

Parameters

- **all**—Enables the error recovery mechanism for all reasons described below.
- **port-security**—Enables the error recovery mechanism for the port security Err-Disable state.
- **dot1x-src-address**—Enables the error recovery mechanism for the 802.1x Err-Disable state.
- **acl-deny**—Enables the error recovery mechanism for the ACL Deny Err-Disable state.
- **stp-bpdu-guard**—Enables the error recovery mechanism for the STP BPDU Guard Err-Disable state.
- **loopback-detection**—Enables the error recovery mechanism for the Loopback Detection Err-Disable state.
- **udld**—Enables the error recovery mechanism for the UDLD Shutdown state.

Default Configuration

Automatic re-activation is disabled.

Command Mode

Global Configuration mode
Example
The following example enables automatic re-activation of an interface after all states.

```
switchxxxxxx(config)# errdisable recovery cause all
```

18.16 errdisable recovery interval

To set the error recovery timeout interval, use the `errdisable recovery interval` Global Configuration mode command. To return to the default configuration, use the `no` form of this command.

Syntax

```
errdisable recovery interval seconds
no errdisable recovery interval
```

Parameters

- `seconds`—Specifies the error recovery timeout interval in seconds. (Range: 30–86400)

Default Configuration

The default error recovery timeout interval is 300 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the error recovery timeout interval to 10 minutes.

```
switchxxxxxx(config)# errdisable recovery interval 600
```
18.17 errdisable recovery reset

To reactivate one or more interfaces that were shut down by a given application, use the `errdisable recovery reset` Privileged EXEC mode command. A single interface, multiple interfaces or all interfaces can be specified.

Syntax

```
errdisable recovery reset {all | port-security | dot1x-src-address | acl-deny
| stp-bpdu-guard | loopback-detection | udld
| interface interface-id}
```

Parameters

- `all`—Reactivate all interfaces regardless of their state.
- `port-security`—Reactivate all interfaces in the Port Security Err-Disable state.
- `dot1x-src-address`—Reactivate all interfaces in the 802.1x Err-Disable state.
- `acl-deny`—Reactivate all interfaces in the ACL Deny Err-Disable state.
- `stp-bpdu-guard`—Reactivate all interfaces in the STP BPDU Guard Err-Disable state.
- `loopback-detection`—Reactivate all interfaces in the Loopback Detection Err-Disable state.
- `udld`—Reactivate all interfaces in the UDLD Shutdown state.
- `interface interface-id`—Reactivate interfaces that were configured to be active, but were shut down by the system.

Default Configuration

None.

Command Mode

Privileged EXEC mode

Examples

Example 1—The following example reactivates interface gi11:
Example 2—The following example reactivates all interfaces regardless their state:

```bash
switchxxxxxx# errdisable recovery reset interface gi1
```

Example 3—The following example enables all interfaces in the port security Err-Disable state:

```bash
switchxxxxxx# errdisable recovery reset port-security
```

18.18 show interfaces configuration

To display the configuration for all configured interfaces or for a specific interface, use the `show interfaces configuration` Privileged EXEC mode command.

Syntax

```bash
show interfaces configuration [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display all interfaces. If `detailed` is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode
Example

The following example displays the configuration of all configured interfaces:

```
switchxxxxxx# show interfaces configuration
Flow  Admin  Back  Mdix
Port   Type      Duplex  Speed  Neg      control  State  Pressure  Mode
------ --------- ------  -----  -------- -------  -----  --------  ----
gi11  1G-Copper Full    10000  Disabled Off      Up     Disabled  Off

Flow  Admin
PO    Type   Speed  Neg        Control   State
------  ------ -----  --------   -------   -----
Po1           Disabled   Off       Up
```

18.19 show interfaces status

To display the status of all interfaces or of a specific interface, use the `show interfaces status` Privileged EXEC mode command.

Syntax

```
show interfaces status [interface-id | detailed]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Command Mode

Privileged EXEC mode

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.
Example

The following example displays the status of all configured interfaces.

```
switchxxxxxx# show interfaces status

  Flow  Link  Back  Mdix
Port  Type  Duplex  Speed  Neg  ctrl  State  Pressure  Mode
------ --------- ------ ---- -------- ----  ------ -------- --
  gi11 1G-Copper Full   1000 Disabled Off   Up     Disabled Off
  gi12 1G-Copper    --     --     --      --    Down   --       --
  Po1  1G       Full   10000 Disabled Off  Up
```

18.20 show interfaces advertise

To display auto-negotiation advertisement information for all configured interfaces or for a specific interface, use the show interfaces advertise Privileged EXEC mode command.

Syntax

```
show interfaces advertise [interface-id | detailed]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.
Command Mode

Privileged EXEC mode

Examples

The following examples display auto-negotiation information.

```
switchxxxxxx# show interfaces advertise
Port  Type      Neg   Preferred      Operational Link Advertisement
      ----------- -------             -----------------------------------------------
      ------------  -------             
gi11  1G-Copper  Enable  Master      1000f, 100f, 10f, 10h
      1G-Copper    Enable  Slave       1000f

switchxxxxxx# show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled
Preference: Master

  10h  10f  100h  100f  1000f
  ---  ---  ----  ----  --------
Admin Local link Advertisement                   yes    yes   yes    yes    yes
Oper Local link Advertisement                  yes    yes   yes    yes    yes
Remote Local link Advertisement                 no     no    yes    yes    yes
Priority Resolution                               -      -      -      -      yes

switchxxxxxx# show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto negotiation: disabled.
```
18.21 show interfaces description

To display the description for all configured interfaces or for a specific interface, use the `show interfaces description` Privileged EXEC mode command.

Syntax

`show interfaces description [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display description for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the description of all configured interfaces.

```
switchxxxxxx# show interfaces description
Port                  Descriptions
-------------------------------------------------------------------
gi1                  Port that should be used for management only
gi12
gi13
gi14
Po                  Description
---------------------
Po1                  Output
```
18.22 show interfaces counters

To display traffic seen by all the physical interfaces or by a specific interface, use the **show interfaces counters** Privileged EXEC mode command.

Syntax

```
show interfaces counters [interface-id [detailed]]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display counters for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays traffic seen by all the physical interfaces.

```
switchxxxxxx# show interfaces counters gi11
Port   InUcastPkts InMcastPkts InBcastPkts  InOctets
-------- ------------ ------------ ------------ --------
gi11    0            0            0            0
Port   OutUcastPkts OutMcastPkts OutBcastPkts  OutOctets
-------- ------------ ------------ ------------ --------
gi11    0            1            35           7051
```

Alignment Errors: 0
FCS Errors: 0
Single Collision Frames: 0
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
Symbol Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0

The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>InBcastPkts</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutBcastPkts</td>
<td>Number of transmitted Broadcast packets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>Number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>Number of frames that are involved in a single collision, and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>Number of frames that are involved in more than one collision and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>Number of times that the SQE TEST ERROR is received. The SQE TEST ERROR is set in accordance with the rules for verification of the SQE detection mechanism in the PLS Carrier Sense Function as described in IEEE Std. 802.3, 2000 Edition, section 7.2.4.6.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>Number of frames for which the first transmission attempt is delayed because the medium is busy.</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>Number of times that a collision is detected later than one slotTime into the transmission of a packet.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>Number of frames for which transmission fails due to excessive collisions.</td>
</tr>
<tr>
<td>Oversize Packets</td>
<td>Number of frames received that exceed the maximum permitted frame size.</td>
</tr>
</tbody>
</table>
18.23 show ports jumbo-frame

To display the whether jumbo frames are enabled on the device, use the show ports jumbo-frame Privileged EXEC mode command.

Syntax

show ports jumbo-frame

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays whether jumbo frames are enabled on the device.

switchxxxxxx# show ports jumbo-frame
Jumbo frames are disabled
Jumbo frames will be enabled after reset
18.24 show errdisable recovery

To display the Err-Disable configuration of the device, use the show errdisable recovery Privileged EXEC mode command.

Syntax

show errdisable recovery

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the Err-Disable configuration.

```
switchxxxxxx# show errdisable recovery
Timer interval: 300 Seconds
Reason                        Automatic Recovery
------------------------------ ------------------
port-security                 Disable
dot1x-src-address             Disable
acl-deny                      Enable
stp-bpdu-guard                Disable
stp-loopback-guard            Disable
loop-detection                Disable
udld                          Disable
```
18.25 show errdisable interfaces

To display the Err-Disable state of all interfaces or of a specific interface, use the `show errdisable interfaces` Privileged EXEC mode command.

Syntax

`show errdisable interfaces [interface-id]`

Parameters

- `interface`—(Optional) Port or port-channel number.

Default Configuration

Display for all interfaces.

Command Mode

Privileged EXEC mode

Example

The following example displays the Err-Disable state of gi1.

```
switchxxxxxx# show errdisable interfaces
Interface           Reason
------------        ------------------
gi1
```

18.26 storm-control broadcast enable

To enable storm control on a port, use the `storm-control broadcast enable` Interface Configuration mode command. Use the `no` form of this command to disable storm control.

Syntax

- `storm-control broadcast enable`
- `no storm-control broadcast enable`
Parameters
This command has no arguments or keywords.

Default Configuration
Disabled

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
Use the storm-control include-multicast Interface Configuration command to count Multicast packets and optionally unknown Unicast packets in the storm control calculation.

Example

switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# storm-control broadcast enable

18.27 storm-control broadcast level

To configure the maximum rate of broadcast, use the storm-control broadcast level Interface (Ethernet) Configuration mode command. To return to default, use the no form of this command.

Syntax

storm-control broadcast level {level | kbps kbps}
no storm-control broadcast level

Parameters

- **level**—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1-100)

- **kbps**—Maximum of kilobits per second of Broadcast traffic on a port. (Range 3500 –100000)
Default Configuration
10% of port speed in Kbps

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
Use the `storm-control broadcast enable` Interface Configuration command to enable storm control.

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Examples

Example 1—Set to specific level:

```bash
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# storm-control broadcast level 20
```

Example 2—Set to specific rate:

```bash
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# storm-control broadcast kbps 10000
```

18.28 storm-control include-multicast

To count Multicast packets in a Broadcast storm control, use the `storm-control include-multicast` Interface Configuration mode command. To disable counting of Multicast packets in the Broadcast storm control, use the `no` form of this command.

Syntax

```
storm-control include-multicast  [unknown-unicast]
no storm-control include-multicast
```
Parameters

unknown-unicast—(Optional) Specifies also the count of unknown Unicast packets.

Default Configuration

Disabled

Command Mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# storm-control include-multicast
```

18.29 show storm-control

To display the configuration of storm control for a port, use the `show storm-control` Privileged EXEC mode command.

Syntax

`show storm-control [interface-id]`

Parameters

interface-id—(Optional) Specifies the Ethernet port.

Default Configuration

Display for all interfaces.

Command Mode

Privileged EXEC mode
Example

```plaintext
switchxxxxxx# **show storm-control**
```

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Admin Rate [Kb/Sec]</th>
<th>Oper Rate [Kb/Sec]</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>gil1</td>
<td>Enabled</td>
<td>12345</td>
<td>12345</td>
<td>Broadcast, Multicast, Unknown Unicast</td>
</tr>
<tr>
<td>gil2</td>
<td>Disabled</td>
<td>100000</td>
<td>100000</td>
<td>Broadcast</td>
</tr>
<tr>
<td>gil3</td>
<td>Enabled</td>
<td>10%</td>
<td>000000</td>
<td>Broadcast</td>
</tr>
</tbody>
</table>
19.1 green-ethernet energy-detect (global)

To enable Green-Ethernet Energy-Detect mode globally, use the `green-ethernet energy-detect` Global Configuration mode command. To disable this feature, use the `no` form of this command.

Syntax

`green-ethernet energy-detect`

`no green-ethernet energy-detect`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet energy-detect
```
Syntax

green-ethernet energy-detect
no green-ethernet energy-detect

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Energy-Detect only works on copper ports. When a port is enabled for auto selection, copper/fiber Energy-Detect cannot work.

It takes the PHY ~5 seconds to fall into sleep mode when the link is lost after normal operation.

Example

switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# green-ethernet energy-detect

19.3 green-ethernet short-reach (global)

Use the green-ethernet short-reach Global Configuration mode command to enable Green-Ethernet Short-Reach mode globally. Use the no form of this command to disabled it.

Syntax

green-ethernet short-reach
no green-ethernet short-reach
Parameters
This command has no arguments or keywords.

Default Configuration
Disabled.

Command Mode
Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet short-reach
```

19.4 green-ethernet short-reach (interface)

Use the `green-ethernet short-reach` Interface Configuration mode command to enable green-ethernet short-reach mode on a port. Use the `no` form of this command to disable it on a port.

Syntax

```
green-ethernet short-reach
no green-ethernet short-reach
```

Parameters
This command has no arguments or keywords.

Default Configuration
Disabled.

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
The VCT length check can be performed only on a copper port operating at a speed of 1000 Mbps. If the media is not copper or the link speed is not 1000, Mbps Short-Reach mode is not applied.
When the interface is set to enhanced mode, after the VCT length check has completed and set the power to low, an active monitoring for errors is done continuously. In the case of errors crossing a certain threshold, the PHY will be reverted to long reach.

Note that EEE cannot be enabled if the Short-Reach mode is enabled.

Example

```
switchxxxxxx(config)# interface gil1
switchxxxxxx(config-if)# green-ethernet short-reach
```

19.5 green-ethernet power-meter reset

Use the `green-ethernet power-meter reset` Privileged EXEC mode command to reset the power save meter.

Syntax

```
green-ethernet power-meter reset
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# green-ethernet power-meter reset
```

19.6 show green-ethernet

To display green-ethernet configuration and information, use the `show green-ethernet` Privileged EXEC mode command.
Syntax

show green-ethernet [interface-id | detailed]

Parameters

- interface-id—(Optional) Specifies an Ethernet port
- detailed—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

User Guidelines

The power savings displayed is relevant to the power saved by:

- Port LEDs
- Energy detect
- Short reach

The EEE power saving is dynamic by nature since it is based on port utilization and is therefore not taken into consideration.

The following describes the reasons for non-operation displayed by this command.

If there are several reasons, then only the highest priority reason is displayed.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber, auto media select)</td>
</tr>
<tr>
<td>3</td>
<td>LU</td>
<td>Port Link is up – NA</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber)</td>
</tr>
<tr>
<td>3</td>
<td>LS</td>
<td>Link Speed is not supported (100M, 10M)</td>
</tr>
<tr>
<td>4</td>
<td>LL</td>
<td>Link Length received from VCT test exceeds threshold</td>
</tr>
<tr>
<td>6</td>
<td>LD</td>
<td>Port Link is Down – NA</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show green-ethernet

Energy-Detect mode: Enabled
Short-Reach mode: Disabled
Disable Port LEDs mode: Enabled
Power Savings: 24% (1.08W out of maximum 4.33W)
Cumulative Energy Saved: 33 [Watt*Hour]
Short-Reach cable length threshold: 50m

<table>
<thead>
<tr>
<th>Port</th>
<th>Energy-Detect</th>
<th>Short-Reach</th>
<th>VCT Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin Oper Reason</td>
<td>Admin Force Oper Reason</td>
<td>Length</td>
</tr>
<tr>
<td>gil1</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>gil2</td>
<td>on</td>
<td>off LU</td>
<td>on</td>
</tr>
<tr>
<td>gil3</td>
<td>on</td>
<td>off LU</td>
<td>off</td>
</tr>
</tbody>
</table>
```
20.1 clear gvrp statistics

To clear GVRP statistical information for all interfaces or for a specific interface, use the `clear gvrp statistics` Privileged EXEC mode command.

Syntax

```
clear gvrp statistics [interface-id]
```

Parameters

- **Interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears all GVRP statistical information on gi14.

```
switchxxxxxx#  clear gvrp statistics gi14
```
20.2 gvrp enable (Global)

To enable the Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) globally, use the `gvrp enable` Global Configuration mode command. To disable GVRP on the device, use the `no` form of this command.

Syntax

```
gvrp enable
no gvrp enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

GVRP is globally disabled.

Command Mode

Global Configuration mode

Example

The following example enables GVRP globally on the device.

```
switchxxxxxx(config)# gvrp enable
```

20.3 gvrp enable (Interface)

To enable GVRP on an interface, use the `gvrp enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable GVRP on an interface, use the `no` form of this command.

Syntax

```
gvrp enable
no gvrp enable
```

Example

The following example enables GVRP on an interface.

```
switchxxxxxx(config-if)# gvrp enable
```
Parameters
This command has no arguments or keywords.

Default Configuration
GVRP is disabled on all interfaces.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
An access port does not dynamically join a VLAN because it is always a member of a single VLAN only. Membership in an untagged VLAN is propagated in the same way as in a tagged VLAN. That is, the PVID must be manually defined as the untagged VLAN ID.

Example
The following example enables GVRP on gi14.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# gvrp enable
```

20.4 gvrp registration-forbid
To deregister all dynamic VLANs on a port and prevent VLAN creation or registration on the port, use the `gvrp registration-forbid` Interface Configuration mode command. To allow dynamic registration of VLANs on a port, use the `no` form of this command.

Syntax
```
gvrp registration-forbid
no gvrp registration-forbid
```

Parameters
This command has no arguments or keywords.
Default Configuration

Dynamic registration of VLANs on the port is allowed.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example forbids dynamic registration of VLANs on gi12.

```
switchxxxxxx(config-if)# interface gi12
switchxxxxxx(config-if)# gvrp registration-forbid
```

20.5 gvrp vlan-creation-forbid

To disable dynamic VLAN creation or modification, use the `gvrp vlan-creation-forbid` Interface Configuration mode command. To enable dynamic VLAN creation or modification, use the `no` form of this command.

Syntax

```
gvrp vlan-creation-forbid
no gvrp vlan-creation-forbid
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables dynamic VLAN creation on gi13.

```
switchxxxxxx(config-if)# interface gi13
switchxxxxxx(config-if)# no gvrp vlan-creation-forbid
```
20.6 show gvrp configuration

To display GVRP configuration information, including timer values, whether GVRP and dynamic VLAN creation are enabled, and which ports are running GVRP, use the `show gvrp configuration` EXEC mode command.

Syntax

`show gvrp configuration [interface-id | detailed]`

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

All GVRP statistics are displayed for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP configuration.

```
switchxxxxxx# show gvrp configuration
GVRF Feature is currently Enabled on the device.
Maximum VLANs: 4094

Port(s) GVRP-Status Regist- Dynamic          Timers(ms)
-------- ----------- -------- -------------    ----    -----   ----------
----    ----------- --------   -------------    ----    -----   ----------
gil1    Enabled     Forbidden   Disabled         600     200    10000
```
20.7 **show gvrp error-statistics**

Use the **show gvrp error-statistics** EXEC mode command to display GVRP error statistics for all interfaces or for a specific interface.

Syntax

```
show gvrp error-statistics [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP error statistics are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP error statistics.

```
switchxxxxxx#  show gvrp error-statistics
GVRP Error Statistics:
----------------------
Legend:
INVPROT  : Invalid Protocol Id
INVATYP  : Invalid Attribute Type  INVALEN : Invalid Attribute Length
INVAVAL  : Invalid Attribute Value INVEVENT: Invalid Event
Port   INVPROT INVATYP INVAVAL INVALEN INVEVENT
-------- ------- ------- ------- ------- --------
gi11     0       0       0       0       0

    gi12     Enabled     Normal      Enabled          1200    400    20000
```
20.8 show gvrp statistics

To display GVRP statistics for all interfaces or for a specific interface, use the `show gvrp statistics` EXEC mode command.

Syntax

```
show gvrp statistics [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP statistical information.

```
switchxxxxxx# show gvrp statistics

GVRP statistics:
-----------
Legend:
  rJE : Join Empty Received  rJIn: Join In Received
  rEmp: Empty Received       rLIn: Leave In Received
  rLE : Leave Empty Received rLA : Leave All Received
  sJE : Join Empty Sent      sJIn: Join In Sent
  sEmp: Empty Sent           sLIn: Leave In Sent
  sLE : Leave Empty Sent     sLA : Leave All Sent
```
<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLE</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
</tr>
</tbody>
</table>
IGMP Snooping Commands

21.1 ip igmp snooping (Global)

To enable Internet Group Management Protocol (IGMP) snooping, use the `ip igmp snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping
no ip igmp snooping
```

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

The following example enables IGMP snooping.

```
switchxxxxx(config)# ip igmp snooping
```

21.2 ip igmp snooping vlan

To enable IGMP snooping on a specific VLAN, use the `ip igmp snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id
```
no ip igmp snooping vlan vlan-id

Parameters

- vlan-id—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

IGMP snooping can be enabled only on static VLANs.

IGMPv1, IGMPv2, and IGMPv3 Snooping are supported.

To activate IGMP snooping, bridge multicast filtering must be enabled by the bridge multicast filtering command.

The user guidelines of the bridge multicast mode command describes the configuration that is written into the FDB as a function of the FDB mode and the IGMP version that is used in the network.

Example

switchxxxxxx(config)# ip igmp snooping vlan 2

21.3 ip igmp snooping vlan mrouter

To enable automatic learning of Multicast router ports on a VLAN, use the ip igmp snooping vlan mrouter command in Global Configuration mode. To remove the configuration, use the no form of this command.

Syntax

ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
no ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp

Parameters

- vlan-id—Specifies the VLAN.
Default Configuration

Learning `pim-dvmrp` is enabled.

Command Mode

Global Configuration mode

User Guidelines

Multicast router ports are learned according to:

- Queries received on the port
- PIM/PIMv2 received on the port
- DVMRP received on the port
- MRDISC received on the port
- MOSPF received on the port

You can execute the command before the VLAN is created.

Example

```
switchxxxxxxx(config)# ip igmp snooping vlan 1 mrouter learn pim-dvmrp
```

21.4 ip igmp snooping vlan mrouter interface

To define a port that is connected to a Multicast router port, use the `ip igmp snooping mrouter interface` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan `vlan-id` mrouter interface `interface-list`
```

no ip igmp snooping vlan `vlan-id` mrouter interface `interface-list`

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies the list of interfaces. The interfaces can be one of the following types: Ethernet port or Port-channel.
Default Configuration

No ports defined

Command Mode

Global Configuration mode

User Guidelines

A port that is defined as a Multicast router port receives all IGMP packets (reports and queries) as well as all Multicast data.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 mrouter interface gi11
```

21.5 ip igmp snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the `ip igmp snooping vlan forbidden mrouter` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
no ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No ports defined.
Command Mode
Global Configuration mode

User Guidelines
A port that is a forbidden mrouter port cannot be a Multicast router port (i.e. cannot be learned dynamically or assigned statically).

You can execute the command before the VLAN is created.

Example

```
switchxxxxx(config)# ip igmp snooping vlan 1 forbidden mrouter interface gi11
```

21.6 ip igmp snooping vlan static

To register an IP-layer Multicast address to the bridge table, and to add static ports to the group defined by this address, use the `ip igmp snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
no ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
```

Parameter

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Specifies the IP Multicast address.
- `interface interface-list`—(Optional) Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No Multicast addresses are defined.
Command Mode
Global Configuration mode

User Guidelines
Static Multicast addresses can only be defined on static VLANs.
You can execute the command before the VLAN is created.
You can register an entry without specifying an interface.
Using the no command without a port-list removes the entry.

Example

switchxxxxxx(config)# ip igmp snooping vlan 1 static 239.2.2.2 interface gi11

21.7 ip igmp snooping vlan multicast-tv

To define the Multicast IP addresses that are associated with a Multicast TV VLAN, use the ip igmp snooping vlan multicast-tv command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]
no ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]

Parameters

- vlan-id—Specifies the VLAN
- ip-multicast-address—Multicast IP address
- count number—(Optional) Configures multiple contiguous Multicast IP addresses. If not specified, the default is 1. (Range: 1–256)

Default Configuration
No Multicast IP address is associated.
IGMP Snooping Commands

Command Mode

Global Configuration mode

User Guidelines

Use this command to define the Multicast transmissions on a Multicast-TV VLAN. The configuration is only relevant for an Access port that is a member in the configured VLAN as a Multicast-TV VLAN.

If an IGMP message is received on such an Access port, it is associated with the Multicast-TV VLAN only if it is for one of the Multicast IP addresses that are associated with the Multicast-TV VLAN.

Up to 256 VLANs can be configured.

Example

```
switchxxxxxxx(config)# ip igmp snooping vlan 1 multicast-tv 239.2.2.2 count 3
```

21.8 ip igmp snooping map cpe vlan

To map CPE VLANs to Multicast-TV VLANs, use the `ip igmp snooping map cpe vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping map cpe vlan cpe-vlan-id multicast-tv vlan vlan-id
no ip igmp snooping map cpe vlan vlan-id
```

Parameters

- `cpe-vlan-id`—Specifies the CPE VLAN ID.
- `vlan-id`—Specifies the Multicast-TV VLAN ID.

Default Configuration

No mapping exists.

Command Mode

Global Configuration mode
User Guidelines

Use this command to associate the CPE VLAN with a Multicast-TV VLAN.

If an IGMP message is received on a customer port tagged with a CPE VLAN, and there is mapping from that CPE VLAN to a Multicast-TV VLAN, the IGMP message is associated with the Multicast-TV VLAN.

Example

The following example maps CPE VLAN 2 to Multicast-TV VLAN 31.

```
switchxxxxxx(config)# ip igmp snooping map cpe vlan 2 multicast-tv vlan 31
```

21.9 ip igmp snooping querier

To enable globally the IGMP Snooping querier, use the `ip igmp snooping querier` command in Global Configuration mode. To disable the IGMP Snooping querier globally, use the `no` form of this command.

Syntax

```
ip igmp snooping querier
no ip igmp snooping querier
```

Parameters

N/A

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

To run the IGMP Snooping querier on a VLAN, you have enable it globally and on the VLAN.
Example

The following example disables the IGMP Snooping querier globally:

```
switchxxxxxx(config)# no ip igmp snooping querier
```

21.10 ip igmp snooping vlan querier

To enable the IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier` command in Global Configuration mode. To disable the IGMP Snooping querier on the VLAN interface, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id querier
no ip igmp snooping vlan vlan-id querier
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The IGMP Snooping querier can be enabled on a VLAN only if IGMP Snooping is enabled for that VLAN.

Example

The following example enables the IGMP Snooping querier on VLAN 1:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier
```
21.11 ip igmp snooping vlan querier address

To define the source IP address that the IGMP snooping querier uses, use the `ip igmp snooping vlan querier address` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id querier address ip-address
no ip igmp snooping vlan vlan-id querier address
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Source IP address.

Default Configuration

If an IP address is configured for the VLAN, it is used as the source address of the IGMP snooping querier. If there are multiple IP addresses, the minimum IP address defined on the VLAN is used.

Command Mode

Global Configuration mode

User Guidelines

If an IP address is not configured by this command, and no IP address is configured for the querier’s VLAN, the querier is disabled.

Example

```
switchxxxxxxx(config)# ip igmp snooping vlan 1 querier address 10.5.234.205
```

21.12 ip igmp snooping vlan querier election

To enable IGMP Querier election mechanism of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.
Syntax
ip igmp snooping vlan vlan-id querier election
no ip igmp snooping vlan vlan-id querier election

Parameters
- vlan-id—Specifies the VLAN.

Default Configuration
Enabled

Command Mode
Global Configuration mode

User Guidelines
Use the no form of the ip igmp snooping vlan querier election command to disable IGMP Querier election mechanism on a VLAN.

If the IGMP Querier election mechanism is enabled, the IGMP Snooping querier supports the standard IGMP Querier election mechanism specified in RFC2236 and RFC3376.

If IGMP Querier election mechanism is disabled, IGMP Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if the switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to

\(<\text{Robustness}>^*<\text{Query Interval}> + 0.5^*<\text{Query Response Interval}>)

See the ip igmp robustness, ip igmp query-interval, and ip igmp query-max-response-time commands for configurations of these parameters.

It is recommended to disable IGMP Querier election mechanism if there is an IPM Multicast router on the VLAN.

Example
The following example disables IGMP Snooping Querier election on VLAN 1:

```bash
switchxxxxxx(config)# no ip igmp snooping vlan 1 querier election
```
21.13 ip igmp snooping vlan querier version

To configure the IGMP version of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier version` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id querier version {2 | 3}
no ip igmp snooping vlan vlan-id querier version
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `querier version 2`—Specifies that the IGMP version would be IGMPv2.
- `querier version 3`—Specifies that the IGMP version would be IGMPv3.

Default Configuration

IGMPv2.

Command Mode

Global Configuration mode

Example

The following example sets the version of the IGMP Snooping Querier VLAN 1 to 3:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier version 3
```

21.14 ip igmp snooping vlan immediate-leave

To enable the IGMP Snooping Immediate-Leave processing on a VLAN, use the `ip igmp snooping vlan immediate-leave` Global Configuration mode command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id immediate-leave
```

```
no ip igmp snooping vlan vlan-id immediate-leave

Parameters

- `vlan-id`—Specifies the VLAN ID value. (Range: 1–4094).

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

You can execute the command before the VLAN is created.

Example

The following example enables IGMP snooping immediate-leave feature on VLAN 1.

```
switchxxxxxx(config)# ip igmp snooping vlan 1 immediate-leave
```

21.15 show ip igmp snooping cpe vlans

To display the CPE VLAN to Multicast TV VLAN mappings, use the `show ip igmp snooping cpe vlans` command in User EXEC mode.

Syntax

```
show ip igmp snooping cpe vlans [vlan vlan-id]
```

Parameters

- `vlan vlan-id` —(Optional) Specifies the CPE VLAN ID.

Command Mode

User EXEC mode
Example

The following example displays the CPE VLAN to Multicast TV VLAN mappings.

```
switchxxxxxx# show ip igmp snooping cpe vlans
CPE VLAN Multicast-TV VLAN
-------- ------------------
2 1118
3 1119
```

### 21.16 show ip igmp snooping groups

To display the Multicast groups learned by the IGMP snooping, use the `show ip igmp snooping groups` command in User EXEC mode.

**Syntax**

```
show ip igmp snooping groups [vlan vlan-id] [address ip-multicast-address] [source ip-address]
```

**Parameters**

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.
- `address ip-multicast-address`—(Optional) Specifies the IP multicast address.
- `source ip-address`—(Optional) Specifies the IP source address.

**Command Mode**

User EXEC mode

**User Guidelines**

To see all Multicast groups learned by IGMP snooping, use the `show ip igmp snooping groups` command without parameters.

Use the `show ip igmp snooping groups` command with parameters to see a needed subset of all Multicast groups learned by IGMP snooping.

To see the full Multicast address table (including static addresses), use the `show bridge multicast address-table` command.
Example

The following example shows sample output:

```
switchxxxxxx# show ip igmp snooping groups vlan 1
```

```
switchxxxxxx# show ip igmp snooping groups
Vlan	Group Address	Source Address	Include Ports	Exclude Ports	Comp-Mode
1 | 239.255.255.250 | * | g11 | | v2
```

21.17 show ip igmp snooping interface

To display the IGMP snooping configuration for a specific VLAN, use the `show ip igmp snooping interface` command in User EXEC mode.

Syntax

```
show ip igmp snooping interface vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays the IGMP snooping configuration for VLAN 1000

```
switchxxxxxx# show ip igmp snooping interface 1000
IGMP Snooping is globally enabled
IGMP Snooping Querier is globally enabled
VLAN 1000
 IGMP Snooping is enabled
 IGMP snooping last immediate leave: enable
 Automatic learning of Multicast router ports is enabled
```
IGMP Snooping Commands

IGMP Snooping Querier is enabled
IGMP Snooping Querier operation state: is running
IGMP Snooping Querier version: 2
IGMP Snooping Querier election is enabled
IGMP Snooping Querier address: 194.12.10.166
IGMP snooping robustness: admin 2 oper 2
IGMP snooping query interval: admin 125 sec oper 125 sec
IGMP snooping query maximum response: admin 10 sec oper 10 sec
IGMP snooping last member query counter: admin 2 oper 2
IGMP snooping last member query interval: admin 1000 msec oper 500 msec
Groups that are in IGMP version 1 compatibility mode:
231.2.2.3, 231.2.2.3

21.18 show ip igmp snooping mrouter

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the show ip igmp snooping mrouter command in User EXEC mode.

Syntax

show ip igmp snooping mrouter [interface vlan-id]

Parameters

- interface vlan-id—(Optional) Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

switchxxxxxx# show ip igmp snooping mrouter interface 1000
To display the IP addresses associated with Multicast TV VLANs, use the `show ip igmp snooping multicast-tv` EXEC mode command in User EXEC mode.

**Syntax**

```
show ip igmp snooping multicast-tv [vlan vlan-id]
```

**Parameters**

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.

**Command Mode**

User EXEC mode

**Example**

The following example displays the IP addresses associated with all Multicast TV VLANs.

```
switchxxxxxxx# show ip igmp snooping multicast-tv

VLAN IP Address
---- -----------
1000 239.255.0.0
1000 239.255.0.1
1000 239.255.0.2
1000 239.255.0.3
1000 239.255.0.4
1000 239.255.0.5
1000 239.255.0.6
```
IP Addressing Commands

IP addresses and Layer 2 Interfaces

IP addresses can be configured on the following Layer 2 interfaces:

- Only in router mode.
  - Port channel
  - VLAN
  - Loopback port

Lists of Commands

22.1 ip address

Use the ip address Interface Configuration (Ethernet, VLAN, Port-channel) mode command to define an IP address for an interface. Use the no form of this command to remove an IP address definition.

Syntax

In switch mode:

```
ip address ip-address {mask | /prefix-length} [default-gateway-ip-address]
```

no ip address

In router mode:

```
ip address ip-address {mask | /prefix-length}
```

no ip address [ip-address]

Parameters

- `ip-address`—Specifies the IP address.
- **mask**—Specifies the network mask of the IP address.

- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 8–30)

- **default-gateway-ip-address**—Specifies the default gateway IP address. The route is gotten a metric of 1.

**Default Configuration**

No IP address is defined for interfaces.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ip address` command to define a static IP address on an interface.

**In router mode.**

Multiple IP addresses are supported. A new defined IP address is added on the interface.

Defining a static IP address on an interface stops a DHCP client running on the interface and removes the IP address assigned by the DHCP client.

If a configured IP address overlaps another configured one a warning message is displayed. To change an existed IP address, delete the existed one and add the new one.

**In switch mode.**

One IP address is supported. A new defined IP address overrides the previously defined IP address.

Defining a static IP address stops a running DHCP client and deletes the IP address assigned by the DHCP client.

While no IP address is assigned either by DHCP client or manually the default IP address **192.168.1.254** is assigned on the Default VLAN.

**Examples**

**Example 1.** The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.
Example 2. The following example configures 3 overlapped IP addresses.

```plaintext
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0

This IP address overlaps IP address 1.1.1.1/8 on vlan1, are you sure? [Y/N]Y
```

```plaintext
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ip address 1.2.1.1 255.255.0.0
switchxxxxxx(config)# interface vlan 3
switchxxxxxx(config-if)# ip address 1.3.1.1 255.255.0.0
```

```plaintext
22.2 ip address dhcp

Use the ip address dhcp Interface Configuration (Ethernet, VLAN, Port-channel) mode command to acquire an IP address for an Ethernet interface from the Dynamic Host Configuration Protocol (DHCP) server. Use the no form of this command to release an acquired IP address.

Syntax

```plaintext
ip address dhcp
```

```plaintext
no ip address dhcp
```

Parameters

N/A
Command Mode
Interface Configuration mode

User Guidelines
Use the `ip address dhcp` command to enable DHCP client on the interface.
In switch mode the `ip address dhcp` command removes the manually configured address.
The default route (Default Gateway) received in DHCP Router option (Option 3) is assigned a metric of 253.
Use the `no` form of the command to disable DHCP client on interface.

Example
The following example acquires an IP address for VLAN 100 from DHCP.

```plaintext
switchxxxxxx(config)# interface vlan100
switchxxxxxx(config-if)# ip address dhcp
```

22.3 renew dhcp
Use the `renew dhcp` Privileged EXEC mode command to renew an IP address that was acquired from a DHCP server for a specific interface.

Syntax
In switch mode:
`renew dhcp [force-autoconfig]`
In router mode:
`renew dhcp interface-id [force-autoconfig]`

Parameters
- `interface-id`—Specifies an interface ID. It is not required in switch mode.
- `force-autoconfig` - If the DHCP server holds a DHCP option 67 record for the assigned IP address, the record overwrites the existing device configuration.
Command Mode

Privileged EXEC mode

User Guidelines

Use the `renew dhcp` command in switch mode to renew a DHCP address. This command does not enable DHCP client and if DHCP client is not enabled, the command returns an error message.

Use the `renew dhcp` command in router mode to renew a DHCP address on an interface. This command does not enable DHCP client on an interface and if DHCP client is not enabled on the interface, the command returns an error message.

Example

In switch mode:

The following example renews an IP address that was acquired from a DHCP server:

```
switchxxxxxx# renew dhcp
```

In router mode:

The following example renews an IP address on VLAN 19 that was acquired from a DHCP server:

```
switchxxxxxx# renew dhcp vlan 19
```

22.4 ip default-gateway

The `ip default-gateway` Global Configuration mode command defines a default gateway (device). Use the `no` form of this command to restore the default configuration.

Syntax

```
ip default-gateway ip-address
no ip default-gateway [ip-address]
```

Parameters

- `ip-address`—Specifies the default gateway IP address.
Command Mode
Global Configuration mode

Default Configuration
No default gateway is defined.

User Guidelines
Use the `ip default-gateway` command to define a default gateway (default route).
The `ip default-gateway` command adds the default route with metric of 1.
Use the `no ip default-gateway ip-address` command to delete one default gateway.
Use the `no ip default-gateway` command to delete all default gateways.

Example
The following example defines default gateway 192.168.1.1.

```
switchxxxxx(config)# ip default-gateway 192.168.1.1
```

22.5 show ip interface

Use the `show ip interface` EXEC mode command to display the usability status of configured IP interfaces.

Syntax
```
show ip interface [interface-id]
```

Parameters
- `interface-id`—Specifies an interface ID on which IP addresses are defined.

Default Configuration
All IP addresses.

Command Mode
User EXEC mode
Examples

Example 1 - The following example displays the configured IP addresses and their types in switch mode:

```text
switchxxxxxx# show ip interface
IP Address    I/F     I/F Status  Type    Status
---------------- --- -------------- ------ ----
admin/oper
10.5.234.232/24  vlan 1  UP/UP       Static  Valid
Default Gateway: 10.5.234.254, Static
```

Example 2 - The following example displays all configured IP addresses and their types in router mode:

```text
switchxxxxxx# show ip interface
!source_precedence_is_supported &&
!broadcast_address_configuration_is_supported &&  ip_redirects_is_supported
IP Address    I/F     I/F Status  Type   Directed   Redirect  Status
---------------- --- -------------- ------ --------  --------- -----  
admin/oper     Broadcast
10.5.234.232/24  vlan 1  UP/UP       Static  disable   Enabled   Valid
10.5.234.202/24  vlan 4  UP/DOWN     Static  disable   Disabled  Valid
```

Example 2 - The following example displays the IP addresses configured on the given L2 interfaces and their types in router mode:

```text
switchxxxxxx# show ip interface vlan 1
!source_precedence_is_supported &&
!broadcast_address_configuration_is_supported &&  ip_redirects_is_supported
IP Address    I/F     I/F Status  Type   Directed   Redirect  Status
---------------- --- -------------- ------ --------  --------- -----  
admin/oper     Broadcast
10.5.234.202/24  vlan 4  UP/DOWN     Static  disable   Disabled  Valid
```
22.6 arp

Use the **arp** Global Configuration mode command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the **no** form of this command to remove an entry from the ARP cache.

Syntax

```
arp ip-address mac-address [interface-id]
no arp ip-address
```

Parameters

- *ip-address*—IP address or IP alias to map to the specified MAC address.
- *mac-address*—MAC address to map to the specified IP address or IP alias.
- *interface-id*—Address pair is added for specified interface.

Command Mode

Global Configuration mode

Default Configuration

No permanent entry is defined.

If no interface ID is entered, address pair is relevant to all interfaces.

User Guidelines

The software uses ARP cache entries to translate 32-bit IP addresses into 48-bit hardware (MAC) addresses. Because most hosts support dynamic address resolution, static ARP cache entries generally do not need to be specified.

Example

The following example adds IP address 198.133.219.232 and MAC address 00:00:0c:40:0f:bc to the ARP table.

```
switchxxxxxx(config)# arp 198.133.219.232 00:00:0c:40:0f:bc vlan100
```
22.7 arp timeout (Global)

Use the `arp timeout` Global Configuration mode command to set the time interval during which an entry remains in the ARP cache. Use the `no` form of this command to restore the default configuration.

Syntax

```
arp timeout seconds
no arp timeout
```

Parameters

- `seconds`—Specifies the time interval (in seconds) during which an entry remains in the ARP cache. (Range: 1–40000000).

Default Configuration

The default ARP timeout is 60000 seconds in router mode, and 300 seconds in switch mode.

Command Mode

Global Configuration mode

Example

The following example configures the ARP timeout to 12000 seconds.

```
switchxxxxxx(config)# arp timeout 12000
```

22.8 ip arp proxy disable

Use the `ip arp proxy disable` Global Configuration mode command to globally disable proxy Address Resolution Protocol (ARP). Use the `no` form of this command reenable proxy ARP.

Syntax

```
ip arp proxy disable
no ip arp proxy disable
```
Parameters
N/A

Default
Enabled by default.

Command Mode
Global Configuration mode

User Guidelines
This command overrides any proxy ARP interface configuration.
The command is supported only in the router mode.

Example
The following example globally disables ARP proxy.

```
switchxxxxxx(config)# ip arp proxy disable
```

22.9 ip proxy-arp

Use the `ip proxy-arp` Interface Configuration mode command to enable an ARP proxy on specific interfaces. Use the `no` form of this command disable it.

Syntax
- `ip proxy-arp`
- `no ip proxy-arp`

Default Configuration
ARP Proxy is disabled.

Command Mode
Interface Configuration mode
User Guidelines

This configuration can be applied only if at least one IP address is defined on a specific interface.

The command is supported only in router mode.

Example

The following example enables ARP proxy when the switch is in router mode.

```
switchxxxxxx(config-if)# ip proxy-arp
```

22.10 clear arp-cache

Use the `clear arp-cache` Privileged EXEC mode command to delete all dynamic entries from the ARP cache.

Syntax

```
clear arp-cache
```

Command Mode

Privileged EXEC mode

Example

The following example deletes all dynamic entries from the ARP cache.

```
switchxxxxxx# clear arp-cache
```

22.11 show arp

Use the `show arp` Privileged EXEC mode command to display entries in the ARP table.

Syntax

```
show arp [ip-address ip-address] [mac-address mac-address] [interface-id]
```
Parameters

- `ip-address ip-address`—Specifies the IP address.
- `mac-address mac-address`—Specifies the MAC address.
- `interface-id`—Specifies an interface ID.

Command Mode

Privileged EXEC mode

User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

If an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

Example

The following example displays entries in the ARP table.

```
switchxxxxxx# show arp
ARP timeout: 80000 Seconds
VLAN   Interface   IP Address   HW Address   Status
------- ------------ ------------ ----------- -------
VLAN 1  gi11        10.7.1.102    00:10:B5:04:DB:4B Dynamic
VLAN 1  gi12        10.7.1.135    00:50:22:00:2A:A4 Static
VLAN 2  gi11        11.7.1.135    00:12:22:00:2A:A4 Dynamic
       gi12        12.10.1.13     00:11:55:04:DB:4B Dynamic
```

22.12 show arp configuration

Use the `show arp configuration` privileged EXEC command to display the global and interface configuration of the ARP protocol.

Syntax

`show arp configuration`

Parameters

This command has no arguments or key words.
Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show arp configuration
Global configuration:
   ARP Proxy: enabled
   ARP timeout: 80000 Seconds
Interface configuration:
VLAN 1:
   ARP Proxy: disabled
   ARP timeout: 60000 Seconds
VLAN 10:
   ARP Proxy: enabled
   ARP timeout: 70000 Seconds
VLAN 20:
   ARP Proxy: enabled
   ARP timeout: 80000 Second (Global)
```

22.13 interface ip

Use the `interface ip` Global Configuration mode command to enter the IP Interface Configuration mode.

Syntax

```
interface ip ip-address
```

Parameters

- `ip-address`: Specifies one of the IP addresses of the device.

Command Mode

Global Configuration mode
Example

The following example enters the IP interface configuration mode.

```
switchxxxxxx(config)# interface ip 192.168.1.1
switchxxxxxx(config-ip)#
```

22.14 ip helper-address

Use the `ip helper-address` Global Configuration mode command to enable the forwarding of UDP Broadcast packets received on an interface to a specific (helper) address. Use the `no` form of this command to disable the forwarding of broadcast packets to a specific (helper) address.

Syntax

```
ip helper-address {ip-interface | all} address [udp-port-list]
no ip helper-address {ip-interface | all} address
```

Parameters

- `ip-interface`—Specifies the IP interface.
- `all`—Specifies all IP interfaces.
- `address`—Specifies the destination broadcast or host address to which to forward UDP broadcast packets. A value of 0.0.0.0 specifies that UDP broadcast packets are not forwarded to any host.
- `udp-port-list`—Specifies the destination UDP port number to which to forward Broadcast packets. (Range: 1–65535). This can be a list of port numbers separated by spaces.

Default Configuration

Forwarding of UDP Broadcast packets received on an interface to a specific (helper) address is disabled.

If `udp-port-list` is not specified, packets for the default services are forwarded to the helper address.
Command Mode

Global Configuration mode

User Guidelines

The command is supported only in router mode.

This command forwards specific UDP Broadcast packets from one interface to another, by specifying a UDP port number to which UDP broadcast packets with that destination port number are forwarded. By default, if no UDP port number is specified, the device forwards UDP broadcast packets for the following six services:

- IEN-116 Name Service (port 42)
- DNS (port 53)
- NetBIOS Name Server (port 137)
- NetBIOS Datagram Server (port 138)
- TACACS Server (port 49)
- Time Service (port 37)

Many helper addresses may be defined. However, the total number of address-port pairs is limited to 128 for the device.

The setting of a helper address for a specific interface has precedence over the setting of a helper address for all the interfaces.

Forwarding of BOOTP/DHCP (ports 67, 68) cannot be enabled with this command. Use the DHCP relay commands to relay BOOTP/DHCP packets.

Example

The following example enables the forwarding of UDP Broadcast packets received on all interfaces to the UDP ports of a destination IP address and UDP port 1 and 2.

```
switchxxxxxx(config)# ip helper-address all 172.16.9.9 49 53 1 2
```

22.15 show ip helper-address

Use the show ip helper-address Privileged EXEC mode command to display the IP helper addresses configuration on the system.
Syntax

show ip helper-address

Parameters
This command has no arguments or key words.

Command Mode
Privileged EXEC mode

User Guidelines
The command is supported only in router mode.

Example
The following example displays the IP helper addresses configuration on the system:

```
switchxxxxxx# show ip
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Helper Address</th>
<th>UDP Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>172.16.8.8</td>
<td>37, 42, 49, 53, 137, 138</td>
</tr>
<tr>
<td>192.168.2.1</td>
<td>172.16.9.9</td>
<td>37, 49</td>
</tr>
</tbody>
</table>

22.16 show ip dhcp client interface

Use the `show ip dhcp client interface` command in User EXEC or Privileged EXEC mode to display DHCP client interface information.

Syntax

```
show ip dhcp client interface [interface-id]
```

Parameters

- `interface-id`—Interface identifier.
Command Mode

User EXEC mode

User Guidelines

If no interfaces are specified, all interfaces on which DHCP client is enabled are displayed. If an interface is specified, only information about the specified interface is displayed.

Example

The following is sample output of the `show ip dhcp client interface` command:

```
switchxxxxxx# show ip dhcp client interface

VLAN 100 is in client mode
  Address: 170.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
  Default Gateway: 170.10.100.1
  DNS Servers: 115.1.1.1, 87.12.34.20
  DNS Domain Search List: company.com
  Host Name: switch_floor7
  Configuration Server Addresses: 192.1.1.1 202.1.1.1
  Configuration Path Name: qqq/config/aaa_config.dat
  Image Path Name: qqq/image/aaa_image.ros
  POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00

VLAN 1200 is in client mode
  Address: 180.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
  Default Gateway: 180.10.100.1
  DNS Servers: 115.1.1.1, 87.12.34.20
  DNS Domain Search List: company.com
  Host Name: switch_floor7
  Configuration Server Addresses: configuration.company.com
  Configuration Path Name: qqq/config/aaa_config.dat
  Image Path Name: qqq/image/aaa_image.ros
  POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
```
23.1 ip redirects

Use the ip redirects command in IP Interface Configuration mode to enable the sending of ICMP redirect messages to re-send a packet through the same interface on which the packet was received. To disable the sending of redirect messages, use the no form of this command.

Syntax

- ip redirects
- no ip redirects

Parameters

N/A.

Default Configuration

The sending of ICMP redirect messages is enabled.

Command Mode

IP Configuration mode

Example

The following example disables the sending of ICMP redirect messages on IP interface 1.1.1.1 and re-enables the messages on IP interface 2.2.2.2:

```bash
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-ip)# no ip redirects
switchxxxxxx(config-ip)# exit
switchxxxxxx(config)# interface ip 2.2.2.2
switchxxxxxx(config-ip)# ip redirects
```
23.2 ip route

To establish static routes, use the `ip route` command in global configuration mode. To remove static routes, use the `no` form of this command.

Syntax

```plaintext
ip route prefix [mask | /prefix-length] {ip-address [metric value]}
no ip route prefix [mask | /prefix-length] [ip-address]
```

Parameters

- `prefix`—IP route prefix for the destination.
- `mask`—Prefix mask for the destination.
- `/prefix-length`—Prefix mask for the destination. Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 0–32)
- `ip-address`—IP address of the next hop that can be used to reach that network.
- `metric value`—Metric of the route. The default metric is 1. Range: 1–255.

Default Configuration

No static routes are established.

Command Mode

Global Configuration mode

User Guidelines

Use the `no ip route` command without the `ip-address` parameter to remove all static routes to the given subnet.

Use the `no ip route` command with the `ip-address` parameter to remove only one static route to the given subnet via the given next hop.
Examples

Example 1—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using mask:

switchxxxxxx(config)# ip route 172.31.0.0 255.255.0.0 172.31.6.6 metric 2

Example 2—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using prefix length:

switchxxxxxx(config)# ip route 172.31.0.0 /16 172.31.6.6 metric 2

Example 3—The following example shows how to reject packets for network 194.1.1.0:

switchxxxxxx(config)# ip route 194.1.1.0 255.255.255.0 reject-route

Example 4—The following example shows how to remove all static routes to network 194.1.1.0/24:

switchxxxxxx(config)# no ip route 194.1.1.0 /24

Example 5—The following example shows how to remove one static route to network 194.1.1.0/24 via 1.1.1.1:

switchxxxxxx(config)# no ip route 194.1.1.0 /24 1.1.1.1

23.3 show ip route

To display the current state of the routing table, use the show ip route command in user EXEC or privileged EXEC mode.

Syntax

show ip route [address ip-address{mask[longer-prefixes]}] [static | rejected | icmp | connected]
Parameters

- **address ip-address**—IP address about which routing information should be displayed.
- **mask**—The value of the subnet mask.
- **longer-prefixes**—Specifies that only routes matching the IP address and mask pair should be displayed.
- **connected**—Displays connected routes.
- **icmp**—Displays routes added by ICMP Direct.
- **rejected**—Displays rejected routes.
- **static**—Displays static routes.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

Use this command without parameters to display the whole IPv6 Routing table.

Use this command with parameters to specify required routes.

Examples

Example 1. The following is sample output from the `show ip route` command when IP Routing is not enabled:

```
switchxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: disabled
Codes: > - best, C - connected, S - static, I - ICMP
IP Routing Table - 5 entries
Code IP Route Distance/ Next Hop Last Time Outgoing
Metric IP Address Updated Interface
------ --------------- ------------- -------------- -------------
S> 10.10.0.0/16 1/128 10.119.254.244 00:02:22 vlan2
```
Example 2.
The following is sample output from the `show ip route` command when IP Routing is enabled:

```plaintext
switchxxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled
Codes: > - best, C - connected, S - static
Codes: > - best, C - connected, S - static
IP Routing Table - 4 entries
Code    IP Route      Distance/  Next Hop           Last Time Outgoing
        Metric       IP Address        Updated   Interface
------  -----------    ---------------       ------------- ------------
C>      10.159.0.0/16    0/1             0.0.0.0                              vlan2
C>      10.170.0.0/16    0/1             0.0.0.0                              vlan2
S>      10.175.0.0/16     1/1            10.119.254.240                vlan2
S>      10.180.0.0/16    1/1             10.119.254.240                vlan2
```

Example 3.
In the following example, the logical AND operation is performed on the address 10.16.0.0 and the mask 255.255.0.0, resulting in 10.16.0.0. On each destination in the routing table the logical AND operation is also performed with the mask and the result is compared with 10.16.0.0. Any destinations that fall into that range are displayed in the output:

```plaintext
switchxxxxxxx# show ip route 10.16.0.0 255.255.0.0 longer-prefix
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled
Codes: > - best, C - connected, S - static
Codes: > - best, C - connected, S - static
IP Routing Table - 6 entries
```

<table>
<thead>
<tr>
<th>Code</th>
<th>IP Route</th>
<th>Distance/ Metric</th>
<th>Next Hop</th>
<th>Last Time Outgoing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.159.0.0/16</td>
<td>0/1</td>
<td>0.0.0.0</td>
<td>vlan2</td>
</tr>
<tr>
<td></td>
<td>10.170.0.0/16</td>
<td>0/1</td>
<td>0.0.0.0</td>
<td>vlan2</td>
</tr>
<tr>
<td>S></td>
<td>10.175.0.0/16</td>
<td>1/1</td>
<td>10.119.254.240</td>
<td>vlan2</td>
</tr>
<tr>
<td>S></td>
<td>10.180.0.0/16</td>
<td>1/1</td>
<td>10.119.254.240</td>
<td>vlan2</td>
</tr>
</tbody>
</table>
23.4 `show ip route summary`

Use the `show ip route summary` command in User EXEC or Privileged EXEC mode to display the current contents of the IP routing table in summary format.

Syntax

```
show ip route summary
```

Parameters

N/A.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

This command is only relevant in router mode.

Example

The following is sample output from the `show ip route summary` command:

```
switchxxxxxx# show ip route summary
IP Routing Table Summary - 90 entries
35 connected, 25 static
```
Number of prefixes:

/16: 16, /18: 10, /22: 15, /24: 19
24.1 ping

Use the ping EXEC mode command to send ICMP echo request packets to another node on the network.

Syntax

ping [ip] [ipv4-address | hostname] [size packet_size] [count packet_count] [timeout time_out] [source source-address]

ping ipv6 [ipv6-address | hostname] [size packet_size] [count packet_count] [timeout time_out] [source source-address]

Parameters

- **ip**—Use IPv4 to check the network connectivity.
- **ipv6**—Use IPv6 to check the network connectivity.
- **ipv4-address**—IPv4 address to ping.
- **ipv6-address**—Unicast or Multicast IPv6 address to ping. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified.
- **hostname**—Hostname to ping (Length: 1-160 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4: 64–1518, IPv6: 68–1518)
- **count packet_count**—Number of packets to send, from 1 to 65535 packets. The default is 4 packets. If 0 is entered, it pings until stopped (0–65535).
- **time time-out**—Timeout in milliseconds to wait for each reply, from 50 to 65535 milliseconds. The default is 2000 milliseconds (50–65535).
- **source source-address**—Source address (Unicast IPv4 address or global Unicast IPv6 address).
Default Usage
N/A

Command Mode
Privileged EXEC mode

User Guidelines
Press Esc to stop pinging. Following are sample results of the ping command:

- **Destination does not respond**—If the host does not respond, a “no answer from host” appears within 10 seconds.

- **Destination unreachable**—The gateway for this destination indicates that the destination is unreachable.

- **Network or host unreachable**—The switch found no corresponding entry in the route table.

When using the ping ipv6 command to check network connectivity of a directly attached host using its link local address, the egress interface may be specified in the IPv6Z format. If the egress interface is not specified, the default interface is selected.

When using the ping ipv6 command with a Multicast address, the information displayed is taken from all received echo responses.

When the source keyword is configured and the source address is not an address of the switch, the command is halted with an error message and pings are not sent.

Examples

Example 1 - Ping an IP address.

```
switchxxxxxx> ping ip 10.1.1.1
Pinging 10.1.1.1 with 64 bytes of data:
64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms
----10.1.1.1 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
```
Example 2 - Ping a site.

switchxxxxx> **ping ip** yahoo.com

Pinging yahoo.com [66.218.71.198] with 64 bytes of data:
64 bytes from 66.218.71.198: icmp_seq=0. time=11 ms
64 bytes from 66.218.71.198: icmp_seq=1. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=2. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=3. time=7 ms

----10.1.1.1 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11

Example 3 - Ping an IPv6 address.

switchxxxxx> **ping ipv6** 3003::11

Pinging 3003::11 with 64 bytes of data:
64 bytes from 3003::11: icmp_seq=1. time=0 ms
64 bytes from 3003::11: icmp_seq=2. time=50 ms
64 bytes from 3003::11: icmp_seq=3. time=0 ms
64 bytes from 3003::11: icmp_seq=4. time=0 ms

----3003::11 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/12/50

switchxxxxx> **ping ipv6** FF02::1

Pinging FF02::1 with 64 bytes of data:
64 bytes from FF02::1: icmp_seq=1. time=0 ms
64 bytes from FF02::1: icmp_seq=1. time=70 ms
64 bytes from FF02::1: icmp_seq=2. time=0 ms
64 bytes from FF02::1: icmp_seq=1. time=1050 ms
64 bytes from FF02::1: icmp_seq=2. time=70 ms
24.2 telnet

The telnet EXEC mode command logs on to a host that supports Telnet.

Syntax

telnet {ip-address | hostname} [port] [keyword...]

Parameters

- **ip-address**—Specifies the destination host IP address (IPv4 or IPv6).
- **hostname**—Specifies the destination host name. (Length: 1-160 characters. Maximum label size for each part of the host name: 58.)
- **port**—Specifies the decimal TCP port number or one of the keywords listed in the Ports table in the User Guidelines.
- **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

Default Configuration

The default port is the Telnet port (23) on the host.

Command Mode

Privileged EXEC mode

User Guidelines

Telnet software supports special Telnet commands in the form of Telnet sequences that map generic terminal control functions to operating...
system-specific functions. To enter a Telnet sequence, press the escape sequence keys (Ctrl-shift-6) followed by a Telnet command character.

Special Telnet Sequences

<table>
<thead>
<tr>
<th>Telnet Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-shift-6-b</td>
<td>Break</td>
</tr>
<tr>
<td>Ctrl-shift-6-c</td>
<td>Interrupt Process (IP)</td>
</tr>
<tr>
<td>Ctrl-shift-6-h</td>
<td>Erase Character (EC)</td>
</tr>
<tr>
<td>Ctrl-shift-6-o</td>
<td>Abort Output (AO)</td>
</tr>
<tr>
<td>Ctrl-shift-6-t</td>
<td>Are You There? (AYT)</td>
</tr>
<tr>
<td>Ctrl-shift-6-u</td>
<td>Erase Line (EL)</td>
</tr>
</tbody>
</table>

At any time during an active Telnet session, available Telnet commands can be listed by pressing the ?/help keys at the system prompt.

A sample of this list follows.

```
switchxxxxxx> ?/help

[Special telnet escape help]

  ^^ B sends telnet BREAK
  ^^ C sends telnet IP
  ^^ H sends telnet EC
  ^^ O sends telnet AO
  ^^ T sends telnet AYT
  ^^ U sends telnet EL

?/help suspends the session (return to system command prompt)
```

Several concurrent Telnet sessions can be opened, enabling switching between the sessions. To open a subsequent session, the current connection has to be suspended by pressing the escape sequence keys (Ctrl-shift-6) and x to return to the system command prompt. Then open a new connection with the telnet EXEC mode command.

This command lists concurrent Telnet connections to remote hosts that were opened by the current Telnet session to the local device. It does not list Telnet connections to remote hosts that were opened by other Telnet sessions.
Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/echo</td>
<td>Enables local echo.</td>
</tr>
<tr>
<td>/quiet</td>
<td>Prevents onscreen display of all messages from the software.</td>
</tr>
<tr>
<td>/source-interface</td>
<td>Specifies the source interface.</td>
</tr>
<tr>
<td>/stream</td>
<td>Turns on stream processing, which enables a raw TCP stream with no Telnet control sequences. A stream connection does not process Telnet options and can be appropriate for connections to ports running UNIX-to-UNIX Copy Program (UUCP) and other non-Telnet protocols.</td>
</tr>
<tr>
<td>Ctrl-shift-6 x</td>
<td>Returns to the System Command Prompt.</td>
</tr>
</tbody>
</table>

Ports Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
<td>179</td>
</tr>
<tr>
<td>chargen</td>
<td>Character generator</td>
<td>19</td>
</tr>
<tr>
<td>cmd</td>
<td>Remote commands</td>
<td>514</td>
</tr>
<tr>
<td>daytime</td>
<td>Daytime</td>
<td>13</td>
</tr>
<tr>
<td>discard</td>
<td>Discard</td>
<td>9</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name Service</td>
<td>53</td>
</tr>
<tr>
<td>echo</td>
<td>Echo</td>
<td>7</td>
</tr>
<tr>
<td>exec</td>
<td>Exec</td>
<td>512</td>
</tr>
<tr>
<td>finger</td>
<td>Finger</td>
<td>79</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections</td>
<td>20</td>
</tr>
<tr>
<td>gopher</td>
<td>Gopher</td>
<td>70</td>
</tr>
<tr>
<td>hostname</td>
<td>NIC hostname server</td>
<td>101</td>
</tr>
<tr>
<td>ident</td>
<td>Ident Protocol</td>
<td>113</td>
</tr>
<tr>
<td>irc</td>
<td>Internet Relay Chat</td>
<td>194</td>
</tr>
<tr>
<td>klogin</td>
<td>Kerberos login</td>
<td>543</td>
</tr>
<tr>
<td>kshell</td>
<td>Kerberos shell</td>
<td>544</td>
</tr>
<tr>
<td>login</td>
<td>Login</td>
<td>513</td>
</tr>
<tr>
<td>lpd</td>
<td>Printer service</td>
<td>515</td>
</tr>
</tbody>
</table>
Example

The following example displays logging in to IP address 176.213.10.50 via Telnet.

```
switchxxxxxx> telnet 176.213.10.50
```

24.3 traceroute

To display the routes that packets will take when traveling to their destination, use the `traceroute` EXEC mode command.

Syntax

```
traceroute [ipv4-address | hostname] [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
```

```
traceroute ipv6 [ipv6-address | hostname] [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
```
Parameters

- **ip**—Use IPv4 to discover the route.
- **ipv6**—Use IPv6 to discover the route.
- **ipv4-address**—IPv4 address of the destination host.
- **ipv6-address**—IPv6 address of the destination host.
- **hostname**—Hostname of the destination host. (Length: 1-160 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4: 64-1518, IPv6: 68-1518)
- **ttl max-ttl**—The largest TTL value that can be used. The default is 30. The traceroute command terminates when the destination is reached or when this value is reached. (Range: 1–255)
- **count packet_count**—The number of probes to be sent at each TTL level. The default count is 3. (Range: 1–10)
- **timeout time_out**—The number of seconds to wait for a response to a probe packet. The default is 3 seconds. (Range: 1–60)
- **source ip-address**—One of the interface addresses of the device to use as a source address for the probes. The device selects the optimal source address by default. (Range: Valid IP address)
- **tos tos**—The Type-Of-Service byte in the IP Header of the packet. (Range: 0–255)

Default Usage

N/A

Command Mode

Privileged EXEC mode

User Guidelines

The traceroute command works by taking advantage of the error messages generated by routers when a datagram exceeds its time-to-live (TTL) value.

The traceroute command starts by sending probe datagrams with a TTL value of one. This causes the first router to discard the probe datagram and send back an error message. The traceroute command sends several probes at each TTL level and displays the round-trip time for each.
The traceroute command sends out one probe at a time. Each outgoing packet can result in one or two error messages. A "time exceeded" error message indicates that an intermediate router has seen and discarded the probe. A "destination unreachable" error message indicates that the destination node has received the probe and discarded it because it could not deliver the packet. If the timer goes off before a response comes in, the traceroute command prints an asterisk (*).

The traceroute command terminates when the destination responds, when the maximum TTL is exceeded, or when the user interrupts the trace with Esc.

The traceroute command is not relevant to IPv6 link local addresses.

Example

```
switchxxxxxx> traceroute ip umaxp1.physics.lsa.umich.edu
Type Esc to abort.
Tracing the route to umaxp1.physics.lsa.umich.edu (141.211.101.64)
1 i2-gateway.stanford.edu (192.68.191.83)  0 msec 0 msec 0 msec
2 STAN.POS.calren2.NET (171.64.1.213) 0 msec 0 msec 0 msec
3 SUNV--STAN.POS.calren2.net (198.32.249.73) 1 msec 1 msec 1 msec
4 Abilene--QSV.POS.calren2.net (198.32.249.162) 1 msec 1 msec 1 msec
5 kscyng-snvang.abilene.ucaid.edu (198.32.8.103) 33 msec 35 msec 35 msec
6 iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 47 msec 45 msec 45 msec
7 so-0-2-0x1.aal.mich.net (192.122.183.9) 56 msec 53 msec 54 msec
8 atm1-0x24.michnet8.mich.net (198.108.23.82) 56 msec 56 msec 57 msec
9 * * *
10 A-ARB3-LSA-NG.c-SEB.umnet.umich.edu(141.211.5.22)58 msec 58msec 58 msec
11 umaxp1.physics.lsa.umich.edu (141.211.101.64) 62 msec 63 msec 63 msec
Trace completed
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicates the sequence number of the router in the path to the host.</td>
</tr>
<tr>
<td>i2-gateway.stanford.edu</td>
<td>Host name of this router.</td>
</tr>
</tbody>
</table>
The following are characters that can appear in the traceroute command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output indicates that an access list is blocking traffic.</td>
</tr>
<tr>
<td>F</td>
<td>Fragmentation required and DF is set.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>R</td>
<td>Fragment reassembly time exceeded</td>
</tr>
<tr>
<td>S</td>
<td>Source route failed.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.68.191.83</td>
<td>IP address of this router.</td>
</tr>
<tr>
<td>1 msec 1 msec 1 msec</td>
<td>Round-trip time for each of the probes that are sent.</td>
</tr>
</tbody>
</table>
IPv6 First Hop Security

Policies

Policies contain the rules of verification that will be performed on input packets. They can be attached to VLANs and/or port (Ethernet port or port channel).

The final set of rules that is applied to an input packet on a port is built in the following way:

1. The rules configured in policies attached to the port on the VLAN on which the packet arrived are added to the set.
2. The rules configured in the policy attached to the VLAN are added to the set if they have not been added at the port level.
3. The global rules are added to the set if they have not been added at the VLAN or port level.

Rules defined at the port level override the rules set at the VLAN level. Rules defined at the VLAN level override the globally-configured rules. The globally-configured rules override the system defaults.

You can only attach 1 policy (for a specific sub-feature) to a VLAN.

You can attach multiple policies (for a specific sub-feature) to a port if they specify different VLANs.

A sub-feature policy does not take effect until:

- IPv6 First Hop Security is enabled on the VLAN
- The sub-feature is enabled on the VLAN
- The policy is attached to the VLAN or port

Default Policies

Empty default polices exist for each sub-feature and are by default attached to all VLANs and ports. The default policies are named: "vlan_default" and "port_default".

Rules can be added to these default policies. You do not have to manually attach default policies to ports. They are attached by default.

When a user-defined policy is attached to a port the default policy for that port is detached. If the user-defined policy is detached from the port, the default policy is reattached.
Default policies can never be deleted. You can only delete the user-added configuration.

Lists of Commands

25.1 address-config

To specify allowed configuration methods of global IPv6 addresses within an IPv6 Neighbor Binding policy, use the address-config command in Neighbor Binding Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

address-config [stateless | any] [dhcp]

no address-config

Parameters

- **stateless**—Only auto configuration for global IPv6 bound from NDP messages is allowed.
- **any**—All configuration methods for global IPv6 bound from NDP messages (stateless and manual) are allowed. If no keyword is defined the **any** keyword is applied.
- **dhcp**—Bound from DHCPv6 is allowed.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.
If no keyword is defined the `address-config any` command is applied.

Example

The following example shows how to change the global configuration to allow only DHCP address configuration method:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# address-config dhcp
switchxxxxxx(config-nbr-binding)# exit
```

25.2 address-prefix-validation

To define the bound address prefix validation within an IPv6 Neighbor Binding policy, use the `address-prefix-validation` command in Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
address-prefix-validation [enable | disable]
no address-prefix-validation
```

Parameters

- **enable**—Enables bound address prefix validation. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables bound address prefix validation.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configured value.

Command Mode

Neighbor Binding Policy Configuration mode.
User Guidelines

When a policy containing this command is attached to a VLAN, it overrides the global configuration and is applied to all ports of the VLAN. When this command is used in a policy attached to a port, it overrides the global and the VLAN configurations.

Example

The following example shows how to define policy1 that changes the global bound address verification in Neighbor Binding:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# address-prefix-validation enable
switchxxxxxx(config-nbr-binding)# exit
```

25.3 clear ipv6 first hop security counters

To clear IPv6 First Hop Security port counters, use the clear ipv6 first hop security counters command in privileged EXEC mode.

Syntax

clear ipv6 first hop security counters [interface interface-id]

Parameters

- interface interface-id—Clear IPv6 First Hop Security counters for the specified Ethernet port or port channel.

Command Mode

Privileged EXEC mode

User Guidelines

This command clears port counters about packets handled by IPv6 First Hop Security.

Use the interface keyword to clear all counters for the specific port.

Use the command without keyword to clear all counters.
Example
The following example clears IPv6 First Hop Security counters on port gi11

```
switchxxxxxx# clear ipv6 first hop security counters interface gi11
```

25.4 clear ipv6 first hop security error counters

To clear IPv6 First Hop Security global error counters, use the `clear ipv6 first hop security error counters` command in privileged EXEC mode.

Syntax

```
clear ipv6 first hop security error counters
```

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command clears global error counters.

Example

The following example clears IPv6 First Hop Security error counters:

```
switchxxxxxx# clear ipv6 first hop security error counters
```

25.5 clear ipv6 neighbor binding prefix table

To remove dynamic entries from the Neighbor Prefix table, use the `clear ipv6 neighbor binding prefix table` command in Privilege EXEC configuration mode.
Syntax

```
clear ipv6 neighbor binding prefix table [vlan vlan-id] [prefix-address/prefix-length]
```

Parameters

- `vlan-id`—Clear the dynamic prefixes that match the specified VLAN.
- `prefix-address/prefix-length`—Clear the specific dynamic prefix.

Command Mode

Privileged EXEC mode

User Guidelines

This command deletes the dynamic entries of the Neighbor Prefix table.

Use the `clear ipv6 neighbor binding prefix table vlan vlan-id prefix-address/prefix-length` command to delete one specific entry.

Use the `clear ipv6 neighbor binding prefix table vlan vlan-id` command to delete the dynamic entries that match the specified VLAN.

Use the `clear ipv6 neighbor binding prefix table` command to delete all dynamic entries.

Examples

Example 1. The following example clears all dynamic entries:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table
```

Example 2. The following example clears all dynamic prefixes that match VLAN 100:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table vlan 100
```

Example 3. The following example clears one specific prefix:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table vlan 100 2002:11aa:0000:0001::/64
```
25.6 clear ipv6 neighbor binding table

To remove dynamic entries from the Neighbor Binding table, use the `clear ipv6 neighbor binding table` command in Privilege EXEC configuration mode.

Syntax

```
clear ipv6 neighbor binding table [vlan vlan-id] [interface interface-id] [ipv6 ipv6-address] [mac mac-address] [ndp | dhcp]
```

Parameters

- `vlan vlan-id`—Clear the dynamic entries that match the specified VLAN.
- `interface interface-id`—Clear the dynamic entries that match the specified port (Ethernet port or port channel).
- `ipv6 ipv6-address`—Clear the dynamic entries that match the specified IPv6 address.
- `mac mac-address`—Clear the dynamic entries that match the specified MAC address.
- `ndp`—Clear the dynamic entries that are bound from NDP messages.
- `dhcp`—Clear the dynamic entries that are bound from DHCPv6 messages.

Command Mode

Privileged EXEC mode

User Guidelines

This command deletes the dynamic entries of the Neighbor Binding table.

The dynamic entries to be deleted can be specified by the `vlan-id` argument, the `interface-id` argument, IPv6 address, MAC address, or by type of message from which they were bound.

If the `ndp` keyword and the `dhcp` keyword is not defined, the entries are removed regardless their origin.

If no keywords or arguments are entered, all dynamic entries are deleted.

All keyword and argument combinations are allowed.
Example
The following example clears all dynamic entries that exist on VLAN 100 & port gi11:

```
switchxxxxxx# clear ipv6 neighbor binding table vlan 100 interface gi11
```

25.7 device-role (IPv6 DHCP Guard)

To specify the role of the device attached to the port within an IPv6 DHCP Guard policy, use the device-role command in IPv6 DHCPv6 Guard Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

device-role {client | server}

no device-role

Parameters

- **client**—Sets the role of the device to DHCPv6 client.
- **server**—Sets the role of the device to DHCPv6 server.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: client.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

IPv6 DHCP Guard discards the following DHCPv6 messages sent by DHCPv6 servers/relays and received on ports configured as client:

- ADVERTISE
Example

The following example defines an IPv6 DHCP Guard policy named policy1 and configures the port role as the server:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# device-role server
switchxxxxxx(config-dhcp-guard)# exit
```

25.8 device-role (Neighbor Binding)

To specify the role of the device attached to the port within an IPv6 Neighbor Binding policy, use the device-role command within IPv6 Neighbor Binding Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

device-role {perimeter | internal}

no device-role

Parameters

- **perimeter**—Specifies that the port is connected to devices not supporting IPv6 First Hop Security.
- **internal**—Specifies that the port is connected to devices supporting IPv6 First Hop Security.

Default Configuration

Policy attached to port or port channel: Value configured in the policy attached to the VLAN.

Policy attached to VLAN: Perimeter.
Command Mode
Neighbor Binding Policy Configuration mode.

User Guidelines
If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

NB Integrity supports the perimetrical model (see RFC 6620).

This model specifies two types of ports:

- **Perimeter Port**—Specifies ports connected to devices not supporting NB Integrity. NB Integrity establishes binding for neighbors connected to these ports. Source Guard does not function on these ports.

- **Internal Port**—The second type specifies ports connected to devices supporting IPv6 First Hop Security. NB Integrity does not establish binding for neighbors connected to these ports, but it does propagate the bindings established on perimeter ports.

A dynamic IPv6 address bound to a port is deleted when its role is changed from perimetrical to internal. A static IPv6 address is kept.

Example
The following example defines a Neighbor Binding policy named policy 1 and configures the port role as an internal port:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# device-role internal
switchxxxxxx(config-nbr-binding)# exit
```

25.9 device-role (ND Inspection Policy)
To specify the role of the device attached to the port within an IPv6 ND Inspection policy, use the `device-role` command in ND Inspection Policy Configuration mode. To disable this function, use the `no` form of this command.

Syntax
```
device-role {host | router}
```
no device-role

Parameters

- **host**—Sets the role of the device to host.
- **router**—Sets the role of the device to router.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: host.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

ND Inspection performs egress filtering of NDP messages depending on a port role. The following table specifies the filtering rules.

<table>
<thead>
<tr>
<th>Message</th>
<th>Host</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Permit</td>
<td>Permit</td>
</tr>
<tr>
<td>RS</td>
<td>Deny</td>
<td>Permit</td>
</tr>
<tr>
<td>CPA</td>
<td>Permit</td>
<td>Permit</td>
</tr>
<tr>
<td>CPS</td>
<td>Deny</td>
<td>Permit</td>
</tr>
<tr>
<td>ICMP Redirect</td>
<td>Permit</td>
<td>Permit</td>
</tr>
</tbody>
</table>

Example

The following example defines an ND Inspection policy named policy 1 and configures the port role as router:

```console
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# device-role router
switchxxxxxx(config-nd-inspection)# exit
```
25.10 device-role (RA Guard Policy)

To specify the role of the device attached to the port within an IPv6 RA Guard policy, use the `device-role` command in RA Guard Policy Configuration mode. To returned to the default, use the `no` form of this command.

Syntax

```
device-role {host | router}
no device-role
```

Parameters

- `host`—Sets the role of the device to host.
- `router`—Sets the role of the device to router.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: host.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

RA Guard discards input RA, CPA, and ICMPv6 Redirect messages received on ports configured as host.

Example

The following example defines an RA Guard policy named policy 1 and configures the port role as `router`:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-rguard)# device-role router
```
25.11 drop-unsecure

To enable dropping messages with no or invalid options or an invalid signature within an IPv6 ND Inspection policy, use the drop-unsecure command in ND Inspection Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

```plaintext
drop-unsecure [enable | disable]
no drop-unsecure
```

Parameters

- **enable**—Enables dropping messages with no or invalid options or an invalid signature. If no keyword is configured this keyword is applied by default.
- **disable**—Disables dropping messages with no or invalid options or an invalid signature.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.
Example

The following example defines an ND Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and enables the switch to drop messages with no or invalid options or an invalid signature:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# drop-unsecure
switchxxxxxx(config-nd-inspection)# exit
```

25.12 hop-limit

To enable the verification of the advertised Cur Hop Limit value in RA messages within an IPv6 RA Guard policy, use the `hop-limit` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
hop-limit ([maximum {value | disable}] [minimum {value | disable}])
```

Parameters

- **maximum value**—Verifies that the hop-count limit is less than or equal to the `value` argument. Range 1-255. The value of the high boundary must be equal or greater than the value of the low boundary.
- **maximum disable**—Disables verification of the high boundary of the hop-count limit.
- **minimum value**—Verifies that the hop-count limit is greater than or equal to the `value` argument. Range 1-255.
- **minimum disable**—Disables verification of the lower boundary of the hop-count limit.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.
Command Mode

RA Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Use the **disable** keyword to disable verification regardless of the global or VLAN configuration.

Examples

Example 1—The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and defines a minimum Cur Hop Limit value of 5:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# hop-limit minimum 5
switchxxxxxx(config-ra-guard)# exit
```

Example 2—The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and disables validation of the Cur Hop Limit high boundary:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# hop-limit maximum disable
switchxxxxxx(config-ra-guard)# exit
```

25.13 ipv6 dhcp guard

To enable the DHCPv6 guard feature on a VLAN, use the **ipv6 dhcp guard** command in VLAN Configuration mode. To return to the default, use the **no** form of this command.

Syntax

```
ipv6 dhcp guard
```
no ipv6 dhcp guard

Parameters
N/A

Default Configuration
DHCPv6 Guard on a VLAN is disabled.

Command Mode
Interface (VLAN) Configuration mode

User Guidelines
DHCPv6 Guard blocks messages sent by DHCPv6 servers/relays to clients received on ports that are not configured as a DHCPv6 server. Client messages or messages sent by relay agents from clients to servers are not blocked. See the device-role (IPv6 DHCP Guard) command for details.

DHCPv6 Guard validates received DHCPv6 messages based on a DHCPv6 Guard policy attached to the source port.

Examples
Example 1—The following example enables DHCPv6 Guard on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp guard
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables DHCPv6 Guard on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 dhcp guard
switchxxxxxx(config-if-range)# exit
```
25.14 ipv6 dhcp guard attach-policy (port mode)

To attach a DHCPv6 Guard policy to a specific port, use the **ipv6 dhcp guard attach-policy** command in Interface Configuration mode. To return to the default, use the **no** form of this command.

Syntax

```
ipv6 dhcp guard attach-policy policy-name [vlan vlan-list]

no ipv6 dhcp guard attach-policy [policy-name]
```

Parameters

- **policy-name**—The DHCPv6 Guard policy name (up to 32 characters).
- **vlan vlan-list**—Specifies that the DHCPv6 Guard policy is to be attached to the VLAN(s) in **vlan-list**. If the **vlan** keyword is not configured, the policy is applied to all VLANs on the device on which DHCPv6 Guard is enabled.

Default Configuration

The DHCPv6 Guard default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach a DHCPv6 Guard policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the **policy-name** argument is not defined, the command is rejected.

Multiple policies with the **vlan** keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.

The global rules are added to the set if they have not been added.

Use `no ipv6 dhcp guard attach-policy` to detach all user-defined DHCP Guard policies attached to the port.

Use `no ipv6 dhcp guard attach-policy policy-name` to detach the specific policy from the port.

Examples

Example 1—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi11 port and the default policy port_default is detached:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and the DHCPv6 Guard policy policy2 is attached to the gi11 port and applied to VLANs 12-20:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```
Example 4—In the following example DHCPv6 Guard detaches policy1 from the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 dhcp guard attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.15 ipv6 dhcp guard attach-policy (VLAN mode)

To attach a DHCPv6 Guard policy to a specified VLAN, use the `ipv6 dhcp guard attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 dhcp guard attach-policy policy-name
no ipv6 dhcp guard attach-policy
```

Parameters

- `policy-name`—The DHCPv6 Guard policy name (up to 32 characters).

Default Configuration

The DHCPv6 Guard default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a DHCPv6 Guard policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to detach the current policy and to re-attach the default policy. The `no` form of the command has no effect if the default policy was attached.
Example

In the following example, the DHCPv6 Guard policy policy1 is attached to VLAN 100:

```bash
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.16 ipv6 dhcp guard policy

To define a DHCP Guard policy and place the switch in DHCPv6 Guard Policy Configuration mode, use the `ipv6 dhcp guard policy` command in Global Configuration mode. To remove the DHCPv6 guard policy, use the `no` form of this command.

Syntax

```
ipv6 dhcp guard policy policy-name
no ipv6 dhcp guard policy policy-name
```

Parameters

- `policy-name`—The DHCPv6 Guard policy name (up to 32 characters).

Default Configuration

No DHCPv6 Guard policy are configured

Command Mode

Global Configuration mode

User Guidelines

This command defines the DHCPv6 Guard policy name, and places the router in DHCPv6 Guard Policy Configuration mode.

The following commands can be configured in IPv6 DHCP Guard Policy Configuration mode:

- `device-role (IPv6 DHCP Guard)`
- match server address
- match reply
- preference

Each policy of the same type (for example, DHCPv6 Guard policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports two predefined, default DHCPv6 Guard policies named: "vlan_default" and "port_default":

```
ipv6 dhcp guard policy vlan_default
exit
ipv6 dhcp guard policy port_default
exit
```

The default policies are empty and cannot be removed, but can be changed. The `no ipv6 dhcp guard policy` does not remove the default policies, it only removes the policy configuration defined by the user.

The default policies cannot be attached by the `ipv6 dhcp guard attach-policy (port mode)` or `ipv6 dhcp guard attach-policy (VLAN mode)` command. The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 dhcp guard policy` command multiple times. Before an attached policy is removed, a request for confirmation is presented to the user, as shown in Example 3 below.

Examples

Example 1—The following example defines a DHCPv6 Guard policy named `policy1`, places the router in DHCPv6 Guard Policy Configuration mode, configures the port to drop unsecure messages and sets the device role as router:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match server address list1
switchxxxxxx(config-dhcp-guard)# device-role server
switchxxxxxx(config-dhcp-guard)# exit
```
Example 2—The following example defines a DHCPv6 Guard named policy1 by multiple steps:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match server address list1
switchxxxxxx(config-dhcp-guard)# exit
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# device-role server
switchxxxxxx(config-dhcp-guard)# exit
```

Example 3—The following example removes an attached DHCPv6 Guard policy:

```
switchxxxxxx(config)# no ipv6 dhcp guard policy policy1
Policy policy1 is applied on the following ports:

gi11, gi12
The policy1 will be detached and removed, are you sure [Y/N]Y
```

25.17 `ipv6 dhcp guard preference`

To globally enable verification of the preference in messages sent by DHCPv6 servers, use the `ipv6 dhcp guard preference` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 dhcp guard preference {
[maximum value] [minimum value]}
no ipv6 dhcp guard preference [maximum] [minimum]
```

Parameters

- **maximum value**—Advertised preference value is lower than or equal to the `value` argument. Range 0-255. The value of the high boundary must be equal to or greater than the value of the low boundary.

- **minimum value**—Advertised preference value is greater than or equal to the `value` argument. Range 0-255.
Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification that the preference value in messages sent by DHCPv6 servers messages (see RFC3315) is greater than or less than the `value` argument.

Note. When DHCPv6 Guard receives a RELAY-REPL message, it takes it from the encapsulated message.

Configuring the `minimum` `value` keyword and argument specifies the minimum allowed value. The received DHCPv6 reply message with a preference value less than a value specified by the `value` argument is dropped.

Configuring the `maximum` `value` keyword and argument specifies the maximum allowed value. The received DHCPv6 reply message with a preference value greater than the value specified by the `value` argument is dropped.

Use `no ipv6 dhcp guard preference` to disable verification of the advertised preference value in DHCPv6 reply messages.

Use `no ipv6 dhcp guard preference maximum` to disable verification of the maximum boundary of the value of the advertised preference value in DHCPv6 messages.

Use the `no ipv6 dhcp guard preference minimum` command to disable verification of the minimum boundary of the value of the advertised preference value in DHCPv6 messages.

Examples

Example 1—The following example defines a global minimum preference value of 10 and a global maximum preference value of 102 using two commands:

```
switchxxxxxx(config)# ipv6 dhcp guard preference minimum 10
switchxxxxxx(config)# ipv6 dhcp guard preference maximum 102
```
Example 2—The following example defines a global minimum preference value of 10 and a global maximum preference value of 102 using a single command:

```
switchxxxxxx(config)# ipv6 dhcp guard preference minimum 10 maximum 102
```

25.18 ipv6 first hop security

To globally enable IPv6 First Hop Security on a VLAN, use the `ipv6 first hop security` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 first hop security`

`no ipv6 first hop security`

Parameters

N/A

Default Configuration

IPv6 First Hop Security on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the `ipv6 first hop security` command to enable IPv6 First Hop Security on a VLAN.

Examples

Example 1—The following example enables IPv6 First Hop Security on VLAN 100:

```
switchxxxxxxx(config)# interface vlan 100
switchxxxxxxx(config-if)# ipv6 first hop security
```
Example 2—The following example enables IPv6 First Hop Security on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 first hop security
switchxxxxxx(config-if-range)# exit
```
User Guidelines

Use this command to attach an IPv6 First Hop Security policy to a port.

Each succeeding usage of this command overrides the previous usage of the command with the same policy.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the policy-name argument is not defined, the command is rejected.

Multiple policies with the vlan keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the no ipv6 first hop security attach-policy command to detach all user-defined policies attached to the port. The default policy is reattached.

Use the no ipv6 first hop security attach-policy policy-name command to detach the specific policy from the port.

Examples

Example 1—in the following example, the IPv6 First Hop Security policy policy1 is attached to the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—in the following example, the IPv6 First Hop Security policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi11
```
Example 3—In the following example, the IPv6 First Hop Security policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and the IPv6 First Hop Security policy policy2 is attached to the gi11 port and applied to VLANs 12-20:

```
switchxxxxxx(config)## interface gi11
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example IPv6 First Hop Security detaches policy policy1 detached to the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.20 ipv6 first hop security attach-policy (VLAN mode)

To attach an IPv6 First Hop Security policy to a specified VLAN, use the `ipv6 first hop security attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 first hop security attach-policy policy-name
no ipv6 first hop security attach-policy
```
Parameters

- `policy-name`—The IPv6 First Hop Security policy name (up to 32 characters).

Default Configuration

The IPv6 First Hop Security default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach an IPv6 First Hop Security policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to return to detach the current policy and to reattach the default policy. The `no` form of the command does not have an effect if the default policy was attached.

Example

In the following example, the IPv6 First Hop Security policy `policy1` is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.21 ipv6 first hop security logging packet drop

To globally enable the logging of dropped packets by the IPv6 First Hop Security feature, use the `ipv6 first hop security logging packet drop` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

- `ipv6 first hop security logging packet drop`
no ipv6 first hop security logging packet drop

Parameters
N/A

Default Configuration
Logging is disabled.

Command Mode
Global Configuration mode

User Guidelines
Use this command to log packets that are dropped. If logging is enabled, the switch sends a rate-limited SYSLOG message every time it drops a message.

Example
The following example shows how to enable logging of dropped packets by the IPv6 first-hop security feature:

```
switchxxxxxx(config)# ipv6 first hop security logging packet drop
```

25.22 ipv6 first hop security policy

To define an IPv6 First Hop Security policy and place the switch in IPv6 First Hop Security Policy Configuration mode, use the `ipv6 first hop security policy` command in Global Configuration mode. To remove the IPv6 First Hop Security policy, use the `no` form of this command.

Syntax

```
ipv6 first hop security policy policy-name
no ipv6 first hop security policy policy-name
```

Parameters

- `policy-name`—The IPv6 First Hop Security policy name (up to 32 characters).
Default Configuration

No IPv6 First Hop Security policy is configured

Command Mode

Global Configuration mode

User Guidelines

This command defines an IPv6 First Hop Security policy, and places the switch in IPv6 First Hop Security Policy Configuration mode.

The following command can be configured in IPv6 First Hop Security Policy Configuration mode:

- `logging packet drop`

Each policy of the same type (for example, IPv6 First Hop Security policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports two predefined, empty, default IPv6 First Hop Security policies named: "vlan_default" and "port_default":

```
ipv6 first hop security policy vlan_default
exit
ipv6 first hop security policy port_default
exit
```

These policies cannot be removed but they can be changed. The `no ipv6 first hop security policy` does not remove these policies, it only removes the policy configurations defined by the user.

The default policies do not need to be attached by the `ipv6 first hop security attach-policy (port mode)` or `ipv6 first hop security attach-policy (VLAN mode)` command. The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 first hop security policy` command multiple times.

If an attached policy is removed, it is detached automatically before removing.
Examples

Example 1—The following example defines the IPv6 First Hop Security policy named policy1, places the switch in IPv6 First Hop Security Policy Configuration mode, and enables logging of dropped packets:

```
switchxxxxxx(config)# ipv6 first hop security policy policy1
switchxxxxxx(config-ipv6-fhs)# logging packet drop
switchxxxxxx(config)# exit
```

Example 2—The following example removes an attached IPv6 First Hop Security policy:

```
switchxxxxxx(config)# no ipv6 first hop security policy policy1
Policy policy1 is applied on the following ports:

    gi11, gi12

The policy1 will be detached and removed, are you sure [Y/N]Y
```

25.23 ipv6 nd inspection

To enable the IPv6 Neighbor Discovery (ND) Inspection feature on a VLAN, use the `ipv6 nd inspection` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd inspection
no ipv6 nd inspection
```

Parameters

N/A

Default Configuration

ND Inspection on a VLAN is disabled.
25.24 ipv6 nd inspection attach-policy (port mode)

To attach an ND Inspection policy to a specific port, use the `ipv6 nd inspection attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.
Syntax

```
ipv6 nd inspection attach-policy policy-name [vlan vlan-list]
```

```
no ipv6 nd inspection attach-policy [policy-name]
```

Parameters

- `policy-name`—The ND Inspection policy name (up to 32 characters).
- `vlan vlan-list`—Specifies that the ND Inspection policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which ND Inspection is enabled.

Default Configuration

The ND Inspection default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `ipv6 nd inspection attach-policy` command to attach an ND Inspection policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 nd inspection attach-policy` command to detach all user-defined policies attached to the port.
Use the `no ipv6 nd inspection attach-policy policy-name` command to detach the specific policy from the port.

Examples

Example 1—In the following example, the ND Inspection policy policy1 is attached to the gi11 port:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example, the ND Inspection policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and 12-20:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the ND Inspection policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and the ND Inspection policy policy2 is attached to the gi11 port and applied to VLANs 12-20:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example, ND Inspection detaches policy policy1 from the gi11 port:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 nd inspection attach-policy policy1
switchxxxxxx(config-if)# exit
```
25.25 ipv6 nd inspection attach-policy (VLAN mode)

To attach an ND Inspection policy to a specified VLAN, use the `ipv6 nd inspection attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 nd inspection attach-policy policy-name`

`no ipv6 nd inspection attach-policy`

Parameters

- `policy-name`—The ND Inspection policy name (up to 32 characters).

Default Configuration

The ND Inspection default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a ND Inspection policy to a VLAN.

If the policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to detach the current policy and to reattach the default policy. The `no` form of the command does not have an effect if the default policy was attached.

Example

In the following example, the ND Inspection policy `policy1` is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy1
switchxxxxxx(config-if)# exit
```
25.26 ipv6 nd inspection drop-unsecure

To globally enable dropping messages with no CGA and RSA Signature options, use the `ipv6 nd inspection drop-unsecure` command in Global Configuration mode. To disable this function, use the `no` form of this command.

Syntax

```
ipv6 nd inspection drop-unsecure
no ipv6 nd inspection drop-unsecure
```

Parameters

N/A

Default Configuration

All messages are bridged.

Command Mode

Global Configuration mode

User Guidelines

This command drops NDP messages if they do not contain CGA and RSA Signature options.

If this command is not configured, then the `sec-level minimum` command does not have an effect.

If this command is configured, then only the `sec-level minimum` command has an effect and all other configured ND Inspection policy commands are ignored.

Example

The following example enables the switch to drop messages with no or invalid options or an invalid signature:

```
switchxxxxxxx(config)# ipv6 nd inspection drop-unsecure
```
25.27 ipv6 nd inspection policy

To define an ND Inspection policy and place the switch in IPv6 ND Inspection Policy Configuration mode, use the `ipv6 nd inspection policy` command in Global Configuration mode. To remove the ND Inspection policy, use the `no` form of this command.

Syntax

```
ipv6 nd inspection policy policy-name
no ipv6 nd inspection policy policy-name
```

Parameters

- `policy-name`—The ND Inspection policy name (up to 32 characters).

Default Configuration

No ND Inspection policies are configured.

Command Mode

Global Configuration mode

User Guidelines

This command defines the ND Inspection policy name, and places the router in ND Inspection Policy Configuration mode.

The following commands can be configured into a ND Inspection policy:

- `device-role (ND Inspection Policy)`
- `drop-unsecure`
- `sec-level minimum`
- `validate source-mac`

Each policy of the same type (for example, ND Inspection policies) must have a unique name. Policies of different types can have a same policy name.

The switch supports two predefined ND Inspection policies named: "vlan_default" and "port_default":

```
ipv6 nd inspection policy vlan_default
exit
```
ipv6 nd inspection policy port_default
exit

These policies cannot be removed, but they can be changed. The `no ipv6 nd inspection policy` does not remove these policies, it only removes the policy configuration defined by the user.

The default policies cannot be attached by the `ipv6 nd inspection attach-policy (port mode)` or `ipv6 nd inspection attach-policy (VLAN mode)` command. The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 nd inspection policy` command multiple times.

If an attached policy is removed it is detached automatically before removing.

Examples

Example 1. The following example defines a ND Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and configures the port to drop unsecured messages and sets the device role as router:

```plaintext
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# drop-unsecure
switchxxxxxx(config-nd-inspection)# device-role router
switchxxxxxx(config-nd-inspection)# exit
```

Example 2. The following example defines an ND Inspection policy as policy1 by a few steps:

```plaintext
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# drop-unsecure
switchxxxxxx(config-nd-inspection)# exit
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# device-role router
```
Example 3. The following example removes an attached ND Inspection policy:

```
switchxxxxxxx(config-nd-inspection)# exit
```

```
switchxxxxxxx(config)# no ipv6 nd inspection policy policy1
Policy policy1 is applied on the following ports:
  gi11, gi12
The policy1 will be detached and removed, are you sure [Y/N]Y
```

25.28 ipv6 nd inspection sec-level minimum

To globally specify the minimum security level value, use the `ipv6 nd inspection sec-level minimum` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd inspection sec-level minimum value
no ipv6 nd inspection sec-level minimum
```

Parameters

- `value`—Sets the minimum security level. Range: 0–7.

Default Configuration

All messages are bridged.

Command Mode

Global Configuration mode

User Guidelines

This command specifies the minimum security level parameter value when the drop-unsecured feature is configured.

This command has no effect if dropping of non secure messages is disabled.
Example

The following example enables the switch to specify 2 as the minimum CGA security level:

```
switchxxxxxx(config)# ipv6 nd inspection sec-level minimum 2
```

25.29 ipv6 nd inspection validate source-mac

To globally enable checking source MAC address against the link-layer address in the source/target link-layer option, use the `ipv6 nd inspection validate source-mac` command in Global Configuration mode. To disable this function, use the `no` form of this command.

Syntax

```
ipv6 nd inspection validate source-mac
no ipv6 nd inspection validate source-mac
```

Parameters

N/A

Default Configuration

This command is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

When the switch receives an NDP message, which contains a link-layer address in the source/target link layer option, the source MAC address is checked against the link-layer address. Use this command to drop the packet if the link-layer address and the MAC addresses are different from each other.
Example

The following example enables the switch to drop an NDP message whose link-layer address in the source/target link-layer option does not match the MAC address:

```
switchxxxxxx(config)# ipv6 nd inspection validate source-mac
```

25.30 ipv6 nd raguard

To globally enable the Router Advertisements (RA) guard feature on a VLAN, use the `ipv6 nd raguard` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard
no ipv6 nd raguard
```

Parameters

N/A

Default Configuration

RA Guard on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the `ipv6 nd raguard` command, to enable IPv6 RA Guard on a VLAN.

RA Guard discards RA, CPA, and ICMP Redirect messages received on ports that are not configured as router (see the `device-role` command).

RA Guard validates received RA messages based on an RA Guard policy attached to the source port.

RA Guard is performed before ND inspection.
Examples

Example 1—The following example enables RA Guard on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd raguard
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables RA Guard on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 nd raguard
switchxxxxxx(config-if-range)# exit
```

25.31 ipv6 nd raguard attach-policy (port mode)

To attach an RA Guard policy to a specific port, use the `ipv6 nd raguard attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 nd raguard attach-policy policy-name [vlan vlan-list]`

`no ipv6 nd raguard attach-policy [policy-name]`

Parameters

- `policy-name`—The RA Guard policy name (up to 32 characters).
- `vlan vlan-list`—Specifies that the RA Guard policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which RA Guard policy is enabled.

Default Configuration

The RA Guard default policy is applied.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach an RA Guard policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the policy-name argument is not defined, the command is rejected.

Multiple policies with the vlan keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the no ipv6 nd raguard attach-policy command to detach all user-defined policies attached to the port.

Use the no ipv6 nd raguard attach-policy policy-name command to detach the specific policy from the port.

Examples

Example 1—In the following example, the RA Guard policy policy1 is attached to the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example, the RA Guard policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi11
```
Example 3—In the following example, the RA Guard policy policy1 is attached to the gi11 port and applied to VLANs 1-10 and the RA Guard policy policy2 is attached to the gi11 port and applied to VLANs 12-20:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example RA Guard detaches policy policy1 from the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.32 ipv6 nd raguard attach-policy (VLAN mode)

To attach an RA Guard policy to a specified VLAN, use the `ipv6 nd raguard attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

- `ipv6 nd raguard attach-policy policy-name`
- `no ipv6 nd raguard attach-policy`

Parameters

- `policy-name`—The RA Guard policy name (up to 32 characters).
Default Configuration

The RA Guard default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach an RA Guard policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to rdetach the current policy and to reattach the default policy. The `no` form of the command has no effect if the default policy was attached.

Example

In the following example, the RA Guard policy `policy1` is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.33 ipv6 nd raguard hop-limit

To globally enable verification of the advertised Cur Hop Limit value in RA messages, use the `ipv6 nd raguard hop-limit` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard hop-limit \[[maximum value] [minimum value]\]
```

Parameters

- `maximum value`—Verifies that the hop-count limit is lower than or equal to the `value` argument. Range 1-255. The value of the high boundary must be equal to or greater than the value of the low boundary.
 IPv6 First Hop Security

- **minimum value**—Verifies that the hop-count limit is greater than or equal to the `value` argument. Range 1-255.

Default Configuration

No hop-count limit is verified.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification that the advertised Cur Hop Limit value in an RA message (see RFC4861) is greater than or less than the value set by the `value` argument.

Configuring the `minimum value` keyword and argument can prevent an attacker from setting a low Cur Hop Limit value on the hosts to block them from generating traffic to remote destinations; that is, beyond their default router. If the advertised Cur Hop Limit value is unspecified (which is the same as setting a value of 0), the packet is dropped.

Configuring the `maximum value` keyword and argument enables verification that the advertised Cur Hop Limit value is less than or equal to the value set by the `value` argument. If the advertised Cur Hop Limit value is unspecified (which is the same as setting a value of 0), the packet is dropped.

Use the `no ipv6 nd raguard hop-limit maximum` command to disable verification of the maximum boundary of the advertised Cur Hop Limit value in an RA message.

Use the `no ipv6 nd raguard hop-limit minimum` command to disable verification of the minimum boundary of the advertised Cur Hop Limit value in an RA message.

Examples

Example 1—The following example defines a minimum Cur Hop Limit value of 3 and a maximum Cur Hop Limit value of 100 using two commands:

```
switchxxxxxx(config)# ipv6 nd raguard hop-limit minimum 3
switchxxxxxx(config)# ipv6 nd raguard hop-limit maximum 100
```

Example 2—The following example defines a minimum Cur Hop Limit value of 3 and a maximum Cur Hop Limit value of 100 using a single command:

```
switchxxxxxx(config)# ipv6 nd raguard hop-limit minimum 3 maximum 100
```
25.34 ipv6 nd raguard managed-config-flag

To globally enable verification of the advertised Managed Address Configuration flag in RA messages, use the `ipv6 nd raguard managed-config-flag` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard managed-config-flag {on | off}
no ipv6 nd raguard managed-config-flag
```

Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.

Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification of the advertised Managed Address Configuration flag (or the M flag) in an RA message (see RFC4861). This flag could be set by an attacker to force hosts to obtain addresses through a DHCPv6 server that might not be trustworthy.

Example

The following example enables M flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard managed-config-flag off
```
25.35 ipv6 nd raguard other-config-flag

To globally enable verification of the advertised “Other Configuration” flag in RA messages, use the `ipv6 nd raguard other-config-flag` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 nd raguard other-config-flag {on | off}`

`no ipv6 nd raguard other-config-flag`

Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.

Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification of the advertised “Other Configuration” flag (or "O" flag) in an RA message (see RFC4861). This flag could be set by an attacker to force hosts to retrieve other configuration information through a DHCPv6 server that might not be trustworthy.

Example

The following example shows how the command enables O flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard other-config-flag off
```
25.36 ipv6 nd raguard policy

To define an RA Guard policy name and place the switch in IPv6 RA Guard Policy Configuration mode, use the `ipv6 nd raguard policy` command in Global Configuration mode. To remove the RA Guard policy, use the `no` form of this command.

Syntax

`ipv6 nd raguard policy policy-name`

`no ipv6 nd raguard policy policy-name`

Parameters

- `policy-name`—The RA Guard policy name (up to 32 characters).

Default Configuration

No RA Guard policy is configured

Command Mode

Global Configuration mode

User Guidelines

This command defines the RA Guard policy name, and places the switch in IPv6 RA Guard Policy Configuration mode.

Each policy of the same type (for example, RA Guard policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports two predefined RA Guard policies, named: "vlan_default" and "port_default":

```
ipv6 nd raguard policy vlan_default
exit

ipv6 nd raguard policy port_default
exit
```

The policies cannot be removed, but they can be changed. The `no ipv6 nd raguard policy` does not remove these policies, it only removes the policy configuration defined by the user.
The policies cannot be attached by the `ipv6 nd raguard attach-policy (port mode)` or `ipv6 nd raguard attach-policy (VLAN mode)` command. The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 nd raguard policy` command multiple times.

If an attached policy is removed, it is detached automatically before removing.

The following commands can be configured in RA Guard Policy Configuration mode:

- `device-role (RA Guard Policy)`
- `hop-limit`
- `managed-config-flag`
- `match ra address hop-limit`
- `match ra prefixes`
- `other-config-flag`
- `router-preference`

Examples

Example 1—The following example defines an RA Guard policy named policy1, places the router in RA Guard Policy Configuration mode, and disabled validation of the Other Configuration flag, and sets the device role as router:

```plaintext
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ipv6-nd-raguard)# other-config-flag disable
switchxxxxxx(config-ipv6-nd-raguard)# device-role router
switchxxxxxx(config-ipv6-nd-raguard)# exit
```

Example 2—The following example defines an RA Guard named policy1 using multiple steps:

```plaintext
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ipv6-nd-raguard)# other-config-flag disable
```
Example 3—The following example removes an attached RA Guard policy:

```
switchxxxxxx(config)# no ipv6 nd raguard policy policy1
```

Policy policy1 is applied on the following ports:

```
gi11, gi12
```

The policy1 will be detached and removed, are you sure [Y/N]Y

25.37 ipv6 nd raguard router-preference

To globally enable verification of the advertised Default Router Preference value in RA messages, use the `ipv6 nd raguard router-preference` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard router-preference {
  [maximum value] [minimum value]
}
no ipv6 nd raguard router-preference [maximum] [minimum]
```

Parameters

- **maximum value**—Specifies the maximum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191). The value of the high boundary must be equal to or greater than the value of the low boundary.

- **minimum value**—Specifies the minimum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191).

Default Configuration

Verification is disabled.
Command Mode
Global Configuration mode

User Guidelines
This command enables verification of the advertised Default Router Preference value in RA messages (see RFC4191).

Configuring the minimum value keyword and argument specifies the minimum allowed value. Received RA messages with a Default Router Preference value less than the value argument are dropped.

Configuring the maximum value keyword and argument specifies the maximum allowed value. Received RA messages with a Default Router Preference value greater than the value argument are dropped.

Use the no ipv6 nd raguard router-preference command to disable verification of the advertised Default Router Preference value in RA messages.

Use the no ipv6 nd raguard router-preference maximum command to disable verification of the maximum boundary of the advertised Default Router Preference value in RA messages.

Use the no ipv6 nd raguard router-preference minimum command to disable verification of the advertised Default Router Preference value in RA messages.

Examples

Example 1—The following example defines that only a value of medium is acceptable using two commands:

```
switchxxxxxx(config)# ipv6 nd raguard router-preference minimum medium
switchxxxxxx(config)# ipv6 nd raguard router-preference maximum medium
```

Example 2—The following example defines that only a value of medium is acceptable using a single command:

```
switchxxxxxx(config)# ipv6 nd raguard router-preference minimum medium maximum medium
```
25.38 ipv6 neighbor binding

To globally enable the Neighbor Binding (NB) integrity feature on a VLAN, use the `ipv6 neighbor binding` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 neighbor binding

no ipv6 neighbor binding

Parameters

N/A

Default Configuration

NB integrity on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

NB integrity establishes binding for neighbors connected to the perimetrical ports (see the `device-role (Neighbor Binding)` command) belonging to the VLANs on which the feature is enabled.

Examples

Example 1—The following example enables NB integrity on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)#ipv6 neighbor binding
switchxxxxxx(config-if)#exit
```

Example 2—The following example enables NB integrity on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)#ipv6 neighbor binding
```
25.39 ipv6 neighbor binding address-config

To specify allowed configuration methods of global IPv6 addresses, use the `ipv6 neighbor binding address-config` command in Global Configuration mode. To return to the default setting, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding address-config [stateless | any] [dhcp]
```

```
o ipv6 neighbor binding address-config
```

Parameters

- `stateless`—Only auto configuration is allowed for global IPv6 bound from NDP messages.
- `any`—All configuration methods for global IPv6 bound from NDP messages (stateless and manual) are allowed. If no keyword is defined the `any` keyword is applied.
- `dhcp`—Binding from DHCPv6 is allowed.

Default Configuration

Any is the default parameter.

Command Mode

Global Configuration mode

User Guidelines

This command defines allowed IPv6 address configuration methods for global IPv6 addresses.

The `stateless` and `any` keywords specify the following:

- Global IPv6 addresses are bound from NDP messages. If none of these keywords are configured, only link-local addresses are bound from NDP messages.
- How global IPv6 addresses, bound from NDP messages, are checked against the Neighbor Prefix table, if prefix validation is enabled:
- **stateless**—IPv6 addresses are bound from NDP messages, and only global addresses belonging to learned prefixes with set A-flag or prefixes manually configured with the `autoconfig` keyword are allowed.

- **any**—IPv6 addresses are bound from NDP messages and only global addresses belonging to prefixes in NPT are allowed.

Use the `dhcp` keyword, to allow binding from DHCPv6 message. IPv6 addresses bound from DHCPv6 messages are never verified against the Neighbor Prefix table. IPv6 addresses bound from DHCPv6 messages override IPv6 addresses bound from NDP messages.

Note. If the `dhcp` keyword is not configured, the switch will bind IPv6 addresses assigned by DHCPv6 from NDP messages, because a host must execute the DAD process for these addresses.

If no keyword is defined the `ipv6 neighbor binding address-config any` command is applied.

Examples

Example 1. The following example specifies that any global IPv6 address configuration method can be applied and there will be no binding from DHCPv6 messages:

```
switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config any
```

Example 2. The following example specifies that any global IPv6 address binding from NDP and global IPv6 address binding from DHCPv6 messages can be applied:

```
switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config any dhcp
```

Example 3. The following example specifies that only stateless global IPv6 address binding from NDP can be applied

```
switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
```
Example 4. The following example specifies that only the stateless IPv6 address configuration and assignment by DHCPv6 methods can be applied and binding only from NDP messages is supported:

```
switchxxxxxx(config)# ipv6 neighbor binding address-config stateless
```

Example 5. The following example specifies that global IPv6 addresses can be assigned only by DHCPv6:

```
switchxxxxxx(config)# ipv6 neighbor binding address-config dhcp
```

25.40 ipv6 neighbor binding address-prefix

To define a static prefix for global IPv6 addresses bound from NDP messages, use the `ipv6 neighbor binding address-prefix` command in Global Configuration mode. To delete the prefix, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding address-prefix vlan vlan-id ipv6-prefix/prefix-length [autoconfig]
no ipv6 neighbor binding address-prefix [vlan vlan-id] [ipv6-prefix/prefix-length]
```

Parameters

- `ipv6-prefix/prefix-length`—IPv6 prefix.
- `vlan vlan-id`—ID of the specified VLAN.
- `autoconfig`—The prefix can be used for stateless configuration.

Default Configuration

No static prefix
Command Mode

Global Configuration mode

User Guidelines

Use the `ipv6 neighbor binding address-prefix` command to add a static prefix to the Neighbor Prefix table.

Use the `no ipv6 neighbor binding address-prefix vlan vlan-id ipv6-prefix/prefix-length` command to remove one static entry from the Neighbor Prefix table.

Use the `no ipv6 neighbor binding address-prefix vlan vlan-id` command to remove all static entries from the Neighbor Prefix table defined on the given VLAN.

Use the `no ipv6 neighbor binding address-prefix` command to remove all static entries from the Neighbor Prefix table.

Examples

Example 1. The following example adds two static entries. The second one can be used for stateless configuration.

```bash
switchxxx(config)# ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:101::/64
switchxxx(config)# ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:100::/64 autoconfig
```

Example 2. The following example deletes a single static entry:

```bash
switchxxx(config)# no ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:101::/64
```

Example 3. The following example deletes all static entries defined on the specified VLAN:

```bash
switchxxx(config)# no ipv6 neighbor binding address-prefix vlan 100
```
Example 4. The following example deletes all static entries:

```
switchxxxxxxx(config)# no ipv6 neighbor binding address-prefix
```

25.41 ipv6 neighbor binding address-prefix-validation

To globally enable validation of a bound IPv6 address against the Neighbor Prefix table, use the `ipv6 neighbor binding address-prefix-validation` command in Global Configuration mode. To disable this feature, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding address-prefix-validation
no ipv6 neighbor binding address-prefix-validation
```

Parameters

N/A

Default Configuration

The feature is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables bound address prefix validation. If the Neighbor Binding feature is enabled, the switch checks if a bound address belongs to one of the prefixes of the Neighbor Prefix table or to a manually-configured prefix list by the `ipv6 neighbor binding address-prefix` command in the Neighbor Binding configuration mode. If an address does not belong, it is not bound.

Example

The following example shows how to enable bound address validation against the Neighbor Prefix table:

```
switchxxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
```
25.42 ipv6 neighbor binding attach-policy (port mode)

To attach a Neighbor Binding policy to a specific port, use the `ipv6 neighbor binding attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding attach-policy policy-name [vlan vlan-list]
no ipv6 neighbor binding attach-policy [policy-name]
```

Parameters

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).
- `vlan vlan-list`—Specifies that the Neighbor Binding policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which Neighbor Binding policy is enabled.

Default Configuration

The Neighbor Binding default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach a Neighbor Binding policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.

The global rules are added to the set if they have not been added.

Use the `no ipv6 neighbor binding attach-policy` command to detach all user-defined policies attached to the port.

Use the `no ipv6 neighbor binding attach-policy policy-name` command to detach the specific policy from the port.

Examples

Example 1—In the following example, the Neighbor Binding policy `policy1` is attached to the `gi 11` port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example, the Neighbor Binding policy `policy1` is attached to the `gi 11` port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the Neighbor Binding policy `policy1` is attached to the `gi 11` port and applied to VLANs 1-10, and the Neighbor Binding policy `policy2` is attached to the `gi11` port and applied to VLANs 12-20:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```
Example 4—In the following example, Neighbor Binding Integrity detaches policy policy1 detached to the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.43 ipv6 neighbor binding attach-policy (VLAN mode)

To attach a Neighbor Binding policy to a specific VLAN, use the `ipv6 neighbor binding attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding attach-policy policy-name
no ipv6 neighbor binding attach-policy
```

Parameters

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).

Default Configuration

The Neighbor Binding default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a Neighbor Binding policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to return to detach the current policy and reattach the default policy. The `no` form of the command has no effect if the default policy was attached.
Example

In the following example, the Neighbor Binding policy policy1 is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit
```

25.44 ipv6 neighbor binding lifetime

To globally change the default of the Neighbor Binding table entry lifetime, use the `ipv6 neighbor binding lifetime` command in Global Configuration mode. To return to the default setting, use the `no` form of this command.

Syntax

- `ipv6 neighbor binding lifetime value`
- `no ipv6 neighbor binding lifetime`

Parameters

- `value`—The lifetime in minutes. The range is from 1 through 60 minutes.

Default Configuration

- 5 minutes

Command Mode

- Global Configuration mode

User Guidelines

Use the `ipv6 neighbor binding lifetime` command to change the default lifetime.

Example

The following example changes the lifetime for binding entries to 10 minutes:

```
switchxxxxxx(config)# ipv6 neighbor binding lifetime 10
```
25.45 ipv6 neighbor binding logging

To globally enable the logging of Binding table main events, use the `ipv6 neighbor binding logging` command in Global Configuration mode. To disable this feature, use the `no` form of this command.

Syntax

`ipv6 neighbor binding logging`

`no ipv6 neighbor binding logging`

Parameters

N/A

Default Configuration

Binding table events are not logged.

Command Mode

Global Configuration mode

User Guidelines

This command enables the logging of the following Binding table events:

- An entry is inserted into the Binding table.
- A Binding table entry was updated.
- A Binding table entry was deleted from the Binding table.
- A Binding table entry was not inserted into the Binding table, possibly because the maximum number of entries has been reached or because of Binding table overflow.

Example

The following example shows how to enable Binding table event logging:

```
switchxxxxxx(config)# ipv6 neighbor binding logging
```
25.46 ipv6 neighbor binding max-entries

To globally specify the maximum number of dynamic entries that are allowed to be inserted in the Binding table cache, use the `ipv6 neighbor binding max-entries` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding max-entries {
  [vlan-limit number] [interface-limit number] [mac-limit number]
```

```
no ipv6 neighbor binding max-entries [vlan-limit] [interface-limit] [mac-limit]
```

Parameters

- `vlan-limit number`—Specifies a neighbor binding limit per number of VLANs.
- `interface-limit number`—Specifies a neighbor binding limit per port.
- `mac-limit number`—Specifies a neighbor binding limit per MAC address.

Default Configuration

This command is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command is used to control the contents of the Binding table. This command specifies the maximum number of dynamic entries that can be inserted in the Binding table cache. After this limit is reached, new entries are refused, and a Neighbor Discovery Protocol (NDP) traffic source with a new entry is dropped.

If the maximum number of entries specified is lower than the current number of entries in the database, no entries are cleared, and the new threshold is reached after normal cache attrition.

Example

The following example shows how to specify globally the maximum number of entries that can be inserted into the cache per MAC:
To define a Neighbor Binding policy and place the switch in IPv6 Neighbor Binding Policy Configuration mode, use the `ipv6 neighbor binding policy` command in Global Configuration mode. To remove the Neighbor Binding policy, use the `no` form of this command.

Syntax

```
ipv6 neighbor binding policy policy-name
no ipv6 neighbor binding policy policy-name
```

Parameters

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).

Default Configuration

No Neighbor Binding policy is configured

Command Mode

Global Configuration mode

User Guidelines

This command defines a Neighbor Binding policy name, and places the router in Neighbor Binding Policy Configuration mode so that additional commands can be added to the policy.

The switch supports two predefined Neighbor Binding policies, named: "vlan_default" and "port_default":

```
ipv6 neighbor binding policy vlan_default
exit
```

```
ipv6 neighbor binding policy port_default
exit
```

The policies cannot be removed, but they can be changed. The `no ipv6 neighbor binding policy` does not remove these policies, it only removes the policy configuration defined by the user.
The policies cannot be attached by the `ipv6 neighbor binding attach-policy (port mode)` or `ipv6 neighbor binding attach-policy (VLAN mode)` command. The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 neighbor binding policy` command multiple times.

If an attached policy is removed, it is detached automatically before removing.

The following commands can be configured into IPv6 Neighbor Binding Policy Configuration mode:

- `device-role (Neighbor Binding)`
- `logging binding`
- `max-entries`
- `address-config`
- `address-prefix-validation`

Examples

Example 1—The following example defines a Neighbor Binding policy named `policy1`, places the router in Neighbor Binding Policy Configuration mode, enables logging, and defines the port as internal:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# device-role internal
switchxxxxxx(config-nbr-binding)# logging binding
switchxxxxxx(config-nbr-binding)# exit
```

Example 2—The following example defines a Neighbor Binding policy named `policy1` using multiple steps:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# device-role internal
switchxxxxxx(config-nbr-binding)# exit
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
```
logging binding

switchxxxxxxxx(config-nbr-binding)# exit

Example 3—The following example remove an attached Neighbor Binding policy:

switchxxxxxxxx(config)# no ipv6 neighbor binding policy policy1
Policy policy1 is applied on the following ports:
 gi11, gi12
The policy1 will be detached and removed, are you sure [Y/N]Y

25.48 ipv6 neighbor binding static

To add a static entry to the Neighbor Binding table, use the `ipv6 neighbor binding static` command in Global Configuration mode. To remove the static entry, use the `no` form of this command.

Syntax

`ipv6 neighbor binding static ipv6 ipv6-address vlan vlan-id interface interface-id mac mac-address`

`no ipv6 neighbor binding static ipv6 ipv6-address vlan vlan-id`

Parameters

- `ipv6 ipv6-address`—IPv6 address of the static entry.
- `vlan vlan-id`—ID of the specified VLAN.
- `interface interface-id`—Adds static entries to the specified port.
- `mac mac-address`—MAC address of the static entry.

Default Configuration

No static entry.

Command Mode

Global Configuration mode
User Guidelines

This command is used to add static entries to the Neighbor Binding table. Static entries can be configured regardless the port role.

If the entry (dynamic or static) already exists, the new static entry overrides the existing one.

If the Neighbor Binding table overflows, the static entry is not added.

Example

The following example adds a static entry:

```
switchxxxxxx(config)# ipv6 neighbor binding static ipv6 2001:600::1 vlan 100
interface gil1 mac 00BB.CC01.F500
```

25.49 ipv6 source guard

To enable the IPv6 Source Guard feature on a VLAN, use the `ipv6 source guard` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 source guard
no ipv6 source guard
```

Parameters

N/A

Default Configuration

Source Guard on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

IPv6 Source Guard blocks an IPv6 data message arriving on a port if its source IPv6 address is bound to another port, or it is unknown.
Examples

Example 1—The following example enables IPv6 Source Guard on VLAN 100:

```plaintext
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 source guard
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables IPv6 Source Guard on VLANs 100-107:

```plaintext
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 source guard
switchxxxxxx(config-if-range)# exit
```

25.50 ipv6 source guard attach-policy (port mode)

To attach an IPv6 Source Guard policy to a specific port, use the `ipv6 source guard attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 source guard attach-policy policy-name`

`no ipv6 source guard attach-policy`

Parameters

- `policy-name`—The IPv6 Source Guard policy name (up to 32 characters).

Default Configuration

The IPv6 Source Guard default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode
User Guidelines

Use this command to attach an IPv6 Source Guard policy to a port.

Each succeeding `ipv6 source guard attach-policy` command overrides the previous policy attachment on the same port.

IPv6 Source guard policies can be used to block forwarding IPv6 data messages with unknown source IPv6 addresses or with source IPv6 addresses bound to a port differing from the input one.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 source guard attach-policy` command to detach the user defined policy attached to the port and to reattach the default policy with name “port_default”.

Examples

Example 1—In the following example, the IPv6 Source Guard policy policy1 is attached to the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# ipv6 source guard attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example IPv6 Source Guard detaches policy1 from the gi11 port:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# no ipv6 source guard attach-policy
switchxxxxxx(config-if)# exit
```
25.51 ipv6 source guard policy

To define an IPv6 Source Guard policy name and place the user in IPv6 Source Guard Configuration, use the `ipv6 source guard policy` command in Global Configuration mode. To remove the IPv6 Source Guard policy name, use the `no` form of this command.

Syntax

`ipv6 source guard policy policy-name`

`no ipv6 source guard policy policy-name`

Parameters

- `policy-name`—The IPv6 Source Guard policy name (up to 32 characters).

Default Configuration

No IPv6 Source Guard policies are configured.

Command Mode

Global Configuration mode

User Guidelines

This command defines the IPv6 Source Guard policy name, and places the router in IPv6 Source Guard Policy Configuration mode.

The following commands can be configured in IPv6 Source Guard Policy Configuration mode:

- `trusted-port (IPv6 Source Guard)`

Each policy of the same type (for example, IPv6 Source Guard policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports one predefined IPv6 Source Guard policy named: "port_default":

```
ipv6 source guard policy port_default
exit
```

The policy cannot be removed, but it can be changed. The `no ipv6 source guard policy` does not remove the policy, it only removes any policy configurations defined by the user.
The policy cannot be attached by the `ipv6 source guard attach-policy (port mode)` command. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

If an attached policy is removed, it is detached automatically before removing.

Examples

Example 1—The following example defines the IPv6 Source Guard policy named `policy1`, places the router in IPv6 Source Guard Policy Configuration mode, and configures the port as trusted:

```plaintext
switchxxxxxx(config)# ipv6 source guard policy policy1
switchxxxxxx(config-ipv6-srcguard)# trusted-port
switchxxxxxx(config)# exit
```

Example 2—The following example removes the attached IPv6 Source Guard policy:

```plaintext
switchxxxxxx(config)# no ipv6 source guard policy policy1
Policy policy1 is applied on the following ports:

    gi1, gi2

The policy1 will be detached and removed, are you sure [Y/N]Y
```

25.52 logging binding

To enable the logging of Binding table main events within an IPv6 Neighbor Binding policy, use the `logging binding` command in Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`logging binding [enable | disable]`

`no logging binding`
Parameters

- **enable**—Enables logging of Binding table main events. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables logging of Binding table main events.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables logging of Binding table main events within the IPv6 Neighbor Binding policy named policy1:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# logging binding enable
switchxxxxxx(config-nbr-binding)# exit
```

25.53 logging packet drop

To enable the logging of dropped packets within an IPv6 First Hop Security policy, use the `logging packet drop` command in IPv6 First Hop Security Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
logging packet drop [enable | disable]
no logging packet drop
```
Parameters

- **enable**—Enables logging of dropped packets. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables logging of dropped packets.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

IPv6 First Hop Security Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables logging of dropped messages with the IPv6 First Hop Security Policy named policy1:

```plaintext
switchxxxxxx(config)# ipv6 first hop security policy policy1
switchxxxxxx(config-ip6-fhs)# logging packet drop
switchxxxxxx(config-ip6-fhs)# exit
```

25.54 managed-config-flag

To enable verification of the advertised Managed Address Configuration flag within an IPv6 RA Guard policy, use the `managed-config-flag` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

managed-config-flag {on | off | disable}
no managed-config-flag

Parameters

- on—The value of the flag must be 1.
- off—The value of the flag must be 0.
- disable—The value of the flag is not validated.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

Use this command to change the global configuration specified by the ipv6 nd raguard managed-config-flag command on the port on which this policy applies.

Use the disable keyword to disable the flag validation in both global or the VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and enables M flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ipv6-nd-raguard)# managed-config-flag off
switchxxxxxx(config-ipv6-nd-raguard)# exit
```

25.55 match ra address

To enable verification of the router’s IPv6 address in received RA messages within an IPv6 RA Guard policy, use the match ra address command in RA Guard Policy Configuration mode. To return to the default, use the no form of this command.
Syntax

match ra address {prefix-list ipv6-prefix-list-name} | disable
no match ra address

Parameters

- prefix-list ipv6-prefix-list-name—The IPv6 prefix list to be matched.
- disable—Disables verification of the router’s IPv6 address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: router’s addresses are not verified.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

This command enables verification of the router’s IPv6 address in received RA messages by a configured prefix list. If the router’s source IPv6 address does not match the prefix list or if the prefix list is not configured, the RA message is dropped.

Use the disable keyword to disable verification of the router’s IPv6 address regardless of the VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, matches the router addresses to the prefix list named list1, and defines the prefix list named list1 authorizing the router with link-local address FE80::A8BB:CCFF:FE01:F700 only:

```bash
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-nd-raguard)# match ra address prefix-list list1
switchxxxxxx(config-nd-raguard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 permit
FE80::A8BB:CCFF:FE01:F700/128
```
25.56 match ra prefixes

To enable verification of the advertised prefixes in received RA messages within an IPv6 RA Guard policy, use the **match ra prefixes** command in RA Guard Policy Configuration mode. To return to the default, use the **no** form of this command.

Syntax

```
match ra prefixes {prefix-list ipv6-prefix-list-name} | disable
no match ra prefixes
```

Parameters

- **prefix-list ipv6-prefix-list-name**—The IPv6 prefix list to be matched.
- **disable**—Disables verification of the advertised prefixes in received RA messages.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: advertised prefixes are not verified.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

This command enables verification of the advertised prefixes in received RA messages by a configured prefix list. If an advertised prefix does not match the prefix list, or if the prefix list is not configured, the RA message is dropped.

Use the **disable** keyword to disable verification of the advertised prefixes in received RA messages in both global or the VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard configuration mode, matches the prefixes to the prefix list named list1, and the 2001:10::/64 prefixes and denies 2001:100::/64 prefixes:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
```
IPv6 First Hop Security

switchxxxxxx(config-ra-guard)# match ra prefixes prefix-list list1
switchxxxxxx(config-ra-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 deny 2001:0DB8:101::/64
switchxxxxxx(config)# ipv6 prefix-list list1 permit 2001:0DB8:100::/64

25.57 match reply

To enable verification of the assigned IPv6 addressed in messages sent by DHCPv6 servers/relays to a configured prefix list within a DHCPv6 Guard policy, use the `match reply` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
macth reply {prefix-list ipv6-prefix-list-name} | disable
```

no match reply

Parameters

- `ipv6-prefix-list-name`—The IPv6 prefix list to be matched.
- `disable`—Disables verification of the advertised prefixes in replies.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: advertised prefixes are not verified.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

IPv6 DHCP Guard verifies the assigned IPv6 addresses to the configure prefix list passed in the IA_NA and IA_TA options of the following DHCPv6 messages sent by DHCPv6 servers/relays:

- ADVERTISE
- REPLY
• **RELAY-REPL**

Note 1. Assigned addresses are not verified if a value of the Status Code option (if it presents) differs from the following ones:

- Success
- UseMulticast

Note 2. In RELAY-REPL messages DHCPv6 Guard validates the message encapsulated in the DHCP-relay-message option.

Use the `disable` keyword to disable verification of the assigned IPv6 addresses in replies.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard policy configuration mode, matches the assigned addresses to the prefix list named list1: all assigned IPv6 addresses must belong to 2001:0DB8:100:200/64 or to 2001:0DB8:100::/48. The "ge 128" parameter must be configured for each prefix of the prefix-list with prefix length less than 128.

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match reply prefix-list list1
switchxxxxxx(config-dhcp-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 deny 2001:0DB8:100:200/64 ge 128
switchxxxxxx(config)# ipv6 prefix-list list1 permit 2001:0DB8:100::/48 ge 128
```

25.58 match server address

To enable verification of the source IPv6 address in messages sent by DHCPv6 servers or DHCPv6 Relays to a configured prefix list within a DHCPv6 Guard policy, use the `match server address` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
match server address [prefix-list ipv6-prefix-list-name] | disable
```
no match server address

Parameters

- prefix-list ipv6-prefix-list-name—The IPv6 prefix list to be matched.
- disable—Disables verification of the DHCP server’s and relay’s IPv6 address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: server’s addresses are not verified.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

This command enables verification of the source IPv6 address in messages sent by DHCPv6 servers and DHCPv6 Relays to a configured prefix list. If the source IPv6 address does not match the configured prefix list, or if the prefix list is not configured, the DHCPv6 reply is dropped.

IPv6 DHCP Guard verifies the source IPv6 address in the following DHCPv6 messages sent by DHCPv6 servers/relays:

- ADVERTISE
- REPLY
- RECONFIGURE
- RELAY-REPL
- LEASEQUERY-REPLY

Use the disable keyword to disable verification of the DHCP server’s and relay’s IPv6 address.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard Policy Configuration mode, matches the server or relay
addresses to the prefix list named list1, and defines the prefix list named list1
authorizing the server with link-local address FE80::A8BB:CCFF:FE01:F700 only:

switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match server address prefix-list list1
switchxxxxxx(config-dhcp-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 permit
FE80::A8BB:CCFF:FE01:F700/128

25.59 max-entries

To define the maximum number of dynamic entries that can be inserted in the
Binding table cache within an IPv6 Neighbor Binding policy, use the max-entries
command in Neighbor Binding Policy Configuration mode. To return to the default,
use the no form of this command.

Syntax

max-entries {{vlan-limit {number|disable}} [interface-limit {number|disable}]
[mac-limit {number|disable}]}
no max-entries [vlan-limit] [interface-limit] [mac-limit]

Parameters

- **vlan-limit number**—Specifies a neighbor binding limit per VLANs. The
 parameter is ignored in a policy attached to port.
- **vlan-limit disable**—Disables a neighbor binding limit per VLANs.
- **interface-limit number**—Specifies a neighbor binding limit per port.
- **interface-limit disable**—Disables a neighbor binding limit per port.
- **mac-limit number**—Specifies a neighbor binding limit per MAC address.
- **mac-limit disable**—Disables a neighbor binding limit per MAC address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached
to the VLAN.

Policy attached to VLAN: global configuration.
Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Examples

Example 1—The following example defines an Neighbor Binding policy named policy1, places the router in Neighbor Binding Policy Configuration mode, and limits the number of IPv6 addresses allowed on the port to 25:

```plaintext
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# max-entries interface-limit 25
switchxxxxxx(config)# exit
```

Example 2—The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and disables limit per MAC:

```plaintext
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# max-entries mac-limit disable
switchxxxxxx(config-ra-guard)# exit
```

25.60 other-config-flag

To enable the verification of the advertised the Other Configuration flag in RA messages within an IPv6 RA Guard policy, use the `other-config-flag` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
other-config-flag {on | off | disable}
```

```
no other-config-flag
```
Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.
- **disable**—The value of the flag is not validated.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

Use this command to change the global configuration specified by the `ipv6 nd raguard other-config-flag` command on the port on which this policy applies.

Use the `disable` keyword to disable flag validation in both global or VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and enables O flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# other-config-flag off
switchxxxxxx(config-ra-guard)# exit
```

25.61 preference

To enable verification of the preference in messages sent by DHCPv6 servers within a DHCPv6 Guard policy, use the `preference` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.
Syntax

preference {[maximum {value | disable}] [minimum {value | disable}]]

no preference [maximum] [minimum]

Parameters

- **maximum value**—Advertised preference value is lower or equal than that set by the value argument. Range 0-255. A value of the high boundary must be equal to or greater than a value of the low boundary.
- **maximum disable**—Disables verification of the high boundary of the advertised preference value.
- **minimum value**—Advertised preference value is greater than or equal to the value argument. Range 0-255.
- **minimum disable**—Disables verification of the lower boundary of the advertised preference value.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

Use this command to change the global configuration specified by the ipv6 dhcp guard preference command on the port to which this policy applies.

Use the disable keyword to disable verification in both global or VLAN configuration.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard Policy Configuration mode, and defines a minimum preference value of 10:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
```
To enable verification of advertised Default Router Preference value in RA messages within an IPv6 RA Guard policy, use the `router-preference` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
router-preference [maximum {value | disable}] [minimum {value | disable}]
no router-preference [maximum] [minimum]
```

Parameters

- `maximum value`—Specifies the maximum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191). A value of the high boundary must be equal to or greater than a value of the low boundary.

- `maximum disable`—Disables verification of the high boundary of Advertised Default Router Preference.

- `minimum value`—Specifies the minimum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191).

- `minimum disable`—Disables verification of the low boundary of Advertised Default Router Preference.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode
User Guidelines

Use this command to change the global configuration specified by the `ipv6 nd raguard router-preference` command on the port on which this policy applies.

Use the `disable` keyword to disable of verification in both global or VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and defines a minimum Default Router Preference value of medium:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# router-preference minimum medium
switchxxxxxx(config-ra-guard)# exit
```

25.63 sec-level minimum

To specify the minimum security level value within an IPv6 ND Inspection policy, use the `sec-level minimum` command in ND Inspection policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
sec-level minimum value | disable
no sec-level minimum
```

Parameters

- `value`—Sets the minimum security level, which is a value from 0 through 7.
- `disable`—Disables verification of security level parameter

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.
Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

This command has no effect if dropping of unsecured messages is disabled.

Example

The following example defines an NDP Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and specifies 2 as the minimum CGA security level:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# sec-level minimum 2
switchxxxxxx(config-nd-inspection)# exit
```

25.64 show ipv6 dhcp guard

To display DHCPv6 Guard global configuration, use the `show ipv6 dhcp guard` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 dhcp guard`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

The `show ipv6 dhcp guard` command displays DHCPv6 Guard global configuration.
Example
The following example gives an example of the output of the `show ipv6 dhcp guard` command:

```
switchxxxxxx# show ipv6 dhcp guard
IPv6 DHCP Guard is enabled on VLANs:1-4,6,7,100-120
Default Preference
  minimum: 10
  maximum: 100
```

25.65 show ipv6 dhcp guard policy

To display DHCPv6 guard policies on all ports configured with the DHCPv6 guard feature, use the `show ipv6 dhcp guard policy` command in privileged EXEC mode.

Syntax
```
show ipv6 dhcp guard policy [policy-name | active]
```

Parameters
- `policy-name`—Displays the DHCPv6 guard policy with the given name.
- `active`—Displays the attached DHCPv6 guard policies.

Command Mode
Privileged EXEC mode

User Guidelines
This command displays the options configured for the policy on all ports configured with the DHCPv6 guard feature.

Examples
Example 1—The following example displays the Policy Configuration for a policy named `policy1`:

```
switchxxxxxx# show ipv6 dhcp guard policy policy1
```
DHCPv6 Guard Policy: policy1
 device-role: server
 preference
 minimum: 1
 maximum: 200
 server address prefix list: list1
 reply prefix list name: list10
Attached to VLANs: 1-100,111-4094
Attached to ports:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi13-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 dhcp guard policy active
```

Attached to VLAN:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy2</td>
<td>200-300</td>
</tr>
<tr>
<td>vlan-default</td>
<td>1-199,301-4094</td>
</tr>
</tbody>
</table>

Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi11-2</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi11-2</td>
<td>101-4094</td>
</tr>
<tr>
<td></td>
<td>gi13-4</td>
<td>1-1094</td>
</tr>
</tbody>
</table>

Example 3—The following example displays the user defined policies:
To display all IPv6 First Hop Security global configuration, use the `show ipv6 first hop security` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 first hop security`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command displays all IPv6 First Hop Security global configuration.

Example

The following example gives an example of the `show ipv6 first hop security` command:

```
switchxxxxxx# show ipv6 first hop security
IPv6 First Hop Security is enabled on VLANs:1-4,6,7,100-120
Logging Packet Drop: enabled
```
25.67 show ipv6 first hop security active policies

To display information about the policies applied to the port and to the VLAN, use the `show ipv6 first hop security active policies` command in privileged EXEC mode.

Syntax

```
show ipv6 first hop security active policies interface interface-id vlan vlan-id
```

Parameters

- `interface interface-id`—Port Identifier (Ethernet port or port channel).
- `vlan vlan-id`—VLAN Identifier.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays policies applied to frames arriving on given port and belonging to the given VLAN. The policies are calculated automatically by using the policies attached to the port, VLAN, and the global configuration.

Example

The following example displays the active attached policies on `gi1 1` and VLAN 100:

```
switchxxxxxx# show ipv6 first hop security active policies interface gi1 1 vlan 100
IPv6 First Hop Security is enabled on VLANs:1-4,6,7,100-120
IPv6 DHCP Guard is enabled on VLANs:1-4
IPv6 ND Inspection is enabled on VLANs:1-4,6,7,100-120
IPv6 Neighbor Binding Integrity is enabled on VLANs:1-4,6,7,100-120
IPv6 RA Guard is enabled on VLANs:1-4,6,7,100-120
IPv6 Source Guard is enabled on VLANs:1-3,7,100-112
```
IPv6 First Hop Security Policy:
 logging packet drop: enabled (from global configuration)

DHCPv6 Guard Policy:
 device-role: server (from policy1 attached to the port)
 reply prefix list name: list10 (from policy2 attached to the VLAN)
 server address prefix list name: list22 (from policy2 attached to the VLAN)
 preference
 minimum: 1 (from policy2 attached to the VLAN)
 maximum: 200 (from policy2 attached to the VLAN)

ND Inspection Policy:
 device-role: host (default)
 drop-unsecure: enabled (from policy2 attached to the VLAN)
 sec-level minimum: 3 (from policy1 attached to the port)
 validate source-mac: enabled (from global configuration)

Neighbor Binding Policy: policy1
 device-role: perimeter (default)
 logging binding: enabled (from policy1 attached to the port)
 address-prefix-validation: enabled (from policy2 attached to the VLAN)
 address-config: any (default)
 maximum entries
 VLAN: unlimited (from global configuration)
 Port: 1 (from policy1 attached to the port)
 MAC: 2 (from policy2 attached to the VLAN)

RA Guard Policy:
 device-role: router (from policy1 attached to the port)
 hop-limit:
 minimum: 10 (from policy2 attached to the VLAN)
 maximum: 20 (from global configuration)
 manage-config-flag: on (from policy2 attached to the VLAN)
 ra address verification:: disabled (default)
 ra prefixes prefix list name: list1 (from policy2 attached to the VLAN)
other-flag: disabled (default)
router-preference:
 minimum: medium (from policy2 attached to the VLAN)
 maximum: medium (from policy2 attached to the VLAN)
IPv6 Source Guard Policy:
 trusted port: enabled (from policy1 attached to the port)

25.68 show ipv6 first hop security attached policies

To display information about the policies attached to the port and to the VLAN, use the show ipv6 first hop security attached policies command in privileged EXEC mode.

Syntax

show ipv6 first hop security attached policies interface interface-id vlan vlan-id

Parameters

- interface interface-id—Port Identifier (Ethernet port or port channel).
- vlan vlan-id—VLAN Identifier.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays policies of all IPv6 First Hop Security attached to a VLAN specified by the vlan-id argument and displays all policies attached to a port and to VLAN specified by the interface-id and vlan-id arguments.

Examples

The following example displays the attached policy on gi11 and VLAN 100:

switchxxxxxxx# show ipv6 first hop security attached policies interface gi11 vlan 100
Attached to VLAN 100
 RA Guard Policy: policy1
 Neighbor Bind Policy: policy2
Attached to port gi11 and VLAN 100
 IPv6 First Hop Security Policy: FHSpolicy
 ND Inspection Policy: policy1
 RA Guard Policy: policy3
 Neighbor Bind Policy: policy3
 IPv6 Source Guard Policy: policy4

25.69 show ipv6 first hop security counters

To display information about the packets counted by the port counter, use the `show ipv6 first hop security counters` command in privileged EXEC mode.

Syntax

```plaintext
show ipv6 first hop security counters interface interface-id
```

Parameters

- `interface interface-id`—Displays counters for specified Ethernet port or port channel.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays packets handled by the switch that are being counted in port counters. The switch counts packets captured per port and records whether the packet was received, bridged, or dropped. If a packet is dropped, the reason for the drop and the feature that caused the drop are both also provided.

Examples

The following examples displays information about packets counted on port gi11:

```plaintext
switchxxxxxx# show ipv6 first hop security counters interface gi11
```
Received messages on gi11:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol message</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDP</td>
<td>RA[63] RS[0] NA[13] NS[0] REDIR[0]</td>
</tr>
</tbody>
</table>

Dropped messages on gi11:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol message</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDP</td>
<td>RA[2] RS[0] NA[0] NS[0] REDIR[0]</td>
</tr>
</tbody>
</table>

Dropped reasons on gi11:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Number</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Guard</td>
<td>2</td>
<td>Server message on client port</td>
</tr>
<tr>
<td>DHCP Guard</td>
<td>1</td>
<td>Unauthorized assigned address</td>
</tr>
<tr>
<td>DHCP Guard</td>
<td>1</td>
<td>Unauthorized server source address</td>
</tr>
<tr>
<td>DHCP Guard</td>
<td>0</td>
<td>Unauthorized server preference</td>
</tr>
<tr>
<td>RA guard</td>
<td>1</td>
<td>Router message on host port</td>
</tr>
<tr>
<td>RA guard</td>
<td>1</td>
<td>Unauthorized source address</td>
</tr>
<tr>
<td>RA guard</td>
<td>0</td>
<td>Unauthorized advertise prefix</td>
</tr>
<tr>
<td>RA guard</td>
<td>0</td>
<td>Unauthorized router preference</td>
</tr>
<tr>
<td>RA guard</td>
<td>0</td>
<td>Unauthorized other config flag</td>
</tr>
<tr>
<td>RA guard</td>
<td>0</td>
<td>Unauthorized managed config flag</td>
</tr>
<tr>
<td>RA guard</td>
<td>0</td>
<td>Unauthorized cur hop limit</td>
</tr>
<tr>
<td>ND Inspection</td>
<td>0</td>
<td>Invalid source MAC</td>
</tr>
<tr>
<td>ND Inspection</td>
<td>0</td>
<td>Unsecure message</td>
</tr>
<tr>
<td>ND Inspection</td>
<td>0</td>
<td>Unauthorized sec level</td>
</tr>
<tr>
<td>Source guard</td>
<td>0</td>
<td>NoBinding</td>
</tr>
<tr>
<td>NB Integrity</td>
<td>0</td>
<td>Illegal ICMPv6 message</td>
</tr>
<tr>
<td>NB Integrity</td>
<td>0</td>
<td>Illegal DHCPv6 message</td>
</tr>
</tbody>
</table>
25.70 show ipv6 first hop security error counters

To display global error counters, use the `show ipv6 first hop security error counters` command in privileged EXEC mode.

Syntax

```
show ipv6 first hop security error counters
```

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command displays global error counters.

Examples

Example 1—The following examples displays global error counters:

```
switchxxxxxx# show ipv6 first hop security error counters
Neighbor Binding Table Overflow counter: 0
Neighbor Prefix Table Overflow counter: 0
TCAM Overflow counter: 0
```

25.71 show ipv6 first hop security policy

To display IPv6 First Hop Security policies on all ports configured with the IPv6 First Hop Security feature, use the `show ipv6 first hop security policy` command in privileged EXEC mode.

Syntax

```
show ipv6 first hop security policy [policy-name | active]
```
Parameters

- `policy-name`—Displays the IPv6 First Hop policy with the given name.
- `active`—Displays the attached IPv6 First Hop Security policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the options configured for the policy on all ports configured with the IPv6 First Hop feature.

Examples

Example 1—The following example displays the Policy Configuration for a policy named `policy1`:

```
switchxxxxxx# show ipv6 first hop security policy policy1
IPv6D First Hop Security Policy: policy1
logging packet drop: enabled
Attached to VLANs: 1-100,111-4094
Attached to ports:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi13-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 first hop security policy active
Attached to VLAN:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy2</td>
<td>200-300</td>
</tr>
<tr>
<td>vlan-default</td>
<td>1-199,301-4094</td>
</tr>
</tbody>
</table>
```
Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi11-2</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi11-2</td>
<td>101-4094</td>
</tr>
<tr>
<td></td>
<td>gi13-4</td>
<td>1-1094</td>
</tr>
</tbody>
</table>

Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 first hop security policy
policy1
policy2
```

25.72 show ipv6 nd inspection

To display ND Inspection global configuration, use the `show ipv6 nd inspection` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 nd inspection
```

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command displays ND Inspection global configuration.
Example

The following example gives an example of the `show ipv6 nd snooping` command output:

```
switchxxxxxx# show ipv6 nd snooping
IPv6 ND Inspection is enabled on VLANs:1-4,6,7,100-120
unsecure drop: enabled
sec-level minimum value: 2
source mac validation: disabled
```

25.73 show ipv6 nd inspection policy

To display an IPv6 ND Inspection policy on all ports configured with the ND Inspection feature, use the `show ipv6 nd inspection policy` command in privileged EXEC mode.

Syntax

`show ipv6 nd inspection policy [policy-name | active]`

Parameters

- `policy-name`—Displays the ND Inspection policy with the given name.
- `active`—Displays the attached ND Inspection policies.

Command Mode

Privileged EXEC mode

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 nd inspection policy policy1
ND Inspection Policy: policy1
   device-role: router
   drop-unsecure: enabled
```
Attached to VLANs: 1-100, 111-4094

Attached to ports:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11-2</td>
<td>1-58, 68-4094</td>
</tr>
<tr>
<td>gi13-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 nd inspection policy active

Attached to VLANs:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-default</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi11-2</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi11-2, gi13-4</td>
<td>101-4094, 1-1094</td>
</tr>
</tbody>
</table>
```

Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 nd inspection policy

policy1
policy2
```

25.74 show ipv6 nd raguard

To display RA Guard global configuration, use the `show ipv6 nd raguard` command in Privilege EXEC configuration mode.
Syntax
show ipv6 nd raguard

Parameters
N/A

Command Mode
Privileged EXEC mode

Example
The following example gives an example of the `show ipv6 nd raguard` command output:

```
switchxxxxxx# show ipv6 nd raguard
IPv6 RA Guard is enabled on VLANs:1-4,6,7,100-120
"Managed address configuration" flag (M-flag): off
"Other configuration" flag (O-flag): disabled

Hop Limit:
  minimum: 10
  maximum: 100

Default Router Preference:
  minimum: 1
  maximum: 1
```

25.75 show ipv6 nd raguard policy

To display a router advertisements (RAs) guard policy on all ports configured with the RA guard feature, use the `show ipv6 nd raguard policy` command in privileged EXEC mode.

Syntax

```
show ipv6 nd raguard policy [policy-name | active]
```

Parameters

- **policy-name**—Displays the RA guard policy with the given name.
- **active**—Displays the attached user defined RA guard policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the options configured for the policy on all ports configured with the RA guard feature.

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```bash
switchxxxxxx# show ipv6 nd raguard policy raguard1
RA Guard Policy: policy1
  device-role: router
  router address prefix list name: list1
  prefixes prefix list name: list2
  Attached to VLANs: 1-100,111-4094
  Attached to ports:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi13-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2—The following example displays the attached policies:

```bash
switchxxxxxx# show ipv6 nd raguard policy active
Attached to VLANs:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>VLANs</th>
</tr>
</thead>
</table>
```
vlan-default 1-4094

Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-default</td>
<td>gi1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>

Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 nd raguard policy
policy1
policy2
```

25.76 show ipv6 neighbor binding

To display Neighbor Binding global configuration, use the `show ipv6 neighbor binding` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding
```

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This displays Neighbor Binding global configuration.

Example

The following example gives an example of the `show ipv6 neighbor binding` command output:

```
switchxxxxxx# show ipv6 neighbor binding
```

```
Policy Name       | Ports  | VLANs |
------------------|--------|-------|
port-default      | gi1-4  | 1-4094|
```
Neighbor Binding Integrity is enabled on VLANs:1-4,6-7,100-120
Binding logging: disabled
Binding lifetime: 56 minutes
Address Configuration method: dhcp
Binding address prefix validation: disabled
Maximum entries
 VLAN: unlimited
 Port: 1
 MAC: 1

25.77 show ipv6 neighbor binding policy

To display Neighbor Binding policies, use the `show ipv6 neighbor binding policy` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding policy [policy-name | active]
```

Parameters

- `policy-name`—Neighbor Binding policy name.
- `active`—Displays the attached Neighbor Binding policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command either displays all policies or a specific one.

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 neighbor binding policy policy1
```
Neighbor Binding Policy: policy1
 address configuration method: dhcp
 binding address prefix validation: disabled
 device-role: perimiter
 binding logging: disabled
 max-entries
 VLAN: unlimited
 Port: 10
 MAC: 2
 Attached to VLANs: 1-100,111-4094
 Attached to ports:
 | Ports | VLANs |
 |-------|-------|
 | gi11-2 | 1-58,68-4094 |
 | gi13-4 | 1-4094 |
 | Po1-4 | 1-4094 |

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 neighbor binding policy active
Attached to VLAN:
<table>
<thead>
<tr>
<th>Policy Name</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy2</td>
<td>200-300</td>
</tr>
<tr>
<td>vlan-default</td>
<td>1-199,301-4094</td>
</tr>
</tbody>
</table>
Attached to ports:
<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi11-4</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi11-4</td>
<td>101-4094</td>
</tr>
</tbody>
</table>
```
Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 neighbor binding policy
policy1
policy2
```

25.78 show ipv6 neighbor binding prefix table

To display contents of the Neighbor Prefix table, use the `show ipv6 neighbor binding prefix table` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding prefix table [vlan vlan-id]
```

Parameters

- `vlan vlan-id`—Displays the prefixes that match the specified VLAN.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the Neighbor Prefix table. The display output can be limited to the specified VLAN. If no VLAN is configured, all prefixes are displayed.

Example

The following example displays the learned prefixes:

```
switchxxxxxx# show ipv6 neighbor binding prefix table
Flags: A - the prefix can be used for autoconfig (stateless configuration)
Neighbor Prefix Table has 4 entries

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Prefix</th>
<th>Type</th>
<th>Flags</th>
<th>Remaining Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2004:1::/64</td>
<td>static</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2006:1::/64</td>
<td>dynamic</td>
<td></td>
<td>1230</td>
</tr>
<tr>
<td>7</td>
<td>2008:1::/64</td>
<td>static</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
25.79 show ipv6 neighbor binding table

To display contents of the Binding table, use the `show ipv6 neighbor binding table` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding table [vlan vlan-id] [interface interface-id] [ipv6 ipv6-address] [mac mac-address]
```

Parameters

- `vlan vlan-id`—Displays the Binding table entries that match the specified VLAN.
- `interface interface-id`—Displays the Binding table entries that match the specified port (Ethernet port or port channel).
- `ipv6 ipv6-address`—Displays the Binding table entries that match the specified IPv6 address.
- `mac mac-address`—Displays the Binding table entries that match the specified MAC address.

Command Mode

Privileged EXEC mode

User Guidelines

This displays the contents of the Binding table. The display output can be specified by the specified VLAN, port, IPv6 address, or MAC address. If no keywords or arguments are entered, all Binding table contents are displayed. Any keyword and argument combinations are allowed.

Example

The following example displays the contents of the Binding table:

```
switchxxxxxx# show ipv6 neighbor binding table

Binding Table has 4 entries
```
Field Descriptions:

- **VLAN**—VLAN the host belongs to.
- **IPv6 address**—IPv6 address of the host.
- **Inter**—port the host is connected on.
- **MAC address**—MAC address of the host.
- **Origin**—Protocol that has added the IPv6 address:
 - **Static**—The static IPv6 address manually defined by the `ipv6 neighbor binding static` command.
 - **NDP**—The IPv6 address learnt from the NDP protocol messages.
 - **DHCP**—The IPv6 address learnt from the DHCPv6 protocol messages.
- **State**—Entry’s state:
 - **TENT**—The new host IPv6 address is under validation. Since its lifetime is less than 1sec its expiration time is not displayed.
 - **VALID**—The host IPv6 address was bound.
- **Expir. Time**—Left time in seconds until the entry will be removed, if it is not confirmed.
- **TCAM Ovrflw**—Entries marked by `*` have not been added to TCAM because TCAM overflow.

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IPv6 address</th>
<th>Inter</th>
<th>MAC address</th>
<th>Origin</th>
<th>State</th>
<th>Expir Time</th>
<th>TCAM Ovrflw</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2001:300::1</td>
<td>gi11</td>
<td>AABB.CC01.F500</td>
<td>NDP</td>
<td>VALID</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2001:600::1</td>
<td>gi11</td>
<td>AABB.CC01.F501</td>
<td>NDP</td>
<td>TENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2001:100::2</td>
<td>gi12</td>
<td>AABB.CC01.F100</td>
<td>NDP</td>
<td>VALID</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2001:200::3</td>
<td>gi12</td>
<td>AABB.CC01.F160</td>
<td>NDP</td>
<td>VALID</td>
<td>79</td>
<td>*</td>
</tr>
</tbody>
</table>
25.80 show ipv6 source guard

To display IPv6 Source Guard global configuration, use the `show ipv6 source guard` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 source guard`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This displays IPv6 Source Guard global configuration.

Example

The following example gives an example of the `show ipv6 source guard` command output:

```
switchxxxxxx# show ipv6 source guard
IPv6 Source Guard is enabled on VLANs:1-4,6,7,100-120
```

25.81 show ipv6 source guard policy

To display IPv6 Source Guard policies, use the `show ipv6 source guard policy` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 source guard policy [policy-name | active]
```

Parameters

- `policy-name`—IPv6 Source Guard policy name.
- `active`—Displays the attached IPv6 Source Guard policies.
Command Mode

Privileged EXEC mode

User Guidelines

This command displays all configured IPv6 Source Guard policies, the given one or all attached IPv6 Source Guard policies.

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 source guard policy policy1
Neighbor Binding Policy: policy1
  trusted port: disabled
Attached to ports:
  Ports
  gi11-2
  gi14
  Po1-4
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 source guard policy active
Attached to VLAN:
Attached to ports:
  Policy Name     Ports
  policy1         gi11-2
  port-default    gi11-2
                  gi13
```
Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 source guard policy
policy1
policy2
```

25.82 trusted-port (IPv6 Source Guard)

To configure a port as trusted port within an IPv6 Source Guard policy, use the `trusted-port` command in IPv6 Source Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
trusted-port
no trusted-port
```

Parameters

N/A

Default Configuration

not trusted.

Command Mode

IPv6 Source Guard Policy Configuration mode

User Guidelines

IPv6 data messages bridged from trusted ports are not validated by IPv6 Source Guard.

Example

The following example defines a policy that defines a port as trusted:

```
switchxxxxxx(config)# ipv6 ipv6 source guard policy policy1
switchxxxxxx(config-ipv6-srcguard)# trusted-port
```
25.83 validate source-mac

To enable checking the MAC addresses against the link-layer address within an IPv6 ND Inspection policy, use the validate source-mac command in ND Inspection Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

validate source-mac [enable | disable]
no validate source-mac

Parameters

- **enable**—Enables validation of the MAC address against the link-layer address. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables validation of MAC address against the link-layer address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables the router to drop an NDP message whose link-layer address does not match the MAC address:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
```
switchxxxxxx(config-nd-inspection)# validate source-mac

switchxxxxxx(config-nd-inspection)# exit
26.1 clear ipv6 prefix-list

Use the `clear ipv6 prefix-list` command in privileged EXEC mode to reset the hit count of the IPv6 prefix list entries.

Syntax

```
clear ipv6 prefix-list [prefix-list-name [ipv6-prefix/prefix-length]]
```

Parameters

- `prefix-list-name`—The name of the prefix list from which the hit count is to be cleared.
- `ipv6-prefix`—The IPv6 network from which the hit count is to be cleared. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.
- `/prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

The hit count is automatically cleared for all IPv6 prefix lists.

Command Mode

Privileged EXEC mode

User Guidelines

The hit count is a value indicating the number of matches to a specific prefix list entry.
Example

The following example clears the hit count from the prefix list entries for the prefix list named first_list that match the network mask 2001:0DB8::/35:

```
switchxxxxxx# clear ipv6 prefix-list first_list 2001:0DB8::/35
```

26.2 ipv6 prefix-list

Use the `ipv6 prefix-list` command in Global Configuration mode to create an entry in an IPv6 prefix list. To delete the entry, use the `no` form of this command.

Syntax

```
ipv6 prefix-list list-name [seq number] {{deny|permit} ipv6-prefix/prefix-length [ge ge-length] [le le-length]} | description text

no ipv6 prefix-list list-name [seq number]
```

Parameters

- `list-name`—Name of the prefix list. The name may contain up to 32 characters.
- `seq seq-number`—Sequence number of the prefix list entry being configured. This is an integer value from 1 to 4294967294.
- `deny`—Denies networks that matches the condition.
- `permit`—Permits networks that matches the condition.
- `ipv6-prefix`—IPv6 network assigned to the specified prefix list. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal—using 16-bit values between colons.
- `prefix-length`—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value from 0 to 128. The zero `prefix-length` may be used only with the zero `ipv6-prefix` (`:`).
- `description text`—Text that can be up to 80 characters in length.
IPv6 Prefix List Commands

- **ge ge-value**—Specifies a prefix length greater than or equal to the `/prefix-length` argument. It is the lowest value of a range of the length (the “from” portion of the length range).

- **le le-value**—Specifies a prefix length greater than or equal to the `/prefix-length` argument. It is the highest value of a range of the length (the “to” portion of the length range).

Default Configuration
No prefix list is created.

Command Mode
Global Configuration mode

User Guidelines
This command without the `seq` keyword adds the new entry after the last entry of the prefix list with the sequence number equals to the last number plus 5. For example, if the last configured sequence number is 43, the new entry will have the sequence number of 48. If the list is empty, the first prefix-list entry is assigned the number 5 and subsequent prefix list entries increment by 5.

This command with the `seq` keyword puts the new entry into the place specified by the parameter, if an entry with the number exists it is replaced by the new one.

This command without the `seq` keyword removes the prefix list.

The `no` version of this command with the `seq` keyword removes the specified entry.

The sequence number of a prefix list entry determines the order of the entries in the list. The router compares network addresses to the prefix list entries. The router begins the comparison at the top of the prefix list, with the entry having the lowest sequence number.

If multiple entries of a prefix list match a prefix, the entry with the lowest sequence number is considered the real match. Once a match or deny occurs, the router does not go through the rest of the prefix list. For efficiency, you might want to put the most common permits or denies near the top of the list, using the `seq-number` argument.

The `show ipv6 prefix-list` command displays the sequence numbers of entries.

IPv6 prefix lists are used to specify certain prefixes or a range of prefixes that must be matched before a permit or deny statement can be applied. Two operand keywords can be used to designate a range of prefix lengths to be matched. A prefix length of less than, or equal to, a value is configured with the `le` keyword. A
prefix length greater than, or equal to, a value is specified using the `ge` keyword. The `ge` and `le` keywords can be used to specify the range of the prefix length to be matched in more detail than the usual `ipv6-prefix/prefix-length` argument.

For a candidate prefix to match against a prefix list entry the following conditions must exist:

- The candidate prefix must match the specified prefix list and prefix length entry
- The value of the optional `le` keyword specifies the range of allowed prefix lengths from 0 up to the value of the `le-length` argument, and including, this value.
- The value of the optional `ge` keyword specifies the range of allowed prefix lengths from the value of the `ge-length` argument up to, and including, 128.

Note that the first condition must match before the other conditions take effect.

An exact match is assumed when the `ge` or `le` keywords are not specified. If only one keyword operand is specified then the condition for that keyword is applied, and the other condition is not applied. The `prefix-length` value must be less than the `ge` value. The `ge` value must be less than, or equal to, the `le` value. The `le` value must be less than or equal to 128.

Every IPv6 prefix list, including prefix lists that do not have permit and deny condition statements, has an implicit `deny any any` statement as its last match condition.

Formal Specification

Checked prefix is `cP` and checked prefix length is `cL`.

Function `PrefixIsEqual(P1, P2, L)` compares the first `L` bits of two addresses `P1` and `P2` and returns TRUE if they are equal.

Case 1. A prefix-list entry is:

- `P` - prefix address
- `L` - prefix length
- `ge` - is not defined
- `le` - is not defined

The prefix `cP/cL` matches the prefix-list entry if `PrefixIsEqual(cP, P, L) && cL == L`

Case 2. An prefix-list entry is:

- `P` - prefix address
• L - prefix length
• ge - is defined
• le - is not defined

The prefix cP/cL matches the prefix-list entry if PrefixIsEqual(cP,P,L) && cL >= ge

Case 3. An prefix-list entry is:
• P - prefix address
• L - prefix length
• ge - is not defined
• le - is defined

The prefix cP/cL matches to the prefix-list entry if PrefixIsEqual(cP,P,L) && cL <= le

Case 4. An prefix-list entry is:
• P - prefix address
• L - prefix length
• ge - is defined
• le - is defined

The prefix cP/cL matches the prefix-list entry if PrefixIsEqual(cP,P,L) && ge <= cL <= le

Examples

Example 1. The following example denies all routes with a prefix of ::/0:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0
```

Example 2. The following example permits the prefix 2002::/16:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2002::/16
```

Example 3. The following example shows how to specify a group of prefixes to accept any prefixes from prefix 5F00::/48 up to and including prefix 5F00::/64:
Example 4. The following example denies prefix lengths greater than 64 bits in routes that have the prefix 2001:0DB8::/64:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
```

Example 5. The following example permits mask lengths from 32 to 64 bits in all address space:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0 ge 32 le 64
```

Example 6. The following example denies mask lengths greater than 32 bits in all address space:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0 ge 32
```

Example 7. The following example denies all routes with a prefix of 2002::/128:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny 2002::/128
```

Example 8. The following example permits all routes with a prefix of ::/0:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0
```

26.3 show ipv6 prefix-list

Use the `show ipv6 prefix-list` command in user EXEC or privileged EXEC mode, to display information about an IPv6 prefix list or IPv6 prefix list entries.

Syntax

```
show ipv6 prefix-list [detail [list-name] | summary [list-name]]
show ipv6 prefix-list list-name ipv6-prefix/prefix-length [longer | first-match]
```
show ipv6 prefix-list list-name seq seq-num

Parameters

- **detail | summary**—Displays detailed or summarized information about all IPv6 prefix lists.
- **list-name**—Name of a specific IPv6 prefix list.
- **ipv6-prefix**—All prefix list entries for the specified IPv6 network. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.
- **prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- **longer**—Displays all entries of an IPv6 prefix list that are more specific than the given ipv6-prefix/prefix-length values.
- **first-match**—Displays the entry of an IPv6 prefix list that matches the given ipv6-prefix/prefix-length values.
- **seq seq-num**—Sequence number of the IPv6 prefix list entry.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

If the **detail** and **summary** keywords are omitted, the **detail** option is applied.

If the **longer** and **first-match** keywords are omitted, all entries of the specified prefix list that matches the given network/length are displayed.

Examples

Example 1. The following example shows the output of this command with the **detail** keyword:

```
switchxxxxx# ipv6 prefix-list detail
ipv6 prefix-list 6to4:
```
count: 1, range entries: 0
seq 5 permit 2002::/16 (hit count: 313)

ipv6 prefix-list aggregate:
 count: 3, range entries: 2
 seq 5 deny 3FFE:C00::/24 ge 25 (hit count: 568)
 seq 10 description The Default Action
 seq 15 permit ::/0 le 48 (hit count: 31310)

ipv6 prefix-list bgp-in:
 count: 6, range entries: 3
 seq 5 deny 5F00::/8 le 128 (hit count: 0)
 seq 10 deny ::/0 (hit count: 0)
 seq 15 deny ::/1 (hit count: 0)
 seq 20 deny ::/2 (hit count: 0)
 seq 25 deny ::/3 ge 4 (hit count: 0)
 seq 30 permit ::/0 le 128 (hit count: 240664)

Field Descriptions

- **count**—Number of entries in the list.
- **range entries**—Number of entries with matching range.
- **seq**—Entry number in the list.
- **permit, deny**—Granting status.
- **description**—Comment.
- **hit count**—Number of matches for the prefix entry.

Example 2. The following example shows the output of the `show ipv6 prefix-list` command with the `summary` keyword:

```
switchxxxxxx# show ipv6 prefix-list summary
ipv6 prefix-list 6to4:
  count: 1, range entries: 0
ipv6 prefix-list aggregate:
```
Example 3. The following example shows the output of the `show ipv6 prefix-list` command with the `seq` keyword:

```
switchxxxxxx# show ipv6 prefix-list bgp-in seq 15
  seq 15 deny ::/1 (hit count: 0)
```
27 IPv6 Commands

27.1 clear ipv6 neighbors

Use the `clear ipv6 neighbors` command in privileged EXEC mode to delete all entries in the IPv6 neighbor discovery cache, except static entries.

Syntax

`clear ipv6 neighbors`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Example

The following example deletes all entries, except static entries, in the neighbor discovery cache:

```
switchxxxxxx# clear ipv6 neighbors
```

27.2 ipv6 address

Use the `ipv6 address` command in Interface Configuration mode to configure a global unicast IPv6 address based on an IPv6 general prefix and enable IPv6 processing on an interface. To remove the address from the interface, use the `no` form of this command.
Syntax

ipv6 address ipv6-address/prefix-length
no ipv6 address [ipv6-address/prefix-length]

Parameters

- *ipv6-address*—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- *prefix-length*—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface Configuration mode

User Guidelines

The *ipv6 address* command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the *no IPv6 address* command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually configured addresses.

Example

The following example defines the IPv6 global address 2001:DB8:2222:7272::72 on vlan 100:

```
switchxxxxxxx(config)# interface vlan 100
switchxxxxxxx(config-if)# ipv6 address 2001:DB8:2222:7272::72/64
switchxxxxxxx(config-if)# exit
```
27.3 ipv6 address autoconfig

Use the `ipv6 address autoconfig` command in Interface Configuration mode to enable automatic configuration of IPv6 addresses using stateless auto configuration on an interface and enable IPv6 processing on the interface. Addresses are configured depending on the prefixes received in Router Advertisement messages. To disable automatic configuration of IPv6 addresses and to remove the automatically configured address from the interface, use the `no` form of this command.

Syntax

- `ipv6 address autoconfig`
- `no ipv6 address autoconfig`

Parameters

N/A.

Default Configuration

Stateless Auto configuration is enabled.

Command Mode

Interface Configuration mode

User Guidelines

This command enables IPv6 on an interface (if it was disabled) and causes the switch to perform IPv6 stateless address auto-configuration to discover prefixes on the link and then to add the eui-64 based addresses to the interface.

Stateless auto configuration is applied only when IPv6 Forwarding is disabled.

When IPv6 forwarding is changed from disabled to enabled, and stateless auto configuration is enabled the switch stops stateless auto configuration and removes all stateless auto configured ipv6 addresses from all interfaces.

When IPv6 forwarding is changed from enabled to disabled and stateless auto configuration is enabled the switch resumes stateless auto configuration.

Using the `no` form of the `ipv6 address` command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.
Example

The following example assigns the IPv6 address automatically:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 address autoconfig
switchxxxxxx(config-if)# exit
```

27.4 **ipv6 address eui-64**

Use the `ipv6 address eui-64` command in Interface Configuration mode to configure a global unicast IPv6 address for an interface and enables IPv6 processing on the interface using an EUI-64 interface ID in the low order 64 bits of the address. To remove the address from the interface, use the `no` form of this command.

Syntax

```
ipv6 address ipv6-prefix/prefix-length eui-64
no ipv6 address [ipv6-prefix/prefix-length eui-64]
```

Parameters

- `ipv6-address`—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface Configuration mode
User Guidelines

If the value specified for the prefix-length argument is greater than 64 bits, the prefix bits have precedence over the interface ID.

If the switch detects another host using one of its IPv6 addresses, it adds the IPv6 address and displays an error message on the console.

Using the no form of the ipv6 address command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.

Example

The following example enables IPv6 processing on VLAN 1, configures IPv6 global address 2001:0DB8:0:1::/64 and specifies an EUI-64 interface ID in the low order 64 bits of the address:

```
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ipv6 address 2001:0DB8:0:1::/64 eui-64
switchxxxxxxx(config-if)# exit
```

27.5 ipv6 address link-local

Use the ipv6 address link-local command in Interface Configuration mode to configure an IPv6 link local address for an interface and enable IPv6 processing on the interface. To remove the manually configured link local address from the interface, use the no form of this command.

Syntax

```
ipv6 address ipv6-prefix link-local
no ipv6 address [link-local]
```

Parameters

- `ipv6-address`—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

Default Configuration

The default Link-local address is defined.
Command Mode

Interface Configuration mode

User Guidelines

The switch automatically generates a link local address for an interface when IPv6 processing is enabled on the interface, typically when an IPv6 address is configured on the interface. To manually specify a link local address to be used by an interface, use the `ipv6 address link-local` command.

The `ipv6 address link-local` command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the `no` form of the `ipv6 address` command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.

Example

The following example enables IPv6 processing on VLAN 1 and configures FE80::260:3EFF:FE11:6770 as the link local address for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address FE80::260:3EFF:FE11:6770 link-local
switchxxxxxx(config-if)# exit
```

27.6 ipv6 default-gateway

Use the `ipv6 default-gateway` Global Configuration mode command to define an IPv6 default gateway. To remove the IPv6 default gateway, use the `no` form of this command.

Syntax

```
ipv6 default-gateway ipv6-address
no ipv6 default-gateway ipv6-address
```

Parameters

- `ipv6-address`—Specifies the IPv6 address of an IPv6 router that can be used to reach a network.
IPv6 Commands

Default Configuration
No default gateway is defined.

Command Mode
Global Configuration mode

User Guidelines
The command is an alias of the ipv6 route command with the predefined (default) route:

```
ipv6 route ::/0 ipv6-address\ interface-id
```

See the definition of the ipv6 route command for details.

Examples

Example 1. The following example defines a default gateway with a global IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway 5::5
```

Example 2. The following example defines a default gateway with a link-local IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway FE80::260:3EFF:FE11:6770%vlan1
```

27.7 ipv6 enable

Use the ipv6 enable command in Interface Configuration mode to enable IPv6 processing on an interface.

To disable IPv6 processing on an interface that has not been configured with an explicit IPv6 address, use the no form of this command.

Syntax

```
ipv6 enable
no ipv6 enable
```
Parameters

N/A

Default Configuration

IPv6 addressing is enabled.

Command Mode

Interface Configuration mode

User Guidelines

This command automatically configures an IPv6 link-local Unicast address on the interface while also enabling the interface for IPv6 processing. The `no ipv6 enable` command does not disable IPv6 processing on an interface that is configured with an explicit IPv6 address.

Example

The following example enables VLAN 1 for the IPv6 addressing mode.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 enable
switchxxxxxx(config-if)# exit
```

27.8 ipv6 icmp error-interval

Use the `ipv6 icmp error-interval` command in Global Configuration mode to configure the interval and bucket size for IPv6 ICMP error messages. To return the interval to its default setting, use the `no` form of this command.

Syntax

```
ipv6 icmp error-interval milliseconds [bucketsize]
no ipv6 icmp error-interval
```
Parameters

- **milliseconds**—Time interval between tokens being placed in the bucket. Each token represents a single ICMP error message. The acceptable range is from 0 to 2147483647. A value of 0 disables ICMP rate limiting.

- **bucketsize**—Maximum number of tokens stored in the bucket. The acceptable range is from 1 to 200.

Default Configuration

The default interval is 100ms and the default bucketsize is 10 i.e. 100 ICMP error messages per second.

Command Mode

Global Configuration mode

User Guidelines

Use this command to limit the rate at which IPv6 ICMP error messages are sent. A token bucket algorithm is used with one token representing one IPv6 ICMP error message. Tokens are placed in the virtual bucket at a specified interval until the maximum number of tokens allowed in the bucket is reached.

The **milliseconds** argument specifies the time interval between tokens arriving in the bucket. The optional **bucketsize** argument is used to define the maximum number of tokens allowed in the bucket. Tokens are removed from the bucket when IPv6 ICMP error messages are sent, which means that if the **bucketsize** is set to 20, a rapid succession of 20 IPv6 ICMP error messages can be sent. When the bucket is empty of tokens, IPv6 ICMP error messages are not sent until a new token is placed in the bucket.

Average Packets Per Second = \((1000/ \text{milliseconds}) \times \text{bucketsize}\).

To disable ICMP rate limiting, set the **milliseconds** argument to zero.

Example

The following example shows an interval of 50 milliseconds and a bucket size of 20 tokens being configured for IPv6 ICMP error messages:

```
switchxxxxxxx(config)# ipv6 icmp error-interval 50 20
```
27.9 ipv6 link-local default zone

Use the `ipv6 link-local default zone` command to configure an interface to egress a link local packet without a specified interface or with the default zone 0.

Use the `no` form of this command to return the default link local interface to the default value.

Syntax

```
ipv6 link-local default zone interface-id
no ipv6 link-local default zone
```

Parameters

- `interface-id`—Specifies the interface that is used as the egress interface for packets sent without a specified IPv6Z interface identifier or with the default 0 identifier.

Default

By default, `link local default zone` is disabled.

Command Mode

Global Configuration mode

Example

The following example defines VLAN 1 as a default zone:

```
switchxxxxxx(config)# ipv6 link-local default zone vlan1
```

27.10 ipv6 nd dad attempts

Use the `ipv6 nd dad attempts` command in Interface Configuration mode to configure the number of consecutive neighbor solicitation messages that are sent on an interface while duplicate address detection is performed on the Unicast IPv6 addresses of the interface.

To return the number of messages to the default value, use the `no` form of this command.
Syntax
ipv6 nd dad attempts value
no ipv6 nd dad attempts

Parameters
- **value**—The number of neighbor solicitation messages. The acceptable range is from 0 to 600. Configuring a value of 0 disables duplicate address detection processing on the specified interface; a value of 1 configures a single transmission without follow-up transmissions.

Default Configuration
1

Command Mode
Interface Configuration mode

User Guidelines
Duplicate address detection verifies the uniqueness of new Unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while duplicate address detection is performed). Duplicate address detection uses neighbor solicitation messages to verify the uniqueness of Unicast IPv6 addresses.

The DupAddrDetectTransmits node configuration variable (as specified in RFC 4862, IPv6 Stateless Address Autoconfiguration) is used to automatically determine the number of consecutive neighbor solicitation messages that are sent on an interface, while duplicate address detection is performed on a tentative Unicast IPv6 address.

The interval between duplicate address detection, neighbor solicitation messages (the duplicate address detection timeout interval) is specified by the neighbor discovery-related variable RetransTimer (as specified in RFC 4861, Neighbor Discovery for IPv6), which is used to determine the time between retransmissions of neighbor solicitation messages to a neighbor when resolving the address or when probing the reachability of a neighbor. This is the same management variable used to specify the interval for neighbor solicitation messages during address resolution and neighbor unreachability detection. Use the `ipv6 nd ns-interval` command to configure the interval between neighbor solicitation messages that are sent during duplicate address detection.

Duplicate address detection is suspended on interfaces that are administratively down. While an interface is administratively down, the Unicast IPv6 addresses
assigned to the interface are set to a pending state. Duplicate address detection is automatically restarted on an interface when the interface returns to being administratively up.

An interface returning to administratively up, restarts duplicate address detection for all of the Unicast IPv6 addresses on the interface. While duplicate address detection is performed on the link-local address of an interface, the state for the other IPv6 addresses is still set to TENTATIVE. When duplicate address detection is completed on the link-local address, duplicate address detection is performed on the remaining IPv6 addresses.

When duplicate address detection identifies a duplicate address, the state of the address is set to DUPLICATE and the address is not used. If the duplicate address is the link-local address of the interface, the processing of IPv6 packets is disabled on the interface and an error SYSLOG message is issued.

If the duplicate address is a global address of the interface, the address is not used and an error SYSLOG message is issued.

All configuration commands associated with the duplicate address remain as configured while the state of the address is set to DUPLICATE.

If the link-local address for an interface changes, duplicate address detection is performed on the new link-local address and all of the other IPv6 address associated with the interface are regenerated (duplicate address detection is performed only on the new link-local address).

Note. Since DAD is not supported on NBMA interfaces the command is allowed but does not impact on an IPv6 tunnel interface of the ISATAP type it does not impact. The configuration is saved and will impacted when the interface type is changed on another type on which DAD is supported (for example, to the IPv6 manual tunnel).

Example

The following example configures five consecutive neighbor solicitation messages to be sent on VLAN 1 while duplicate address detection is being performed on the tentative Unicast IPv6 address of the interface. The example also disables duplicate address detection processing on VLAN 2.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd dad attempts 5
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ipv6 nd dad attempts 0
```
27.11 ipv6 neighbor

Use the `ipv6 neighbor` command in Global Configuration mode to configure a static entry in the IPv6 neighbor discovery cache. To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the `no` form of this command.

Syntax

```
ipv6 neighbor ipv6-address interface-id mac-address
```

```
no ipv6 neighbor [[ipv6-address] interface-id]
```

Parameters

- `ipv6-address`—Specified IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- `interface-id`—Specified interface identifier.
- `mac-address`—Interface MAC address.

Default Configuration

Static entries are not configured in the IPv6 neighbor discovery cache.

Command Mode

Global Configuration mode

User Guidelines

This command is similar to the `arp` command.

Use the `ipv6 neighbor` command to add a static entry in the IPv6 neighbor discovery cache.

If the specified IPv6 address is a global IPv6 address it must belong to one of static on-link prefixes defined in the interface. When a static on-link prefix is deleted all static entries in the IPv6 neighbor discovery cache corresponding the prefix is deleted to.
If an entry for the specified IPv6 address already exists in the neighbor discovery cache, learned through the IPv6 neighbor discovery process, the entry is automatically converted to a static entry.

Static entries in the IPv6 neighbor discovery cache are not modified by the neighbor discovery process.

Use the `no ipv6 neighbor ipv6-address interface-id` command to remove the one given static entry on the given interface. The command does not remove the entry from the cache, if it is a dynamic entry, learned from the IPv6 neighbor discovery process.

Use the `no ipv6 neighbor interface-id` command to delete the all static entries on the given interface.

Use the `no ipv6 neighbor` command to remove the all static entries on all interfaces.

Use the `show ipv6 neighbors` command to view static entries in the IPv6 neighbor discovery cache. A static entry in the IPv6 neighbor discovery cache can have one of the following states:

- NCMP (Incomplete)—The interface for this entry is down.
- REACH (Reachable)—The interface for this entry is up.

Note. Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP and REACH states are different for dynamic and static cache entries.

Examples

Example 1. The following example configures a static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7D1A.9472 on VLAN 1:

```
switchxxxxxx(config)# ipv6 neighbor 2001:0DB8::45A vlan1 0002.7D1A.9472
```

Example 2. The following example deletes the static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7D1A.9472 on VLAN 1:

```
switchxxxxxx(config)# no ipv6 neighbor 2001:0DB8::45A vlan1
```
Example 3. The following example deletes all static entries in the IPv6 neighbor discovery cache on VLAN 1:

```
switchxxxxxx(config)# no ipv6 neighbor vlan1
```

Example 4. The following example deletes all static entries in the IPv6 neighbor discovery cache on all interfaces:

```
switchxxxxxx(config)# no ipv6 neighbor
```

27.12 ipv6 unreachable

Use the ipv6 unreachable command in Interface Configuration mode to enable the generation of Internet Control Message Protocol for IPv6 (ICMPv6) unreachable messages for any packets arriving on a specified interface.

To prevent the generation of unreachable messages, use the no form of this command.

Syntax

ipv6 unreachable

no ipv6 unreachable

Parameters

N/A.

Default Configuration

The sending of ICMP IPv6 unreachable messages is enabled.

Command Mode

Interface Configuration mode

User Guidelines

If the switch receives a Unicast packet destined for itself that uses a protocol it does not recognize, it sends an ICMPv6 unreachable message to the source.
If the switch receives a datagram that it cannot deliver to its ultimate destination because it knows of no route to the destination address, it replies to the originator of that datagram with an ICMP host unreachable message.

Example

The following example disables the generation of ICMPv6 unreachable messages, as appropriate, on an interface:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 unreachables
switchxxxxxx(config-if)# exit
```

27.13 show ipv6 interface

Use the `show ipv6 interface` command in user EXEC or privileged EXEC mode to display the usability status of interfaces configured for IPv6.

Syntax

`show ipv6 interface [brief] | [interface-id]`

Parameters

- **brief**—Displays a brief summary of IPv6 status and configuration for each interface where IPv6 is defined.
- **interface-id**—Interface identifier about which to display information.

Default Configuration

Option `brief` - all IPv6 interfaces are displayed.

Command Mode

User EXEC mode

Privileged EXEC mode
User Guidelines

Use this command to validate the IPv6 status of an interface and its configured addresses. This command also displays the parameters that IPv6 uses for operation on this interface and any configured features.

If the interface’s hardware is usable, the interface is marked up.

If you specify an optional interface identifier, the command displays information only about that specific interface. For a specific interface, you can enter the prefix keyword to see the IPv6 neighbor discovery (ND) prefixes that are configured on the interface.

Examples

Example 1. The show ipv6 interface command displays information about the specified interface:

```
switchxxxxxx# show ipv6 interface vlan 1
VLAN 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
Global unicast address(es):
  IPv6 Global Address                      Type
  2000:0DB8::2/64 (ANY)                    Manual
  2000:0DB8::2/64                          Manual
  2000:1DB8::2011/64                       Manual
Joined group address(es):
  FF02::1
  FF02::2
  FF02::1:FF11:6770
MTU is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
Stateless autoconfiguration is enabled.
MLD Version is 2
```

Field Descriptions:
- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked Enabled. If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked Stalled. If IPv6 is not enabled, the interface is marked Disabled.

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global unicast address(es):**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

- **Joined group address(es):**—Indicates the Multicast groups to which this interface belongs.

- **MTU is 1500 bytes**—Maximum transmission unit of the interface.

- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled).

- **number of DAD attempts:**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

- **MLD Version**—Version of MLD

Example 2. The `show ipv6 interface command` displays information about the specified manual IPv6 tunnel:

```
switchxxxxxx# show ipv6 interface tunnel 2
Tunnel 2 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
Global unicast address(es):
IPv6 Global Address Type
2000:0DB8::2/64 (ANY) Manual
```
2000:0DB8::2/64 Manual
2000:1DB8::2011/64 Manual

Joined group address(es):
FF02::1
FF02::2
FF02::1:FF11:6770

MTU is 1500 bytes

ICMP error messages limited interval is 100ms; Bucket size is 10 tokens

ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds

MLD Version is 2
Tunnel mode is manual
Tunnel Local IPv4 address : 10.10.10.1(auto)
Tunnel Remote Ipv4 address : 10.1.1.1

Field Descriptions:

- **VLAN 1 is up/up**—Indicates the interface status: administrative/operational.
- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked “enabled.” If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked “stalled.” If IPv6 is not enabled, the interface is marked “disabled.”
- **Link-local address**—Displays the link-local address assigned to the interface.
- **Global Unicast address(es)**—Displays the global Unicast addresses assigned to the interface. The type is **manual** or **autoconfig**.
- **Joined group address(es)**—Indicates the Multicast groups to which this interface belongs.
- **MTU**—Maximum transmission unit of the interface.
- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.
- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled).

- **Number of DAD attempts**:—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

- **MLD Version**—The version of MLD

- **Tunnel mode**—Specifies the tunnel mode: *manual*, *6to4*, *auto-tunnel* or *isatap*

- **Tunnel Local IPv4 address**—Specifies the tunnel local IPv4 address and have one of the following formats:
 - *ipv4-address*
 - *ipv4-address* (auto)
 - *ipv4-address* (interface-id)

- **Tunnel Remote IPv4 address**—Specifies the tunnel remote IPv4 address

Example 3. The `show ipv6 interface` command displays information about the specified ISATAP tunnel:

```
switchxxxxxx# show ipv6 interface tunnel 1
Tunnel 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
Global unicast address(es):
    IPv6 Global Address                         Type
    2000:0DB8::2/64 (ANY)                       Manual
    2000:0DB8::2/64                             Manual
    2000:1DB8::2011/64                          Manual
Joined group address(es):
    FF02::1
    FF02::2
```

FF02::1:FF11:6770
is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ND DAD is disabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
MLD Version is 2
Tunnel mode is ISATAP
Tunnel Local IPv4 address : 10.10.10.1(VLAN 1)
ISATAP Router DNS name is isatap

Field Descriptions:

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled). Note. The state of duplicate address detection on an IPv6 tunnel interface of ISATAP type always is displayed as disabled regardless of a value of the number of DAD attempts parameter because DAD is not supported on NBMA interfaces. The switch will enable DAD automatically when the user change the type of the tunnel to manual if a the parameter value bigger than 0.

- **number of DAD attempts**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked “enabled.” If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked “stalled.” If IPv6 is not enabled, the interface is marked “disabled.”

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global Unicast address(es)**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

- **Joined group address(es)**—Indicates the Multicast groups to which this interface belongs.
- Maximum transmission unit of the interface.
- ICMP error messages—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.
- number of DAD attempts:—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.
- ND reachable time—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.
- MLD Version—The version of MLD
- Tunnel mode—Specifies the tunnel mode: manual, 6to4, auto-tunnel or isatap
- Tunnel Local IPv4 address—Specifies the tunnel local IPv4 address and have one of the following formats:
 - ipv4-address
 - ipv4-address(auto)
 - ipv4-address(interface-id)
- Tunnel Remote IPv4 address—Specifies the tunnel remote IPv4 address
- ISATAP Router DNS name is—The DNS name of the ISATAP Router

Example 4. The following command with the brief keyword displays information about all interfaces that IPv6 is defined on:

```
switchxxxxxx# show ipv6 interface brief
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Interface State</th>
<th>IPv6 State</th>
<th>IPv6 Address</th>
<th>Link Local</th>
<th>MLD Version</th>
<th>Number of Global Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan 1</td>
<td>up/up enabled</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>vlan 2</td>
<td>up/up stalled</td>
<td></td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>vlan 3</td>
<td>up/down enabled</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>vlan 4</td>
<td>down/down enabled</td>
<td></td>
<td>FE80::0DB8:12AB:FA01</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>vlan 5</td>
<td>up/up enabled</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
27.14 show ipv6 link-local default zone

Use the `show ipv6 link-local default zone` command in user EXEC or privileged EXEC mode to display the IPv6 link local default zone.

Syntax

```
show ipv6 link-local default zone
```

Command Mode

User EXEC mode

Privileged EXEC mode

Examples

Example 1. The following example displays the default zone when it is defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is VLAN 1
```

Example 2. The following example displays the default zone when it is not defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is not defined
```

27.15 show ipv6 neighbors

Use the `show ipv6 neighbors` command in User EXEC or Privileged EXEC mode to display IPv6 neighbor discovery (ND) cache information.

Syntax

```
show ipv6 neighbors [interface-id | ipv6-address | ipv6-hostname]
```
Parameters

- `interface-id`—Specifies the identifier of the interface from which IPv6 neighbor information is to be displayed.

- `ipv6-address`—Specifies the IPv6 address of the neighbor. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `ipv6-hostname`—Specifies the IPv6 host name of the remote networking device.

Default Configuration

All IPv6 ND cache entries are listed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

When the `interface-id` argument is not specified, cache information for all IPv6 neighbors is displayed. Specifying the `interface-id` argument displays only cache information about the specified interface.

Examples

Example 1. The following is sample output from the `show ipv6 neighbors` command when entered with an `interface-id`:

```
switchxxxxxx# show ipv6 neighbors vlan 1
IPv6 Address                Age Link-layer Addr     State  Interface Router
2000:0:0:4::2                0    0003.a0d6.141e    REACH  VLAN1       Yes
3001:1::45a                  -    0002.7d1a.9472    REACH  VLAN1       -
FE80::203:A0FF:FE6:141E     0    0003.a0d6.141e    REACH  VLAN1       No
```

Example 2. The following is sample output from the `show ipv6 neighbors` command when entered with an IPv6 address:

```
switchxxxxxx# show ipv6 neighbors 2000:0:0:4::2
```
Field Descriptions:

- **Total number of entries**—Number of entries (peers) in the cache.
- **IPv6 Address**—IPv6 address of neighbor or interface.
- **Age**—Time (in minutes) since the address was confirmed to be reachable. A hyphen (-) indicates a static entry.
- **Link-layer Addr**—MAC address. If the address is unknown, a hyphen (-) is displayed.
- **Interface**—Interface which the neighbor is connected to.
- **Router**—Specifies if the neighbor is a Router. A hyphen (-) is displayed for static entries.

27.16 show ipv6 route

Use the `show ipv6 route` command in user EXEC or privileged EXEC mode to display the current contents of the IPv6 routing table.

Syntax

```
show ipv6 route [ipv6-address | ipv6-prefix/prefix-length | protocol | interface interface-id]
```

Parameters

- **ipv6-address**—Displays routing information for a specific IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **ipv6-prefix**—Displays routing information for a specific IPv6 network. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **prefix-length**—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- **protocol**—Displays routes for the specified routing protocol using any of these keywords: bgp, isis, ospf, or rip; or displays routes for the specified type of route using any of these keywords: connected, static, nd, or icmp.

- **interface interface-id**—Identifier of an interface.

Default Configuration

All IPv6 routing information for all active routing tables is displayed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

This command provides output similar to the `show ip route` command, except that the information is IPv6-specific.

When the `ipv6-address` or `ipv6-prefix/prefix-length` argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. When the icmp, nd, connected, local, or static keywords are specified, only that type of route is displayed. When the `interface-id` argument are specified, only the specified interface-specific routes are displayed.

Examples

Example 1. The following is sample output from the `show ipv6 route` command when the command is entered without an IPv6 address or prefix specified:

```
switchxxxxxx# show ipv6 route
Codes: > - Best
       S - Static, I - ICMP Redirect, ND - Router Advertisement
[d/m]: d - route’s distance, m - route’s metric
IPv6 Routing Table - 6 entries
S> ::/0 [1/1]
   via fe80::77 VLAN 1
ND> ::/0 [1/0]
   via fe80::200:ff:fe4a:df8 VLAN 1 Lifetime 1784 sec
```
27.17 show ipv6 route summary

Use the **show ipv6 route summary** command in User EXEC or Privileged EXEC mode to display the current contents of the IPv6 routing table in summary format.

Syntax

```
show ipv6 route summary
```

Parameters

N/A.

Command Mode

User EXEC mode

Privileged EXEC mode

Example

The following is sample output from the `show ipv6 route summary` command:

```
switchxxxxxx# show ipv6 route summary
IPv6 Routing Table Summary - 97 entries
37 local, 35 connected, 25 static
Number of prefixes:
/16: 1, /28: 10, /32: 5, /35: 25, /40: 1, /64: 9
/96: 5, /112: 1, /127: 4, /128: 36
```
Link Aggregation Control Protocol (LACP) Commands

28.1 lacp port-priority

To set the physical port priority, use the `lacp port-priority` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lacp port-priority value
no lacp port-priority
```

Parameters

- `value`—Specifies the port priority. (Range: 1 to 65535)

Default Configuration

The default port priority is 1.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example sets the priority of gi16.

```
switchxxxxxx(config)# interface gi16
switchxxxxxx(config-if)# lacp port-priority 247
```
28.2 lACP system-priority

To set the system priority, use the `lACP system-priority` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lACP system-priority value
no lACP system-priority
```

Parameters

- `value`—Specifies the system priority value. (Range: 1–65535)

Default Configuration

The default system priority is 1.

Command Mode

Global Configuration mode

Example

The following example sets the system priority to 120.

```
switchxxxxxx(config)# lACP system-priority 120
```

28.3 lACP timeout

To assign an administrative LACP timeout to an interface, use the `lACP timeout` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lACP timeout {long | short}
no lACP timeout
```

Parameters

- `long`—Specifies the long timeout value.
- **short**—Specifies the short timeout value.

Default Configuration

The default port timeout value is Long.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example assigns a long administrative LACP timeout to gi16:

```
switchxxxxxx(config)# interface gi16
switchxxxxxx(config-if)# lacp timeout long
```

28.4 show lacp

To display LACP information for all Ethernet ports or for a specific Ethernet port, use the `show lacp` Privileged EXEC mode command.

Syntax

```
show lacp interface-id [parameters / statistics / protocol-state]
```

Parameters

- **interface-id**—Specify an interface ID. The interface ID must be an Ethernet port
- **parameters**—(Optional) Displays parameters only.
- **statistics**—(Optional) Displays statistics only.
- **protocol-state**—(Optional) Displays protocol state only.

Command Mode

Privileged EXEC mode
Example
The following example displays LACP information for gi1.

```bash
switchxxxxxx# show lacp ethernet gi11
Port gi11 LACP parameters:
  Actor
    system priority: 1
    system mac addr: 00:00:12:34:56:78
    port Admin key: 30
    port Oper key: 30
    port Oper number: 21
    port Admin priority: 1
    port Oper priority: 1
    port Admin timeout: LONG
    port Oper timeout: LONG
    LACP Activity: ACTIVE
    Aggregation: AGGREGATABLE
    synchronization: FALSE
    collecting: FALSE
    distributing: FALSE
    expired: FALSE
  Partner
    system priority: 0
    system mac addr: 00:00:00:00:00:00
    port Admin key: 0
    port Oper key: 0
    port Oper number: 0
    port Admin priority: 0
    port Oper priority: 0
    port Admin timeout: LONG
    port Oper timeout: LONG
    LACP Activity: PASSIVE
    Aggregation: AGGREGATABLE
    synchronization: FALSE
    collecting: FALSE
    distributing: FALSE
    expired: FALSE
```
Port gi11 LACP Statistics:
LACP PDUs sent: 2
LACP PDUs received: 2
Port gi11 LACP Protocol State:
LACP State Machines:
Receive FSM: Port Disabled State
Mux FSM: Detached State
Control Variables:
BEGIN: FALSE
LACP Enabled: TRUE
Ready_N: FALSE
Selected: UNSELECTED
Port moved: FALSE
NNT: FALSE
Port enabled: FALSE
Timer counters:
periodic tx timer: 0
current while timer: 0
wait while timer: 0

28.5 show lacp port-channel

To display LACP information for a port-channel, use the show lacp port-channel Privileged EXEC mode command.

Syntax

show lacp port-channel [port_channel_number]

Parameters

port_channel_number—(Optional) Specifies the port-channel number.

Command Mode

Privileged EXEC mode
Example

The following example displays LACP information about port-channel 1.

```
switchxxxxxx# show lACP port-channel 1
```

Port-Channel 1: Port Type 1000 Ethernet

Actor

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>1</td>
</tr>
<tr>
<td>Priority</td>
<td>000285:0E1C00</td>
</tr>
<tr>
<td>MAC Address</td>
<td>29</td>
</tr>
<tr>
<td>Admin Key</td>
<td>29</td>
</tr>
<tr>
<td>Oper Key</td>
<td>29</td>
</tr>
</tbody>
</table>

Partner

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>0</td>
</tr>
<tr>
<td>Priority</td>
<td>00:00:00:00:00:00</td>
</tr>
<tr>
<td>MAC Address</td>
<td>14</td>
</tr>
<tr>
<td>Oper Key</td>
<td></td>
</tr>
</tbody>
</table>
29.1 autobaud

To configure the line for automatic baud rate detection (autobaud), use the autobaud command in Line Configuration mode.

Use the no form of this command to disable automatic baud rate detection.

Syntax

autobaud

no autobaud

Parameters

This command has no arguments or keywords.

Default Configuration

Automatic baud rate detection is enabled.

Command Mode

Line Configuration Mode

User Guidelines

When this command is enabled, it is activated as follows: connect the console to the device and press the Enter key twice. The device detects the baud rate automatically.

Example

The following example enables autobaud.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# autobaud
```
29.2 exec-timeout

To set the session idle time interval, during which the system waits for user input before automatic logoff, use the `exec-timeout` Line Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`exec-timeout minutes [seconds]`

`no exec-timeout`

Parameters

- `minutes`—Specifies the number of minutes. (Range: 0-65535)
- `seconds`—(Optional) Specifies the number of seconds. (Range: 0-59)

Default Configuration

The default idle time interval is 10 minutes.

Command Mode

Line Configuration Mode

Example

The following example sets the telnet session idle time interval before automatic logoff to 20 minutes and 10 seconds.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# exec-timeout 20 10
```

29.3 line

To identify a specific line for configuration and enter the Line Configuration command mode, use the `line` Global Configuration mode command.

Syntax

`line {console / telnet / ssh}`
Parameters

- **console**—Enters the terminal line mode.
- **telnet**—Configures the device as a virtual terminal for remote access (Telnet).
- **ssh**—Configures the device as a virtual terminal for secured remote access (SSH).

Command Mode
Global Configuration mode

Example

The following example configures the device as a virtual terminal for remote (Telnet) access.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)#
```

29.4 speed

To set the line baud rate, use the `speed` command in Line Configuration mode.

To restore the default configuration, use the `no` form of this command.

Syntax

```
speed bps
no speed
```

Parameters

- **bps**—Specifies the baud rate in bits per second (bps). Possible values are 4800, 9600, 19200, 38400, 57600, and 115200.

Default Configuration

The default speed is 115200 bps.
Command Mode

Line Configuration Mode

User Guidelines

The configured speed is only applied when ` autobaud ` is disabled. This configuration applies to the current session only.

Example

The following example configures the line baud rate as 9600 bits per second.

```
switchxxxxxx(config-line)# speed 9600
```

29.5 show line

To display line parameters, use the `show line` Privileged EXEC mode command.

Syntax

```
show line [console | telnet | ssh]
```

Parameters

- `console`—(Optional) Displays the console configuration.
- `telnet`—(Optional) Displays the Telnet configuration.
- `ssh`—(Optional) Displays the SSH configuration.

Default Configuration

If the line is not specified, all line configuration parameters are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the line configuration.

```
switchxxxxxx# show line
```
Console configuration:
Interactive timeout: Disabled
History: 10
Baudrate: 9600
Databits: 8
Parity: none
Stopbits: 1

Telnet configuration:
Telnet is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10

SSH configuration:
SSH is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
30.1 clear lldp table

To clear the neighbors table for all ports or for a specific port, use the `clear lldp table` command in Privileged EXEC mode.

Syntax

```
clear lldp table [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no interface is specified, the default is to clear the LLDP table for all ports.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear lldp table gi11
```

30.2 lldp chassis-id

To configure the source of the chassis ID of the port, use the `lldp chassis-id` Global Configuration mode command. To restore the chassis ID source to default, use the `no` form of this command.
Syntax

lldp chassis-id {mac-address / host-name}
no lldp chassis-id

Parameters

- **mac-address**—Specifies the chassis ID to use the device MAC address.
- **host-name**—Specifies the chassis ID to use the device configured host name.

Default Configuration

MAC address.

Command Mode

Global Configuration mode

User Guidelines

The host name should be configured to be a unique value.

If the chassis ID configured to be used in LLDP packets is empty, LLDP uses the default chassis ID (specified above).

Example

The following example configures the chassis ID to be the MAC address.

```
switchxxxxxx(config)# lldp chassis-id mac-address
```

30.3 **lldp hold-multiplier**

To specify how long the receiving device holds a LLDP packet before discarding it, use the `lldp hold-multiplier` Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

- **lldp hold-multiplier number**
- **no lldp hold-multiplier**
Parameters

hold-multiplier number—Specifies the LLDP packet hold time interval as a multiple of the LLDP timer value (range: 2-10).

Default Configuration

The default LLDP hold multiplier is 4.

Command Mode

Global Configuration mode

User Guidelines

The actual Time-To-Live (TTL) value of LLDP frames is calculated by the following formula:

\[\text{TTL} = \min(65535, \text{LLDP-Timer} \times \text{LLDP-hold-multiplier}) \]

For example, if the value of the LLDP timer is 30 seconds, and the value of the LLDP hold multiplier is 4, then the value 120 is encoded in the TTL field of the LLDP header.

Example

The following example sets the LLDP packet hold time interval to 90 seconds.

switchxxxxxx(config)# lldp timer 30
switchxxxxxx(config)# lldp hold-multiplier 3

30.4 lldp lldpdu

To define LLDP packet handling when LLDP is globally disabled, use the lldp lldpdu Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

lldp lldpdu {filtering | flooding}

no lldp lldpdu
Parameters

- **filtering**—Specifies that when LLDP is globally disabled, LLDP packets are filtered (deleted).
- **flooding**—Specifies that when LLDP is globally disabled, LLDP packets are flooded (forwarded to all interfaces).

Default Configuration

LLDP packets are filtered when LLDP is globally disabled.

Command Mode

Global Configuration mode

User Guidelines

If the STP mode is MSTP, the LLDP packet handling mode cannot be set to *flooding* and vice versa.

If LLDP is globally disabled, and the LLDP packet handling mode is *flooding*, LLDP packets are treated as data packets with the following exceptions:

- VLAN ingress rules are not applied to LLDP packets. The LLDP packets are trapped on all ports for which the STP state is Forwarding.
- Default *deny-all* rules are not applied to LLDP packets.
- VLAN egress rules are not applied to LLDP packets. The LLDP packets are flooded to all ports for which the STP state is Forwarding.
- LLDP packets are sent as untagged.

Example

The following example sets the LLDP packet handling mode to Flooding when LLDP is globally disabled.

```
switchxxxxxx(config)# lldp lldpdu flooding
```
30.5 lldp management-address

To specify the management address advertised by an interface, use the lldp management-address Interface (Ethernet) Configuration mode command. To stop advertising management address information, use the no form of this command.

Syntax

lldp management-address {ip-address | none | automatic [interface-id]}
no lldp management-address

Parameters

- **ip-address**—Specifies the static management address to advertise.
- **none**—Specifies that no address is advertised.
- **automatic**—Specifies that the software automatically selects a management address to advertise from all the IP addresses of the product. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses.
- **automatic interface-id**—(Available only when the device is in Layer 3 (router mode)). Specifies that the software automatically selects a management address to advertise from the IP addresses that are configured on the interface ID. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses of the interface. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses of the interface. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN. Note that if the port or port-channel are members in a VLAN that has an IP address, that address is not included because the address is associated with the VLAN.

Default Configuration

No IP address is advertised.

The default advertisement is **automatic**.

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines
Each port can advertise one IP address.

Example
The following example sets the LLDP management address advertisement mode to automatic on gi12.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# lldp management-address automatic
```

30.6 lldp med
To enable or disable LLDP Media Endpoint Discovery (MED) on a port, use the `lldp med` Interface (Ethernet) Configuration mode command. To return to the default state, use the `no` form of this command.

Syntax
```
lldp med {enable [tlv ... tlv4] | disable}
no lldp med
```

Parameters
- `enable`—Enable LLDP MED
- `disable`—Disable LLDP MED on the port
- `tlv`—Specifies the TLV that should be included. Available TLVs are: Network-Policy, Location, and POE-PSE, Inventory. The Capabilities TLV is always included if LLDP-MED is enabled.

Default Configuration
Disabled

Command Mode
Interface (Ethernet) Configuration mode
Example

The following example enables LLDP MED with the location TLV on gi13.

```
switchxxxxxx(config)# interface gi13
switchxxxxxx(config-if)# lldp med enable location
```

30.7 **lldp med notifications topology-change**

To enable sending LLDP MED topology change notifications on a port, use the `lldp med notifications topology-change` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp med notifications topology-change {enable | disable}
no lldp med notifications topology-change
```

Parameters

- `enable`—Enables sending LLDP MED topology change notifications.
- `disable`—Disables sending LLDP MED topology change notifications.

Default Configuration

Disable is the default.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables sending LLDP MED topology change notifications on gi12.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# lldp med notifications topology-change enable
```
30.8 lldp med fast-start repeat-count

When a port comes up, LLDP can send packets more quickly than usual using its fast-start mechanism.

To configure the number of packets that is sent during the activation of the fast start mechanism, use the `lldp med fast-start repeat-count` Global Configuration mode command. To return to default, use the `no` form of this command.

Syntax

```
lldp med fast-start repeat-count number
no lldp med fast-start repeat-count
```

Parameters

- `repeat-count number`—Specifies the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism. The range is 1-10.

Default Configuration

3

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp med fast-start repeat-count 4
```

30.9 lldp med location

To configure the location information for the LLDP Media Endpoint Discovery (MED) for a port, use the `lldp med location` Interface (Ethernet) Configuration mode command. To delete location information for a port, use the `no` form of this command.

Syntax

```
lldp med location {{coordinate data} | {civic-address data} | {ecs-elin data}}
no lldp med location {coordinate | civic-address | ecs-elin}
```
Parameters

- **coordinate data**—Specifies the location data as coordinates in hexadecimal format.
- **civic-address data**—Specifies the location data as a civic address in hexadecimal format.
- **ecs-elin data**—Specifies the location data as an Emergency Call Service Emergency Location Identification Number (ECS ELIN) in hexadecimal format.
- **data**—Specifies the location data in the format defined in ANSI/TIA 1057: dotted hexadecimal data: Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. (Length: coordinate: 16 bytes. Civic-address: 6-160 bytes. Ecs-elin: 10-25 bytes)

Default Configuration

The location is not configured.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example configures the LLDP MED location information on gi12 as a civic address.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# lldp med location civic-address 616263646566
```

30.10 **Ildp med network-policy (global)**

To define a LLDP MED network policy, use the `lldp med network-policy` Global Configuration mode command. For voice applications, it is simpler to use `lldp med network-policy voice auto`.

The `lldp med network-policy` command creates the network policy, which is attached to a port by `lldp med network-policy (interface)`.

The network policy defines how LLDP packets are constructed.
To remove LLDP MED network policy, use the no form of this command.

Syntax

```
lldp med network-policy number application [vlan vlan-id] [vlan-type {tagged | untagged}] [up priority] [dscp value]
```

```
no lldp med network-policy number
```

Parameters

- **number**—Network policy sequential number. The range is 1-32.
- **application**—The name or the number of the primary function of the application defined for this network policy. Available application names are:
 - voice
 - voice-signaling
 - guest-voice
 - guest-voice-signaling
 - softphone-voice
 - video-conferencing
 - streaming-video
 - video-signaling.
- **vlan vlan-id**—(Optional) VLAN identifier for the application.
- **vlan-type**—(Optional) Specifies if the application is using a tagged or an untagged VLAN.
- **up priority**—(Optional) User Priority (Layer 2 priority) to be used for the specified application.
- **dscp value**—(Optional) DSCP value to be used for the specified application.

Default Configuration

No network policy is defined.

Command Mode

Global Configuration mode
User Guidelines

Use the `lldp med network-policy` Interface Configuration command to attach a network policy to a port.

Up to 32 network policies can be defined.

Example

This example creates a network policy for the voice-signal application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
  vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# lldp med network-policy add 1
```

30.11 lldp med network-policy (interface)

To attach or remove an LLDP MED network policy on a port, use the `lldp med network-policy` Interface (Ethernet) Configuration mode command. Network policies are created in `lldp med network-policy (global)`.

To remove all the LLDP MED network policies from the port, use the `no` form of this command.

Syntax

```
lldp med network-policy [add | remove] number
no lldp med network-policy number
```

Parameters

- **add/remove number**—Attaches/removes the specified network policy to the interface.
- **number**—Specifies the network policy sequential number. The range is 1-32

Default Configuration

No network policy is attached to the interface.
Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

For each port, only one network policy per application (voice, voice-signaling, etc.) can be defined.

Example

This example creates a network policy for the voice-signaling application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
  vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp med network-policy add 1
```

30.12 lldp med network-policy voice auto

A network policy for voice LLDP packets can be created by using the `lldp med network-policy (global)` command. The `lldp med network-policy voice auto` Global Configuration mode is simpler in that it uses the configuration of the Voice application to create the network policy instead of the user having to manually configure it.

This command generates an LLDP MED network policy for voice, if the voice VLAN operation mode is `auto voice VLAN`. The voice VLAN, 802.1p priority, and the DSCP of the voice VLAN are used in the policy.

To disable this mode, use the `no` form of this command.

The network policy is attached automatically to the voice VLAN.

Syntax

```
lldp med network-policy voice auto
no lldp med network-policy voice auto
```
Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Global Configuration mode

User Guidelines

In Auto mode, the Voice VLAN feature determines on which interfaces to advertise the network policy TLV with application type voice, and controls the parameters of that TLV.

To enable the auto generation of a network policy based on the auto voice VLAN, there must be no manually pre-configured network policies for the voice application.

In Auto mode, you cannot manually define a network policy for the voice application using the lldp med network-policy (global) command.

Example

```
switchxxxxxx(config)# lldp med network-policy voice auto
```

30.13 lldp notifications

To enable/disable sending LLDP notifications on an interface, use the lldp notifications Interface (Ethernet) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

```
lldp notifications {enable | disable}
no lldp notifications
```

Parameters

- `enable`—Enables sending LLDP notifications.
- `disable`—Disables sending LLDP notifications.
Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables sending LLDP notifications on gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# lldp notifications enable
```

30.14 lldp notifications interval

To configure the maximum transmission rate of LLDP notifications, use the `lldp notifications interval` Global Configuration mode command. To return to the default, use the `no` form of this command.

Syntax

```
lldp notifications interval seconds
no lldp notifications interval
```

Parameters

- `interval seconds`—The device does not send more than a single notification in the indicated period (range: 5–3600).

Default Configuration

5 seconds

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp notifications interval 10
```
30.15 lldp optional-tlv

To specify which optional TLVs are transmitted, use the `lldp optional-tlv` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`lldp optional-tlv tlv [tlv2 ... tlv5] none`

Parameters

- `tlv`—Specifies the TLVs to be included. Available optional TLVs are: `port-desc`, `sys-name`, `sys-desc`, `sys-cap`, `802.3-mac-phy`, `802.3-lag`, `802.3-max-frame-size`.
- `none`—(Optional) Clear all optional TLVs from the interface.

If the 802.1 protocol is selected, see the command below.

Default Configuration

The following TLV are transmitted:

- `sys-name`
- `sys-cap`

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example specifies that the port description TLV is transmitted on gi12.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# lldp optional-tlv port-desc
```
30.16 lldp optional-tlv 802.1

To specify whether to transmit the 802.1 TLV, use the `lldp optional-tlv 802.1` Interface (Ethernet) Configuration mode command. To revert to the default setting, use the `no` form of this command.

Syntax

- `lldp optional-tlv 802.1 pvid {enable | disable}` - The PVID is advertised or not advertised.
- `no lldp optional-tlv 802.1 pvid` - The PVID advertise state is returned to default.
- `lldp optional-tlv 802.1 ppvid add ppvid` - The Protocol Port VLAN ID (PPVID) is advertised. The PPVID is the PVID that is used depending on the packet's protocol.
- `lldp optional-tlv 802.1 ppvid remove ppvid` - The PPVID is not advertised.
- `lldp optional-tlv 802.1 vlan add vlan-id` - This `vlan-id` is advertised.
- `lldp optional-tlv 802.1 vlan remove vlan-id` - This `vlan-id` is not advertised.
- `lldp optional-tlv 802.1 protocol add {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}` - The protocols selected are advertised.
- `lldp optional-tlv 802.1 protocol remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}` - The protocols selected are not advertised.

Parameters

- `lldp optional-tlv 802.1 pvid {enable | disable}`—Advertises or stop advertize the PVID of the port.
- `lldp optional-tlv 802.1 ppvid add/remove ppvid`—Adds/removes PPVID for advertising. (range: 0–4094). PPVID = 0 indicates that the port is not capable of supporting port and protocol VLANs and/or the port is not enabled with any protocol VLANs.
- `add/remove vlan-id`—Adds/removes VLAN for advertising (range: 0–4094).
- `add/remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}`—Add specifies to advertise the specified protocols; remove specifies not to advertise the specified protocol.

Default Configuration

The following 802.1 TLV is transmitted:
Command Mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxx(config)# lldp optional-tlv 802.1 protocol add stp
```

30.17 lldp run

To enable LLDP, use the `lldp run` Global Configuration mode command. To disable LLDP, use the `no` form of this command.

Syntax

`lldp run`

`no lldp run`

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

```
switchxxxxx(config)# lldp run
```

30.18 lldp receive

To enable receiving LLDP on an interface, use the `lldp receive` Interface (Ethernet) Configuration mode command. To stop receiving LLDP on an Interface (Ethernet) Configuration mode interface, use the `no` form of this command.
Link Layer Discovery Protocol (LLDP) Commands

Syntax
lldp receive
no lldp receive

Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
LLDP manages LAG ports individually. LLDP data received through LAG ports is stored individually per port.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are received on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp receive

30.19 lldp reinit

To specify the minimum time an LLDP port waits before reinitializing LLDP transmission, use the lldp reinit Global Configuration mode command. To revert to the default setting, use the no form of this command.

Syntax
lldp reinit seconds
no lldp reinit
Parameters

reinit seconds—Specifies the minimum time in seconds an LLDP port waits before reinitializing LLDP transmission. (Range: 1–10)

Default Configuration

2 seconds

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# lldp reinit 4

30.20 lldp timer

To specify how often the software sends LLDP updates, use the lldp timer Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

lldp timer seconds

no lldp timer

Parameters

timer seconds—Specifies, in seconds, how often the software sends LLDP updates (range: 5-32768 seconds).

Default Configuration

30 seconds.

Command Mode

Global Configuration mode
Example

The following example sets the interval for sending LLDP updates to 60 seconds.

```
switchxxxxx(config)# lldp timer 60
```

30.21 lldp transmit

To enable transmitting LLDP on an interface, use the no form of this command to stop transmitting LLDP on an interface, use the `lldp transmit` Interface (Ethernet) Configuration mode command.

Syntax

```
lldp transmit
no lldp transmit
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

```
switchxxxxxx(config-if)#
```

User Guidelines

LLDP manages LAG ports individually. LLDP sends separate advertisements on each port in a LAG.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are sent on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

```
switchxxxxx(config)# interface gi1
```
30.22 lldp tx-delay

To set the delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB, use the `lldp tx-delay` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp tx-delay seconds
no lldp tx-delay
```

Parameters

- `tx-delay seconds`—Specifies the delay in seconds between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB (range: 1-8192 seconds).

Default Configuration

The default LLDP frame transmission delay is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

It is recommended that the tx-delay be less than 25% of the LLDP timer interval.

Example

The following example sets the LLDP transmission delay to 10 seconds.

```
switchxxxxxx(config)# lldp tx-delay 10
```
30.23 show lldp configuration

To display the LLDP configuration for all ports or for a specific port, use the `show lldp configuration` Privileged EXEC mode command.

Syntax

`show lldp configuration [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies the port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

Example 1 - Display LLDP configuration for all ports.

```
switchxxxxxx# show lldp configuration
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering
<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>172.16.1.1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```
Example 2 - Display LLDP configuration for port 1.

switchxxxxxx# show lldp configuration gi11
 State: Enabled
 Timer: 30 Seconds
 Hold multiplier: 4
 Reinit delay: 2 Seconds
 Tx delay: 2 Seconds
 Notifications interval: 5 seconds
 LLDP packets handling: Filtering
 Chassis ID: mac-address

<table>
<thead>
<tr>
<th>Port State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>72.16.1.1</td>
</tr>
</tbody>
</table>

 802.3 optional TLVs: 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size
 802.1 optional TLVs
 PVID: Enabled
 PPVIDs: 0, 1, 92
 VLANs: 1, 92
 Protocols: 802.1x

 The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>The time interval between LLDP updates.</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>The amount of time (as a multiple of the timer interval) that the receiving device holds a LLDP packet before discarding it.</td>
</tr>
<tr>
<td>Reinit timer</td>
<td>The minimum time interval an LLDP port waits before re-initializing an LLDP transmission.</td>
</tr>
</tbody>
</table>
30.24 show lldp local

To display the LLDP information that is advertised from a specific port, use the `show lldp local` Privileged EXEC mode command.

Syntax

```
show lldp local interface-id
```

Parameters

- `Interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

Privileged EXEC mode
Example

The following examples display LLDP information that is advertised from gi11 and 2.

```
switchxxxxxx# show lldp local gi11
Device ID: 0060.704C.73FF
Port ID: gi11
Capabilities: Bridge
System Name: ts-7800-1
System description:
Port description:
Management address: 172.16.1.8
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported
Auto-negotiation status: Enabled
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex
Operational MAU type: 1000BaseTFD
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Local Tx: 30 usec
Local Rx: 25 usec
Remote Tx Echo: 30 usec
Remote Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
```
802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy, Location Identification
LLDP-MED Device type: Network Connectivity
LLDP-MED Network policy
Application type: Voice
Flags: Tagged VLAN
VLAN ID: 2
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Sourcing Entity
Power source: Primary Power Source
Power priority: High
Power value: 9.6 Watts
LLDP-MED Location
Hardware Revision: B1
Firmware Revision: A1
Software Revision: 3.8
Serial number: 7978399
Manufacturer name: Manufacturer
Model name: Model 1
Asset ID: Asset 123

switchxxxxxx# show lldp local gi12
LLDP is disabled.

30.25 show lldp local tlvs-overloading

When an LLDP packet contains too much information for one packet, this is called overloading. To display the status of TLVs overloading of the LLDP on all ports or on a specific port, use the `show lldp local tlvs-overloading` EXEC mode command.
Syntax

`show lldp local tlvs-overloading [interface-id]`

Parameters

`interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

User EXEC mode

User Guidelines

The command calculates the overloading status of the current LLDP configuration, and not for the last LLDP packet that was sent.

Example

```
switchxxxxxx# show lldp local tlvs-overloading gi11

TLVs Group           Bytes  Status
----------------------------------
Mandatory              31     Transmitted
LLDP-MED Capabilities  9      Transmitted
LLDP-MED Location      200    Transmitted
802.1                 1360   Overloading

Total: 1600 bytes
Left: 100 bytes
```

30.26 show lldp med configuration

To display the LLDP Media Endpoint Discovery (MED) configuration for all ports or for a specific port, use the `show lldp med configuration` Privileged EXEC mode command.
Syntax

```
show lldp med configuration [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies the port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

Example 1 - The following example displays the LLDP MED configuration for all interfaces.

```
switchxxxxxx# show lldp med configuration
Fast Start Repeat Count: 4.
lldp med network-policy voice: manual
Network policy 1

Application type: voiceSignaling
VLAN ID: 1 untagged
Layer 2 priority: 0
DSCP: 0

<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network Policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>gi12</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Enabled</td>
<td>No</td>
</tr>
</tbody>
</table>
```
Example 2 - The following example displays the LLDP MED configuration for gi1.

```
switchxxxxxx# show lldp med configuration gi1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network Policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Network policies:
Location:

30.27 show lldp neighbors

To display information about neighboring devices discovered using LLDP, use the `show lldp neighbors` Privileged EXEC mode command. The information can be displayed for all ports or for a specific port.

Syntax

```
show lldp neighbors [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

Privileged EXEC mode

User Guidelines

A TLV value that cannot be displayed as an ASCII string is displayed as an hexadecimal string.
Examples

Example 1 - The following example displays information about neighboring devices discovered using LLDP on all ports on which LLDP is enabled and who are up.

Location information, if it exists, is also displayed.

```
switchxxxxxx# show lldp neighbors
```

System capability legend:
B - Bridge; R - Router; W - Wlan Access Point; T - telephone;
D - DOCSIS Cable Device; H - Host; r - Repeater;
TP - Two Ports MAC Relay; S - S-VLAN; C - C-VLAN; O - Other

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port ID</th>
<th>System Name</th>
<th>Capabilities</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>00:00:00:11:11:11</td>
<td>gi11</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>gi11</td>
<td>00:00:00:11:11:11</td>
<td>gi11</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>gi12</td>
<td>00:00:26:08:13:24</td>
<td>gi13</td>
<td>ts-7900-1</td>
<td>B, R</td>
<td>90</td>
</tr>
<tr>
<td>gi13</td>
<td>00:00:26:08:13:24</td>
<td>gi12</td>
<td>ts-7900-2</td>
<td>W</td>
<td>90</td>
</tr>
</tbody>
</table>

Example 2 - The following example displays information about neighboring devices discovered using LLDP on port 1.

```
switchxxxxxx# show lldp neighbors gi11
```

Device ID: 00:00:00:11:11:11
Port ID: gi11
System Name: ts-7800-2
Capabilities: B
System description:
Port description:
Management address: 172.16.1.1
Time To Live: 90 seconds
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported.
Auto-negotiation status: Enabled.
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex.
Operational MAU type: 1000BaseTFD
802.3 Power via MDI
MDI Power support Port Class: PD
PSE MDI Power Support: Not Supported
PSE MDI Power State: Not Enabled
PSE power pair control ability: Not supported.
PSE Power Pair: Signal
PSE Power class: 1
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Remote Tx: 25 usec
Remote Rx: 30 usec
Local Tx Echo: 30 usec
Local Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy.
LLDP-MED Device type: Endpoint class 2.
LLDP-MED Network policy
Application type: Voice
Flags: Unknown policy
VLAN ID: 0
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Device
Power source: Primary power
Power priority: High
Power value: 9.6 Watts
Hardware revision: 2.1
Firmware revision: 2.3
Software revision: 2.7.1
Serial number: LM759846587
Manufacturer name: VP
Model name: TR12
Asset ID: 9
LLDP-MED Location

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>B - Bridge</td>
</tr>
<tr>
<td></td>
<td>R - Router</td>
</tr>
<tr>
<td></td>
<td>W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>T - Telephone</td>
</tr>
<tr>
<td></td>
<td>D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>H - Host</td>
</tr>
<tr>
<td></td>
<td>r - Repeater</td>
</tr>
<tr>
<td></td>
<td>O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port. (supported or not supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port. (enabled or disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>LLDP MED</td>
<td></td>
</tr>
<tr>
<td>Capabilities</td>
<td>The sender’s LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
<tr>
<td>LLDP MED - Network Policy</td>
<td></td>
</tr>
<tr>
<td>Application type</td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>Unknown policy: Policy is required by the device, but is currently unknown.</td>
</tr>
<tr>
<td></td>
<td>Tagged VLAN: The specified application type is using a tagged VLAN.</td>
</tr>
<tr>
<td></td>
<td>Untagged VLAN: The specified application type is using an Untagged VLAN.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN identifier for the application.</td>
</tr>
<tr>
<td>Layer 2 priority</td>
<td>The Layer 2 priority used for the specified application.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The DSCP value used for the specified application.</td>
</tr>
<tr>
<td>LLDP MED - Power Over Ethernet</td>
<td></td>
</tr>
<tr>
<td>Power type</td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td>Power priority</td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
<tr>
<td>Power value</td>
<td>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</td>
</tr>
<tr>
<td>LLDP MED - Location</td>
<td></td>
</tr>
<tr>
<td>Coordinates, Civic address, ECS ELIN</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
30.28 show lldp statistics

To display LLDP statistics on all ports or a specific port, use the `show lldp statistics` EXEC mode command.

Syntax

`show lldp statistics [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies the port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

```
switchxxxx# show lldp statistics
Tables Last Change Time: 14-Oct-2010 32:08:18
Tables Inserts: 26
Tables Deletes: 2
Tables Dropped: 0
Tables Ageouts: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>TX Frames</th>
<th>RX Frame</th>
<th>RX TLVs</th>
<th>RX Ageouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>730</td>
<td>850</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi13</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```


The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>B - Bridge</td>
</tr>
<tr>
<td></td>
<td>R - Router</td>
</tr>
<tr>
<td></td>
<td>W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>T - Telephone</td>
</tr>
<tr>
<td></td>
<td>D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>H - Host</td>
</tr>
<tr>
<td></td>
<td>r - Repeater</td>
</tr>
<tr>
<td></td>
<td>O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>The auto-negotiation support status on the port.</td>
</tr>
<tr>
<td>support</td>
<td>(Supported or Not Supported)</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>The active status of auto-negotiation on the port.</td>
</tr>
<tr>
<td>status</td>
<td>(Enabled or Disabled)</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Advertised Capabilities</td>
<td></td>
</tr>
<tr>
<td>Operational MAU</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>type</td>
<td></td>
</tr>
<tr>
<td>LLDP MED</td>
<td>The sender's LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Capabilities</td>
<td></td>
</tr>
</tbody>
</table>
Link Layer Discovery Protocol (LLDP) Commands

Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
</tbody>
</table>

LLDP MED - Network Policy

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application type</td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
</tbody>
</table>
| **Flags** | Flags. The possible values are:
Unknown policy: Policy is required by the device, but is currently unknown.
Tagged VLAN: The specified application type is using a Tagged VLAN.
Untagged VLAN: The specified application type is using an Untagged VLAN. |
| **VLAN ID** | The VLAN identifier for the application. |
| **Layer 2 priority** | The Layer 2 priority used for the specified application. |
| **DSCP** | The DSCP value used for the specified application. |

LLDP MED - Power Over Ethernet

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power type</td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td>Power priority</td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
<tr>
<td>Power value</td>
<td>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</td>
</tr>
</tbody>
</table>

LLDP MED - Location

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates, Civic address, ECS ELIN.</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
Loopback Detection Commands

31.1 loopback-detection enable (Global)

To enable the Loopback Detection (LBD) feature globally, use the loopback-detection enable Global Configuration mode command. To disable the Loopback Detection feature, use the no form of this command.

Syntax

loopback-detection enable

no loopback-detection enable

Parameters

This command has no arguments or keywords.

Default Configuration

Loopback Detection is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables the Loopback Detection feature globally. Use the loopback-detection enable Interface Configuration mode command to enable Loopback Detection on an interface.

Example

The following example enables the Loopback Detection feature on the device.

switchxxxxxx(config)# loopback-detection enable
31.2 loopback-detection enable (Interface)

To enable the Loopback Detection (LBD) feature on an interface, use the `loopback-detection enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable the Loopback Detection feature on the interface, use the `no` form of this command.

Syntax

```
loopback-detection enable
no loopback-detection enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

Loopback Detection is enabled on an interface.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

This command enables Loopback Detection on an interface. Use the `loopback-detection enable` Global Configuration command to enable Loopback Detection globally.

Example

The following example enables the Loopback Detection feature on port `gi14`.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# loopback-detection enable
```

31.3 loopback-detection interval

To set the time interval between LBD packets, use the `loopback-detection interval` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.
Syntax

loopback-detection interval *seconds*

no loopback-detection interval

Parameters

seconds—Specifies the time interval in seconds between LBD packets. (Range: 10–60 seconds)

Default Configuration

The default time interval between LBD packets is 30 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the time interval between LBD packets to 45 seconds.

```
switchxxxxxx(config)# loopback-detection interval 45
```

31.4 show loopback-detection

To display information about Loopback Detection, use the show loopback-detection Privileged EXEC mode command.

Syntax

show loopback-detection [interface-id /detailed]

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

- **detailed**—(Optional) Displays information for non-present ports in addition to present ports. If this is not set, the default is to display all present ports.

Default Configuration

All ports are displayed. If detailed is not used, only present ports are displayed.
Command Mode

Privileged EXEC mode

User Guidelines

Operational status of **Active** indicates the following conditions are meet:

- Loopback is globally enabled.
- Loopback is enabled on the interface.
- Interface operational state of the interface is up.
- Interface STP state is Forwarding or STP state is disabled.

Operational status of **LoopDetected** indicates that the interface entered errDisabled state (see set interface active or errdisable recovery cause for more information).

Operational status of **Inactive** indicates that loopback detection is not actively attempting to detect loops, i.e. the **Active** status conditions are not meet.

Example

The following example displays information about the status of Loopback Detection.

```
Console# show loopback-detection
Loopback detection: Enabled
LBD packets interval: 30 Seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Loopback Detection</th>
<th>Operational State</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>Active</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>LoopDetected</td>
</tr>
<tr>
<td>gi13</td>
<td>Enabled</td>
<td>Inactive</td>
</tr>
<tr>
<td>gi14</td>
<td>Disabled</td>
<td>Inactive</td>
</tr>
</tbody>
</table>
```
Macro Commands

32.1 macro name

Use the `macro name` Global Configuration mode command to define a macro. There are two types of macros that can be defined:

- Global macros define a group of CLI commands that can be run at any time.
- Smartport macros are associated with Smartport types. For each Smartport macro there must be an anti macro (a macro whose name is concatenated with `no_`). The anti macro reverses the action of the macro.

If a macro with this name already exists, it overrides the previously-defined one.

Use the `no` form of this command to delete the macro definition.

Syntax

```plaintext
macro name macro-name
no macro name [macro-name]
```

Parameters

- `macro-name` — Name of the macro. Macro names are case sensitive.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

A macro is a script that contains CLI commands and is assigned a name by the user. It can contain up to 3000 characters and 200 lines.

Keywords
Macros may contain keywords (parameters). The following describes these keywords:

- A macro can contain up to three keywords.
- All matching occurrences of the keyword are replaced by the corresponding value specified in the macro command.
- Keyword matching is case-sensitive
- Applying a macro with keywords does not change the state of the original macro definition.

User Feedback
The behavior of a macro command requiring user feedback is the same as if the command is entered from terminal: it sends its prompt to the terminal and accepts the user reply.

Creating a Macro
Use the following guidelines to create a macro:

- Use macro name to create the macro with the specified name.
- Enter one macro command per line.
- Use the @ character to end the macro.
- Use the # character at the beginning of a line to enter a comment in the macro.

In addition, # is used to identify certain preprocessor commands that can only be used within a macro. There are two possible preprocessor commands:

- #macro key description - Each macro can be configured with up to 3 keyword/description pairs. The keywords and descriptions are displayed in the GUI pages when the macro is displayed.

The syntax for this preprocessor command is as follows:

```
#macro key description $keyword1 description1 $keyword2 description2 $keyword3 description3
```

A keyword must be prefixed with '$'.

- #macro keywords - This instruction enables the device to display the keywords as part of the CLI help. It accepts up to 3 keywords. The command creates a CLI help string with the keywords for the macro. The
help string will be displayed if help on the macro is requested from the **macro** and **macro global** commands. The GUI also uses the keywords specified in the command as the parameter names for the macro. See Example 2 and 3 below for a description of how this command is used in the CLI.

The syntax for this preprocessor command is as follows:

```
#macro keywords $keyword1 $keyword2 $keyword3
```

where $keywordn is the name of the keyword.

Editing a Macro

Macros cannot be edited. Modify a macro by creating a new macro with the same name as the existing macro. The newer macro overwrites the existing macro.

The exceptions to this are the built-in macros and corresponding anti-macros for the Smartport feature. You cannot override a Smartport macro. To change a Smartport macro, create a new macro (my_macro) and an anti macro (no_my_macro) and associate it with the Smartport type using the **macro auto user smartport macro** command.

Scope of Macro

It is important to consider the scope of any user-defined macro. Because of the potential hazards of applying unintended configurations, do not change configuration modes within the macro by using commands such as **exit**, **end**, or **interface interface-id**. With a few exceptions, there are other ways of executing macros in the various configuration modes. Macros may be executed in Privileged Exec mode, Global Configuration mode, and Interface Configuration mode (when the interface is NOT a VLAN.)

Examples

Example 1 - The following example shows how to create a macro that configures the duplex mode of a port.

```
switchxxxxxx(config)# macro name dup
Enter macro commands one per line. End with the character ‘@’.
#macro description dup
duplex full
negotiation
@
```
Example 2 - The following example shows how to create a macro with the parameters: DUPLEX and SPEED. When the macro is run, the values of DUPLEX and SPEED must be provided by the user. The `#macro keywords` command enables the user to receive help for the macro as shown in Example 3.

```
switchxxxxxx(config)# macro name duplex

Enter macro commands one per line. End with the character '@'.

duplex $DUPLEX

no negotiation

speed $SPEED

#macro keywords $DUPLEX $SPEED

@
```

Example 3 - The following example shows how to display the keywords using the help character ? (as defined by the `#macro keywords` command above) and then run the macro on the port. The `#macro keywords` command entered in the macro definition enables the user to receive help for the macro, as shown after the words e.g. below.

```
switchxxxxxx(config)# interface gi11

switchxxxxxx(config-if)# macro apply duplex ?

    WORD <1-32>  Keyword to replace with value e.g. $DUPLEX, $SPEED

    <cr>

switchxxxxxx(config-if)# macro apply duplex $DUPLEX ?

    WORD<1-32>  First parameter value

    <cr>

switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED ?

    WORD<1-32>  Second parameter value

switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100
```

32.2 macro

Use the `macro apply/trace` Interface Configuration command to either:

- Apply a macro to an interface without displaying the actions being performed
Apply a macro to the interface while displaying the actions being performed

Syntax

```bash
macro {apply | trace} macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
```

Parameters

- **apply**—Apply a macro to the specific interface.
- **trace**—Apply and trace a macro to the specific interface.
- **macro-name**—Name of the macro.
- **parameter-name value**—For each parameter defined in the macro, specify its name and value. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameter name in the macro are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The `macro apply` command hides the commands of the macro from the user while it is being run. The `macro trace` command displays the commands along with any errors which are generated by them as they are executed. This is used to debug the macro and find syntax or configuration errors.

When you run a macro, if a line in it fails because of a syntax or configuration error, the macro continues to apply the remaining commands to the interface.

If you apply a macro that contains parameters in its commands, the command fails if you do not provide the values for the parameters. You can use the `macro apply macro-name` with a '?' to display the help string for the macro keywords (if you have defined these with the `#macro keywords` preprocessor command).

Parameter (keyword) matching is case sensitive. All matching occurrences of the parameter are replaced with the provided value. Any full match of a keyword, even
if it is part of a large string, is considered a match and replaced by the corresponding value.

When you apply a macro to an interface, the switch automatically generates a macro description command with the macro name. As a result, the macro name is appended to the macro history of the interface. The `show parser macro` command displays the macro history of an interface.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When a macro is applied to an interface range, it is applied sequentially to each interface within the range. If a macro command fails on one interface, it is nonetheless attempted to be applied and may fail or succeed on the remaining interfaces.

Examples

Example 1 - The following is an example of a macro being applied to an interface with the trace option.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# macro trace dup $DUPLEX full $SPEED 100
   Applying command... 'duplex full'
   Applying command... 'speed 100'
```

Example 2 - The following is an example of a macro being applied without the trace option.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# macro apply dup $DUPLEX full $SPEED 100
```

Example 3 - The following is an example of an incorrect macro being applied.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# macro trace dup
Applying command...'duplex full'
Applying command...'speed auto'
% bad parameter value
```

switchxxxxxx(config-if)#
32.3 macro description

Use the **macro description** Interface Configuration mode command to append a description, for example, a macro name, to the macro history of an interface. Use the **no** form of this command to clear the macro history of an interface. When the macro is applied to an interface, the switch automatically generates a macro description command with the macro name. As a result, the name of the macro is appended to the macro history of the interface.

Syntax

```plaintext
macro description text
no macro description
```

Parameters

- **text**—Description text. The text can contain up to 160 characters. The text must be double quoted if it contains multiple words.

Default Configuration

The command has no default setting.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When multiple macros are applied on a single interface, the description text is a concatenation of texts from a number of previously-applied macros.

To verify the settings created by this command, run the **show parser macro** command.

Example

```plaintext
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# macro apply dup
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface gi13
switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100
```
switchxxxxxx(config-if)# macro description dup
switchxxxxxx(config-if)# macro description duplex
switchxxxxxx(config-if)# end
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description
Global Macro(s):
Interface Macro Description(s)
------------ ---
gi12 dup

switchxxxxxx# configure
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# no macro description
switchxxxxxx(config-if)# end
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description
Global Macro(s):
Interface Macro Description(s)
--------- ---
gi13 duplex | dup | duplex

32.4 macro global

Use the macro global Global Configuration command to apply a macro to a switch (with or without the trace option).

Syntax

macro global {apply | trace} macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
Parameters

- **apply**—Apply a macro to the switch.
- **trace**—Apply and trace a macro to the switch.
- **macro-name**—Specify the name of the macro.
- **parameter-name value**—Specify the parameter values required for the switch. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameters are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode

User Guidelines

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

If you apply a macro that contains keywords in its commands, the command fails if you do not specify the proper values for the keywords when you apply the macro. You can use this command with a '?' to display the help string for the macro keywords. You define the keywords in the help string using the preprocessor command `#macro keywords` when you define a macro.

When you apply a macro in Global Configuration mode, the switch automatically generates a global macro description command with the macro name. As a result, the macro name is appended to the global macro history. Use `show parser macro` to display the global macro history.

Example.

The following is an example of a macro being defined and then applied to the switch with the trace option.
32.5 macro global description

Use the **macro global description** Global Configuration command to enter a description which is used to indicate which macros have been applied to the switch. Use the **no** form of this command to remove the description.

Syntax

```
macro global description text
```

no macro global description

Parameters

- **text**—Description text. The text can contain up to 160 characters.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode

User Guidelines

When multiple global macros are applied to a switch, the global description text is a concatenation of texts from a number of previously applied macros.

You can verify your settings by entering the `show parser macro` command with the **description** keyword.
Examples

switchxxxxxx(config)# macro global description "set console timeout interval"

32.6 show parser macro

Use the show parser macro User EXEC mode command to display the parameters for all configured macros or for one macro on the switch.

Syntax

show parser macro [brief | description [interface interface-id /detailed] /name macro-name]

Parameters

- **brief**—Display the name of all macros.
- **description [interface interface-id]**—Display the macro descriptions for all interfaces or if an interface is specified, display the macro descriptions for that interface.
- **name macro-name**—Display information about a single macro identified by the macro name.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display description of all macros on present ports.

If the **detailed** keyword is not used, only present ports are displayed.

Command Mode

User EXEC mode

Examples

Example 1 - This is a partial output example from the show parser macro command.

switchxxxxxx# show parser macro
Total number of macros = 6

Macro name : company-global
Macro type : default global
Enable dynamic port error recovery for link state
failures

Macro name : company-desktop
Macro type : default interface
macro keywords $AVID
Basic interface - Enable data VLAN only
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

Example 2 - This is an example of output from the show parser macro name command.

switchxxxxxx# show parser macro standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
Trust QoS settings on VOIP packets
auto qos voip trust
Allow port channels to be automatically formed
channel-protocol pagp

Example 3 - This is an example of output from the show parser macro brief command.

switchxxxxxx# show parser macro brief
default global : company-global
default interface: company-desktop
default interface: company-phone
default interface: company-switch
customizable : snmp

Example 4 - This is an example of output from the `show parser macro description` command.

```
switchxxxxxx# show parser macro description
Global Macro(s): company-global
```

Example 5 - This is an example of output from the `show parser macro description interface` command.

```
switchxxxxxx# show parser macro description interface gi12
Interface Macro Description
-----------------------------------------------
gi12 this is test macro
-----------------------------------------------
```
33.1 deny (Management)

To set permit rules (ACEs) for the management access list (ACL), use the `deny` Management Access-list Configuration mode command.

Syntax

```plaintext
deny [interface-id] [service service]
deny ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- `service service`—(Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP
- `ipv4-address`—Specifies the source IPv4 address.
- `ipv6-address/ipv6-prefix-length`—Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- `mask mask`—Specifies the source IPv4 address network mask. The parameter is relevant only to IPv4 addresses.
- `mask prefix-length`—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). The parameter is relevant only to IPv4 addresses. (Range: 0–32)

Default Configuration

No rules are configured.
Command Mode

Management Access-list Configuration mode

User Guidelines

Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example

The following example denies all ports in the ACL called mlist.

```
switchxxxxx(config)# management access-list mlist
switchxxxxx(config-macl)# switch deny
```

33.2 permit (Management)

To set permit rules (ACEs) for the management access list (ACL), use the `permit` Management Access-list Configuration mode command.

Syntax

- `permit [interface-id] [service service]`
- `permit ip-source (ipv4-address | ipv6-address/ipv6-prefix-length) [mask [mask | prefix-length]] [interface-id] [service service]`

Parameters

- `interface-id` — (Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- `service service` — (Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP
- `ipv4-address` — Specifies the source IPv4 address.
- `ipv6-address/ipv6-prefix-length` — Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- `mask mask` — Specifies the source IPv4 address network mask. This parameter is relevant only to IPv4 addresses.
33.3 management access-list

To configure a management access list (ACL) and enter the Management Access-list Configuration mode, use the `management access-list` Global Configuration mode command. To delete an ACL, use the `no` form of this command.

Syntax

```
management access-list name
no management access-list name
```

Parameters

- `name`—Specifies the ACL name. (Length: 1–32 characters)

Default Configuration

N/A
Command Mode

Global Configuration mode

User Guidelines

Use this command to configure a management access list. This command enters the Management Access-list Configuration mode, where the denied or permitted access conditions are defined with the deny and permit commands.

If no match criteria are defined, the default value is deny.

When re-entering the access-list context, the new rules are entered at the end of the access list.

Use the management access-class command to select the active access list.

The active management list cannot be updated or removed.

For IPv6 management traffic that is tunneled in IPv4 packets, the management ACL is applied first on the external IPv4 header (rules with the service field are ignored), and then again on the inner IPv6 header.

Examples

Example 1 - The following example creates a management access list called mlist, configures management gi11 and gi19, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# switchpermit gi11
switchxxxxxx(config-macl)# switchpermit gi19
switchxxxxxx(config-macl)# switchexit
switchxxxxxx(config)# management access-class mlist
```

Example 2 - The following example creates a management access list called 'mlist', configures all interfaces to be management interfaces except gi11 and gi19, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# switchdeny gi11
switchxxxxxx(config-macl)# switchdeny gi19
```
33.4 management access-class

To restrict management connections by defining the active management access list (ACL), use the `management access-class` Global Configuration mode command. To disable management connection restrictions, use the `no` form of this command.

Syntax

```
management access-class {console-only | name}
no management access-class
```

Parameters

- **console-only**—Specifies that the device can be managed only from the console.
- **name**—Specifies the ACL name to be used. (Length: 1–32 characters)

Default Configuration

The default configuration is no management connection restrictions.

Command Mode

Global Configuration mode

Example

The following example defines an access list called `mlist` as the active management access list.

```
switchxxxxxxx(config)# management access-class mlist
```
33.5 show management access-list

To display management access lists (ACLs), use the `show management access-list` Privileged EXEC mode command.

Syntax

```
show management access-list [name]
```

Parameters

name—(Optional) Specifies the name of a management access list to be displayed. (Length: 1–32 characters)

Default Configuration

All management ACLs are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the `mlist` management ACL.

```
switchxxxxxx# show management access-list mlist
ml
--
deny service telnet
permit gill service telnet
! (Note: all other access implicitly denied)
core (config-macl)#
```

33.6 show management access-class

To display information about the active management access list (ACLs), use the `show management access-class` Privileged EXEC mode command.
Syntax

show management access-class

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the active management ACL information.

```
switchxxxxxx# show management access-class
Management access-class is enabled, using access list mlist
```
34.1 ipv6 mld snooping (Global)

To enable IPv6 Multicast Listener Discovery (MLD) snooping, use the `ipv6 mld snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 mld snooping

no ipv6 mld snooping

Parameters

N/A

Default Configuration

IPv6 MLD snooping is disabled.

Command Mode

Global Configuration mode

Example

The following example enables IPv6 MLD snooping.

```
switchxxxxxx(config)# ipv6 mld snooping
```

34.2 ipv6 mld snooping vlan

To enable MLD snooping on a specific VLAN, use the `ipv6 mld snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.
MLD Snooping Commands

Syntax

ipv6 mld snooping vlan vlan-id

no ipv6 mld snooping vlan vlan-id

Parameters

- vlan-id—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

MLD snooping can only be enabled on static VLANs.

MLDv1 and MLDv2 are supported.

To activate MLD snooping, bridge multicast filtering must be enabled by the bridge multicast filtering command.

The user guidelines of the bridge multicast mode command describe the configuration that can be written into the FDB as a function of the FDB mode, and the MLD version that is used in the network.

Example

switchxxxxxx(config)# ipv6 mld snooping vlan 2

34.3 ipv6 mld snooping querier

To enable globally the MLD Snooping querier, use the ipv6 mld snooping querier command in Global Configuration mode. To disable the MLD Snooping querier globally, use the no form of this command.

Syntax

ipv6 mld snooping querier

no ipv6 mld snooping querier
Parameters
N/A

Default Configuration
Enabled

Command Mode
Global Configuration mode

User Guidelines
To run the MLD Snooping querier on a VLAN, you have enable it globally and on the VLAN.

Example
The following example disables the MLD Snooping querier globally:

switchxxxxxx(config)# no ipv6 mld snooping querier

34.4 ipv6 mld snooping vlan querier

To enable the Internet MLD Snooping querier on a specific VLAN, use the ipv6 mld snooping vlan querier command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax
ipv6 mld snooping vlan vlan-id querier
no ipv6 mld snooping vlan vlan-id querier

Parameters
- vlan-id—Specifies the VLAN.

Default Configuration
Disabled
Command Mode

Global Configuration mode

User Guidelines

The MLD Snooping querier can be enabled on a VLAN only if MLD Snooping is enabled for that VLAN.

Example

The following example enables the MLD Snooping querier on VLAN 1:

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 querier
```

34.5 ipv6 mld snooping vlan querier election

To enable MLD Querier election mechanism of an MLD Snooping querier on a specific VLAN, use the `ipv6 mld snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier election
no ipv6 mld snooping vlan vlan-id querier election
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

Use the `no` form of the `ipv6 mld snooping vlan querier election` command to disable MLD Querier election mechanism on a VLAN.
If the MLD Querier election mechanism is enabled, the MLD Snooping querier supports the standard MLD Querier election mechanism specified in RFC2710 and RFC3810.

If MLD Querier election mechanism is disabled, MLD Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if the switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to

\(<\text{Robustness}>*<\text{Query Interval}> + 0.5^*<\text{Query Response Interval}>\).

See the `ipv6 mld robustness`, `ipv6 mld query-interval`, and `ipv6 mld query-max-response-time` commands for configurations of these parameters.

It is recommended to disable MLD Querier election mechanism if there is an IPMv6 Multicast router on the VLAN.

Example

The following example disables MLD Snooping Querier election on VLAN 1:

```
switchxxxxxx(config)# no ipv6 mld snooping vlan 1 querier election
```

34.6 `ipv6 mld snooping vlan querier version`

To configure the IGMP version of an IGMP querier on a specific VLAN, use the `ipv6 mld snooping vlan querier version` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier version {1 | 2}
no ipv6 mld snooping vlan vlan-id querier version
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `querier version {1 | 2}`—Specifies the MLD version.
Default Configuration

MLDv1.

Command Mode

Global Configuration mode

Example

The following example sets the version of the MLD Snooping Querier VLAN 1 to 2:

```
switchxxxxx(config)# ipv6 mld snooping vlan 1 querier version 2
```

34.7 ipv6 mld snooping vlan mrouter

To enable automatic learning of Multicast router ports, use the `ipv6 mld snooping vlan mrouter` command in Global Configuration mode. To remove the configuration, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
no ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `pim-dvmrp`—Learn Multicast router port by PIM, DVMRP and MLD messages.

Default Configuration

Learning `pim-dvmrp` is enabled.

Command Mode

Global Configuration mode

User Guidelines

Multicast router ports can be configured statically with the `bridge multicast forward-all` command.

You can execute the command before the VLAN is created.
Example

switchxxxxxx(config)# ipv6 mld snooping vlan 1 mrouter learn pim-dvmrp

34.8 ipv6 mld snooping vlan mrouter interface

To define a port that is connected to a Multicast router port, use the `ipv6 mld snooping mrouter interface` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies a list of interfaces. The interfaces can be from one of the following types: port or port-channel.

Default Configuration

No ports defined

Command Mode

Global Configuration mode

User Guidelines

This command may be used in conjunction with the `bridge multicast forward-all` command, which is used in older versions to statically configure a port as a Multicast router.

A port that is defined as a Multicast router port receives all MLD packets (reports and queries) as well as all Multicast data.

You can execute the command before the VLAN is created and for a range of ports as shown in the example.

Example

```
switchxxxxxx(config)# interface gill
switchxxxxxx(config-if)# ipv6 mld snooping vlan 1 mrouter interface gill-4
```
34.9 ipv6 mld snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the `ipv6 mld snooping vlan forbidden mrouter` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No forbidden ports by default

Command Mode

Global Configuration mode

User Guidelines

A port that is forbidden to be defined as a Multicast router port (mrouter port) cannot be learned dynamically or assigned statically.

The `bridge multicast forward-all` command was used in older versions to forbid dynamic learning of Multicast router ports.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 forbidden mrouter interface gi11
```
34.10 ipv6 mld snooping vlan static

To register a IPv6-layer Multicast address to the bridge table, and to add statically ports to the group, use the `ipv6 mld snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]
no ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `ipv6-address`—Specifies the IP multicast address
- `interface interface-list`—(Optional) Specifies list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

Default Configuration

No Multicast addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

Static multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.

You can register an entry without specifying an interface.

Using the `no` command without a port-list removes the entry.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 static FF12::3 gi11
```
34.11 ipv6 mld snooping vlan immediate-leave

To enable MLD Snooping Immediate-Leave processing on a VLAN, use the `ipv6 mld snooping vlan immediate-leave` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id immediate-leave
no ipv6 mld snooping vlan vlan-id immediate-leave
```

Parameters

- `vlan-id`—Specifies the VLAN ID value. (Range: 1–4094)

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

When an MLD Leave Group message is received from a host, the system removes the host port from the table entry. After it relays the MLD queries from the Multicast router, it deletes entries periodically if it does not receive any MLD membership reports from the Multicast clients.

MLD snooping Immediate-Leave processing allows the switch to remove an interface that sends a leave message from the forwarding table without first sending out MAC-based general queries to the interface.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 immediate-leave
```

34.12 show ipv6 mld snooping groups

To display the multicast groups learned by the MLD snooping, use the `show ipv6 mld snooping groups` EXEC mode command in User EXEC mode.
Syntax

show ipv6 mld snooping groups [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-address]

Parameters

- **vlan vlan-id**—(Optional) Specifies the VLAN ID.
- **address ipv6-multicast-address**—(Optional) Specifies the IPv6 multicast address.
- **source ipv6-address**—(Optional) Specifies the IPv6 source address.

Command Mode

User EXEC mode

Default Configuration

Display information for all VLANs and addresses defined on them.

User Guidelines

To see the full multicast address table (including static addresses), use the `show bridge multicast address-table` command.

The Include list contains the ports which are in a forwarding state for this group according to the snooping database. In general, the Exclude list contains the ports which have issued an explicit Exclude for that specific source in a multicast group.

The Reporters That Are Forbidden Statically list contains the list of ports which have asked to receive a multicast flow but were defined as forbidden for that multicast group in a multicast bridge.

Note: Under certain circumstances, the Exclude list may not contain accurate information; for example, in the case when two Exclude reports were received on the same port for the same group but for different sources, the port will not be in the Exclude list but rather in the Include list.
Example

The following example shows the output for show ipv6 mld snooping groups.

```
switch# show ipv6 mld snooping groups

+-------+-------------------+------------------+-+-------+-+----------+
| VLAN  | Group Address     | Source Address   | Include Ports | Exclude Ports | Compatibility Mode |
+-------+-------------------+------------------+-+-------+-+----------+
| 1     | FF12::3           | FE80::201:C9FF:FE40:8001 | gi11          |             | 1         |
| 1     | FF12::3           | FE80::201:C9FF:FE40:8002 | gi12          |             | 1         |
| 19    | FF12::8           | FE80::201:C9FF:FE40:8003 | gi14          |             | 2         |
| 19    | FF12::8           | FE80::201:C9FF:FE40:8004 | gi11          | gi12        | 2         |
| 19    | FF12::8           | FE80::201:C9FF:FE40:8005 | gi110-11      | gi13        | 2         |
+-------+-------------------+------------------+-+-------+-+----------+

MLD Reporters that are forbidden statically:

+-------+-------------------+------------------+
| VLAN  | Group Address     | Source Address   |
+-------+-------------------+------------------+
| 1     | FF12::3           | FE80::201:C9FF:FE40:8001 |
| 19    | FF12::8           | FE80::201:C9FF:FE40:8001 |
+-------+-------------------+------------------+

34.13 show ipv6 mld snooping interface

To display the IPv6 MLD snooping configuration for a specific VLAN, use the `show ipv6 mld snooping interface` EXEC mode command in User EXEC mode.

Syntax

```
show ipv6 mld snooping interface vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

Display information for all VLANs.

Command Mode

User EXEC mode
Example

The following example displays the MLD snooping configuration for VLAN 1000.

```
switchxxxxxx# show ipv6 mld snooping interface 1000
MLD Snooping is globally enabled
MLD Snooping Querier is globally enabled
VLAN 1000
 MLD Snooping is enabled
 MLD snooping last immediate leave: enable
 Automatic learning of multicast router ports is enabled
 MLD Snooping Querier is enabled
 MLD Snooping Querier operation state: is running
 MLD Snooping Querier version: 2
 MLD Snooping Querier election is enabled
 MLD snooping robustness: admin 2 oper 2
 MLD snooping query interval: admin 125 sec oper 125 sec
 MLD snooping query maximum response: admin 10 sec oper 10 sec
 MLD snooping last member query counter: admin 2 oper 2
 MLD snooping last member query interval: admin 1000 msec oper 500 msec
Groups that are in MLD version 1 compatibility mode:
 FF12::3, FF12::8
```

34.14 show ipv6 mld snooping mrouter

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the show ipv6 mld snooping mrouter EXEC mode command in User EXEC mode.

Syntax

```
show ipv6 mld snooping mrouter [interface vlan-id]
```

Parameters

- `interface vlan-id`—(Optional) Specifies the VLAN ID.
Default Configuration
Display information for all VLANs.

Command Mode
User EXEC mode

Example
The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

```
switchxxxxxx# show ipv6 mld snooping mrouter interface 1000
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>gi11</td>
<td>gi12</td>
<td>gi13-4</td>
</tr>
</tbody>
</table>
35.1 test cable-diagnostics tdr

To use Time Domain Reflectometry (TDR) technology to diagnose the quality and characteristics of a copper cable attached to a port, use the test cable-diagnostics tdr Privileged EXEC mode command.

Syntax

test cable-diagnostics tdr interface interface-id

Parameters

interface-id—(Optional) Specifies an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

This command does not work on fiber ports (if they exist on the device). The port to be tested should be shut down during the test, unless it is a combination port with fiber port active. In this case, it does not need to be shut down, because the test does not work on fiber ports.

The maximum length of cable for the TDR test is 120 meters.

Examples

Example 1 - Test the copper cables attached to port gi11 (a copper port).

switchxxxxxx# test cable-diagnostics tdr interface gi11

Cable is open at 64 meters
Example 2 - Test the copper cables attached to port 2 (a combo port with fiber active).

```
switchxxxxxx# test cable-diagnostics tdr interface gi12
```

Fiber ports are not supported

### 35.2 show cable-diagnostics tdr

To display information on the last Time Domain Reflectometry (TDR) test performed on all copper ports or on a specific copper port, use the `show cable-diagnostics tdr` Privileged EXEC mode command.

**Syntax**

```
show cable-diagnostics tdr [interface interface-id]
```

**Parameters**

- `interface-id`—(Optional) Specify an Ethernet port ID.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The maximum length of cable for the TDR test is 120 meters.

**Example**

The following example displays information on the last TDR test performed on all copper ports.

```
switchxxxxxx# show cable-diagnostics tdr

Port Result Length [meters] Date
----- ------- ----------- ------------
 gi11 OK ----------- ------------
 gi12 Short 50 13:32:00 23 July 2010
```
35.3 show cable-diagnostics cable-length

To display the estimated copper cable length attached to all ports or to a specific port, use the `show cable-diagnostics cable-length` Privileged EXEC mode command.

**Syntax**

`show cable-diagnostics cable-length [interface interface-id]`

**Parameters**

- `interface-id`—(Optional) Specify an Ethernet port ID.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The port must be active and working at 100 M or 1000 M.

**Example**

The following example displays the estimated copper cable length attached to all ports.

```
switchxxxxxx# show cable-diagnostics cable-length
Port Length [meters]
---------- ---------------
 < 50
 Copper not active
 110-140
```
35.4 show fiber-ports optical-transceiver

To display the optical transceiver diagnostics, use the `show fiber-ports optical-transceiver` Privileged EXEC mode command.

**Syntax**

```
show fiber-ports optical-transceiver [interface interface-id]
```

**Parameters**

- `interface-id`—(Optional) Specify an Ethernet port ID.

**Default Configuration**

All ports are displayed. If detailed is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC mode

**Examples**

```
switchxxxxxx# show fiber-ports optical-transceiver

Port Temp Voltage Current Output Input LOS
 [C] [Volt] [mA] Power Power
 [mWatt] [mWatt]
----------- ------ ------- ------- ------- ------- ---
 gi11 Copper
 gi12 Copper
 gi13 28 3.32 7.26 3.53 3.68 No
 gi14 29 3.33 6.50 3.53 3.71 No
Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
```
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
36.1 power inline

To configure the inline power administrative mode on an interface, use the `power inline` Interface Configuration mode command.

Syntax

```
power inline auto [time-range time-range-name]
power inline never
```

Parameters

- **auto**—Turns on the device discovery protocol and applies power to the device.
- **never**—Turns off the device discovery protocol and stops supplying power to the device.
- **time-range-name**—Specifies a time range. When the time range is not in effect the power is not supplied to the attached device. If a time range is not specified, there is no time range bounded to the port. (Range: 1–32 characters)

Default Configuration

The default configuration is set to auto.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The `never` parameter cannot be used with a time range.
Example
The following example turns on the device discovery protocol on port 4.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# power inline auto
```

36.2 power inline inrush test disable
To disable the inrush test (a hardware test that checks input surge current for PoE devices), use the `power inline inrush test disable` Global Configuration mode command. To enable the inrush test, use the `no` form of this command.

**Syntax**

```
power inline inrush test disable
no power inline inrush test disable
```

**Parameters**

N/A.

**Default Configuration**

Inrush test is enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example disable inrush test.

```
switchxxxxxx(config)# power inline inrush test disable
```
### 36.3 power inline legacy support disable

To disable the legacy PDs support, use the `power inline legacy support disable` Global Configuration mode command. To enable the legacy support, use the no form of this command.

**Syntax**

```
power inline legacy support disable
no power inline legacy support disable
```

**Parameters**

*N/A.*

**Default Configuration**

Legacy support is enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example disables legacy PDs support.

```
switchxxxxxx(config)# power legacy support disable
```

### 36.4 power inline powered-device

To add a description of the powered device type, use the `power inline powered-device` Interface Configuration mode command. To remove the description, use the no form of this command.

**Syntax**

```
power inline powered-device pd-type
no power inline powered-device
```

**Example**

```
switchxxxxxx(config)# power inline powered-device pd-type
```
Parameters

**pd-type**—Enters a comment or a description to assist in recognizing the type of the powered device attached to this interface. (Length: 1–24 characters)

Default Configuration

There is no description.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example adds the description ‘ip phone’ of the device connected to port 4.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# power inline powered-device ip_phone
```

### 36.5 power inline priority

To configure the interface inline power management priority, use the `power inline priority` Interface Configuration (Ethernet) mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
power inline priority {critical | high | low}
no power inline priority
```

**Parameters**

- **critical**—Specifies that the powered device operation is critical.
- **high**—Specifies that the powered device operation is high priority.
- **low**—Specifies that the powered device operation is low priority.

Default Configuration

The default configuration is set to low priority.
Command Mode

Interface (Ethernet) Configuration mode

Example

The following example sets the inline power management priority of port gi14 to High.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# power inline priority high
```

36.6 power inline usage-threshold

To configure the threshold for initiating inline power usage alarms, use the `power inline usage-threshold` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
power inline usage-threshold percent
no power inline usage-threshold
```

Parameters

```
percent—Specifies the threshold in percent to compare to the measured power. (Range: 1–99)
```

Default Configuration

The default threshold is 95 percent.

Command Mode

Global Configuration mode

Example

The following example configures the threshold for initiating inline power usage alarms to 90 percent.

```
switchxxxxxx(config)# power inline usage-threshold 90
```
36.7 power inline traps enable

To enable inline power traps, use the `power inline traps enable` Global Configuration mode command. To disable traps, use the `no` form of this command.

Syntax

```
power inline traps enable
no power inline traps enable
```

Default Configuration

Inline power traps are disabled.

Command Mode

Global Configuration mode

Example

The following example enables inline power traps.

```
switchxxxxxx(config)# power inline traps enable
```

36.8 power inline limit

To configure the power limit per port on an interface, use the `power inline limit` Interface Configuration mode command. To return to default, use the `no` form of the command.

Syntax

```
power inline limit power
no power inline limit
```

Parameters

```
power—States the port power consumption limit in Milliwatts (Range: 0-15400 in case of AF port and 0-30000 in case of AT port)
```
Default Configuration

The default value is the maximum power allowed in the specific working mode:
15.4W in case of AF port and 30W in case of AT port

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The operational power limit is the minimum of the configured power limit value and the maximum power capability on port. For example, if the configured value is higher than 15.4W on a PoE port, the operational power limit is 15.4W.

Example

The following example sets inline power on a port.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# power inline limit 2222
```

36.9 power inline limit-mode

To set the power limit mode of the system, use the `power inline limit-mode` Global Configuration mode command. To return to default, use the `no` form of this command.

Syntax

```
power inline limit-mode {class | port}
```

Parameters

- `class`—The power limit of a port is based on the class of the PD (Power Device) as detected during the classification process
- `port`—The power limit of a port is fixed regardless of the class of the discovered PD.
Power over Ethernet (PoE) Commands

**Command Mode**

Global Configuration mode

**User Guidelines**

Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports.

**Example**

The following example sets the power limit to class.

```
switchxxxxxx(config)# power inline limit-mode class

"Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports. Are you sure? [y/n]"
```

### 36.10 show power inline

To display information about the inline power for all interfaces or for a specific interface, use the `show power inline` privileged EXEC mode command.

**Syntax**

```
show power inline [interface-id]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

**Default Configuration**

Show information for all ports.

**Command Mode**

Privileged EXEC mode
Examples

Example 1—The following example displays information about the inline power for all ports (port power based).

switchxxxxxx(config)# show power inline

Power Limit Mode:
Usage threshold: 95%
Traps: Enable
Inrush Test: Enable

Unit     Power    Nominal     Consumed     PoE       Legacy
         Power    Power      Mode       Mode
    ----     ------     --------     ------     --------
     1       Off       1 Watts    0 Watts (0%) AT       Disable

Port    Powered Device    State    Status    Priority    Class
-------    ---------------    -------    --------    --------    -----
      gi11    IP Phone Model A    Auto    On        High      Class0
      gi12    Wireless AP Model A    Auto    On        Low       Class1
      gi13                  Auto    Off       Low       N/A

Example 2—The following example displays information about the inline power for a specific port.

switchxxxxxx(config)# show power inline gi11

Power Limit Mode:

Port    Powered Device    State    Status    Priority    Class
-------    ---------------    -------    --------    --------    -----
      gi11    IP Phone Model A    Auto    On        High      Class0

Time range:
Power limit: 30.0  W
Overload Counter: 0
Short Counter: 0
Denied Counter: 0
Absent Counter: 0
Invalid Signature Counter: 0

The following table describes the fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Inline power sourcing equipment operational status.</td>
</tr>
<tr>
<td>Nominal Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Port</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>Powered device</td>
<td>Description of the powered device type.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Status</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the powered device.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because powered device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a powered device was detected.</td>
</tr>
<tr>
<td>Inrush Test</td>
<td>Displays whether the inrush test is enabled or disabled.</td>
</tr>
</tbody>
</table>
Following is a list of port status values:

- Port is off - Underload disconnect detected
- Port is off - Overload detected
- Port is off - Short detected
- Port is off - Invalid PD resistor signature detected
- Port is on - Valid PD resistor signature detected
- Port is off - Power was denied
- Port is on - Valid capacitor signature detected
- Port is off - Backoff state has occurred
- Port is off - Class error has occurred

### 36.11 show power inline consumption

To display information about the inline power consumption for all interfaces or for a specific interface, use the `show power inline consumption` privileged EXEC mode command.

**Syntax**

`show power inline consumption [interface-id ]`

**Parameters**

- `Interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

**Default Configuration**

Show information for all ports.

**Command Mode**

Global Configuration mode
### Example

The following example displays information about the inline power consumption.

```
switchxxxxxx# show power inline consumption
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Power Limit (W)</th>
<th>Power (W)</th>
<th>Voltage (V)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>15.4</td>
<td>4.115</td>
<td>50.8</td>
<td>81</td>
</tr>
<tr>
<td>gi12</td>
<td>15.4</td>
<td>4.157</td>
<td>50.7</td>
<td>82</td>
</tr>
<tr>
<td>gi13</td>
<td>30</td>
<td>15.4</td>
<td>50.9</td>
<td>79</td>
</tr>
</tbody>
</table>
### 37.1 channel-group

To associate a port with a port-channel, use the `channel-group` Interface (Ethernet) Configuration mode command. To remove a port from a port-channel, use the `no` form of this command.

**Syntax**

```
channel-group port-channel mode [on/auto]
```

```
no channel-group
```

**Parameters**

- `port-channel`—Specifies the port channel number for the current port to join.

- `mode`—Specifies the mode of joining the port channel. The possible values are:

  - `on`—Forces the port to join a channel without an LACP operation.
  - `auto`—Forces the port to join a channel as a result of an LACP operation.

**Default Configuration**

The port is not assigned to a port-channel.

**Command Mode**

Interface (Ethernet) Configuration mode

Default mode is `on`. 
Example

The following example forces port gi11 to join port-channel 1 without an LACP operation.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# channel-group 1 mode on
```

37.2 port-channel load-balance

To configure the load balancing policy of the port channeling, use the `port-channel load-balance` Global Configuration mode command. To reset to default, use the `no` form of this command.

Syntax

```
port-channel load-balance
/s src-dst-mac
/s src-dst-mac-ip
```

Parameters

- **src-dst-mac**—Port channel load balancing is based on the source and destination MAC addresses.
- **src-dst-mac-ip**—Port channel load balancing is based on the source and destination of MAC and IP addresses.

Default Configuration

src-dst-mac is the default option.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# port-channel load-balance src-dst-mac
```
37.3  show interfaces port-channel

To display port-channel information for all port channels or for a specific port channel, use the `show interfaces port-channel` Privileged EXEC mode command.

**Syntax**

```
show interfaces port-channel [interface-id]
```

**Parameters**

*interface-id*—(Optional) Specify an interface ID. The interface ID must be a port channel.

**Command Mode**

Privileged EXEC mode

**Examples**

The following example displays information on all port-channels.

```
switchxxxxxx# show interfaces port-channel
Load balancing: src-dst-mac.
Gathering information...
Channel Ports
------- -----
Po1 Active: 1,Inactive: gi12-3
Po2 Active: 5 Inactive: gi14
```
Port Monitor Commands

38.1 port monitor

Use the `port monitor` Interface Configuration (Ethernet) mode command to start a port monitoring session (mirroring). Use the `no` form of this command to stop a port monitoring session.

Syntax

```
port monitor src-interface-id [rx | tx]
no port monitor src-interface-id
port monitor vlan vlan-id
no port monitor vlan vlan-id
```

Parameters

- `rx`—Monitors received packets only. If no option is specified, it monitors both `rx` and `tx`.
- `tx`—Monitors transmitted packets only. If no option is specified, it monitors both `rx` and `tx`.
- `src-interface-id`—Specifies an interface ID. The interface ID must be Ethernet port or port channel.
- `vlan vlan-id`—VLAN number

Default Configuration

Monitors both received and transmitted packets.

Command Mode

Interface (Ethernet) Configuration mode
**User Guidelines**

This command enables port copy between source port (src-interface) to a destination port (The port in context).

The analyzer port for port ingress traffic mirroring should be the same port for all mirrored ports.

The analyzer port for port egress traffic mirroring should be the same port for all mirrored ports.

Traffic routed to source interface or source VLANs cannot be monitored.

The analyzer port for VLAN mirroring should be the same for all the mirrored VLANs, and should be the same port as the analyzer port for port ingress mirroring traffic.

Source ports cannot be destination ports at the same time.

The following restrictions apply to ports that are configured to be monitor ports:

- The port is not a member in a port-channel.
- An IP interface is not configured on the port.
- GVRP is not enabled on the port.
- The port is not a member in any VLAN, except for the default VLAN (will be automatically removed from the default VLAN).
- L2 protocols, such as: LLDP, CDP, LBD, STP, LACP, are not active on the destination port.

**Notes:**

1. In this mode some traffic duplication on the analyzer port may be observed. For example:
   - Port 2 is being egress monitored by port 4.
   - Port 2 & 4 are members in VLAN 3.
   - An unknown unicast packet sent to VLAN 3 will egress from port 4 twice, once as normal forward and another time as mirrored from port 2.
   - Moreover, if port 2 is an untagged member in VLAN 3 and port 4 is a tagged member then both instances will look different (one is tagged and the other is not).

2. When the port is configured to 802.1X auto mode, it will forward any mirrored traffic regardless of the 802.1X state. However, it will operate as a normal network port (forward traffic) only after authorization is done.
2. Mirrored traffic is exposed to the STP state, i.e. if the port is in STP blocking, it will not egress any mirrored traffic.

**Example**

The following example copies traffic for both directions (Tx and Rx) from the source port gi12 to destination port gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# port monitor gi12
switchxxxxxx(config-if)# exit
```

### 38.2 show ports monitor

Use the `show ports monitor` EXEC mode command to display the port monitoring status.

**Syntax**

`show ports monitor`

**Command Mode**

User EXEC mode

**Example**

The following example displays the port monitoring status.

```
switchxxxxxx> show ports monitor

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>gi14</td>
<td>RX,TX</td>
<td>Active</td>
</tr>
<tr>
<td>gi12</td>
<td>gi14</td>
<td>RX,TX</td>
<td>Active</td>
</tr>
<tr>
<td>gi13</td>
<td>gi14</td>
<td>RX</td>
<td>Active</td>
</tr>
<tr>
<td>VLAN 9</td>
<td>gi14</td>
<td>N/A</td>
<td>Active</td>
</tr>
</tbody>
</table>
```
Quality of Service (QoS) Commands

39.1 qos

Use the qos Global Configuration mode command to enable QoS on the device and set its mode. Use the no form of this command to disable QoS on the device.

Syntax

```
qos [basic [advanced [ports-not-trusted | ports-trusted]]]
no qos
```

Parameters

- **basic**—QoS basic mode. If no option is specified, the QoS mode defaults to the basic mode.
- **advanced**—Specifies the QoS advanced mode, which enables the full range of QoS configuration.
- **ports-not-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to egress queue 0. This is the default setting in advanced mode.
- **ports-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to an egress queue based on the packet's fields. Use the qos advanced-mode trust command to specify the trust mode.

Default Configuration

QoS basic mode

Command Mode

Global Configuration mode
Examples

Example 1—The following example disables QoS on the device.

```
switchxxxxx(config)# no qos
```

Example 2—The following example enables QoS advanced mode on the device with the `ports-not-trusted` option.

```
switchxxxxx(config)# qos advanced
```

39.2 qos advanced-mode trust

Use the `qos advanced-mode trust` Global Configuration mode command to configure the trust mode in advanced mode. Use the `no` form of this command to return to default.

Syntax

```
qos advanced-mode trust {cos | dscp | cos-dscp}
no qos advanced-mode trust
```

Parameters

- `cos`—Classifies ingress packets with the packet CoS values. For untagged packets, the port default CoS is used.
- `dscp`—Classifies ingress packets with the packet DSCP values.
- `cos-dscp`—Classifies ingress packets with the packet DSCP values for IP packets. For other packet types, use the packet CoS values.

Default Configuration

```
cos-dscp
```

Command Mode

Global Configuration mode
User Guidelines

The configuration is relevant for advanced mode in the following cases:

- **ports-not-trusted mode**: For packets that are classified to the QoS action trust.
- **ports-trusted mode**: For packets that are not classified by to any QoS action or classified to the QoS action trust.

Example

The following example sets cos as the trust mode for QoS on the device.

```
switchxxxxxx(config)# qos advanced-mode trust cos
```

39.3 show qos

Use the show qos Privileged EXEC mode command to display the QoS information for the device. The trust mode is displayed for the QoS basic mode.

Syntax

```
show qos
```

Parameters

N/A

Default Configuration

Disabled Command Mode

Command Mode

Privileged EXEC mode

User Guidelines

Trust mode is displayed if QoS is enabled in basic mode.

Examples

```
switchxxxxxx(config)# show qos
```
Qos: Disabled
switchxxxxxx(config)# show qos
Qos: Basic mode
Basic trust: dscp
switchxxxxxx(config)# show qos
Qos: Advanced mode
Advanced mode trust type: cos
Advanced mode ports state: Trusted

39.4 class-map

Use the **class-map** Global Configuration mode command to create or modify a class map and enter the Class-map Configuration mode (only possible when QoS is in the advanced mode). Use the **no** form of this command to delete a class map.

**Syntax**

```
class-map class-map-name [match-all | match-any]
no class-map class-map-name
```

**Parameters**

- **class-map-name**—Specifies the class map name.
- **match-all**—Performs a logical AND of all the criteria of the ACLs belonging to this class map. All match criteria in this class map must be matched. If neither **match-all** nor **match-any** is specified, the **match-all** parameter is selected by default.
- **match-any**—Performs a logical OR of the criteria of the ACLs belonging to this class map. Only a single match criteria in this class map must be matched.

**Default Configuration**

No class map.

**Command Mode**

Global Configuration mode
User Guidelines

The `class-map` command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally-named service policy applied on a per-interface basis.

A class map consists of one or more ACLs. It defines a traffic flow by determining which packets match some or all of the criteria specified in the ACLs.

All class map commands are only available when QoS is in advanced mode.

The `class-map` enters Class-map Configuration mode. In this mode, up to two `match` commands can be entered to configure the criteria for this class. Each `match` specifies an ACL.

When using a few `match` commands, each must point to a different type of ACL, such as: one IP ACL, one IPv6 ACL, and one MAC ACL. The classification is by first match, therefore, the order of the ACLs is important.

Error messages are generated in the following cases:

- There is more than one `match` command in a `match-all` class map
- There is a repetitive classification field in the participating ACLs.

After entering the Class-map Configuration mode, the following configuration commands are available:

- `exit`: Exits the Class-map Configuration mode.
- `match`: Configures classification criteria.
- `no`: Removes a match statement from a class map.

Example

The following example creates a class map called Class1 and configures it to check that packets match all classification criteria in the ACL specified.

```
switchxxxxxx(config)# class-map class1 match-all
switchxxxxxx(config-cmap)# match access-group acl-name
```

39.5  show class-map

The `show class-map` Privileged EXEC mode mode command displays all class maps when QoS is in advanced mode.
### show class-map [class-map-name]

**Parameters**
- **class-map-name**—Specifies the name of the class map to be displayed.

**Command Mode**
Privileged EXEC mode

**Example**
The following example displays the class map for Class1.

```bash
switchxxxxx(config)# show class-map
Class Map matchAny class1
 Match access-group mac
```

### 39.6 match

Use the **match** Class-map Configuration mode command to bind the ACLs that belong to the class-map being configured. Use the **no** form of this command to delete the ACLs.

**Syntax**
- **match access-group acl-name**
- **no match access-group acl-name**

**Parameters**
- **acl-name**—Specifies the MAC, IP ACL name, or IPv6 ACL name

**Default Configuration**
No match criterion is supported.

**User Guidelines**
This command is available only when the device is in QoS advanced mode.
Command Mode

Class-map Configuration mode.

Example

The following example defines a class map called Class1. Class1 contains an ACL called enterprise. Only traffic matching all criteria in enterprise belong to the class map.

```
switchxxxxxx(config)# class-map class1
switchxxxxxx(config-cmap)# match access-group enterprise
```

### 39.7 policy-map

Use the `policy-map` Global Configuration mode command to creates a policy map and enter the Policy-map Configuration mode. Use the `no` form of this command to delete a policy map.

**Syntax**

```
policy-map policy-map-name
no policy-map policy-map-name
```

**Parameters**

- `policy-map-name`—Specifies the policy map name.

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**User Guidelines**

This command is only available when QoS is in advanced mode.

Use the `policy-map` Global Configuration mode command to specify the name of the policy map to be created, added to, or modified before configuring policies for classes whose match criteria are defined in a class map.
A policy map contains one or more class maps and an action that is taken if the packet matches the class map. Policy maps may be bound to ports/port-channels.

Entering the `policy-map` Global Configuration mode command also enables configuring or modifying the class policies for that policy map. Class policies in a policy map can be configured only if the classes have match criteria defined for them.

Policy map is applied on the ingress path.

The match criteria is for a class map. Only one policy map per interface is supported. The same policy map can be applied to multiple interfaces and directions.

The `service-policy` command binds a policy map to a port/port-channel.

**Example**

The following example creates a policy map called Policy1 and enters the Policy-map Configuration mode.

```plaintext
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)#
```

### 39.8 class

Use the `class` Policy-map Configuration mode command after the `policy-map` command to attach ACLs to a policy-map. Use the `no` form of this command to detach a class map from a policy map.

**Syntax**

```plaintext
class class-map-name [access-group acl-name]
no class class-map-name
```

**Parameters**

- **class-map-name**—Specifies the name of an existing class map. If the class map does not exist, a new class map is created under the specified name.
- **access-group acl-name**—Specifies the name of an IP, IPv6, or MAC Access Control List (ACL).
Default Configuration
No class map is defined for the policy map.

Command Mode
Policy-map Configuration mode.

User Guidelines
This command is only available when QoS is in advanced mode.
This is the same as creating a class map and then binding it to the policy map.
You can specify an existing class map in this command, or you can use the access-group parameter to create a new class map.
After the policy-map is defined, use the service-policy command to attach it to a port/port-channel.

Example
The following example defines a traffic classification (class map) called class1 containing an ACL called enterprise. The class is in a policy map called policy1. The policy-map policy1 now contains the ACL enterprise.

```plaintext
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1 access-group enterprise
```

39.9 show policy-map
Use the show policy-map Privileged EXEC mode command to display all policy maps or a specific policy map.
This command is only available when QoS is in advanced mode.

Syntax
show policy-map [policy-map-name]

Parameters
policy-map-name—Specifies the policy map name.
Default Configuration

All policy-maps are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays all policy maps.

switchxxxxx(config)# show policy-map
Policy Map policy1
class class1
set IP dscp 7
Policy Map policy2
class class 2
police 96000 4800 exceed-action drop

39.10 trust

Use the trust Policy-map Class Configuration mode command to configure the trust state. Use the no form of this command to return to the default trust state.

Syntax

trust

no trust

Parameters

N/A

Default Configuration

The default state is according to the mode selected in the qos command (advanced mode). The type of trust is determined in qos advanced-mode trust.
Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is relevant only when QoS is in advanced, ports-not-trusted mode. Trust indicates that traffic is sent to the queue according to the packet's QoS parameters (UP or DSCP).

Use this command to distinguish the QoS trust behavior for certain traffic from others. For example, incoming traffic with certain DSCP values can be trusted. A class map can be configured to match and trust the DSCP values in the incoming traffic.

The type of trust is determined in `qos advanced-mode trust`.

Trust values set with this command supersede trust values set on specific interfaces with the `qos trust (Interface)` Interface Configuration mode command.

The `trust` and `set` commands are mutually exclusive within the same policy map.

Policy maps, which contain `set` or `trust` commands or that have ACL classification to an egress interface, cannot be attached by using the `service-policy` Interface Configuration mode command.

If specifying `trust cos`, QoS maps a packet to a queue, the received or default port CoS value, and the CoS-to-queue map.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and configures the trust state using the DSCP value in the ingress packet.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# trust cos-dscp
```
### 39.11 set

Use the `set` Policy-map Class Configuration mode command to select the value that QoS uses as the DSCP value, the egress queue or to set user priority values.

#### Syntax

```
set {dscp new-dscp|queue queue-id|cos new-cos}
no set
```

#### Parameters

- **dscp new-dscp**—Specifies the new DSCP value for the classified traffic. (Range: 0–63)
- **queue queue-id**—Specifies the egress queue. (Range: 1-8)
- **cos new-cos**—Specifies the new user priority to be marked in the packet. (Range: 0–7)

#### Command Mode

Policy-map Class Configuration mode.

#### User Guidelines

This command is only available when QoS is in advanced mode.

The `set` and `trust` commands are mutually exclusive within the same policy map.

To return to the Configuration mode, use the `exit` command. To return to the Privileged EXEC mode, use the `end` command.

#### Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and sets the DSCP value in the packet to 56 for classes in the policy map called p1.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
```
39.12 police

Use the `police` Policy-map Class Configuration mode command to define the policer for classified traffic. This defines another group of actions for the policy map (per class map). Use the `no` form of this command to remove a policer.

**Syntax**

```
police committed-rate-kbps committed-burst-byte [exceed-action action]

no police
```

**Parameters**

- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 100–10000000)
- **committed-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- **exceed-action**—Specifies the action taken when the committed rate is exceeded. If the keyword is not configured then the `drop` action is applied.
- **action**—Specifies the action taken when the committed rate is exceeded. The possible values are:
  - `drop`—Drops the packet.
  - `policed-dscp-transmit`—Remarks the packet DSCP. The remarking is configured by the `qos map policed-dscp` command.

**Default Usage**

No policer

**Command Mode**

Policy-map Class Configuration mode.
User Guidelines

This command is used after the policy-map and class commands.

This command is only available when QoS is in advanced mode.

Policing uses a token bucket algorithm.

This command does not work in Layer 3 mode.

Examples

Example 1. The following example defines a policer for classified traffic. When the traffic rate exceeds 124,000 kbps and the normal burst size exceeds 9600 bytes, the packet is dropped. The class is called class1 and is in a policy map called policy1.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)#
switchxxxxxx(config-pmap-c)# police 124000 9600 exceed-action drop
```

39.13 service-policy

Use the service-policy Interface (Ethernet, Port Channel) Configuration mode command to bind a policy map to an interface. Use the no form of this command to detach a policy map from an interface.

Syntax

```
service-policy input policy-map-name [default-action {permit-any | deny-any}]
no service-policy input
```

Parameters

- **input**—Specifies an ingress policy.
- **policy-map-name**—Specifies the policy map name to apply to the input interface. (Length: 1–32 characters)
- **default-action**—Specifies the default action. If the keyword is not configured then the deny-any default action is applied.
- **deny-any**—Deny all the packets (which were ingress of the port) that do not meet the rules in a policy.
**permit-any**—Forward all the packets (which were ingress of the port) that do not meet the rules in a policy.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Default**

Policy map is not bound.

**User Guidelines**

This command is only available in QoS advanced mode.

Only one policy map per interface per direction is supported.

**Examples**

The following example attaches a policy map called Policy1 to the input interface.

```
switchxxxxxx(config-if)# service-policy input policy1
```

The following example attaches a policy map called Policy1 to the input interface and forwards all packets that do not meet the rules of the policy.

```
switchxxxxxx(config-if)# service-policy input policy1 permit-any
```

### 39.14 qos aggregate-policer

Use the `qos aggregate-policer` Global Configuration mode command to define the policer parameters that can be applied to multiple traffic classes. Use the `no` form of this command to remove an existing aggregate policer.

**Syntax**

```
qos aggregate-policer aggregate-policer-name committed-rate-kbps committed-burst-byte [exceed-action action]
```

```
no qos aggregate-policer aggregate-policer-name
```
Parameters

- **aggregate-policer-name**—Specifies the aggregate policer name.
- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range 100–10000000)
- **committed-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- **exceed-action**—Specifies the action taken when the committed rate is exceeded. If the keyword is not configured then the **drop** action is applied.
- **action**—Specifies the action taken when the committed rate is exceeded. The possible values are:
  - **drop**—Drops the packet.
  - **policed-dscp-transmit**—Remarks the packet DSCP. The remarking is configured by the **qos map policed-dscp** command.

Default Configuration

No aggregate policer is defined.

Command Mode

Global Configuration mode

User Guidelines

This command is only available when QoS is in advanced mode.

Use the **qos aggregate-policer** command to define a policer that aggregates traffic from multiple class maps.

Aggregate policers cannot aggregate traffic from multiple devices. If the aggregate policer is applied to more than one device, the traffic on each device is counted separately and is limited per device.

Traffic from two different ports on the same device can be aggregated for policing purposes.

An aggregate policer can be applied to multiple classes in the same policy map.

An aggregate policer cannot be deleted if it is being used in a policy map. The **no police aggregate** Policy-map Class Configuration mode command must first be used to delete the aggregate policer from all policy maps before using the **no qos aggregate-policer** command.
Policing uses a token bucket algorithm. CIR represents the speed with which the token is added to the bucket. CBS represents the depth of the bucket.

This command does not work in Layer 3 mode.

**Examples**

**Example 1.** The following example defines the parameters of a policer called policer1 that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600
exceed-action drop
```

## 39.15 show qos aggregate-policer

Use the `show qos aggregate-policer` Privileged EXEC mode command to display aggregate policers.

This command is only available in QoS advanced mode.

**Syntax**

```
show qos aggregate-policer [aggregate-policer-name]
```

**Parameters**

- `aggregate-policer-name`—Specifies the aggregate policer name.

**Default Configuration**

All policers are displayed.

**Command Mode**

Privileged EXEC mode

**Examples**

The following example displays the parameters of the aggregate policer called Policer1.

```
switchxxxxxxx# show qos aggregate-policer policer1
```
aggregate-policer policer1 96000 4800 exceed-action drop

not used by any policy map.

39.16 police aggregate

Use the **police aggregate** Policy-map Class Configuration mode command to apply an aggregate policer to multiple class maps within the same policy map. Use the **no** form of this command to remove an existing aggregate policer from a policy map.

This command is only available in QoS advanced mode.

**Syntax**

```
police aggregate aggregate-policer-name
no police aggregate aggregate-policer-name
```

**Parameters**

- **aggregate-policer-name**—Specifies the aggregate policer name.

**Command Mode**

Policy-map Class Configuration mode.

**User Guidelines**

An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps or interfaces.

Use the **exit** command to return to the Configuration mode. Use the **end** command to return to the Privileged EXEC mode.

This command does not work in Layer 3 mode.

**Example**

The following example applies the aggregate policer called Policer1 to a class called class1 in a policy map called policy1 and class2 in policy map policy2.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
switchxxxxxx(config)# policy-map policy1
```
39.17 wrr-queue cos-map

Use the **wrr-queue cos-map** Global Configuration mode command to map Class of Service (CoS) values to a specific egress queue. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
wrr-queue cos-map queue-id cos0... cos7
no wrr-queue cos-map [queue-id]
```

**Parameters**

- **queue-id**—Specifies the queue number to which the CoS values are mapped.
- **cos0... cos7**—Specifies up to 8 CoS values to map to the specified queue number. (Range: 0–7)

**Default Configuration**

The default CoS value mapping to 8 queues is as follows:

- CoS value 0 is mapped to queue 1.
- CoS value 1 is mapped to queue 2.
- CoS value 2 is mapped to queue 3.
- CoS value 3 is mapped to queue 6.
- CoS value 4 is mapped to queue 5.
- CoS value 5 is mapped to queue 8.
CoS value 6 is mapped to queue 8
CoS value 7 is mapped to queue 7
The default CoS value mapping to 4 queues is as follows:
CoS value 0 is mapped to queue 1.
CoS value 1 is mapped to queue 1.
CoS value 2 is mapped to queue 2.
CoS value 3 is mapped to queue 3.
CoS value 4 is mapped to queue 3.
CoS value 5 is mapped to queue 4.
CoS value 6 is mapped to queue 4.
CoS value 7 is mapped to queue 4.

**Command Mode**
Global Configuration mode

**User Guidelines**
Use this command to distribute traffic to different queues.

**Example**
The following example maps CoS value 4 and 6 to queue 2.

```
switchxxxxxx(config)# wrr-queue cos-map 2 4 6
```

### 39.18 wrr-queue bandwidth

Use the **wrr-queue bandwidth** Global Configuration mode command to assign Weighted Round Robin (WRR) weights to egress queues. The weight ratio determines the frequency at which the packet scheduler removes packets from each queue. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
wrr-queue bandwidth weight1 weight2... weighting
```
no wrr-queue bandwidth

Parameters

\texttt{weight1 weight1... weighting} the ratio of bandwidth assigned by the WRR packet scheduler to the packet queues. See explanation in the User Guidelines. Separate each value by a space. (Range for each weight: 0–255)

Default Configuration

wrr is disabled by default. The default wrr weight is ‘1’ for all queues.

Command Mode

Global Configuration mode

User Guidelines

The ratio for each queue is defined as the queue weight divided by the sum of all queue weights (the normalized weight). This sets the bandwidth allocation of each queue.

A weight of 0 indicates that no bandwidth is allocated for the same queue, and the shared bandwidth is divided among the remaining queues. It is not recommended to set the weight of a queue to a 0 as it might stop transmission of control-protocols packets generated by the device.

All queues participate in the WRR, excluding the expedite queues, whose corresponding weight is not used in the ratio calculation.

An expedite queue is a priority queue, which is serviced until empty before the other queues are serviced. The expedite queues are designated by the \texttt{priority-queue out num-of-queues} command.

Example

The following assigns WRR values to the queues.

\begin{verbatim}
switchxxxxxx(config)# priority-queue out num-of-queues 0
switchxxxxxx(config)# wrr-queue bandwidth 6 6 6 6 6 6 6
\end{verbatim}
### 39.19 priority-queue out num-of-queues

Use the `priority-queue out num-of-queues` Global Configuration mode command to configure the number of expedite queues. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
priority-queue out num-of-queues number-of-queues
no priority-queue out num-of-queues
```

**Parameters**

- `number-of-queues`—Specifies the number of expedite (strict priority) queues. Expedite queues are assigned to the queues with the higher indexes. (Range: 0–8. There must be either 0 wrr queues or more than one.)

  If `number-of-queues` = 0, all queues are assured forwarding (according to wrr weights) If the `number-of-queues` = 8, all the queues are expedited (strict priority queues).

  Note: the maximum number of queues depends on the value set in the `set system mode` command.

**Default Configuration**

All queues are expedite queues.

**Command Mode**

Global Configuration mode

**User Guidelines**

An expedite queue is a strict priority queue, which is serviced until empty before the other lower priority queues are serviced.

The weighted round robin (WRR) weight ratios are affected by the number of expedited queues, because there are fewer queues participating in WRR. This indicates that the corresponding weight in the `wrr-queue bandwidth` Interface Configuration mode command is ignored (not used in the ratio calculation).
Example
The following example configures the number of expedite queues as 2.

```
switchxxxxxx(config)# priority-queue out num-of-queues 2
```

39.20 traffic-shape
Use the `traffic-shape` Interface (Ethernet) Configuration mode command to configure the egress port shaper. Use the `no` form of this command to disable the shaper.

Syntax

```
traffic-shape committed-rate [committed-burst]
no traffic-shape
```

Parameters

- `committed-rate`—Specifies the maximum average traffic rate (CIR) in kbits per second (kbps). (Range: GE: 64kbps–maximum port speed)
- `committed-burst`—Specifies the maximum permitted excess burst size (CBS) in bytes. (Range: 4096 - 16762902 bytes)

Default Configuration
The shaper is disabled.

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
The egress port shaper controls the traffic transmit rate (Tx rate) on a port.

Example
The following example sets a traffic shaper on gi11 when the average traffic rate exceeds 64 kbps or the normal burst size exceeds 4096 bytes.

```
switchxxxxxx(config)# interface gi11
```
39.21 traffic-shape queue

Use the **traffic-shape queue** Interface (Ethernet) Configuration mode command to configure the egress queue shaper. Use the **no** form of this command to disable the shaper.

**Syntax**

```
traffic-shape queue queue-id committed-rate [committed-burst]
no traffic-shape queue queue-id
```

**Parameters**

- **queue-id**—Specifies the queue number to which the shaper is assigned. (Range: 1-8).
  
  Note: the maximum number of queues depends on the value set in the **set system mode** command.

- **committed-rate**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 64 kbps–maximum port speed)

- **committed-burst**—Specifies the excess burst size (CBS) in bytes. (Range: 4096 - 16762902 bytes)

**Default Configuration**

The shaper is disabled.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

The egress port shaper controls the traffic transmit rate (Tx rate) on a queue on a port.
Example

The following example sets a shaper on queue 1 on gi11 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# traffic-shape queue 1 64 4096
```

39.22 rate-limit (Ethernet)

Use the **rate-limit** Interface (Ethernet) Configuration mode command to limit the incoming traffic rate on a port. Use the **no** form of this command to disable the rate limit.

**Syntax**

```
rate-limit committed-rate-kbps [burst committed-burst-bytes]
no rate-limit
```

**Parameters**

- **committed-rate-kbps**—Specifies the maximum number of kilobits per second of ingress traffic on a port. The range is 100 – maximal port speed.
- **burst committed-burst-bytes**—The burst size in bytes. (Range: 3000–19173960). If unspecified, defaults to 128K.

**Default Configuration**

Rate limiting is disabled.
Committed-burst-bytes is 128K.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

Storm control and rate-limit (of Unicast packets) cannot be enabled simultaneously on the same port.
Example
The following example limits the incoming traffic rate on gi1 1 to 150,000 kbps.

```
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# rate-limit 150000
```

39.23 rate-limit (VLAN)
Use the Layer 2 rate-limit (VLAN) Global Configuration mode command to limit the incoming traffic rate for a VLAN. Use the no form of this command to disable the rate limit.

Syntax
```
rate-limit vlan-id committed-rate committed-burst
no rate-limit vlan
```

Parameters
- **vlan-id**—Specifies the VLAN ID.
- **committed-rate**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3-57982058)
- **committed-burst**—Specifies the maximum burst size (CBS) in bytes. (Range: 3000–19173960)

Default Configuration
Rate limiting is disabled.
Committed-burst-bytes is 128K.

Command Mode
Global Configuration mode

User Guidelines
Traffic policing in a policy map takes precedence over VLAN rate limiting. If a packet is subject to traffic policing in a policy map and is associated with a VLAN
that is rate limited, the packet is counted only in the traffic policing of the policy map.

This command does not work in Layer 3 mode and it does not work in conjunction with IP Source Guard.

Example

The following example limits the rate on VLAN 11 to 150000 kbps or the normal burst size to 9600 bytes.

```
switchxxxxxx(config)# rate-limit 11 150000 9600
```

### 39.24 qos wrr-queue wrtd

Use the `qos wrr-queue wrtd` Global Configuration mode command to enable Weighted Random Tail Drop (WRTD). Use the `no` form of this command to disable WRTD.

**Syntax**

```
qos wrr-queue wrtd
no qos wrr-queue wrtd
```

**Parameters**

N/A

**Default**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

The command is effective after reset.

**Example**

```
switchxxxxxx(config)# qos wrr-queue wrtd
```
This setting will take effect only after copying running configuration to startup configuration and resetting the device.

```
switchxxxxxx(config)#
```

### 39.25 show qos wrr-queue wrtd

Use the `show qos wrr-queue wrtd` Privileged EXEC mode command to display the Weighted Random Tail Drop (WRTD) configuration.

#### Syntax

```
show qos wrr-queue wrtd
```

#### Parameters

N/A

#### Default Configuration

N/A

#### Command Mode

Privileged EXEC mode

#### Example

```
switchxxxxxx(config)# show qos wrr-queue wrtd
Weighted Random Tail Drop is disabled
Weighted Random Tail Drop will be enabled after reset
```

### 39.26 show qos interface

Use the `show qos interface` Privileged EXEC mode command to display Quality of Service (QoS) information on the interface.

#### Syntax

```
show qos interface [buffers | queueing | policers | shapers | rate-limit] [interface-id]
```
Parameters

- **buffers**—Displays the buffer settings for the interface's queues. For GE ports, displays the queue depth for each of the queues.
- **queueing**—Displays the queue's strategy (WRR or EF), the weight for WRR queues, the CoS to queue map and the EF priority.
- **policers**—Displays all the policers configured for this interface, their settings, and the number of policers currently unused (on a VLAN).
- **shapers**—Displays the shaper of the specified interface and the shaper for the queue on the specified interface.
- **rate-limit**—Displays the rate-limit configuration.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, or Port-channel.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

If no parameter is specified with the `show qos interface` command, the port QoS mode (DSCP trusted, CoS trusted, untrusted, and so on), default CoS value, DSCP-to-DSCP- map (if any) attached to the port, and policy map (if any) attached to the interface are displayed. If a specific interface is not specified, the information for all interfaces is displayed.

In case of Policers, Shapers and Rate Limit - only the ports which are not in the default configuration will be showed.

Examples

**Example 1**—The following is an example of the output from the `show qos interface` command.

```
switchxxxxxx(config)# show qos interface gi11
Ethernet gi10/1
```
Default CoS: 0
Trust mode: disabled
Policy applied: AV1
Default ACE action: deny-all

Example 2—The following is an example of the output from the `show qos interface queueing` command for 4 queues.

```
switchxxxxxx(config)# show qos interface queueing gi11
Ethernet gi10/1
wrr bandwidth weights and EF priority:
<table>
<thead>
<tr>
<th>qid-weights</th>
<th>Ef - Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - N/A</td>
<td>ena- 1</td>
</tr>
<tr>
<td>2 - N/A</td>
<td>ena- 2</td>
</tr>
<tr>
<td>3 - N/A</td>
<td>ena- 3</td>
</tr>
<tr>
<td>4 - N/A</td>
<td>ena- 4</td>
</tr>
</tbody>
</table>
Cos-queue map:
<table>
<thead>
<tr>
<th>cos-qid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
</tr>
<tr>
<td>1 - 1</td>
</tr>
<tr>
<td>2 - 2</td>
</tr>
<tr>
<td>3 - 3</td>
</tr>
<tr>
<td>4 - 3</td>
</tr>
<tr>
<td>5 - 4</td>
</tr>
<tr>
<td>6 - 4</td>
</tr>
<tr>
<td>7 - 4</td>
</tr>
</tbody>
</table>
```
Example 3 —The following an example of the output from the `show qos interface buffers` command for 8 queues

```
switchxxxxxx(config)# show qos interface buffers gi11
Notify Q depth:
buffers gi11
Ethernet gi11
 qid thresh0 thresh1 thresh2
 1 100 100 80
 2 100 100 80
 3 100 100 80
 4 100 100 80
 5 100 100 80
 6 100 100 80
 7 100 100 80
 8 100 100 80
```
Example 4—This is an example of the output from the `show qos interface shapers` command.

```plaintext
switchxxxxxx(config)# show qos interface shapers gill
gill
Port shaper: enable
Committed rate: 192000 bps
Committed burst: 9600 bytes

<table>
<thead>
<tr>
<th>QID</th>
<th>Status</th>
<th>Target Committed Rate [bps]</th>
<th>Target Committed Burst [bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable</td>
<td>100000</td>
<td>17000</td>
</tr>
<tr>
<td>2</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Enable</td>
<td>200000</td>
<td>19000</td>
</tr>
<tr>
<td>4</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Enable</td>
<td>178000</td>
<td>8000</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>23000</td>
<td>1000</td>
</tr>
</tbody>
</table>
```
Example 5—This is an example of the output from `show qos interface policer`

```
switchxxxxxxx(config)# show qos interface policer gi1
Ethernet gi1
Class map: A
Policer type: aggregate
Commited rate: 192000 bps
Commited burst: 9600 bytes
Exceed-action: policed-dscp-transmit
Class map: B
Policer type: single
Commited rate: 192000 bps
Commited burst: 9600 bytes
Exceed-action: drop
Class map: C
Policer type: none
```

Example 6—This is an example of the output from `show qos interface rate-limit`

```
switchxxxxxxx(config)# show qos interface rate-limit gi1
<p>|</p>
<table>
<thead>
<tr>
<th>Port</th>
<th>rate-limit [kbps]</th>
<th>Burst [Bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>
```

```
switchxxxxxxx(config)# show qos interface rate-limit gi1
<p>|</p>
<table>
<thead>
<tr>
<th>Port</th>
<th>rate-limit [kbps]</th>
<th>Burst [Bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>1000</td>
<td>512</td>
</tr>
</tbody>
</table>
```

### 39.27 qos map policed-dscp

Use the `qos map policed-dscp` Global Configuration mode command to configure the policed-DSCP map for remarking purposes. Use the `no` form of this command to restore the default configuration.
Syntax

```
qos map policed-dscp dscp-list to dscp-mark-down
no qos map policed-dscp [dscp-list]
```

Parameters

- `dscp-list`—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- `dscp-mark-down`—Specifies the DSCP value to mark down. (Range: 0–63)

Default Configuration

The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

Command Mode

Global Configuration mode

User Guidelines

The original DSCP value and policed-DSCP value must be mapped to the same queue in order to prevent reordering.

Example

The following example marks incoming DSCP value 3 as DSCP value 5 on the policed-DSCP map.

```
switchxxxxxx(config)# qos map policed-dscp 3 to 5
```

39.28 qos map dscp-queue

Use the `qos map dscp-queue` Global Configuration mode command to configure the DSCP to queue map. Use the `no` form of this command to restore the default configuration.

Syntax

```
qos map dscp-queue dscp-list to queue-id
no qos map dscp-queue [dscp-list]
```
Parameters

- **dscp-list**—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- **queue-id**—Specifies the queue number to which the DSCP values are mapped.

Default Configuration

The default map for 4 queues is as follows.

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>0-15</th>
<th>16-23</th>
<th>24-39,48-63</th>
<th>40-47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The default map for 8 queues is as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

Example

The following example maps DSCP values 33, 40 and 41 to queue 1.

```
switchxxxxxx(config)# qos map dscp-queue 33 40 41 to 1
```

39.29 qos trust (Global)

Use the **qos trust** Global Configuration mode command to configure the system to the basic mode and trust state. Use the **no** form of this command to return to the default configuration.

**Syntax**

```
qos trust {cos / dscp}
```
no qos trust

**Parameters**

- **cos**— Specifies that ingress packets are classified with packet CoS values. Untagged packets are classified with the default port CoS value.
- **dscp**— Specifies that ingress packets are classified with packet DSCP values.

**Default Configuration**

CoS is the default trust mode.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command can be used only in QoS basic mode.

Packets entering a QoS domain are classified at its edge. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain.

Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When the system is configured with trust DSCP, the traffic is mapped to the queue by the DSCP-queue map.

When the system is configured with trust CoS, the traffic is mapped to the queue by the CoS-queue map.

For an inter-QoS domain boundary, configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different in the QoS domains.

**Example**

The following example configures the system to the DSCP trust state.

```
switchxxxxxx(config)# qos trust dscp
```
### 39.30 qos trust (Interface)

Use the `qos trust` Interface (Ethernet, Port Channel) Configuration mode command to enable port trust state while the system is in the basic QoS mode. Use the `no` form of this command to disable the trust state on each port.

**Syntax**

```
qos trust
no qos trust
```

**Parameters**

N/A

**Default Configuration**

Each port is enabled while the system is in basic mode.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example configures gi11 to the default trust state.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# qos trust
```

### 39.31 qos cos

Use the `qos cos` Interface (Ethernet, Port Channel) Configuration mode command to define the default CoS value of a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
qos cos default-cos
no qos cos
```
Parameters

default-cos—Specifies the default CoS value (VPT value) of the port. If the port is trusted and the packet is untagged, then the default CoS value become the CoS value. (Range: 0–7)

Default Configuration

The default CoS value of a port is 0.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the default CoS value to assign a CoS value to all untagged packets entering the interface.

Example

The following example defines the port gi1/1 default CoS value as 3.

```
switchxxxxxx(config)# interface gi1/1
switchxxxxxx(config-if)# qos cos 3
```

39.32 qos dscp-mutation

Use the qos dscp-mutation Global Configuration mode command to apply the DSCP Mutation map to system DSCP trusted ports. Use the no form of this command to restore the trusted port with no DSCP mutation.

Syntax

```
qos dscp-mutation
no qos dscp-mutation
```

Parameters

N/A
Default Configuration
Disabled

Command Mode
Global Configuration mode

User Guidelines
Apply the DSCP-to-DSCP-mutation map to a port at the boundary of a Quality of Service (QoS) administrative domain. If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of another domain. Apply the map to ingress and to DSCP-trusted ports only. Applying this map to a port causes IP packets to be rewritten with newly mapped DSCP values at the ingress ports. If applying the DSCP mutation map to an untrusted port, to class of service (CoS), or to an IP-precedence trusted port.

Global trust mode must be DSCP or CoS-DSCP. In advanced CoS mode, ports must be trusted.

Example
The following example applies the DSCP Mutation map to system DSCP trusted ports.

```
switchxxxxxx(config)# qos dscp-mutation
```

39.33 qos map dscp-mutation

Use the `qos map dscp-mutation` Global Configuration mode command to configure the DSCP to DSCP Mutation table. Use the `no` form of this command to restore the default configuration.

Syntax
```
qos map dscp-mutation in-dscp to out-dscp
no qos map dscp-mutation [in-dscp]
```

Parameters
- `in-dscp`—Specifies up to 8 DSCP values to map, separated by spaces. (Range: 0–63)
- **out-dscp**—Specifies up to 8 DSCP mapped values, separated by spaces.
  (Range: 0–63)

**Default Configuration**

The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

**Command Mode**

Global Configuration mode

**User Guidelines**

This is the only map that is not globally configured. It is possible to have several maps and assign each one to a different port.

**Example**

The following example changes DSCP values 1, 2, 4, 5 and 6 to DSCP Mutation Map value 63.

```
switchxxxxxx(config)# qos map dscp-mutation 1 2 4 5 6 to 63
```

### 39.34 show qos map

Use the `show qos map` Privileged EXEC mode command to display the various types of QoS mapping.

**Syntax**

```
show qos map [dscp-queue | dscp-dp | policed-dscp | dscp-mutation]
```

**Parameters**

- **dscp-queue**—Displays the DSCP to queue map.
- **dscp-dp**—Displays the DSCP to Drop Precedence map.
- **policed-dscp**—Displays the DSCP to DSCP remark table.
- **dscp-mutation**—Displays the DSCP-DSCP mutation table.
Default Configuration
Display all maps.

Command Mode
Privileged EXEC mode

Examples
Example 1. The following example displays the QoS mapping information:

switchxxxxxx(config)# show qos map dscp-queue

Dscp-queue map:

d1 : d2 0 1 2 3 4 5 6 7 8 9
-----------------------------
0 :   01 01 01 01 01 01 01 01 01 01
1 :   01 01 01 01 01 01 02 02 02 02
2 :   02 02 02 02 02 02 02 02 02 02
3 :   02 02 03 03 03 03 03 03 03 03
4 :   03 03 03 03 03 03 03 03 04 04
5 :   04 04 04 04 04 04 04 04 04 04
6 :   04 04 04 04

Example 2. The following example displays the dscp remapping information:

switchxxxxxx(config)# show qos map policed-dscp

Policed-dscp map:

d1 : d2 0 1 2 3 4 5 6 7 8 9
-----------------------------
0 :   00 01 02 03 04 05 06 07 08 09
1 :   10 11 12 13 14 15 16 17 18 19
2 :   20 21 22 23 24 25 26 27 28 29
3 :   30 31 32 33 34 35 36 37 38 39
4 :   40 41 42 43 44 45 46 47 48 49
39.35 clear qos statistics

Use the `clear qos statistics` Privileged EXEC mode command to clear the QoS statistics counters.

**Syntax**

`clear qos statistics`

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

Privileged EXEC mode

**Example**

The following example clears the QoS statistics counters.

```
switchxxxxxx(config)# clear qos statistics
```

39.36 qos statistics policer

Use the `qos statistics policer` Interface (Ethernet, Port Channel) Configuration mode mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

This command is relevant only when policers are defined.

**Syntax**

`qos statistics policer policy-map-name class-map-name`
no qos statistics policer policy-map-name class-map-name

**Parameters**
- `policy-map-name`—Specifies the policy map name.
- `class-map-name`—Specifies the class map name.

**Default Configuration**
Counting in-profile and out-of-profile is disabled.

**Command Mode**
Interface (Ethernet, Port Channel) Configuration mode

**Example**
The following example enables counting in-profile and out-of-profile on the interface.

```
switchxxxxx(config)# interface gi11
switchxxxxx(config-if)# qos statistics policer policy1 class1
```

### 39.37 qos statistics aggregate-policer

Use the `qos statistics aggregate-policer` Global Configuration mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

**Syntax**
```
qos statistics aggregate-policer aggregate-policer-name
no qos statistics aggregate-policer aggregate-policer-name
```

**Parameters**
- `aggregate-policer-name`—Specifies the aggregate policer name.

**Default Configuration**
Counting in-profile and out-of-profile is disabled.
Command Mode
Global Configuration mode

Example
The following example enables counting in-profile and out-of-profile on the interface.

```
switchxxxxx(config)# qos statistics aggregate-policer policer1
```

39.38 qos statistics queues

Use the `qos statistics queues` Global Configuration mode command to enable QoS statistics for output queues. Use the `no` form of this command to disable QoS statistics for output queues.

Syntax
```
qos statistics queues set {queue | all} {dp | all} {interface | all}
no qos statistics queues set
```

Parameters
- **set**—Specifies the counter set number.
- **interface**—Specifies the Ethernet port.
- **queue**—Specifies the output queue number.
- **dp**—Specifies the drop precedence. The available values are: `high`, `low`.

Default Configuration
Set 1: All interfaces, all queues, high DP.
Set 2: All interfaces, all queues, low DP.

Command Mode
Global Configuration mode
User Guidelines

There are no user guidelines for this command.

If the queue parameter is all, traffic in cascading ports is also counted.

Example

The following example enables QoS statistics for output queues for counter set 1.

```
switchxxxxxx(config)# qos statistics queues 1 all all all
```

39.39 show qos statistics

Use the `show qos statistics` Privileged EXEC mode command to display Quality of Service statistical information.

Syntax

`show qos statistics`

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Up to 16 sets of counters can be enabled for policers. The counters can be enabled in the creation of the policers.

Use the `qos statistics queues` Global Configuration mode command to enable QoS statistics for output queues.
Example

The following example displays Quality of Service statistical information.

```
switchxxxxxxx(config)# show qos statistics

Policers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Policy map</th>
<th>Class Map</th>
<th>In-profile bytes</th>
<th>Out-of-profile bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Policy1</td>
<td>Class1</td>
<td>7564575</td>
<td>5433</td>
</tr>
<tr>
<td>gi11</td>
<td>Policy1</td>
<td>Class2</td>
<td>8759</td>
<td>52</td>
</tr>
<tr>
<td>gi12</td>
<td>Policy1</td>
<td>Class1</td>
<td>746587458</td>
<td>3214</td>
</tr>
<tr>
<td>gi12</td>
<td>Policy1</td>
<td>Class2</td>
<td>5326</td>
<td>23</td>
</tr>
</tbody>
</table>

Aggregate Policers

<table>
<thead>
<tr>
<th>Name</th>
<th>In-profile bytes</th>
<th>Out-of-profile bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer1</td>
<td>7985687</td>
<td>121322</td>
</tr>
</tbody>
</table>

Output Queues

<table>
<thead>
<tr>
<th>Interface</th>
<th>Queue</th>
<th>DP</th>
<th>Total packets</th>
<th>TD packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>2</td>
<td>High</td>
<td>799921</td>
<td>1.2%</td>
</tr>
<tr>
<td>gi12</td>
<td>All</td>
<td>High</td>
<td>5387326</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
```
RADIUS Commands

40.1 radius-server host

Use the `radius-server host` Global Configuration mode command to configure a RADIUS server host. Use the no form of the command to delete the specified RADIUS server host.

Syntax

```
radius-server host \{ip-address / hostname\} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key key-string] [priority priority] [usage {login / dot1.x / all}]
```

```
encrypted radius-server host \{ip-address / hostname\} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key encrypted-key-string] [priority priority] [usage {login / dot1.x / all}]
```

```
no radius-server host \{ip-address / hostname\}
```

Parameters

- `ip-address`—Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.
- `hostname`—Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. (Length: 1–158 characters. Maximum label length of each part of the hostname: 63 characters)
- `auth-port auth-port-number`—Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. (Range: 0–65535)
- `acct-port acct-port-number`—Port number for accounting requests. The host is not used for accountings if set to 0. If unspecified, the port number defaults to 1813.
- `timeout timeout`—Specifies the timeout value in seconds. (Range: 1–30)
- `retransmit retries`—Specifies the number of retry retransmissions (Range: 1–15)
• **deadtime deadtime**—Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

• **key key-string**—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter "". (Length: 0–128 characters). If this parameter is omitted, the globally-configured radius key will be used.

• **key encrypted-key-string**—Same as key-string, but the key is in encrypted format.

• **priority priority**—Specifies the order in which servers are used, where 0 has the highest priority. (Range: 0–65535)

• **usage {login | dot1.x | all}**—Specifies the RADIUS server usage type. The possible values are:
  - **login**—Specifies that the RADIUS server is used for user login parameters authentication.
  - **dot1.x**—Specifies that the RADIUS server is used for 802.1x port authentication.
  - **all**—Specifies that the RADIUS server is used for user login authentication and 802.1x port authentication.

**Default Configuration**

The default authentication port number is 1812.

If **timeout** is not specified, the global value (set in the `radius-server timeout` command) is used.

If **retransmit** is not specified, the global value (set in the `radius-server retransmit` command) is used.

If **key-string** is not specified, the global value (set in the `radius-server key` command) is used.

If the **usage** keyword is not specified, the **all** argument is applied.

**Command Mode**

Global Configuration mode

**User Guidelines**

To specify multiple hosts, this command is used for each host.
### Example

The following example specifies a RADIUS server host with IP address 192.168.10.1, authentication request port number 20, and a 20-second timeout period.

```
switchxxxxxx(config)# radius-server host 192.168.10.1 auth-port 20 timeout 20
```

### 40.2 radius-server key

Use the `radius-server key` Global Configuration mode command to set the authentication key for RADIUS communications between the device and the RADIUS daemon. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server key [key-string]
encrypted radius-server key [encrypted-key-string]
no radius-server key
```

**Parameters**

- `key-string`—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. (Range: 0–128 characters)
- `encrypted-key-string`—Same as the `key-string` parameter, but the key is in encrypted form.

**Default Configuration**

The key-string is an empty string.

**Command Mode**

Global Configuration mode
**Example**

The following example defines the authentication key for all RADIUS communications between the device and the RADIUS daemon.

```
switchxxxxxx(config)# radius-server key enterprise-server
```

**40.3 radius-server retransmit**

Use the `radius-server retransmit` Global Configuration mode command to specify the number of times the software searches the list of RADIUS server hosts. Use the no form of this command to restore the default configuration.

**Syntax**

```
radius-server retransmit retries
no radius-server retransmit
```

**Parameters**

- `retransmit retries`—Specifies the number of retry retransmissions (Range: 1–15).

**Default Configuration**

The software searches the list of RADIUS server hosts 3 times.

**Command Mode**

Global Configuration mode

**Example**

The following example configures the number of times the software searches all RADIUS server hosts as 5.

```
switchxxxxxx(config)# radius-server retransmit 5
```
40.4  radius-server host source-interface

Use the `radius-server host source-interface` Global Configuration mode command to specify the source interface whose IPv4 address will be used as the Source IPv4 address for communication with IPv4 RADIUS servers. Use the no form of this command to restore the default configuration.

**Syntax**

```
radius-server host source-interface interface-id
no radius-server host source-interface
```

**Parameters**

- `interface-id`—Specifies the source interface.

**Default Configuration**

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 RADIUS server.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface vlan 100
```
40.5  radius-server host source-interface-ipv6

Use the `radius-server host source-interface-ipv6` Global Configuration mode command to specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 RADIUS servers. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server host source-interface-ipv6 interface-id
no radius-server host source-interface-ipv6
```

**Parameters**

- `interface-id`—Specifies the source interface.

**Default Configuration**

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 RADIUS server.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface-ipv6 vlan 100
```
40.6 radius-server timeout

Use the `radius-server timeout` Global Configuration mode command to set how long the device waits for a server host to reply. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server timeout timeout-seconds
no radius-server timeout
```

**Parameters**

- `timeout timeout-seconds`—Specifies the timeout value in seconds. (Range: 1–30).

**Default Configuration**

The default timeout value is 3 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the timeout interval on all RADIUS servers to 5 seconds.

```
switchxxxxxx(config)# radius-server timeout 5
```

40.7 radius-server deadtime

Use the `radius-server deadtime` Global Configuration mode command to configure how long unavailable RADIUS servers are skipped over by transaction requests. This improves RADIUS response time when servers are unavailable. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server deadtime deadtime
```

**Example**

The following example sets the deadtime interval on all RADIUS servers to 5 seconds.

```
switchxxxxxx(config)# radius-server deadtime 5
```
no radius-server deadtime

Parameters

- **deadtime**—Specifies the time interval in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000).

Default Configuration

The default deadtime interval is 0.

Command Mode

Global Configuration mode

Example

The following example sets all RADIUS server deadtimes to 10 minutes.

```
switchxxxxxx(config)# radius-server deadtime 10
```

### 40.8  show radius-servers

Use the **show radius-servers** Privileged EXEC mode command to display the RADIUS server settings.

Syntax

```
show radius-servers
```

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server settings:

```
switchxxxxxx# show radius-servers
```

<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Port Time</th>
<th>Dead</th>
<th>Auth Acc</th>
<th>Out</th>
<th>Retransmission time</th>
<th>Priority</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------</td>
<td>----</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>---------------------</td>
<td>----------</td>
<td>------</td>
</tr>
</tbody>
</table>
Global values

---
TimeOut: 3
Retransmit: 3
Deadtime: 0
Source IPv4 interface: vlan 120
Source IPv6 interface: vlan 10

**40.9 show radius-servers key**

Use the `show radius-servers key` Privileged EXEC mode command to display the RADIUS server key settings.

**Syntax**

show radius-servers key

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays RADIUS server key settings.

```
switchxxxxxx# show radius-servers key
IP address Key (Encrypted)

172.16.1.1 Sharon123
172.16.1.2 Bruce123

Global key (Encrypted)

Alice456
```
Remote Network Monitoring (RMON) Commands

41.1 rmon alarm

To configure alarm conditions, use the rmon alarm Global Configuration mode command. To remove an alarm, use the no form of this command.

Syntax

```
 rmon alarm index mib-object-id interval rising-threshold falling-threshold rising-event falling-event [type {absolute | delta}] [startup {rising | rising-falling | falling}] [owner name]
```

```
no rmon alarm index
```

Parameters

- **index**—Specifies the alarm index. (Range: 1–65535)
- **mib-object-id**—Specifies the object identifier of the variable to be sampled. (Valid OID)
- **interval**—Specifies the interval in seconds during which the data is sampled and compared with rising and falling thresholds. (Range: 1–2147483647)
- **rising-threshold**—Specifies the rising threshold value. (Range: 0–2147483647)
- **falling-threshold**—Specifies the falling threshold value. (Range: 0–2147483647)
- **rising-event**—Specifies the index of the event triggered when a rising threshold is crossed. (Range: 0–65535)
- **falling-event**—Specifies the index of the event triggered when a falling threshold is crossed. (Range: 0–65535)
- **type** *(absolute | delta)*—(Optional) Specifies the method used for sampling the selected variable and calculating the value to be compared against the thresholds. The possible values are:
  - **absolute**—Specifies that the selected variable value is compared directly with the thresholds at the end of the sampling interval.
  - **delta**—Specifies that the selected variable value of the last sample is subtracted from the current value, and the difference is compared with the thresholds.

- **startup** *(rising | rising-falling | falling)*—(Optional) Specifies the alarm that may be sent when this entry becomes valid. The possible values are:
  - **rising**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated.
  - **rising-falling**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated. If the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.
  - **falling**—Specifies that if the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.

- **owner name**—(Optional) Specifies the name of the person who configured this alarm. *(Valid string)*

### Default Configuration

The default method type is **absolute**.

The default **startup** direction is **rising-falling**.

If the owner **name** is not specified, it defaults to an empty string.

### Command Mode

Global Configuration mode

### Example

The following example configures an alarm with index 1000, MIB object ID D-Link, sampling interval 360000 seconds (100 hours), rising threshold value 1000000,
falling threshold value 1000000, rising threshold event index 10, falling threshold event index 10, absolute method type and rising-falling alarm.

```
switchxxxxxx(config)# rmon alarm 1000 1.3.6.1.2.1.2.2.1.10.1 360000 1000000 1000000 10 20
```

### 41.2 show rmon alarm-table

To display a summary of the alarms table, use the `show rmon alarm-table` Privileged EXEC mode command.

**Syntax**

```
show rmon alarm-table
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the alarms table.

```
switchxxxxxx# show rmon alarm-table
```

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>Manager</td>
</tr>
<tr>
<td>3</td>
<td>1.3.6.1.2.1.2.2.1.10.9</td>
<td>CLI</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>
### 41.3 show rmon alarm

To display alarm configuration, use the `show rmon alarm` Privileged EXEC mode command.

**Syntax**

```
show rmon alarm number
```

**Parameters**

- `alarm number`—Specifies the alarm index. (Range: 1–65535)

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays RMON 1 alarms.

```
switchxxxxxx# show rmon alarm 1
Alarm 1

OID: 1.3.6.1.2.1.2.2.1.10.1
Last sample Value: 878128
Interval: 30
Sample Type: delta
Startup Alarm: rising
Rising Threshold: 8700000
Falling Threshold: 78
Rising Event: 1
Falling Event: 1
Owner: CLI
```
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarm index.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Last Sample Value</td>
<td>Value of the statistic during the last sampling period. For example, if the sample type is delta, this value is the difference between the samples at the beginning and end of the period. If the sample type is absolute, this value is the sampled value at the end of the period.</td>
</tr>
<tr>
<td>Interval</td>
<td>Interval in seconds over which the data is sampled and compared with the rising and falling thresholds.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Method of sampling the variable and calculating the value compared against the thresholds. If the value is absolute, the variable value is compared directly with the thresholds at the end of the sampling interval. If the value is delta, the variable value at the last sample is subtracted from the current value, and the difference is compared with the thresholds.</td>
</tr>
<tr>
<td>Startup Alarm</td>
<td>Alarm that is sent when this entry is first set. If the first sample is greater than or equal to the rising threshold, and startup alarm is equal to rising or rising-falling, then a single rising alarm is generated. If the first sample is less than or equal to the falling threshold, and startup alarm is equal falling or rising-falling, then a single falling alarm is generated.</td>
</tr>
<tr>
<td>Rising Threshold</td>
<td>Sampled statistic rising threshold. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>Sampled statistic falling threshold. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Rising Event</td>
<td>Event index used when a rising threshold is crossed.</td>
</tr>
<tr>
<td>Falling Event</td>
<td>Event index used when a falling threshold is crossed.</td>
</tr>
<tr>
<td>Owner</td>
<td>Entity that configured this entry.</td>
</tr>
</tbody>
</table>

41.4 **rmon event**

To configure an event, use the `rmon event` Global Configuration mode command. To remove an event, use the `no` form of this command.
Remote Network Monitoring (RMON) Commands

Syntax

```
rmon event index {none | log | trap | log-trap} [community text] [description text] [owner name]
```

```
no rmon event index
```

Parameters

- **index**—Specifies the event index. (Range: 1–65535)
- **none**— Specifies that no notification is generated by the device for this event.
- **log**—Specifies that a notification entry is generated in the log table by the device for this event.
- **trap**—Specifies that an SNMP trap is sent to one or more management stations by the device for this event.
- **log-trap**— Specifies that an entry is generated in the log table and an SNMP trap is sent to one or more management stations by the device for this event.
- **community text**—(Optional) Specifies the SNMP community (password) used when an SNMP trap is sent. (Octet string; length: 0–127 characters). Note this must be a community used in the definition of an SNMP host using the “snmp-server host” command.
- **description text**—(Optional) Specifies a comment describing this event. (Length: 0–127 characters)
- **owner name**—(Optional) Specifies the name of the person who configured this event. (Valid string)

Default Configuration

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an event identified as index 10, for which the device generates a notification in the log table.
41.5 show rmon events

To display the RMON event table, use the `show rmon events` Privileged EXEC mode command.

**Syntax**

`show rmon events`

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the RMON event table.

```
switchxxxxxx# show rmon events
Index Description Type Community Owner Last time sent
----- ----------- ------ -------- ------ ------------------
 1 Errors Log router CLI Jan 18 2006 23:58:17
 2 High Broadcast Trap
```

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Unique index that identifies this event.</td>
</tr>
<tr>
<td>Description</td>
<td>Comment describing this event.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of notification that the device generates about this event. Can have</td>
</tr>
<tr>
<td></td>
<td>the following values: none, log, trap, log-trap. In the case of log, an</td>
</tr>
<tr>
<td></td>
<td>entry is made in the log table for each event. In the case of trap, an</td>
</tr>
<tr>
<td></td>
<td>SNMP trap is sent to one or more management stations.</td>
</tr>
<tr>
<td>Community</td>
<td>If an SNMP trap is to be sent, it is sent with the SNMP community string</td>
</tr>
<tr>
<td></td>
<td>specified by this octet string.</td>
</tr>
</tbody>
</table>
41.6 show rmon log

To display the RMON log table, use the `show rmon log` Privileged EXEC mode command.

**Syntax**

```
show rmon log [event]
```

**Parameters**

`event`—(Optional) Specifies the event index. (Range: 0–65535)

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays event 1 in the RMON log table.

```
switchxxxxxx# show rmon log 1
```

Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIB Var.:</td>
<td>Jan 18 2006 23:48:19</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.2.1.2.2.1.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53, Delta, Rising,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual Val: 800,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thres.Set: 100,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval (sec):1</td>
<td></td>
</tr>
</tbody>
</table>
41.7  **rmon table-size**

To configure the maximum size of RMON tables, use the `rmon table-size` Global Configuration mode command. To return to the default size, use the no form of this command.

**Syntax**

`rmon table-size {history entries | log entries}`

`no rmon table-size {history | log}`

**Parameters**

- **history entries**—Specifies the maximum number of history table entries. (Range: 20–32767)
- **log entries**—Specifies the maximum number of log table entries. (Range: 20–32767)

**Default Configuration**

The default history table size is 270 entries.

The default log table size is 200 entries.

**Command Mode**

Global Configuration mode

**User Guidelines**

The configured table size takes effect after the device is rebooted.

**Example**

The following example configures the maximum size of RMON history tables to 100 entries.

```
switchxxxxxx(config)# rmon table-size history 100
```
41.8 show rmon statistics

To display RMON Ethernet statistics, use the show rmon statistics Privileged EXEC mode command.

Syntax

show rmon statistics {interface-id}

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode

Example

The following example displays RMON Ethernet statistics for port gi1.

switchxxxxxx# show rmon statistics gi1

Port gi1
Dropped: 0
Octets: 0 Packets: 0
Broadcast: 0 Multicast: 0
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0 Oversize Pkts: 0
Fragments: 0 Jabbers: 0
64 Octets: 0 65 to 127 Octets: 1
128 to 255 Octets: 1 256 to 511 Octets: 1
512 to 1023 Octets: 0 1024 to max Octets: 0
The following table describes the significant fields displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped. It is the number of times this condition was detected.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets (including bad packets, broadcast packets, and multicast packets) received.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good packets received and directed to the broadcast address. This does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good packets received and directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>Total number of packets received with a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but with either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>Total number of packets received, less than 64 octets long (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Pkts</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received, less than 64 octets in length (excluding framing bits but including FCS octets) and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets), and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>64 Octets</td>
<td>Total number of packets (including bad packets) received that are 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>
41.9 rmon collection stats

To enable RMON MIB collecting history statistics (in groups) on an interface, use the `rmon collection stats` Interface Configuration mode command. To remove a specified RMON history group of statistics, use the `no` form of this command.

Syntax

```
rmon collection stats index [owner ownername] [buckets bucket-number] [interval seconds]
no rmon collection stats index
```

Parameters

- **index**—The requested group of statistics index. (Range: 1–65535)
- **owner ownername**—(Optional) Records the name of the owner of the RMON group of statistics. If unspecified, the name is an empty string. (Range: Valid string)
- **buckets bucket-number**—(Optional) A value associated with the number of buckets specified for the RMON collection history group of statistics. If unspecified, defaults to 50. (Range: 1–50)
- **interval seconds**—(Optional) The number of seconds in each polling cycle. If unspecified, defaults to 1800. (Range: 1–3600).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 to 127 Octets</td>
<td>Total number of packets (including bad packets) received that are between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>128 to 255 Octets</td>
<td>Total number of packets (including bad packets) received that are between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>256 to 511 Octets</td>
<td>Total number of packets (including bad packets) received that are between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>512 to 1023 Octets</td>
<td>Total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>1024 to max</td>
<td>Total number of packets (including bad packets) received that were between 1024 octets and the maximum frame size in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>
Remote Network Monitoring (RMON) Commands

Command Mode
Interface Configuration mode.

41.10 show rmon collection stats

To display the requested RMON history group statistics, use the `show rmon collection stats` Privileged EXEC mode command.

Syntax

```
show rmon collection stats [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode

Example

The following example displays all RMON history group statistics.

```
switchxxxxxx# show rmon collection stats
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested Samples</th>
<th>Granted Samples</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gi11</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>gi11</td>
<td>1800</td>
<td>50</td>
<td>50</td>
<td>Manager</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The sampled Ethernet interface.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds between samples.</td>
</tr>
<tr>
<td>Requested Samples</td>
<td>The requested number of samples to be saved.</td>
</tr>
</tbody>
</table>
41.11 show rmon history

To display RMON Ethernet history statistics, use the `show rmon history` Privileged EXEC mode command.

**Syntax**

```
show rmon history index [throughput | errors | other] [period seconds]
```

**Parameters**

- `index`—Specifies the set of samples to display. (Range: 1–65535)
- `throughput`—Displays throughput counters.
- `errors`—Displays error counters.
- `other`—Displays drop and collision counters.
- `period seconds`—(Optional) Specifies the period of time in seconds to display. (Range: 1–2147483647)

**Command Mode**

Privileged EXEC mode

**Example**

The following examples display RMON Ethernet history statistics for index 1:

```
switchxxxxxx# show rmon history 1 throughput
Sample Set: 1 Owner: CLI
Interface: gi11 Interval: 1800
Requested samples: 50 Granted samples: 50
Maximum table size: 500

 Time Octets Packets Broadcast Multicast Util
--- ---
Jan 18 2005 21:57:00 303595962 357568 3289 7287 19%
Jan 18 2005 21:57:30 287696304 275686 2789 5878 20%
```
The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date and Time the entry is recorded.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets and excluding</td>
</tr>
<tr>
<td></td>
<td>framing bits but including FCS octets) received on the network.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets (including bad packets) received during this sampling</td>
</tr>
<tr>
<td></td>
<td>interval.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Number of good packets received during this sampling interval that were</td>
</tr>
<tr>
<td></td>
<td>directed to the broadcast address.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Multicast</td>
<td>Number of good packets received during this sampling interval that were directed to a multicast address. This number does not include packets addressed to the broadcast address.</td>
</tr>
<tr>
<td>Utilization</td>
<td>Best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.</td>
</tr>
<tr>
<td>CRC Align</td>
<td>Number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Undersize</td>
<td>Number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received during this sampling interval that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error), or a bad FCS with a non-integral number of octets (Alignment Error). It is normal for etherHistoryFragments to increment because it counts both runts (which are normal occurrences due to collisions) and noise hits.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources during this sampling interval. This number is not necessarily the number of packets dropped, it is the number of times this condition has been detected.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment during this sampling interval.</td>
</tr>
</tbody>
</table>
Router Resources Commands

42.1 system router resources

To configure the system router resources, use the system router resources command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

system router resources [ip-entries max-number]

no system router resources

Parameters

- ip-entries max-number—(Optional) The maximum number of IPv4 entries.

Default Configuration

- ip-entries—128.

Command Mode

Global Configuration mode

User Guidelines

Use the system router resources command to enter new settings for routing entries. After entering the command, the current routing entries configuration will be displayed, and the user will be required to confirm saving the new setting to the startup-configuration and to reboot the system.

When this command is included in a configuration file that is downloaded to the device, if it is downloaded to the running configuration file, the command will be rejected. If it downloaded to the startup configuration file, the device will not be automatically rebooted. The new settings will be used after the device is rebooted manually.
Data Validation:

If the new settings exceed the maximum number of routing entries, the command is rejected and a message is displayed to the user.

If the new settings are fewer than the currently in-use routing entries, a confirmation message is displayed to the user (before the save confirmation message).

Use the no system router resources command to restore the default settings.

The following table displays the conversion between logical entities to HW entries:

<table>
<thead>
<tr>
<th>Logical Entity</th>
<th>IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Neighbor</td>
<td>1 entry</td>
</tr>
<tr>
<td>IP Address</td>
<td>2 entries</td>
</tr>
<tr>
<td>IP Remote Route</td>
<td>1 entry</td>
</tr>
</tbody>
</table>

Examples

Example 1

The following example defines the supported number of IPv4 routing entries.

```
switchxxxxxx(config)# system router resources ip-routes 256
```

The maximal number of IPv4 Routing Entries plus Non-IP Entries is 2048.

<table>
<thead>
<tr>
<th>In-Use</th>
<th>Reserved (Current)</th>
<th>Reserved (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Entries</td>
<td>232</td>
<td>1024</td>
</tr>
</tbody>
</table>

  - Number of Routes 20
  - Number of Neighbors 12
  - Number of Interfaces 100

Non-IP Entries:

- Unit 1 93% 400
- Unit 2 94% 400
- Unit 5 90% 400
Setting the new configuration of route entries requires saving the running-configuration file to startup-configuration file and rebooting the system, do you want to continue? (Y/N) [N] Y

Example 2

The following example defines the supported number of IPv4 and IPv6 routing entries. In the example, the configured router entries are less than the router entries which are currently in use. Using this configurations means that the system will not have enough resources for the running again in the existing network:

```
switchxxxxxx(config)# system router resources ip-routes 128 ipv6-routes 32
```

The maximal number of IPv4 and IPv6 Routing Entries plus non-IP Entries is 2048.

<table>
<thead>
<tr>
<th>In-Use</th>
<th>Reserved (Current)</th>
<th>Reserved (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Entries</td>
<td>232</td>
<td>1024</td>
</tr>
<tr>
<td>Number of Routes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Number of Neighbors</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Number of Interfaces</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Non-IP Entries:
- Unit 1 93% 400
- Unit 2 94% 400
- Unit 5 90% 400

The new configuration of route entries is less than the route entries which are currently in use by the system, do you want to continue (note that setting the new configuration of route entries requires saving the running-configuration file to startup-configuration file and rebooting the system)? (Y/N) [N] Y

42.2 show system router resources

To display router resources, use the `show system router resources` command in User EXEC mode.

Syntax

```
show system router resources
```
Parameters
This command has no arguments or keywords.

Command Mode
User EXEC mode

Example
In the following example, the configured router entries are displayed:

```
switchxxxxxx# show system router resources
Each IPv4 Route consumes 1 entry.
Each IPv4 Neighbor consumes 1 entry.
Each IPv4 Interface consumes 2 entries.

<table>
<thead>
<tr>
<th>In-Use</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Entries</td>
<td>232</td>
</tr>
</tbody>
</table>

- Number of Routes 20
- Number of Neighbors 12
- Number of Interfaces 100

Non-IP Entries:
- Unit 1 93% 400
- Unit 2 94% 400
- Unit 5 90% 400
```
RSA and Certificate Commands

Keys and Certificates

The device automatically generates default RSA/DSA keys and certificates at following times:

- When the device is booted following a software upgrade.
- When the device is booted with an empty configuration.
- When user-defined keys/certificates are deleted.

Some commands in this section are used to generate user-defined RSA/DSA keys and certificates that replace the default keys and are used by SSL and SSH server commands. Other commands can be used to import these keys from an external source.

These keys and certificates are stored in the configuration files.

The following table describes when these keys/certificates are displayed.

<table>
<thead>
<tr>
<th>File Type Being Displayed</th>
<th>What is Displayed in a Show Command Without Detailed</th>
<th>What is Displayed in a Show Command With Detailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined keys/certificates.</td>
<td>Option is not supported.</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user-defined)</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, mirror config. file or remote backup config. file)</td>
<td>Keys are displayed as they were copied. There is no distinction here between default and user-defined keys.</td>
<td>Option is not supported.</td>
</tr>
</tbody>
</table>
The following table describes how keys/certificates can be copied from one type of configuration file to another (using the `copy` command).

<table>
<thead>
<tr>
<th>Destination File Type</th>
<th>Copy from Running Config.</th>
<th>Copy from Startup Config.</th>
<th>Copy from Remote/Local Backup Config. File or Mirror Config. File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config.</td>
<td>All keys/certificates are copied (but only user-defined ones can be displayed)</td>
<td>Option is not supported.</td>
<td>All keys/certificates present in this file are copied (*) **).</td>
</tr>
<tr>
<td>Running Config</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied (*).</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, mirror config. file or remote backup config. file)</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied (**).</td>
</tr>
</tbody>
</table>

* If the Running Configuration file on the device contains default keys (not user-defined ones), the same default keys remain after reboot.

** In a text-based configuration file, there is no distinction between automatically-defined, default keys and user-defined keys.

### Lists of Commands

#### 43.1 crypto key generate dsa

The `crypto key generate dsa` Global Configuration mode command generates a public and private DSA key (DSA key pair).
Syntax

crypto key generate dsa

Parameters

N/A

Default Configuration

The application creates a default key automatically.

Command Mode

Global Configuration mode

User Guidelines

DSA keys are generated in pairs - one public DSA key and one private DSA key.

If the device already has DSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

This command is not saved in the Running configuration file. However, the keys generated by this command are saved in a private configuration (which is never displayed to the user or backed up to another device).

See Keys and Certificates for information on how to display and copy this key pair.

Example

The following example generates a DSA key pair.

switchxxxxxx(config)# crypto key generate dsa

The SSH service is generating a private DSA key.

This may take a few minutes, depending on the key size.

.........
43.2  crypto key generate rsa

The **crypto key generate rsa** Global Configuration mode command generates RSA key pairs.

**Syntax**

crypto key generate rsa

**Parameters**

N/A

**Default Configuration**

The application creates a default key automatically.

**Command Mode**

Global Configuration mode

**User Guidelines**

RSA keys are generated in pairs - one public RSA key and one private RSA key.

If the device already has RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

See **Keys and Certificates** for information on how to display and copy this key pair.

**Example**

The following example generates RSA key pairs where a RSA key already exists.

```
switchxxxxxx(config)# crypto key generate rsa
Replace Existing RSA Key [y/n]? N
switchxxxxxx(config)#
```

43.3  crypto key import

The **crypto key import** Global Configuration mode command import the DSA/RSA key pair.
Use the no form of the command to remove the user key and generate a new default in its place.

**Syntax**

crypto key import \{dsa | rsa\}

encrypted crypto key import \{dsa | rsa\}

no crypto key \{dsa | rsa\}

**Parameters**

N/A

**Default Configuration**

DSA and RSA key pairs do not exist.

**Command Mode**

Global Configuration mode

**User Guidelines**

DSA/RSA keys are imported in pairs - one public DSA/RSA key and one private DSA/RSA key.

If the device already has DSA/RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is saved in the Running Configuration file.

When using the **encrypted** key-word, the private key is imported in its encrypted form.

**Example**

```
switchxxxxxx(config)# encrypted crypto key import rsa

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----

switchxxxxxx(config)# encrypted crypto key import rsa

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----

Comment: RSA Private Key
84et9C2XUfcRlpemuGIAygnLwfkJKcDM6m2OReALHSqqLhi0wMSSYNlT1lWFZP1kEVHH
FptlaECZi7HfGLcplpMZwjl1+HaXBlOjPD1EtbpScXqrg6ml1l/OEnwpFK2TrmUy0Ifwk8
```
43.4  show crypto key

The show crypto key Privileged EXEC mode command displays the device’s SSH private and public keys for both default and user-defined keys.

Syntax

show crypto key [mypubkey] [rsa | dsa]

Parameters

- mypubkey—Displays only the public key.
• **rsa**—Displays the RSA key.

• **dsa**—Displays the DSA key.

**Default Configuration**

N/A

**Command Mode**

Privileged EXEC mode

**User Guidelines**

See Keys and Certificates for information on how to display and copy this key pair.

**Example**

The following example displays the SSH public DSA keys on the device.

```
switchxxxxxx# show crypto key mypubkey dsa
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABIAIAAzN31fu56KSEOZdrGVP1JHpAs8G8NDIkB
dqZ2q0QPiKcnLPw0Xsk9tTVKaHZQ5jJbXn81QZpolaPLJIIIH3B1cc96D7IFf
VkbPbMRbz24pWmPVULU1Qy5nCKdDCu15KKVD6zj3gphLhMJo77AajAu5e
BrII2IuMVJuak5M098=
---- END SSH2 PUBLIC KEY ----
```

### 43.5  **crypto certificate generate**

The **crypto certificate generate** Global Configuration mode command generates a self-signed certificate for HTTPS.

**Syntax**

```
crypto certificate number generate [key-generate [length]] [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country] [duration days]
```
### Parameters

- **number**—Specifies the certificate number. (Range: 1–2)

- **key-generate length**—Regenerates SSL RSA key and specifies the SSL's RSA key length. (Range: 512–2048)

  The following elements can be associated with the key. When the key is displayed, they are also displayed.

  - **cn common-name**—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).

  - **ou organization-unit**—Specifies the organization-unit or department name. (Length: 1–64 characters)

  - **or organization**—Specifies the organization name. (Length: 1–64 characters)

  - **loc location**—Specifies the location or city name. (Length: 1–64 characters)

  - **st state**—Specifies the state or province name. (Length: 1–64 characters)

  - **cu country**—Specifies the country name. (Length: 2 characters)

- **duration days**—Specifies the number of days a certification is valid. (Range: 30–3650)

### Default Configuration

The default SSL's RSA key length is 1024.

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

If **duration days** is not specified, it defaults to 365 days.

### Command Mode

Global Configuration mode

### User Guidelines

If the RSA key does not exist, you must use the parameter **key-generate**.
If both certificates 1 and 2 have been generated, use the `ip https certificate` command to activate one of them.

See Keys and Certificates for information on how to display and copy this key pair.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

**Example**

The following example generates a self-signed certificate for HTTPS whose length is 2048 bytes.

```
switchxxxxxx(config)# crypto certificate 1 generate key-generate 2048
```

### 43.6 crypto certificate request

The `crypto certificate request` Privileged EXEC mode command generates and displays a certificate request for HTTPS.

**Syntax**

```
crypto certificate number request [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country]
```

**Parameters**

- `number`—Specifies the certificate number. (Range: 1–2)
- The following elements can be associated with the key. When the key is displayed, they are also displayed.
  - `cn common-name`—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
  - `ou organization-unit`—Specifies the organization-unit or department name. (Length: 1–64 characters)
  - `or organization`—Specifies the organization name. (Length: 1–64 characters)
  - `loc location`—Specifies the location or city name. (Length: 1–64 characters)
- **st state**—Specifies the state or province name. (Length: 1–64 characters)
- **cu country**—Specifies the country name. (Length: 2 characters)

**Default Configuration**

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use this command to export a certificate request to a Certification Authority. The certificate request is generated in Base64-encoded X.509 format.

Before generating a certificate request, first generate a self-signed certificate using the `crypto certificate generate` command to generate the keys. The certificate fields must be re-entered.

After receiving the certificate from the Certification Authority, use the `crypto certificate import` command to import the certificate into the device. This certificate replaces the self-signed certificate.

**Example**

The following example displays the certificate request for HTTPS.

```
switchxxxxxx# crypto certificate 1 request
-----BEGIN CERTIFICATE REQUEST-----
MIwTCCASoCAQAwYjELMAkGA1UEBhMCUFAxCzAJBgNVBAgTAkNDMQswCQYDVQQH
EwRDEMMAoGA1UEChMDZGxkMQwwCgYDVQQLEwNkbGQxCzAJBgNVBAMTAmxkMRAw
DgKoZIhvcnNAQkBFGsMigfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ecwQ
HdML0831i0fh/F0MV/Kib6Sz5p+3nUeJbfHp/igVpmFM+1nbqTDekb2ymCu6K
aKvebVLF9FzLmM7VPjDBb9bb4jnxkvwW/wzDLvW2rsy5NpmH1QV1+8Ubx3GyCm
/oW93BSoFwxwEsP58kf+sPYPy+/8wmmNtDwIDAQABoB8wHQYJKoZIhvNAQkH
MRdjEyMwgICAIAgICAICAgIMA0GCSqGSIb3DQEBAUAA4GAgGb8UgIX7rB05m+2
```
The `crypto certificate import` Global Configuration mode command imports a certificate signed by a Certification Authority for HTTPS. In addition, the RSA key-pair can also be imported.

Use the no form of the command to delete the user-defined keys and certificate.

**Syntax**

- `crypto certificate number import`
- `encrypted crypto certificate number import`
- `no crypto certificate number`

**Parameters**

- `number`—Specifies the certificate number. (Range: 1–2).

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**User Guidelines**

To end the session (return to the command line to enter the next command), enter a blank line.

The imported certificate must be based on a certificate request created by the `crypto certificate request` command.

If only the certificate is imported, and the public key found in the certificate does not match the device's SSL RSA key, the command fails. If both the public key and the certificate are imported, and the public key found in the certificate does not match the imported RSA key, the command fails.

This command is saved in the Running configuration file.
When using the encrypted form of the command, only the private key must be in encrypted format.

See Keys and Certificates for information on how to display and copy this key pair.

Examples

Example 1 - The following example imports a certificate signed by the Certification Authority for HTTPS.

```
switchxxxxxx(config)# crypto certificate 1 import
```

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

```
-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMBIDEVMBGa1UEAxMMNS4yMzQuMjA5MQowCAYDVQQKEwEgMQowCAYDVQQLEwEg
MIffMAGCgGS1b3DQhBAQUAA4GNADCBiQKBgQKJlqewfkgkIjgDEkFhPjZ6LzB1K2Zv
7m3DqtnoF1LsWxkVkrM5LPka0/ha1plyx7EWA5iDBzSw5sO41v0bSN7oaGjFA
6t4SW2rrnDy80bwjWQIDAQABoAwDQYJKoZIhv6NAQEEBAOgYEAuqYQiNjst6hI
XFDxe7I8odUyt3Dmf7KE/AmUV0Pif2yUly/RuxRwKhDp/1GrK12tzLQz+s50x7
Ki/f/ijzbYBVLyh45ASWG3Trv2WVKyWs89rPPXu5hXggEeTvWquSU+gXrIqjW
WVZd0nIYhOacflgnnEmweIzmrqXBs=
.
-----END CERTIFICATE-----
```

Certificate imported successfully.

```
Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788
```

Example 2: The following example imports a certificate signed by the Certification Authority for HTTPS, and the RSA key-pair.
switchxxxxxxx(config)# crypto certificate 1 import

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGlxkwBuU1AQ0nqH9q1GJnsnf7f/MauGPZa75vDf77uQ5CPf49JWQhu07cVXh2
owerBhJgB69vLULjJ9m9P11XFpMKb8Q3NS7JrlfYAWjHfoKbE2ZMsKSA6t/UzVxveKK6
TGb7Vxmi+hv1bL9zygvqm+6+/6QfqaA51c4nF/+a6NJo/ZAQgVAMKKNr2n+tGUQoAg0b/C
11EqzpCq5m77+VOFhPSO4dUU+NwLvlYCBj1fb7MFoaA0+y2NwQp0px0vDA9ENY17qsZ
MWMcFtj52/IxC7fD8FwxeEBktks4V8Ixa7qK6ET565xS7m8yTJFLZYvAwxGKSnIU6uTzhW
kDNWc0e/vwMgPtL1WywWynnaP0fAJ+PawOAdsK75bo79NBim3HcNVXhWNzqgf2s3AYCRBx
WugozapzH20s4+7/sMNzT0S0x14ek343d7RacedKjhhSitPQhUzXUn077x15CUtP3shb1+iX
BIu4EECengYmwy50bn1vFScot+dS5JHuRzwEAaIKeqfbHa34al1VJaN+2AMCbohpi3IkreYo
A8Lk6UMrUqaMnhYf+RyFEPPOoS0PfIPHKBGT16p1j39XMiYRxvSn5+eIYPheve5jYaEn
UeOnvVZhhNCVnrkJAYXtLhjApf5iQr1JiJb/mVT8+zpcCUH6OWQsMrNFOFrSpbcHu5V4
ZX4jm9t1JZmhekoFqdfw2UzbfYkRYS7k0ps8u87tqgRfSRUR7g0LfhzhMnsd0DSh65pKc
q17y2nBeRSorUDPfHRLfzwjmxjmOxbfYrGMLP4=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVuFgfJYLbZus6m8GcL3dewHYd1ZMYA43KLF2SUXu1tIXq84aME8DiItSFb2
Cqy4Qb5nhgAobK9C69VrsSe2zozG5QdKj2L9jUkQ0oFBYNmbzHc7a+7043wFvVMh+QOXf
TbMBRH1MVrZJGbziLC9lzGky121xmicy0/nwsXDAgEj
-----END RSA PUBLIC KEY-----

-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMB
IDEVMBMGAUEAxMMMAuNS4yMzQuMjA5MQowCAYDVQQKEwEgMQowCAYDVQQLEwEg
MGFyMQGCCqGSGIb3DCEBAQUA4GNADCBfQKBgQ+beigCkeJesBSL7tc2DMDZrY
OOg9XMIaXfoiLqIjHd4x+F/8HGBHZfWfkmjJUDzpZ2LxdDu1KrPB/h0+TZP0fV38
7mIDqtnFloNLs4wKVRM5LPka0L/hallpXyq7EWATs5IDBzSw5sO4lv0bSN7oaGJF
6t4S2rrnDy8Jrjw9QI1DQABoAaADYJJKoZHvcNAQEEBQUAdyEa3qYQJnJst6hI
XFdxes71o3d3Uty3Dm7Fk/A;mUV0Pif2yUuy/RuxRwKHzDp/1Grk12tzLQz+s60x7
1kft/IcjezBYXLvih45ASWG3TRv2WVKyW8s9PFX5hXzggEeTvWqupSu+9xRlqjW
WVzdo1fXhMacoqflgnEmweIzmrqXBs=
-----END CERTIFICATE-----

Certificate imported successfully.
Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US, ST=, L=, CN=router.gm.com, O= General Motors, OU=
Example 3 - Import certificate with encrypted key

switchxxxxxx(config)# encrypted crypto certificate 1 import

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
wJIjj/tFEI/z3GFkT15c+SFOeSyTxnSfssNo9CoHJ6X9Jg1SukjtXU49kaUbTjoQVQatZ
AdQwgWM5mnjUaJ1mM3wrApY7HaBLi3XS9jDVrf++Q/KKhVHGFx1v6cKvYYzHg43Unm
CNI2n5zf9oisMH0U6gsIDs4ysWDW1zNgoVQwD7RqKpL9wo3+YVFVS6XC7b7Db7IpePefa6
GD/crN28vTlGf/NpyKoOhdAMRuweQoapMo0Py2Cvyy+sqLiv4ZKck1FPlsVfV7X7s+zVa3
We84pmyzyGl9890tPdBGhiJ2xuDNqCtyvUpffFFEJYrdGKCybg9D00t3d/ioUQ3UJgxBdGYw
aLLoavSjMYIkdpfjcbn5MVRdU5iApCQXWv3MYC8GQ4Hda6UDN6acUBa1Ujqj+TREwWO
DXpJvmvX4T/u5W4DPvELQqTHETxgQKNEr107gRi2yyLcybUokh+SP+XuRkG4IKn8KHyHz
XeoDojSe6OYQqw2R0nAgnZz2PgrDzj0zTDL8qvykurfW4jWa4c1hDEFtHH7NdDLjQ
FkPFAKFMcymidapG+Rwcm031KBcEpmNXpFEE3v1mCeyN1pPe6sMcBx2a2VlninupT
CZM927oxkb41g+U5oXQxhMK07OEzTmfsf1DLcmfvoDH2NR4t14KgqCsjSjWPQeYs+4FW
Qmy4fTF4wQdvCly+W1vEp1jWPbrdCNxS13RWucNeKrm9uf5zuhd1FA9wfx8SwxSRJwUaq8q
zzFfmDMHPtey9AL02alwpjH0PbJKiCmjHT94ugkF30eyeni9sGNY6Y061vubkYbnWSa
J0sxrvt3q6cbKJYoqM3E5LsgxLNeVQH4BhPtUz+LNgWb3V5S18dKReqjBM9eaCy3sVLF
+yAI5xABz2dTPqz017FNmzhIrXvCcCccC3+JbgP1PwYTDy0+m2Hz5vY8v6s73y7fEC9+5/Sn
Vf8jpTLMWfGvF9U1Qwe9bA8HA7K42EX3R5z1doOeUrXQXuRxLAKkIfD7HzE7udOmTifP9
W3Pq7Jzb7jvMjm/5/C+hoC6oLN6qo8bEn78EdfaHpMFutMF01eKuzizenZQ==

-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBAMoCaK+b9hTgrzEewJd55FoWwV8a54k5VpuRtvlr5rz7kZIL6mvCCX6J9c
kkr+7MFX63b9t5RgwPGwDeDHw3q5QkaqInz3l7j2+A++mwCsHuIBhBFNFY/gmENiGq9f
puukcnoTvBNVz7z3V0xv6h1UHMTOe0+QSbe7WwVAqMBAAE=

-----END RSA PUBLIC KEY-----

-----BEGIN CERTIFICATE-----
MIICHDCAYUCEFCCi4/dhLSuhTmVx0wbzngMwDQYJKoZIhvcNAQEEBQAwTzELMAkG
A1UEhMCICxAnCjAIbgNVBAqTASAxCjAIbgNVBAcTASAxEDA6BqNVBAMTzAuMC4w
LjAxCjAIbgNVBAoTASAxCjAIbgNVBAaTASwHhcNMTIwNTIxMTI1NzE2WhcNMTMw
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT

Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----

-----END CERTIFICATE-----
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
### 43.8 show crypto certificate

The `show crypto certificate` Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

#### Syntax

```
show crypto certificate [mycertificate] [number]
```

#### Parameters

- `number`—Specifies the certificate number. (Range: 1,2)
- `mycertificate`—Specifies that only the certificate will be displayed

#### Default Configuration

Certificate number 1.

#### Command Mode

Privileged EXEC mode

#### Examples

The following example displays SSL certificate # 1 present on the device and the key-pair.

```
switchxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
```

```text
dHmUgUm9vdCBDZXJ0aWZpZXIxXDANBgkqhkiG9w0BAQEFAANLADBIAkEAp4HS
nnH/xQSGA2ffkBwU2IXb7n8VPsTm1xyJ1t1la1GqchfMqee0kmfhcoHSWr
yfIPD0M5wQDAwIDAQABo4IBojCCA24wEwYJKwYBBAGCNxQCBAYeABDAEEl
CwR0FBAQDAQAgFGMA8GAMUIwEB/wQFMAMBAf8wHQQYDVR0OBYEFAf4MT9BRD47
ZvKBAEL9Ggp+6MIIBNgYDVR0fBIIBLTCCASkwgKgcc+gcYcGc6sZGFW0i8v
```

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788
-----BEGIN CERTIFICATE-----
L0VByb3h5JTlUc2VydGlmaWNXRNjc3M0Vzd2FybmxpOg==
-----END CERTIFICATE-----

-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGl1xwBuUjAO9nHg9IGJsnkF7/MauGvPvxt5vDf77uQ5CPf49JWQhu07cVXh
2owrBhJgB69vLU1JujM9p11XFpMk9q8R3S7JzlInYAWjHKKbEZFMSkA6+t/UsVxevKK6H
TGB7vMxihv1bL9zygymQ6+/6Qfqa51c4nP/8a6Njo/ZOAgyvNAMKNz2Wq+GUOoaqL0b/C
11EqzPc5mT7+V0fHPS04dU+NWlv1YcblFb7MfoaOn+y+2NwoGp0pxOVDA9ENY17qsZ
MWhmCFXu52/IXC7fD8FWxEBks4V81Xqa7K6ET657xS7m8yTJFLZJyVawGtKhIN6uTzhhW
kDWnc0e/vwNgPtLIWyxWyynaP0fAJ+FwOAdsk75b079NBim3cNVXhWZhgfq2s3AYCRBx
WuGoazpXH70s4+7swmNZtSOxI4ek43d7RacedGKljhPqlHuzXHUon7Zx15CUtP3sbH1+XI
B3U4EecEngYMewy50bn1vnFSct+d5JHuRzEaRAIKfbHa34aiVJaN+2AMC0bhpI3IkreYo
A8Lk6UMOuIQaMnhYf+RyFXhPOQs01PpIPHKBGT16pj39XMviRXvSpn5+eIYPfve5jY1En
UeOnVZRhNCVnruJAYXSLhjAf5i1Qr1JiJb/mVt8+zpqcCU9HCWQqsMrNFOFrSpclHu5V4
X4jmd9tTJZmhekoQfIdwUbfYkRYSk70ps8u7BtgRfSRUr7g0LfrhzhMsw0DSnB65pC
q17y2BeRS0rzUDgHLLRfzwjwxmwbOrbYfRGMlp4=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVuFgfJYjLhUzmbm6UCld3ewYd52MXY4A3KLF2SXUd1TXq84aME8DItSFB2
Cqy40BS1nQaoB9K8B8eUe2zrzoNG4QDKhyL9uKQovoFtBvnBzHC7a+7043wFVmh+QOXf
TbnRdhIMVrZJGbx11c9izKgyl21Xmicy0/nwsXDAgEj
-----END RSA PUBLIC KEY-----

Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, 0= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788
44.1 macro auto (Global)

The `macro auto` Global Configuration mode command sets the Auto Smartports administrative global state. The `no` format of the command returns to the default.

**Syntax**

`macro auto {enabled | disabled | controlled}`

`no macro auto`

**Parameters**

- **enabled**—Auto Smartport administrative global and operational states are enabled.
- **disabled**—Auto Smartport administrative global and operational states are disabled.
- **controlled**—Auto Smartport administrative global and operational states are enabled when Auto Voice VLAN is in operation.

**Default Configuration**

Administrative state is **controlled**.

**Command Mode**

Global Configuration mode

**User Guidelines**

Regardless of the status of Auto Smartport, you can always manually apply a Smartport macro to its associated Smartport type. A Smartport macro is either a built-in macro or a user-defined macro. You can define and apply a macro using the CLI commands presented in the Macro Commands section.
If the Auto Smartport Administrative state is controlled, the Auto Smartport Operational state is managed by the Voice VLAN manager and is set as follows:

- Auto Smartport Operational state is disabled when the OUI Voice VLAN is enabled.
- Auto Smartport Operational state is enabled when the Auto Voice VLAN is enabled.

A user cannot enable Auto Smartport globally if the OUI Voice VLAN is enabled.

**Example**

This example shows an attempt to enable the Auto Smartport feature globally in the controlled mode. This is not possible because the OUI voice feature is enabled. The voice VLAN state is then disabled, after which Auto Smartports can be enabled. The appropriate VLANs are automatically enabled because the ports are configured for Auto Smartports on these VLANs.

```
switchxxxxxx(config)# macro auto controlled
switchxxxxxx(config)# macro auto enabled
Auto smartports cannot be enabled because OUI voice is enabled.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# macro auto enabled
switchxxxxxx(config)#
10-Apr-2011 16:11:31 %LINK-I-Up: Vlan 20
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 5
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 6
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 7
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 8
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 9
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 10
```

**44.2 macro auto smartport (Interface)**

The `macro auto smartport` Interface Configuration mode command enables the Auto Smartport feature on a given interface. The `no` format of the command disables the feature on the interface.
**Syntax**

`macro auto smartport`

`no macro auto smartport`

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

This command is effective only when Auto Smartport is globally enabled.

**Example**

Enables the Auto Smartport feature on port 1:

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# macro auto smartport
```

### 44.3 macro auto trunk refresh

The `macro auto trunk refresh` Global Configuration command reapplies the Smartport macro on a specific interface, or to all the interfaces with the specified Smartport type.

**Syntax**

`macro auto trunk refresh [smartport-type] [interface-id]`

**Parameters**

- `smartport-type`—Smartport type (`switch`, `router`, `wireless access point (ap)`)
- `interface-id`—Interface Identifier (port or port channel).
**Default Configuration**

See User Guidelines.

**Command Mode**

Global Configuration mode

**User Guidelines**

The `macro auto smartport` command becomes effective only when the Auto Smartport is globally enabled.

If both `smartport-type` and `interface-id` are defined, the attached Smartport macro is executed on the interface if it has the given Smartport type.

If only `smartport-type` is defined, the attached Smartport macro is executed on all interfaces having the given Smartport type.

If only `interface-id` is defined then the corresponding attached Smartport macro is executed if the interface has one of the following Smartport types: `switch`, `router` or wireless access point (ap).

If a Smartport macro contains configuration commands that are no longer current on one or more interfaces, you can update their configuration by reapplying the Smartport macro on the interfaces.

**Example**

Adds the ports of Smartport type `switch` to all existing VLANs by running the associated Smartport macros.

```
switchxxxxxx(config)# macro auto trunk refresh switch
```

**44.4  macro auto resume**

The `macro auto resume` Interface Configuration mode command changes the Smartport type from `unknown` to `default` and resumes the Smartport feature on a given interface (but does not reapply the Smartport macro; this is done by the `macro auto trunk refresh` command).

**Syntax**

`macro auto resume`
### Parameters

This command has no arguments or keywords.

### Default Configuration

None

### Command Mode

Interface (Ethernet, Port Channel) Configuration mode

### User Guidelines

When a Smartport macro fails at an interface, the Smartport type of the interface becomes **Unknown**. You must diagnose the reason for the failure on the interface and/or Smartport macro, and correct the error. Before you or Auto Smartport are allowed to reapply the desired Smartport macro, you must reset the interface using the **macro auto resume** command, which changes the Smartport type of the interface to **default**. Then you can run the **macro auto trunk refresh** command.

### Example

Changes the Smartport type from **unknown** to **default** and resumes the Smartport feature on port 1.

```
switchxxxxxx(config)# interface gil1
switchxxxxxx(config-if)# macro auto resume
```

### 44.5 macro auto persistent

The **macro auto persistent** Interface Configuration mode command sets the interface as a Smartport persistent interface. The **no** format of the command returns it to default.

### Syntax

```
macro auto persistent
no macro auto persistent
```

### Parameters

This command has no arguments or keywords.
Default Configuration

Not persistent.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

A Smartport’s persistent interface retains its dynamic configuration in the following cases: link down/up, the attaching device ages out, and reboot. Note that for persistence and the Smartport configuration to be effective across reboot, the Running Configuration file must be saved to the Startup Configuration file.

Example

The example establishes two port ranges and makes one persistent and the other not.

```
switchxxxxx(config)# interface range gi11-2
switchxxxxx(config-if-range)# macro auto persistent
switchxxxxx(config-if-range)# exit
switchxxxxx(config)# interface range gi13-4
switchxxxxx(config-if-range)# no macro auto persistent
```

44.6 macro auto smartport type

The **macro auto smartport type** Interface Configuration mode command manually (statically) assigns a Smartport type to an interface. The **no** format of the command removes the manually-configured type and returns it to **default**.

Syntax

```
macro auto smartport type smartport-type [parameter-name value [parameter-name value [parameter-name value]]]
```

**Parameters**

- *smartport-type*—Smartport type.
- `parameter-name value`—Specifies the parameter name and its value (Range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

**Default Configuration**

`parameter-name value`—Parameter default value. For instance, if the parameter is the voice VLAN, the default value is the default voice VLAN.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

A static type set by the command cannot be changed by a dynamic type.

**Example**

This example shows an attempt to set the Smartport type of port 1 to printer (statically). The macro fails at line 10. The `show parser macro` command is run to display the contents of the macro printer in order to see which line failed.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# macro auto smartport type printer
30-May-2011 15:02:45 %AUTOSMARTPORT-E-FAILEDMACRO: Macro printer for auto smartport type Printer on interface gi1 failed at command number 10
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# do show parser macro name printer
Macro name : printer
Macro type : default interface
 1. #macro description printer
 2. #macro keywords $native_vlan
 3.
 4. #macro key description: $native_vlan: The untag VLAN which will be configured on the port
 5. #Default Values are
 6. #$native_vlan = Default VLAN
```
7. 
8. #the port type cannot be detected automatically
9. 
10. switchport mode access
11. switchport access vlan $native_vlan
12. 
13. #single host
14. port security max 1
15. port security mode max-addresses
16. port security discard trap 60
17. 
18. smartport storm-control broadcast level 10
19. smartport storm-control include-multicast
20. smartport storm-control broadcast enable
switchxxxxxxxx(config)#

44.7 macro auto processing cdp

The macro auto processing cdp Global Configuration mode command enables using CDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the CDP capabilities advertised by the attaching device(s).

The no format of the command disables the feature.

Syntax

macro auto processing cdp

no macro auto processing cdp

Parameters

This command has no arguments or keywords.
**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**Example**

To enable CDP globally:

```
switchxxxxxx(config)# macro auto processing cdp
```

### 44.8 macro auto processing lldp

The **macro auto processing lldp** Global Configuration mode command enables using the LLDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the LLDP capabilities advertised by the attaching device(s).

The **no** format of the command disables the feature.

**Syntax**

```
macro auto processing lldp
no macro auto processing lldp
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode
Example

To enable LLDP globally:

```
switchxxxxxxx(config)# macro auto processing lldp
```

44.9 macro auto processing type

The **macro auto processing type** Global Configuration mode command enables or disables automatic detection of devices of given type. The no format of the command returns to the default.

**Syntax**

```
macro auto processing type smartport-type {enabled | disabled}
no macro auto processing type smartport-type
```

**Parameters**

- **smartport-type**—Smartport type (range: host, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

**Default Configuration**

By default, auto detection of ip_phone, ip_phone_desktop, switch, and wireless access point (ap) is enabled.

**Command Mode**

Global Configuration mode

**Example**

In this example, automatic detection of wireless access points (ap) is enabled.

```
switchxxxxxxx(config)# macro auto processing type ?
 host set type to host
 ip_phone set type to ip_phone
 ip_phone_desktop set type to ip_phone_desktop
```
44.10 macro auto user smartport macro

The **macro auto user smartport macro** Global Configuration mode command links user-defined Smartport macros to a Smartport type. This is done by replacing the link to the built-in macro with the link to the user-defined macro. The **no** format of the command returns the link to the default built-in Smartport macro.

**Syntax**

```
macro auto user smartport macro smartport-type user-defined-macro-name
[parameter-name value [parameter-name value [parameter-name value]]]
```

```
no macro auto user smartport macro smartport-type
```

**Parameters**

- **smartport-type**—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

- **user-defined-macro-name**—Specifies the user-defined macro name that replaces the built-in Smartport macro.

- **parameter-name value**—Specifies the parameter name and its value in the user-defined macro.

**Default Configuration**

**parameter-name value**—Parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

**Command Mode**

Global Configuration mode
User Guidelines

The scope of each parameter is the macro in which it is defined, with the exception of the parameter $voice_vlan, which is a global parameter and its value is specified by the switch and cannot be defined in a macro.

The macros must be defined before linking them in this command.

Smartport macros must be disconnected from the Smartport type before removing them (using the no version of this command).

To associate a Smartport type with a user-defined macros, you must have defined a pair of macros: one to apply the configuration, and the other (anti macro) to remove the configuration. The macros are paired by their name. The name of the anti macro is the concatenation of no_ with the name of the corresponding macro. Please refer to the Macro Command section for details about defining macro.

Example

To link the user-defined macro: my_ip_phone_desktop to the Smartport type: ip_phone_desktop and provide values for its two parameters:

```
switchxxxxxx(config)# macro auto user smartport macro ip_phone_desktop
my_ip_phone_desktop $p1 1 $p2 2
```

44.11 macro auto built-in parameters

The macro auto built-in parameters Global Configuration mode command replaces the default Auto Smartport values of built-in Smartport macros. The no format of the command returns to the default values.

Syntax

```
macro auto built-in parameters smartport-type [parameter-name value [parameter-name value [parameter-name value]]]
no macro auto built-in parameters smartport-type
```

Parameters

- smartport-type—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).
- `parameter-name value`—Specifies the parameter name and its value. These are the parameters of the built-in or user-defined macro defined in the `macro auto user smartport macro` command.

**Default Configuration**

The default value of parameter `$native_vlan` of the built-in Smartport macros is 1.

For other parameters, the default value is the parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

**Command Mode**

Global Configuration mode

**User Guidelines**

By default, each Smartport type is associated with a pair of built-in macros: a macro that applies the configuration and the anti macro (no macro) to remove the configuration. The Smartport types are the same as the name of the corresponding built-in Smartport macros, with the anti macro prefixed with no_.

The value of the parameter `$voice_vlan` cannot be changed by this command.

**Example**

To change the parameters of a built-in macro:

```
switchxxxxxx(config)# macro auto built-in parameters switch $native_vlan 2
```

**44.12 show macro auto processing**

The `show macro auto processing` EXEC mode command displays information about which protocols (CDP/LLDP) are enabled and which device types can be detected automatically.

**Syntax**

`show macro auto processing`

**Parameters**

This command has no arguments or keywords.
Default Configuration
None

Command Mode
User EXEC mode

Example

switchxxxxxx# show macro auto processing
CDB: enabled
LLDP: enabled
host : disabled
ip_phone : enabled
ip_phone_desktop: enabled
switch : enabled
router : disabled
ap : enabled

44.13 show macro auto smart-macros

The show macro auto smart-macros EXEC mode command displays the name of Smartport macros, their type (built-in or user-defined) and their parameters. This information is displayed for all Smartport types or for the specified one.

Syntax

show macro auto smart-macros [smartport-type]

Parameters

- smartport-type—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

Default Configuration
None
Command Mode

User EXEC mode

Example

switchxxxxxx# show macro auto smart-macros

SG300-52-R#show macro auto smart-macros

SmartPort type : printer
Parameters     : $native_vlan=1
SmartPort Macro: printer (Built-In)

SmartPort type : desktop
Parameters     : $max_hosts=10 $native_vlan=1
SmartPort Macro: desktop (Built-In)

SmartPort type : guest
Parameters     : $native_vlan=1
SmartPort Macro: guest (Built-In)

SmartPort type : server
Parameters     : $max_hosts=10 $native_vlan=1
SmartPort Macro: server (Built-In)

SmartPort type : host
Parameters     : $max_hosts=10 $native_vlan=1
SmartPort Macro: host (Built-In)

SmartPort type : ip-camera
Parameters     : $native_vlan=1
SmartPort Macro: ip_camera (Built-In)

SmartPort type : ip-phone
Parameters     : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone (Built-In)

SmartPort type : ip-phone-desktop
Parameters     : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone_desktop (Built-In)

SmartPort type : switch
44.14 show macro auto ports

The `show macro auto ports` EXEC mode command displays information about all Smartport ports or a specific one. If a macro was run on the port and it failed, the type of the port is displayed as Unknown.

**Syntax**

`show macro auto ports [interface-id | detailed]`

**Parameters**

- `interface-id`—Interface Identifier (Ethernet interface, port channel)
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Information about all ports is displayed.

**Command Mode**

User EXEC mode

**Examples**

**Example 1**—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.
switchxxxxxx# \textit{show macro auto ports}

Smartport is enabled
Administrative Globally Auto Smartport is enabled
Operational Globally Auto Smartport is enabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Auto Smartport Admin State</th>
<th>Persistent State</th>
<th>Smartport Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>disabled</td>
<td>enabled</td>
<td>router(\text{static})</td>
</tr>
<tr>
<td>gi12</td>
<td>disabled</td>
<td>enabled</td>
<td>switch</td>
</tr>
<tr>
<td>gi13</td>
<td>enabled</td>
<td>disabled</td>
<td>default</td>
</tr>
<tr>
<td>gi14</td>
<td>enabled</td>
<td>enabled</td>
<td>phone</td>
</tr>
</tbody>
</table>

\textbf{Example 2}—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.

switchxxxxxx# \textit{show macro auto ports}

Smartport is enabled
Administrative Globally Auto Smartport is disabled
Operational Globally Auto Smartport is disabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Auto Smartport Admin State</th>
<th>Persistent State</th>
<th>Smartport Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>disabled</td>
<td>enabled</td>
<td>router(\text{static})</td>
</tr>
<tr>
<td>gi12</td>
<td>disabled</td>
<td>enabled</td>
<td>switch</td>
</tr>
<tr>
<td>gi13</td>
<td>enabled</td>
<td>disabled</td>
<td>default</td>
</tr>
<tr>
<td>gi14</td>
<td>enabled</td>
<td>enabled</td>
<td>phone</td>
</tr>
</tbody>
</table>
Example 3—Disabling auto SmartPort on gi12:

```plaintext
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# no macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi12
SmartPort is Enabled
Administrative Globally Auto SmartPort is controlled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is disabled on gi12
Persistent state is not-persistent
Interface type is default
No macro has been activated
```

Example 4—Enabling auto SmartPort on gi11:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi11
SmartPort is Enabled
Administrative Globally Auto SmartPort is enabled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is enabled on gi11
Persistent state is persistent
Interface type is switch
Last activated macro is switch
```

44.15 smartport switchport trunk allowed vlan

The `smartport switchport trunk allowed vlan` Interface Configuration (Ethernet, port-channel) mode command adds/removes VLANs to/from a trunk port.
Syntax

```plaintext
smartport switchport trunk allowed vlan {add [vlan-list | all] | remove [vlan-list | all]}
```

Parameters

- **add vlan-list**—Specifies a list of VLAN IDs to add to interface. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- **add all**—Add all VLANs to interface.
- **remove vlan-list**—Specifies a list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- **remove all**—Remove all VLANs from interface.

Default Configuration

None

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

This command is an extension of the `switchport access vlan (Non-ISCLI)` command. Unlike the `switchport access vlan (Non-ISCLI)` command, the `vlan-list` parameter of this command may include the voice VLAN (when it is the default VLAN). If the default VLAN is the voice VLAN, the following occurs:

- **add all**—Adds the interface to the default VLAN as an egress tagged port.
- **remove all**—Removes the interface from the default VLAN.

Example

To add port 1 to VLANs 1-5:

```plaintext
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# smartport switchport trunk allowed vlan add 1-5
```
44.16 smartport switchport trunk native vlan

Use the smartport switchport trunk native vlan Interface Configuration (Ethernet, port-channel) mode command to define the native VLAN when the interface is in trunk mode. Use the no form of this command to restore the default configuration.

Syntax

smartport switchport trunk native vlan native-vlan-id

Parameters

- native-vlan-id—Specifies the native VLAN ID.

Default Configuration

VLAN 1

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

This command is an extension of the switchport trunk native vlan (Non-ISCLI) switchport trunk native vlan (Non-ISCLI) CLI command. Unlike the switchport trunk native vlan (Non-ISCLI) CLI command, this command may also be applied to the default VLAN when the interface belongs to the default VLAN as egress tagged port.

Example

Define the native VLAN when port 1 is in trunk mode:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# smartport switchport trunk native vlan 1
```
44.17 smartport storm-control broadcast enable

Use the `smartport storm-control broadcast enable` Interface Configuration (Ethernet, port-channel) mode command to enable storm control on a Smartport port. Use the `no` form of this command to disable storm control.

**Syntax**

```
smartport storm-control broadcast enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# smartport storm-control broadcast enable
```

44.18 smartport storm-control broadcast level

Use the `smartport storm-control broadcast level` Interface Configuration (Ethernet, port-channel) mode command to control the amount of Broadcast traffic allowed on an interface.

**Syntax**

```
smartport storm-control broadcast level {level | kbps kbps}
no smartport storm-control broadcast level
```

Parameters

- **level**—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1 -100)
- **kbps**—Maximum of kilobits per second of broadcast traffic on a port. (Range 70–10000000)

Default Configuration

- **level**—10%
- **kbps**—10% of port speed in Kbps

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Examples

**Example 1** - Set the maximum number of kilobits per second of Broadcast traffic on port 1 to 10000.

```bash
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# smartport storm-control broadcast level kbps 10000
```

**Example 2** - Set the maximum percentage of kilobits per second of Broadcast traffic on port 1 to 30%.

```bash
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# smartport storm-control broadcast level 30
```

**44.19 smartport storm-control include-multicast**

Use the `smartport storm-control include-multicast` Interface Configuration mode command to count Multicast packets in a Broadcast storm control. Use the `no` form of this command to disable counting of Multicast packets in the Broadcast storm control.
Syntax
smartport storm-control include-multicast [unknown-unicast]
no smartport storm-control include-multicast

Parameters
  - **unknown-unicast**—Specifies also the count of unknown Unicast packets.

Default Configuration
Disabled

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

Example
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# smartport storm-control include-multicast
Network Management Protocol (SNMP) Commands

45.1 snmp-server community

To set the community access string (password) that permits access to SNMP commands (v1 and v2), use the snmp-server community Global Configuration mode command. This is used for SNMP commands, such as GETs and SETs.

This command configures both SNMP v1 and v2.

To remove the specified community string, use the no form of this command.

Syntax

```
snmp-server community community-string [ro | rw | su] [ip-address | ipv6-address] [mask mask | prefix prefix-length] [view view-name]
no snmp-server community community-string [ip-address]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **ro**—(Optional) Specifies read-only access (default)
- **rw**—(Optional) Specifies read-write access
- **su**—(Optional) Specifies SNMP administrator access
- **ip-address**—(Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **mask**—(Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- `prefix-length`—(Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

- `view view-name`—(Optional) Specifies the name of a view configured using the command `snmp-server view` (no specific order of the command configurations is imposed on the user). The view defines the objects available to the community. It is not relevant for `su`, which has access to the whole MIB. If unspecified, all the objects, except the community-table and SNMPv3 user and access tables, are available. (Range: 1–30 characters)

**Default Configuration**

No community is defined

**Command Mode**

Global Configuration mode

**User Guidelines**

The logical key of the command is the pair (community, ip-address). If ip-address is omitted, the key is (community, All-IPs). This means that there cannot be two commands with the same community, ip address pair.

The `view-name` is used to restrict the access rights of a community string. When a view-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to an internal group-name.
- Maps the internal group-name for SNMPv1 and SNMPv2 security models to view-name (read-view and notify-view always, and for rw for write-view also).

**Example**

Defines a password for administrator access to the management station at IP address 1.1.1.121 and mask 255.0.0.0.

```
switchxxxxxx(config)# snmp-server community abcd su 1.1.1.121 mask 255.0.0.0
```
45.2  snmp-server community-group

To configure access rights to a user group, use `snmp-server community-group`. The group must exist in order to be able to specify the access rights. This command configures both SNMP v1 and v2.

**Syntax**

```
snmp-server community-group community-string group-name [ip-address | ipv6-address] [mask mask / prefix prefix-length]
```

**Parameters**

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **group-name**—This is the name of a group configured using `snmp-server group` with v1 or v2 (no specific order of the two command configurations is imposed on the user). The group defines the objects available to the community. (Range: 1–30 characters)
- **ip-address**—(Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **mask**—(Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- **prefix-length**—(Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

**Default Configuration**

No community is defined

**Command Mode**

Global Configuration mode
User Guidelines

The group-name is used to restrict the access rights of a community string. When a group-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to the group-name.

Example

Defines a password tom for the group abcd that enables this group to access the management station 1.1.1.121 with prefix 8.

```
switchxxxxxx(config)# snmp-server community-group tom abcd 1.1.1.122 prefix 8
```

45.3 snmp-server server

To enable the device to be configured by the SNMP protocol, use the snmp-server server Global Configuration mode command. To disable this function, use the no form of this command.

Syntax

```
snmp-server server
no snmp-server server
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# snmp-server server
```
45.4 snmp-server source-interface

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

**Syntax**

```plaintext
snmp-server source-interface {traps | informs} interface-id
no snmp-server source-interface [traps | informs]
```

**Parameters**

- `traps`—Specifies the SNMP traps interface.
- `informs`—Specifies the SNMP informs.
- `interface-id`—Specifies the source interface.

**Default Configuration**

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface traps` command to remove the source interface for SNMP traps.
Use the `no snmp-server source-interface informs` command to remove the source interface for SNMP informs.

Use the `no snmp-server source-interface` command to remove the source interface for SNMP traps and informs.

**Example**

The following example configures the VLAN 10 as the source interface for traps.

```
switchxxxxxx(config)# snmp-server source-interface traps vlan 100
```

### 45.5 `snmp-server source-interface-ipv6`

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface-ipv6` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

**Syntax**

```
snmp-server source-interface-ipv6 {traps | informs} interface-id
no snmp-server source-interface-ipv6 [traps | informs]
```

**Parameters**

- `traps`—Specifies the SNMP traps interface.
- `informs`—Specifies the SNMP traps informs.
- `interface-id`—Specifies the source interface.

**Default Configuration**

The IPv6 source address is the IPv6 address of the outgoing interface and selected in accordance with RFC6724.

If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

**Command Mode**

Global Configuration mode
**User Guidelines**

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces is selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface-ipv6 traps` command to remove the source IPv6 interface for SNMP traps.

Use the `no snmp-server source-interface-ipv6 informs` command to remove the source IPv6 interface for SNMP informs.

Use the `no snmp-server source-interface-ipv6` command to remove the source IPv6 interface for SNMP traps and informs.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# snmp-server source-interface-ipv6 traps vlan 10
```

### 45.6 snmp-server view

To create or update an SNMP view, use the `snmp-server view` Global Configuration mode command. To remove an SNMP view, use the `no` form of this command.

**Syntax**

```
snmp-server view view-name oid-tree [included / excluded]
no snmp-server view view-name [oid-tree]
```

**Parameters**

- `view-name`—Specifies the name for the view that is being created or updated. (Length: 1–30 characters)
- `included`—Specifies that the view type is included.
- **excluded**—Specifies that the view type is excluded.
- **oid-tree**—(Optional) Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System and, optionally, a sequence of numbers. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4. This parameter depends on the MIB being specified.

**Default Configuration**

The following views are created by default:

- **Default**—Contains all MIBs except for those that configure the SNMP parameters themselves.
- **DefaultSuper**—Contains all MIBs.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command can be entered multiple times for the same view.

The command's logical key is the pair (view-name, oid-tree). Therefore there cannot be two commands with the same view-name and oid-tree.

The number of views is limited to 64.

Default and DefaultSuper views are reserved for internal software use and cannot be deleted or modified.

**Example**

The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interface group (this format is specified on the parameters specified in ifEntry).

```
switchxxxxxx(config)# snmp-server view user-view system included
switchxxxxxx(config)# snmp-server view user-view system.7 excluded
switchxxxxxx(config)# snmp-server view user-view ifEntry.*.1 included
```
45.7 snmp-server group

To configure an SNMP group, use the `snmp-server group` Global Configuration mode command. Groups are used to map SNMP users to SNMP views. To remove an SNMP group, use the `no` form of this command.

Syntax

```
snmp-server group groupname {v1 | v2 | v3 [noauth | auth | priv] [notify notifyview]]
[read readview] [write writeview]
```

```
no snmp-server group groupname {v1 | v2 | v3 [noauth | auth | priv]}
```

Parameters

- `group groupname`—Specifies the group name. (Length: 1–30 characters)
- `v1`—Specifies the SNMP Version 1 security model.
- `v2`—Specifies the SNMP Version 2 security model.
- `v3`—Specifies the SNMP Version 3 security model.
- `noauth`—Specifies that no packet authentication will be performed. Applicable only to the SNMP version 3 security model.
- `auth`—Specifies that packet authentication without encryption will be performed. Applicable only to the SNMP version 3 security model.
- `priv`—Specifies that packet authentication with encryption will be performed. Applicable only to the SNMP version 3 security model. Note that creation of SNMPv3 users with both authentication and privacy must be done in the GUI. All other users may be created in the CLI.
- `notify notifyview`—(Optional) Specifies the view name that enables generating informs or a traps. An inform is a trap that requires acknowledgement. Applicable only to the SNMP version 3 security model. (Length: 1–30 characters)
- `read readview`—(Optional) Specifies the view name that enables viewing only. (Length: 1–30 characters)
- `write writeview`—(Optional) Specifies the view name that enables configuring the agent. (Length: 1–30 characters)

Default Configuration

No group entry exists.
If `notifyview` is not specified, the notify view is not defined.

If `readview` is not specified, all objects except for the community-table and SNMPv3 user and access tables are available for retrieval.

If `writeview` is not specified, the write view is not defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

The group defined in this command is used in the `snmp-server user` command to map users to the group. These users are then automatically mapped to the views defined in this command.

The command logical key is `(groupname, snmp-version, security-level)`. For `snmp-version v1/v2` the security-level is always `noauth`.

**Example**

The following example attaches a group called `user-group` to SNMPv3, assigns the encrypted security level to the group, and limits the access rights of a view called `user-view` to read-only. User `tom` is then assigned to `user-group`. So that user `tom` has the rights assigned in `user-view`.

```
switchxxxxxx(config)# snmp-server group user-group v3 priv read user-view
switchxxxxxx(config)# snmp-server user tom user-group v3
```

### 45.8 show snmp views

To display SNMP views, use the `show snmp views` Privileged EXEC mode command.

**Syntax**

```
show snmp views [viewname]
```

**Parameters**

`viewname`—(Optional) Specifies the view name. (Length: 1–30 characters)
Default Configuration

If viewname is not specified, all views are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP views.

```
switchxxxxxx# show snmp views
```

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>iso</td>
<td>Included</td>
</tr>
<tr>
<td>Default</td>
<td>snmpNotificationMIB</td>
<td>Excluded</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>iso</td>
<td>Included</td>
</tr>
</tbody>
</table>

45.9  show snmp groups

To display the configured SNMP groups, use the `show snmp groups` Privileged EXEC mode command.

Syntax

```
show snmp groups [groupname]
```

Parameters

groupname—(Optional) Specifies the group name. (Length: 1–30 characters)

Default Configuration

Display all groups.

Command Mode

Privileged EXEC mode
Example

The following example displays the configured SNMP groups:

```
switchxxxxxxx# show snmp groups

Name Security Views
------ ------ -----
user-group V2 no_auth Default "" ""
managers-group V2 no_auth Default Default ""
```

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Group name.</td>
</tr>
<tr>
<td>Security Model</td>
<td>SNMP model in use (v1, v2 or v3).</td>
</tr>
<tr>
<td>Security Level</td>
<td>Packet security. Applicable to SNMP v3 security only.</td>
</tr>
<tr>
<td>Views Read</td>
<td>View name enabling viewing the agent contents. If unspecified, all objects except the community-table and SNMPv3 user and access tables are available.</td>
</tr>
<tr>
<td>Views Write</td>
<td>View name enabling data entry and managing the agent contents.</td>
</tr>
<tr>
<td>Views Notify</td>
<td>View name enabling specifying an inform or a trap.</td>
</tr>
</tbody>
</table>

### 45.10 snmp-server user

To configure a new SNMP Version user, use the `snmp-server user` Global Configuration mode command. To remove a user, use the `no` form of the command. To enter the authentication and privacy passwords in encrypted form (see SSD), use the `encrypted` form of this command.

**Syntax**

```
snmp-server user username groupname {v1 | v2c | [remote host] v3[auth {md5 | sha} auth-password [priv priv-password]]}
```
encrypted snmp-server user username groupname {v1 | v2c | [remote host] v3 | auth {md5 | sha} encrypted-auth-password [priv encrypted-priv-password]}

no snmp-server user username {v1 | v2c | [remote host] v3 | auth {md5 | sha}]

Parameters

- **username**—Define the name of the user on the host that connects to the agent. (Range: Up to 20 characters).
- **groupname**—The name of the group to which the user belongs. The group should be configured using the command `snmp-server group` with v1 or v2c parameters (no specific order of the 2 command configurations is imposed on the user). (Range: Up to 30 characters)
- **v1**—Specifies that the user is a v1 user.
- **v2c**—Specifies that the user is a v2c user.
- **v3**—Specifies that the user is a v3 user.
- **remote host**—(Optional) IP address (IPv4, IPv6 or IPv6z) or host name of the remote SNMP host. See IPv6z Address Conventions.
- **auth**—(Optional) Specifies which authentication level is to be used.
- **md5**—(Optional) Specifies the HMAC-MD5-96 authentication level.
- **sha**—(Optional) Specifies the HMAC-SHA-96 authentication level.
- **auth-password**—(Optional) Specifies the authentication password. Range: Up to 32 characters.
- **encrypted-auth-password**—(Optional) Specifies the authentication password in encrypted format.
- **priv-password**—(Optional) Specifies the privacy password (The encryption algorithm used is data encryption standard - DES). Range: Up to 64 characters.
- **encrypted-priv-password**—(Optional) Specifies the privacy password in encrypted format.

Default Configuration

No group entry exists.
**Command Mode**

Global Configuration mode

**User Guidelines**

For SNMP v1 and v2, this command performs the same actions as `snmp-server community-group`, except that `snmp-server community-group` configures both v1 and v2 at the same time. With this command, you must perform it once for v1 and once for v2.

When you enter the `show running-config` command, you do not see a line for the SNMP user defined by this command. To see if this user has been added to the configuration, type the `show snmp user` command.

A local SNMP EngineID must be defined in order to add SNMPv3 users to the device (use the `snmp-server engineID remote` command). For remote hosts users a remote SNMP EngineID is also required (use the `snmp-server engineID remote` command).

Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users’ database.

The logical key of the command is username.

Configuring a remote host is required in order to send informs to that host, because an inform is a trap that requires acknowledgement. A configured remote host is also able to manage the device (besides getting the informs).

To configure a remote user, specify the IP address for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID remote` command. The remote agent’s SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command fails.

Since the same group may be defined several times, each time with different version or different access level (noauth, auth or auth & priv), when defining a user it is not sufficient to specify the group name, rather you must specify group name, version and access level for complete determination of how to handle packets from this user.

**Example**

This example assigns user `tom` to group `abcd` using SNMP v1 and v2c. The default is assigned as the engineID. User `tom` is assigned to group `abcd` using SNMP v1 and v2c.

```
switchxxxxxx(config)# snmp-server user tom acbd v1
```
45.11 show snmp users

To display the configured SNMP users, use the show snmp users Privileged EXEC mode command.

**Syntax**

```
show snmp users [username]
```

**Parameters**

*username*—(Optional) Specifies the user name. (Length: 1–30 characters)

**Default Configuration**

Display all users.

**Command Mode**

Privileged EXEC mode

**Example**

The following examples displays the configured SNMP users:

```
switchxxxxxxx# show snmp users
User name :u1rem
 Group name :group1
 Authentication Algorithm : None
 Privacy Algorithm : None
 Remote :11223344556677
 Auth Password :
 Priv Password :
User name : qqq
 Group name : www
```
Authentication Algorithm : MD5
Privacy Algorithm : None
Remote :
Auth Password : helloworld1234567890987665
Priv Password :
User name : hello
Group name : world
Authentication Algorithm : MD5
Privacy Algorithm : DES
Remote :
Auth Password (encrypted): Z/tC3UF5j0pYfmXm8xeMvciOQ6LQ4GOACCGRdAg0E6XQKTC qMLrnpWhHRaRL2j
Priv Password (encrypted): kN1ZHzSLo6WWx1kuZVzhLOo1gI5waNF7V6yLBpJdS4N68tL 1tbTRSz2H4cQ4o
User name : u1noAuth
Group name : group1
Authentication Algorithm : None
Privacy Algorithm : None
Remote :
Auth Password (encrypted): 
Priv Password (encrypted): 
User name : u1OnlyAuth
Group name : group1
Authentication Algorithm : SHA
Privacy Algorithm : None
Remote :
Auth Password (encrypted): 8nPzy2hzuba9pG3iiC/q0451RynUn7kq94L9GOFrRM=
Priv Password (encrypted): 

45

Network Management Protocol (SNMP) Commands
45.12 snmp-server filter

To create or update an SNMP server notification filter, use the `snmp-server filter` Global Configuration mode command. To remove a notification filter, use the `no` form of this command.

**Syntax**

```
snmp-server filter filter-name oid-tree {included | excluded}
no snmp-server filter filter-name [oid-tree]
```

**Parameters**

- `filter-name`—Specifies the label for the filter record that is being updated or created. The name is used to reference the filter in other commands. (Length: 1–30 characters)

- `oid-tree`—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example, 1.3.*.4.

- `included`—Specifies that the filter type is included.

- `excluded`—Specifies that the filter type is excluded.

**Default Configuration**

No view entry exists.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command can be entered multiple times for the same filter. If an object identifier is included in two or more lines, later lines take precedence. The command's logical key is the pair (filter-name, oid-tree).
Example

The following example creates a filter that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group (this format depends on the parameters defined in ifEntry).

```
switchxxxxxx(config)# snmp-server filter f1 system included
switchxxxxxx(config)# snmp-server filter f2 system.7 excluded
switchxxxxxx(config)# snmp-server filter f3 ifEntry.*.1 included
```

45.13 show snmp filters

To display the defined SNMP filters, use the `show snmp filters` Privileged EXEC mode command.

Syntax

```
show snmp filters [filtername]
```

Parameters

- `filtername`—Specifies the filter name. (Length: 1–30 characters)

Default Configuration

If `filtername` is not defined, all filters are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP filters.

```
switchxxxxxx# show snmp filters user-filter
Name OID Tree Type
---------- --------------- ----
user-filter 1.3.6.1.2.1.1 Included
user-filter 1.3.6.1.2.1.1.7 Excluded
user-filter 1.3.6.1.2.1.2.2.1.*.1 Included
```
45.14 snmp-server host

To configure the host for SNMP notifications: (traps/informs), use the `snmp-server host` Global Configuration mode command. To remove the specified host, use the `no` form of this command.

Syntax

```
snmp-server host [host-ip | hostname] [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [filter filtername] [timeout seconds] [retries retries]
```

```
no snmp-server host [ip-address | hostname] [traps | informs] [version {1 | 2c | 3}]`
```

Parameters

- `host-ip`—IP address of the host (the targeted recipient). The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- `hostname`—Hostname of the host (the targeted recipient). (Range: 1–158 characters. Maximum label size of each part of the host name: 63)
- `trap`—(Optional) Sends SNMP traps to this host (default).
- `informs`—(Optional) Sends SNMP informs to this host. An inform is a trap that requires acknowledgement. Not applicable to SNMPv1.
- `version 1`—(Optional) SNMPv1 traps are used.
- `version 2c`—(Optional) SNMPv2 traps or informs are used
- `version 3`—(Optional) SNMPv2 traps or informs are used
- Authentication options are available for SNMP v3 only. The following options are available:
  - `noauth`—(Optional) Specifies no authentication of a packet.
  - `auth`—(Optional) Specifies authentication of a packet without encryption.
  - `priv`—(Optional) Specifies authentication of a packet with encryption.
- `community-string`—Password-like community string sent with the notification operation. (Range: 1–20 characters). For v1 and v2, any community string can be entered here. For v3, the community string must match the user name defined in snmp-server user (ISCLI) command for v3.
Network Management Protocol (SNMP) Commands

- **udp-port port**—(Optional) UDP port of the host to use. The default is 162. (Range: 1–65535)

- **filter filtername**—(Optional) Filter for this host. If unspecified, nothing is filtered. The filter is defined using `snmp-server filter` (no specific order of commands is imposed on the user). (Range: Up to 30 characters)

- **timeout seconds**—(Optional) (For informs only) Number of seconds to wait for an acknowledgment before resending informs. The default is 15 seconds. (Range: 1–300)

- **retries retries**—(Optional) (For informs only) Maximum number of times to resend an inform request, when a response is not received for a generated message. The default is 3. (Range: 0–255)

**Default Configuration**

Version: SNMP V1
Type of notification: Traps
udp-port: 162
If informs are specified, the default for retries: 3
Timeout: 15

**Command Mode**

Global Configuration mode

**User Guidelines**

The logical key of the command is the list (ip-address/hostname, traps/informs, version).

When configuring SNMP v1 or v2 notifications recipient, the software automatically generates a notification view for that recipient for all MIBs.

For SNMPv3 the software does not automatically create a user or a notify view.

, use the commands `snmp-server user` (ISCLI) and `snmp-server group` to create a user or a group.

**Example**

The following defines a host at the IP address displayed.
To specify the SNMP engineID on the local device for SNMP v3, use the `snmp-server engineID local` Global Configuration mode command. To remove this engine ID, use the `no` form of this command.

**Syntax**

```
snmp-server engineID local {engineid-string | default}
```

**Parameters**

- `engineid-string`—Specifies a concatenated hexadecimal character string identifying the engine ID. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. If an odd number of hexadecimal digits are entered, the system automatically prefixes the digit 0 to the string. (Length: 5–32 characters, 9–64 hexadecimal digits)
- `default`—Specifies that the engine ID is created automatically based on the device MAC address.

**Default Configuration**

The default engine ID is defined per standard as:

- First 4 octets: First bit = 1, the rest is IANA Enterprise number = 674.
- Fifth octet: Set to 3 to indicate the MAC address that follows.
- Last 6 octets: The device MAC address.

**Command Mode**

Global Configuration mode

**User Guidelines**

To use SNMPv3, an engine ID must be specified for the device. Any ID can be specified or the default string, which is generated using the device MAC address, can be used.
As the engineID should be unique within an administrative domain, the following guidelines are recommended:

- Since the engineID should be unique within an administrative domain, use the default keyword to configure the Engine ID or configure it explicitly. In the latter case verify that it is unique within the administrative domain.
- Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users database.
- The SNMP EngineID cannot be all 0x0 or all 0xF or 0x00000001.

Example

The following example enables SNMPv3 on the device and sets the device local engine ID to the default value.

```
switchxxxxxx(config)# snmp-server engineid local default

The engine-id must be unique within your administrative domain.
Do you wish to continue? [Y/N]Y

The SNMPv3 database will be erased. Do you wish to continue? [Y/N]Y
```

### 45.16 snmp-server engineID remote

To specify the SNMP engine ID of a remote SNMP device, use the `snmp-server engineID remote` Global Configuration mode command. To remove the configured engine ID, use the `no` form of this command.

**Syntax**

```
snmp-server engineID remote ip-address engineid-string
no snmp-server engineID remote ip-address
```

**Parameters**

- **ip-address** — IPv4, IPv6 or IPv6z address of the remote device. See IPv6z Address Conventions.
- **engineid-string** — The character string that identifies the engine ID. The engine ID is a concatenated hexadecimal string. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon. If the user enters an odd number of hexadecimal digits,
the system automatically prefixes the hexadecimal string with a zero.
(Range: engineid-string 5–32 characters. 9–64 hexadecimal digits)

**Default Configuration**

The remote engineID is not configured by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

A remote engine ID is required when an SNMP version 3 inform is configured. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

**Example**

```
switchxxxxxx(config)# snmp-server engineID remote 1.1.1.1 11:AB:01:CD:23:44
```

### 45.17 show snmp engineID

To display the local SNMP engine ID, use the `show snmp engineID` Privileged EXEC mode command.

**Syntax**

```
show snmp engineID
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Privileged EXEC mode
Example

The following example displays the SNMP engine ID.

```plaintext
switchxxxxxx# show snmp engineID
 Local SNMP engineID: 08009009020C0B099C075878
 IP address Remote SNMP engineID
 ------------ -------------------------------
 172.16.1.1 08009009020C0B099C075879
```

45.18 snmp-server enable traps

To enable the device to send SNMP traps, use the `snmp-server enable traps` Global Configuration mode command. To disable all SNMP traps, use the `no` form of the command.

Syntax

- `snmp-server enable traps`
- `no snmp-server enable traps`

Default Configuration

SNMP traps are enabled.

Command Mode

Global Configuration mode

User Guidelines

If `no snmp-server enable traps` has been entered, you can enable failure traps by using `snmp-server trap authentication` as shown in the example.

Example

The following example enables SNMP traps except for SNMP failure traps.

```plaintext
switchxxxxxx(config)# snmp-server enable traps
switchxxxxxx(config)# no snmp-server trap authentication
```
45.19 snmp-server trap authentication

To enable the device to send SNMP traps when authentication fails, use the `snmp-server trap authentication` Global Configuration mode command. To disable SNMP failed authentication traps, use the `no` form of this command.

**Syntax**

```
snmp-server trap authentication
no snmp-server trap authentication
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

SNMP failed authentication traps are enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

The command `snmp-server enable traps` enables all traps including failure traps. Therefore, if that command is enabled (it is enabled by default), this command is not necessary.

**Example**

The following example disables all SNMP traps and enables only failed authentication traps.

```
switchxxxxxx(config)# no snmp-server enable traps
switchxxxxxx(config)# snmp-server trap authentication
```

45.20 snmp-server contact

To set the value of the system contact (sysContact) string, use the `snmp-server contact` Global Configuration mode command. To remove the system contact information, use the `no` form of the command.
**Syntax**

```
snmp-server contact text
no snmp-server contact
```

**Parameters**

- `text`—Specifies system contact information. (Length: 1–160 characters)

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**Example**

The following example sets the system contact information to Technical_Support.

```
switchxxxxxx(config)# snmp-server contact Technical_Support
```

---

**45.21 snmp-server location**

To set the value of the system location string, use the `snmp-server location` Global Configuration mode command. To remove the location string, use the `no` form of this command.

**Syntax**

```
snmp-server location text
no snmp-server location
```

**Parameters**

- `text`—Specifies the system location information. (Length: 1–160 characters)

**Default Configuration**

None
Command Mode
Global Configuration mode

Example
The following example sets the device location to New_York.

```
switchxxxxxx(config)# snmp-server location New_York
```

### 45.22 snmp-server set

To define SNMP MIB commands in the configuration file if a MIB performs an action for which there is no corresponding CLI command, use the `snmp-server set` Global Configuration mode command.

**Syntax**

```
snmp-server set variable-name name value [name2 value2...]
```

**Parameters**

- `variable-name`—Specifies an SNMP MIB variable name, which must be a valid string.
- `name value`—Specifies a list of names and value pairs. Each name and value must be a valid string. In the case of scalar MIBs, there is only a single name-value pair. In the case of an entry in a table, there is at least one name-value pair, followed by one or more fields.

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**User Guidelines**

Although the CLI can set any required configuration, there might be a situation where an SNMP user sets a MIB variable that does not have an equivalent CLI command. To generate configuration files that support those situations, the system uses `snmp-server set`. This command is not intended for the end user.
**Example**

The following example configures the scalar MIB `sysName` with the value TechSupp.

```
switchxxxxxx(config)# snmp-server set sysName sysname TechSupp
```

---

**45.23 snmp trap link-status**

To enable link-status generation of SNMP traps, use the `snmp trap link-status` Interface Configuration mode command. To disable generation of link-status SNMP traps, use the `no` form of this command.

**Syntax**

```
snmp trap link-status
no snmp trap link-status
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Generation of SNMP link-status traps is enabled

**Command Mode**

Interface Configuration mode

**Example**

The following example disables generation of SNMP link-status traps.

```
switchxxxxxx(config)# interface gig
switchxxxxxx(config-if)# # no snmp trap link-status
```

---

**45.24 show snmp**

To display the SNMP status, use the `show snmp` Privileged EXEC mode command.
**Syntax**

`show snmp`

**Parameters**

This command has no arguments or keywords

**Default Configuration**

None

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the SNMP communications status.

```
switchxxxxxx# show snmp
SNMP is enabled
SNMP traps Source IPv4 interface: vlan 1
SNMP informs Source IPv4 interface: vlan 11
SNMP traps Source IPv6 interface: vlan 10
SNMP informs Source IPv6 interface:

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>View name</th>
<th>IP Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>read only</td>
<td>user-view</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>read write</td>
<td>Default</td>
<td>172.16.1.1/10</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>su</td>
<td>DefaultSuper</td>
<td>172.16.1.1</td>
<td></td>
</tr>
<tr>
<td>Community-string</td>
<td>Group name</td>
<td>IP Address</td>
<td>Mask</td>
<td>Type</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>public</td>
<td>user-group</td>
<td>All</td>
<td></td>
<td>Router</td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication trap is enabled.
Version 1,2 notifications
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-string</td>
<td>The community access string permitting access to SNMP.</td>
</tr>
<tr>
<td>Community-access</td>
<td>The permitted access type—read-only, read-write, super access.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The management station IP Address.</td>
</tr>
<tr>
<td>Target Address</td>
<td>The IP address of the targeted recipient.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version for the sent trap.</td>
</tr>
</tbody>
</table>

Target Address

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Community</th>
<th>Version</th>
<th>UDP Port</th>
<th>Filter TO</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Trap</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Version 3 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Username</th>
<th>Security Level</th>
<th>UDP Port</th>
<th>Filter name</th>
<th>TO</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>Bob</td>
<td>Priv</td>
<td>162</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

System Contact: Robert
System Location: Marketing
Spanning-Tree Commands

46.1 spanning-tree

Use the `spanning-tree` Global Configuration mode command to enable spanning-tree functionality. Use the `no` form of this command to disable the spanning-tree functionality.

Syntax

```
spanning-tree
no spanning-tree
```

Parameters

N/A

Default Configuration

Spanning-tree is enabled.

Command Mode

Global Configuration mode

Example

The following example enables spanning-tree functionality.

```
switchxxxxxx(config)# spanning-tree
```
46.2 spanning-tree mode

Use the `spanning-tree mode` Global Configuration mode command to select which Spanning Tree Protocol (STP) protocol to run. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mode {stp/rstp /mst/}

no spanning-tree mode
```

Parameters

- **stp**—Specifies that STP is enabled.
- **rstp**—Specifies that the Rapid STP is enabled.
- **mst**—Specifies that the Multiple STP is enabled.

Default Configuration

The default is RSTP.

Command Mode

Global Configuration mode

User Guidelines

In RSTP mode, the device uses STP when the neighbor device uses STP.

In MSTP mode, the device uses RSTP when the neighbor device uses RSTP, and uses STP when the neighbor device uses STP.

Example

The following example enables MSTP.

```
switchxxxxxx(config)# spanning-tree mode mst
```
46.3 spanning-tree forward-time

Use the `spanning-tree forward-time` Global Configuration mode command to configure the spanning-tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree forward-time seconds
no spanning-tree forward-time
```

Parameters

- **seconds**—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

Default Configuration

15 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the forwarding time, the following relationship should be maintained:

\[2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age} \]

Example

The following example configures the spanning tree bridge forwarding time to 25 seconds.

```
switchxxxxxx(config)# spanning-tree forward-time 25
```
46.4 spanning-tree hello-time

Use the `spanning-tree hello-time` Global Configuration mode command to configure how often the device broadcasts Hello messages to other devices. Use the `no` form of this command to restore the default configuration.

Syntax

```plaintext
spanning-tree hello-time seconds
no spanning-tree hello-time
```

Parameters

- `seconds`—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)

Default Configuration

2 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the Hello time, the following relationship should be maintained:

```
Max-Age >= 2*(Hello-Time + 1)
```

Example

The following example configures the spanning-tree bridge hello time to 5 seconds.

```
switchxxxxxx(config)# spanning-tree hello-time 5
```

46.5 spanning-tree max-age

Use the `spanning-tree max-age` Global Configuration mode command to configure the STP maximum age. Use the `no` form of this command to restore the default configuration.
Spanning-Tree Commands

Syntax

spanning-tree max-age seconds
no spanning-tree max-age

Parameters

seconds—Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)

Default Configuration

The default maximum age is 20 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the maximum age, the following relationships should be maintained:

\[2 \times (Forward-Time - 1) \geq \text{Max-Age} \]
\[\text{Max-Age} \geq 2 \times (Hello-Time + 1) \]

Example

The following example configures the spanning-tree bridge maximum age to 10 seconds.

```
switchxxxxxx(config)# spanning-tree max-age 10
```

46.6 spanning-tree priority

Use the `spanning-tree priority` Global Configuration mode command to configure the device STP priority, which is used to determine which bridge is selected as the root bridge. Use the `no` form of this command to restore the default device spanning-tree priority.

Syntax

spanning-tree priority `priority`
no spanning-tree priority

Parameters

priority—Specifies the bridge priority. (Range: 0–61440)

Default Configuration

Default priority = 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree. When more than one switch has the lowest priority, the switch with the lowest MAC address is selected as the root.

Example

The following example configures the spanning-tree priority to 12288.

```
switchxxxxxx(config)# spanning-tree priority 12288
```

46.7 spanning-tree disable

Use the `spanning-tree disable` Interface (Ethernet, Port Channel) Configuration mode command to disable the spanning tree on a specific port. Use the `no` form of this command to enable the spanning tree on a port.

Syntax

- `spanning-tree disable`
- `no spanning-tree disable`

Parameters

N/A
Default Configuration

Spanning tree is enabled on all ports.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables the spanning tree on gi15

switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree disable

46.8 spanning-tree cost

Use the spanning-tree cost Interface (Ethernet, Port Channel) Configuration mode command to configure the spanning-tree path cost for a port. Use the no form of this command to restore the default configuration.

Syntax

spanning-tree cost cost

no spanning-tree cost

Parameters

cost—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by port speed and path cost method (long or short) as shown below

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures the spanning-tree cost on gi115 to 35000.

```
switchxxxxxx(config)# interface gi115
switchxxxxxx(config-if)# spanning-tree cost 35000
```

46.9 spanning-tree port-priority

Use the `spanning-tree port-priority` Interface (Ethernet, Port Channel) Configuration mode command to configure the port priority. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree port-priority priority
no spanning-tree port-priority
```

Parameters

- **priority**—Specifies the port priority. (Range: 0–240)

Default Configuration

The default port priority is 128.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the spanning priority on gi115 to 96
46.10 spanning-tree portfast

Use the **spanning-tree portfast** Interface (Ethernet, Port Channel) Configuration mode command to enable the PortFast mode. In PortFast mode, the interface is immediately put into the forwarding state upon linkup, without waiting for the standard forward time delay. Use the **no** form of this command to disable the PortFast mode.

Syntax

```plaintext
spanning-tree portfast [auto]
no spanning-tree portfast
```

Parameters

- **auto**—Specifies that the software waits for 3 seconds (with no Bridge Protocol Data Units (BPDUs) received on the interface) before putting the interface into the PortFast mode.

Default Configuration

PortFast mode is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables the PortFast mode on gi15.

```plaintext
switchxxxxxx(config)# interface gi115
switchxxxxxx(config-if)# spanning-tree port-priority 96

switchxxxxxx(config)# interface gi115
switchxxxxxx(config-if)# spanning-tree portfast
```
46.11 spanning-tree link-type

Use the `spanning-tree link-type` Interface (Ethernet, Port Channel) Configuration mode command to override the default link-type setting determined by the port duplex mode, and enable RSTP transitions to the Forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree link-type {point-to-point | shared}
no spanning-tree spanning-tree link-type
```

Parameters

- `point-to-point`—Specifies that the port link type is point-to-point.
- `shared`—Specifies that the port link type is shared.

Default Configuration

The device derives the port link type from the duplex mode. A full-duplex port is considered a point-to-point link and a half-duplex port is considered a shared link.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables shared spanning-tree on gi15.

```
switchxxxxxx(config)# interface gi115
switchxxxxxx(config-if)# spanning-tree link-type shared
```

46.12 spanning-tree pathcost method

Use the `spanning-tree pathcost method` Global Configuration mode command to set the default path cost method. Use the `no` form of this command to return to the default configuration.
Spanning-Tree Commands

Syntax

spanning-tree pathcost method {long | short}
no spanning-tree pathcost method

Parameters

- **long**—Specifies that the default port path costs are within the range: 1–200,000,000.
- **short**—Specifies that the default port path costs are within the range: 1–200,000,000.

Default Configuration

Long path cost method.

Command Mode

Global Configuration mode

User Guidelines

This command applies to all the spanning tree instances on the switch.

- If the short method is selected, the switch calculates the default cost as 100.
- If the long method is selected, the switch calculates the default cost as 20000.

Example

The following example sets the default path cost method to Long.

```
switchxxxxxx(config)# spanning-tree pathcost method long
```

46.13 spanning-tree bpdu (Global)

Use the **spanning-tree bpdu** Global Configuration mode command to define Bridge Protocol Data Unit (BPU) handling when the spanning tree is disabled globally or on a single interface. Use the **no** form of this command to restore the default configuration.
Spanning-Tree Commands

Syntax

spanning-tree bpdu {filtering | flooding}

no spanning-tree bpdu

Parameters

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.

- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to all ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

Default Configuration

The default setting is flooding.

Command Mode

Global Configuration mode

User Guidelines

The filtering and flooding modes are relevant when the spanning tree is disabled globally or on a single interface.

Example

The following example defines the BPDU packet handling mode as flooding when the spanning tree is disabled on an interface.

```
switchxxxxxx(config)# spanning-tree bpdu flooding
```

46.14 spanning-tree bpdu (Interface)

Use the spanning-tree bpdu Interface (Ethernet, Port Channel) Configuration mode command to define BPDU handling when the spanning tree is disabled on a single interface. Use the no form of this command to restore the default configuration.
Syntax

```plaintext
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

Parameters

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

Default Configuration

The `spanning-tree bpdu (Global)` command determines the default configuration.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example defines the BPDU packet as `flooding` when the spanning tree is disabled on `gi13`.

```plaintext
switchxxxxxx(config)# interface gi13
switchxxxxxx(config-if)# spanning-tree bpdu flooding
```

46.15 spanning-tree guard root

Use the `spanning-tree guard root` Interface (Ethernet, Port Channel) Configuration mode command to enable Root Guard on all spanning-tree instances on the interface. Root guard prevents the interface from becoming the root port of the device. Use the `no` form of this command to disable the root guard on the interface.

Syntax

```plaintext
spanning-tree guard root
no spanning-tree guard root
```
Default Configuration
Root guard is disabled.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
Root Guard can be enabled when the device operates in any mode (STP, RSTP and MSTP).

When Root Guard is enabled, the port changes to the alternate state if the spanning-tree calculations select the port as the root port.

Example
The following example prevents gi11 from being the root port of the device.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# spanning-tree guard root
```

46.16 spanning-tree bpduguard

Use the spanning-tree bpduguard Interface (Ethernet, Port Channel) Configuration mode command to shut down an interface when it receives a Bridge Protocol Data Unit (BPDU). Use the no form of this command to restore the default configuration.

Syntax
```
spanning-tree bpduguard {enable | disable}
no spanning-tree bpduguard
```

Parameters
- **bpduguard enable**—Enables BPDU Guard.
- **bpduguard disable**—Disables BPDU Guard.

Default Configuration
BPDU Guard is disabled.
Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
The command can be enabled when the spanning tree is enabled (useful when the port is in the PortFast mode) or disabled.

Example
The following example shuts down gi15 when it receives a BPDU.

```
switchxxxxxx(config)# interface gi15  
switchxxxxxx(config-if)# spanning-tree bpdu-guard enable
```

46.17 clear spanning-tree detected-protocols

Use the `clear spanning-tree detected-protocols` Privileged EXEC mode command to restart the STP migration process (force renegotiation with neighboring switches) on all interfaces or on the specified interface.

Syntax

clear spanning-tree detected-protocols `[interface interface-id]`

Parameters

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This feature can only be used when working in RSTP or MSTP mode.
Example

This restarts the STP migration process on all interfaces.

```
switchxxxxxx# clear spanning-tree detected-protocols
```

46.18 spanning-tree mst priority

Use the `spanning-tree mst priority` Global Configuration mode command to configure the device priority for the specified spanning-tree instance. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst instance-id priority priority
no spanning-tree mst instance-id priority
```

Parameters

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–7)
- `priority`—Specifies the device priority for the specified spanning-tree instance. This setting determines the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. (Range: 0–61440)

Default Configuration

The default priority is 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.
The switch with the lowest priority is the root of the spanning tree.
Example

The following example configures the spanning tree priority of instance 1 to 4096.

```
switchxxxxxx(config)# spanning-tree mst 1 priority 4096
```

46.19 spanning-tree mst max-hops

Use the `spanning-tree mst max-hops` Global Configuration mode command to configure the number of hops in an MST region before the BDPU is discarded and the port information is aged out. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst max-hops hop-count
no spanning-tree mst max-hops
```

Parameters

- `max-hops hop-count`—Specifies the number of hops in an MST region before the BDPU is discarded. (Range: 1–40)

Default Configuration

The default number of hops is 20.

Command Mode

Global Configuration mode

Example

The following example configures the maximum number of hops that a packet travels in an MST region before it is discarded to 10.

```
switchxxxxxx(config)# spanning-tree mst max-hops 10
```
46.20 spanning-tree mst port-priority

Use the `spanning-tree mst port-priority` Interface (Ethernet, Port Channel) Configuration mode command to configure the priority of a port. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

Parameters

- `instance-id`—Specifies the spanning tree instance ID. (Range: 1–15)
- `priority`—Specifies the port priority. (Range: 0–240 in multiples of 16)

Default Configuration

The default port priority is 128.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the port priority of `gi1` to 144.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# spanning-tree mst 1 port-priority 144
```

46.21 spanning-tree mst cost

Use the `spanning-tree mst cost` Interface (Ethernet, Port Channel) Configuration mode command to configure the path cost for MST calculations. If a loop occurs, the spanning tree considers path cost when selecting an interface to put in the
Forwarding state. Use the no form of this command to restore the default configuration.

Syntax

```plaintext
spanning-tree mst instance-id cost cost
no spanning-tree mst instance-id cost
```

Default Configuration

N/A

Parameters

- **instance-id**—Specifies the spanning-tree instance ID. (Range: 1–15)
- **cost**—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by the port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures the MSTP instance 1 path cost for port gi19 to 4.

```plaintext
switchxxxxxx(config)# interface gi19
switchxxxxxx(config-if)# spanning-tree mst 1 cost 4
```
46.22 spanning-tree mst configuration

Use the `spanning-tree mst configuration` Global Configuration mode command to enable configuring an MST region by entering the MST mode.

Syntax

```
spanning-tree mst configuration
```

Command Mode

Global Configuration mode

User Guidelines

For two or more switches to be in the same MST region, they must contain the same VLAN mapping, the same configuration revision number, and the same name.

Example

The following example configures an MST region.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
switchxxxxxx(config-mst)# name region1
switchxxxxxx(config-mst)# revision 1
```

46.23 instance (MST)

Use `instance` MST Configuration mode command to map VLANs to an MST instance. Use the `no` form of this command to restore the default mapping.

Syntax

```
instance instance-id vlan vlan-range
no instance instance-id vlan vlan-range
```

Parameters

- **instance-id**—MST instance (Range: 1–7)
- **vlan-range**—The specified range of VLANs is added to the existing ones. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 1–4094)

Default Configuration

All VLANs are mapped to the common and internal spanning tree (CIST) instance (instance 0).

Command Mode

MST Configuration mode

User Guidelines

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST.

For two or more devices to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

Example

The following example maps VLANs 10-20 to MST instance 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
```

46.24 name (MST)

Use the **name** MST Configuration mode command to define the MST instance name. Use the **no** form of this command to restore the default setting.

Syntax

```
name string
no name
```

Parameters

- **string**—Specifies the MST instance name. (Length: 1–32 characters)
Default Configuration
The default name is the bridge MAC address.

Command Mode
MST Configuration mode

Example
The following example defines the instance name as Region1.

```
switchxxxxxxx(config)# spanning-tree mst configuration
switchxxxxxxx(config-mst)# name region1
```

46.25 revision (MST)
Use the revision MST Configuration mode command to define the MST configuration revision number. Use the no form of this command to restore the default configuration.

Syntax
```
revision value
no revision
```

Parameters
```
value—Specifies the MST configuration revision number. (Range: 0–65535)
```

Default Configuration
The default configuration revision number is 0.

Command Mode
MST Configuration mode

Example
The following example sets the configuration revision to 1.

```
```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst) # revision 1

46.26 show (MST)

Use the show MST Configuration mode command to display the current or pending MST region configuration.

Syntax

show {current | pending}

Parameters

- **current**—Displays the current MST region configuration.
- **pending**—Displays the pending MST region configuration.

Default Configuration

N/A

Command Mode

MST Configuration mode

Example

The following example displays a pending MST region configuration

switchxxxxxx(config-mst)# show pending
Gathering information
Current MST configuration
Name: Region1
Revision: 1

<table>
<thead>
<tr>
<th>Instance</th>
<th>VLANs Mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-4094</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

switchxxxxxx(config-mst)#
46.27 exit (MST)

Use the `exit` MST Configuration mode command to exit the MST region Configuration mode and apply all configuration changes.

Syntax

```
exit
```

Parameters

N/A

Default Configuration

N/A

Command Mode

MST Configuration mode

Example

The following example exits the MST Configuration mode and saves changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# exit
switchxxxxxx(config)#
```

46.28 abort (MST)

Use the `abort` MST Configuration mode command to exit the MST Configuration mode without applying the configuration changes.

Syntax

```
abort
```

Parameters

N/A
Default Configuration

N/A

Command Mode

MST Configuration mode

Example

The following example exits the MST Configuration mode without saving changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# abort
```

46.29 show spanning-tree

Use the `show spanning-tree` Privileged EXEC mode command to display the spanning-tree configuration.

Syntax

```
show spanning-tree [interface-id] [instance instance-id]
show spanning-tree [detail] [active | blockedports] [instance instance-id]
show spanning-tree mst-configuration
```

Parameters

- `instance instance-id`—Specifies the spanning tree instance ID. (Range: 1–7).
- `detail`—Displays detailed information.
- `active`—Displays active ports only.
- `blockedports`—Displays blocked ports only.
- `mst-configuration`—Displays the MST configuration identifier.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
Default Configuration

If no interface is specified, the default is all interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This command only works when MST is enabled.

Example

The following examples display spanning-tree information in various configurations

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled
Root ID  Priority    32768
        Address  00:01:42:97:e0:00
        Cost     20000
        Port     gi11
Hello Time 2 sec    Max Age 20 sec Forward Delay 15 sec

Bridge ID  Priority    36864
           Address  00:02:4b:29:7a:00
Hello Time 2 sec    Max Age 20 sec Forward Delay 15 sec
```
Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. No</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi13</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi15</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Root ID Priority 36864
  Address 00:02:4b:29:7a:00
  This switch is the Root.
  Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
```

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi13</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi15</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree
Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long
Root ID Priority N/A
  Address N/A
  Path Cost N/A
  Root Port N/A
  Hello Time N/A Max Age N/A Forward Delay N/A
```

Bridge

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

```
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
```
Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFastType</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi13</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi15</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree active
Spanning tree enabled mode RSTP
Default port cost method: long
```

Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi11
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Bridge ID | Priority | 36864
Address | 00:02:4b:29:7a:00
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

```
```

switchxxxxxx# show spanning-tree blockedports
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi11
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

```
```

```
```
Spanning Tree Commands

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
<tr>
<td>Hello Time</td>
<td>2 sec</td>
<td>Max Age 20 sec</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>19</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode RSTP
Default port cost method: long

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
</tr>
<tr>
<td>Path Cost</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>Root Port</td>
<td>gi11</td>
<td></td>
</tr>
<tr>
<td>Hello Time</td>
<td>2 sec</td>
<td>Max Age 20 sec</td>
</tr>
</tbody>
</table>

Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi11) enabled
State: Forwarding Role: Root
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) RSTP Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:01:42:97:e0:00
Designated port id: 128.25 Designated path cost: 0
Guard root: Disabled BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638
<table>
<thead>
<tr>
<th>Port 2 (gi12) enabled</th>
<th>Port 3 (gi13) disabled</th>
<th>Port 4 (gi14) enabled</th>
<th>Port 5 (gi15) enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: Forwarding</td>
<td>Role: Designated</td>
<td>State: Blocking</td>
<td>Role: Alternate</td>
</tr>
<tr>
<td>Port id: 128.2</td>
<td>Port cost: 20000</td>
<td>Port id: 128.4</td>
<td>Port cost: 20000</td>
</tr>
<tr>
<td>Type: Shared (configured: auto) STP</td>
<td>Port Fast: No (configured:no)</td>
<td>Designated bridge Priority: 28672</td>
<td>Address: 00:30:94:41:62:c8</td>
</tr>
<tr>
<td>Designated port id: 128.2</td>
<td>Designated path cost: 20000</td>
<td>Designated port id: 128.25</td>
<td>Designated path cost: 20000</td>
</tr>
<tr>
<td>Guard root: Disabled</td>
<td>BPDU guard: Disabled</td>
<td>Guard root: Disabled</td>
<td>BPDU guard: Disabled</td>
</tr>
<tr>
<td>Number of transitions to forwarding state: 1</td>
<td>BPDU: sent N/A, received N/A</td>
<td>BPDU: sent 2, received 120638</td>
<td>BPDU: sent N/A, received N/A</td>
</tr>
</tbody>
</table>

Port 2 (gi12) enabled
- State: Forwarding
- Port id: 128.2
- Type: Shared (configured: auto) STP
- Designated bridge Priority: 32768
- Designated port id: 128.2
- Guard root: Disabled
- Role: Designated
- Port cost: 20000
- Port Fast: No (configured:no)
- Address: 00:02:4b:29:7a:00
- Designated path cost: 20000
- BPDU guard: Disabled
- Number of transitions to forwarding state: 1
- BPDU: sent 2, received 170638

Port 3 (gi13) disabled
- State: N/A
- Port id: 128.3
- Type: N/A (configured: auto)
- Designated bridge Priority: N/A
- Designated port id: N/A
- Guard root: Disabled
- Role: N/A
- Port cost: 20000
- Port Fast: N/A (configured:no)
- Address: N/A
- Designated path cost: N/A
- BPDU guard: Disabled
- Number of transitions to forwarding state: N/A
- BPDU: sent N/A, received N/A

Port 4 (gi14) enabled
- State: Blocking
- Port id: 128.4
- Type: Shared (configured:auto) STP
- Designated bridge Priority: 28672
- Designated port id: 128.25
- Guard root: Disabled
- Role: Alternate
- Port cost: 20000
- Port Fast: No (configured:no)
- Address: 00:30:94:41:62:c8
- Designated path cost: 20000
- BPDU guard: Disabled
- Number of transitions to forwarding state: 1
- BPDU: sent 2, received 120638

Port 5 (gi15) enabled
- State: Disabled
- Port id: 128.5
- Type: N/A (configured: auto)
- Designated bridge Priority: N/A
- Designated port id: N/A
- Guard root: Disabled
- Role: N/A
- Port cost: 20000
- Port Fast: N/A (configured:no)
- Address: N/A
- Designated path cost: N/A
- BPDU guard: Disabled
- Number of transitions to forwarding state: N/A
- BPDU: sent N/A, received N/A
switchxxxxxx# **show spanning-tree ethernet** gi11
Port 1 (gi11) enabled
State: Forwarding
Port id: 128.1
Port cost: 20000
Type: P2p (configured: auto) RSTP
Port Fast: No (configured: no)
Designated bridge Priority: 32768
Address: 00:01:42:97:e0:00
Designated port id: 128.25
Designated path cost: 0
Guard root: Disabled
Role: Root
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:01:42:97:e0:00
Designated path cost: 0
BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

switchxxxxxx# **show spanning-tree mst-configuration**
Name: Region1
Revision: 1
Instance	Vlans mapped	State
1 | 1-9, 21-4094 | Enabled
2 | 10-20 | Enabled

switchxxxxxx# **show spanning-tree**
Spanning tree enabled mode MSTP
Default port cost method: long
MST 0 Vlans Mapped: 1-9
CST Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi11
Hello Time | 2 sec Max Age 20 sec Forward Delay 15 sec

IST Master ID | Priority | 32768
Address | 00:02:4b:29:7a:00
This switch is the IST master.
Hello Time | 2 sec Max Age 20 sec Forward Delay 15 sec
Max hps | 20

Interfaces
Spanning-Tree Commands

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi13</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
</tbody>
</table>

MST 1 Vlans Mapped: 10-20

Root ID | Priority | 24576
Address | 00:02:4b:29:89:76
Path Cost | 20000
Root Port | gi14
Rem hops | 19

Bridge ID | Priority | 32768
Address | 00:02:4b:29:7a:00

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi12</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Boun</td>
<td>No</td>
</tr>
<tr>
<td>gi13</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td>gi14</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode MSTP
Default port cost method: long

MST 0 Vlans Mapped: 1-9

CST Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi11
Hello Time | 2 sec
Max Age | 20 sec
Forward Delay | 15 sec

IST Master ID | Priority | 32768
Address | 00:02:4b:29:7a:00
This switch is the IST master.
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Max hops 20
Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi11) enabled
State: Forwarding Role: Root
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:01:42:97:e0:00
Designated port id: 128.25 Designated path cost: 0
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 2 (gi12) enabled
State: Forwarding Role: Designated
Port id: 128.2 Port cost: 20000
Type: Shared (configured: auto) Boundary STP Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi13) enabled
State: Forwarding Role: Designated
Port id: 128.3 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.3 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Port 4 (gi14) enabled
State: Forwarding Role: Designated
Port id: 128.4 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

MST 1 Vlans Mapped: 10-20

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24576</td>
<td>00:02:4b:29:89:76</td>
<td>20000</td>
<td>gi14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
<th>Rem hops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
<td>19</td>
</tr>
</tbody>
</table>

Number of topology changes 2 last change occurred 1d9h ago
Times: hold 1, topology change 2, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi11) enabled
State: Forwarding Role: Boundary
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.1 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638
Port 2 (gi12) enabled
State: Forwarding Role: Designated
Port id: 128.2 Port cost: 20000
Type: Shared (configured: auto) Boundary STP Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi13) disabled
State: Blocking Role: Alternate
Port id: 128.3 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:1a:19
Designated port id: 128.78 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 4 (gi14) enabled
State: Forwarding Role: Designated
Port id: 128.4 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

switch# show spanning-tree
Spanning tree enabled mode MSTP
Default port cost method: long
MST 0 Vlans Mapped: 1-9
CST Root ID Priority 32768
 Address 00:01:42:97:e0:00
 Path Cost 20000
 Root Port gi11
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
4.30 show spanning-tree bpdu

Use the `show spanning-tree bpdu` User EXEC mode command to display the BPDU handling when spanning-tree is disabled.

Syntax

```
show spanning-tree bpdu [interface-id | detailed]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

- **detailed**—Displays information for non-present ports in addition to present ports.
Default Configuration

Show information for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

The following examples display spanning-tree BPDU information:

```
switchxxxxxx# show spanning-tree bpdu
```

The following is the output if the global BPDU handling command is not supported.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi12</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi13</td>
<td>Filtering</td>
<td>Guard</td>
</tr>
</tbody>
</table>

The following is the output if both the global BPDU handling command and the per-interface BPDU handling command are supported.

Global: Flooding

```
Interface | Admin Mode | Oper Mode |
-----------|------------|-----------|
 gi11      | Global     | Flooding  |
 gi12      | Global     | STP       |
 gi13      | Flooding   | STP       |
```

46.31 spanning-tree loopback-guard

Use the `spanning-tree loopback-guard global configuration` command to shut down an interface if it receives a loopback BPDU. Use the `no` form of this command to return the default setting.
Syntax
spanning-tree loopback-guard
no spanning-tree loopback-guard

Parameters
N/A

Default Configuration
N/A

Command Mode
Global

User Guidelines
This enables shutting down all interfaces if a loopback BPDU is received on it.

Example
switchxxxxxx(config)# spanning-tree loopback-guard
SSD Commands

47.1 ssd config

To enter the Secure Sensitive Data (SSD) command mode, use `ssd config` in Global Configuration mode. In this command mode, an administrator can configure how the sensitive data on the device, such as keys and passwords, is to be protected.

Syntax

`ssd config`

Parameters

This command has no arguments or keywords.

Command Mode

Global Configuration mode

User Guidelines

Only users with sufficient permission can use this command, which edits and displays the SSD configuration. See `ssd rule` for a description of these permissions.

Example

```
switchxxxxxx(config)# ssd config
switchxxxxxx(config-ssd)#
```

47.2 passphrase

To change the passphrase in the system, use `passphrase` in SSD Configuration mode. A device protects its sensitive data by encrypting them using the key generated from the passphrase.
To reset the passphrase to the default passphrase, use the no passphrase.

Syntax

```plaintext
passphrase {passphrase}
encrypted passphrase {encrypted-passphrase}
no passphrase
```

Parameters

- `passphrase`—New system passphrase.
- `encrypted-passphrase`—The passphrase in its encrypted form.

Default Usage

If this command is not entered, the default passphrase is used.

Command Mode

SSD Configuration mode

User Guidelines

To use this command, enter passphrase and Enter; a confirmation message is displayed and the user must confirm the intention to change the passphrase. Then the passphrase can be entered (see example).

Encrypted passphrase is allowed only in the SSD Control Block of a source file that is being copied to the startup configuration file (user cannot manually enter this command).

When generating a passphrase, the user must use 4 different character classes (similar to strong password/passwords complexity). These can be: uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard.

Example

The following example defines a decrypted passphrase.

```
switchxxxxxx(config-ssd)# passphrase
This operation will change the system SSD passphrase. Are you sure? (Y/N)[N] Y
Please enter SSD passphrase:**********
```
47.3 ssd rule

To configure an SSD rule, use `ssd rule` in SSD Configuration mode. A device grants read permission of sensitive data to users based on the SSD rules. A user that is granted Both or Plaintext read permission is also granted permission to enter SSD Configuration mode.

To delete user-defined rules and restore default rules, use `no ssd rule`.

Syntax

```
[encrypted] ssd rule {all | level-15 | default-user | user user-name}
  {secure | insecure | secure-xml-snmp | insecure-xml-snmp}
  permission {encrypted-only | plaintext-only | both | exclude}
  default-read {encrypted | plaintext | exclude}

no ssd rule [ {all | level-15 | default-user | user user-name}
  {secure | insecure | secure-xml-snmp | insecure-xml-snmp}]
```

Command Mode

SSD Configuration mode.

Default Rules

The device has the following factory default rules:

<table>
<thead>
<tr>
<th>Rule Key</th>
<th>Rule Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>level-15 secure-xml-snmp</td>
<td>Plaintext Only</td>
</tr>
<tr>
<td>level-15 secure</td>
<td>Both</td>
</tr>
<tr>
<td>level-15 insecure</td>
<td>Both</td>
</tr>
<tr>
<td>all</td>
<td>insecure-xml-snmp</td>
</tr>
<tr>
<td>all secure</td>
<td>Encrypted Only</td>
</tr>
<tr>
<td>all insecure</td>
<td>Encrypted Only</td>
</tr>
</tbody>
</table>
User Guidelines

Use **no ssd rule** to delete a user-defined rule or to restore the default of a modified default rule.

Use **no ssd rule** (without parameters) to remove all SSD rules and restore the default SSD rules. A confirmation message will be displayed asking permission to do this.

To delete specific rules (applicable for the user defined), provide parameters specifying the user and security of the channel.

encrypted SSD rule is used to copy an SSD rule from one device to another in a secure manner.

You can modify but cannot delete the default SSD rules.

The following is the order in which SSD rules are applied:

- The SSD rules for specified *users*.
- The SSD rule for the **default-user (cisco)**.
- The SSD rules for **level-15** users.
 - The remaining SSD rules for *all*.

The user can enter the commands in any order. The ordering is done implicitly by the device.

Examples

Example 1 - The following example modifies a rule.

```
switchxxxxxx(config-ssd)# ssd rule level-15 secure permission encrypted-only default-read encrypted
```

Example 2 - The following example adds a rule.

```
switchxxxxxx(config-ssd)# ssd rule user james secure permission both default-read encrypted
```

Example 3 - The following example adds a rule as encrypted format.
switchxxxxxx(config-ssd)# encrypted ssd rule
iurwe874jho32iu9ufjo32i83232fdefsd

Example 4 - The following example deletes a default rule.

switchxxxxxx(config-ssd)# no ssd rule all secure

Example 5 - The following example deletes a user-defined rule.

switchxxxxxx(config-ssd)# no ssd rule user james secure

Example 6 - The following example deletes all rules.

switchxxxxxx(config-ssd)# no ssd rule
This operation will delete all user-defined rules and retrieve the default rules instead.
Are you sure (Y/N): N

47.4 show SSD

To present the current SSD rules; the rules will be displayed as plaintext, use show ssd rules in SSD Configuration mode.

Syntax

show SSD [rules| brief]

Parameters

- rules—(Optional) Display only the SSD rules.
- brief—(Optional) Display the encrypted passphrase, File Passphrase Control and File Integrity attributes.

Command Mode
SSD Configuration mode

Default Configuration
Display all SDD information.

Examples

Example 1 - The following example displays all SSD information.

switchxxxxxxx(config-ssd)# show ssd
SSD current parameters:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled

SSD parameters after reset:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin11</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td>secure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Level-15</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Level-15</td>
<td>insecure</td>
<td>Both</td>
<td>Encrypted</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>insecure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>insecure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>*Default</td>
<td></td>
</tr>
</tbody>
</table>

* Modified default entry

Example 2 - The following example displays the SSD rules.

switchxxxxxxx(config-ssd)# show ssd rules

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin11</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td>secure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>
Example 3 - The following example displays the SSD attributes.

```
switchxxxxxxx(config-ssd)# show ssd brief

SSD current parameters:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled

SSD parameters after reset:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled
```

47.5 ssd session read

To override the current SSD default read of the current session, use `ssd session read` in Global Configuration mode.

Syntax

```
ssd session read {encrypted | plaintext | exclude}
no ssd session read
```

Parameters

- `encrypted`—Override the SSD default option to encrypted
- `plaintext`—Override the SSD default option to plaintext
- `exclude`—Override the SSD default option to exclude
Command Mode

Global Configuration mode.

Default

The command itself does not have a default. However, note that the read mode of the session itself, defaults to the default read mode of the SSD rule that the device uses to grant SSD permission to the user of the session.

User Guidelines

Use `no ssd session read` to restore the default read option of the SSD rules. This configuration will be allowed only if the user of the current session has sufficient read permissions; otherwise, the command will fail and an error will be displayed. The setting will take effect immediately and will terminate when the user restores the settings or exits the session.

Example

```
switchxxxxxx(config)# ssd session read plaintext
```

47.6 show ssd session

To view the SSD read permission and default read mode of the user of the current session, use `show ssd session` in Privileged EXEC mode.

Syntax

```
show ssd session
```

Command Mode

Privileged EXEC mode

Default

None

Examples

```
switchxxxxxx# show ssd session
User Name/Level: James / Level 15
```
47.7 ssd file passphrase control

To provide an additional level of protection when copying configuration files to the startup configuration file, use `ssd file passphrase control` in SSD Configuration mode. The passphrase in a configuration file is always encrypted with the default passphrase key.

Syntax

```
ssd file passphrase control {restricted | unrestricted}
no ssd file passphrase control
```

Parameters

- **Restricted**—In this mode, a device restricts its passphrase from being exported into a configuration file. Restricted mode protects the encrypted sensitive data in a configuration file from devices that do not have the passphrase. The mode should be used when a user does not want to expose the passphrase in a configuration file.

- **Unrestricted**—In this mode, a device will include its passphrase when creating a configuration file. This allows any devices accepting the configuration file to learn the passphrase from the file.

Default

The default is `unrestricted`.

Command Mode

SSD Configuration mode.

User Guidelines

To revert to the default state, use the `no ssd file passphrase control` command.

Note that after a device is reset to the factory default, its local passphrase is set to the default passphrase. As a result, the device will not be able to decrypted sensitive data encrypted with a user-defined passphrase key in its own configuration files until the device is manually configured with the user-passphrase again or the files are created in unrestricted mode.
If a user-defined passphrase in Unrestricted mode are configured, it is highly recommended to enable SSD File Integrity Control. Enabling SSD File Integrity Control protects configuration files from tampering.

Examples

console(ssd-config)# ssd file passphrase control restricted
console(ssd-config)# no ssd file passphrase control

47.8 ssd file integrity control

To instruct the device to protect newly-generated configuration files that contain encrypted sensitive data from tampering, use `ssd file integrity control` command in SSD Configuration mode.

To disable Integrity Control, use `no ssd file integrity control`.

Syntax

```
ssd file integrity control enabled
no ssd file integrity control
```

Parameters

- `enabled`—Enable file integrity control to protect newly-generated configuration files from tampering.

Default

The default file input control is `disable`.

Command Mode

SSD Configuration mode.

User Guidelines

TA user can protect a configuration file from being tampered by creating the file with File Integrity Control enabled. It is recommended that File Integrity Control be enabled when a devices users a user-defined passphrase with Unrestricted Configuration File Passphrase Control.
A device determines whether the integrity of a configuration file is protected by examining the File Integrity Control command in the file. If a file in integrity-protected, but a device finds the integrity of the file is not intact, the device rejects the file. Otherwise, the file is accepted for further processing.

Examples

```
switchxxxxxx(config-ssd)# ssd file integrity control enabled
```

When File Integrity is enabled, an internal digest command is added to the end of the entire configuration file. This is used in downloading the configuration file to the startup configuration.

```
config-file-digest 0AC78001122334400AC780011223344
```
48.1 ip ssh-client authentication

To define the SSH client authentication method used by the local SSH clients to be authenticated by remote SSH servers, use the `ip ssh-client authentication` command in Global Configuration mode.

To return to default, use the `no` format of the command.

Syntax

```
ip ssh-client authentication {password | public-key rsa | dsa}
no ip ssh-client authentication
```

Parameters

- `password`—Username and password are used for authentication.
- `public-key rsa`—Username and RSA public key are used for authentication.
- `public-key dsa`—Username and DSA public key are used for authentication.

Default Configuration

Username and password are used for authentication by the local SSH clients.

Command Mode

Global Configuration mode

User Guidelines

A user can use the `ip ssh-client key` command to generate/configure RSA/DSA keys if SSH authentication is by public key. Otherwise, the default keys generated by the switch are used.
Example
The following example specifies that, username and public key are used for authentication:

```
switchxxxxxx(config)# ip ssh-client authentication public-key rsa
```

48.2 ip ssh-client change server password

To change a password of an SSH client on a remote SSH server, use the `ip ssh-client change server password` command in Global Configuration mode.

Syntax

```
ip ssh-client change server password server {host | ip-address | ipv6-address} username username old-password old-password new-password new-password
```

Parameters

- **host**—DNS name of a remote SSH server.
- **ip-address**—Specifies the IP address of a remote SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **username**—Username of the local SSH clients (1 - 70 characters).
- **old-password**—Old password of the local SSH client (1 - 70 characters).
- **new-password**—New password for the local SSH client (1 - 70 characters). The password cannot include the characters "@" and ":".

Default Configuration

None

Command Mode

Global Configuration mode

User Guidelines

Use the command to change a password on a remote SSH server. Use the `ip ssh-client password` command to change the SSH client password of the switch's SSH client so that it matches the new password set on the remote SSH server.
Example

The following example changes a password of the local SSH clients:

```
switchxxxxxxx(config)# ip ssh-client change server password server 10.7.50.155
username john old-password &&&aaff new-password &&&aee
```

48.3 ip ssh-client key

To create a key pair for SSH client authentication by public key (either by generating a key or by importing a key), use the `ip ssh-client key` command in Global Configuration mode. To remove a key, use the `no` form of the command.

Syntax

```
ip ssh-client key {dsa | rsa} {generate | key-pair privkey pubkey}
encrypted ip ssh-client key {dsa | rsa} key-pair encrypted-privkey pubkey
no ip ssh-client key [dsa | rsa]
```

Parameters

- `dsa`—DSA key type.
- `rsa`—RSA key type.
- `key-pair`—Key that is imported to the device.
 - `privkey`—Plaintext private key.
 - `encrypted-privkey`—Private key is in encrypted format.
 - `pubkey`—The plaintext public key.

Default Configuration

The application creates a key automatically; this is the default key.

Command Mode

Global Configuration mode
User Guidelines

When using the keyword `generate`, a private key and a public key of the given type (RSA/DSA) are generated for the SSH client. Downloading a configuration file with a Key Generating command is not allowed, and such download will fail.

When using the keyword `key-pair`, the user can import a key-pair created by another device. In this case, the keys must follow the format specified by RFC 4716.

If the specified key already exists, a warning will be issued before replacing the existing key with a new key.

Use the `no ip ssh-client key` command to remove a key pair. Use this command without specifying a key-type to remove both key pairs.

Table 2 describes the expected behavior of keys, default and users within the various operations.

<table>
<thead>
<tr>
<th>From/To</th>
<th>Show</th>
<th>Show (detailed)</th>
<th>Copy/Upload of Running Config</th>
<th>Copy/Upload of Startup Config</th>
<th>Download text-based CLI (TFTP/Backup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>All keys (default and user)</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>Same as user configuration</td>
</tr>
<tr>
<td>Text-based CLI</td>
<td>As it was copied.</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>As a text file.</td>
</tr>
<tr>
<td>(TFTP/Backup)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If no keys are included in text-based configuration file, the device generates its own keys during initialization. If the Running Configuration contains default keys (not user-defined), the same default keys remain.

Examples

Example 1 - In the following example, a key pair of the RSA type is created:

```
switchxxxxxx(config)# ip ssh-client key rsa generate
```

The SSH service is generating a private RSA key.
This may take a few minutes, depending on the key size.

Example 2 - In the following example, both public and private keys of the RSA type are imported (private key as plaintext):

```plaintext
switchxxxxxx(config)# ip ssh-client key rsa key-pair
Please paste the input now, add a period (.) on a separate line after the input

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKgQDH6CU/2KYR18rYrK5+TIvwS4zvhBmiC4I31m9cR/l1RIrTFlMRuJ++TErp9sqqWYlTl9d0jzGM0N3jHzp2je5/DUTHZxVYaUzchBDnsPTJ08dyIBI4YBqYHQgCjUhktxQxvloyu1uxRJTAaLVXCBAnIU/kMLoEox8/zwijB/js9wIBwKBgC2xZ5mQmy0+yo2GUFWlQ05f0yweuM11J8McTmqDgfVTRrdbroxWbbs3exVqsaUPY9wa8Le6JPX+DPp4XovEfC/igl2BSC8SeDm1l2U7C6HrkAyD9HHf/r32jukB+527BlHz2Xcxs2c1001wnToy+YTzjIUxyWS77V/IXbl1lipLAKpEA/QuuVSCfFmdM1lxaEfJVrzqP01cF9guomsWLteBf/gqHuvbHuNy0tOWEpObKZs1mtCWppkgcqqgrB00oJaYbUFQJBAMo/cCryhisi+/+ZsryeD26NpBEKiaIk16VTz2AyDstdGuucvm2YF7djM6nNyz3+/ZLycn582okb1d1NhDONsCQCMn2Aas+C4HaHQnzSU+/lW1DI88Asq4JN2DMmGjbtbHVHxqWHAG4tBVWa8bV12+RPyuan/jnk8irniGyVzaFPkEkAiq8oV+1XYxA8V39Y/a42d7FvRjMcKumKDL4Rmt32+u9i6sfzawCds8+7+2vS3AZQafqDE5U6YSimGLVlewC4YWwJBAOFZhmO+d11xT8Irzf2cUZggopfnX6Yt+Y109MuZHbwHtXaGj6ayMYvXnloONecnApBjGEm37TVWkKj02DV2w=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMfoJT/YphGkYxrisn5M1i/BLjO+EGaILgjfWb1xH/WJFMMWIXG4n75MSun2ypbiJvOL13SP0YbQ3eMfOanaN7n8NRMdie9hpTNyEEOew9MnjuXK1GxhGpgdCAKNSGS1eq+Wjl7W7Fe1Mb0tVcIECa4hT+QwugSjHz/PCMH+CwX3AgBj
-----END RSA PUBLIC KEY-----
```

Example 3 - In the following example, both public and private keys of the DSA type are imported (private key as encrypted):

```plaintext
switchxxxxxx(config)# encrypted ip ssh-client key rsa key-pair
```

(Encrypted input follows here.)
(Need to encrypted SSH client RSA key pair, for example:)

```
-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
gxeOjs6OzGRtL4qstnQg1B/4gexQb1fa56RdjgHAMejvUT02eLYmNi+m4aTu6m1yXPHmYP
1XLXny7j2kHRvgg8EyeppEB003yQzq3kNi756cMg4Oqbkm7TUOrqYFExF88rJ0QvUFfh
BeEq3e16E/OpitWgK43WTedsuyPeOoMXR9BCutPULc2UeqQVM21Jt5OM0FbVt0S6oqXhG
seEEdoJ1h1DhWWq977CvVx+bEnPfzFGmbrUxcmOx1kJFsuCNo3/94PHK8zEXyWtrxr2KoCDQ
qFRuM8uecpjmDh6M02GURUEstctohEWEIVCIOr5SBBxavxv5oS0jIzXMrJA==
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBALL0eh3css8tBL8ujFt3trcX0XJJLxxt4sGp8Q3Ex1SRN25+Mcac6tgpIEq
tIzRk6t1IEJscuAih9Brh1ovgMLRaMe25j5Yj04xG6P42nhHiRcie+YTS1o309EdZkiXa
QeJt1dnYL/r3uTIRVGbXl5nxwtfWpwEgxxDwdfqzHAegEj
-----END RSA PUBLIC KEY-----
```

Example 4 - In the following example, a DSA key pair is removed:

```
switchxxxxxx(config)# no ip ssh-client key dsa
```

Example 5 - In the following example, all key pairs (RSA and DSA types) are removed.

```
switchxxxxxx(config)# no ip ssh-client key
```

48.4 ip ssh-client password

To configure the password for SSH client authentication by password, use the `ip ssh-client password` command in Global Configuration mode. To return to default, use the `no` form of the command.

Syntax

```
ip ssh-client password string
encrypted ip ssh-client password encrypted-string
no ip ssh-client password
```
Parameters

- **string**—Password for the SSH clients (1 - 70 characters). The password cannot include the characters "@" and ":".

- **encrypted-string**—Password for the SSH client in encrypted form.

Default Configuration

The default password is anonymous.

Command Mode

Global Configuration mode

User Guidelines

If authentication is configured to use a password (using the command `ip ssh-client authentication`), use the `ip ssh-client password` command to define the password.

If the `encrypted` keyword is used, the password must be in the encrypted form.

Use the command `ip ssh-client change server password` to change the password on the remote SSH server so that it will match the new password of the SSH client.

Example

The following example specifies a plaintext password for the local SSH clients:

```
switchxxxxx(config)# ip ssh-client password &6&11aaff
```

48.5 **ip ssh-client server authentication**

To enable remote SSH server authentication by the SSH client, use the `ip ssh-client server authentication` command in Global Configuration mode.

To disable remote SSH server authentication, use the `no` form of the command.

Syntax

- `ip ssh-client server authentication`
- `no ip ssh-client server authentication`
Parameters
This command has no arguments or keywords.

Default Configuration
SSH server authentication is disabled

Command Mode
Global Configuration mode

User Guidelines
When remote SSH server authentication is disabled, any remote SSH server is accepted (even if there is no entry for the remote SSH server in the SSH Trusted Remote Server table).

When remote SSH server authentication is enabled, only trusted SSH servers are accepted. Use the `ip ssh-client server fingerprint` command to configure trusted SSH servers.

Example
The following example enables SSH server authentication:

```
switchxxxxxx(config)# ip ssh-client server authentication
```

48.6 `ip ssh-client server fingerprint`

To add a trusted server to the Trusted Remote SSH Server Table, use the `ip ssh-client server fingerprint` command in Global configuration mode. To remove an entry or all entries from the Trusted Remote SSH Server Table, use the `no` form of the command.

Syntax

```
ip ssh-client server fingerprint {host \ ip-address} fingerprint
no ip ssh-client server fingerprint [host \ ip-address]
```

Parameters

- `host`—DNS name of an SSH server.
SSH Client Commands

- **ip-address**— Specifies the address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

- **fingerprint**— Fingerprint of the SSH server public key (32 Hex characters).

Default Configuration

The Trusted Remote SSH Server table is empty.

Command Mode

Global Configuration mode

User Guidelines

Fingerprints are created by applying a cryptographic hash function to a public key. Fingerprints are shorter than the keys they refer to, making it simpler to use (easier to manually input than the original key). Whenever the switch is required to authenticate an SSH server’s public key, it calculates the received key’s fingerprint and compares it to the previously-configured fingerprint.

The fingerprint can be obtained from the SSH server (the fingerprint is calculated when the public key is generated on the SSH server).

The **no ip ssh-client server fingerprint** command removes all entries from the Trusted Remote SSH Server table.

Example

In the following example, a trusted server is added to the Trusted Servers table (with and without a separator ":"):

```
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1
DC789788DC88A988127897BCBB789788
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1
```

48.7 ip ssh-client source-interface

To specify the source interface which IPv4 address will be used as the Source IPv4 address for communication with IPv4 SSH servers, use the **ip ssh-client source-interface** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.
SSH Client Commands

Syntax

ip ssh-client source-interface interface-id
no ip ssh-client source-interface

Parameters

- interface-id—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

switchxxxxxx(config)# ip ssh-client source-interface vlan 100

48.8 ipv6 ssh-client source-interface

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SSH servers, use the ipv6 ssh-client source-interface Global Configuration mode command. To restore the default configuration, use the no form of this command.
Syntax

ipv6 ssh-client source-interface interface-id

no ipv6 ssh-client source-interface

Parameters

- interface-id—(Optional) Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# ipv6 ssh-client source-interface vlan 100
```

48.9 ip ssh-client username

To configure the SSH client username of the switch, use the ip ssh-client username command in Global Configuration mode.

To return to default, use the no form of the command.
SSH Client Commands

Syntax

ip ssh-client username string
no ip ssh-client username

Parameters

- string—Username of the SSH client. The length is 1 - 70 characters. The username cannot include the characters "@" and ";".

Default Configuration

The default username is anonymous

Command Mode

Global Configuration mode

User Guidelines

The configured username is used when SSH client authentication is done both by password or by key.

Example

The following example specifies a username of the SSH client:

```plaintext
switchxxxxxx(config)# ip ssh-client username jeff
```

48.10 show ip ssh-client

To display the SSH client credentials, both default and user-defined keys, use the show ip ssh-client command in Privilege EXEC mode.

Syntax

show ip ssh-client
show ip ssh-client {mypubkey | key} {dsa | rsa}

Parameters

- dsa—Specifies displaying the DSA key type.
SSH Client Commands

- `rsa`—Specifies displaying the RSA key type.
- `mypubkey`—Specifies that only the public key is selected to be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command with a specific key-type to display the SSH client key; You can either specify display of public key or private key, or with no parameter to display both private and public keys. The keys are displayed in the format specified by RFC 4716.

Examples

Example 1. The following example displays the authentication method and the RSA public key:

```
switchxxxxxx# show ip ssh-client mypubkey rsa
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method: DSA key
Username: john
Key Source: User Defined
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABIAwAAAIAWdGExAHRhsKvJjjsB8XaLAKqBNlWmXnY
kUf5oZjYQoMGdVnIpQvdN3Ym4LUbIkk3lwVWvFB3N2K5a7fUBjoblkdjns
QKTKZiu4V+IL5rds/bD6LOEkJbUz0jmp9h1lIkh9uc0ceZ3XmTkhnORLrXL
aRyxYsz05FuirTo6xW8=
---- END SSH2 PUBLIC KEY ----
```
Example 2. The following example displays the authentication method and DSA private key in encrypted format:

```
switchxxxxxx# show ip ssh-client key DSA
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method: DSA key
Username: john
Key Source: User Defined
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1kc3MAAACBAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rz2dzoSOXxbET
W6ToHV8D1UJ/z+Zh0Fiko5Xybz2NDAaOHtb1Q+Yp7Stxy1tHnXF1LYfKD1G4T6JYrdH
YI14OMleg9e4NnCRleaqo2PF3UGfZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPF0XD2s9Rd7NbvQAAAIEALN92+Bb7D4KLYk3IwRbxBlwXdKPGgA4pdtW9vGf
J0/Rhd+NjB4eo1D+0dix6tXwYGN7PKS5R/FXPNwxHPPaqcJ9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMcozuWoS0esSNhVDtX3WdvVcGcBq9cetzrtOKWocJmJ80qadxTRHtUAAA
AN7CY+KKv1gHpRzFwdQm7H9bb4L0e2KwaoxNadFgeptNBQeSXG1vO+JsvphVMBJc9HS
n24VYtYsMu74qYxiiYjivUcWKjjKEb11juqnF0GD1B3VMxHLMxnAz643W427dLM5
y29ouezv4Xz2PuMch5VGGF+CDqzCM4IoWgV
---- END SSH2 PUBLIC KEY ----
---- BEGIN SSH2 PRIVATE KEY ----
Comment: DSA Private Key
AAAAB3NzaC1kc3MAAACBAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rz2dzoSOXxbET
W6ToHV8D1UJ/z+Zh0Fiko5Xybz2NDAaOHtb1Q+Yp7Stxy1tHnXF1LYfKD1G4T6JYrdH
YI14OMleg9e4NnCRleaqo2PF3UGfZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPF0XD2s9Rd7NbvQAAAIEALN92+Bb7D4KLYk3IwRbxBlwXdKPGgA4pdtW9vGf
J0/Rhd+NjB4eo1D+0dix6tXwYGN7PKS5R/FXPNwxHPPaqcJ9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMcozuWoS0esSNhVDtX3WdvVcGcBq9cetzrtOKWocJmJ80qadxTRHtUAAA
AN7CY+KKv1gHpRzFwdQm7H9bb4L0e2KwaoxNadFgeptNBQeSXG1vO+JsvphVMBJc9HS
```
Example 3. The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method:   DSA key
Username:                anonymous (default)
Password:                anonymous (default)
password(Encrypted):     KzGgzpYa7GzCHhaveSJDehGJ6L3Yf9ZBAU5nsxSxwic=
```

48.11 show ip ssh-client server

To display the SSH remote server authentication method and the Trusted Remote SSH Server table, use the show ip ssh-client server command in Privilege EXEC Configuration mode.

Syntax

```
show ip ssh-client server [host | ip-address]
```

Parameters

- **host**—(Optional) DNS name of an SSH server.
- **ip-address**—(Optional) IP Address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

Default Configuration

None

Command Mode

Privileged EXEC mode
User Guidelines

If a specific SSH server is specified, only the fingerprint of this SSH server is displayed. Otherwise, all known servers are displayed.

Examples

Example 1 - In the following example, the SSH remote server authentication method and all trusted remote SSH servers are displayed:

```
switchxxxxxx# show ip ssh-client server
SSH Server Authentication is enabled
server address: 11.1.0.1
server address: 192.165.204.111
server address: 4002:0011::12
```

Example 2 - The following example displays the authentication method and DSA private key in encrypted format:

```
switchxxxxxx# show ip ssh-client key DSA
Authentication method:   DSA key
Username:                john
Key Source:              Default
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1kc3MAAAACBAPY8ZOHY2yFSJA6XYC9HRwNHxaehv5wOJ0rzZdzoS0XxbETW67oHv8DLUJ/z+Zh09Fiko5XybZnDIABDHtb1Q+Yp7Stxy1tHnNF1YLfKD1G4T6JYrdH
YI14Omleg9e4NhCRleaqoZPF3UGfZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAAFQDb8D5c
vwHWTZDPfX0D2s9Rd7NBvQAAIAEAN92+Bb7D4KLYk3IwRbXbIXdkPggA4pdfdW9vGf
J0/RHd+NjB4eo1D+0dix6tXwYGN7PKS5R/FXPNwxHPpacj9uL1Jn2AWQ2dsknf+i/FAA
```
Example 3 - The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Authentication method: password (default)
Username: anonymous (default)
password(Encrypted): KzGgzpYa7GzCHhaveSJDehGJ6L3Yf92BAU5
```
49.1 aaa logging

To enable logging AAA logins, use the `aaa logging` Global Configuration mode command. To disable logging AAA logins, use the `no` form of this command.

Syntax

aaa logging {login}

no aaa logging {login}

Parameters

login—Enables logging messages related to successful AAA login events, unsuccessful AAA login events and other AAA login-related events.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables logging messages related to successful login events, unsuccessful login events and other login-related events. Other types of AAA events are not subject to this command.

Example

The following example enables logging AAA login events.

```
switchxxxxxx(config)# aaa logging login
```
49.2 clear logging

To clear messages from the internal logging buffer, use the `clear logging` Privileged EXEC mode command.

Syntax

clear logging

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example clears messages from the internal logging buffer.

```
switchxxxxxx# clear logging
Clear Logging Buffer ? (Y/N)[N]
```

49.3 clear logging file

To clear messages from the logging file, use the `clear logging file` Privileged EXEC mode command.

Syntax

clear logging file

Parameters

This command has no arguments or keywords.
Default Configuration
None

Command Mode
Privileged EXEC mode

Example
The following example clears messages from the logging file.

```
switchxxxxxx# clear logging file
```
Clear Logging File [y/n]

49.4 file-system logging

To enable logging file system events, use the `file-system logging` Global Configuration mode command. To disable logging file system events, use the `no` form of this command.

Syntax

```
file-system logging {copy | delete-rename}
no file-system logging {copy | delete-rename}
```

Parameters
- `copy`—Specifies logging messages related to file copy operations.
- `delete-rename`—Specifies logging messages related to file deletion and renaming operations.

Default Configuration

Enabled.

Command Mode

Global Configuration mode
Example
The following example enables logging messages related to file copy operations.

switchxxxxxxx(config)# file-system logging copy

49.5 logging buffered
To limit the SYSLOG message display to messages with a specific severity level, and to define the buffer size (number of messages that can be stored), use the logging buffered Global Configuration mode command. To cancel displaying the SYSLOG messages, and to return the buffer size to default, use the no form of this command.

Syntax
logging buffered [buffer-size] [severity-level | severity-level-name]
no logging buffered

Parameters
- buffer-size—(Optional) Specifies the maximum number of messages stored in buffer. (Range: 20–1000)
- severity-level—(Optional) Specifies the severity level of messages logged in the buffer. The possible values are: 1-7.
- severity-level-name—(Optional) Specifies the severity level of messages logged in the buffer. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration
The default severity level is informational.
The default buffer size is 1000.

Command Mode
Global Configuration mode
User Guidelines

All the SYSLOG messages are logged to the internal buffer. This command limits the messages displayed to the user.

Example

The following example shows two ways of limiting the SYSLOG message display from an internal buffer to messages with severity level *debugging*. In the second example, the buffer size is set to 100 and severity level *informational*.

```
switchxxxxxx(config)# logging buffered debugging
switchxxxxxx(config)# logging buffered 100 informational
```

49.6 logging console

To limit messages logged to the console to messages to a specific severity level, use the `logging console` Global Configuration mode command. To restore the default, use the `no` form of this command.

Syntax

```
logging console level
no logging console
```

Parameters

level—Specifies the severity level of logged messages displayed on the console. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

Informational.

Command Mode

Global Configuration mode
Example

The following example limits logging messages displayed on the console to messages with severity level `errors`.

```
switchxxxxxx(config)# logging console errors
```

49.7 logging file

To limit SYSLOG messages sent to the logging file to messages with a specific severity level, use the `logging file` Global Configuration mode command. To cancel sending messages to the file, use the `no` form of this command.

Syntax

```
logging file level
no logging file
```

Parameters

`level`—Specifies the severity level of SYSLOG messages sent to the logging file. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is `errors`.

Command Mode

Global Configuration mode

Example

The following example limits SYSLOG messages sent to the logging file to messages with severity level `alerts`.

```
switchxxxxxx(config)# logging file alerts
```
49.8 logging host

To log messages to the specified SYSLOG server, use the `logging host` Global Configuration command. To delete the SYSLOG server with the specified address from the list of SYSLOG servers, use the `no` form of this command.

Syntax

```
logging host {ip-address | ipv6-address | hostname} [port port] [severity level] [facility facility] [description text]
```

```
no logging host {ipv4-address | ipv6-address | hostname}
```

Parameters

- `ip-address`—IP address of the host to be used as a SYSLOG server. The IP address can be an IPv4, IPv6 or IpV6z address. See IPv6z Address Conventions.

- `hostname`—Hostname of the host to be used as a SYSLOG server. Only translation to IPv4 addresses is supported. (Range: 1–158 characters. Maximum label size for each part of the host name: 63)

- `port port`—(Optional) Port number for SYSLOG messages. If unspecified, the port number defaults to 514. (Range: 1–65535)

- `severity level`—(Optional) Limits the logging of messages to the SYSLOG servers to a specified level: Emergencies, Alerts, Critical, Errors, Warnings, Notifications, Informational, Debugging.

- `facility facility`—(Optional) The facility that is indicated in the message. It can be one of the following values: local0, local1, local2, local3, local4, local5, local 6, local7. If unspecified, the port number defaults to local7.

- `description text`—(Optional) Description of the SYSLOG server. (Range: Up to 64 characters)

Default Configuration

No messages are logged to a SYSLOG server.

If unspecified, the `severity level` defaults to Informational.

Command Mode

Global Configuration mode
User Guidelines

You can use multiple SYSLOG servers.

Examples

switchxxxxxx(config)# logging host 1.1.1.121

switchxxxxxx(config)# logging host 3000::100/SYSLOG1

49.9 logging on

To enable message logging, use the logging on Global Configuration mode command. This command sends debug or error messages asynchronously to designated locations. To disable the logging, use the no form of this command.

Syntax

logging on
no logging on

Parameters

This command has no arguments or keywords.

Default Configuration

Message logging is enabled.

Command Mode

Global Configuration mode

User Guidelines

The logging process controls the logging messages distribution at various destinations, such as the logging buffer, logging file or SYSLOG server. Logging on and off at these destinations can be individually configured using the clear logging file, logging console, and aaa logging Global Configuration mode commands. However, if the aaa logging command is disabled, no messages are sent to these destinations. Only the console receives messages.
Example
The following example enables logging error messages.

```
switchxxxxxx(config)# logging on
```

49.10 logging source-interface

To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SYSLOG servers, use the `logging source-interface` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
logging source-interface interface-id
no logging source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

- If the source interface is the outgoing interface, the interface IP address belonging to the next hop IPv4 subnet is applied.
- If the source interface is not the outgoing interface, the lowest IPv4 address defined on the source interface is applied.
- If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SYSLOG server.
Example
The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface vlan 100
```

49.11 logging source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 SYSLOG servers, use the `logging source-interface-ipv6` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
logging source-interface-ipv6 interface-id
no logging source-interface-ipv6
```

Parameters

`interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the defined IPv6 address of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SYSLOG server.
Example
The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface-ipv6 vlan 100
```

49.12 logging aggregation on

To control aggregation of SYSLOG messages, use the `logging aggregation on` Global Configuration mode command. If aggregation is enabled, logging messages are displayed every time interval (according to the aging time specified by `logging aggregation aging-time`). To disable aggregation of SYSLOG messages, use the `no` form of this command.

Syntax

```
logging aggregation on
no logging aggregation on
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

Example

To turn off aggregation of SYSLOG messages:

```
switchxxxxxx(config)# no logging aggregation on
```
49.13 logging aggregation aging-time

To configure the aging time of the aggregated SYSLOG messages, use the `logging aggregation aging-time` Global Configuration mode command. The SYSLOG messages are aggregated during the time interval set by the aging-time parameter. To return to the default, use the `no` form of this command.

Syntax

logging aggregation aging-time `sec`

no logging aggregation aging-time

Parameters

- `aging-time sec`—Aging time in seconds (Range: 15–3600)

Default Configuration

300 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# logging aggregation aging-time 300
```

49.14 logging origin-id

To configure the origin field of the SYSLOG message packet headers sent to the SYSLOG server, use the `logging origin-id` Global Configuration mode command. To return to the default, use the `no` form of this command.

Syntax

logging origin-id `{hostname | IP | IPv6 | string user-defined-id}`

no logging origin-id
Parameters

- **hostname**—The system hostname will be used as the message origin identifier.
- **IP**—IP address of the sending interface that is used as the message origin identifier.
- **IPv6**—IPv6 address of the sending interface that is used as the message origin identifier. If the sending interface is IPv4, the IPv4 address will be used instead.
- **string user-defined-id**—Specifies an identifying description chosen by the user. The `user-defined-id` argument is the identifying description string.

Default Configuration

No header is sent apart from the PRI field.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# logging origin-id string "Domain 1, router B"
```
Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the internal buffer.

```
switchxxxxxy# show logging
Logging is enabled.

Origin id: hostname

Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged
Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.
Aggregation aging time: 300 Sec

01-Jan-2010 05:29:46 :%INIT-I-Startup: Warm Startup
01-Jan-2010 05:29:02 :%LINK-I-Up: Vlan 1
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG6
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG7
01-Jan-2010 05:29:00 :%LINK-W-Down: SYSLOG8
```
49.16 show logging file

To display the logging status and the SYSLOG messages stored in the logging file, use the `show logging file` Privileged EXEC mode command.

Syntax

```
show logging file
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the logging file.

```
switchxxxxxxx# show logging file
Logging is enabled.
Origin id: hostname
Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged
Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
```
File system Delete-Rename Enabled
Management ACL Deny Enabled

Aggregation: Disabled.
Aggregation aging time: 300 Sec

1-Jan-2010 05:57:00 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:56:36 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:37 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_read: key_from_blob bgEgGnt9z6NHgwKI5xKqF7cBtdl1xmFgSEWuDhho5UedydAjVkJ55XR2... failed
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_from_blob: invalid key type.
01-Jan-2010 05:56:34 :%SSHD-E-ERROR: SSH error: bad sigbloblen 58 != SIGBLOB_LEN

49.17 show syslog-servers

To display the SYSLOG server settings, use the show syslog-servers Privileged EXEC mode command.

Syntax

show syslog-servers

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode
Example

The following example provides information about the SYSLOG servers.

```
switchxxxxxxx# show syslog-servers
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Device Configuration

-------------
IP address    Port   Facility Severity Description
------------- ----   --------- -------- --------------
1.1.1.121     514    local7    info
3000::100     514    local7    info
```
System Management Commands

50.1 disable ports leds

To turn off the LEDs on all ports on a device, use the disable ports leds Global Configuration mode command.

To set the LEDs of all the ports on the device to their current operational status of the port, use the no disable ports leds command.

Syntax

disable ports leds

no disable ports leds

Parameters

This command has no arguments or keywords.

Default Configuration

The default is no disable port leds: that is the LEDs of all the ports reflect their current status.

Command Mode

Global Configuration mode

Examples

The following example turns off the port LEDs.

switchxxxxxx(config)# disable ports leds
50.2 hostname

To specify or modify the device host name, use the `hostname` Global Configuration mode command. To remove the existing host name, use the `no` form of the command.

Syntax

```
hostname name
no hostname
```

Parameters

Name—Specifies the device host name. (Length: 1-160 characters. Maximum label size for each part of the host name: 58). The hostname must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens.

Default Configuration

No host name is defined.

Command Mode

Global Configuration mode

Example

The following example specifies the device host name as 'enterprise'.

```
switchxxxxxx(config)# hostname enterprise
enterprise(config)#
```

50.3 reload

To reload the operating system at a user-specified time, use the `reload` Privileged EXEC mode command.

Syntax

```
reload [in [hh:mm | mmm] | at hh:mm [day month]] | cancel]
```
Parameters

- **in hh:mm | mmm**—(Optional) Schedules a reload of the software to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days.

- **at hh:mm**—(Optional) Schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

- **day**—(Optional) Number of the day in the range from 1 to 31.

- **month**—(Optional) Month of the year.

- **cancel**—(Optional) Cancels a scheduled reload.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

The `at` keyword can be used only if the system clock has been set on the device. To schedule reloads across several devices to occur simultaneously, synchronize the time on each device with SNTP.

When you specify the reload time using the `at` keyword, if you specify the month and day, the reload takes place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time), or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

To display information about a scheduled reload, use the **show reload** command.
Examples

Example 1: The following example reloads the operating system.

switchxxxxxx> reload
This command will reset the whole system and disconnect your current session.
Do you want to continue? (y/n) [Y]

Example 2: The following example reloads the operating system in 10 minutes.

switchxxxxxx> reload in 10
This command will reset the whole system and disconnect your current session.
Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you want to continue? (y/n) [Y]

Example 3: The following example reloads the operating system at 13:00.

switchxxxxxx> reload at 13:00
This command will reset the whole system and disconnect your current session.
Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3 minutes). Do you want to continue? (y/n) [Y]

Example 4: The following example cancels a reload.

switchxxxxxx> reload cancel
Reload cancelled.

50.4 resume

To enable switching to another open Telnet session, use the resume EXEC mode command.

Syntax
resume [connection]
Parameters

connection—(Optional) Specifies the connection number. (Range: 1-4 connections.)

Default Configuration

The default connection number is that of the most recent connection.

Command Mode

Privileged EXEC mode

Example

The following command switches to open Telnet session number 1.

```
switchxxxxxx> resume 1
```

50.5 service cpu-input-rate

The `show cpu input rate` Global Configuration mode command enables counting the rate of input frames to the CPU in packets per seconds (pps).

Syntax

```
service cpu-input-rate
```

Parameters

This command has no arguments or keywords.

Command Mode

Global Configuration mode

Example

The following example displays CPU input rate information.

```
switchxxxxxx(config)# service cpu-input-rate
```
50.6 service cpu-utilization

To enable measuring CPU utilization, use the `service cpu-utilization` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
service cpu-utilization
no service cpu-utilization
```

Parameters

This command has no arguments or keywords.

Default Configuration

Measuring CPU utilization is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `service cpu utilization` command to measure information on CPU utilization.

Example

The following example enables measuring CPU utilization.

```plaintext
switchxxxxxx(config)# service cpu-utilization
```

50.7 set system

To place the device into various modes depending on the parameters entered, use the `set system` Privileged EXEC mode command.

Syntax

```plaintext
set system
```
System Management Commands

- **mode** {router | switch} **queues-mode** {4|8} **router**—Specifies that the device functions as a switch-router.
- **switch**—Specifies that the device functions as a switch.
- **queues-mode** {4|8}—Specifies that the system uses 4 or 8 QoS queues.

Command Mode
Privileged EXEC mode

User Guidelines
The system mode and the queues mode appears in the configuration file header to specify the system mode. It appears even if it specifies the default system mode.

Changing the system mode (e.g. switch->router):

- Manually setting the system mode: If this command is entered manually, the Startup Configuration file is deleted and the device is rebooted. It is highly recommended to back up the Startup Configuration file before executing this command since the device will be configured in the new system mode with an empty configuration.

- Configuration download: If the system mode is contained in a configuration file that is downloaded to the device, but the system mode in the downloaded file matches the current system mode, this information is ignored. Otherwise the following cases might occur:
 - If this file is copied manually onto the device (using copy tftp, for example), the operation is aborted, and a message is displayed indicating that the system mode must be changed manually.
 - If this file is downloaded during the automatic configuration process, the Startup Configuration file is deleted and the device reboots automatically in the new system mode and the device is configured with an empty configuration.

Changing the queues mode (e.g. 4 queues to 8 queues):

Changing the queues mode takes effect after rebooting the system.

- When upgrading the queues mode from 4 queues to 8 queues, the queue-related configurations needs to be examined and adjusted such that it will meet the desired QOS objectives with the new queues mode.
When downgrading the queues mode from 8 queues to 4 queues, if Queue-related configuration exist on the startup configuration file, the system will reject the downgrade of queues and will require the user to delete all the queue-related configuration from the startup configuration file before downgrading the queues mode. When changing the queues mode during configuration download to startup configuration file, the existing queues configuration is not tested and the download will not be rejected.

Examples

Example - The following example configures the device to function as a switch-router (Layer 3), and sets the queues mode to 8 queues.

```
switchxxxxxx> set system mode router queues-mode 8
```

Example - The following example tries to configure the device to function as a switch-router (Layer 3), using tftp download, while the device is currently configured to function as a switch (Layer 2), therefore the configuration file download will fail.

```
switchxxxxxx> copy tftp://102.1.2.2/file1 startup-config
Copy operation aborted, the downloaded configuration file is for Router system mode while the device is currently in switch system mode. Please change the system mode before downloading this file.
```

Example - The following example displays the system mode and the queues mode. In this example the device was configured to function as a switch-router (Layer 3), and the queues mode to 8 queues.

```
switchxxxxxx> show running-configuration
config-file-header
switchxxxxxx
v1.2.5.50 / R750_1.2_584_002
CLI v1.0
set system mode router queues-mode 8
file SSD indicator encrypted
```
50.8 show cpu input rate

To display the rate of input frames to the CPU in packets per seconds (pps), use the `show cpu input rate` EXEC mode command.

Syntax

`show cpu input rate`

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example

The following example displays CPU input rate information.

```
switchxxxxx> show cpu input rate
Input Rate to CPU is 1030 pps.
```

50.9 show cpu utilization

To display information about CPU utilization, use the `show cpu utilization` Privileged EXEC mode command.

Syntax

`show cpu utilization`

Parameters

This command has no arguments or keywords.
Default Usage
None

Command Mode
Privileged EXEC mode

User Guidelines
Use the `show cpu-utilization` command to enable measuring CPU utilization.

Example
The following example displays CPU utilization information.

```
switchxxxxxx> show cpu utilization
CPU utilization service is on.
CPU utilization
--------------------------------------------------
five seconds: 5%; one minute: 3%; five minutes: 3%
```

50.10 show environment

To display environment information, use the `show environment` EXEC mode command.

Syntax
```
show environment {all | fan | temperature {status} }
```

Parameters
- `all`—Displays the fan and temperature general status
- `fan`—Displays the fan status
- `temperature status`—Displays the temperature status

Command Mode
User EXEC mode
User Guidelines

The fan and temperature status parameters are available only on devices on which FAN and/or temperature sensor are installed.

Fan status can be one of:

- **OK** - The fan/s functions correctly.
- **Failure** - The fan failed.
- **NA** - No fan is installed.

Sensor status can be one of:

- **OK** - The sensor/s functions correctly.
- **Failure** - The sensor/s failed.
- **NA** - No sensor is installed.

Temperature can be one of:

- **OK** - The temperature is below the warning threshold.
- **Warning** - The temperature is between the warning threshold to the critical threshold.
- **Critical** - The temperature is above the critical threshold.

Examples

Example 1 - The following example displays the general environment status of a device.

```
switchxxxxxx> show environment all
FAN is OK
TEMPERATURE is OK
```

Example 2 - The following example displays the general FAN status of a device.

```
switchxxxxxx> show environment fan
FAN is OK
```

Example 3 - The following example displays the detailed temperature status of a device.

```
switchxxxxxx> show environment temperature status
```
50.11 show inventory

To display system information, use the show inventory EXEC mode command.

Syntax

show inventory [entity]

Parameters

entity—Specifies the entity to be displayed. It can be a number (1 - 8) for a specific unit number, or an interface (Ethernet) name.

Command Mode

User EXEC mode

Examples

Example 1 - The following example displays all the entities in a standalone system.

switchxxxxxx> show inventory

NAME: "1", DESCR: "52-Port Gigabit PoE Stackable Managed Switch"

PID: SRW224G4P-K9, VID: V01, SN: 123456789

Example 2 - The following example displays a specific entity in a standalone system.

switchxxxxxx> show inventory gigabitethernet2/1/49

NAME: "GigabitEthernet2/1/49", DESCR: "1000M base-LX Mini-GBIC SFP Transceiver"

PID: MGBLX1, VID: V01, SN: AGC1525UR7G

50.12 show reload

To display whether there is a pending reload for status of the device, use the show reload Privileged EXEC mode command.
Syntax

show reload

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

You can use this command to display a pending software reload. To cancel a pending reload, use this command with the cancel parameter.

Example

The following example displays that reboot is scheduled for 00:00 on Saturday, April-20.

switchxxxxxx> show reload
Reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)

50.13 show sessions

To display open Telnet sessions, use the show sessions EXEC mode command.

Syntax

show sessions

Parameters

This command has no arguments or keywords.

Default Usage

None
Command Mode

User EXEC mode

User Guidelines

The `show sessions` command displays Telnet sessions to remote hosts opened by the current Telnet session to the local device. It does not display Telnet sessions to remote hosts opened by other Telnet sessions to the local device.

Example

The following example displays open Telnet sessions.

```
switchxxxxxx> show sessions
```

<table>
<thead>
<tr>
<th>Connection</th>
<th>Host</th>
<th>Address</th>
<th>Port</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote router</td>
<td>172.16.1.1</td>
<td>23</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.2</td>
<td>172.16.1.2</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The connection number.</td>
</tr>
<tr>
<td>Host</td>
<td>The remote host to which the device is connected through a Telnet session.</td>
</tr>
<tr>
<td>Address</td>
<td>The remote host IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>The Telnet TCP port number.</td>
</tr>
<tr>
<td>Byte</td>
<td>The number of unread bytes for the user to see on the connection.</td>
</tr>
</tbody>
</table>

50.14 show system

The `show system` EXEC mode command displays system information.

Syntax

```
show system
```
Command Mode

User EXEC mode

Example

switchxxxxx> show system

```
System Description: SG300-24P
System Up Time (days,hour:min:sec): 03,02:27:46
System Contact:
System Name: switch151400
System Location:
System MAC Address: 00:24:ab:15:14:00
System Object ID: 1.3.6.1.4.1.9.6.1.85.24.2
Unit Temperature (Celsius) Status

--- --------------------- -----
1  42                  OK
```

50.15 show system mode

To display information on features control, use the `show system mode` EXEC mode command.

Syntax

```
show system mode
```

Parameters

This command has no arguments or keywords.

Default Usage

None
Command Mode

User EXEC mode

Example

The following example displays system mode information.

```
switchxxxxxx> show system mode
Feature     State
------------  -------
Mode:        Router
Queues Configuration: 8 Queues
```

50.16 show system languages

To display the list of supported languages, use the `show system languages` EXEC mode command.

Syntax

```
show system languages
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

Example

The following example displays the languages configured on the device. Number of Sections indicates the number of languages permitted on the device.

```
switchxxxxxx> show system languages
```
50.17 show system tcam utilization

To display the Ternary Content Addressable Memory (TCAM) utilization, use the `show system tcam utilization` EXEC mode command.

Syntax

`show system tcam utilization`

Parameters

- `unit-id`—(Optional) Specifies the unit number. (Range: 1–8)

Default Usage

None

Command Mode

User EXEC mode

Example

The following example displays TCAM utilization information.

```
switchxxxxxx> show system tcam utilization
TCAM utilization: 58%
```
Syntax

```
show services tcp-udp
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The output does not show sessions where the device is a TCP/UDP client.

Examples

```
switchxxxxx> show services tcp-udp
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Local IP Address</th>
<th>Remote IP address</th>
<th>Service Name</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>All:22</td>
<td></td>
<td>SSH</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>All:23</td>
<td></td>
<td>Telnet</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>All:80</td>
<td></td>
<td>HTTP</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>All:443</td>
<td></td>
<td>HTTPS</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>172.16.1.1:23</td>
<td>172.16.1.18:8789</td>
<td>Telnet</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>TCP6</td>
<td>All:23</td>
<td></td>
<td>Telnet</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP6</td>
<td>fe80::200:b0ff:fe00:0-23</td>
<td></td>
<td>Telnet</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>UDP</td>
<td>All:161</td>
<td></td>
<td>SNMP</td>
<td></td>
</tr>
<tr>
<td>UDP6A</td>
<td>11-161</td>
<td></td>
<td>SNMP</td>
<td></td>
</tr>
</tbody>
</table>

50.19 show tech-support

To display system and configuration information that can be provided to the Technical Assistance Center when reporting a problem, use the `show tech-support` EXEC mode command.
System Management Commands

Syntax

```
show tech-support [config | memory]
```

Parameters

- **memory**—(Optional) Displays memory and processor state data.
- **config**—(Optional) Displays switch configuration within the CLI commands supported on the device.

Default Configuration

By default, this command displays the output of technical-support-related show commands. Use keywords to specify the type of information to be displayed. If you do not specify any parameters, the system displays all configuration and memory data.

Command Types

Switch command.

Command Mode

User EXEC mode

User Guidelines

Caution: Avoid running multiple `show tech-support` commands on a switch or multiple switches on the network segment. Doing so may cause starvation of some time sensitive protocols, like STP.

The `show tech-support` command may time out if the configuration file output takes longer to display than the configured session time out time. If this happens, enter a `set logout timeout` value of 0 to disable automatic disconnection of idle sessions or enter a longer timeout value.

The `show tech-support` command output is continuous, meaning that it does not display one screen at a time. To interrupt the output, press Esc.

If the user specifies the `memory` keyword, the `show tech-support` command displays the following output:

- Flash info (dir if exists, or flash mapping)
- Output of command `show bootvar`
- Buffers info (like `print os buff`)
- Memory info (like `print os mem`)

```
System Management Commands

- Proc info (like print OS tasks)
- Versions of software components
- Output of command `show cpu utilization`

50.20 show system fans

To view the status of the fans on the device, use the `show system fans` EXEC mode command.

**Syntax**

```
show system fans
```

**Command Mode**

User EXEC mode

**Examples**

**Example 1:** If the device does not support controlled fan direction, the column Fan Direction is not displayed.

```
switchxxxxxx> show system fans
Unit Admin state Oper state FAN Direction
--- -------------- ----------- --------------
1 auto on back to front
```

**Example 2:** For devices whose hardware supports variable fan speed.

```
switchxxxxxx> show system fans
Unit Speed Admin state Oper state
---- ------ ----------- -----------
1 8000 auto on
```
50.21 show system sensors

To view the temperature sensor status, use the show system sensors EXEC mode command.

**Syntax**

show system sensors

**Parameters**

This command has no arguments or keywords.

**Default Usage**

None

**Command Mode**

User EXEC mode

**Examples**

**Example 1:** For Standalone systems with a single sensor status

```
switchxxxxxx> show system sensors
Sensor Status: OK
Temperature(C): 37
```

**Example 2:** For systems with multiple sensor statuses

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor Status</th>
<th>Temperature(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OK</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>Failure</td>
<td></td>
</tr>
</tbody>
</table>

**Example 3:** For systems with a single sensor status

```
switchxxxxxx> show system sensors
```
**Example 4: For systems with multiple sensor statuses**

<table>
<thead>
<tr>
<th>Unit/Sensor</th>
<th>Sensor Status</th>
<th>Temperature (°C)</th>
<th>Alarm Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>OK</td>
<td>37</td>
<td>60</td>
</tr>
<tr>
<td>1/2</td>
<td>Failure</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>2/1</td>
<td>OK</td>
<td>68</td>
<td>65</td>
</tr>
</tbody>
</table>

**50.22 show system id**

To display the system identity information, use the `show system id` EXEC mode command.

**Syntax**

`show system id`

**Command Mode**

User EXEC mode

**Example**

The following example displays the system identity information.

```
switchxxxxx> show system id
serial number 114
```
50.23 show ports leds configuration

To display whether the LEDs of the ports are enabled or disabled, use the `show ports leds configuration` EXEC mode command.

**Syntax**

`show ports leds configuration`

**Parameters**

This command has no arguments or keywords.

**Command Mode**

User EXEC mode

**Examples**

**Example 1:** The following example displays the status of the port’s LEDs when they are turned on.

```
switchxxxxxx> show ports leds configuration
Port leds are not disabled
```

**Example 2:** The following example displays the status of the port LEDs when they are turned off.

```
switchxxxxxx> show port leds configuration
Port leds are disabled
```

50.24 show users

To display information about the active users, use the `show users` EXEC mode command.

**Syntax**

`show users`
Parameters
This command has no arguments or keywords.

Default Usage
None

Command Mode
User EXEC mode

Example
The following example displays information about the active users.

```
switchxxxxxx> show users
Username Protocol Location
----------- ---------- -----------
Bob Serial
John SSH 172.16.0.1
Robert HTTP 172.16.0.8
Betty Telnet 172.16.1.7
Sam

50.25 show version
```

To display system version information, use the `show version` EXEC mode command.

Syntax
```
show version
```

Command Mode
User EXEC mode
Example

The following example displays system version information.

```plaintext
switchxxxxxx> show version
SW Version 1.1.0.5 (date 15-Sep-2010 time 10:31:33)
Boot Version 1.1.0.2 (date 04-Sep-2010 time 21:51:53)
HW Version
```

50.26 show version md5

To display external MD5 digest of firmware, use the `show version md5` EXEC mode command.

**Syntax**

```plaintext
show version md5
```

**Command Mode**

User EXEC mode

**Example**

```plaintext
switchxxxxxx> show version md5
Filename Status MD5 Digest
----------- ------- ----------------------------------
image1 Active 23FA000012857D8855AABC7577AB5562
image2 Not Active 23FA000012857D8855AABEA7451265456
boot 23FA000012857D8855AABC7577AB8999
```

50.27 system recovery

To set the system to automatically recover from temperature that reached the critical threshold, use the `system recovery` Global Configuration command.

To return to disable automatic recovery, use the `no` form of the command.
Syntax

system recovery
no system recovery

Parameters

This command has no arguments or keywords.

Default Configuration

System recovery is enabled by default.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# no system recovery
```
TACACS+ Commands

51.1 tacacs-server host

To specify a TACACS+ host, use the `tacacs-server host` Global Configuration mode command. To delete the specified TACACS+ host, use the `no` form of this command.

Syntax

```
tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key key-string] [priority priority]
```

```
encrypted tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key encrypted-key-string] [priority priority]
```

```
no tacacs-server host {ip-address | hostname}
```

Parameters

- **host ip-address**—Specifies the TACACS+ server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

- **host hostname**—Specifies the TACACS+ server host name. (Length: 1-158 characters. Maximum label length of each part of the host name: 63 characters)

- **single-connection**—(Optional) Specifies that a single open connection is maintained between the device and the daemon, instead of the device opening and closing a TCP connection to the daemon each time it communicates.

- **port port-number**—(Optional) Specifies the TACACS server TCP port number. If the port number is 0, the host is not used for authentication. (Range: 0-65535)

- **timeout timeout**—(Optional) Specifies the timeout value in seconds. (Range: 1-30)
- **key** *key-string*—(Optional) Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. To specify an empty string, enter "". (Length: 0-128 characters). If this parameter is omitted, the globally-defined key (set in the tacacs-server key command) will be used.

- **key** *encrypted-key-string*—(Optional) Same as key-string, but the key is in encrypted format.

- **priority** *priority*—(Optional) Specifies the order in which the TACACS+ servers are used, where 0 is the highest priority. (Range: 0-65535)

**Default Configuration**

No TACACS+ host is specified.

The default **port-number** is 1812.

If **timeout** is not specified, the global value (set in the tacacs-server timeout command) is used.

If **key-string** is not specified, the global value (set in the tacacs-server key command) is used.

**Command Mode**

Global Configuration mode

**User Guidelines**

Multiple tacacs-server host commands can be used to specify multiple hosts.

**Example**

The following example specifies a TACACS+ host.

```
switchxxxxxx(config)# tacacs-server host 172.16.1.1
```

### 51.2 tacacs-server host source-interface

To specify the source interface which IPv4 address will be used as the Source IPv4 address for communication with IPv4 TACACS+ servers, use the **tacacs-server host source-interface** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.
TACACS+ Commands

Syntax

```
tacacs-server host source-interface interface-id
no tacacs-server host source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 TACACS+ server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# tacacs-server host source-interface vlan 100
```

51.3 tacacs-server host source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 TACACS+ servers, use the `tacacs-server host source-interface-ipv6` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.
Syntax

tacacs-server host source-interface-ipv6 interface-id

no tacacs-server host source-interface-ipv6

Parameters

- interface-id—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 TACACS+ server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# tacacs-server host source-interface-ipv6 vlan 100
```

51.4 tacacs-server key

To set the authentication encryption key used for all TACACS+ communications between the device and the TACACS+ daemon, use the `tacacs-server key` Global Configuration mode command. To disable the key, use the `no` form of this command.
Syntax

tacacs-server key key-string

encrypted tacacs-server key encrypted-key-string

no tacacs-server key

Parameters

- key-string—Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. (Length: 0–128 characters)

- encrypted-key-string—Same as key-string, but the key is in encrypted format.

Default Configuration

The default key is an empty string.

Command Mode

Global Configuration mode

Example

The following example sets Enterprise as the authentication key for all TACACS+ servers.

switchxxxxxx(config)# tacacs-server key enterprise

51.5 tacacs-server timeout

To set the interval during which the device waits for a TACACS+ server to reply, use the tacacs-server timeout Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

tacacs-server timeout timeout

no tacacs-server timeout
Parameters

- **timeout**—Specifies the timeout value in seconds. (Range: 1-30).

Default Configuration

The default timeout value is 5 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the timeout value to 30 for all TACACS+ servers.

```
switchxxxxxxx(config)# tacacs-server timeout 30
```

### 51.6 show tacacs

To display configuration and statistical information for a TACACS+ server, use the `show tacacs` Privileged EXEC mode command.

**Syntax**

```
show tacacs [ip-address]
```

**Parameters**

- **ip-address**—Specifies the TACACS+ server name, IPv4 or IPv6 address.

Default Configuration

If `ip-address` is not specified, information for all TACACS+ servers is displayed.

Command Mode

Privileged EXEC mode
Example

The following example displays configuration and statistical information for all TACACS+ servers

```
switchxxxxxx# show tacacs
IP address Status Port Single Time Priority
 Connection Out
--------- --------- ---- --------- ------ --------
172.16.1.1 Connected 49 No Global 1

Global values
Time Out: 3
Source IPv4 interface: vlan 120
Source IPv6 interface: vlan 10
```

51.7 show tacacs key

To display the configured key of the TACACS+ server, use the `show tacacs key` Privileged EXEC mode command.

Syntax

```
show tacacs key [ip-address]
```

Parameters

- `ip-address`—Specifies the TACACS+ server name or IP address.

Default Configuration

If `ip-address` is not specified, information for all TACACS+ servers is displayed.

Command Mode

Privileged EXEC mode
Example

The following example displays configuration and statistical information for all TACACS+ servers

```
switchxxxxxx# show tacacs key
IP address Key (Encrypted)

172.16.1.1 Sharon123
172.16.1.2 Bruce123

Global key (Encrypted)

Alice456
```
Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands

52.1 ip telnet server

Use the ip telnet server Global Configuration mode command to enable the device as a Telnet server that accepts connection requests from remote Telnet clients. Remote Telnet clients can configure the device through the Telnet connections.

Use the no form of this command to disable the Telnet server functionality on the device.

Syntax

ip telnet server
no ip telnet server

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The device can be enabled to accept connection requests from both remote SSH and Telnet clients. It is recommended that the remote client connects to the device using SSH (as opposed to Telnet), since SSH is a secure protocol and Telnet is not. To enable the device to be an SSH server, use the ip ssh server command.

Example

The following example enables the device to be configured from a Telnet server.

switchxxxxx(config)# ip telnet server
52.2  ip ssh server

The `ip ssh server` Global Configuration mode command enables the device to be an SSH server and so to accept connection requests from remote SSH clients. Remote SSH clients can manage the device through the SSH connection.

Use the `no` form of this command to disable the SSH server functionality from the device.

**Syntax**

`ip ssh server`

`no ip ssh server`

**Default Configuration**

The SSH server functionality is disabled by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

The device, as an SSH server, generates the encryption keys automatically.

To generate new SSH server keys, use the `crypto key generate dsa` and `crypto key generate rsa` commands.

**Example**

The following example enables configuring the device to be an SSH server.

```
switchxxxxxx(config)# ip ssh server
```

52.3  ip ssh port

The `ip ssh port` Global Configuration mode command specifies the TCP port used by the SSH server. Use the `no` form of this command to restore the default configuration.

**Syntax**

`ip ssh port port-number`
no ip ssh port

Parameters

- **port-number**—Specifies the TCP port number to be used by the SSH server. (Range: 1–65535).

Default Configuration
The default TCP port number is 22.

Command Mode
Global Configuration mode

Example
The following example specifies that TCP port number 8080 is used by the SSH server.

switchxxxxxx(config)# ip ssh port 8080

### 52.4 ip ssh password-auth

Use the **ip ssh password-auth** Global Configuration mode command to enable password authentication of incoming SSH sessions.

Use the **no** form of this command to disable this function.

**Syntax**

- ip ssh password-auth
- no ip ssh password-auth

Default Configuration
Password authentication of incoming SSH sessions is disabled.

Command Mode
Global Configuration mode
User Guidelines

This command enables password key authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

Example

The following example enables password authentication of the SSH client.

```
switchxxxxxx(config)# ip ssh password-auth
```

52.5  ip ssh pubkey-auth

Use the `ip ssh pubkey-auth` Global Configuration mode command to enable public key authentication of incoming SSH sessions.

Use the `no` form of this command to disable this function.

Syntax

```
ip ssh pubkey-auth [auto-login]
oip ssh pubkey-auth
```

Parameters

- `auto-login`—Specifies that the device management AAA authentication (CLI login) is not needed. By default, the login is required after the SSH authentication.

Default Configuration

Public key authentication of incoming SSH sessions is disabled.

Command Mode

Global Configuration mode
User Guidelines

This command enables public key authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device, except if the auto-login parameter was specified.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

If the auto-login keyword is specified for SSH authentication by public key management access is granted if SSH authentication succeeds and the name of SSH used is found in the local user database. The device management AAA authentication is transparent to the user. If the user name is not in the local user database, then the user receives a warning message, and the user will need to pass the device management AAA authentication independently of the SSH authentication.

If the auto-login keyword is not specified, management access is granted only if the user engages and passes both SSH authentication and device management AAA authentication independently. If no SSH authentication method is enabled management access is granted only if the user is AAA authenticated by the device management. No SSH authentication method means SSH is enabled and neither SSH authentication by public key nor password is enabled.

Example

The following example enables authentication of the SSH client.

```
switchxxxxxx(config)# ip ssh pubkey-auth
```

52.6 crypto key pubkey-chain ssh

The crypto key pubkey-chain ssh Global Configuration mode command enters the SSH Public Key-chain Configuration mode. This mode is used to manually specify device public keys, such as SSH client public keys.

Syntax

```
crypto key pubkey-chain ssh
```
Default Configuration

Keys do not exist.

Command Mode

Global Configuration mode

User Guidelines

Use this command when you want to manually specify SSH client's public keys.

Example

The following example enters the SSH Public Key-chain Configuration mode and manually configures the RSA key pair for SSH public key-chain to the user ‘bob’.

```
switchxxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxxx(config-keychain-key)# key-string
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWlAl4kpqIw9GBRonZQZxjHKcqKL6rMlQ+
ZNxTZSkvHG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRfpSwoQUvV35LqJkJk67OU/zfwOllg
kTwm175QR9gHujs6xGWaNWaQaWOXgh3ub8gDiTSq
muSn/Wd05iDX21ExWwO81icglk02LYciz
+Z4TrEU/9FJxwPiVOjic+KBXuR0juNg5nEFYsY
0ZCkON/W9a/tnkm1shRE7Di71+w3fNioA
6wo44t6+AINIEICBCCA4YcF6zmza1wefWwX6f+
Rmt5nnhqdATN/4oJfce166DqVX1gWmN
znR4DYdvS2q01DnwC4CQh
```

52.7 user-key

The **user-key** SSH Public Key-string Configuration mode command associates a username with a manually-configured SSH public key.
Use the **no user-key** command to remove an SSH user and the associated public key.

**Syntax**

```
user-key username {rsa | dsa}
no user-key username
```

**Parameters**

- `username`—Specifies the remote SSH client username. (Length: 1–48 characters)
- `rsa`—Specifies that the RSA key pair is manually configured.
- `dsa`—Specifies that the DSA key pair is manually configured.

**Default Configuration**

No SSH public keys exist.

**Command Mode**

SSH Public Key-string Configuration mode

**User Guidelines**

After entering this command, the existing key, if any, associated with the user will be deleted. You must follow this command with the key-string command to configure the key to the user.

**Example**

The following example enables manually configuring an SSH public key for SSH public key-chain bob.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string row
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWl
```
52.8 key-string

The key-string SSH Public Key-string Configuration mode command manually specifies an SSH public key.

Syntax

key-string [row key-string]

Parameters

- row—Specifies the SSH public key row by row. The maximum length of a row is 160 characters.
- key-string—Specifies the key in UU-encoded DER format. UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Default Configuration

Keys do not exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

Use the key-string SSH Public Key-string Configuration mode command without the row parameter to specify which SSH public key is to be interactively configured next. Enter a row with no characters to complete the command.

Use the key-string row SSH Public Key-string Configuration mode command to specify the SSH public key, row by row. Each row must begin with a key-string row command.

The UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Example

The following example enters public key strings for SSH public key client 'bob'.

switchxxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxxx(config-keychain-key)# key-string
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWlAl4kpqIw9GBRonZQZxjHKqcKL6rM1Q+
ZNXfZSkvHG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRfpSwoQUvV35LqJJKk67IOU/zfwQ1lg
tWml175QR9gHujs6KwGNZQWVgxh3ub8gDjTSq
muSn/Wd05iDX2IExQWu08licgk02LYciz
+Z4TrEU/9FJxwPiVQOjc+KBXuR0juNg5nFYsY
0ZCK0N/W9a/tnkm1shRE7Di7l+w3fNIOA
6w9o44t6+AINEICBCCA4YcF6zMzaTlweFWwX6f+
Rmt5nhqdAtN/4oJfcel66DqVX1gWmN
zN44DYDvSzq01DnwCAC8Qh
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string row AAAAB3Nza
switchxxxxxx(config-keychain-key)# key-string row C1yc2

52.9  show ip ssh

The show ip ssh Privileged EXEC mode command displays the SSH server configuration.

Syntax

show ip ssh

Command Mode

Privileged EXEC mode
Example

The following example displays the SSH server configuration.

```
switchxxxxxx# show ip ssh
```

SSH server enabled. Port: 22
RSA key was generated.
DSA (DSS) key was generated.
SSH Public Key Authentication is enabled with auto-login.
SSH Password Authentication is enabled.
Active incoming sessions:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>SSH Username</th>
<th>Version</th>
<th>Cipher</th>
<th>Auth Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.1</td>
<td>John Brown</td>
<td>1.5</td>
<td>3DES</td>
<td>HMAC-SHA1</td>
</tr>
<tr>
<td>182.20.2.1</td>
<td>Bob Smith</td>
<td>1.5</td>
<td>3DES</td>
<td>Password</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The client address</td>
</tr>
<tr>
<td>SSH Username</td>
<td>The user name</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number</td>
</tr>
<tr>
<td>Cipher</td>
<td>The encryption type (3DES, Blowfish, RC4)</td>
</tr>
<tr>
<td>Auth Code</td>
<td>The authentication Code (HMAC-MD5, HMAC-SHA1) or Password</td>
</tr>
</tbody>
</table>

52.10 show crypto key pubkey-chain ssh

The `show crypto key pubkey-chain ssh` Privileged EXEC mode command displays SSH public keys stored on the device.

Syntax

```
show crypto key pubkey-chain ssh [username username] [fingerprint {bubble-babble | hex}]
```
Parameters

- **username username**—Specifies the remote SSH client username. (Length: 1–48 characters)

- **fingerprint {bubble-babble | hex}**—Specifies the fingerprint display format. The possible values are:
  - **bubble-babble**—Specifies that the fingerprint is displayed in Bubble Babble format.
  - **hex**—Specifies that the fingerprint is displayed in hexadecimal format.

Default Configuration

The default fingerprint format is hexadecimal.

Command Mode

Privileged EXEC mode

Example

The following examples display SSH public keys stored on the device.

```
switchxxxxxx# show crypto key pubkey-chain ssh
Username Fingerprint
----------- --

switchxxxxxx# show crypto key pubkey-chain ssh username bob
Username Fingerprint
----------- --
```
IPv6 Tunnel Commands

53.1 interface tunnel

To enter into the Interface Configuration (Tunnel) mode, use the `interface tunnel` command in Global Configuration mode.

Syntax

```
interface tunnel number
```

Parameters

- `number`—Specifies the tunnel number.

Default Configuration

N/A

Command Mode

Global Configuration mode

Example

The following example enters the Interface Configuration (Tunnel) mode.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel source auto
switchxxxxxx(config-if)# exit
```
53.2  tunnel isatap solicitation-interval

To set the time interval between unsolicited router solicitation messages, use the `tunnel isatap solicitation-interval` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
tunnel isatap solicitation-interval seconds
no tunnel isatap solicitation-interval
```

Parameters

- `seconds`—Specifies the time interval in seconds between ISATAP router solicitation messages. (Range: 10–3600).

Default Configuration

The default time interval between ISATAP router solicitation messages is 10 seconds.

Command Mode

Global Configuration mode

User Guidelines

This command determines the interval between unsolicited router solicitation messages sent to discovery an ISATAP router.

Example

The following example sets the time interval between ISATAP router solicitation messages to 30 seconds.

```
switchxxxxxx(config)# tunnel isatap solicitation-interval 30
```

53.3  tunnel isatap robustness

To configure the number of router solicitation refresh messages that the device sends, use the `tunnel isatap robustness` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.
Syntax

tunnel isatap robustness number

no tunnel isatap robustness

Parameters

- number—Specifies the number router solicitation refresh messages that
  the device sends. (Range: 1–20).

Default Configuration

The default number of router solicitation refresh messages that the device sends
is 3.

Command Mode

Global Configuration mode

User Guidelines

The router solicitation interval (when there is an active ISATAP router) is the
minimum-router-lifetime that is received from the ISATAP router, divided by
(Robustness + 1).

Example

The following example sets the number of router solicitation refresh messages
that the device sends to 5.

switchxxxxx(config)# tunnel isatap robustness 5

53.4 tunnel isatap router

To configure a global string that represents a specific automatic tunnel router
domain name, use the tunnel isatap router command in Interface (Tunnel)
Configuration mode. To remove this router name and restore the default
configuration, use the no form of this command.

Syntax

tunnel isatap router router-name

no tunnel isatap router
Parameters

- **router-name**—Specifies the router’s domain name.

Default Configuration

The automatic tunnel router’s default domain name is ISATAP.

Command Mode

Interface (Tunnel) Configuration mode

User Guidelines

This command determines the string that the host uses for automatic tunnel router lookup in the IPv4 DNS procedure. By default, the string ISATAP is used for the corresponding automatic tunnel types.

Only one string can represent the automatic tunnel router name per tunnel. Using this command, therefore, overwrites the existing entry.

The empty string means that automatic lookup is not applied.

Example

The following example configures the global string ISATAP2 as the automatic tunnel router domain name.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel isatap router ISATAP2
switchxxxxxx(config-if)# exit
```

53.5 **tunnel mode ipv6ip**

To configure a static IPv6 tunnel interface, use the `tunnel mode ipv6ip` command in Interface (Tunnel) Configuration mode. To remove an IPv6 tunnel interface, use the `no` form of this command.

Syntax

- `tunnel mode ipv6ip isatap`
- `no tunnel mode ipv6ip`
Parameters

- **isatap**—(Optional) Specifies IPv6 automatic tunneling mode as ISATAP to connect IPv6 nodes (hosts and routers) within IPv4 networks.

Default Configuration

IPv6 tunnel interfaces are not configured.

Command Mode

Interface (Tunnel) Configuration mode

User Guidelines

IPv6 tunneling consists of encapsulating IPv6 packets within IPv4 packets for transmission across an IPv4 routing infrastructure.

The IPv6 interface is automatically enabled on a tunnel when it is configured as an IPv6 tunnel by the `tunnel mode ipv6ip` command and the local IPv4 is defined by the `tunnel source` command.

The IPv6 interface on an IPv6 tunnel is disabled if the tunnel stops to be an IPv6 tunnel or the tunnel local IPv4 address is removed and the new IPv4 cannot be chosen.

ISATAP Tunnels

Using this command with the **isatap** keyword specifies an automatic ISATAP tunnel. ISATAP tunnels enable transport of IPv6 packets within network boundaries. ISATAP tunnels allow individual IPv4/IPv6 dual-stack hosts within a site to connect to an IPv6 network using the IPv4 infrastructure.

ISATAP IPv6 addresses can use any initial Unicast /48 prefix. The final 64 bits are an interface identifier. Of these, the leading 32 bits are the fixed pattern 0000:5EFE; the last 32 bits carry the tunnel endpoint IPv4 address.

Only the `ipv6 address eui-64` command can be used to configured a global unicast IPv6 on an ISATAP tunnel.

Examples

**Example 1**—The following example configures an ISATAP tunnel:

```
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ip address 1.1.1.1 255.255.255.0
switchxxxxxxx(config-if)# exit
```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# tunnel mode ipv6ip isatap
switchxxxxxx(config-if)# tunnel source 1.1.1.1
switchxxxxxx(config-if)# ipv6 address 3ffe:b00:c18:1::/64 eui-64
switchxxxxxx(config-if)# exit

53.6 tunnel source

To set the local (source) IPv4 address of a tunnel interface, use the **tunnel source** command in Interface (Tunnel) Configuration mode. To delete the tunnel local address, use the **no** form of the command.

**Syntax**

tunnel source {auto | ipv4-address | interface-id}

no tunnel source

**Parameters**

- **auto**—The system minimum IPv4 address is used as the local IPv4 address (IPv4 address of the local tunnel endpoint).
- **ipv4-address**—Specifies the IPv4 address to use as the local IPv4 address (IPv4 address of the local tunnel endpoint).
- **interface-id**—Interface which the minimum IPv4 address is used as the local IPv4 address (IPv4 address of the local tunnel endpoint).

**Default**

No source address is defined.

**Command Mode**

Interface (Tunnel) Configuration mode

**User Guidelines**

If the **auto** or **interface-id** option is configured once time chosen IPv4 is used as the tunnel local IPv4 address until it is defined. A new IPv4 interface is only chosen in the following cases:

- After reboot.
- The used IPv4 is removed from the switch configuration.
- The tunnel mode is changed.

When the tunnel local IPv4 address is changed the IPv6 interface on the tunnel is re-enabled that causes removing static IPv6 configuration on the tunnel (for example, global IPv6 addresses, static IPv6 routes via the tunnel, etc.).

**Example**

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel source 120.12.3.4
switchxxxxxx(config-if)# exit
```

### 53.7 show ipv6 tunnel

To display information on IPv6 tunnels, use the `show ipv6 tunnel` command in User EXEC mode.

**Syntax**

```
show ipv6 tunnel [all]
```

**Parameters**

- `all`—(Optional) The switch displays all parameters of the tunnel. If the keyword is not configured only the tunnel parameters corresponding to its type are displayed.

**Command Mode**

User EXEC mode

**Examples**

**Example 1.** The following example displays information on the ISATAP tunnel, when the all keyword is not configured:

```
switchxxxxxx# show ipv6 tunnel
Tunnel 2
 Tunnel type : ISATAP
```
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel status</td>
<td>UP</td>
</tr>
<tr>
<td>Tunnel Local address type</td>
<td>auto</td>
</tr>
<tr>
<td>Tunnel Local IPv4 address</td>
<td>192.1.3.4</td>
</tr>
<tr>
<td>Router DNS name</td>
<td>ISATAP</td>
</tr>
<tr>
<td>Router IPv4 addresses</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Detected</td>
</tr>
<tr>
<td>100.1.1.1</td>
<td>Detected</td>
</tr>
<tr>
<td>14.1.100.1</td>
<td>Not Detected</td>
</tr>
<tr>
<td>Router Solicitation interval</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Robustness</td>
<td>2</td>
</tr>
</tbody>
</table>
54.1 show udld

To display the administrative and operational Unidirectional Link Detection Protocol (UDLD) status, use the `show udld` command in Privileged EXEC mode.

**Syntax**

```
show udld [interface-id] [neighbors]
```

**Parameters**

- `interface-id`—Interface identifier of an Ethernet port.
- `neighbors`—Displays neighbor information only.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

If you do not enter an interface ID value, the administrative and operational UDLD status for all interfaces on which UDLD is enabled are displayed.

**Examples**

**Example 1**—This example shows how to display the UDLD state for all interfaces. Most of the fields shown in the display are self-explanatory. Those that are not self-explanatory are defined below.

```
switchxxxxxx# show udld
Global UDLD mode: normal
Message Time: 15 sec (default)
Interface gi11
 Port UDLD mode: aggressive
 Port Current state: Bidirectional
```
Number of detected neighbors: 1

Port Neighbor Table

Neighbor Device ID: 1234567893
Neighbor MAC: 00:00:01:22:33:dd
Neighbor Device name: switch A
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 20 sec
Neighbor Current State: Bidirectional
Neighbor Expiration Time: 7 sec

Neighbor Device ID: 1234544893
Neighbor MAC: 00:00:01:22:33:ff
Neighbor Device name: switch A
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 15 sec
Neighbor Current State: Undetermined
Neighbor Expiration Time: 17 sec

Interface gi12
Port UDLD mode: normal (default)
Port Current state: Undetermined
Number of detected neighbors: 1
Neighbor Device ID: 1234567753
Neighbor MAC: 00:00:01:22:33:fe
Neighbor Device name: switch A
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 15 sec
Neighbor Current State: Undetermined
Neighbor Expiration Time: 11 sec

Interface gi13
Port UDLD mode: disabled

Interface gi14
Port UDLD mode: normal (default)
Port Current state: shutdown

Field Descriptions:

- **Global UDLD mode**—The global UDLD mode (normal or aggressive) configured by the `udld` command.

- **Message Time**—The message time configured by the `udld message time` command.
- **Port UDLD mode**—The interface UDLD mode (normal or aggressive).
- **Port Current state**—The UDLD operational state: interface UDLD mode (normal or aggressive).
  - **Disabled**—UDLD is disabled on the port by the `udld port disable` command.
  - **Shutdown**—UDLD is enabled on the port and the port operational state is DOWN.
  - **Detection**—UDLD id detecting the link state.
  - **Bidirectional**—The link is bidirectional.
  - **Undetermined**—The link state is undetermined - no UDLD message has been received on the port.
- **Neighbor Device ID**—The device ID of the neighbor.
- **Neighbor MAC**—The MAC address of the neighbor.
- **Neighbor Device name**—The Device name of the neighbor.
- **Neighbor Port ID**—The device port ID of the neighbor on which the recent UDLD message was sent.
- **Neighbor Message Time**—The message time of the neighbor.
- **Neighbor Current State**—The current state of the neighbor:
  - **Bidirectional**—The UDLD messages received from the neighbor contain the Device ID and Port ID of the switch in the Echo TLV.
  - **Undetermined**—The UDLD messages received from the neighbor do not contain the Device ID and Port ID of the switch in the Echo TLV.
- **Neighbor Expiration Time**—Left time in seconds until the current neighbor state expires.

---

**Example 2**—This example shows how to display the UDLD state for one given interface:

```
switchxxxxxx# show udld gi11
Global UDLD mode: normal
Message Time: 15 sec(default)
Interface gi11
```
Port UDLD mode: aggressive
Port Current state: Bidirectional
Number of detected neighbors: 1

Port Neighbor Table
- Neighbor Device ID: 1234567893
  - Neighbor MAC: 00:00:01:22:33:dd
  - Neighbor Device name: switch A
  - Neighbor Port ID: gi1/2/1
  - Neighbor Message Time: 20 sec
  - Neighbor Current State: Bidirectional
  - Neighbor Expiration Time: 7 sec
- Neighbor Device ID: 1234544893
  - Neighbor MAC: 00:00:01:22:33:ff
  - Neighbor Device name: switch A
  - Neighbor Port ID: gi1/2/1
  - Neighbor Message Time: 15 sec
  - Neighbor Current State: Undetermined
  - Neighbor Expiration Time: 17 sec

Example 3—This example shows how to display neighbor information only:

switchxxxxxx# show udld neighbors

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port-ID</th>
<th>Device Name</th>
<th>Message</th>
<th>Neighbor</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>1234567893</td>
<td>gi1/0/1</td>
<td>SAL0734K5R2</td>
<td>15</td>
<td>Bidirect</td>
<td>11</td>
</tr>
<tr>
<td>gi2</td>
<td>3456750193</td>
<td>gi1/0/2</td>
<td>SAL0734K5R3</td>
<td>20</td>
<td>Undetermined</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 4—This example shows how to display neighbor information only for a single interface:

switchxxxxxx# show udld gi1 neighbors

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port-ID</th>
<th>Device Name</th>
<th>Message</th>
<th>Neighbor</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>1234567893</td>
<td>gi1/0/1</td>
<td>SAL0734K5R2</td>
<td>15</td>
<td>Bidirect</td>
<td>11</td>
</tr>
</tbody>
</table>
54.2 udld

Use the `udld` command in Global Configuration mode to globally enable the UniDirectional Link Detection (UDLD) protocol. To disable UDLD, use the `no` form of this command.

**Syntax**

```
udld aggressive | normal
no udld
```

**Parameters**

- `aggressive`—Enables UDLD in aggressive mode by default on all fiber interfaces.
- `normal`—Enables UDLD in normal mode by default on all fiber interfaces.

**Default Configuration**

UDLD is disabled on all fiber interfaces.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command affects fiber interfaces only. Use the `udld port` command in Interface Configuration mode to enable UDLD on other interface types.

Use the `no` form of this command to disable UDLD on all fiber ports.

The device supports the UDLD protocol specified by RFC 5171.

UDLD supports two modes of operation: normal and aggressive. In the aggressive mode the device shuts down a port if it cannot explicitly detect that the link is bidirectional. In the normal mode the device shuts down an interface if it explicitly detect that the link is unidirectional. A unidirectional link occurs whenever traffic sent by a local device is received by its neighbor but traffic from the neighbor is not received by the local device.

You can use the following commands to reset an interface shut down by UDLD:

- The `errdisable recover reset` command with the `interface interface-id` parameter to reset a given interface.
The `errdisable recover reset` command with the `udld` parameter to reset all interfaces shut down by UDLD.

- The `errdisable recover cause` with the `udld` parameter to automatically recover from the UDLD error-disabled state.

**Example**

This example shows how to enable UDLD on all fiber interfaces:

```
switchxxxxxx(config)# udld normal
```

### 54.3 `udld message time`

Use the `udld message time` command in Global Configuration mode to configure a global value of the interval between two sent probe messages. To return to the default value, use the `no` form of this command.

**Syntax**

```
udld message time seconds

no udld message time
```

**Parameters**

`seconds`—Interval between two sent probe messages. The valid values are from 1 to 90 seconds.

**Default Configuration**

15 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to change the default value of the message interval - the interval between two sequential sent probe messages.
Example

This example shows how to globally set the interval to 40sec:

```
switchxxxxxx(config)# udld message time 40
```

54.4 udld port

To enable the UDLD protocol on an Ethernet port, use the `udld port` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
udld port [aggressive | normal | disable]
no udld port
```

Parameters

- **aggressive**—Enables UDLD in aggressive mode on this interface.
- **normal**—Enables UDLD in normal mode on this interface. The normal keyword is applied if no keyword is specified.
- **disable**—Disables UDLD on this interface.

Default Configuration

The defaults are as follows:

- Fiber interfaces are in the state configured by the `udld` command.
- Non-fiber interfaces are in the Disable state.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Use this command on fiber ports to override the setting of the global `udld` command.
If the port changes from fiber to non-fiber or vice versa, all configurations are maintained because the platform software detects a change of module or a Gigabit Interface Converter (GBIC) change.

**Examples**

**Example 1**—This example shows how to enable UDLD in normal mode on an Ethernet port regardless of the current global `udld` setting:

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)# udld port normal
switchxxxxxx(config-if)# exit
```

**Example 2**—This example shows how to return to the default configuration:

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)# no udld port
switchxxxxxx(config-if)# exit
```

**Example 3**—This example shows how to disable UDLD on an Ethernet port regardless of the current global `udld` setting:

```
switchxxxxxx(config)# interface g11
switchxxxxxx(config-if)# udld port disable
switchxxxxxx(config-if)# exit
```
User Interface Commands

55.1 banner exec

To specify and enable a message to be displayed after a successful logon, use the `banner exec` Global Configuration mode command. This banner is applied automatically on all the user interfaces: console, Telnet and SSH and also on the WEB GUI. To delete the existing EXEC banner, use the `no` form of this command.

Syntax

banner exec d message-text d
no banner exec

Parameters

- **d**—Delimiting character of user’s choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.

- **message-text**—The message must start in a new line. You can enter multi-line messages. You can include tokens in the form of $(token) in the message text. Tokens are replaced with the corresponding configuration variable (see User Guidelines). The message can contain up to 1000 characters (after every 510 characters, press <Enter> to continue).

Default Configuration

Disabled (no EXEC banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.
Use tokens in the form of $(token)$ in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information Displayed in the Banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)$</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)$</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)$</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)$</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)$</td>
<td>Displays the system contact string.</td>
</tr>
<tr>
<td>$(location)$</td>
<td>Displays the system location string.</td>
</tr>
<tr>
<td>$(mac-address)$</td>
<td>Displays the base MAC address of the device.</td>
</tr>
</tbody>
</table>

Use the no banner exec Line Configuration command to disable the Exec banner on a particular line or lines.

**Example**

The following example sets an EXEC banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the $(token)$ syntax is replaced by the corresponding configuration variable.

```
switchxxxxxx(config)# banner exec %
Enter TEXT message. End with the character '%'.
$(bold)Session activated.$(bold) Enter commands at the prompt.
%
```

When a user logs on to the system, the following output is displayed:

```
Session activated. Enter commands at the prompt.
```

### 55.2 banner login

To specify a message to be displayed before the username and password login prompts, use the banner login command in Global Configuration mode. This banner is applied automatically on all the user interfaces: Console, Telnet and SSH and also on the WEB GUI. To delete the existing login banner, use the no form of this command.
Syntax

**banner login** *d message-text d*

**no banner login**

Parameters

- **d**—Delimiting character of user’s choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.

- **message-text**—Message text. The message must start on a new line. You can enter multi-line messages. You can include tokens in the form of $\text{(token)}$ in the message text. Tokens are replaced with the corresponding configuration variable (see User Guidelines). The message can contain up to 1000 characters (after every 510 characters, you must press <Enter> to continue).

Default Configuration

Disabled (no Login banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

Use tokens in the form of $\text{(token)}$ in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{(hostname)}$</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$\text{(domain)}$</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$\text{(bold)}$</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$\text{(inverse)}$</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$\text{(contact)}$</td>
<td>Displays the system contact string.</td>
</tr>
</tbody>
</table>
Use the `no banner login` Line Configuration command to disable the Login banner on a particular line or lines.

**Example**

The following example sets a Login banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the `$(token)` syntax is replaced by the corresponding configuration variable.

```plaintext
switchxxxxxx(config)# banner login %
Enter TEXT message. End with the character '%'.
You have entered $(hostname).$(domain)
%
When the login banner is executed, the user will see the following banner:
You have entered host123.ourdomain.com
```

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(location)</td>
<td>Displays the system location string.</td>
</tr>
<tr>
<td>$(mac-address)</td>
<td>Displays the base MAC address of the device.</td>
</tr>
</tbody>
</table>

Use the **no banner login** Line Configuration command to disable the Login banner on a particular line or lines.

**Example**

The following example sets a Login banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the `$(token)` syntax is replaced by the corresponding configuration variable.

```plaintext
switchxxxxxx(config)# banner login %
Enter TEXT message. End with the character '%'.
You have entered $(hostname).$(domain)
%
When the login banner is executed, the user will see the following banner:
You have entered host123.ourdomain.com
```

### 55.3 configure

To enter the Global Configuration mode, use the **configure** Privileged EXEC mode command.

**Syntax**

`configure [terminal]`

**Parameters**

- `terminal`—(Optional) Enter the Global Configuration mode with or without the keyword `terminal`.

**Command Mode**

Privileged EXEC mode
Example
The following example enters Global Configuration mode.

```
switchxxxxx# configure
switchxxxxx(config)#
```

55.4 disable
To leave the Privileged EXEC mode and return to the User EXEC mode, use the `disable` Privileged EXEC mode command.

Syntax
```
disable [privilege-level]
```

Parameters
`privilege-level`—(Optional) Reduces the privilege level to the specified privileged level. If privilege level is left blank, the level is reduced to the minimal privilege level.

Default Configuration
The default privilege level is 15.

Command Mode
Privileged EXEC mode

Example
The following example returns the user to user level 1.

```
switchxxxxx# disable 1
switchxxxxx#
```

55.5 do
To execute an EXEC-level command from Global Configuration mode or any configuration submode, use the `do` command.
Syntax

do command

Parameters

command—Specifies the EXEC-level command to execute.

Command Mode

All configuration modes

Example

The following example executes the show vlan Privileged EXEC mode command from Global Configuration mode.

Example

switchxxxxxx(config)# do show vlan

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>gi1-4, Po1, Po2</td>
<td>other</td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>gi1</td>
<td>dynamicGvrp</td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>v0010</td>
<td>gi1</td>
<td>permanent</td>
<td>Not Required</td>
</tr>
<tr>
<td>11</td>
<td>V0011</td>
<td>gi1, gi13</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>gi1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>gi1, gi13</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>gi1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>gi1, gi14</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>4093</td>
<td>guest-vlan</td>
<td>gi1, gi13</td>
<td>permanent</td>
<td>Guest</td>
</tr>
</tbody>
</table>

switchxxxxxx(config)#

55.6 enable

To enter the Privileged EXEC mode, use the enable User EXEC mode command.
### Syntax

**enable** [**privilege-level**]

### Parameters

**privilege-level**—(Optional) Specifies the privilege level at which to enter the system. (Range: 1, 15)

### Default Configuration

The default privilege level is 15.

### Command Mode

User EXEC mode

### Example

The following example enters privilege level 7.

```
switchxxxxxx# enable 7
enter password:**********
switchxxxxxx# Accepted
```

The following example enters privilege level 15.

```
switchxxxxxx# enable
enter password:**********
switchxxxxxx# Accepted
```

### 55.7 end

To end the current configuration session and return to the Privileged EXEC mode, use the **end** command.

### Syntax

**end**
Parameters
This command has no arguments or keywords

Default Configuration
None

Command Mode
All configuration modes

Example
The following example ends the Global Configuration mode session and returns to the Privileged EXEC mode.

switchxxxxxx(config)# end
switchxxxxxx#
Examples
The following examples change the configuration mode from Interface Configuration mode to Privileged EXEC mode.

```
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# exit
```

55.9 exit (EXEC)
To close an active terminal session by logging off the device, use the exit User EXEC mode command.

Syntax
```
exit
```

Parameters
This command has no arguments or keywords

Default Configuration
None

Command Mode
User EXEC mode

Example
The following example closes an active terminal session.

```
switchxxxxxx# exit
```

55.10 help
To display a brief description of the Help system, use the help command.
Syntax

help

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

All configuration modes

Example

The following example describes the Help system.

switchxxxxxx# help

Help may be requested at any point in a command by entering a question mark '?'. If nothing matches the currently entered incomplete command, the help list is empty. This indicates that there is no command matching the input as it currently appears. If the request is within a command, press the Backspace key and erase the entered characters to a point where the request results in a match.

Help is provided when:

1. There is a valid command and a help request is made for entering a parameter or argument (e.g. 'show ?'). All possible parameters or arguments for the entered command are then displayed.

2. An abbreviated argument is entered and a help request is made for arguments matching the input (e.g. 'show pr?').

55.11 history

To enable saving commands that have been entered, use the history Line Configuration Mode command. To disable the command, use the no form of this command.
User Interface Commands

Syntax

history

no history

Parameters

This command has no arguments or keywords

Default Configuration

Enabled.

Command Mode

Line Configuration Mode

User Guidelines

This command enables saving user-entered commands for a specified line. You can return to previous lines by using the up or down arrows.

It is effective from the next time that the user logs in via console/telnet/ssh.

The following are related commands:

- Use the `terminal history size` User EXEC mode command to enable or disable this command for the current terminal session.
- Use the `history size` Line Configuration Mode command to set the size of the command history buffer.

Example

The following example enables the command for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history
```

55.12 history size

To change the maximum number of user commands that are saved in the history buffer for a particular line, use the `history size` Line Configuration Mode command.
To reset the command history buffer size to the default value, use the no form of this command.

**Syntax**

```
history size number-of-commands
no history size
```

**Parameters**

- `number-of-commands`—Specifies the number of commands the system records in its history buffer.

**Default Configuration**

The default command history buffer size is 10 commands.

**Command Mode**

Line Configuration Mode

**User Guidelines**

This command configures the command history buffer size for a particular line. It is effective from the next time that the user logs in via console/telnet/ssh.

Use the `terminal history size` User EXEC mode command to configure the command history buffer size for the current terminal session.

The allocated command history buffer is per terminal user, and is taken from a shared buffer. If there is not enough space available in the shared buffer, the command history buffer size cannot be increased above the default size.

**Example**

The following example changes the command history buffer size to 100 entries for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history size 100
```
55.13 login

To enable changing the user that is logged in, use the login User EXEC mode command. When this command is logged in, the user is prompted for a username/password.

**Syntax**

```
login
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

None

**Command Mode**

User EXEC mode

**Example**

The following example enters Privileged EXEC mode and logs in with the required username ‘bob’.

```
switchxxxxxx# login
User Name: bob
Password: *****
switchxxxxxx#
```

55.14 terminal datadump

To enable dumping all the output of a show command without prompting, use the terminal datadump User EXEC mode command. To disable dumping, use the no form of this command.

**Syntax**

```
terminal datadump
```

terminal no datadump

Parameters
This command has no arguments or keywords

Default Configuration
When printing, dumping is disabled and printing is paused every 24 lines.

Command Mode
User EXEC mode

User Guidelines
By default, a More prompt is displayed when the output contains more than 24 lines. Pressing the Enter key displays the next line; pressing the Spacebar displays the next screen of output.

The terminal datadump command enables dumping all output immediately after entering the show command by removing the pause.

The width is not limited, and the width of the line being printed on the terminal is based on the terminal itself.

This command is relevant only for the current session.

Example
The following example dumps all output immediately after entering a show command.

switchxxxxxx# terminal datadump

55.15 terminal history

To enable the command history function for the current terminal session, meaning that it will not be stored in the Running Configuration file, use the terminal history User EXEC mode command. To disable the command, use the no form of this command.

Syntax

terminal history
terminal no history

Parameters
This command has no arguments or keywords

Default Configuration
The default configuration for all terminal sessions is defined by the history Line Configuration Mode command.

Command Mode
User EXEC mode

User Guidelines
The command enables the command history for the current session. The default is determined by the history Line Configuration Mode command.

This command is effective immediately.

Example
The following example disables the command history function for the current terminal session.

switchxxxxxx# terminal no history

55.16 terminal history size

To change the command history buffer size for the current terminal session, meaning it will not be stored in the Running Configuration file, use the terminal history size User EXEC mode command. Use the no form of this command to reset the command history buffer size to the default value.

Syntax

terminal history size number-of-commands

terminal no history size
Parameters

**number-of-commands**—Specifies the number of commands the system maintains in its history buffer. (Range: 10–207)

Default Configuration

The default configuration for all terminal sessions is defined by the `history size` Line Configuration Mode command.

Command Mode

User EXEC mode

User Guidelines

The `terminal history size` EXEC command changes the command history buffer size for the current terminal session. Use the `history` Line Configuration Mode command to change the default history buffer size.

The maximum number of commands in all buffers is 207.

Example

The following example sets the command history buffer size to 20 commands for the current terminal session.

```
switchxxxxxx# terminal history size 20
```

### 55.17 terminal prompt

To enable the terminal prompts, use the `terminal prompt` User EXEC mode command. To disable the terminal prompts, use `terminal no prompt` command.

The command is per session and will not be saved in the configuration database.

Syntax

```
terminal prompt
terminal no prompt
```

Parameters

This command has no arguments or keywords
**Default Configuration**
The default configuration is prompts enabled.

**Command Mode**
Privileged EXEC mode

**Example**
The following example disables the terminal prompts

```
switchxxxxxx# terminal no prompt
```

---

### 55.18 terminal width

To determine the width of the display for the echo input to CLI sessions, use the `terminal width` User EXEC mode command. To return to the default, use `terminal no width`.

The command is per session and will not be saved in the configuration database.

**Syntax**

```
terminal width number-of-characters
terminal no width
```

**Parameters**

- `number-of-characters` - Specifies the number of characters to be displayed for the echo output of the CLI commands and the configuration file,'0' means endless number of characters on a screen line. (Range: 0, 70-512)

**Default Configuration**
The default number of characters is 77.

**Command Mode**
Privileged EXEC mode

**Example**
The following example sets the terminal width to 100 characters

```
switchxxxxxx# terminal width 100
```
55.19 show banner

To display the banners that have been defined, use the `show banner` commands in User EXEC mode.

**Syntax**

`show banner login`

`show banner exec`

**Parameters**

This command has no arguments or keywords

**Command Mode**

User EXEC mode

**Examples**

```
switchxxxxx# show banner login

Banner: Login
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled

switchxxxxx# show banner exec

Banner: EXEC
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
You have logged on
```
55.20 show history

To list the commands entered in the current session, use the **show history** User EXEC mode command.

**Syntax**

```
show history
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

None

**Command Mode**

User EXEC mode

**User Guidelines**

The buffer includes executed and unexecuted commands.

Commands are listed from the first to the most recent command.

The buffer remains unchanged when entering into and returning from configuration modes.

**Example**

The following example displays all the commands entered while in the current Privileged EXEC mode.

```
switchxxxxxx# show version
SW version 3.131 (date 23-Jul-2005 time 17:34:19)
HW version 1.0.0
switchxxxxxx# show clock
15:29:03 Jun 17 2005
switchxxxxxx# show history
show version
```
show clock
show history
3 commands were logged (buffer size is 10)

55.21 show privilege

To display the current privilege level, use the show privilege User EXEC mode command.

Syntax
show privilege

Parameters
This command has no arguments or keywords

Default Configuration
None

Command Mode
User EXEC mode

Example
The following example displays the privilege level for the user logged on.

switchxxxxxx# show privilege
Current privilege level is 15
Virtual Local Area Network (VLAN) Commands

56.1 vlan database

Use the `vlan database` Global Configuration mode command to enter the VLAN Configuration mode. This mode is used to create VLAN(s) and define the default VLAN.

Use the `exit` command to return to Global Configuration mode.

**Syntax**

```
vlan database
```

**Parameters**

N/A

**Default Configuration**

VLAN 1 exists by default.

**Command Mode**

Global Configuration mode

**Example**

The following example enters the VLAN Configuration mode, creates VLAN 1972 and exits VLAN Configuration mode.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 1972
switchxxxxxx(config-vlan)# exit
```
56.2  vlan

Use the `vlan` VLAN Configuration mode or Global Configuration mode command to create a VLAN. Use the `no` form of this command to delete the VLAN(s).

**Syntax**

```
vlan vlan-range

no vlan vlan-range
```

**Parameters**

- `vlan-range`—Specifies a list of VLAN IDs. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs (range: 2-4094).

**Default Configuration**

VLAN 1 exists by default.

**Command Mode**

VLAN Database Configuration mode

**User Guidelines**

To assign the VLAN a name, use the `name` command in Interface Configuration (VLAN) mode.

**Example**

The following example creates VLANs 100 and 1972.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 100,1972
switchxxxxxx(config-vlan)# exit
```

56.3  show vlan

Use the `show vlan` Privileged EXEC mode command to display the following VLAN information.
Syntax

`show vlan [tag vlan-id] [name vlan-name]`

Parameters

- `tag vlan-id`—Specifies a VLAN ID.
- `name vlan-name`—Specifies a VLAN name string (length: 1–32 characters)

Default Configuration

All VLANs are displayed.

Command Mode

Privileged EXEC mode

Examples

Example 1—The following example displays information for all VLANs:

```
switchxxxxxx# show vlan

Created by: D-Default, S-Static, G-GVRP, R-Radius Assigned VLAN

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Ports</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default</td>
<td>gi11</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>Marketing</td>
<td>gi12</td>
<td>S</td>
</tr>
<tr>
<td>91</td>
<td>11</td>
<td>gi12</td>
<td>SGR</td>
</tr>
<tr>
<td>92</td>
<td>11</td>
<td>gi13-4</td>
<td>G</td>
</tr>
<tr>
<td>93</td>
<td>11</td>
<td>gi13-4</td>
<td>GR</td>
</tr>
</tbody>
</table>
```

56.4 `default-vlan vlan`

Use the `default-vlan vlan` VLAN Configuration mode command to define the default VLAN. Use the `no` form of this command to set VLAN 1 as the default VLAN.

Syntax

- `default-vlan vlan vlan-id`
- `no default-vlan vlan`
**Parameters**
- `vlan-id`—Specifies the default VLAN ID.

**Default Configuration**
The default VLAN is 1 by default.

**Command Mode**
VLAN Database Configuration mode

**User Guidelines**
This command becomes effective after reboot of the device.

**Example**
The following example defines the default VLAN as 2.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# default-vlan vlan 2
```

New Default VLAN ID will be active after save configuration and reboot device.

### 56.5 show default-vlan-membership

Use the `show default-vlan-membership` privileged EXEC command to view the default VLAN membership.

**Syntax**
```
show default-vlan-membership [interface-id | detailed]
```

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Membership in the default VLAN is displayed for all interfaces. If detailed is not used, only present ports are displayed.
Virtual Local Area Network (VLAN) Commands

56

Command Mode
Privileged EXEC mode

Example

switchxxxxxx# show default-vlan-membership

<table>
<thead>
<tr>
<th>Port</th>
<th>Forbidden</th>
<th>Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>gi1</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>gi2</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>gi3</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

56.6 interface vlan

Use the interface vlan Global Configuration mode command to enter the Interface Configuration (VLAN) mode for a specific VLAN. After this command is entered, all commands configure this VLAN.

Syntax

interface vlan vlan-id

Parameters

- `vlan-id`—Specifies the VLAN to be configured.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

If the VLAN does not exist, the VLAN is created. If the VLAN cannot be created, this command is finished with an error and the current context is not changed.
Example
The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0

56.7  interface range vlan

Use the interface range vlan Global Configuration mode command to configure multiple VLANs simultaneously.

Syntax
interface range vlan vlan-range

Parameters
- vlan-range—Specifies a list of VLANs. Separate nonconsecutive VLANs with a comma and no spaces. Use a hyphen to designate a range of VLANs.

Default Configuration
N/A

Command Mode
Global Configuration mode

User Guidelines
Commands under the interface VLAN range context are executed independently on each VLAN in the range. If the command returns an error on one of the VLANs, an error message is displayed, and the system attempts to configure the remaining VLANs.

Example
The following example groups VLANs 221 through 228 and 889 to receive the same command(s).

switchxxxxxx(config)# interface range vlan 221-228, vlan 889
56.8 **name**

Use the *name* Interface Configuration (VLAN) mode command to name a VLAN. Use the *no* form of this command to remove the VLAN name.

**Syntax**

```
name string
no name
```

**Parameters**

- `string`—Specifies a unique name associated with this VLAN. (Length: 1–32 characters).

**Default Configuration**

No name is defined.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

The VLAN name must be unique.

**Example**

The following example assigns VLAN 19 the name Marketing.

```
switchxxxxxx(config)# interface vlan 19
switchxxxxxx(config-if)# name Marketing
```

56.9 **switchport protected-port**

Use the *switchport protected-port* Interface Configuration mode command to isolate Unicast, Multicast, and Broadcast traffic at Layer 2 from other protected ports on the same switch. Use the *no* form of this command to disable protection on the port.

**Syntax**

```
switchport protected-port
```

no switchport protected-port

**Parameters**
N/A

**Default Configuration**
Unprotected

**Command Mode**
Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**
Note that packets are subject to all filtering rules and Filtering Database (FDB) decisions.

Use this command to isolate Unicast, Multicast, and Broadcast traffic at Layer 2 from other protected ports (that are not associated with the same community as the ingress interface) on the same switch. Please note that the packet is still subject to FDB decision and to all filtering rules.

Use the `switchport community` Interface Configuration command to associate the interface with a community.

**Example**

```bash
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# switchport protected-port
```

### 56.10 show interfaces protected-ports

Use the `show interfaces protected-ports` EXEC mode command to display protected ports configuration.

**Syntax**

```
show interfaces protected-ports [interface-id] detailed
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Show all protected interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**
User EXEC mode

**Example**

```
switchxxxxxxx# show interfaces protected-ports
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi11</td>
<td>Protected</td>
<td>1</td>
</tr>
<tr>
<td>gi12</td>
<td>Protected</td>
<td>Isolated</td>
</tr>
<tr>
<td>gi13</td>
<td>Unprotected</td>
<td>20</td>
</tr>
<tr>
<td>gi14</td>
<td>Unprotected</td>
<td>Isolated</td>
</tr>
</tbody>
</table>

### 56.11 switchport community

Use the `switchport community` Interface Configuration mode command to associate a protected port with a community. Use the no form of this command to return to the default.

**Syntax**

```
switchport community community
no switchport community
```

**Parameters**

- **community**—Specifies the community number. (range: 1 - 31).

**Default Configuration**
The port is not associated with a community.
**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The command is relevant only when the port is defined as a protected port. Use the `switchport protected-port` Interface Configuration command to define a port as a protected port.

**Example**

```bash
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport community 1
```

---

## 56.12 switchport mode

Use the `switchport mode` Interface Configuration mode command to configure the VLAN membership mode. Use the `no` form of this command to restore the default configuration.

**Syntax**

```bash
switchport mode {access | trunk | general | private-vlan {promiscuous | host} | customer}
```

**Parameters**

- **access**—Specifies an untagged layer 2 VLAN port.
- **trunk**—Specifies a trunking layer 2 VLAN port.
- **general**—Specifies a full 802-1q-supported VLAN port.
- **customer**—Specifies that the port is connected to customer equipment. Used when the switch is in a provider network.
- **private-vlan promiscuous**—Private-VLAN promiscuous port.
- **private-vlan host**—Private-VLAN host port.

**Default Configuration**

Trunk mode.
**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Trunk and general mode ports can be changed to access mode only if all VLANs (except for an untagged PVID) are first removed.

If the port mode is changed to access and the access VLAN does not exist, then the port does not belong to any VLAN.

**Examples**

**Example 1** - The following example configures gi11 as an access port (untagged layer 2) VLAN port.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

**Example 2** - The following example puts the port gi12 into private-vlan host mode.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# switchport mode private-vlan host
```

### 56.13 switchport access vlan

An interface in access mode can belong to only one VLAN. The `switchport access vlan` Interface Configuration command reassigns an interface to a different VLAN than it currently belongs to.

Use the `no` form of this command to restore the default configuration.

**Syntax**

```
switchport access vlan vlan-id
```

**Parameters**

- `vlan-id`—Specifies the VLAN ID to which the port is configured.
**Default Configuration**

The interface belongs to the default VLAN.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The command automatically removes the port from its previous VLAN and adds it to the new VLAN.

If the interface is a forbidden member of the added VLAN, the interface does not become a member of this VLAN. The system displays an error message about this ("An interface cannot become a member of a forbidden VLAN. This message will only be displayed once.").

**Example**

The following example sets `gi1 1` as an access port and assigns it to VLAN 2 (and removes it from its previous VLAN).

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

### 56.14 switchport trunk allowed vlan

A trunk interface is an untagged member of a single VLAN, and, in addition, it may be a tagged member of one or more VLANs. The `switchport trunk allowed vlan` Interface Configuration mode command adds/removes VLAN(s) to/from a trunk port.

**Syntax**

```
switchport trunk allowed vlan [add vlan-list | remove vlan-list]
```

**Parameters**

- `add vlan-list`—Specifies a list of VLAN IDs to add to a port. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- **remove vlan-list**—Specifies a list of VLAN IDs to remove from a port. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

**Default Configuration**

By default, trunk ports belongs to the default VLAN.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

If the interface is a forbidden member of an added VLAN, the interface does not become a member of this specific VLAN. The system displays an error message about this issue ('An interface cannot become a a member of a forbidden VLAN. This message will only be displayed once.'), and the command continues to execute in case there are more VLANs in the vlan-list.

**Example**

To add VLANs 2,3 and 100 to trunk ports 1 to 13:

```
switchxxxxxx(config)# interface range gi11-3
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed vlan add 2-3,100
switchxxxxxx(config-if)# exit
```

### 56.15 switchport trunk native vlan

Use the **switchport trunk native vlan** Interface Configuration mode command to define the native VLAN for a trunk interface. Use the **no** form of this command to restore the default native VLAN.

**Syntax**

```
switchport trunk native vlan vlan-id
```

**Parameters**

- **vlan-id**—Specifies the native VLAN ID.
**Default Configuration**

The default native VLAN is the Default VLAN.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

If the interface does not belong to the VLAN it is added to the VLAN, if the interface is not a forbidden member of this VLAN. If the interface is a forbidden member of an added VLAN, the interface does not become a member of this specific VLAN and an error message is displayed. This message will only be displayed once. and the command continues to execute if there are more VLANs in the vlan-list.

The interface is set as VLAN untagged egress interface. A value of the interface PVID is set to this VLAN ID.

**Examples**

**Example 1** - The following example defines VLAN 2 as native VLAN for port gi1:

```plaintext
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport trunk native vlan 2
switchxxxxxx(config-if)# exit
```

**56.16 switchport general allowed vlan**

General ports can receive tagged or untagged packets. Use the `switchport general allowed vlan` Interface Configuration mode command to add/remove VLANs to/from a general port and configure whether packets on the egress are tagged or untagged. Use the `no` form of this command to reset to the default.

**Syntax**

```plaintext
switchport general allowed vlan { [add vlan-list [tagged | untagged]] | [remove vlan-list] }
```

**Parameters**

- **add vlan-list**—Specifies the list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.
- **tagged**—Specifies that the port transmits tagged packets for the VLANs. This is the default value.

- **untagged**—Specifies that the port transmits untagged packets for the VLANs.

- **remove vlan-list**—Specifies the list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs.

**Default Configuration**

The port is not member in any VLAN.

Packets are transmitted untagged.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

You can change the egress rule (for example, from tagged to untagged) without first removing the VLAN from the list.

If the interface is a forbidden member of an added VLAN, the interface does not become a member of this specific VLAN. There will be an error message in this case ("An interface cannot become a a member of a forbidden VLAN. This message will only be displayed once.") and the command continues to execute if there are more VLANs in the vlan-list.

**Example**

The example adds gi1 1 to VLAN 2 and 3. Packets are tagged on the egress:

```
switchxxxxxx(config)# interface gi1 1
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
```

**56.17 switchport general pvid**

Use the `switchport general pvid` Interface Configuration mode command to configure the Port VLAN ID (PVID) of an interface when it is in general mode. Use the `no` form of this command to restore the default configuration.
Virtual Local Area Network (VLAN) Commands

Syntax

switchport general pvid \textit{vlan-id}

no switchport general pvid

Parameters

\begin{itemize}
  \item \textit{vlan-id}—Specifies the Port VLAN ID (PVID).
\end{itemize}

Default Configuration

The PVID is the Default VLAN PVID.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Examples

Example 1 - The following example sets the gi12 PVID to 234.

\begin{verbatim}
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# switchport general pvid 234
\end{verbatim}

Example 2 - The following example performs the following:

\begin{itemize}
  \item Adds VLANs 2\&3 as tagged, and VLAN 100 as untagged to gi14
  \item Defines VID 100 as the PVID
\end{itemize}

\begin{verbatim}
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
switchxxxxxx(config-if)# switchport general allowed vlan add 100 untagged
switchxxxxxx(config-if)# switchport general pvid 100
switchxxxxxx(config-if)# exit
\end{verbatim}
56.18 switchport general ingress-filtering disable

Use the `switchport general ingress-filtering disable` Interface Configuration mode command to disable port ingress filtering (no packets are discarded at the ingress) on a general port. Use the no form of this command to restore the default configuration.

**Syntax**

`switchport general ingress-filtering disable`

`no switchport general ingress-filtering disable`

**Parameters**

N/A

**Default Configuration**

Ingress filtering is enabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example disables port ingress filtering on gi11.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general ingress-filtering disable
```
Virtual Local Area Network (VLAN) Commands

**Syntax**

```plaintext
switchport general acceptable-frame-type {tagged-only | untagged-only | all}
no switchport general acceptable-frame-type
```

**Parameters**

- **tagged-only**—Ignore (discard) untagged packets and priority-tagged packets.
- **untagged-only**—Ignore (discard) VLAN-tagged packets (not including priority-tagged packets)
- **all**—Do not discard packets untagged or priority-tagged packets.

**Default Configuration**

All frame types are accepted at ingress (all).

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example configures port gi13 to be in general mode and to discard untagged frames at ingress.

```
switchxxxxxxx(config)# interface gi13
switchxxxxxxx(config-if)# switchport mode general
switchxxxxxxx(config-if)# switchport general acceptable-frame-type tagged-only
```

---

**56.20 switchport customer vlan**

Use the `switchport customer vlan` Interface Configuration mode command to set the port's VLAN when the interface is in customer mode (set by the `switchport mode` command). Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
switchport customer vlan vlan-id
no switchport customer vlan
```

Virtual Local Area Network (VLAN) Commands

Parameters

- `vlan-id`—Specifies the customer VLAN.

Default Configuration

No VLAN is configured as customer.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When a port is in customer mode it is in QinQ mode. This enables the user to use their own VLAN arrangements (PVID) across a provider network. The switch is in QinQ mode when it has one or more customer ports.

Example

The following example defines gi14 as a member of customer VLAN 5.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode customer
switchxxxxxx(config-if)# switchport customer vlan 5
```

56.21 map mac macs-group

Use the `map mac macs-group` VLAN Configuration mode command to map a MAC address or range of MAC addresses to a group of MAC addresses. Use the `no` form of this command to delete the mapping.

Syntax

```
map mac mac-address {prefix-mask | host} macs-group group
no map mac mac-address {prefix-mask /host}
```

Parameters

- `mac-address`—Specifies the MAC address to be mapped to the group of MAC addresses.
- `prefix-mask`—Specifies the number of ones in the mask.
- `host`—Specifies that the mask is comprised of all 1s.
- **group**—Specifies the group number (range: 1–2147483647)

**Default Configuration**

N/A

**Command Mode**

VLAN Database Configuration mode

**User Guidelines**

Forwarding of packets based on their MAC address requires setting up groups of MAC addresses and then mapping these groups to VLANs.

Up to 256 MAC addresses (host or range) can be mapped to one or many MAC-based VLAN groups.

**Example**

The following example creates two groups of MAC addresses, sets a port to general mode and maps the groups of MAC addresses to specific VLANs.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3
```

**56.22 switchport general map macs-group vlan**

Use the **switchport general map macs-group vlan** Interface Configuration mode command to set a MAC-based classification rule. Use the no form of this command to delete a classification rule.

**Syntax**

```
switchport general map macs-group group vlan vlan-id
```
no switchport general map macs-group group

Parameters

- **group**—Specifies the group number (range: 1–2147483647)
- **vlan-id**—Defines the VLAN ID associated with the rule.

Default Configuration

N/A

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

MAC-based VLAN rules cannot contain overlapping ranges on the same interface.

The VLAN classification rule priorities are:

- MAC-based VLAN (best match among the rules)
- Subnet-based VLAN (best match among the rules)
- Protocol-based VLAN
- PVID

User Guidelines

After groups of MAC addresses have been created (see the `map mac macs-group` command), they can be mapped to specific VLANs.

Each MAC address (host or range) in the MAC-based group assigned to an interface consumes a single TCAM entry.

Example

The following example creates two groups of MAC addresses, sets a port to general mode and maps the groups of MAC addresses to specific VLANs.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi14
```
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3

56.23 show vlan macs-groups

Use the `show vlan macs-groups` EXEC mode command to display the MAC addresses that belong to the defined MAC-based classification rules.

**Syntax**

`show vlan macs-groups`

**Parameters**

N/A

**Default Configuration**

N/A

**Command Mode**

User EXEC mode

**Example**

The following example displays defined MAC-based classification rules.

```
switchxxxxxx# show vlan macs-groups

+---------------------+---------------------+---------------------+
<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Mask</th>
<th>Group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:12:34:56:78:90</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>00:60:70:4c:73:ff</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>
```
56.24 switchport forbidden default-vlan

Use the `switchport forbidden default-vlan` Interface Configuration command to forbid a port from being added to the default VLAN. Use the `no` form of this command to revert to default.

Syntax

```
switchport forbidden default-vlan
no switchport forbidden default-vlan
```

Parameters

N/A

Default Configuration

Membership in the default VLAN is allowed.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the default VLAN is supported. The command may be used at any time regardless of whether the port belongs to the default VLAN.

The `no` command does not add the port to the default VLAN, it only defines an interface as permitted to be a member of the default VLAN, and the port will be added only when conditions are met.

Example

The following example forbids the port gi11 from being added to the default VLAN.

```
switchxxxxxx(config)# interface gi11
switchxxxxxx(config-if)# switchport forbidden default-vlan
```

56.25 switchport forbidden vlan

The `switchport forbidden vlan` Interface Configuration mode command forbids adding or removing specific VLANs to or from a port.
Virtual Local Area Network (VLAN) Commands

Syntax

```
switchport forbidden vlan {add vlan-list | remove vlan-list}
```

Parameters

- **add vlan-list**—Specifies a list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen designate a range of IDs.

- **remove vlan-list**—Specifies a list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen designate a range of IDs.

Default Configuration

All VLANs are allowed.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example forbids adding VLAN IDs 234 to 256 to gi14.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport forbidden vlan add 234-256
```

56.26 switchport default-vlan tagged

Use the `switchport default-vlan tagged` Interface Configuration command to configure the port as a tagged port in the default VLAN. Use the `no` form of the command to return the port to an untagged port.

Syntax

```
switchport default-vlan tagged

no switchport default-vlan tagged
```

Parameters

N/A
**Default Configuration**

If the port is a member in the default VLAN, by default, it is a member as an untagged port.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The command adds a port to the default VLAN as a tagged port.

The command is available only if the port mode is trunk or general.

When a trunk port is a member in the default VLAN as a tagged port then:

- The native VLAN cannot be the default VLAN
- The default of the native VLAN is 4095

Note: If the native VLAN of a port is the default VLAN when the port is added to the default VLAN as tagged, the native VLAN is set by the system to 4095.

When a general port is a member in the default VLAN as a tagged port then:

- The PVID can be the default VLAN.
- The default PVID is the default VLAN.

Note: The PVID is not changed when the port is added to the default VLAN as a tagged.

When executing the `switchport default-vlan tagged` command, the port is added (automatically by the system) to the default VLAN when the following conditions no longer exist:

- The port is a member in a LAG.
- The port is 802.1X unauthorized.
- An IP address is defined on the port.
- The port is a destination port of port mirroring.
- An IP address is defined on the default VLAN and the port is a PVE protected port.

The `no switchport default-vlan tagged` command removes the port from the default VLAN, and returns the default VLAN mode to untagged.

Note:
• If the native VLAN of a trunk port is 4095 when the port is removed from the default VLAN (as a tagged), the native VLAN is set by the system to the default VLAN.

• The PVID of a general port is not changed when the port is removed from the default VLAN (as a tagged). If the PVID is the default VLAN, the port is added by the system to the default VLAN as an untagged.

Example

The following example configures the port gi1 1 as a tagged port in the default VLAN.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport default-vlan tagged
```

56.27 show interfaces switchport

Use the `show interfaces switchport` Privileged EXEC command to display the administrative and operational status of all interfaces or a specific interface.

**Syntax**

```
show interfaces switchport [interface-id]
```

**Parameters**

- `interface-id`—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

**Default Configuration**

Displays information for all interfaces.

**Command Mode**

User EXEC mode

**Examples**

**Example 1**—The following example displays the command output for a trunk port:

```
switchxxxxxx# show interfaces switchport gi1
Port gi1:
```
Port Mode: Trunk
Ingress UnTagged VLAN (NATIVE): 2
Gvrp Status: disabled
Protected: Enabled, Uplink is gi14.

802.1x state: single-host mode, authorized, PVID is changed to Radius assigned
VLAN

Port gi11 is member in:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Egress Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>untagged</td>
<td>Default</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>tagged</td>
<td>Dynamic</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>tagged</td>
<td>Static</td>
</tr>
<tr>
<td>19</td>
<td>IPv6VLAN</td>
<td>untagged</td>
<td>Static</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>untagged</td>
<td>Static</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>untagged</td>
<td>RADIUS Assigned VLAN</td>
</tr>
</tbody>
</table>

Forbidden VLANS:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Out</td>
</tr>
</tbody>
</table>

Classification rules:

Mac-based VLANs:

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Vlan ID</th>
</tr>
</thead>
</table>

---

**Example 2**—The following example displays the command output for an access port:

```
switchxxxxxx# show interfaces switchport gi12
Port gi12:
Port Mode: Access
Ingress UnTagged VLAN (NATIVE): 1
Gvrp Status: disabled
Protected: Disabled
```
802.1x state: multi-host mode, unauthorized, PVID is changed to the Guest VLAN ID.

Port is member in:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Egress Rule</th>
<th>Port Membership Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Untagged</td>
<td>System</td>
</tr>
<tr>
<td>102</td>
<td>Guest</td>
<td>Untagged</td>
<td>Guest VLAN</td>
</tr>
</tbody>
</table>

Forbidden VLANS:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
</tr>
</thead>
</table>

Classification rules:

Mac based VLANS:

**Example 3—The following example displays the output for a general port:**

```
switchxxxxxx# show interfaces switchport gi12
```

Port gi12:

Port mode: General
Ingress Filtering: Enabled
Acceptable Frame Type: admitAll
PVID: 4095 (discard vlan)
GVRP status: Enabled
Protected: Disabled

802.1x state: multi-sessions mode

Port gi12 is member in:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Egress Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>72</td>
<td>untagged</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>IP Telephony</td>
<td>tagged</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Guest</td>
<td>untagged</td>
<td>Guest VLAN</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>untagged</td>
<td>RADIUS Assigned VLAN</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>untagged</td>
<td>RADIUS Assigned VLAN</td>
</tr>
</tbody>
</table>

Forbidden VLANS:
56.28 private-vlan

Use the `private-vlan` Interface VLAN Configuration mode command to configure a private VLAN. Use the `no` form of this command to return the VLAN to normal VLAN configuration.

**Syntax**

```
private-vlan {primary | community | isolated}
```

```
no private-vlan
```

**Parameters**

- `primary`—Designate the VLAN as a primary VLAN.
- `community`—Designate the VLAN as a community VLAN.
- `isolated`—Designate the VLAN as an isolated VLAN.

**Default Configuration**

No private VLANs are configured.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

- The VLAN type cannot be changed if there is a private VLAN port that is a member in the VLAN.
- The VLAN type cannot be changed if it is associated with other private VLANs.
- The VLAN type is not kept as a property of the VLAN when the VLAN is deleted.
Example

The following example set vlan 2 to be primary vlan:

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# private-vlan primary
```

56.29 private-vlan association

Use the `private-vlan association` Interface VLAN Configuration mode command to configure the association between the primary VLAN and secondary VLANs. Use the `no` form of this command to remove the association.

Syntax

```
private-vlan association [add | remove] secondary-vlan-list

no private-vlan association
```

Parameters

- **add secondary-vlan-list**—List of VLAN IDs of type secondary to add to a primary VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. This is the default action.
- **remove secondary-vlan-list**—List of VLAN IDs of type secondary to remove association from a primary VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

Default Configuration

No private VLANs are configured.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

- The command can only be executed in the context of the primary VLAN.
- A private VLAN cannot be removed or have its type changed, if it is associated with other private VLANs.
- A primary VLAN can be associated with only a single, isolated VLAN.
- A secondary VLAN can be associated with only one primary VLAN.
The association of secondary VLANs with a primary VLAN cannot be removed if there are private VLAN ports that are members in the secondary VLAN.

In MSTP mode, all the VLANs that are associated with a private VLAN must be mapped to the same instance.

**Example**
The following example associate secondary VLAN 20,21,22 and 24 to primary VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# private-vlan association add 20-22,24
```

56.30 `switchport private-vlan mapping`

Use the `switchport private-vlan mapping` Interface Configuration mode command to configure the VLANs of the private VLAN promiscuous port. Use the `no` form of this command to reset to default.

**Syntax**

```
switchport private-vlan mapping primary-vlan-id [add | remove] secondary-vlan-list
no switchport private-vlan mapping
```

**Parameters**

- `primary-vlan-id` — The VLAN ID of the primary VLAN.
- `add secondary-vlan-list` — Specifies one or more secondary VLANs to be added to the port.
- `remove secondary-vlan-list` — Specifies one or more secondary VLANs to be removed from the port.

**Default Configuration**

No VLAN is configured.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode
User Guidelines
The secondary VLANs should be associated with the primary VLANs, otherwise the configuration is not accepted.

Example
The following example add promiscuous port gi14 to primary VLAN 10 and to secondary VLAN 20.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport private-vlan mapping 10 add 20
```

56.31 switchport private-vlan host-association

Use the `switchport private-vlan host-association` Interface Configuration mode command to configure the association of a host port with primary and secondary VLANs of the private VLAN. Use the `no` form of this command to reset to default.

Syntax
```
switchport private-vlan host-association primary-vlan-id secondary-vlan-id
no switchport private-vlan host-association
```

Parameters
- `primary-vlan-id`—The VLAN ID of the primary VLAN.
- `secondary-vlan-id`—Specifies the secondary VLAN.

Default Configuration
No association.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
The secondary VLAN must be associated with the primary VLAN, otherwise the configuration is not accepted. See the `private-vlan association` command.

The port association configuration depends on the type of the secondary VLAN. The port association configuration for a community secondary VLAN includes:
• The port is added as untagged to the primary VLAN and to the secondary VLAN.
• The PVID is set to the VLAN-ID of the secondary VLAN.
• The port ingress filtering is enabled.

The port association configuration for an isolated secondary VLAN includes:
• The port is added as untagged only to the primary VLAN and is not added to the secondary VLAN.
• The PVID is set to the VLAN-ID of the secondary VLAN.
• The port ingress filtering is disabled.

Example
The following example set port gi14 to secondary VLAN 20 in primary VLAN 10.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport private-vlan host-association 10 20
```

56.32 show vlan private-vlan

Use the `show vlan private-vlan` EXEC mode command to display private VLAN information.

Syntax

```
show vlan private-vlan [tag vlan-id]
```

Parameters

- `tag vlan-id`—Primary VLAN that represent the private VLAN to be displayed.

Default Configuration

All private VLANs are displayed.

Command Mode

User EXEC mode
User Guidelines

The `show vlan private-vlan` command does not include non-private VLAN ports that are members in private VLANs. Tag parameters of non-primary VLAN will result in an empty show output.

Example

```
switchxxxxxx# show vlan private-vlan

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td>primary</td>
<td>gi11</td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>isolated</td>
<td>gi12</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>primary</td>
<td>gi13</td>
</tr>
<tr>
<td>160</td>
<td>161</td>
<td>community</td>
<td>gi14</td>
</tr>
</tbody>
</table>

switchxxxxxx# show vlan private-vlan 150

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td>primary</td>
<td>gi11</td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>isolated</td>
<td>gi14</td>
</tr>
</tbody>
</table>
```

56.33 switchport access multicast-tv vlan

To assign a Multicast-TV VLAN to an access port, use the `switchport access multicast-tv vlan` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default, use the `no` format of the command.

Syntax

```
switchport access multicast-tv vlan vlan-id

no switchport access multicast-tv vlan
```

Parameters

- `vlan-id`—Specifies the Multicast TV VLAN ID.
**Default Configuration**

Receiving Multicast transmissions is disabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

When the port is assigned to a different Multicast-TV VLAN, it is automatically removed from its previous VLAN and added it to the new Multicast-TV VLAN.

When an existed Multicast-TV VLAN is assigned to an access port, the multicast messages received on a membership of the Multicast-TV VLAN are forwarded to the access port. All messages received on the access port are bridged only into its Access VLAN.

To register IGMP reports arriving on the access port by IGMP Snooping running on the Multicast-TV VLAN, use the `ip igmp snooping map cpe vlan` command.

**Example**

The following example enables gi14 to receive Multicast transmissions from VLAN 11.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport access multicast-tv vlan 11
```

To assign Multicast-TV VLANs to a customer port, use the `switchport customer multicast-tv vlan` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default, use the `no` format of the command.

**Syntax**

```
switchport customer multicast-tv vlan {add vlan-list | remove vlan-list}
```

**Parameters**

- `add vlan-list`—Specifies a list of Multicast TV VLANs to add to interface.
- `remove vlan-list`—Specifies a list of Multicast TV VLANs to remove from interface.
**Default Configuration**
The port is not a member in any Multicast TV VLAN.

**Command Mode**
Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**
When an existed Multicast-TV VLAN is assigned to a customer port, the multicast messages received on a membership of the Multicast-TV VLAN are forwarded to the customer port. All messages received on the customer port are not bridged only into the Multicast-TV VLA.

To register IGMP reports arriving on the customer port by IGMP Snooping running on the Multicast-TV VLAN, use the `ip igmp snooping map cpe vlan` command.

**Example**
The following example enables gi14 to receive Multicast transmissions from VLANs 5, 6, 7.

```
switchxxxxxx(config)# interface gi14
switchxxxxxx(config-if)# switchport customer multicast-tv vlan add 5-7
```

**56.35 show vlan multicast-tv**

Use the `show vlan Multicast-tv` EXEC mode command to display the source and receiver ports of Multicast-TV VLAN. Source ports can transmit and receive traffic to/from the VLAN, while receiver ports can only receive traffic from the VLAN.

**Syntax**
```
show vlan Multicast-tv vlan vlan-id
```

**Parameters**
- `vlan-id`—Specifies the VLAN ID.

**Default Configuration**
N/A

**Command Mode**
User EXEC mode
Example

The following example displays information on the source and receiver ports of Multicast-TV VLAN 1000.

```
switchxxxxx# show vlan multicast-tv vlan 1000
Source Ports Receiver Ports
-------------- ---------------
gi13, gi14 gi11-2
```

56.36 vlan prohibit-internal-usage

Use the `vlan prohibit-internal-usage` command in Global configuration mode to specify VLANs that cannot be used by the switch as internal VLANs.

Syntax

```
vlan prohibit-internal-usage none | {add | except | remove} vlan-list
```

Parameters

- `none`—The Prohibit Internal Usage VLAN list is empty: any VLAN can be used by the switch as internal.
- `except`—The Prohibit Internal Usage VLAN list includes all VLANs except the VLANs specified by the `vlan-list` argument: only the VLANs specified by the `vlan-list` argument can be used by the switch as internal.
- `add`—Add the given VLANs to the Prohibit Internal Usage VLAN list.
- `remove`—Remove the given VLANs from the Prohibit Internal Usage VLAN list.
- `vlan-list`—List of VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. The VLAN ID that can be used is from 1 through 4094.

Default Configuration

The Prohibit Internal usage VLAN list is empty.

Command Mode

Global Configuration mode
**User Guidelines**

The switch requires an internal VLAN in the following cases:

- One VLAN for each IP interface is defined directly on an Ethernet port or on a Port channel.
- One VLAN for each IPv6 tunnel.
- One VLAN for 802.1x.

When a switch needs an internal VLAN it takes a free VLAN with the highest VLAN ID.

Use the `vlan prohibit-internal-usage` command to define a list of VLANs that cannot be used as internal VLANs after reload.

If a VLAN was chosen by the software for internal usage, but you want to use that VLAN for a static or dynamic VLAN, do one of the following

- Add the VLAN to the Prohibited User Reserved VLAN list.
- Copy the Running Configuration file to the Startup Configuration file
- Reload the switch
- Create the VLAN

**Examples**

**Example 1**—The following example specifies that VLANs 4010, 4012, and 4090-4094 cannot be used as internal VLANs:

```
vlan prohibit-internal-usage add 4010,4012,4090-4094
```

**Example 2**—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:

```
vlan prohibit-internal-usage all
vlan prohibit-internal-usage remove 4000-4107
```

**Example 3**—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:
56.37 show vlan internal usage

Use the show vlan internal usage Privileged EXEC mode command to display a list of VLANs used internally by the device (defined by the user).

Syntax
show vlan internal usage

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays VLANs used internally by the switch:

```plaintext
show vlan internal usage
User Reserved VLAN list after reset: 4010,4012,4080-4094
Current User Reserved VLAN list: 4010,4012,4090-4094
VLAN Usage
---- --------
4089 gi12
4088 gi13
4087 tunnel 1
4086 802.1x
```
Voice VLAN Commands

57.1 show voice vlan

To display the voice VLAN status for all interfaces or for a specific interface if the voice VLAN type is OUI, use the `show voice vlan` Privileged EXEC mode command.

Syntax

```
show voice vlan [type {oui [[interface-id | detailed] | auto]}
```

Parameters

- **type oui**—(Optional) Common and OUI-voice-VLAN specific parameters are displayed.
- **type auto**—(Optional) Common and Auto Voice VLAN-specific parameters are displayed.
- **interface-id**—(Optional) Specifies an Ethernet port ID.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If the `type` parameter is omitted the current Voice VLAN type is used.

If the `interface-id` parameter is omitted then information about all present interfaces is displayed. If `detailed` is used, non-present ports are also displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Using this command without parameters displays the current voice VLAN type parameters and local and agreed voice VLAN settings.
Using this command with the type parameter displays the voice VLAN parameters relevant to the type selected. The local and agreed voice VLAN settings are displayed only if this is the current voice VLAN state.

The interface-id parameter is relevant only for the OUI VLAN type.

**Examples**

The following examples display the output of this command in various configurations.

**Example 1**—Displays the auto voice VLAN parameters (this is independent of the voice VLAN state actually enabled).

```
switch>show voice vlan type auto
switchxxxxxx# show voice vlan type auto
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51
switchxxxxxx#
```

**Example 2**—Displays the current voice VLAN parameters when the voice VLAN state is auto-enabled.

```
switch>show voice vlan
Administrative Voice VLAN state is auto-enabled on IPv4
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
```
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 16:48:13
switchxxxxxx#

Example 3—Displays the current voice VLAN parameters when the administrative
voice VLAN state is auto-triggered but voice VLAN has not been triggered.
switch>show voice vlan
Administrative Voice VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is disabled
VSDP Authentication is disabled

Example 4—Displays the current voice VLAN parameters when the administrative
voice VLAN state is auto-triggered and it has been triggered.
switchxxxxxx(config)# voice vlan state auto-triggered
switchxxxxxx(config)# voice vlan state auto-triggered
operational voice vlan state is auto
admin state is auto triggered
switchxxxxxx# show voice vlan
Administrative Voice VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Example 5—Displays the current voice VLAN parameters when both auto voice VLAN and OUI are disabled.

```
switch> show voice vlan
switchxxxxxx# show voice vlan
Administrate Voice VLAN state is disabled
Operational Voice VLAN state is disabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Aging timeout: 1440 minutes
```

Example 6—Displays the voice VLAN parameters when the voice VLAN operational state is OUI.

```
switch> show voice vlan
Administrate Voice VLAN state is oui-enabled
Operational Voice VLAN state is oui-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 4
Best Local DSCP is 1
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes
OUI table
MAC Address - Prefix Description
---------------------- ------------------
00:E0:BB 3COM
00:03:6B Cisco
00:E0:75 Veritel
00:D0:1E Pingtel
```
57.2  show voice vlan local

The show voice vlan local Privileged EXEC mode command displays information about the auto voice VLAN local configuration, including the best local voice VLAN.

Syntax

show voice vlan local

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Examples

Example 1—A CDP device is connected to an interface and a conflict is detected:

30-Apr-2011 00:39:24 %VLAN-W-ConflictingCDPDetected: conflict detected between operational VLAN and new CDP device 00:1e:13:73:3d:62 on interface gi7. Platform TLV is -4FXO-K9, Voice VLAN-ID is 100...

switchxxxxxx# show voice vlan local
Voic VLAN Commands

Administrate Voice VLAN state is auto-triggered on IPv6
Operational Voice VLAN state is auto-enabled
VSDP Authentication is enabled, key string name is alpha
The character '*; marks the best local Voice VLAN

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*104</td>
<td>7</td>
<td>63</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:1e:13:73:3d:62</td>
<td>gi14</td>
</tr>
</tbody>
</table>

Example 2—Displays the local voice VLAN configuration when the voice VLAN state is auto-triggered.

switchxxxxxx# show voice vlan local

Administrate Voice VLAN state is auto-triggered on IPv4
Operational Voice VLAN state is auto-enabled

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*100</td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:23:56:1a:dc:68</td>
<td>gi14     100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:44:55:45:4d:68</td>
<td>gi14</td>
</tr>
</tbody>
</table>

The character "*" marks the best local voice VLAN.

Example 3—Displays the local voice VLAN configuration when the voice VLAN state is OUI.

switchxxxxxx# show voice vlan local

Administrate Voice VLAN state is auto-OUI
Operational Voice VLAN state is OUI
The character '*; marks the best local Voice VLAN

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*10</td>
<td>1</td>
<td>27</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
57.3 voice vlan state

To set the type of voice VLAN that is functional on the device or disable voice VLAN entirely, use the `voice vlan state` Global Configuration mode command.

The `no` format of the command returns to the default.

**Syntax**

```
voice vlan state {{auto-enabled | auto-triggered [ipv6] | oui-enabled | disabled}}
no voice vlan state
```

**Parameters**

- `auto-enabled`—Auto Voice VLAN is enabled.
- `auto-triggered`—Auto Voice VLAN on the switch is in standby and is put into operation when the switch detects a CDP device advertising a voice VLAN or if a voice VLAN ID is configured manually on the switch.
- `ipv6`—Auto VLAN is enabled on IPv6 mDNS.
- `oui-enabled`—Voice VLAN is of type OUI.
- `disabled`—Voice VLAN is disabled.

**Default Configuration**

auto-triggered on ipv4

**Command Mode**

Global Configuration mode

**User Guidelines**

By factory default, CDP, LLDP, and LLDP-MED are enabled on the switch. In addition, manual Smartport mode and Basic QoS with trusted DSCP is enabled.

All ports are members of default VLAN 1, which is also the default Voice VLAN.
In addition, dynamic voice VLAN (auto-triggered) mode is the default mode of auto voice VLAN. In this mode, voice VLAN is enabled by a trigger (advertisement received by voice device attached to port).

If the administrative state is:

- **disabled** — The operational state is **disabled**.
- **oui-enabled** — The operational state is **oui-enabled**.
- **auto-enabled** — The operational state is **auto-enabled**.
- **auto-triggered** — The operational state is **auto-enabled** only if one of the following occurs:
  - A static local configured voice VLAN ID, CoS/802.1p, and/or DSCP that is not factory default is configured.
  - A CDP voice VLAN advertisement is received from a neighboring CDP device that is not a a device of the same family as the current device.
  - A Voice Service Discovery Protocol (VSDP) message was received from a neighbor switch. VSDP is a Cisco Small Business proprietary protocol for SF and SG series managed switches.

In all other cases the operational state is **disabled**.

**Notes:**

- To change the administrative state from **oui-enabled** to **auto-enabled** (or **auto-triggered**), or vice versa, you must first set the administrative state to **disabled**.
- The administrative state cannot be set to **oui-enabled** if the Auto SmartPort administrative state is **enabled**.
- The administrative state cannot be set to **oui-enabled** if the voice VLAN is the default VLAN (VLAN 1). For **oui-enabled** mode, the voice VLAN cannot be 1.

**Examples**

**Example 1** — The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

```
switchxxxxxx(config)# voice vlan state oui-enabled
```

Disable the voice VLAN before changing the voice VLAN trigger.
switchxxxxxx(config)# voice vlan state disabled

Example 2 — The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

switchxxxxxx(config)# voice vlan state oui-enabled
<CR>

Example 3 — The following example disables the Voice VLAN state. All auto Smartport configuration on ports are removed.

switchxxxxxx(config)# voice vlan state disabled

All interfaces with Auto Smartport dynamic type will be set to default.

Are you sure you want to continue? (Y/N) [Y] Y

Example 4 — The following example sets the Voice VLAN state to auto-triggered. The VLANs are re-activated after auto SmartPort state is applied.

switchxxxxxx(config)# voice vlan state auto-triggered

switchxxxxxx(config)# 30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 5
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 8
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 9
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 100

switchxxxxxx(config)# 30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 5
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 8
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 9
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 100
Example 5 —The following example sets the Voice VLAN state to auto-triggered on IPv6. The VLANs are re-activated after auto SmartPort state is applied.

```
switchxxxxxx(config)# voice vlan state auto-triggered ipv6
switchxxxxxx(config)# 30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 5
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 8
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 9
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 100
```

### 57.4 voice vlan refresh

To restart the Voice VLAN discovery process on all the Auto Voice VLAN-enabled switches in the VLAN by removing all externally learned voice VLAN attributes and resetting the voice VLAN to the default voice VLAN, use the `voice vlan refresh` Global Configuration mode command.

**Syntax**

```
voice vlan refresh
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(config)# voice vlan refresh
switchxxxxxx(config)#
30-Apr-2011 02:01:02 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 100, VPT 5, DSCP 46 (Notification that Agreed Voice VLAN is updated) (Auto Smartport configuration is changed)
```
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 50
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 100
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 50
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 100

switchxxxxxx# show voice vlan

Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 100
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)

(Following is the new active source)
Agreed Voice VLAN is received from switch b0:c6:9a:c1:da:00
Agreed Voice VLAN priority is 2 (active CDP device)
Agreed Voice VLAN-ID is 100
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Apr-30 02:01:02

57.5 voice vlan id

To statically configure the VLAN identifier of the voice VLAN, use the voice vlan id Global Configuration mode command. To return the voice VLAN to the default VLAN (1), use the no format of the command.

Syntax

voice vlan id <vlan-id>
no voice vlan id

Parameters

vlan id <vlan-id>—Specifies the voice VLAN (range 1-4094).
Default Configuration

VLAN ID 1.

Command Mode

Global Configuration mode

User Guidelines

If the Voice VLAN does not exist, it is created automatically. It will not be removed automatically by the no version of this command.

Example

The following example enables VLAN 35 as the voice VLAN on the device.

```
switchxxxxxx(config)# voice vlan id 35
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y

30-Apr-2011 00:19:36 %VLAN-I-VoiceVlanCreated: Voice Vlan ID 35 was created.

switchxxxxxx(config)# 30-Apr-2011 00:19:51 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 35, VPT 5, DSCP 46

57.6 voice vlan vpt

To specify a value of VPT (802.1p VLAN priority tag) that will be advertised by LLDP in the Network Policy TLV, use the `voice vlan vpt` Global Configuration mode command. To return the value to the default, use the no format of the command.

Syntax

- `voice vlan vpt vpt-value`
- `no voice vlan vpt`

Parameters

- `vpt vpt-value`—The VPT value to be advertised (range 0-7).
Default Configuration

5

Command Mode

Global Configuration mode

Example

The following example sets 7 as the voice VLAN VPT. A notification that the new settings are different than the old ones is displayed.

```
switchxxxxxx(config)# voice vlan vpt 7
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N) [Y] Y

```
30-Apr-2011 00:24:52 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 5, DSCP 46
```

```
switchxxxxxx(config)# 30-Apr-2011 00:25:07 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 46
```

57.7 voice vlan dscp

To specify a value of DSCP that will be advertised by LLDP in the Network Policy TLV, use the `voice vlan dscp` Global Configuration mode command. To return the value to the default, use the `no` format of the command.

Syntax

```
voice vlan dscp dscp-value
```

```
no voice vlan dscp
```

Parameters

```
dscp dscp-value—The DSCP value (range 0-63).
```
Default Configuration

46

Command Mode

Global Configuration mode

Example

The following example sets 63 as the voice VLAN DSCP.

```
switchxxxxxx(config)# voice vlan dscp 63
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y

30-Apr-2011 00:31:07 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 7, DSCP 46

```
switchxxxxxx(config)# 30-Apr-2011 00:31:22 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 63
```

57.8 voice vlan oui-table

To configure the voice OUI table, use the `voice vlan oui-table` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
voice vlan oui-table [add mac-address-prefix | remove mac-address-prefix] [text]
no voice vlan oui-table
```

Parameters

- **add mac-address-prefix**—Adds the specified MAC address prefix to the voice VLAN OUI table (length: 3 bytes).
- **remove mac-address-prefix**—Removes the specified MAC prefix address from the voice VLAN OUI table (length: 3 bytes).
• **text**—(Optional) Adds the specified text as a description of the specified MAC address to the voice VLAN OUI table (length: 1–32 characters).

### Default Configuration

The default voice VLAN OUI table is:

<table>
<thead>
<tr>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:e3</td>
<td>Siemens AG Phone</td>
</tr>
<tr>
<td>00:03:6b</td>
<td>Cisco Phone</td>
</tr>
<tr>
<td>00:09:6e</td>
<td>Avaya Phone</td>
</tr>
<tr>
<td>00:0f:e2</td>
<td>Huawei-3COM Phone</td>
</tr>
<tr>
<td>00:60:b9</td>
<td>NEC/Philips Phone</td>
</tr>
<tr>
<td>00:d0:1e</td>
<td>Pingtel Phone</td>
</tr>
<tr>
<td>00:e0:75</td>
<td>Veritel Polycom Phone</td>
</tr>
<tr>
<td>00:e0:bb</td>
<td>3COM Phone</td>
</tr>
</tbody>
</table>

### Command Mode

Global Configuration mode

### User Guidelines

The classification of a packet from VoIP equipment/phones is based on the packet’s OUI in the source MAC address. OUIs are globally assigned (administered) by the IEEE.

In MAC addresses, the first three bytes contain a manufacturer ID (Organizationally Unique Identifiers (OUI)) and the last three bytes contain a unique station ID.

Since the number of IP phone manufacturers that dominates the market is limited and well known, the known OUI values are configured by default and OUIs can be added/removed by the user when required.

### Example

The following example adds an entry to the voice VLAN OUI table.

```
switchxxxxxx(config)# voice vlan oui-table add 00:AA:BB experimental
```
57.9  voice vlan cos mode

To select the OUI voice VLAN Class of Service (CoS) mode, use the **voice vlan cos mode** Interface Configuration mode command. To return to the default, use the **no** form of this command.

**Syntax**

voice vlan cos mode {src / all}

no voice vlan cos mode

**Parameters**

- **src**—QoS attributes are applied to packets with OUIs in the source MAC address. See the User Guidelines of **voice vlan oui-table**.
- **all**—QoS attributes are applied to packets that are classified to the Voice VLAN.

**Default Configuration**

The default mode is **src**.

**Command Mode**

Interface Configuration mode

**Example**

The following example applies QoS attributes to voice packets.

```
switchxxxxxx(config-if)# voice vlan cos mode all
```

57.10  voice vlan cos

To set the OUI Voice VLAN Class of Service (CoS), use the **voice vlan cos** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

**Syntax**

voice vlan cos cos[remark]
no voice vlan cos

Parameters

- **cos cos**—Specifies the voice VLAN Class of Service value. (Range: 0–7)
- **remark**—(Optional) Specifies that the L2 user priority is remarked with the CoS value.

Default Configuration

The default CoS value is 5.
The L2 user priority is not remarked by default.

Command Mode

Global Configuration mode

Example

The following example sets the OUI voice VLAN CoS to 7 and does not do remarking.

```
switchxxxxxx(config)# voice vlan cos 7
```

57.11 voice vlan aging-timeout

To set the OUI Voice VLAN aging timeout interval, use the `voice vlan aging-timeout` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

- `voice vlan aging-timeout minutes`
- `no voice vlan aging-timeout`

Parameters

- **aging-timeout minutes**—Specifies the voice VLAN aging timeout interval in minutes. (Range: 1–43200).
**Default Configuration**

1440 minutes

**Command Mode**

Global Configuration mode

**Example**

The following example sets the OUI Voice VLAN aging timeout interval to 12 hours.

```
switchxxxxxx(config)# voice vlan aging-timeout 720
```

---

**57.12 voice vlan enable**

To enable OUI voice VLAN configuration on an interface, use the `voice vlan enable` Interface Configuration mode command. To disable OUI voice VLAN configuration on an interface, use the `no` form of this command.

**Syntax**

```
voice vlan enable
no voice vlan enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Disabled

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command is applicable only if the voice VLAN state is globally configured as OUI voice VLAN (using `show voice vlan`).
The port is added to the voice VLAN if a packet with a source MAC address OUI address (defined by voice vlan oui-table) is trapped on the port. Note: The packet VLAN ID does not have to be the voice VLAN, it can be any VLAN.

The port joins the voice VLAN as a tagged port.

If the time since the last MAC address with a source MAC address OUI address was received on the interface exceeds the timeout limit (configured by voice vlan aging-timeout), the interface is removed from the voice VLAN.

Example

The following example enables OUI voice VLAN configuration on gi12.

```
switchxxxxxx(config)# interface gi12
switchxxxxxx(config-if)# voice vlan enable
```
58.1 ip https certificate

To configure the active certificate for HTTPS, use the `ip https certificate` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
ip https certificate number
no ip https certificate
```

**Parameters**

`number`—Specifies the certificate number. (Range: 1–2)

**Default Configuration**

The default certificate number is 1.

**Command Mode**

Global Configuration mode

**User Guidelines**

First, use `crypto certificate generate` to generate one or two HTTPS certificates. Then use this command to specify which is the active certificate.

**Example**

The following example configures the active certificate for HTTPS.

```
switchxxxxxx(config)# ip https certificate 2
```
58.2 ip http port

To specify the TCP port used by the web browser interface, use the `ip http port` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
ip http port port-number
no ip http port
```

Parameters

`port port-number`—For use by the HTTP server. (Range: 1–65534)

Default Configuration

The default port number is 80.

Command Mode

Global Configuration mode

Example

The following example configures the http port number as 100.

```
switchxxxxxx(config)# ip http port 100
```

58.3 ip http server

To enable configuring and monitoring the device from a web browser, use the `ip http server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

```
ip http server
no ip http server
```
Parameters
This command has no arguments or keywords.

Default Configuration
HTTP server is enabled.

Command Mode
Global Configuration mode

Example
The following example enables configuring the device from a web browser.

```
switchxxxxxxx(config)# ip http server
```

58.4 ip http secure-server
To enable the device to be configured or monitored securely from a browser, use
the `ip http secure-server` Global Configuration mode command. To disable this
function, use the `no` form of this command.

Syntax
```
ip http secure-server
no ip http secure-server
```

Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Global Configuration mode
User Guidelines

After this command is used, you must generate a certificate using `crypto certificate generate`. If no certificate is generated, this command has no effect.

Example

```
switchxxxxx(config)# ip http secure-server
```

58.5 `ip http timeout-policy`

To set the interval for the system to wait for user input in http/https sessions before automatic logoff, use the `ip http timeout-policy` Global Configuration mode command. To return to the default value, use the `no` form of this command.

Syntax

```
ip http timeout-policy idle-seconds [http-only | https-only]
no ip http timeout-policy
```

Parameters

- `idle-seconds`—Specifies the maximum number of seconds that a connection is kept open if no data is received or response data cannot be sent out. (Range: 0–86400)
- `http-only`—(Optional) The timeout is specified only for http
- `https-only`—(Optional) The timeout is specified only for https

Default Configuration

600 seconds

Command Mode

Global Configuration mode

User Guidelines

To specify no timeout, enter the `ip http timeout-policy 0` command.
Example
The following example configures the http timeout to be 1000 seconds.

```
switchxxxxxx(config)# ip http timeout-policy 1000
```

58.6 show ip http
To display the HTTP server configuration, use the `show ip http` Privileged EXEC mode command.

Syntax
```
show ip http
```

Parameters
This command has no arguments or keywords.

Command Mode
Privileged EXEC mode

Example
The following example displays the HTTP server configuration.

```
switchxxxxxx# show ip http
HTTP server enabled
Port: 80
Interactive timeout: 10 minutes
```

58.7 show ip https
To display the HTTPS server configuration, use the `show ip https` Privileged EXEC mode command.
Syntax

`show ip https`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the HTTPS server configuration.

```
switchxxxxxx# show ip https
HTTPS server enabled
Port: 443
Interactive timeout: Follows the HTTP interactive timeout (10 minutes)
Certificate 1 is active
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788
Certificate 2 is inactive
Issued by: self-signed
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: 1873B936 88DC3411 BC8932EF 782134BA
```
Where to Go From Here

Cisco provides a wide range of resources to help you and your customer obtain the full benefits of the Cisco 500 Series Stackable Managed Switches.

<table>
<thead>
<tr>
<th>Support</th>
<th><a href="http://www.cisco.com/go/smallbizsupport">www.cisco.com/go/smallbizsupport</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Support Community</td>
<td><a href="http://www.cisco.com/go/smallbizhelp">www.cisco.com/go/smallbizhelp</a></td>
</tr>
<tr>
<td>Phone Support Contacts</td>
<td></td>
</tr>
<tr>
<td>Cisco Firmware Downloads</td>
<td><a href="http://www.cisco.com/go/smallbizfirmware">www.cisco.com/go/smallbizfirmware</a></td>
</tr>
<tr>
<td></td>
<td>Select a link to download firmware for Cisco products. No login is required.</td>
</tr>
<tr>
<td>Cisco Open Source Requests</td>
<td><a href="http://www.cisco.com/go/smallbiz_opensource_request">www.cisco.com/go/smallbiz_opensource_request</a></td>
</tr>
<tr>
<td>Product Documentation</td>
<td></td>
</tr>
<tr>
<td>Cisco 220 Series</td>
<td><a href="http://www.cisco.com/go/220switches">www.cisco.com/go/220switches</a></td>
</tr>
<tr>
<td>Warranty Information</td>
<td><a href="http://www.cisco.com/go/warranty">www.cisco.com/go/warranty</a></td>
</tr>
<tr>
<td>Cisco Small Business</td>
<td></td>
</tr>
<tr>
<td>Cisco Partner Central (Partner Login Required)</td>
<td><a href="http://www.cisco.com/web/partners/sell/smb">www.cisco.com/web/partners/sell/smb</a></td>
</tr>
<tr>
<td>Cisco Small Business Home</td>
<td><a href="http://www.cisco.com/smb">www.cisco.com/smb</a></td>
</tr>
</tbody>
</table>