Cisco Sx250 Ph. 2.4.5 Devices - Command Line Interface Reference Guide
Table of Contents

Table of Contents

1. **Introduction** .. 19
2. **ACL Commands** .. 39
 - ip access-list (IP extended) ... 39
 - permit (IP) ... 40
 - deny (IP) ... 43
 - ipv6 access-list (IPv6 extended) ... 46
 - permit (IPv6) .. 47
 - deny (IPv6) ... 50
 - mac access-list ... 53
 - permit (MAC) .. 54
 - deny (MAC) .. 56
 - service-acl input .. 57
 - service-acl output ... 59
 - time-range ... 60
 - absolute ... 61
 - periodic ... 62
 - show time-range .. 64
 - show access-lists ... 64
 - show interfaces access-lists ... 65
 - clear access-lists counters ... 66
 - show interfaces access-lists trapped packets 66
3. **802.1X Commands** .. 68
 - aaa authentication dot1x .. 68
 - clear dot1x statistics ... 69
 - dot1x authentication ... 69
 - dot1x guest-vlan ... 70
 - dot1x guest-vlan enable ... 71
 - dot1x guest-vlan timeout .. 72
 - dot1x host-mode ... 73
 - dot1x max-hosts .. 76
 - dot1x max-req .. 77
 - dot1x port-control .. 78
 - dot1x re-authenticate .. 79
 - dot1x reauthentication .. 80
 - dot1x system-auth-control ... 80
 - dot1x timeout quiet-period ... 81
 - dot1x timeout reauth-period ... 82
 - dot1x timeout server-timeout .. 83
 - dot1x timeout supp-timeout .. 84
 - dot1x timeout tx-period .. 85
 - dot1x traps authentication failure .. 86
4 Address Table Commands .. 99

bridge multicast filtering ... 99
bridge multicast mode ... 100
bridge multicast address ... 101
bridge multicast forbidden address .. 103
bridge multicast ip-address .. 104
bridge multicast forbidden ip-address 106
bridge multicast source group ... 107
bridge multicast forbidden source group 108
bridge multicast ipv6 mode .. 109
bridge multicast ipv6 ip-address .. 111
bridge multicast ipv6 forbidden ip-address 113
bridge multicast ipv6 source group ... 114
bridge multicast ipv6 forbidden source group 115
bridge multicast unregistered .. 116
bridge multicast forward-all ... 117
bridge multicast forbidden forward-all 118
bridge unicast unknown ... 120
show bridge unicast unknown .. 120
mac address-table static ... 121
clear mac address-table .. 123
mac address-table aging-time .. 124
port security .. 125
port security mode ... 126
port security max ... 128
show mac address-table ... 129
show mac address-table count .. 130
show bridge multicast mode ... 133
show bridge multicast address-table 133
show bridge multicast address-table static 137
show bridge multicast filtering ... 139
show bridge multicast unregistered 140
show ports security .. 141
show ports security addresses .. 142

5 Authentication, Authorization and Accounting (AAA) Commands 144

aaa authentication login ... 144
aaa authentication enable .. 145
login authentication ... 147
enable authentication ... 148
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>200</td>
</tr>
<tr>
<td>Clock dhcp timezone</td>
<td>201</td>
</tr>
<tr>
<td>Clock set</td>
<td>202</td>
</tr>
<tr>
<td>Clock source</td>
<td>203</td>
</tr>
<tr>
<td>Clock summer-time</td>
<td>204</td>
</tr>
<tr>
<td>Clock timezone</td>
<td>206</td>
</tr>
<tr>
<td>Periodic</td>
<td>207</td>
</tr>
<tr>
<td>Sntp anycast client enable</td>
<td>208</td>
</tr>
<tr>
<td>Sntp authenticate</td>
<td>209</td>
</tr>
<tr>
<td>Sntp authentication-key</td>
<td>210</td>
</tr>
<tr>
<td>Sntp broadcast client enable</td>
<td>211</td>
</tr>
<tr>
<td>Sntp client enable</td>
<td>212</td>
</tr>
<tr>
<td>Sntp client enable (interface)</td>
<td>212</td>
</tr>
<tr>
<td>Sntp server</td>
<td>213</td>
</tr>
<tr>
<td>Sntp source-interface</td>
<td>215</td>
</tr>
<tr>
<td>Sntp source-interface-ipv6</td>
<td>216</td>
</tr>
<tr>
<td>Sntp trusted-key</td>
<td>217</td>
</tr>
<tr>
<td>Sntp unicast client enable</td>
<td>218</td>
</tr>
<tr>
<td>Sntp unicast client poll</td>
<td>218</td>
</tr>
<tr>
<td>Show clock</td>
<td>219</td>
</tr>
<tr>
<td>Show sntp configuration</td>
<td>221</td>
</tr>
<tr>
<td>Show sntp status</td>
<td>222</td>
</tr>
<tr>
<td>Show time-range</td>
<td>224</td>
</tr>
<tr>
<td>Time-range</td>
<td>225</td>
</tr>
</tbody>
</table>

10 Denial of Service (DoS) Commands

- Security-suite deny fragmented | 226
- Security-suite deny icmp | 227
- Security-suite deny martian-addresses | 228
- Security-suite deny syn | 230
- Security-suite deny syn-fin | 231
- Security-suite dos protect | 232
- Security-suite dos syn-attack | 233
- Security-suite enable | 235
- Security-suite syn protection mode | 237
- Security-suite syn protection recovery | 238
- Security-suite syn protection threshold | 239
- Show security-suite configuration | 239
- Show security-suite syn protection | 240

11 DHCP Relay Commands

- Ip dhcp relay enable (Global) | 242
- Ip dhcp relay enable (Interface) | 242
- Ip dhcp relay address (Global) | 243
- Show ip dhcp relay | 244

12 DHCPv6 Commands

- Clear ipv6 dhcp client | 246
13 DNS Client Commands ... 259
 clear host .. 259
 ip domain lookup .. 260
 ip domain name ... 261
 ip domain polling-interval ... 262
 ip domain retry ... 263
 ip domain timeout ... 263
 ip host .. 264
 ip name-server .. 265
 show hosts .. 266

14 EEE Commands ... 269
 eee enable (global) .. 269
 eee enable (interface) ... 270
 eee lldp enable ... 270
 show eee .. 271

15 Ethernet Configuration Commands ... 278
 interface ... 278
 interface range .. 279
 shutdown .. 279
 operation time .. 281
 description .. 282
 speed .. 283
 duplex ... 284
 negotiation .. 285
 flowcontrol ... 286
 mdix .. 287
 back-pressure .. 288
 port jumbo-frame .. 288
 link-flap prevention ... 289
 clear counters .. 290
 set interface active ... 291
 errdisable recovery cause ... 292
 errdisable recovery interval .. 293
 errdisable recovery reset ... 293
 show interfaces configuration .. 295
 show interfaces status ... 296
 show interfaces advertise ... 297
 show interfaces description ... 299
 show interfaces counters ... 300
1

show ports jumbo-frame ... 304
show link-flap prevention .. 305
show errdisable recovery .. 305
show errdisable interfaces .. 306
clear switchport monitor ... 307
show switchport monitor .. 308

16 FindIT Network Probe Commands ... 314
findit probe enable ... 314
show findit ... 315

17 File System Commands ... 317
File Specification ... 317
System Flash Files ... 320
boot config ... 321
boot localization ... 323
boot system ... 324
cd ... 326
copy ... 327
delete ... 329
dir ... 330
mkdir ... 331
more ... 332
pwd ... 333
rename ... 336
rmdir ... 338
service mirror-configuration ... 339
show bootvar / show version ... 341
show mirror-configuration service ... 346
show reload ... 346
show running-config .. 347
show startup-config ... 349
write ... 351

18 GARP VLAN Registration Protocol (GVRP) Commands 352
 clear gvrp statistics ... 352
gvrp enable (Global) .. 353
gvrp enable (Interface) .. 353
gvrp registration-forbid .. 354
gvrp vlan-creation-forbid ... 355
show gvrp configuration .. 356
show gvrp error-statistics .. 357
show gvrp statistics ... 358

19 Green Ethernet ... 360
green-ethernet energy-detect (global) ... 360
green-ethernet energy-detect (interface) .. 360
green-ethernet short-reach (global) ... 361
green-ethernet short-reach (interface) ... 362
green-ethernet power-meter reset ... 363
show green-ethernet ... 363

20 IGMP Commands ... 366
ip igmp last-member-query-count .. 366
ip igmp last-member-query-interval ... 367
ip igmp query-interval .. 367
ip igmp query-max-response-time ... 369
ip igmp robustness .. 370
ip igmp version ... 370
show ip igmp interface .. 371

21 IGMP Snooping Commands ... 373
ip igmp snooping (Global) ... 373
ip igmp snooping vlan .. 374
ip igmp snooping vlan mrouter .. 375
ip igmp snooping vlan mrouter interface ... 376
ip igmp snooping vlan forbidden mrouter ... 376
ip igmp snooping vlan static .. 377
ip igmp snooping querier .. 378
ip igmp snooping vlan querier ... 379
ip igmp snooping vlan querier address .. 379
ip igmp snooping vlan querier election ... 380
ip igmp snooping vlan querier version .. 381
ip igmp snooping vlan immediate-leave ... 382
show ip igmp snooping groups .. 383
show ip igmp snooping interface ... 384
show ip igmp snooping mrouter .. 385

22 IP Addressing Commands ... 387
ip address ... 387
ip address dhcp .. 388
renew dhcp .. 390
ip default-gateway .. 390
show ip interface .. 391
arp ... 393
arp timeout (Global) .. 394
ip arp proxy disable .. 394
ip proxy-arp .. 395
clear arp-cache .. 396
show arp .. 396
show arp configuration ... 397
interface ip .. 398
ip helper-address .. 399
show ip helper-address .. 400
show ip dhcp client interface ... 401
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>IP Routing Protocol-Independent Commands</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>ip route</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>ip routing</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>show ip route</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>show ip route summary</td>
<td>409</td>
</tr>
<tr>
<td>24</td>
<td>IP System Management Commands</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>ping</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>ssh</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>telnet</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>traceroute</td>
<td>420</td>
</tr>
<tr>
<td>25</td>
<td>IPv6 Commands</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>clear ipv6 neighbors</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>ipv6 address</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>ipv6 address anycast</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>ipv6 address autoconfig</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>ipv6 address eui-64</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>ipv6 address link-local</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>ipv6 default-gateway</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>ipv6 enable</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>ipv6 hop-limit</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>ipv6 icmp error-interval</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>ipv6 link-local default zone</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd advertisement-interval</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd dad attempts</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd hop-limit</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd managed-config-flag</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd ns-interval</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd other-config-flag</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd prefix</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd ra interval</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd ra lifetime</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd ra suppress</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd reachable-time</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>ipv6 nd router-preference</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>ipv6 neighbor</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>ipv6 redirects</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>ipv6 route</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>ipv6 unicast-routing</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>ipv6 unreachables</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>show ipv6 interface</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>show ipv6 link-local default zone</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>show ipv6 nd prefix</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>show ipv6 neighbors</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>show ipv6 route</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>show ipv6 route summary</td>
<td>470</td>
</tr>
</tbody>
</table>
show ipv6 static ... 471

26 IPv6 Prefix List Commands .. 474
clear ipv6 prefix-list .. 474
ipv6 prefix-list ... 475
show ipv6 prefix-list ... 479

27 IPv6 Tunnel Commands ... 482
interface tunnel ... 482
tunnel isatap solicitation-interval .. 483
tunnel isatap robustness ... 483
tunnel isatap router .. 484
tunnel mode ipv6ip ... 485
tunnel source ... 487
show ipv6 tunnel ... 488

28 Link Aggregation Control Protocol (LACP) Commands 490
lacp port-priority ... 490
lacp system-priority ... 491
lacp timeout ... 491
show lacp ... 492
show lacp port-channel .. 494

29 Loopback Detection Commands ... 496
loopback-detection enable (Global) 496
loopback-detection enable (Interface) 497
loopback-detection interval ... 497
show loopback-detection .. 498

30 Link Layer Discovery Protocol (LLDP) Commands 500
clear lldp table ... 500
lldp chassis-id ... 500
lldp hold-multiplier .. 501
lldp lldpdu ... 502
lldp management-address ... 503
lldp med ... 505
lldp med notifications topology-change 505
lldp med fast-start repeat-count .. 506
lldp med location .. 507
lldp med network-policy (global) 508
lldp med network-policy (interface) 510
lldp med network-policy voice auto 511
lldp notifications .. 512
lldp notifications interval ... 513
lldp optional-tlv ... 513
lldp optional-tlv 802.1 .. 514
lldp run ... 515
lldp receive ... 516
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>lldp reinit</td>
<td>517</td>
</tr>
<tr>
<td>lldp timer</td>
<td>518</td>
</tr>
<tr>
<td>lldp transmit</td>
<td>518</td>
</tr>
<tr>
<td>lldp tx-delay</td>
<td>519</td>
</tr>
<tr>
<td>show lldp configuration</td>
<td>520</td>
</tr>
<tr>
<td>show lldp local</td>
<td>523</td>
</tr>
<tr>
<td>show lldp local tlv-overloading</td>
<td>525</td>
</tr>
<tr>
<td>show lldp med configuration</td>
<td>526</td>
</tr>
<tr>
<td>show lldp neighbors</td>
<td>528</td>
</tr>
<tr>
<td>show lldp statistics</td>
<td>533</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan mrouter</td>
<td>569</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier version</td>
<td>566</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier election</td>
<td>566</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier version</td>
<td>567</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan mrouter interface</td>
<td>570</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan forbidden mrouter</td>
<td>571</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan static</td>
<td>571</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan immediate-leave</td>
<td>572</td>
</tr>
<tr>
<td>show lldp statistics</td>
<td>533</td>
</tr>
<tr>
<td>management access-class</td>
<td>554</td>
</tr>
<tr>
<td>management access-list</td>
<td>554</td>
</tr>
<tr>
<td>show management access-class</td>
<td>555</td>
</tr>
<tr>
<td>show management access-class</td>
<td>555</td>
</tr>
<tr>
<td>ipv6 mld last-member-query-count</td>
<td>557</td>
</tr>
<tr>
<td>ipv6 mld last-member-query-interval</td>
<td>558</td>
</tr>
<tr>
<td>ipv6 mld query-interval</td>
<td>559</td>
</tr>
<tr>
<td>ipv6 mld query-max-response-time</td>
<td>560</td>
</tr>
<tr>
<td>ipv6 mld robustness</td>
<td>561</td>
</tr>
<tr>
<td>ipv6 mld version</td>
<td>561</td>
</tr>
<tr>
<td>show ipv6 mld interface</td>
<td>562</td>
</tr>
<tr>
<td>deny (Management)</td>
<td>550</td>
</tr>
<tr>
<td>permit (Management)</td>
<td>551</td>
</tr>
<tr>
<td>management access-list</td>
<td>552</td>
</tr>
<tr>
<td>management access-class</td>
<td>554</td>
</tr>
<tr>
<td>show management access-class</td>
<td>555</td>
</tr>
<tr>
<td>macro name</td>
<td>537</td>
</tr>
<tr>
<td>macro</td>
<td>540</td>
</tr>
<tr>
<td>macro description</td>
<td>542</td>
</tr>
<tr>
<td>macro global</td>
<td>544</td>
</tr>
<tr>
<td>macro global description</td>
<td>546</td>
</tr>
<tr>
<td>show parser macro</td>
<td>546</td>
</tr>
<tr>
<td>ipv6 mld last-member-query-count</td>
<td>557</td>
</tr>
<tr>
<td>ipv6 mld last-member-query-interval</td>
<td>558</td>
</tr>
<tr>
<td>ipv6 mld query-interval</td>
<td>559</td>
</tr>
<tr>
<td>ipv6 mld query-max-response-time</td>
<td>560</td>
</tr>
<tr>
<td>ipv6 mld robustness</td>
<td>561</td>
</tr>
<tr>
<td>ipv6 mld version</td>
<td>561</td>
</tr>
<tr>
<td>show ipv6 mld interface</td>
<td>562</td>
</tr>
<tr>
<td>ipv6 mld snooping (Global)</td>
<td>564</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan</td>
<td>564</td>
</tr>
<tr>
<td>ipv6 mld snooping querier</td>
<td>565</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier</td>
<td>566</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier election</td>
<td>567</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan querier version</td>
<td>568</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan mrouter</td>
<td>569</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan mrouter interface</td>
<td>570</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan forbidden mrouter</td>
<td>571</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan static</td>
<td>571</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan immediate-leave</td>
<td>572</td>
</tr>
<tr>
<td>Page</td>
<td>Command</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>573</td>
<td>show ipv6 mld snooping groups</td>
</tr>
<tr>
<td>575</td>
<td>show ipv6 mld snooping interface</td>
</tr>
<tr>
<td>576</td>
<td>show ipv6 mld snooping mrouter</td>
</tr>
<tr>
<td>577</td>
<td>snmp-server community</td>
</tr>
<tr>
<td>579</td>
<td>snmp-server community-group</td>
</tr>
<tr>
<td>580</td>
<td>snmp-server server</td>
</tr>
<tr>
<td>581</td>
<td>snmp-server source-interface</td>
</tr>
<tr>
<td>582</td>
<td>snmp-server source-interface-ipv6</td>
</tr>
<tr>
<td>583</td>
<td>snmp-server view</td>
</tr>
<tr>
<td>584</td>
<td>snmp-server group</td>
</tr>
<tr>
<td>586</td>
<td>show snmp views</td>
</tr>
<tr>
<td>587</td>
<td>show snmp groups</td>
</tr>
<tr>
<td>588</td>
<td>snmp-server user</td>
</tr>
<tr>
<td>590</td>
<td>show snmp users</td>
</tr>
<tr>
<td>592</td>
<td>snmp-server filter</td>
</tr>
<tr>
<td>593</td>
<td>show snmp filters</td>
</tr>
<tr>
<td>594</td>
<td>snmp-server host</td>
</tr>
<tr>
<td>596</td>
<td>snmp-server engineID local</td>
</tr>
<tr>
<td>598</td>
<td>snmp-server engineID remote</td>
</tr>
<tr>
<td>599</td>
<td>show snmp engineID</td>
</tr>
<tr>
<td>599</td>
<td>snmp-server enable traps</td>
</tr>
<tr>
<td>600</td>
<td>snmp-server trap authentication</td>
</tr>
<tr>
<td>601</td>
<td>snmp-server contact</td>
</tr>
<tr>
<td>602</td>
<td>snmp-server location</td>
</tr>
<tr>
<td>602</td>
<td>snmp-server set</td>
</tr>
<tr>
<td>603</td>
<td>snmp trap link-status</td>
</tr>
<tr>
<td>604</td>
<td>show snmp</td>
</tr>
<tr>
<td>607</td>
<td>test cable-diagnostics tdr</td>
</tr>
<tr>
<td>608</td>
<td>show cable-diagnostics tdr</td>
</tr>
<tr>
<td>609</td>
<td>show cable-diagnostics cable-length</td>
</tr>
<tr>
<td>610</td>
<td>show fiber-ports optical-transceiver</td>
</tr>
<tr>
<td>612</td>
<td>pnp device</td>
</tr>
<tr>
<td>613</td>
<td>pnp discovery timeout</td>
</tr>
<tr>
<td>614</td>
<td>pnp enable</td>
</tr>
<tr>
<td>615</td>
<td>pnp reconnect interval</td>
</tr>
<tr>
<td>615</td>
<td>pnp resume</td>
</tr>
<tr>
<td>616</td>
<td>pnp transport</td>
</tr>
<tr>
<td>617</td>
<td>pnp watchdog timeout</td>
</tr>
<tr>
<td>618</td>
<td>show pnp</td>
</tr>
<tr>
<td>624</td>
<td>power inline</td>
</tr>
</tbody>
</table>
1

Port Channel Commands

- channel-group
- port-channel load-balance
- show interfaces port-channel

Quality of Service (QoS) Commands

- qos
- qos advanced-mode trust
- show qos
- class-map
- show class-map
- match
- policy-map
- class
- show policy-map
- trust
- set
- police
- service-policy
- qos aggregate-policer
- show qos aggregate-policer
- police aggregate
- wrr-queue cos-map
- wrr-queue bandwidth
- priority-queue out num-of-queues
- traffic-shape
- traffic-shape queue
- qos wrr-queue wrtd
- show qos wrr-queue wrtd
- show qos interface
41 RADIUS Commands ... 691
 radius-server host ... 691
 radius-server key .. 693
 radius-server retransmit ... 693
 radius-server host source-interface 694
 radius-server host source-interface-ipv6 695
 radius-server timeout ... 696
 radius-server deadtime .. 697
 show radius-servers .. 698
 show radius-servers key ... 698

42 Rate Limit and Storm Control Commands 700
 clear storm-control counters .. 700
 rate-limit (Ethernet) .. 701
 rate-limit vlan ... 702
 storm-control ... 703
 show rate-limit interface ... 705
 show rate-limit vlan .. 706
 show storm-control interface .. 707

43 Remote Network Monitoring (RMON) Commands 709
 rmon alarm ... 709
 show rmon alarm-table ... 711
 show rmon alarm .. 711
 rmon event ... 713
 show rmon events .. 714
 show rmon log ... 715
 rmon table-size ... 716
 show rmon statistics .. 717
 rmon collection stats ... 719
 show rmon collection stats ... 720
 show rmon history ... 721
44 Router Resources Commands ... 725
 show system resources ... 725
45 RSA and Certificate Commands .. 727
 crypto key generate dsa ... 728
 crypto key generate rsa ... 729
 crypto key import ... 730
 show crypto key ... 732
 crypto certificate generate ... 733
 crypto certificate request ... 735
 crypto certificate import ... 737
 show crypto certificate ... 743
46 Smartport Commands ... 745
 macro auto (Global) ... 745
 macro auto built-in parameters ... 746
 macro auto persistent ... 747
 macro auto processing cdp ... 748
 macro auto processing lldp ... 749
 macro auto processing type .. 750
 macro auto resume ... 751
 macro auto smartport (Interface) .. 752
 macro auto smartport type .. 753
 macro auto trunk refresh ... 754
 macro auto user smartport macro ... 756
 show macro auto ports ... 757
 show macro auto processing .. 759
 show macro auto smart-macros ... 760
 smartport storm-control .. 762
47 SPAN Commands .. 764
 monitor session destination .. 764
 monitor session source ... 765
 show monitor session ... 767
48 Spanning-Tree Commands .. 770
 spanning-tree ... 770
 spanning-tree mode ... 770
 spanning-tree forward-time ... 771
 spanning-tree hello-time ... 772
 spanning-tree max-age ... 773
 spanning-tree priority ... 774
 spanning-tree disable ... 775
 spanning-tree cost ... 776
 spanning-tree port-priority .. 777
 spanning-tree portfast ... 778
 spanning-tree link-type ... 779
51 SYSLOG Commands .. 834
 aaa logging .. 834
 clear logging ... 835
 clear logging file .. 835
 file-system logging ... 836
 logging buffered ... 837

49 SSH Client Commands... 806
 ip ssh-client authentication ... 806
 ip ssh-client change server password .. 807
 ip ssh-client key .. 808
 ip ssh-client password ... 811
 ip ssh-client server authentication ... 812
 ip ssh-client server fingerprint ... 813
 ip ssh-client source-interface .. 814
 ip ssh-client source-interface ipv6 ... 815
 ip ssh-client username ... 816
 show ip ssh-client ... 817
 show ip ssh-client server ... 818
 show ip ssh-client server fingerprint ... 819
 show ip ssh-client server authentication .. 820
 show ip ssh-client server port-priority ... 821
 show ip ssh-client server max-hops ... 822

50 SSD Commands .. 823
 ssd config .. 823
 passphrase .. 823
 ssd rule ... 825
 show SSD .. 827
 ssd session read ... 829
 show ssd session .. 830
 ssd file passphrase control ... 831
 ssd file integrity control ... 832

spanning-tree pathcost method .. 779
spanning-tree bpdu (Global) .. 780
spanning-tree bpdu (Interface) ... 781
clear spanning-tree detected-protocols .. 782
spanning-tree mst priority ... 783
spanning-tree mst max-hops ... 784
spanning-tree mst port-priority .. 785
spanning-tree mst cost ... 786
instance (MST) .. 787
name (MST) ... 788
revision (MST) .. 789
show (MST) ... 790
exit (MST) .. 791
abort (MST) .. 792
show spanning-tree ... 793
show spanning-tree bpdu ... 794
spanning-tree loopback-guard .. 795
logging console .. 838
logging file ... 839
logging host ... 840
logging on ... 841
logging source-interface .. 842
logging source-interface-ipv6 ... 843
logging aggregation on .. 844
logging aggregation aging-time 844
logging origin-id .. 845
show logging .. 846
show logging file .. 847
show syslog-servers .. 849
show system languages ... 855
show cpld version .. 856
show cpu input rate ... 857
show cpu utilization ... 857
show environment .. 858
show inventory ... 860
show reload ... 862
show sessions .. 863
show system ... 864
show system id .. 873
show system power-supply .. 871
show ports leds configuration ... 873
show users ... 874
show hardware version .. 875
system light ... 876
system recovery .. 876

52 System Management Commands .. 851
disable ports leds .. 851
hostname ... 852
reload ... 852
resume ... 854
service cpu-utilization .. 855
show service tcp-udp ... 867
show tech-support .. 868
show system fans .. 869
show system sensors ... 870
show system power-supply .. 871
show system id .. 873
show syslogs .. 874
show hardware version .. 875
system light ... 876
system recovery .. 876

53 Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands ... 878
ip telnet server .. 878
ip ssh server ... 879
ip ssh port ... 879
ip ssh password-auth .. 880
ip ssh pubkey-auth .. 881
54 User Interface Commands ... 889
configure ... 889
disable ... 889
do ... 890
enable ... 891
end ... 892
exit (Configuration) ... 893
exit (EXEC) ... 894
help ... 894
history ... 895
history size ... 896
login ... 897
terminal datadump ... 898
terminal history ... 899
terminal history size ... 900
terminal prompt ... 901
terminal width ... 901
show history ... 902
show privilege ... 903

55 Virtual Local Area Network (VLAN) Commands ... 905
vlan database ... 905
vlan ... 906
show vlan ... 907
interface vlan ... 908
interface range vlan ... 908
name ... 909
switchport ... 910
switchport mode ... 911
switchport access vlan ... 912
switchport trunk allowed vlan ... 913
switchport trunk native vlan ... 915
switchport general allowed vlan ... 916
switchport general pvid ... 917
switchport general ingress-filtering disable ... 918
switchport general acceptable-frame-type ... 919
switchport general forbidden vlan ... 919
switchport customer vlan ... 920
show interfaces switchport ... 921
vlan prohibit-internal-usage ... 923
show vlan internal usage ... 924
56 Voice VLAN Commands... 926
 show voice vlan ... 926
 show voice vlan local ... 930
 voice vlan state ... 932
 voice vlan refresh .. 935
 voice vlan id ... 936
 voice vlan vpt ... 937
 voice vlan dscp ... 938
 voice vlan oui-table .. 939
 voice vlan cos mode ... 940
 voice vlan cos ... 941
 voice vlan aging-timeout .. 942
 voice vlan enable ... 943

57 Web Server Commands.. 945
 ip https certificate .. 945
 ip http port ... 946
 ip http server ... 946
 ip http secure-server ... 947
 ip http timeout-policy ... 948
 show ip http ... 949
 show ip https ... 949
Introduction

This section describes how to use the Command Line Interface (CLI). It contains the following topics:

- Overview
- User (Privilege) Levels
- CLI Command Modes
- Accessing the CLI
- CLI Command Conventions
- Editing Features
- Interface Naming Conventions
- IPv6z Address Conventions
- Loopback Interface
- PHY Diagnostics
- CLI Output Modifiers

Overview

The CLI is divided into various command modes. Each mode includes a group of commands. These modes are described in CLI Command Modes.

Users are assigned privilege levels. Each user privilege level can access specific CLI modes. User levels are described in the section below.

User (Privilege) Levels

Users can be created with one of the following user levels:

- Level 1—Users with this level can only run User EXEC mode commands. Users at this level cannot access the web GUI or commands in the Privileged EXEC mode.
• Level 7—Users with this level can run commands in the User EXEC mode and a subset of commands in the Privileged EXEC mode. Users at this level cannot access the web GUI.

• Level 15—Users with this level can run all commands. Only users at this level can access the web GUI.

A system administrator (user with level 15) can create passwords that allow a lower level user to temporarily become a higher level user. For example, the user may go from level 1 to level 7, level 1 to 15, or level 7 to level 15.

The passwords for each level are set (by an administrator) using the following command:

```
enable password [level privilege-level] {password | encrypted encrypted-password}
```

Using these passwords, you can raise your user level by entering the command: enable and the password for level 7 or 15. You can go from level 1 to level 7 or directly to level 15. The higher level holds only for the current session.

The disable command returns the user to a lower level.

To create a user and assign it a user level, use the username command. Only users with command level 15, can create users at this level.

Example—Create passwords for level 7 and 15 (by the administrator):

```
switchxxxxxx#configure
switchxxxxxx<conf># enable password level 7 level7@abc
switchxxxxxx<conf># enable password level 15 level15@abc
switchxxxxxx<conf>#
```

Create a user with user level 1:

```
switchxxxxxx#configure
switchxxxxxx<conf> username john password john1234 privilege 1
switchxxxxxx<conf>
```
Example 2—Switch between Level 1 to Level 15. The user must know the password:

```
switchxxxxxx#
switchxxxxxx# enable
Enter Password: ****** (this is the password for level 15 - level15@abc)
switchxxxxxx#
```

NOTE If authentication of passwords is performed on RADIUS server, the passwords assigned to user level 7 and user level 15 must be configured on the external server and associated with the $enable7$ and $enable15$ user names, respectively. See the Authentication, Authorization and Accounting (AAA) Commands chapter for details.

CLI Command Modes

The CLI is divided into four command modes. The command modes are (in the order in which they are accessed):

- User EXEC mode
- Privileged EXEC mode
- Global Configuration mode
- Interface Configuration mode

Each command mode has its own unique console prompt and set of CLI commands. Entering a question mark at the console prompt displays a list of available commands for the current mode and for the level of the user. Specific commands are used to switch from one mode to another.

Users are assigned privilege levels that determine the modes and commands available to them. User levels are described in User (Privilege) Levels.

User EXEC Mode

Users with level 1 initially log into User EXEC mode. User EXEC mode is used for tasks that do not change the configuration, such as performing basic tests and listing system information.
The user-level prompt consists of the switch host name followed by a #. The default host name is `switchxxxxxx` where `xxxxxx` is the last six digits of the device’s MAC address, as shown below:

```
switchxxxxxx#
```

The default host name can be changed via the `hostname` command in Global Configuration mode.

Privileged EXEC Mode

A user with level 7 or 15 automatically logs into Privileged EXEC mode.

Users with level 1 can enter Privileged Exec mode by entering the `enable` command, and when prompted, the password for level 15.

To return from the Privileged EXEC mode to the User EXEC mode, use the `disable` command.

Global Configuration Mode

The Global Configuration mode is used to run commands that configure features at the system level, as opposed to the interface level.

Only users with command level of 7 or 15 can access this mode.

To access Global Configuration mode from Privileged EXEC mode, enter the `configure` command at the Privileged EXEC mode prompt and press `Enter`. The Global Configuration mode prompt, consisting of the device host name followed by `(config)#`, is displayed:

```
switchxxxxxx(config)#
```

Use any of the following commands to return from Global Configuration mode to the Privileged EXEC mode:

- `exit`
- `end`
- `Ctrl+Z`
The following example shows how to access Global Configuration mode and return to Privileged EXEC mode:

```
switchxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# exit
switchxxxxxx#
```

Interface or Line Configuration Modes

Various submodes may be entered from Global Configuration mode. These submodes enable performing commands on a group of interfaces or lines.

For instance to perform several operations on a specific port or range of ports, you can enter the Interface Configuration mode for that interface.

The following example enters Interface Configuration mode for vlan1 and then sets their speed:

The exit command returns to Global Configuration mode.

```
switchxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# interface range vlan1
switchxxxxxx(config-if)# speed 10
switchxxxxxx(config-if)# exit
switchxxxxxx(config)#
```

The following is a sample of some of the available submodes:

- Interface—Contains commands that configure a specific interface (port, VLAN, port channel, or tunnel) or range of interfaces. The Global Configuration mode command
interface is used to enter the Interface Configuration mode. The interface Global Configuration command is used to enter this mode.

- Line Interface—Contains commands used to configure the management connections for the Telnet and SSH. These include commands such as line timeout settings, etc. The `line` Global Configuration command is used to enter the Line Configuration command mode.

- VLAN Database—Contains commands used to configure a VLAN as a whole. The `vlan database` Global Configuration mode command is used to enter the VLAN Database Interface Configuration mode.

- Management Access List—Contains commands used to define management access-lists. The `management access-list` Global Configuration mode command is used to enter the Management Access List Configuration mode.

- MAC Access-List, IPv6 Access List, IP Access List—Configures conditions required to allow traffic based on MAC addresses, IPv6 address and IPv4 address, respectively. The `mac access-list`, `ipv6 access-list` and `ip access-list` Global Configuration mode commands are used to enter the these configuration mode.

To return from any Interface Configuration mode to the Global Configuration mode, use the `exit` command.

Accessing the CLI

The CLI can be accessed from a terminal or computer by performing one of the following tasks:

- Running a Telnet session from a command prompt on a computer with a network connection to the switch.

- Using SSH from an application that supports SSH client running on a computer with a network connection to the switch.

NOTE Telnet and SSH are disabled by default on the switch.

If access is via a Telnet or SSH connection, ensure that the following conditions are met before using CLI commands:

- The switch has a defined IP address.

- Corresponding management access is enabled.
• There is an IP path such that the computer and the switch can reach each other.

Using Telnet over an Ethernet Interface

Telnet provides a method of connecting to the CLI over an IP network.

To establish a telnet session from the command prompt, perform the following steps:

STEP 1 Click Start, then select All Programs > Accessories > Command Prompt to open a command prompt.

Figure 1 Start > All Programs > Accessories > Command Prompt

STEP 2 At the prompt, enter telnet 1<IP address of switch>, then press Enter.

Figure 2 Command Prompt

STEP 3 CLI will be displayed.

STEP 4 When the CLI appears, enter cisco at the User Name prompt and then enter cisco for the Password prompt.

The switchxxxxxx# prompt is displayed. You can now enter CLI commands to manage the switch. For detailed information on CLI commands, refer to the appropriate chapter(s) of this reference guide.
CLI Command Conventions

When entering commands there are certain command entry standards that apply to all commands. The following table describes the command conventions.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>In a command line, square brackets indicate an optional entry.</td>
</tr>
<tr>
<td>{ }</td>
<td>In a command line, curly brackets indicate a selection of compulsory parameters separated the</td>
</tr>
<tr>
<td>"" (inverted commas)</td>
<td>When the input string contains space and/or reserved words (i.e. VLAN), put the string in inverted commas.</td>
</tr>
<tr>
<td>parameter</td>
<td>Italic text indicates a parameter.</td>
</tr>
<tr>
<td>press key</td>
<td>Names of keys to be pressed are shown in bold.</td>
</tr>
<tr>
<td>Ctrl+F4</td>
<td>Keys separated by the + character are to be pressed simultaneously on the keyboard</td>
</tr>
<tr>
<td>Screen Display</td>
<td>Fixed-width font indicates CLI prompts, CLI commands entered by the user, and system messages displayed on the console.</td>
</tr>
<tr>
<td>all</td>
<td>When a parameter is required to define a range of ports or parameters and all is an option, the default for the command is all when no parameters are defined. For example, the command interface range port-channel has the option of either entering a range of channels, or selecting all. When the command is entered without a parameter, it automatically defaults to all.</td>
</tr>
<tr>
<td>text</td>
<td>When free text can be entered as a parameter for a command (for example in command: snmp-server contact) if the text consists of multiple words separated by blanks, the entire string must appear in double quotes. For example: <code>snmp-server contact "QA on floor 8"</code></td>
</tr>
</tbody>
</table>
Editing Features

Entering Commands

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command `show interfaces status Gigabitethernet 1`, `show`, `interfaces` and `status` are keywords, `Gigabitethernet` is an argument that specifies the interface type, and `1` specifies the port.

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
switchxxxxxx(config)# username admin password alansmith
```

When working with the CLI, the command options are not displayed. The standard command to request help is `?`.

There are two instances where help information can be displayed:

- **Keyword lookup**—The character `?` is entered in place of a command. A list of all valid commands and corresponding help messages are is displayed.
- **Partial keyword lookup**—If a command is incomplete and or the character `?` is entered in place of a parameter, the matched keyword or parameters for this command are displayed.

To assist in using the CLI, there is an assortment of editing features. The following features are described:

- **Terminal Command Buffer**
- **Command Completion**
- **Interface Naming Conventions**
- **Keyboard Shortcuts**

Terminal Command Buffer

Every time a command is entered in the CLI, it is recorded on an internally managed Command History buffer. Commands stored in the buffer are maintained on a First In First Out (FIFO) basis. These commands can be recalled, reviewed, modified, and reissued. This buffer is not preserved across device resets.
Introduction

By default, the history buffer system is enabled, but it can be disabled at any time. For more information on enabling or disabling the history buffer, refer to the `history` command.

There is a standard default number of commands that are stored in the buffer. The standard number of 10 commands can be increased to 216. By configuring 0, the effect is the same as disabling the history buffer system. For more information on configuring the command history buffer, refer to the `history size` command.

To display the history buffer, refer to the `show history` command.

Negating the Effect of Commands

For many configuration commands, the prefix keyword `no` can be entered to cancel the effect of a command or reset the configuration to the default value. This Reference Guide provides a description of the negation effect for each CLI command.

Command Completion

If the command entered is incomplete, invalid or has missing or invalid parameters, then the appropriate error message is displayed. This assists in entering the correct command. By pressing `Tab` after an incomplete command is entered, the system will attempt to identify and complete the command. If the characters already entered are not enough for the system to identify a single matching command, press `?` to display the available commands matching the characters already entered.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-Arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td></td>
</tr>
<tr>
<td>Down-Arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with the up-arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
</tbody>
</table>
Keyboard Shortcuts

The CLI has a range of keyboard shortcuts to assist in editing the CLI commands. The following table describes the CLI shortcuts.

<table>
<thead>
<tr>
<th>Keyboard Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-arrow</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-arrow</td>
<td>Returns the most recent commands from the history buffer after recalling commands with the up arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+Z / End</td>
<td>Returns back to the Privileged EXEC mode from any configuration mode.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Deletes one character left to the cursor position.</td>
</tr>
</tbody>
</table>

Copying and Pasting Text

Up to 1000 lines of text (or commands) can be copied and pasted into the device.

NOTE It is the user’s responsibility to ensure that the text copied into the device consists of legal commands only.

When copying and pasting commands from a configuration file, make sure that the following conditions exist:

- A device Configuration mode has been accessed.

The commands contain no encrypted data, like encrypted passwords or keys. Encrypted data cannot be copied and pasted into the device except for encrypted passwords where the keyword `encrypted` is used before the encrypted data (for instance in the `enable password` command).
Interface Naming Conventions

Interfaces on the device can be one of the following types:

- Fast Ethernet (10/100 kbits) ports—This can be written as FastEthernet, fa or fe.
- Gigabit Ethernet (10/100/1000 kbits) ports—These can be written as either GigabitEthernet or gi or GE.
- Ten Gigabit Ethernet (10,000 kbits) ports—This can be written as either TenGigabitEthernet or te or XG.
- LAG (Port Channel)—Written as either Port-Channel or po.
- VLAN—Written as VLAN
- Tunnel—Written as tunnel or tu

Within the CLI, interfaces are denoted by concatenating the following elements:

- Type of Interface—As described above
- Interface Number—Port, LAG, tunnel or VLAN numbers

Samples of these various options are shown in the example below:

```
switchxxxxxx(config)#interface GigabitEthernet 1
switchxxxxxx(config)#interface GE 1
switchxxxxxx(config)#interface FastEthernet
switchxxxxxx((config)#interface fel
switchxxxxxx((config)#interface tel/0/1
switchxxxxxx(config)#interface pol
switchxxxxxx(config)# interface vlan 1
```

NOTE See Loopback Interface for a description of the loopback interface.

Interface Range

Interfaces may be described on an individual basis or within a range. The interface range command has the following syntax:

```
<interface-range> ::=  
{<port-type>[ ]|/<first-port-number>[ - <last-port-number]>}
```
List of Multiple Interface Types

A combination of interface types can be specified in the interface range command in the following format:

```
<range-list> ::= <interface-range> | <range-list>, <interface-range>
```

Up to five ranges can be included.

NOTE
Range lists can contain either ports and port-channels or VLANs. Combinations of port/port-channels and VLANs are not allowed.

The space after the comma is optional.

When a range list is defined, a space after the first entry and before the comma (,) must be entered.

A sample of this command is shown in the example below:

```
switchxxxxxx#configure
switchxxxxxx(config-if)#interface range gi1-5g
switchxxxxxx(config-if)#interface range te1/0/1-5
```

IPv6z Address Conventions

The following describes how to write an IPv6z address, which is a link-local IPv6 address.

The format is: `<ipv6-link-local-address>%<egress-interface>`
where:

egress-interface (also known as zone) = vlan<vlan-id> | po<number> | tunnel<number> | port<number> | 0

If the egress interface is not specified, the default interface is selected. Specifying egress interface = 0 is equal to not defining an egress interface.

The following combinations are possible:

- **ipv6_address%egress-interface**—Refers to the IPv6 address on the interface specified.
- **ipv6_address%0**—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- **ipv6_address**—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.

Loopback Interface

When an IP application on a router wants to communicate with a remote IP application, it must select the local IP address to be used as its IP address. It can use any IP address defined on the router, but if this link goes down, the communication is aborted, even though there might well be another IP route between these IP applications.

The loopback interface is a virtual interface whose operational state is always up. If the IP address that is configured on this virtual interface is used as the local address when communicating with remote IP applications, the communication will not be aborted even if the actual route to the remote application was changed.

The name of the loopback interface is **loopback1**.

A loopback interface does not support bridging; it cannot be a member of any VLAN, and no layer 2 protocol can be enabled on it.

Layer 3 Specification

IP Interface

IPv4 and IPv6 addresses can be assigned to a loopback interface.

The IPv6 link-local interface identifier is 1.
Routing Protocols

A routing protocol running on the switch supports the advertising of the IP prefixes defined on the loopback interfaces via the routing protocol redistribution mechanism.

Configuration Examples

Static Routing

The following example shows you how to configure IP on a switch with static routing:

```
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
Switch(config-if)# ipv6 address 2001:DB8:2222:7270::2312/64
Switch(config-if)# exit
Switch(config)# interface vlan 2
Switch(config-if)# ip address 10.11.11.2 /24
Switch(config-if)# ipv6 address 2001:DB8:3333:7271::2312/64
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# ipv6 address 2001:DB8:2222:7272::72/128
Switch(config-if)# exit
Switch(config)# ip route 0.0.0.0/0 10.10.11.1
Switch(config)# ip route 10.11.0.0 /16 10.11.11.1
Switch(config)# ipv6 route 0::/0 2001:DB8:2222:7270::1
Switch(config)# ipv6 route 2001:DB8:3333::/48
        2001:DB8:3333:7271::1
```

The neighbor router 10.10.11.1 should be configured with the following static route: ip route 172.25.13.2 /32 10.10.10.2.
The neighbor router 10.11.11.1 should be configured with the following static route:
ip route 172.25.13.2 /32 10.11.11.2.

The neighbor router 2001:DB8:2222:7270::1 connected to VLAN 1 should be configured with
the following static route:

```
ipv6 route 2001:DB8:2222:7272::72/128 2001:DB8:2222:7270::2312
```

The neighbor router 2001:DB8:3333:7271::1 connected to VLAN 1 should be configured with
the static route defined immediately below.

PHY Diagnostics

The following exceptions exist:

- Copper Ports—PHY diagnostics are only supported on copper ports.
- 10G ports—TDR test is supported when the operational port speed is 10G. Cable length resolution is 20 meters.

CLI Output Modifiers

To all `show` and `more` commands (except `show technical support`) an output modifier may be added as follows:

```
<show/more command> | <output-modifier> <regular-expression-pattern>
```

The output modifiers are:

- **begin**: Start output from the first line that has a sequence of characters matching the given regular expression pattern.
- **include**: Includes only lines that have a sequence of characters matching the given regular expression pattern.
- **exclude**: Excludes all lines that have a sequence of characters matching the given regular expression pattern.
- **count**: Counts all lines that have a sequence of characters matching the given regular expression pattern and displays the result (no other output is displayed).
NOTE Only 1 output modifier can be used in each command. The remainder of the text typed in is part of the regular expression pattern.

A regular expression is a pattern (a phrase, number, or more complex pattern). The CLI String Search feature matches regular expressions to the `show` or `more` command output. Regular expressions are case-sensitive and allow for complex matching requirements.

A regular expression can be a single-character pattern or a multiple-character pattern. That is, a regular expression can be a single character that matches the same single character in the command output or multiple characters that match the same multiple characters in the command output. The pattern in the command output is referred to as a string. This section describes creating both single-character patterns and multiple-character patterns. It also discusses creating more complex regular expressions, using multipliers, alternation, anchoring, and parentheses.

Single-Character Patterns

The simplest regular expression is a single character that matches the same single character in the command output. You can use any letter (A-Z, a-z) or digit (0-9) as a single-character pattern. You can also use other keyboard characters (such as ! or ~) as single-character patterns, but certain keyboard characters have special meaning when used in regular expressions. The following table lists the keyboard characters that have special meanings.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Matches any single character, including white space.</td>
</tr>
<tr>
<td>*</td>
<td>Matches 0 or more sequences of the pattern.</td>
</tr>
<tr>
<td>+</td>
<td>Matches 1 or more sequences of the pattern.</td>
</tr>
<tr>
<td>?</td>
<td>Matches 0 or 1 occurrences of the pattern.</td>
</tr>
<tr>
<td>^</td>
<td>Matches the beginning of the string.</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the string.</td>
</tr>
</tbody>
</table>

To use these special characters as single-character patterns, remove the special meaning by preceding each character with a backslash (\).

The following examples are single-character patterns matching a dollar sign, an underscore, and a plus sign, respectively.

\$ _ \+
You can specify a range of single-character patterns to match against command output. For example, you can create a regular expression that matches a string containing one of the following letters: a, e, i, o, or u. Only one of these characters must exist in the string for pattern matching to succeed. To specify a range of single-character patterns, enclose the single-character patterns in square brackets ([]). For example, [aeiou] matches any one of the five vowels of the lowercase alphabet, while [abcdABCDEFGHIJKLMNOPQRSTUVWXYZ] matches any one of the first four letters of the lower- or uppercase alphabet.

You can simplify ranges by entering only the endpoints of the range separated by a dash (-). Simplify the previous range as follows:

\[a-dA-D\]

To add a dash as a single-character pattern in your range, include another dash and precede it with a backslash:

\[a-dA-D\-\]

You can also include a right square bracket (\]) as a single-character pattern in your range, as shown here:

\[a-dA-D\-\]\

The previous example matches any one of the first four letters of the lower- or uppercase alphabet, a dash, or a right square bracket.

You can reverse the matching of the range by including a caret (^) at the start of the range. The following example matches any letter except the ones listed:

\[^a-dqsav\]

The following example matches anything except a right square bracket (\]) or the letter d:

\[^\]d\]

Multiple-Character Patterns

When creating regular expressions, you can also specify a pattern containing multiple characters. You create multiple-character regular expressions by joining letters, digits, or keyboard characters that do not have special meaning. For example, \texttt{a4%} is a multiple-character regular expression.

With multiple-character patterns, order is important. The regular expression \texttt{a4%} matches the character a followed by a 4 followed by a % sign. If the string does not have \texttt{a4%}, in that order, pattern matching fails. The multiple-character regular expression \texttt{a.} uses the special meaning of the period character to match the letter a followed by any single character. With this example, the strings \texttt{ab}, \texttt{a1}, or \texttt{a2} are all valid matches for the regular expression.
You can remove the special meaning of the period character by inserting a backslash before it. For example, when the expression `a\.` is used in the command syntax, only the string `a.` will be matched.

You can create a multiple-character regular expression containing all letters, all digits, all keyboard characters, or a combination of letters, digits, and other keyboard characters. For example, `telebit 3107 v32bis` is a valid regular expression.

Multipliers

You can create more complex regular expressions that instruct the system to match multiple occurrences of a specified regular expression. To do so, use some special characters with your single-character and multiple-character patterns. Table 1 lists the special characters that specify multiples of a regular expression.

Table 1: Special Characters Used as Multipliers

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Matches 0 or more single-character or multiple-character patterns.</td>
</tr>
<tr>
<td>+</td>
<td>Matches 1 or more single-character or multiple-character patterns.</td>
</tr>
<tr>
<td>?</td>
<td>Matches 0 or 1 occurrences of a single-character or multiple-character pattern.</td>
</tr>
</tbody>
</table>

The following example matches any number of occurrences of the letter a, including none:

```
a*
```

The following pattern requires that at least one letter a be in the string to be matched:

```
a+
```

The following pattern matches the string `bb` or `bab`:

```
ba?b
```

The following string matches any number of asterisks (`*`):

```
\**
```

To use multipliers with multiple-character patterns, enclose the pattern in parentheses. In the following example, the pattern matches any number of the multiple-character string `ab`:

```
(ab)*
```

The following pattern matches one or more instances of alphanumeric pairs, but not none (that is, an empty string is not a match):
The order for matches using multipliers (*, +, or ?) is to put the longest construct first. Nested constructs are matched from outside to inside. Concatenated constructs are matched beginning at the left side of the construct. Thus, the regular expression above matches A9b3, but not 9Ab3 because the letters are specified before the numbers.

Alternation

Alternation allows you to specify alternative patterns to match against a string. You separate the alternative patterns with a vertical bar (\|). Only one of the alternatives can match the string. For example, the regular expression codex|telebit either matches the string codex or the string telebit, but not both codex and telebit.

Anchoring

You can instruct the system to match a regular expression pattern against the beginning or the end of the string. You anchor these regular expressions to a portion of the string using the special characters shown in Table 2.

Table 2: Special Characters Used for Anchoring

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>Matches the beginning of the string.</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the string.</td>
</tr>
</tbody>
</table>

For example, the regular expression ^con matches any string that starts with con, and $sole matches any string that ends with sole.

In addition to indicating the beginning of a string, the ^ symbol can be used to indicate the logical function not when used in a bracketed range. For example, the expression [^abcd] indicates a range that matches any single letter, as long as it is not the letters a, b, c, or d.
2.1 ip access-list (IP extended)

Use the `ip access-list extended` Global Configuration mode command to name an IPv4 access list (ACL) and to place the device in IPv4 Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IP)` and `deny (IP)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
ip access-list extended acl-name
no ip access-list extended acl-name
```

Parameters

- `acl-name`—Name of the IPv4 access list. (Range 1-32 characters)

Default Configuration

No IPv4 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

An IPv4 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)#
```
2.2 permit (IP)

Use the permit IP Access-list Configuration mode command to set permit conditions for an IPv4 access list (ACL). Permit conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [log-input]
```
no permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

no permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name] [log-input]

Parameters

- **protocol** — The name or the number of an IP protocol. Available protocol names are: icmp, igmp, ip, tcp, egp, igp, udp, hmp, rdp, idrp, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the **ip** keyword. (Range: 0–255)

- **source** — Source IP address of the packet.

- **source-wildcard** — Wildcard bits to be applied to the source IP address. Use ones in the bit position that you want to be ignored.

- **destination** — Destination IP address of the packet.

- **destination-wildcard** — Wildcard bits to be applied to the destination IP address. Use ones in the bit position that you want to be ignored.

- **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

- **dscp number** — Specifies the DSCP value.

- **precedence number** — Specifies the IP precedence value.

- **icmp-type** — Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect,
mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), snmp (179), syslog (541), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), domain-protocol (434), fddi (434), nameserver (42), netbios-dgm (138), netbios-ns (137), on500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptraps (162), snmp (111), syslog (541), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177), telnet (23). (Range: 0–65535).

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set, it is prefixed by “+”. If a flag should be unset, it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.

Command Mode

IP Access-list Configuration mode
User Guidelines

If a range of ports is used for source port in an ACE, it is not counted again, if it is also used for a source port in another ACE. If a range of ports is used for the destination port in an ACE, it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```plaintext
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)# permit ip 176.212.0.0 00.255.255 any
```

2.3 deny (IP)

Use the **deny** IP Access-list Configuration mode command to set deny conditions for IPv4 access list. Deny conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input ]

deny icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input ]

deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input ]

deny tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} [any | destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input ]

deny udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} [any | destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input ]
```
no deny protocol \{ any | source source-wildcard\} \{ any | destination destination-wildcard\} [dscp number | precedence number] [time-range time-range-name] [disable-port |log-input]

no deny icmp \{ any | source source-wildcard\} \{ any | destination destination-wildcard\} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [disable-port |log-input]

no deny igmp \{ any | source source-wildcard\} \{ any | destination destination-wildcard\} [igmp-type] [dscp number | precedence number] [time-range time-range-name] [disable-port |log-input]

no deny tcp \{ any | source source-wildcard\} \{ any | source-port/port-range\} \{ any | destination destination-wildcard\} \{ any | destination-port/port-range\} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port |log-input]

no deny udp \{ any | source source-wildcard\} \{ any | source-port/port-range\} \{ any | destination destination-wildcard\} \{ any | destination-port/port-range\} [dscp number | precedence number] [time-range time-range-name] [disable-port |log-input]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names: icmp, igmp, ip, tcp, ecp, igp, udp, hmp, rdp, idpr, ipv6, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the Ip keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use 1s in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.

- **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use 1s in the bit position that you want to be ignored.

- **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority.(Range: 1-2147483647)

- **dscp number**—Specifies the DSCP value.

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply,
information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **disable-port**—The Ethernet interface is disabled if the condition is matched.

- **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.
Command Mode

IP Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for a source port in ACE it is not counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port, it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)# deny ip 176.212.0.0 00.255.255 any
```

2.4 ipv6 access-list (IPv6 extended)

Use the `ipv6 access-list` Global Configuration mode command to define an IPv6 access list (ACL) and to place the device in Ipv6 Access-list Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IP)` and `deny (IPv6)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
ipv6 access-list [acl-name]
```

```
no ipv6 access-list [acl-name]
```

Parameters

acl-name—Name of the IPv6 access list. Range 1-32 characters.
Default Configuration

No IPv6 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

IPv6 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Every IPv6 ACL has an implicit `permit icmp any any nd-ns any, permit icmp any any nd-na any, and deny ipv6 any any` statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.)

The IPv6 neighbor discovery process uses the IPv6 network layer service, therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Example

```
switchxxxxx(config)# ipv6 access-list acl1
switchxxxxx(config-ip-al)# permit tcp 2001:0DB8:0300:0201::/64 any any 80
```

2.5 permit (IPv6)

Use the `permit` command in Ipv6 Access-list Configuration mode to set permit conditions (ACEs) for IPv6 ACLs. Use the `no` form of the command to remove the access control entry.

Syntax

```
permit protocol {any | {source-prefix/length} {any | destination-prefix/length} [ace-priority priority]}[dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
permit icmp {any | {source-prefix/length} {any | destination-prefix/length} {any|icmp-type} {any|icmp-code} [ace-priority priority][dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
permit tcp {any | {source-prefix/length} {any | source-port} {any | destination-prefix/length} {any | destination-port} [ace-priority priority][dscp number |
precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input] [flow-label flow-label-value]

permit udp {any | {source-prefix/length}} {any | source-port} {any | destination-prefix/length} {any | destination-port} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]

no permit protocol {any | {source-prefix/length}} {any | destination-prefix/length} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]

no permit icmp {any | {source-prefix/length}} {any | destination-prefix/length} {any | icmp-type} {any | icmp-code} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]

no permit tcp {any | {source-prefix/length}} {any | source-port} {any | destination-prefix/length} {any | destination-port} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input] [flow-label flow-label-value]

no permit udp {any | {source-prefix/length}} {any | source-port} {any | destination-prefix/length} {any | destination-port} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority.(Range: 1-2147483647)

- **dscp number**—Specifies the DSCP value. (Range: 0–63)

- **precedence number**—Specifies the IP precedence value.

- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129),
mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), ldp (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacas-cs (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacas-cs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flag**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

- **flow-label flow-label-value**—Specifies the IPv6 Flow Label value. A value of these arguments must be in range 0–1048575.

**Default Configuration**

No IPv6 access list is defined.

**Command Mode**

Ipv6 Access-list Configuration mode
User Guidelines

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Flow label and port range cannot be configured together.

Flow label cannot be configured into an output ACL.

Examples

Example 1. This example defines an ACL by the name of server and enters a rule (ACE) for tcp packets.

```
switchxxxxxx(config)# ipv6 access-list server
switchxxxxxx(config-ipv6-al)# permit tcp 3001::2/64 any any 80
```

Example 2. This example defines an ACL with the flow-label keyword:

```
switchxxxxxx(config)# ipv6 access-list server
switchxxxxxx(config-ipv6-al)# permit ipv6 any any flow-label 5
```

2.6 deny ( IPv6 )

Use the deny command in Ipv6 Access-list Configuration mode to set permit conditions (ACES) for IPv6 ACLs. Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol {any | {source-prefix/length} {any | destination-prefix/length}} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input] [flow-label flow-label-value]
deny icmp {any | {source-prefix/length} {any | destination-prefix/length} {any | icmp-type} {any | icmp-code} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input] [flow-label flow-label-value]
deny tcp {any | {source-prefix/length} {any | source-port} | any | destination-prefix/length} {any | destination-port} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input] [flow-label flow-label-value]
```
deny udp {any | {source-prefix/length} \any | source-port} {any | destination-prefix/length} {any | destination-port} [priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port [log-input] [flow-label flow-label-value]  

no deny protocol {any | {source-prefix/length} \any | destination-prefix/length} [dscp number | precedence number] [time-range time-range-name] [disable-port [log-input] [flow-label flow-label-value]  

no deny icmp {any | {source-prefix/length} \any | destination-prefix/length} {any | icmp-type} {any | icmp-code} [dscp number | precedence number] [time-range time-range-name] [disable-port [log-input] [flow-label flow-label-value]  

no deny tcp {any | {source-prefix/length} \any | source-port} {any | destination-prefix/length} {any | destination-port} [match-all list-of-flags] [time-range time-range-name] [disable-port [log-input] [flow-label flow-label-value]  

no deny udp {any | {source-prefix/length} \any | source-port} {any | destination-prefix/length} {any | destination-port} [dscp number | precedence number] [time-range time-range-name] [disable-port [log-input] [flow-label flow-label-value]  

Parameters  

- protocol—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)  

- source-prefix/length—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.  

- destination-prefix/length—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.  

- priority - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority.(Range: 1-2147483647)  

- dscp number—Specifies the DSCP value. (Range: 0–63)  

- precedence number—Specifies the IP precedence value.  

- icmp-type—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132),
ACL Commands

router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data 20, gopher (70), hostname (42), icc (194), klogin (543), kshell (544), ldp (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dg (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

- **disable-port**—The Ethernet interface is disabled if the condition is matched.

- **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

- **flow-label flow-label-value**—Specifies the IPv6 Flow Label value. A value of these arguments must be in range 0–1048575.

**Default Configuration**

No IPv6 access list is defined.

**Command Mode**

Ipv6 Access-list Configuration mode
User Guidelines

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Flow label and port range cannot be configured together.

Flow label cannot be configured into an output ACL.

Example

```
switchxxxxx(config)# ipv6 access-list server
switchxxxxx(config-ipv6-al)# deny tcp 3001::2/64 any any 80
```

2.7 mac access-list

Use the `mac access-list` Global Configuration mode command to define a Layer 2 access list (ACL) based on source MAC address filtering and to place the device in MAC Access-list Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (MAC)` and `deny (MAC)` commands. The `service-acl input` command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

```
mac access-list extended acl-name
no mac access-list extended acl-name
```

Parameters

`acl-name`—Specifies the name of the MAC ACL (Range: 1–32 characters).

Default Configuration

No MAC access list is defined.

Command Mode

Global Configuration mode
User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```

2.8 permit ( MAC )

Use the `permit` command in MAC Access-list Configuration mode to set permit conditions (ACEs) for a MAC ACL. Use the no form of the command to remove the access control entry.

Syntax

```
permit {any} source source-wildcard} {any | destination destination-wildcard}
/ace-priority priority[/eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name]
/log-input
```

```
no permit {any} source source-wildcard} {any | destination destination-wildcard} [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id]
[cos cos cos-wildcard] [time-range time-range-name]
/log-input
```

Parameters

- *source*—Source MAC address of the packet.
- *source-wildcard*—Wildcard bits to be applied to the source MAC address. Use 1s in the bit position that you want to be ignored.
- *destination*—Destination MAC address of the packet.
- *destination-wildcard*—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
• **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

• **eth-type**—The Ethernet type in hexadecimal format of the packet.

• **vlan-id**—The VLAN ID of the packet. (Range: 1–4094)

• **cos**—The Class of Service of the packet. (Range: 0–7)

• **cos-wildcard**—Wildcard bits to be applied to the CoS.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

• **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

**User Guidelines**

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

**Default Configuration**

No MAC access list is defined.

**Command Mode**

MAC Access-list Configuration mode

**Example**

```bash
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:01 00:00:00:00:ff any
```
2.9 deny (MAC)

Use the deny command in MAC Access-list Configuration mode to set deny conditions (ACEs) for a MAC ACL. Use the no form of the command to remove the access control entry.

Syntax

```
deny {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [{eth-type 0} | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name] [disable-port | log-input]
```

```
no deny {any | source source-wildcard} {any | destination destination-wildcard} [{eth-type 0} | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name] [disable-port | log-input]
```

Parameters

- `source`—Source MAC address of the packet.
- `source-wildcard`—Wildcard bits to be applied to the source MAC address. Use ones in the bit position that you want to be ignored.
- `destination`—Destination MAC address of the packet.
- `destination-wildcard`—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- `priority` - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)
- `eth-type`—The Ethernet type in hexadecimal format of the packet.
- `cos`—The Class of Service of the packet. (Range: 0–7).
- `cos-wildcard`—Wildcard bits to be applied to the CoS.
- `time-range-name`—Name of the time range that applies to this permit statement. (Range: 1–32)
- `disable-port`—The Ethernet interface is disabled if the condition is matched.
- `log-input`—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input
keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# deny 00:00:00:00:01 00:00:00:ff any
```

2.10 service-acl input

Use the `service-acl input` command in Interface Configuration mode to bind an access list(s) (ACL) to an interface.

Use the `no` form of this command to remove all ACLs from the interface.

Syntax

```
sevice-acl input acl-name1 [acl-name2] [default-action {deny-any | permit-any}]
```

Parameters

- `acl-name`—Specifies an ACL to apply to the interface. See the user guidelines. (Range: 1–32 characters).
- `deny-any`—Deny all packets (that were ingress at the port) that do not meet the rules in this ACL.
• **permit-any**—Forward all packets (that were ingress at the port) that do not meet the rules in this ACL.

**Default Configuration**

No ACL is assigned.

**Command Mode**

Interface Configuration mode (Ethernet, Port-Channel,,VLAN )

**User Guidelines**

The following rules govern when ACLs can be bound or unbound from an interface:

• IPv4 ACLs and IPv6 ACLs can be bound together to an interface.

• A MAC ACL cannot be bound on an interface which already has an IPv4 ACL or IPv6 ACL bound to it.

• Two ACLs of the same type cannot be bound to a port.

• An ACL cannot be bound to a port that is already bound to an ACL, without first removing the current ACL. Both ACLs must be mentioned at the same time in this command.

• MAC ACLs that include a VLAN as match criteria cannot be bound to a VLAN.

• ACLs with time-based configuration on one of its ACEs cannot be bound to a VLAN.

• ACLs with the action Shutdown cannot be bound to a VLAN.

• When the user binds ACL to an interface, TCAM resources will be consumed. One TCAM rule for each MAC or IP ACE and two TCAM rules for each IPv6 ACE. The TCAM consumption is always even number, so in case of odd number of rules the consumption will be increased by 1.

• An ACL cannot be bound as input if it has been bound as output.

**Example**

```bash
switchxxxxx(config)# mac access-list extended server-acl
switchxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
switchxxxxx(config-mac-al)# exit
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# service-acl input server-acl default-action deny-any
```
2.11 service-acl output

Use the `service-acl output` command in Interface Configuration mode to control access to an interface on the egress (transmit path).

Use the `no` form of this command to remove the access control.

**Syntax**

```
service-acl output acl-name1 [acl-name2]
no service-acl output
```

**Parameters**

- **acl-name**: Specifies an ACL to apply to the interface. See the usage guidelines. (Range: acl-name is from 0-32 characters. Use "" for empty string)

**Default**

No ACL is assigned.

**Command Mode**

Interface Configuration mode(Ethernet, Port-Channel).

**User Guidelines**

The rule actions: log-input is not supported. Trying to use it will result in an error.

The deny rule action disable-port is not supported. Trying to use it will result in an error.

IPv4 and IPv6 ACLs can be bound together on an interface.

A MAC ACL cannot be bound on an interface together with an IPv4 ACL or IPv6 ACL.

Two ACLs of the same type cannot be added to a port.

An ACL cannot be added to a port that is already bounded to an ACL, without first removing the current ACL and binding the two ACLs together.

An ACL cannot be bound as output if it has been bound as input.

**Example**

This example binds an egress ACL to a port:

```
switchxxxxxx(config)# mac access-list extended server
```
ACL Commands

2 switchxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
switchxxxxx(config-mac-al)# exit
switchxxxxx(config)# interface gi1
switchxxxxx(config-if)# service-acl output server

2.12 time-range

Use the time-range Global Configuration mode command to define time ranges for different functions. In addition, this command enters the Time-range Configuration mode. All commands after this one refer to the time-range being defined.

This command sets a time-range name. Use the absolute and periodic commands to actually configure the time-range.

Use the no form of this command to remove the time range from the device.

Syntax

time-range time-range-name
no time-range time-range-name

Parameters

time-range-name—Specifies the name for the time range. (Range: 1–32 characters)

Default Configuration

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

After adding the name of a time range with this command, use the absolute and periodic commands to actually configure the time-range. Multiple periodic commands are allowed in a time range. Only one absolute command is allowed.

If a time-range command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.
To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range ACEs are not activated.

The user cannot delete a time-range that is bound to any features.

When a time range is defined, it can be used in the following commands:

- dot1x port-control
- power inline
- operation time
- permit (IP)
- deny (IP)
- permit (IPv6)
- deny (IPv6)
- permit (MAC)
- deny (MAC)

**Example**

```
switchxxxxxx(config)# time-range http-allowed
console(config-time-range)#periodic mon 12:00 to wed 12:00
```

### 2.13 absolute

Use the **absolute** Time-range Configuration mode command to specify an absolute time when a time range is in effect. Use the **no** form of this command to remove the time limitation.

**Syntax**

```
absolute start hh:mm day month year
no absolute start
absolute end hh:mm day month year
no absolute end
```
Parameters

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.

- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.

- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- **day**—Day (by date) in the month. (Range: 1–31)

- **month**—Month (first three letters by name). (Range: Jan...Dec)

- **year**—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

2.14 periodic

Use the **periodic** Time-range Configuration mode command to specify a recurring (weekly) time range for functions that support the time-range feature. Use the **no** form of this command to remove the time limitation.

Syntax

```
periodic day-of-the-week hh:mm to day-of-the-week hh:mm
no periodic day-of-the-week hh:mm to day-of-the-week hh:mm
periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2 ... day-of-the-week7]
```
no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]
periodic list hh:mm to hh:mm all
no periodic list hh:mm to hh:mm all

Parameters

- **day-of-the-week**—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

- **hh:mm**—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- **list day-of-the-week**—Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.

Command Mode

Time-range Configuration mode

User Guidelines

The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00.”

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
2.15 show time-range

Use the show time-range User EXEC mode command to display the time range configuration.

Syntax

```
show time-range time-range-name
```

Parameters

- `time-range-name`—Specifies the name of an existing time range.

Command Mode

User EXEC mode

Example

```
switchxxxxxx> show time-range
http-allowed

 absolute start 12:00 1 Jan 2005 end 12:00 31 Dec 2005
 periodic Monday 12:00 to Wednesday 12:00
```

2.16 show access-lists

Use the show access-lists Privileged EXEC mode command to display access control lists (ACLs) configured on the switch.

Syntax

```
show access-lists [name]
show access-lists time-range-active [name]
```

Parameters

- `name`—Specifies the name of the ACL. (Range: 1-160 characters).
- `time-range-active`—Shows only the Access Control Entries (ACEs) whose time-range is currently active (including those that are not associated with time-range).
### Command Mode

**Privileged EXEC mode**

### Example

```
switchxxxxx# show access-lists
Standard IP access list 1
Extended IP access list ACL2
 permit 234 172.30.19.1 0.0.0.255 any priority 20 time-range weekdays
 permit 234 172.30.23.8 0.0.0.255 any priority 40 time-range weekdays

switchxxxxx# show access-lists time-range-active
Extended IP access list ACL1
 permit 234 172.30.40.1 0.0.0.0 any priority 20
 permit 234 172.30.8.8 0.0.0.0 any priority 40
Extended IP access list ACL2
 permit 234 172.30.19.1 0.0.0.255 any priority 20 time-range weekdays

switchxxxxx# show access-lists ACL1
Extended IP access list ACL1
 permit 234 172.30.40.1 0.0.0.0 any priority 20
 permit 234 172.30.8.8 0.0.0.0 any priority 40
```

### 2.17 show interfaces access-lists

Use the **show interfaces access-lists** Privileged EXEC mode command to display access lists (ACLs) applied on interfaces.

**Syntax**

```
show interfaces access-lists [interface-id]
```

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN.
ACL Commands

Command Mode

Privileged EXEC mode

Example

<table>
<thead>
<tr>
<th>Interface</th>
<th>ACLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi2</td>
<td>Ingress: server1</td>
</tr>
<tr>
<td></td>
<td>Egress: ip</td>
</tr>
</tbody>
</table>

2.18 clear access-lists counters

Use the clear access-lists counters Privileged EXEC mode command to clear access-lists (ACLs) counters.

Syntax

```
clear access-lists counters [interface-id]
```

Parameters

**interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear access-lists counters gi1
```

2.19 show interfaces access-lists trapped packets

Use the show interfaces access-lists trapped packets Privileged EXEC mode command to display Access List (ACLs) trapped packets.
ACL Commands

Syntax

```
show interfaces access-lists trapped packets [interface-id | port-channel-number | VLAN]
```

Parameters

- **interface-id**—Specifies an interface ID, the interface ID is an Ethernet port port-channel.
- **port-channel**—Specifies a port-channel.
- **VLAN**—Specifies a VLAN

Command Mode

Privileged EXEC mode

User Guidelines

This command shows whether packets were trapped from ACE hits with logging enable on an interface.

Examples

**Example 1:**

```
switchxxxxxx# show interfaces access-lists trapped packets
Ports/LAGs: gi1-gi3, ch1-ch3, ch4
VLANs: VLAN1, VLAN12-VLAN15
Packets were trapped globally due to lack of resources
```

**Example 2:**

```
switchxxxxxx# show interfaces access-lists trapped packets gi1
Packets were trapped on interface gi1
```
3.1 aaa authentication dot1x

To specify which servers are used for authentication when 802.1X authentication is enabled, use the `aaa authentication dot1x` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
aaa authentication dot1x default {radius | none | {radius none}}
```

**no aaa authentication dot1x default**

**Parameters**

- **radius** - Uses the list of all RADIUS servers for authentication
- **none** - Uses no authentication

**Default Configuration**

RADIUS server.

**Command Mode**

Global Configuration mode

**User Guidelines**

You can select either authentication by a RADIUS server, no authentication (**none**), or both methods.

If you require that authentication succeeds even if no RADIUS server response was received, specify **none** as the final method in the command line.
Example

The following example sets the 802.1X authentication mode to RADIUS server authentication. Even if no response was received, authentication succeeds.

```
switchxxxxxx(config)# aaa authentication dot1x default radius none
```

3.2 clear dot1x statistics

To clear 802.1X statistics, use the `clear dot1x statistics` command in Privileged EXEC mode.

**Syntax**

```
clear dot1x statistics [interface-id]
```

**Parameters**

- `interface-id`—Specify an Ethernet port ID.

**Default Configuration**

Statistics on all ports are cleared.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

This command clears all the counters displayed in the `show dot1x` and `show dot1x statistics` command.

**Example**

```
switchxxxxxx# clear dot1x statistics
```

3.3 dot1x authentication

To enable authentication methods on a port, use the `dot1x authentication` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.
Syntax

dot1x authentication [802.1x]
no dot1x authentication

Parameters

- **802.1x**—Enables authentication based on 802.1X (802.1X-based authentication).

Default Configuration

802.1X-Based authentication is enabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

In accordance with the 802.1x standard, the 802.1x protocol runs per each Ethernet port associated to the port channel by the `channel-group` command. The “authorized” and unauthorized states are applied rather to ports associated with a port channel rather to the port channel itself. Only authorized Ethernet ports can be active in port channel.

802.1x enabled on a port associated with a port channel has the following limitations:

- Only the multi-host (legacy 802.1x mode) mode is supported.

Example

The following example enables authentication based on 802.1x and the station’s MAC address on port gi1:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x authentication 802.1x
```

### 3.4 dot1x guest-vlan

To define a guest VLAN, use the `dot1x guest-vlan` mode command in Interface (VLAN) Configuration mode. To restore the default configuration, use the no form of this command.
### Syntax

```plaintext
dot1x guest-vlan
no dot1x guest-vlan
```

### Parameters

N/A

### Default Configuration

No VLAN is defined as a guest VLAN.

### Command Mode

Interface (VLAN) Configuration mode

### User Guidelines

Use the `dot1x guest-vlan enable` command to enable unauthorized users on an interface to access the guest VLAN.

A device can have only one global guest VLAN.

The guest VLAN must be a static VLAN and it cannot be removed.

An unauthorized VLAN cannot be configured as guest VLAN.

### Example

The following example defines VLAN 2 as a guest VLAN.

```plaintext
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# dot1x guest-vlan
```

### 3.5 dot1x guest-vlan enable

To enable unauthorized users on the access interface to the guest VLAN, use the `dot1x guest-vlan enable` command in Interface Configuration mode. To disable access, use the `no` form of this command.

### Syntax

```plaintext
dot1x guest-vlan enable
```
no dot1x guest-vlan enable

Parameters

N/A

Default Configuration

The default configuration is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

This command cannot be configured if the monitoring VLAN is enabled on the interface.

If the port does not belong to the guest VLAN it is added to the guest VLAN as an egress untagged port.

If the authentication mode is single-host or multi-host, the value of PVID is set to the guest VLAN_ID.

If the authentication mode is multi-sessions mode, the PVID is not changed and all untagged traffic and tagged traffic not belonging to the unauthenticated VLANs from unauthorized hosts are mapped to the guest VLAN.

If 802.1X is disabled, the port static configuration is reset.

See the User Guidelines of the dot1x host-mode command for more information.

Example

The following example enables unauthorized users on gi1 to access the guest VLAN.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x guest-vlan enable
```

3.6 dot1x guest-vlan timeout

To set the time delay between enabling 802.1X (or port up) and adding a port to the guest VLAN, use the dot1x guest-vlan timeout command in Global Configuration mode. To restore the default configuration, use the no form of this command.
802.1X Commands

3.7 dot1x host-mode

To allow a single host (client) or multiple hosts on an IEEE 802.1X-authorized port, use the `dot1x host-mode` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x host-mode {multi-host | single-host | multi-sessions}
```

Syntax

```
dot1x host-mode

Syntax

```

Parameters

```

- **timeout**—Specifies the time delay in seconds between enabling 802.1X (or port up) and adding the port to the guest VLAN. (Range: 30–180).

Default Configuration

The guest VLAN is applied immediately.

Command Mode

Global Configuration mode

User Guidelines

This command is relevant if the guest VLAN is enabled on the port. Configuring the timeout adds a delay from enabling 802.1X (or port up) to the time the device adds the port to the guest VLAN.

Example

The following example sets the delay between enabling 802.1X and adding a port to a guest VLAN to 60 seconds.

```
switchxxxxxx(config)# dot1x guest-vlan timeout 60
```

3.7 dot1x host-mode

To allow a single host (client) or multiple hosts on an IEEE 802.1X-authorized port, use the `dot1x host-mode` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x host-mode {multi-host | single-host | multi-sessions}
```

Syntax
Parameters

- **multi-host**—Enable multiple-hosts mode.
- **single-host**—Enable single-hosts mode.
- **multi-sessions**—Enable multiple-sessions mode.

Default Configuration

Default mode is multi-host.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Single-Host Mode

The single-host mode manages the authentication status of the port: the port is authorized if there is an authorized host. In this mode, only a single host can be authorized on the port.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from the authorized host is bridged based on the static vlan membership configured at the port. Traffic from other hosts is dropped.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.

Multi-Host Mode

The multi-host mode manages the authentication status of the port: the port is authorized after at least one host is authorized.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from all hosts connected to the port is bridged based on the static vlan membership configured at the port.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.
Multi-Sessions Mode

Unlike the single-host and multi-host modes (port-based modes) the multi-sessions mode manages the authentication status for each host connected to the port (session-based mode). If the multi-sessions mode is configured on a port the port does have any authentication status. Any number of hosts can be authorized on the port. The `dot1x max-hosts` command can limit the maximum number of authorized hosts allowed on the port.

Each authorized client requires a TCAM rule. If there is no available space in the TCAM, the authentication is rejected.

When using the `dot1x host-mode` command to change the port mode to `single-host` or `multi-host` when authentication is enabled, the port state is set to unauthorized.

If the `dot1x host-mode` command changes the port mode to `multi-session` when authentication is enabled, the state of all attached hosts is set to unauthorized.

To change the port mode to single-host or multi-host, set the port (`dot1x port-control`) to force-unauthorized, change the port mode to single-host or multi-host, and set the port to authorization auto.

Multi-sessions mode cannot be configured on the same interface together with Policy Based VLANs configured by the following commands:

Tagged traffic belonging to the unauthenticated VLANs is always bridged regardless if a host is authorized or not.

When the guest VLAN is enabled, untagged and tagged traffic from unauthorized hosts not belonging to the unauthenticated VLANs is bridged via the guest VLAN.

The switch does not remove from FDB the host MAC address learned on the port when its authentication status is changed from authorized to unauthorized. The MAC address will be removed after the aging timeout expires.

In accordance with the 802.1x standard, the 802.1x protocol runs per each Ethernet port associated to the port channel by the `channel-group` command. The “authorized” and unauthorized states are applied rather to ports associated with a port channel rather to the port channel itself. Only authorized Ethernet ports can be active in port channel.

802.1x enabled on a port associated with a port channel has the following limitations:

- Only the multi-host (legacy 802.1x mode) mode is supported.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x host-mode multi-host
```
3.8 dot1x max-hosts

To configure the maximum number of authorized hosts allowed on the interface, use the dot1x max-hosts command in Interface Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

dot1x max-hosts count

no dot1x max-hosts

Parameters

- count—Specifies the maximum number of authorized hosts allowed on the interface. May be any 32 bits positive number.

Default Configuration

No limitation.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

By default, the number of authorized hosts allowed on an interface is not limited. To limit the number of authorized hosts allowed on an interface, use the dot1x max-hosts command.

This command is relevant only for multi-session mode.

Example

The following example limits the maximum number of authorized hosts on Ethernet port gi1 to 6:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x max-hosts 6
```
3.9 dot1x max-req

To set the maximum number of times that the device sends an Extensible Authentication Protocol (EAP) request/identity frame (assuming that no response is received) to the client before restarting the authentication process, use the `dot1x max-req` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x max-req count
no dot1x max-req
```

Parameters

- `count`—Specifies the maximum number of times that the device sends an EAP request/identity frame before restarting the authentication process. (Range: 1–10).

Default Configuration

The default maximum number of attempts is 2.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Example

The following example sets the maximum number of times that the device sends an EAP request/identity frame to 6.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x max-req 6
```
3.10 dot1x port-control

To enable manual control of the port authorization state, use the `dot1x port-control` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x port-control {auto | force-authorized | force-unauthorized} [time-range time-range-name]

no dot1x port-control
```

Parameters

- `auto` — Enables 802.1X authentication on the port and causes it to transition to the authorized or unauthorized state, based on the 802.1X authentication exchange between the device and the client.

- `force-authorized` — Disables 802.1X authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives traffic without 802.1X-based client authentication.

- `force-unauthorized` — Denies all access through this port by forcing it to transition to the unauthorized state and ignoring all attempts by the client to authenticate. The device cannot provide authentication services to the client through this port.

- `time-range time-range-name` — Specifies a time range. When the Time Range is not in effect, the port state is Unauthorized. (Range: 1-32 characters).

Default Configuration

The port is in the force-authorized state.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

802.1X authentication cannot be enabled on an interface if port security feature is already enabled on the same interface.

The switch removes all MAC addresses learned on a port when its authorization control is changed from `force-authorized` to another.
Note. It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1X edge ports in auto state that are connected to end stations, in order to proceed to the forwarding state immediately after successful authentication.

Example

The following example sets 802.1X authentication on gi1 to auto mode.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x port-control auto
```

3.11 dot1x re-authenticate

To initiate manually re-authentication of all 802.1X-enabled ports or the specified 802.1X-enabled port, use the `dot1x re-authenticate` command in Privileged EXEC mode.

Syntax

```
dot1x re-authenticate [interface-id]
```

Parameters

- `interface-id`—Specifies an Ethernet port.

Default Configuration

If no port is specified, command is applied to all ports.

Command Mode

Privileged EXEC mode

Example

The following command manually initiates re-authentication of 802.1X-enabled gi1:

```
switchxxxxxx# dot1x re-authenticate gi1
```
3.12 dot1x reauthentication

To enable periodic re-authentication of the client, use the `dot1x reauthentication` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

dot1x reauthentication

no dot1x reauthentication

Parameters

N/A

Default Configuration

Periodic re-authentication is disabled.

Command Mode

Interface (Ethernet) Configuration mode

Example

switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x reauthentication

3.13 dot1x system-auth-control

To enable 802.1X globally, use the `dot1x system-auth-control` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

dot1x system-auth-control

no dot1x system-auth-control

Parameters

N/A
Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

The following example enables 802.1X globally.

```
switchxxxxxx(config)# dot1x system-auth-control
```

3.14 dot1x timeout quiet-period

To set the time interval that the device remains in a quiet state following a failed authentication exchange, use the `dot1x timeout quiet-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout quiet-period seconds

no dot1x timeout quiet-period
```

Parameters

- `seconds`—Specifies the time interval in seconds that the device remains in a quiet state following a failed authentication exchange with a client. (Range: 10–65535 seconds).

Default Configuration

The default quiet period is 60 seconds.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

During the quiet period, the device does not accept or initiate authentication requests.
The default value of this command should only be changed to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To provide faster response time to the user, a smaller number than the default value should be entered.

For 802.1x-based authentication, the number of failed logins is 1.

For 802.1x-based and MAC-based authentication methods, the quiet period is applied after each failed attempt.

Example

The following example sets the time interval that the device remains in the quiet state following a failed authentication exchange to 120 seconds.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x timeout quiet-period 120
```

3.15 dot1x timeout reauth-period

To set the number of seconds between re-authentication attempts, use the `dot1x timeout reauth-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout reauth-period seconds
no dot1x timeout reauth-period
```

Parameters

- `reauth-period seconds`—Number of seconds between re-authentication attempts. (Range: 300-4294967295).

Default Configuration

3600

Command Mode

Interface (Ethernet) Configuration mode
User Guidelines

The command is only applied to the 802.1x authentication method.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x timeout reauth-period 5000
```

3.16 dot1x timeout server-timeout

To set the time interval during which the device waits for a response from the authentication server, use the `dot1x timeout server-timeout` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout server-timeout seconds
no dot1x timeout server-timeout
```

Parameters

- `server-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response from the authentication server. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The actual timeout period can be determined by comparing the value specified by this command to the result of multiplying the number of retries specified by the `radius-server retransmit` command by the timeout period specified by the `radius-server retransmit` command, and selecting the lower of the two values.
Example

The following example sets the time interval between retransmission of packets to the authentication server to 3600 seconds.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x timeout server-timeout 3600
```

3.17 dot1x timeout supp-timeout

To set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request frame from the client before resending the request, use the `dot1x timeout supp-timeout` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout supp-timeout seconds
no dot1x timeout supp-timeout
```

Parameters

- `supp-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP request frame from the client before resending the request. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.
Example

The following example sets the time interval during which the device waits for a response to an EAP request frame from the client before resending the request to 3600 seconds.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x timeout supp-timeout 3600
```

3.18 dot1x timeout tx-period

To set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request, use the `dot1x timeout tx-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout tx-period seconds
```

```
no dot1x timeout tx-period
```

Parameters

- `seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP-request/identity frame from the client before resending the request. (Range: 30–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.
Example
The following command sets the time interval during which the device waits for a response to an EAP request/identity frame to 60 seconds.

```
switchxxxxxx(config)# interface gi1:
switchxxxxxx(config-if)# dot1x timeout tx-period 60
```

3.19 dot1x traps authentication failure
To enable sending traps when an 802.1X authentication method failed, use the `dot1x traps authentication failure` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax
```
dot1x traps authentication failure [802.1x]
no dot1x traps authentication failure
```

Parameters
- **802.1x**—Enables traps for 802.1X-based authentication.

Default Configuration
All traps are disabled.

Command Mode
Global Configuration mode

User Guidelines
Any combination of the keywords are allowed. At least one keyword must be configured.
A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example
The following example enables sending traps when a MAC address fails to be authorized by the 802.1X mac-authentication access control.
3.20 dot1x traps authentication quiet

To enable sending traps when a host state is set to the quiet state after failing the maximum sequential attempts of login, use the **dot1x traps authentication quiet** command in Global Configuration mode. To disable the traps, use the **no** form of this command.

Syntax

```
dot1x traps authentication quiet
no dot1x traps authentication quiet
```

Parameters

N/A

Default Configuration

Quiet traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

The traps are sent after the client is set to the quiet state after the maximum sequential attempts of login.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a host is set in the quiet state:

```
switchxxxxxx(config)# dot1x traps authentication quiet
```
3.21 dot1x traps authentication success

To enable sending traps when a host is successfully authorized by an 802.1X authentication method, use the **dot1x traps authentication success** command in Global Configuration mode. To disable the traps, use the **no** form of this command.

Syntax

```plaintext
dot1x traps authentication success [802.1x]
no dot1x traps authentication success
```

Parameters

- **802.1x**—Enables traps for 802.1X-based authentication.
- **mac**—Enables traps for MAC-based authentication.

Default Configuration

Success traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

Any combination of the keywords are allowed. At least one keyword must be configured.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a MAC address is successfully authorized by the 802.1X MAC-authentication access control.

```plaintext
switchxxxxxx(config)# dot1x traps authentication success mac
```

3.22 dot1x violation-mode

To configure the action to be taken when an unauthorized host on authorized port in single-host mode attempts to access the interface, use the **dot1x violation-mode** command in
Interface Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
dot1x violation-mode {restrict | protect | shutdown} [traps seconds]
no dot1x violation-mode
```

Parameters

- **restrict**—Generates a trap when a station, whose MAC address is not the supplicant MAC address, attempts to access the interface. The minimum time between the traps is 1 second. Those frames are forwarded but their source addresses are not learned.
- **protect**—Discard frames with source addresses that are not the supplicant address.
- **shutdown**—Discard frames with source addresses that are not the supplicant address and shutdown the port.
- **trap seconds** - Send SNMP traps, and specifies the minimum time between consecutive traps. If seconds = 0 traps are disabled. If the parameter is not specified, it defaults to 1 second for the restrict mode and 0 for the other modes.

Default Configuration

Protect

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The command is relevant only for single-host mode.

For BPDU messages whose MAC addresses are not the supplicant MAC address are not discarded in Protect mode.

BPDU message whose MAC addresses are not the supplicant MAC address cause a shutdown in Shutdown mode.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# dot1x violation-mode protect
```
3.23 show dot1x

To display the 802.1X interfaces or specified interface status, use the **show dot1x** command in Privileged EXEC mode.

Syntax

```
show dot1x [interface interface-id | detailed]
```

Parameters

- **interface-id**—Specifies an Ethernet port.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If **detailed** is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays authentication information for all interfaces on which 802.1x is enabled:

```bash
switchxxxxxx# show dot1x
Authentication is enabled
Authenticating Servers: Radius, None
Guest VLAN: VLAN 11, timeout 30 sec
Authentication failure traps are enabled for 802.1x+mac
Authentication success traps are enabled for 802.1x
Authentication quiet traps are enabled for 802.1x

gil
  Host mode: multi-sessions
  Authentication methods: 802.1x+mac
  Port Administred status: auto
  Guest VLAN: enabled
```
Time range name: work_hours (Active now)
Server-timeout: 30 sec
Maximum Hosts: unlimited
Maximum Login Attempts: 3
Reauthentication is enabled
Reauthentication period: 3600 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
Authentication success: 9
Authentication fails: 1
Number of Authorized Hosts: 10
gi2
 Host mode: single-host
 Authentication methods: 802.1x+mac
 Port Adminstrated status: auto
 Port Operational status: authorized
 Guest VLAN: disabled
 Time range name: work_hours (Active now)
 Server-timeout: 30 sec
 Applied Authenticating Server: Radius
 Applied Authentication method: 802.1x
 Session Time (HH:MM:SS): 00:25:22
 MAC Address: 00:08:78:32:98:66
 Username: Bob
 Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
Violations were detected: 9
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec

Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
Authentication success: 2
Authentication fails: 0

Gi3
 Host mode: multi-host
 Authentication methods: 802.1x+mac
 Port Adminstrated status: auto
 Port Operational status: authorized
 Guest VLAN: disabled
 Time range name: work_hours (Active now)
 Server-timeout: 30 sec
 Aplied Authenticating Server: Radius
 Applied Authentication method: 802.1x
 Session Time (HH:MM:SS): 00:25:22
 MAC Address: 00:08:78:32:98:66
 Username: Bob
 Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
 Violations were detected: 0
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
Authentication success: 20
Authentication fails: 0
Host mode: multi-host
Authentication methods: 802.1x+mac
Port Administred status: force-auto
Guest VLAN: disabled
Time range name: work_hours (Active now)
Server-timeout: 30 sec
Aplied Authenticating Server: Radius
Aplied Authentication method: 802.1x
Session Time (HH:MM:SS): 00:25:22
MAC Address: 00:08:78:32:98:66
Username: Bob
Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
 Violations were detected: 0
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 Tx period: 30 sec
 Supplicant timeout: 30 sec
max-req: 2
Authentication success: 0
Authentication fails: 0
Supplicant Configuration:
 retry-max: 2
 EAP time period: 15 sec
 Supplicant Held Period: 30 sec
 Credentials Name: Basic-User
 Supplicant Operational status: authorized

The following describes the significant fields shown in the display:

- **Port**—The port interface-id.
- **Host mode**—The port authentication configured mode. Possible values: single-host, multi-host, multi-sessions.
 - single-host
 - multi-host
 - multi-sessions
- **Port Administered status**—The port administration (configured) mode. Possible values: force-auth, force-unauth, auto.
- **Port Operational status**—The port operational (actual) mode. Possible values: authorized or unauthorized.
- **Username**—Username representing the supplicant identity. This field shows the username if the port control is auto. If the port is Authorized, it displays the username of the current user. If the port is Unauthorized, it displays the last user authorized successfully.
- **Quiet period**—Number of seconds that the device remains in the quiet state following a failed authentication exchange (for example, the client provided an invalid password).
- **Silence period**—Number of seconds that if an authorized client does not send traffic during the silence period specified by the command, the state of the client is changed to unauthorized.
- **Tx period**—Number of seconds that the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request.
- **Max req**—Maximum number of times that the device sends an EAP request frame (assuming no response is received) to the client before restarting the authentication process.
3.24 show dot1x statistics

To display 802.1X statistics for the specified port, use the show dot1x statistics command in Privileged EXEC mode.

Syntax

```
show dot1x statistics interface interface-id
```

Parameters

- `interface-id`—Specifies an Ethernet port.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays 802.1X statistics for gi1.

```
switchxxxxxx# show dot1x statistics interface gi1
EapolEapFramesRx: 10
EapolStartFramesRx: 0
EapolLogoffFramesRx: 1
```
EapolAnnouncementFramesRx: 0
EapolAnnouncementReqFramesRx: 0
EapolInvalidFramesRx: 0
EapolEapLengthErrorFramesRx: 0
EapolMkNoCknFramesRx: 0
EapolMkInvalidFramesRx: 0
EapolLastRxFrameVersion: 3
EapolLastRxFrameSource: 00:08:78:32:98:78
EapolSuppEapFramesTx: 0
EapolStartFramesTx: 1
EapolLogoffFramesTx: 0
EapolAnnouncementFramesTx: 0
EapolAnnouncementReqFramesTx: 0
EapolAuthEapFramesTx: 9
EapolMkaFramesTx: 0

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EapolInvalidFramesRx</td>
<td>The number of invalid EAPOL frames of any type that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolEapLengthErrorFramesRx</td>
<td>The number of EAPOL frames that the Packet Body Length does not match a Packet Body that is contained within the octets of the received EAPOL MPDU in this PAE.</td>
</tr>
<tr>
<td>EapolAnnouncementFramesRx</td>
<td>The number of EAPOL-Announcement frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolAnnouncementReqFramesRx</td>
<td>The number of EAPOL-Announcement-Req frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>The number of EAPOL-Start frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolEapFramesRx</td>
<td>The number of EAPOL-EAP frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>The number of EAPOL-Logoff frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolMkNoCknFramesRx</td>
<td>The number of MKPDUs received with MKA not enabled or CKN not recognized in this PAE.</td>
</tr>
</tbody>
</table>
3.25 show dot1x users

To display active 802.1X authorized users for the device, use the **show dot1x users** command in Privileged EXEC mode.

Syntax

```
show dot1x users [username username]
```

Parameters

- **username username**—Specifies the supplicant username (Length: 1–160 characters).

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode
Examples

Example 1. The following commands displays all 802.1x users:

```
show dot1x users
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Username</th>
<th>MAC Address</th>
<th>Auth</th>
<th>Session Time</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Bob</td>
<td>0008.3b71.1111</td>
<td>Remote</td>
<td>09:01:00</td>
<td>1020</td>
</tr>
<tr>
<td>gi2</td>
<td>Allan</td>
<td>0008.3b79.8787</td>
<td>Remote</td>
<td>00:11:12</td>
<td></td>
</tr>
<tr>
<td>gi2</td>
<td>John</td>
<td>0008.3baa.0022</td>
<td>Remote</td>
<td>00:27:16</td>
<td></td>
</tr>
</tbody>
</table>

Example 2. The following example displays 802.1X user with supplicant username Bob:

```
switchxxxxxx# show dot1x users username Bob
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Username</th>
<th>MAC Address</th>
<th>Auth</th>
<th>Session Time</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Bob</td>
<td>0008.3b71.1111</td>
<td>Remote</td>
<td>09:01:00</td>
<td>1020</td>
</tr>
</tbody>
</table>
4.1 bridge multicast filtering

To enable the filtering of Multicast addresses, use the `bridge multicast filtering` Global Configuration mode command. To disable Multicast address filtering, use the `no` form of this command.

Syntax

- `bridge multicast filtering`
- `no bridge multicast filtering`

Parameters

This command has no arguments or keywords.

Default Configuration

Multicast address filtering is disabled. All Multicast addresses are flooded to all ports.

Command Mode

Global Configuration mode

User Guidelines

When this feature is enabled, unregistered Multicast traffic (as opposed to registered) will still be flooded.

All registered Multicast addresses will be forwarded to the Multicast groups. There are two ways to manage Multicast groups, one is the IGMP Snooping feature, and the other is the `bridge multicast forward-all` command.

Example

The following example enables bridge Multicast filtering.
switchxxxxxx(config)# bridge multicast filtering

4.2 bridge multicast mode

To configure the Multicast bridging mode, use the `bridge multicast mode` Interface (VLAN) Configuration mode command. To return to the default configuration, use the `no` form of this command.

Syntax

`bridge multicast mode {mac-group | ipv4-group | ipv4-src-group}`

`no bridge multicast mode`

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address.
- **ipv4-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN and IPv4 destination address for IPv4 packets.
- **ipv4-src-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN, IPv4 destination address and IPv4 source address for IPv4 packets.

Default Configuration

The default mode is `mac-group`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the mac-group option when using a network management system that uses a MIB based on the Multicast MAC address. Otherwise, it is recommended to use the ipv4 mode, because there is no overlapping of IPv4 Multicast addresses in these modes.
For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>bridge multicast ip-address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden ip-address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>bridge multicast source group</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden source group</td>
</tr>
</tbody>
</table>

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the IGMP version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>IGMP version 2</th>
<th>IGMP version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>IP group address</td>
<td>IP group address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>(*)</td>
<td>IP source and group addresses</td>
</tr>
</tbody>
</table>

(*) Note that (*,G) cannot be written to the FDB if the mode is ipv4-src-group. In that case, no new FDB entry is created, but the port is added to the static (S,G) entries (if they exist) that belong to the requested group. It is recommended to set the FDB mode to ipv4-group or mac-group for IGMP version 2.

If an application on the device requests (*,G), the operating FDB mode is changed to ipv4-group.

Example

The following example configures the Multicast bridging mode as an mac-group on VLAN 2.

```
switchxxxxxxx(config)#  interface vlan 2
switchxxxxxxx(config-if)#  bridge multicast mode mac-group
```

4.3 bridge multicast address

To register a MAC-layer Multicast address in the bridge table and statically add or remove ports to or from the group, use the **bridge multicast address** Interface (VLAN) Configuration mode command. To unregister the MAC address, use the **no** form of this command.
Syntax

bridge multicast address {mac-multicast-address | ipv4-multicast-address} [{add | remove} {ethernet interface-list | port-channel port-channel-list}]

no bridge multicast address mac-multicast-address

Parameters

- **mac-multicast-address | ipv4-multicast-address**—Specifies the group Multicast address.
- **add**—(Optional) Adds ports to the group.
- **remove**—(Optional) Removes ports from the group.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

If ethernet interface-list or port-channel port-channel-list is specified without specifying add or remove, the default option is add.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the mac-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Examples

Example 1 - The following example registers the MAC address to the bridge table:
Example 2 - The following example registers the MAC address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03 add gi1-2
```

4.4 bridge multicast forbidden address

To forbid adding or removing a specific Multicast address to or from specific ports, use the bridge multicast forbidden address Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

```
bridge multicast forbidden address {mac-multicast-address | ipv4-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}
```

Parameters

- **mac-multicast-address | ipv4-multicast-address**—Specifies the group Multicast address.
- **add**—Forbids adding ports to the group.
- **remove**—Forbids removing ports from the group.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.
Default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered, using `bridge multicast address`.

You can execute the command before the VLAN is created.

Example

The following example forbids MAC address 0100.5e02.0203 on port gi4 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 0100.5e02.0203
switchxxxxxx(config-if)# bridge multicast forbidden address 0100.5e02.0203 add gi4
```

4.5 bridge multicast ip-address

To register IP-layer Multicast addresses to the bridge table, and statically add or remove ports to or from the group, use the `bridge multicast ip-address` Interface (VLAN) Configuration mode command. To unregister the IP address, use the no form of this command.

Syntax

```
bridge multicast ip-address ip-multicast-address [[add | remove] {interface-list | port-channel port-channel-list}]
no bridge multicast ip-address ip-multicast-address
```

Parameters

- `ip-multicast-address`—Specifies the group IP Multicast address.
- `add`—(Optional) Adds ports to the group.
- `remove`—(Optional) Removes ports from the group.
• **interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

• **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

Default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the **ip-multicast-address** parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Example

The following example registers the specified IP address to the bridge table:

```bash
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
```

The following example registers the IP address and adds ports statically.

```bash
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2 add gi4
```
4.6 bridge multicast forbidden ip-address

To forbid adding or removing a specific IP Multicast address to or from specific ports, use the bridge multicast forbidden ip-address Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

bridge multicast forbidden ip-address {ip-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}

no bridge multicast forbidden ip-address ip-multicast-address

Parameters

- ip-multicast-address—Specifies the group IP Multicast address.
- add—(Optional) Forbids adding ports to the group.
- remove—(Optional) Forbids removing ports from the group.
- ethernet interface-list—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- port-channel port-channel-list—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.
Example

The following example registers IP address 239.2.2.2, and forbids the IP address on port gi4 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden ip-address 239.2.2.2 add gi4
```

4.7 bridge multicast source group

To register a source IP address - Multicast IP address pair to the bridge table, and statically add or remove ports to or from the source-group, use the `bridge multicast source group` Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the no form of this command.

Syntax

```
bridge multicast source ip-address group ip-multicast-address [[add | remove] {ethernet interface-list | port-channel port-channel-list}]
```

```
no bridge multicast source ip-address group ip-multicast-address
```

Parameters

- `ip-address`—Specifies the source IP address.
- `ip-multicast-address`—Specifies the group IP Multicast address.
- `add`—(Optional) Adds ports to the group for the specific source IP address.
- `remove`—(Optional) Removes ports from the group for the specific source IP address.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.
Default Configuration

No Multicast addresses are defined.
The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

You can execute the command before the VLAN is created.

Example

The following example registers a source IP address - Multicast IP address pair to the bridge table:

```
switchxxxxxx(config)#  interface vlan 8
switchxxxxxx(config-if)#  bridge multicast source 13.16.1.1 group 239.2.2.2
```

4.8 **bridge multicast forbidden source group**

To forbid adding or removing a specific IP source address - Multicast address pair to or from specific ports, use the **bridge multicast forbidden source group** Interface (VLAN) Configuration mode command. To return to the default configuration, use the **no** form of this command.

Syntax

```
bridge multicast forbidden source ip-address group ip-multicast-address {add | remove} /ethernet interface-list | port-channel port-channel-list)
no bridge multicast forbidden source ip-address group ip-multicast-address
```

Parameters

- **ip-address**—Specifies the source IP address.
- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—(Optional) Forbids adding ports to the group for the specific source IP address.
• **remove**—(Optional) Forbids removing ports from the group for the specific source IP address.

• **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

• **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers a source IP address - Multicast IP address pair to the bridge table, and forbids adding the pair to port gi4 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden source 13.16.1.1 group 239.2.2.2 add gi4
```

4.9 bridge multicast ipv6 mode

To configure the Multicast bridging mode for IPv6 Multicast packets, use the `bridge multicast ipv6 mode` Interface (VLAN) Configuration mode command. To return to the default configuration, use the `no` form of this command.
Syntax

bridge multicast ipv6 mode {mac-group | ip-group | ip-src-group}

no bridge multicast ipv6 mode

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC destination address.

- **ip-group**—Specifies that Multicast bridging is based on the packet's VLAN and IPv6 destination address for IPv6 packets.

- **ip-src-group**—Specifies that Multicast bridging is based on the packet's VLAN, IPv6 destination address and IPv6 source address for IPv6 packets.

Default Configuration

The default mode is **mac-group**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the **mac-group** mode when using a network management system that uses a MIB based on the Multicast MAC address.

For each Forwarding Data Base (FDB) mode, use different CLI commands to configure static entries for IPv6 Multicast addresses in the FDB, as described in the following table:

<table>
<thead>
<tr>
<th>FDB Mode</th>
<th>CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>bridge multicast address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast forbidden address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>bridge multicast ipv6 ip-address</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden ip-address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>bridge multicast ipv6 source group</td>
</tr>
<tr>
<td></td>
<td>bridge multicast ipv6 forbidden source group</td>
</tr>
</tbody>
</table>
The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the MLD version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>MLD version 1</th>
<th>MLD version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>IPv6 group address</td>
<td>IPv6 group address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>(*) IPv6 source and group addresses</td>
<td>IPv6 source and group addresses</td>
</tr>
</tbody>
</table>

(*) In **ip-src-group** mode a match is performed on 4 bytes of the multicast address and 4 bytes of the source address. In the group address the last 4 bytes of the address are checked for match. In the source address the last 3 bytes and 5th from last bytes of the interface ID are examined.

(*) Note that (*,G) cannot be written to the FDB if the mode is **ip-src-group**. In that case, no new FDB entry is created, but the port is added to the (S,G) entries (if they exist) that belong to the requested group.

If an application on the device requests (*,G), the operating FDB mode is changed to **ip-group**.

You can execute the command before the VLAN is created.

Example

The following example configures the Multicast bridging mode as an **ip-group** on VLAN 2.

```plaintext
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast ipv6 mode
ip-group
```

4.10 bridge multicast ipv6 ip-address

To register an IPv6 Multicast address to the bridge table, and statically add or remove ports to or from the group, use the **bridge multicast ipv6 ip-address** Interface (VLAN) Configuration mode command. To unregister the IPv6 address, use the **no** form of this command.

Syntax

```
bridge multicast ipv6 ip-address ipv6-multicast-address [[add | remove] {ethernet interface-list | port-channel port-channel-list}]
```
no bridge multicast ipv6 ip-address ip-multicast-address

Parameters

- **ipv6-multicast-address** — Specifies the group IPv6 multicast address.
- **add** — (Optional) Adds ports to the group.
- **remove** — (Optional) Removes ports from the group.
- **ethernet interface-list** — (Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces; use a hyphen to designate a range of ports.
- **port-channel port-channel-list** — (Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

The default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the `ipv6-multicast-address` parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Examples

Example 1 - The following example registers the IPv6 address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
```
Example 2 - The following example registers the IPv6 address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1 add gi1-2
```

4.11 bridge multicast ipv6 forbidden ip-address

To forbid adding or removing a specific IPv6 Multicast address to or from specific ports, use the `bridge multicast ipv6 forbidden ip-address` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 forbidden ip-address {ipv6-multicast-address} {add | remove}
{ethernet interface-list | port-channel port-channel-list}
no bridge multicast ipv6 forbidden ip-address ipv6-multicast-address
```

Parameters

- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—(Optional) Forbids adding ports to the group.
- `remove`—(Optional) Forbids removing ports from the group.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

The default option is `add`.

Command Mode

Interface (VLAN) Configuration mode
User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers an IPv6 Multicast address, and forbids the IPv6 address on port gi4 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
switchxxxxxx(config-if)# bridge multicast ipv6 forbidden ip-address FF00:0:0:0:4:4:4:1 add gi4
```

4.12 bridge multicast ipv6 source group

To register a source IPv6 address - Multicast IPv6 address pair to the bridge table, and statically add or remove ports to or from the source-group, use the `bridge multicast ipv6 source group` Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 source {ipv6-source-address} {ipv6-multicast-address} [[add | remove] {ethernet interface-list | port-channel port-channel-list}]

no bridge multicast ipv6 source {ipv6-address} {ipv6-multicast-address}
```

Parameters

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—(Optional) Adds ports to the group for the specific source IPv6 address.
- `remove`—(Optional) Removes ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
• **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 2001:0:0:0:4:4:4 group FF00:0:0:0:4:4:4:1
```

4.13 bridge multicast ipv6 forbidden source group

To forbid adding or removing a specific IPv6 source address - Multicast address pair to or from specific ports, use the **bridge multicast ipv6 forbidden source group** Interface (VLAN) Configuration mode command. To return to the default configuration, use the **no** form of this command.

Syntax

```
brIDGE mULTICAST IPv6 FORbIDDEN sOURSE IPv6-source-address group IPv6-multicast-address [add | remove] {ethernet interface-list | port-channel port-channel-list}
```

Parameters

- **ipv6-source-address**—Specifies the source IPv6 address.
- **ipv6-multicast-address**—Specifies the group IPv6 Multicast address.
- **add**—Forbids adding ports to the group for the specific source IPv6 address.
• **remove**—Forbids removing ports from the group for the specific source IPv6 address.

• **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

• **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table, and forbids adding the pair to gi4 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 2001:0:0:4:4:4 group FF00:0:0:4:4:4:1
switchxxxxxx(config-if)# bridge multicast forbidden source 2001:0:0:4:4:4:1 group FF00:0:0:4:4:4:1 add gi4
```

4.14 bridge multicast unregistered

To configure forwarding unregistered Multicast addresses, use the **bridge multicast unregistered** Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the **no** form of this command.
Syntax

bridge multicast unregistered {forwarding | filtering}

no bridge multicast unregistered

Parameters

- forwarding—Forwards unregistered Multicast packets.
- filtering—Filters unregistered Multicast packets.

Default Configuration

Unregistered Multicast addresses are forwarded.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Do not enable unregistered Multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example

The following example specifies that unregistered Multicast packets are filtered on gi1:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# bridge multicast unregistered filtering
```

4.15 bridge multicast forward-all

To enable forwarding all multicast packets for a range of ports or port channels, use the bridge multicast forward-all Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.
Syntax

\texttt{bridge multicast forward-all \{add | remove\} \{ethernet interface-list | port-channel port-channel-list\}}

\texttt{no bridge multicast forward-all}

Parameters

- \texttt{add}—Forces forwarding of all Multicast packets.
- \texttt{remove}—Does not force forwarding of all Multicast packets.
- \texttt{ethernet interface-list}—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- \texttt{port-channel port-channel-list}—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

Forwarding of all Multicast packets is disabled.

Command Mode

Interface (VLAN) Configuration mode

Example

The following example enables all Multicast packets on port gi4 to be forwarded.

\begin{verbatim}
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forward-all add gi4
\end{verbatim}

4.16 bridge multicast forbidden forward-all

To forbid a port to dynamically join Multicast groups, use the \texttt{bridge multicast forbidden forward-all} Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.
Syntax

```
bridge multicast forbidden forward-all {add | remove} \{ethernet interface-list | port-channel port-channel-list\}

no bridge multicast forbidden forward-all
```

Parameters

- **add**—Forbids forwarding of all Multicast packets.
- **remove**—Does not forbid forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

Ports are not forbidden to dynamically join Multicast groups.

The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to forbid a port to dynamically join (by IGMP, for example) a Multicast group.

The port can still be a Multicast router port.

Example

The following example forbids forwarding of all Multicast packets to `gi1` within VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forbidden forward-all add ethernet gi1
```
4.17 bridge unicast unknown

To enable egress filtering of Unicast packets where the destination MAC address is unknown to the device, use the `bridge unicast unknown` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`bridge unicast unknown {filtering | forwarding}`

`no bridge unicast unknown`

Parameters

- `filtering`—Filter unregistered Unicast packets.
- `forwarding`—Forward unregistered Unicast packets.

Default Configuration

Forwarding.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode.

Example

The following example drops Unicast packets on gi1 when the destination is unknown.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# bridge unicast unknown filtering
```

4.18 show bridge unicast unknown

To display the unknown Unicast filtering configuration, use the `show bridge unicast unknown` Privileged EXEC mode command.

Syntax

`show bridge unicast unknown [interface-id]`
Parameters

interface-id—(Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel

Command Mode

Privileged EXEC mode

Example

```
Console # show bridge unicast unknown
Port Unregistered
-------- ---------------------
gi1      Forward
gi2      Filter
gi3      Filter
```

4.19 **mac address-table static**

To add a MAC-layer station source address to the MAC address table, use the `mac address-table static` Global Configuration mode command. To delete the MAC address, use the `no` form of this command.

Syntax

```
mac address-table static mac-address vlan vlan-id interface interface-id [permanent | delete-on-reset | delete-on-timeout | secure]
```

```
no mac address-table static [mac-address] vlan vlan-id
```

Parameters

- *mac-address*—MAC address (Range: Valid MAC address)
- *vlan-id*—Specify the VLAN
- *interface-id*—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel (Range: valid ethernet port, valid port-channel)
- *permanent*—(Optional) The permanent static MAC address. The keyword is applied by the default.
Address Table Commands

- **delete-on-reset**—(Optional) The delete-on-reset static MAC address.
- **delete-on-timeout**—(Optional) The delete-on-timeout static MAC address.
- **secure**—(Optional) The secure MAC address. May be used only in a secure mode.

Default Configuration

No static addresses are defined. The default mode for an added address is permanent.

Command Mode

Global Configuration mode

User Guidelines

Use the command to add a static MAC address with given time-to-live in any mode or to add a secure MAC address in a secure mode.

Each MAC address in the MAC address table is assigned two attributes: **type** and **time-to-live**.

The following value of time-of-live is supported:

- **permanent**—MAC address is saved until it is removed manually.
- **delete-on-reset**—MAC address is saved until the next reboot.
- **delete-on-timeout**—MAC address that may be removed by the aging timer.

The following types are supported:

- **static**— MAC address manually added by the command with the following keywords specifying its time-of-live:
 - permanent
 - delete-on-reset
 - delete-on-timeout

A static MAC address may be added in any port mode.

- **secure**— A MAC address added manually or learned in a secure mode. Use the **mac address-table static** command with the **secure** keyword to add a secure MAC address. The MAC address cannot be relearned.

A secure MAC address may be added only in a secure port mode.

- **dynamic**— a MAC address learned by the switch in non-secure mode. A value of its **time-to-live** attribute is **delete-on-timeout**.
Examples

Example 1 - The following example adds two permanent static MAC address:

switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b1 vlan 1
interface gi1
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi1 permanent

Example 2 - The following example adds a deleted-on-reset static MAC address:

switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi1 delete-on-reset

Example 3 - The following example adds a deleted-on-timeout static MAC address:

switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi1 delete-on-timeout

Example 4 - The following example adds a secure MAC address:

switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1
interface gi1 secure

4.20 clear mac address-table

To remove learned or secure entries from the forwarding database (FDB), use the clear mac address-table Privileged EXEC mode command.

Syntax

clear mac address-table dynamic interface interface-id

clear mac address-table secure interface interface-id
Parameters

- **dynamic interface interface-id**—Delete all dynamic (learned) addresses on the specified interface. The interface ID can be one of the following types: Ethernet port or port-channel. If interface ID is not supplied, all dynamic addresses are deleted.

- **secure interface interface-id**—Delete all the secure addresses learned on the specific interface. A secure address on a MAC address learned on ports on which port security is defined.

Default Configuration

For dynamic addresses, if interface-id is not supplied, all dynamic entries are deleted.

Command Mode

Privileged EXEC mode

Examples

Example 1 - Delete all dynamic entries from the FDB.

```
switchxxxxxx# clear mac address-table dynamic
```

Example 2 - Delete all secure entries from the FDB learned on secure port gi1.

```
switchxxxxxx# clear mac address-table secure interface gi1
```

4.21 mac address-table aging-time

To set the aging time of the address table, use the `mac address-table aging-time` Global configuration command. To restore the default, use the `no` form of this command.

Syntax

```
mac address-table aging-time seconds
no mac address-table aging-time
```

Parameters

- `seconds`—Time is number of seconds. (Range: 10-400)
4.22 port security

To enable port security learning mode on an interface, use the `port security` Interface (Ethernet, Port Channel) Configuration mode command. To disable port security learning mode on an interface, use the `no` form of this command.

Syntax

```
port security [forward | discard | discard-shutdown] [trap seconds]

no port security
```

Parameters

- `forward`—(Optional) Forwards packets with unlearned source addresses, but does not learn the address.
- `discard`—(Optional) Discards packets with unlearned source addresses.
- `discard-shutdown`—(Optional) Discards packets with unlearned source addresses and shuts down the port.
- `trap seconds`—(Optional) Sends SNMP traps and specifies the minimum time interval in seconds between consecutive traps. (Range: 1–1000000)

Default Configuration

The feature is disabled by default.

The default mode is `discard`.

The default number of seconds is zero, but if `traps` is entered, a number of seconds must also be entered.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Port Security cannot be enabled on an interface if 802.1X authentication is already active on the interface.

See the `mac address-table static` command for information about MAC address attributes (type and time-to-live) definitions.

When the `port security` command enables the `lock` mode on a port all dynamic addresses learned on the port are changed to `permanent secure` addresses.

When the `port security` command enables a mode on a port differing from the `lock` mode all dynamic addresses learned on the port are deleted.

When the `no port security` command cancels a secure mode on a port all secure addresses defined on the port are changed to `dynamic` addresses.

Additionally to set a mode, use the `port security` command to set an action that the switch should perform on a frame which source MAC address cannot be learned.

Example

The following example forwards all packets to port gi1 without learning addresses of packets from unknown sources and sends traps every 100 seconds, if a packet with an unknown source address is received.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# port security mode lock
switchxxxxxx(config-if)# port security forward trap 100
switchxxxxxx(config-if)# exit
```

4.23 port security mode

To configure the port security learning mode, use the `port security mode` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.
Syntax

```
port security mode {max-addresses | lock | secure permanent | secure delete-on-reset}
```

```
o port security mode
```

Parameters

- **max-addresses**— Non-secure mode with limited learning dynamic MAC addresses. The static MAC addresses may be added on the port manually by the `mac address-table static` command.

- **lock**— Secure mode without MAC learning. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

- **secure permanent**— Secure mode with limited learning permanent secure MAC addresses with the `permanent` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

- **secure delete-on-reset**— Secure mode with limited learning secure MAC addresses with the `delete-on-reset` time-of-live. The static and secure MAC addresses may be added on the port manually by the `mac address-table static` command.

Default Configuration

The default port security mode is `lock`.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The default port mode is called regular. In this mode, the port allows unlimited learning of dynamic addresses.

The static MAC addresses may be added on the port manually by the `mac address-table static` command.

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Use the `port security mode` command to change the default mode before the `port security` command.
Example

The following example sets the port security mode to Lock for gi4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# port security mode
lock
switchxxxxxx(config-if)# port security
switchxxxxxx(config-if)# exit
```

4.24 port security max

To configure the maximum number of addresses that can be learned on the port while the port is in port, max-addresses or secure mode, use the `port security max` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
port security max max-addr
no port security max
```

Parameters

- `max-addr`—Specifies the maximum number of addresses that can be learned on the port. (Range: 0–256)

Default Configuration

This default maximum number of addresses is 1.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.
Use this command to change the default value before the **port security** command.

Example

The following example sets the port to limited learning mode:

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# port security mode max
switchxxxxxx(config-if)# port security max 20
switchxxxxxx(config-if)# port security
switchxxxxxx(config-if)# exit
```

4.25 show mac address-table

To display entries in the MAC address table, use the **show mac address-table** Privileged EXEC mode command.

Syntax

```
show mac address-table [dynamic | static | secure] [vlan vlan] [interface interface-id] [address mac-address]
```

Parameters

- **dynamic**—(Optional) Displays only dynamic MAC address table entries.
- **static**—(Optional) Displays only static MAC address table entries.
- **secure**—(Optional) Displays only secure MAC address table entries.
- **vlan**—(Optional) Displays entries for a specific VLAN.
- **interface interface-id**—(Optional) Displays entries for a specific interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **address mac-address**—(Optional) Displays entries for a specific MAC address.

Default Configuration

If no parameters are entered, the entire table is displayed.
Command Mode
Privileged EXEC mode

User Guidelines
Internal usage VLANs (VLANs that are automatically allocated on routed ports) are presented in the VLAN column by a port number and not by a VLAN ID.

Examples

Example 1 - Displays entire address table.

```
switchxxxxxx# show mac address-table
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:26:08:13:23</td>
<td>0</td>
<td>self</td>
</tr>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>gi1</td>
<td>static</td>
</tr>
<tr>
<td>1</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi2</td>
<td>dynamic</td>
</tr>
<tr>
<td>2</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi3</td>
<td>dynamic</td>
</tr>
<tr>
<td>gi4</td>
<td>00:a1:b0:69:61:12</td>
<td>gi4</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
```

Example 2 - Displays address table entries containing the specified MAC address.

```
switchxxxxxx# show mac address-table address 00:3f:bd:45:5a:b1
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>static</td>
<td>gi4</td>
</tr>
</tbody>
</table>
```

4.26 show mac address-table count

To display the number of addresses present in the Forwarding Database, use the show mac address-table count Privileged EXEC mode command.
Syntax

`show mac address-table count [vlan vlan | interface interface-id]`

Parameters

- `vlan vlan`—(Optional) Specifies VLAN.
- `interface-id interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show mac address-table count` command to display the Forwarding Database capacity (total number of entries), free entries (the number of entries that can still be used) and the consumed entries breakdown by type of entry. The following entry types are displayed:

- Used Unicast - Occupied Forwarding Database entries which are layer 2 MAC unicast addresses.
- Used Multicast - Occupied Forwarding Database entries which are layer 2 MAC Multicast addresses.
- IPv4 hosts - Occupied Forwarding Database entries which are IPv4 Layer 3 host entries.
- IPv6 hosts - Occupied Forwarding Database entries which are IPv6 Layer 3 host entries.
- Secure - The amount of the secure unicast entries.
- Dynamic Unicast- The amount of the dynamic unicast entries.
- Static Unicast - The amount of the static (configured by user) unicast entries.
- Internal - The amount of the internal entries. For example device own MAC address.

The Secure, Dynamic Unicast, Static Unicast and Internal entry types present further breakdown of the Used Unicast entries.

The total number of consumed entries is the aggregate value of the following entry types: Used Unicast; Used Multicast ;IPv4 hosts ;IPv6 hosts .

If the `Interface` parameter is used the command will display only the following entry types: Used Unicast, secure, Dynamic Unicast, Static Unicast and Internal.
Examples

Example 1 - The following example displays the number of entries present in forwarding table for the entire device:

```
switchxxxxxx# show mac address-table count
This may take some time.
Capacity : 16384
Free : 16378
Used unicast : 5
Used multicast : 1
Used IPv4 hosts : 1
Used IPv6 hosts : 1 (each IPv6 host consumes 2 entries in MAC address table)
Secure : 0
Dynamic unicast : 2
Static unicast : 2
Internal : 1
console#
```

Example 2 - The following example displays the number of entries present in forwarding table for a specific device interface.

```
switchxxxxxx# show mac address-table count interface gi1
This may take some time.
Capacity : 16384
Free : 16378
Used unicast : 5
Secure : 0
Dynamic unicast : 2
Static unicast : 2
Internal : 0
console#
```
4.27 show bridge multicast mode

To display the Multicast bridging mode for all VLANs or for a specific VLAN, use the `show bridge multicast mode` Privileged EXEC mode command.

Syntax

`show bridge multicast mode [vlan vlan-id]`

Parameters

`vlan vlan-id`—(Optional) Specifies the VLAN ID.

Command Mode

Privileged EXEC mode

Example

The following example displays the Multicast bridging mode for all VLANs

```
switchxxxxxx# show bridge multicast mode
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IPv4 Multicast Mode</th>
<th>IPv6 Multicast Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin</td>
<td>Oper</td>
</tr>
<tr>
<td>1</td>
<td>MAC-GROUP</td>
<td>MAC-GROUP</td>
</tr>
<tr>
<td>11</td>
<td>IPv4-GROUP</td>
<td>IPv4-GROUP</td>
</tr>
<tr>
<td>12</td>
<td>IPv4-SRC-</td>
<td>IPv4-SRC-</td>
</tr>
<tr>
<td></td>
<td>GROUP</td>
<td>GROUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.28 show bridge multicast address-table

To display Multicast MAC addresses or IP Multicast address table information, use the `show bridge multicast address-table` Privileged EXEC mode command.
Syntax

show bridge multicast address-table [vlan vlan-id]

show bridge multicast address-table [vlan vlan-id] [address mac-multicast-address] [format {ip | mac}]

show bridge multicast address-table [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]

show bridge multicast address-table [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]

Parameters

- **vlan-id vlan-id**—(Optional) Display entries for specified VLAN ID.
- **address**—(Optional) Display entries for specified Multicast address. The possible values are:
 - **mac-multicast-address**—(Optional) Specifies the MAC Multicast address.
 - **ipv4-multicast-address**—(Optional) Specifies the IPv4 Multicast address.
 - **ipv6-multicast-address**—(Optional) Specifies the IPv6 Multicast address.
- **format**—(Optional) Applies if mac-multicast-address was selected. In this case either MAC or IP format can be displayed. Display entries for specified Multicast address format. The possible values are:
 - **ip**—Specifies that the Multicast address is an IP address.
 - **mac**—Specifies that the Multicast address is a MAC address.
- **source**—(Optional) Specifies the source address. The possible values are:
 - **ipv4-address**—(Optional) Specifies the source IPv4 address.
 - **ipv6-address**—(Optional) Specifies the source IPv6 address.

Default Configuration

If the **format** is not specified, it defaults to **mac** (only if mac-multicast-address was entered).
If VLAN ID is not entered, entries for all VLANs are displayed.
If MAC or IP address is not supplied, entries for all addresses are displayed.

Command Mode

Privileged EXEC mode
User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000 through 0100.5e7f.ffff.

Multicast router ports (defined statically or discovered dynamically) are members in all MAC groups.

Ports that were defined via the `bridge multicast forbidden forward-all` command are displayed in all forbidden MAC entries.

Changing the Multicast mode can move static Multicast addresses that are written in the device FDB to a shadow configuration because of FDB hash collisions.

Example

The following example displays bridge Multicast address information.

```markdown
switchxxxxx# show bridge multicast address-table
Multicast address table for VLANs in MAC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>Static</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>gi4</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.0.0.251</td>
<td>Dynamic</td>
<td>gi2</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.5.6.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>233.22.2.6</td>
<td></td>
</tr>
</tbody>
</table>
```
Multicast address table for VLANs in IPv4-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.2.2.251</td>
<td>11.2.2.3</td>
<td>Dynamic</td>
<td>gi1</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>*</td>
<td>gi4</td>
</tr>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>1.1.1.11</td>
<td>gi4</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-GROUP bridging mode:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>Static</td>
<td>gi1-2, gi3, Po1</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>gi4</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>Static</td>
<td>gi1-2, gi3, Po1</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:fe00:200</td>
<td>Static</td>
<td>fe80::200</td>
</tr>
</tbody>
</table>

Forbidden ports for Multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>gi4</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:fe00:200</td>
<td>gi4</td>
</tr>
</tbody>
</table>
4.29 show bridge multicast address-table static

To display the statically-configured Multicast addresses, use the show bridge multicast address-table static Privileged EXEC mode command.

Syntax

```
show bridge multicast address-table static [vlan vlan-id] [all]
show bridge multicast address-table static [vlan vlan-id] [address mac-multicast-address] [mac| ip]
show bridge multicast address-table static [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]
show bridge multicast address-table static [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]
```

Parameters

- **vlan vlan-id**—(Optional) Specifies the VLAN ID.
- **address**—(Optional) Specifies the Multicast address. The possible values are:
 - **mac-multicast-address**—(Optional) Specifies the MAC Multicast address.
 - **ipv4-multicast-address**—(Optional) Specifies the IPv4 Multicast address.
 - **ipv6-multicast-address**—(Optional) Specifies the IPv6 Multicast address.
- **source**—(Optional) Specifies the source address. The possible values are:
 - **ipv4-address**—(Optional) Specifies the source IPv4 address.
 - **ipv6-address**—(Optional) Specifies the source IPv6 address.

Default Configuration

When all/mac/ip is not specified, all entries (MAC and IP) will be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000—0100.5e7f.ffff.
Example

The following example displays the statically-configured Multicast addresses.

```
switchxxxxxxx# show bridge multicast address-table static

MAC-GROUP table
Vlan  MAC Address     Ports
----  ---------------  -------
  1  0100.9923.8787    gi1, gi2
Forbidden ports for multicast addresses:
Vlan  MAC Address     Ports
----  ---------------  -------

IPv4-GROUP Table
Vlan  IP Address     Ports
----  ---------------  -------
  1  231.2.2.3        gi1, gi2
  19 231.2.2.8        gi2-3
Forbidden ports for multicast addresses:
Vlan  IP Address     Ports
----  ---------------  -------
  1  231.2.2.3        gi4
  19 231.2.2.8        gi3

IPv4-SRC-GROUP Table:
Vlan  Group Address  Source address  Ports
----  -----------------  --------------  -------

Forbidden ports for multicast addresses:
Vlan  Group Address  Source address  Ports
----  -----------------  --------------  -------

IPv6-GROUP Table
Vlan  IP Address     Ports
----  ---------------  -------
  19  FF12::8         gi1-4
Forbidden ports for multicast addresses:
```
4.30 show bridge multicast filtering

To display the Multicast filtering configuration, use the `show bridge multicast filtering` Privileged EXEC mode command.

Syntax

`show bridge multicast filtering vlan-id`

Parameters

- **vlan-id**—Specifies the VLAN ID. (Range: Valid VLAN)

Default Configuration

None

Command Mode

Privileged EXEC mode

Address Table Commands

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>FF12::3</td>
<td>gi4</td>
</tr>
<tr>
<td>191</td>
<td>FF12::8</td>
<td>gi4</td>
</tr>
</tbody>
</table>

IPv6-SRC-GROUP Table:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>FF12::8</td>
<td>FE80::201:C9A9:FE40:8988</td>
<td>gi1-4</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>FF12::3</td>
<td>FE80::201:C9A9:FE40:8988</td>
<td>gi4</td>
</tr>
</tbody>
</table>
Example

The following example displays the Multicast configuration for VLAN 1.

```
switchxxxxxx# show bridge multicast filtering 1
Filtering: Enabled
VLAN: 1
Forward-All
Port Static Status
---- -------- ------
gi1 Forbidden Filter
    Forward Forward(s)
gi3    - Forward(d)
```

4.31 show bridge multicast unregistered

To display the unregistered Multicast filtering configuration, use the `show bridge multicast unregistered` Privileged EXEC mode command.

Syntax

```
show bridge multicast unregistered [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

Display for all interfaces.

Command Mode

Privileged EXEC mode
Example

The following example displays the unregistered Multicast configuration.

```
switchxxxxxx# show bridge multicast unregistered
Port Unregistered
------ ---------------
  gi1  Forward
  gi2  Filter
  gi3  Filter
```

4.32 show ports security

To display the port-lock status, use the `show ports security` Privileged EXEC mode command.

Syntax

`show ports security [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the port-lock status of all ports.

```
switchxxxxxx# show ports security
```
Address Table Commands

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Action</th>
<th>Maximum</th>
<th>Trap</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>Max-</td>
<td>Discard</td>
<td>3</td>
<td>Enabled</td>
<td>100</td>
</tr>
<tr>
<td>gi2</td>
<td>Disabled</td>
<td>Max-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>Lock</td>
<td>Discard</td>
<td>8</td>
<td>Disabled</td>
<td>-</td>
</tr>
</tbody>
</table>

The following table describes the fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Status</td>
<td>The port security status. The possible values are: Enabled or Disabled.</td>
</tr>
<tr>
<td>Action</td>
<td>The action taken on violation.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of addresses that can be associated on this port in the Max-Addresses mode.</td>
</tr>
<tr>
<td>Trap</td>
<td>The status of SNMP traps. The possible values are: Enable or Disable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The minimum time interval between consecutive traps.</td>
</tr>
</tbody>
</table>

4.33 show ports security addresses

To display the current dynamic addresses in locked ports, use the `show ports security addresses` Privileged EXEC mode command.

Syntax

`show ports security addresses [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.
Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays dynamic addresses in all currently locked port:

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Current</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>gi2</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi4</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

...
5.1 aaa authentication login

Use the `aaa authentication login` Global Configuration mode command to set one or more authentication methods to be applied during login. Use the `no` form of this command to restore the default authentication method.

Syntax

```
aaa authentication login [authorization] {default | list-name} method1 [method2...]
no aaa authentication login {default | list-name}
```

Parameters

- `authorization`—Specifies that authentication and authorization are applied to the given list. If the keyword is not configured, then only authentication is applied to the given list.

- `default`—Uses the authentication methods that follow this argument as the default method list when a user logs in (this list is unnamed).

- `list-name`—Specifies a name of a list of authentication methods activated when a user logs in. (Length: 1–12 characters)

- `method1 [method2...]`—Specifies a list of methods that the authentication algorithm tries (in the given sequence). Each additional authentication method is used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify `none` as the final method in the command line. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>local</td>
<td>Uses the locally-defined usernames for authentication.</td>
</tr>
</tbody>
</table>
Default Configuration

If no methods are specified, the default are the locally-defined users and passwords. This is the same as entering the command `aaa authentication login local`.

Command Mode

Global Configuration mode

User Guidelines

Create a list of authentication methods by entering this command with the `list-name` parameter where `list-name` is any character string. The method arguments identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created with this command are used with the `login authentication` command.

Note. If authorization is enabled for login and the switch receives from a TACACS+ server user level 15, then the enable command is not required and if received level 1 the enable command is required.

The `no aaa authentication login list-name` command deletes a list-name only if it has not been referenced by another command.

Example

The following example sets the authentication login methods for the console.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```

5.2 aaa authentication enable

The **aaa authentication enable** Global Configuration mode command sets one or more authentication methods for accessing higher privilege levels. To restore the default authentication method, use the `no` form of this command.
Syntax

`aaa authentication enable [authorization] {default | list-name} method [method2...]}

no aaa authentication enable {default | list-name}

Parameters

- **authorization**—Specifies that authentication and authorization are applied to the given list. If the keyword is not configured, then only authentication is applied to the given list.
- **default**—Uses the listed authentication methods that follow this argument as the default method list, when accessing higher privilege levels.
- **list-name** —Specifies a name for the list of authentication methods activated when a user accesses higher privilege levels. (Length: 1–12 characters)
- **method [method2...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The `enable password` command defines the default authentication login method. This is the same as entering the command `aaa authentication enable default enable`.

On a console, the enable password is used if a password exists. If no password is set, authentication still succeeds. This is the same as entering the command `aaa authentication enable default enable none`.

Command Mode

Global Configuration mode
User Guidelines

Create a list by entering the `aaa authentication enable list-name method1 [method2...]` command where `list-name` is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

The default and list names created by this command are used with the `enable authentication` command.

All `aaa authentication enable` requests sent by the device to a RADIUS server include the username `Senabx$x,$`, where x is the requested privilege level.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

`no aaa authentication enable list-name` deletes list-name if it has not been referenced.

Example

The following example sets the enable password for authentication for accessing higher privilege levels.

```
switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list
```

5.3 login authentication

The `login authentication` Line Configuration mode command specifies the login authentication method list for a remote Telnet or console session. Use the `no` form of this command to restore the default authentication method.

Syntax

```
login authentication {default | list-name}
```

Parameters

- `default`—Uses the default list created with the `aaa authentication login` command.
- `list-name`—Uses the specified list created with the `aaa authentication login` command.
Default Configuration

default

Command Mode

Line Configuration Mode

Examples

Example 1 - The following example specifies the login authentication method as the default method for a console session.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication default
```

Example 2 - The following example sets the authentication login methods for the console as a list of methods.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```

5.4 enable authentication

The **enable authentication** Line Configuration mode command specifies the authentication method for accessing a higher privilege level from a remote Telnet or console. Use the **no** form of this command to restore the default authentication method.

Syntax

```
enable authentication {default | list-name}
```

no enable authentication

Parameters

- **default**—Uses the default list created with the **aaa authentication enable** command.
- **list-name**—Uses the specified list created with the **aaa authentication enable** command.
Default Configuration

default.

Command Mode

Line Configuration Mode

Examples

Example 1 - The following example specifies the authentication method as the default method when accessing a higher privilege level from a console.

```plaintext
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication default
```

Example 2 - The following example sets a list of authentication methods for accessing higher privilege levels.

```plaintext
switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list
```

5.5 ip http authentication

The **ip http authentication** Global Configuration mode command specifies authentication methods for HTTP server access. Use the **no** form of this command to restore the default authentication method.

Syntax

```
ip http authentication aaa login-authentication [login-authorization] method1 [method2...]
no ip http authentication aaa login-authentication
```

Parameters

- **login-authorization**—Specifies that authentication and authorization are applied. If the keyword is not configured, then only authentication is applied.
• \textit{method [method2...]—}Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify \texttt{none} as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The local user database is the default authentication login method. This is the same as entering the \texttt{ip http authentication local} command.

Command Mode

Global Configuration mode

User Guidelines

The command is relevant for HTTP and HTTPS server users.

Example

The following example specifies the HTTP access authentication methods.

\begin{verbatim}
switchxxxxxxx(config)# ip http authentication aaa login-authentication radius local none
\end{verbatim}

5.6 show authentication methods

The \texttt{show authentication methods} Privileged EXEC mode command displays information about the authentication methods.

Syntax

\texttt{show authentication methods}
Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the authentication configuration:

```
switchxxxxxx# show
authentication methods
Login Authentication Method Lists
----------------------------------------
Default: Radius, Local, Line
Console_Login(with authorization): Line, None

Enable Authentication Method Lists
--------------------------------------
Default: Radius, Enable
Console_Enable(with authorization): Enable, None

<table>
<thead>
<tr>
<th>Line</th>
<th>Login Method List</th>
<th>Enable Method List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Console_Login</td>
<td>Console_Enable</td>
</tr>
<tr>
<td>Telnet</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>SSH</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

HTTP, HTTPS: Radius, local
Dot1x: Radius
```
5.7 password

Use the **password** Line Configuration mode command to specify a password on a line (also known as an access method, such as a console or Telnet). Use the **no** form of this command to return to the default password.

Syntax

```
password password [encrypted]
no password
```

Parameters

- **password**—Specifies the password for this line. (Length: 0–159 characters)
- **encrypted**—Specifies that the password is encrypted and copied from another device configuration.

Default Configuration

No password is defined.

Command Mode

Line Configuration Mode

Example

The following example specifies the password ‘secret’ on a console.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# password secret
```

5.8 enable password

Use the **enable password** Global Configuration mode command to set a local password to control access to normal and privilege levels. Use the **no** form of this command to return to the default password.
Syntax

```
enable password [level privilege-level] {unencrypted-password | encrypted
encrypted-password}
```

```
no enable password [level level]
```

Parameters

- `level privilege-level`—Level for which the password applies. If not specified, the level is 15. (Range: 1–15)

- `unencrypted-password`—Password for this level. (Range: 0–159 chars)

- `password encrypted encrypted-password`—Specifies that the password is encrypted. Use this keyword to enter a password that is already encrypted (for instance that you copied from another the configuration file of another device). (Range: 1–40)

Default Configuration

Default for `level` is 15.

Passwords are encrypted by default.

Command Mode

Global Configuration mode

User Guidelines

When the administrator configures a new `enable` password, this password is encrypted automatically and saved to the configuration file. No matter how the password was entered, it appears in the configuration file with the keyword `encrypted` and the encrypted value.

If the administrator wants to manually copy a password that was configured on one switch (for instance, switch B) to another switch (for instance, switch A), the administrator must add `encrypted` in front of this encrypted password when entering the `enable` command in switch A. In this way, the two switches will have the same password.

Passwords are encrypted by default. You only are required to use the `encrypted` keyword when you are actually entering an encrypted keyword.

Examples

Example 1 - The command sets a password that has already been encrypted. It will copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.
switchxxxxxx(config)# enable password encrypted
4b529f21c93d4706090285b0c10172eb073ffebe4

Example 2 - The command sets an unencrypted password for level 7 (it will be encrypted in the configuration file).

switchxxxxxx(config)# enable password level 7 let-me-in

5.9 service password-recovery

Use the service password-recovery Global Configuration mode command to enable the password-recovery mechanism. This mechanism allows an end user, with physical access to the console port of the device, to enter the boot menu and trigger the password recovery process. Use the no service password-recovery command to disable the password-recovery mechanism. When the password-recovery mechanism is disabled, accessing the boot menu is still allowed and the user can trigger the password recovery process. The difference is, that in this case, all the configuration files and all the user files are removed. The following log message is generated to the terminal: “All the configuration and user files were removed”.

Syntax

service password-recovery
no service password-recovery

Parameters

N/A

Default Configuration

The service password recovery is enabled by default.

Command Mode

Global Configuration mode

User Guidelines

• If password recovery is enabled, the user can access the boot menu and trigger the password recovery in the boot menu. All configuration files and user files are kept.
• If password recovery is disabled, the user can access the boot menu and trigger the password recovery in the boot menu. The configuration files and user files are removed.

• If a device is configured to protect its sensitive data with a user-defined passphrase for (Secure Sensitive Data), then the user cannot trigger the password recovery from the boot menu even if password recovery is enabled.

Example
The following command disables password recovery:

```
switchxxxxxx(config)# no service password recovery
```

Note that choosing to use Password recovery option in the Boot Menu during the boot process will remove the configuration files and the user files. Would you like to continue ? Y/N.

5.10 username

Use the `username` Global Configuration mode command to establish a username-based authentication system. Use the `no` form to remove a user name.

Syntax

```
username name {nopassword | {password {unencrypted-password | {encrypted encrypted-password}}}} | {privilege privilege-level {unencrypted-password | {encrypted encrypted-password}}}

no username name
```

Parameters

• `name`—The name of the user. (Range: 1–20 characters)

• `nopassword`—No password is required for this user to log in.

• `password`—Specifies the password for this username. (Range: 1–64)

• `unencrypted-password`—The authentication password for the user. (Range: 1–159)

• `encrypted encrypted-password`—Specifies that the password is MD5 encrypted. Use this keyword to enter a password that is already encrypted (for instance that you copied from another the configuration file of another device). (Range: 1–40)
• **privilege privilege-level** — Privilege level for which the password applies. If not specified the level is 1. (Range: 1–15).

Default Configuration

No user is defined.

Command Mode

Global Configuration mode

Usage Guidelines

The last level 15 user (regardless of whether it is the default user or any user) cannot be removed and cannot be a remote user.

Examples

Example 1 - Sets an unencrypted password for user tom (level 15). It will be encrypted in the configuration file.

```
switchxxxxxx(config)# username tom password 1234
```

Example 2 - Sets a password for user jerry (level 15) that has already been encrypted. It will be copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

```
switchxxxxxx(config)# username jerry privilege 15 encrypted
4b529f21c93d4706090285b0c10172eb073ffebe4
```

5.11 show users accounts

The **show users accounts** Privileged EXEC mode command displays information about the users local database.

Syntax

```
show users accounts
```

Parameters

N/A
Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

The following example displays information about the users local database:

```
switchxxxxxx# show users accounts

Username                  Privilege Expiry date
------------------------- --------- -------------------
Bob                      15        Jan 18 2005
Robert                   15        Jan 19 2005
Smith                    15

```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level.</td>
</tr>
<tr>
<td>Password Expiry date</td>
<td>The user’s password expiration date.</td>
</tr>
</tbody>
</table>

5.12 passwords aging

Use the **passwords aging** Global Configuration mode command to enforce password aging. Use the **no** form of this command to return to default.

Syntax

```
passwords aging days

no passwords aging
```
Parameters

- \textit{days}—Specifies the number of days before a password change is forced. You can use 0 to disable aging. (Range: 0–365).

Default Configuration

180

Command Mode

Global Configuration mode

User Guidelines

Aging is relevant only to users of the local database with privilege level 15 and to enable a password of privilege level 15.

To disable password aging, use \texttt{passwords aging 0}.

Using \texttt{no passwords aging} sets the aging time to the default.

Example

The following example configures the aging time to be 24 days.

\begin{verbatim}
switchxxxxxx(config)# passwords aging 24
\end{verbatim}

5.13 show passwords configuration

The \texttt{show passwords configuration} Privileged EXEC mode command displays information about the password management configuration.

Syntax

\texttt{show passwords configuration}

Parameters

N/A

Default Configuration

N/A
Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Enable Passwords
Level
-----
1
15
Line Passwords
Line
-----

Console
Telnet
SSH
```
6.1 boot host auto-config

Use the `boot host auto-config` Global Configuration mode command to enable auto configuration via DHCP. Use the `no` form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-config [tftp | scp | auto [extension]]
```

```
o boot host auto-config
```

Parameters

- `tftp`—Only the TFTP protocol is used by auto-configuration.
- `scp`—Only the SCP protocol is used by auto-configuration.
- `auto`—(Default) Auto-configuration uses the TFTP or SCP protocol depending on the configuration file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
 - `extension`—The SCP file extension. When no value is specified, 'scp' is used. (Range: 1-16 characters)

Default Configuration

Auto configuration via DHCP is disabled.

Command Mode

Global Configuration mode

User Guidelines

The TFTP or SCP protocol is used to download/upload a configuration file.
Examples

Example 1. The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
switchxxxxxx(config)# boot host auto-config auto scon
```

Example 2. The following example specifies the auto mode and does not provide an SCP extension.

In this case "scp" is used.
```
switchxxxxxx(config)# boot host auto-config auto
```

Example 3. The following example specifies that only the SCP protocol will be used:

```
switchxxxxxx(config)# boot host auto-config scp
```

6.2 boot host auto-update

Use the `boot host auto-update` Global Configuration mode command to enable the support of auto update via DHCP. Use the `no` form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-update [tftp | scp | auto [extension]]
```

```
o boot host auto-update
```

Parameters

- **tftp**—Only the TFTP protocol is used by auto-update.
- **scp**—Only the SCP protocol is used by auto-update.
- **auto** (Default)—Auto-configuration uses the TFTP or SCP protocol depending on the Indirect image file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
- **extension**—The SCP file extension. When no value is specified, 'scp' is used. (Range: 1-16 characters)
Default Configuration
Auto update via DHCP is disabled.

Command Mode
Global Configuration mode

User Guidelines
The TFTP or SCP protocol is used to download/upload an image file.

Examples

Example 1—The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
switchxxxxxx(config)# boot host auto-update auto scon
```

Example 2—The following example specifies the auto mode and does not provide an SCP extension. In this case "scp" is used.

```
switchxxxxxx(config)# boot host auto-update auto
```

Example 3—The following example specifies that only the SCP protocol will be used:

```
switchxxxxxx(config)# boot host auto-update scp
```

6.3 show boot

Use the show boot Privilege EXEC mode command to show the status of the IP DHCP Auto Config process.

Syntax

```
show boot
```

Parameters

N/A
Auto-Update and Auto-Configuration

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Examples

```
switchxxxxxx# show boot
Auto Config

----------
Config Download via DHCP: enabled
Download Protocol: auto
SCP protocol will be used for files with extension: scp
Configuration file auto-save: enabled
Auto Config State: Finished successfully
Server IP address: 1.2.20.2
Configuration filename: /config/configfile1.cfg

Auto Update

----------
Image Download via DHCP: enabled

switchxxxxxx# show boot
Auto Config

----------
Config Download via DHCP: enabled
Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Opening <hostname>-config file

Auto Update

----------
```
Image Download via DHCP: enabled

switchxxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
 "Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Downloading configuration file
 Auto Update

Image Download via DHCP: enabled

switchxxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
Auto Config State: Searching device hostname in indirect file
 Auto Update

Image Download via DHCP: enabled

switchxxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
 Auto Update

Auto-Update and Auto-Configuration

Image Download via DHCP: enabled
Auto Update State: Downloaded indirect image file
Indirect Image filename: /image/indirectimage.txt

switchxxxxxx# show boot
Auto Config

Config Download via DHCP: enabled and blocked by PnP agent
Download Protocol: tftp
Configuration file auto-save: enabled
 Auto Update

Image Download via DHCP: enabled and blocked by PnP agent
Auto Update State: Downloaded indirect image file
Indirect Image filename: /image/indirectimage.txt

6.4 ip dhcp tftp-server ip address

Use the **ip dhcp tftp-server ip address** Global Configuration mode command to set the backup server’s IP address. This address server as the default address used by a switch when it has not been received from the DHCP server. Use the **no** form of the command to return to default.

Syntax

ip dhcp tftp-server ip address ip-addr
no ip dhcp tftp-server ip address

Parameters

- *ip-addr*—IPv4 Address, or IPv6 Address or DNS name of TFTP or SCP server.

Default Configuration

No IP address
Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Examples

Example 1. The example specifies the IPv4 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address 10.5.234.232
```

Example 2. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address 3000:1::12
```

Example 3. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address tftp-server.company.com
```

6.5 **ip dhcp tftp-server file**

Use the `ip dhcp tftp-server file` Global Configuration mode command to set the full file name of the configuration file to be downloaded from the backup server when it has not been received from the DHCP server. Use the `no` form of this command to remove the name.

Syntax

```
ip dhcp tftp-server file file-path
no ip dhcp tftp-server file
```

Parameters

- `file-path`—Full file path and name of the configuration file on the server.
Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or an SCP server.

Examples

```
switchxxxxxxxx(config)# ip dhcp tftp-server file conf/conf-file
```

6.6 **ip dhcp tftp-server image file**

Use the **ip dhcp tftp-server image file** Global Configuration mode command to set the indirect file name of the image file to be downloaded from the backup server when it has not been received from the DHCP server. Use the **no** form of this command to remove the file name.

Syntax

```
ip dhcp tftp-server image file file-path
no ip dhcp tftp-server image file
```

Parameters

- **file-path**—Full indirect file path and name of the configuration file on the server.

Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.
Examples

switchxxxxxx(config)# ip dhcp tftp-server image file imag/imag-file

6.7 show ip dhcp tftp-server

Use the `show ip dhcp tftp-server` EXEC mode command to display information about the backup server.

Syntax

`show ip dhcp tftp-server`

Parameters

N/A

Default Configuration

N/A

Command Mode

User EXEC mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Example

```
show ip dhcp tftp-server
server address
active 1.1.1.1 from sname
manual 2.2.2.2
file path on server
active conf/conf-file from option 67
manual conf/conf-file1
```
Bonjour Commands

7.1 bonjour enable

To enable Bonjour globally, use the `bonjour enable` command in Global Configuration mode. To disable Bonjour globally, use the `no` format of the command.

Syntax

`bonjour enable`

`no bonjour enable`.

Default Configuration

Enable

Command Mode

Global Configuration mode

Examples

```
switchxxxxxx(config)# bonjour enable
```

7.2 bonjour interface range

To add L2 interfaces to the Bonjour L2 interface list, use the `bonjour interface range` command in Global Configuration mode. To remove L2 interfaces from this list, use the `no` format of the command.

Syntax

`bonjour interface range interface-list`

`no bonjour interface range [interface-list]`
Bonjour Commands

Parameters

- interface-list—Specifies a list of interfaces. Only interfaces supporting L2 Multicast forwarding can be specified. The following types: LAN and point, which support be of the following types: Ethernet port, Port-channel, and VLAN.

Default Configuration

The list includes the Default VLAN.

Command Mode

Global Configuration mode

User Guidelines

The Bonjour L2 interface list specifies a set of interfaces on which Bonjour is enabled.

Use the `bonjour interface range interface-list` command, to add the specified interfaces to the Bonjour L2 interface list.

Use the `no bonjour interface range interface-list` command, to remove the specified interfaces from the Bonjour L2 interface list.

Use the `no bonjour interface range` command, to clear the Bonjour L2 interface list.

Examples

```
switchxxxxxx(config)# bonjour interface range VLAN 100-103
```

7.3 show bonjour

To display Bonjour information, use the `show bonjour` command in Privileged EXEC mode.

Syntax

`show bonjour [interface-id]`

Parameters

- interface-id—Specifies an interface.

Command Mode

Privileged EXEC mode
Examples

The example displays Bonjour status.

```
switchxxxxxx# show bonjour
Bonjour global status: enabled
Bonjour L2 interfaces list: vlans 1

<table>
<thead>
<tr>
<th>Service</th>
<th>Admin Status</th>
<th>Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>csco-sb</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>http</td>
<td>enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>https</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>ssh</td>
<td>enabled</td>
<td>disabled</td>
</tr>
<tr>
<td>telnet</td>
<td>enabled</td>
<td>disabled</td>
</tr>
</tbody>
</table>
```
CDP Commands

8.1 cdp advertise-v2

To specify version 2 of transmitted CDP packets, use the `cdp advertise-v2` command in Global Configuration mode. To specify version 1, use the `no` form of this command.

Syntax

`cdp advertise-v2`

`no cdp advertise-v2`

Parameters

N/A

Default Configuration

Version 2.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config)# cdp advertise-v2
```

8.2 cdp appliance-tlv enable

To enable sending of the Appliance TLV, use the `cdp appliance-tlv enable` command in Global Configuration mode. To disable the sending of the Appliance TLV, use the `no` form of this command.
Syntax

cdp appliance-tlv enable

no cdp appliance-tlv enable

Parameters

N/A

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

This MIB specifies the Voice Vlan ID (VVID) to which this port belongs:

- **0**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 0. VoIP and related packets are expected to be sent and received with VLAN-ID=0 and an 802.1p priority.

- **1..4094**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with N. VoIP and related packets are expected to be sent and received with VLAN-ID=N and an 802.1p priority.

- **4095**—The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 4095. VoIP and related packets are expected to be sent and received untagged without an 802.1p priority.

- **4096**—The CDP packets transmitting through this port do not include Appliance VLAN-ID TLV; or, if the VVID is not supported on the port, this MIB object will not be configurable and will return 4096.

Example

```
switchxxxxxx(config)# cdp appliance-tlv enable
```
8.3 cdp device-id format

To specify the format of the Device-ID TLV, use the `cdp device-id format` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
cdp device-id format {mac | serial-number | hostname}
```

```
no cdp device-id format
```

Parameters

- `mac`—Specifies that the Device-ID TLV contains the device’s MAC address.
- `serial-number`—Specifies that Device-ID TLV contains the device’s hardware serial number.
- `hostname`—Specifies that Device-ID TLV contains the device’s hostname.

Default Configuration

MAC address is selected by default.

Command Mode

Global Configuration mode

Example

```
switchxxxxxxx(config)# cdp device-id format serial-number
```

8.4 cdp enable

To enable CDP on interface, use the `cdp enable` command in Interface (Ethernet) Configuration mode. To disable CDP on an interface, use the `no` form of the CLI command.

Syntax

```
cdp enable
```

Parameters

N/A
Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

For CDP to be enabled on an interface, it must first be enabled globally using `cdp advertise-v2`.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config-if)# interface gi1
switchxxxxxx(config-if)# cdp enable
```

8.5 `cdp holdtime`

To specify a value of the Time-to-Live field into sent CDP messages, use the `cdp holdtime` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
cdp holdtime seconds
no cdp holdtime
```

Parameters

`cdp holdtime seconds`

`no cdp holdtime`

Parameters `holdtime`

`seconds`—Value of the Time-to-Live field in seconds. The value should be greater than the value of the Transmission Timer.

Parameters range

`seconds`—10 - 255.

Default Configuration

180 seconds.
Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp holdtime 100
```

8.6 cdp log mismatch duplex

To enable validating that the duplex status of a port received in a CDP packet matches the port's actual configuration and generation the SYSLOG duplex mismatch messages if they do not match, use the **cdp log mismatch duplex** command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the `no` form of the CLI command.

Syntax

```
cdp log mismatch duplex
no cdp log mismatch duplex
```

Parameters

N/A

Default Configuration

The switch reports duplex mismatches from all ports.

Command Mode

Global Configuration mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# cdp log mismatch duplex
```
8.7 cdp log mismatch native

To enable validating that the native VLAN received in a CDP packet matches the actual native VLAN of the port and generation the SYSLOG VLAN native mismatch messages if they do not match, use the **cdp log mismatch native** Global and Interface Configuration mode command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the **no** format of the CLI command.

Syntax

```
cdp log mismatch native
no cdp log mismatch native
```

Parameters

N/A

Default Configuration

The switch reports native VLAN mismatches from all ports.

Command Mode

- Global Configuration mode
- Interface (Ethernet) Configuration mode

Example

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# cdp log mismatch native
```

8.8 cdp log mismatch voip

To enable validating that the VoIP status of the port received in a CDP packet matches its actual configuration and generation the SYSLOG voip mismatch messages if they do not match, use the **cdp log mismatch voip** Global and Interface Configuration mode command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the **no** format of the CLI command.
8 CDP Commands

Syntax

cdp log mismatch voip

no cdp log mismatch voip

Parameters

N/A

Default Configuration

The switch reports VoIP mismatches from all ports.

Command Mode

Global Configuration mode

Interface (Ethernet) Configuration mode

Example

switchxxxxxx(config)# interface gi1

switchxxxxxx(config-if)# cdp log mismatch voip

8.9 cdp mandatory-tlvs validation

To validate that all mandatory (according to the CDP protocol) TLVs are present in received CDP frames, use the cdp mandatory-tlvs validation command in Global Configuration mode. To disables the validation, use the no form of this command.

Syntax

cdp mandatory-tlvs validation

no cdp mandatory-tlvs validation

Parameters

N/A

Default Configuration

Enabled.
Command Mode

Global Configuration mode

User Guidelines

Use the command to delete CDP packets not including all the mandatory TLVs.

Example

This example turns off mandatory TLV validation:

```
switchxxxxxx(config)# no cdp mandatory-tlvs validation
```

8.10 cdp pdu

To specify CDP packets handling when CDP is globally disabled, use the cdp pdu command in Global Configuration mode. To return to default, use the no form of this command.

Syntax

```
cdp pdu [filtering | bridging | flooding]
```

```
no cdp pdu
```

Parameters

- **filtering**—Specify that when CDP is globally disabled, CDP packets are filtered (deleted).
- **bridging**—Specify that when CDP is globally disabled, CDP packets are bridged as regular data packets (forwarded based on VLAN).
- **flooding**—Specify that when CDP is globally disabled, CDP packets are flooded to all the ports in the product that are in STP forwarding state, ignoring the VLAN filtering rules.

Default Configuration

```
bridging
```

Command Mode

Global Configuration mode
User Guidelines

When CDP is globally enabled, CDP packets are filtered (discarded) on CDP-disabled ports.

In the flooding mode, VLAN filtering rules are not applied, but STP rules are applied. In case of MSTP, the CDP packets are classified to instance 0.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxxx(config)# cdp pdu flooding
```

8.11 cdp run

To enable CDP globally, use the `cdp run` command in Global Configuration mode. To disable CDP globally, use the `no` form of this command.

Syntax

```
cdp run
no cdp run
```

Parameters

N/A

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

CDP is a link layer protocols for directly-connected CDP/LLDP-capable devices to advertise themselves and their capabilities. In deployments where the CDP/LLDP capable devices are not directly connected and are separated with CDP/LLDP incapable devices, the CDP/LLDP capable devices may be able to receive the advertisement from other device(s) only if the CDP/LLDP incapable devices flood the CDP/LLDP packets they receives. If the CDP/LLDP incapable devices perform VLAN-aware flooding, then CDP/LLDP capable devices can hear each other only if they are in the same VLAN. It should be noted that a CDP/LLDP capable
device may receive advertisement from more than one device if the CDP/LLDP incapable
devices flood the CDP/LLDP packets.

To learn and advertise CDP information, it must be globally enabled (it is so by default) and
also enabled on interfaces (also by default).

Example

switchxxxxxx(config)# cdp run

8.12 cdp source-interface

To specify the CDP source port used for source IP address selection, use the `cdp` source-interface command in Global Configuration mode. To delete the source interface, use the no form of this command.

Syntax

```
cdp source-interface interface-id
no cdp source-interface
```

Parameters

`interface-id`—Source port used for Source IP address selection.

Default Configuration

No CDP source interface is specified.

Command Mode

Global Configuration mode

User Guidelines

Use the `cdp source-interface` command to specify an interface whose minimal IP address will be advertised in the TVL instead of the minimal IP address of the outgoing interface.

Example

```
switchxxxxxx(config)# cdp source-interface gi1
```
8.13 cdp timer

To specify how often CDP packets are transmitted, use the cdp timer command in Global Configuration mode. To return to default, use the no form of this command.

Syntax

cdp timer seconds

no cdp timer

Parameters

Default Configuration

60 seconds.

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# cdp timer 100

8.14 clear cdp counters

To reset the CDP traffic counters to 0, use the clear cdp counters command in Privileged EXEC mode.

Syntax

clear cdp counters [global | interface-id]

Parameters

- global—Clear only the global counters.

- interface-id—Specifies the interface identifier of the counters that should be cleared.
Command Mode

Privileged EXEC mode

User Guidelines

Use the command `clear cdp counters` without parameters to clear all the counters.

Use the `clear cdp counters global` to clear only the global counters.

Use the `clear cdp counters interface-id` command to clear the counters of the given interface.

Example

Example 1. The example clears all the CDP counters:

```
switchxxxxxx# clear cdp counters
```

Example 2. The example clears the CDP global counters.

```
switchxxxxxx# clear cdp counters global
```

Example 3. The example clears the CDP counters of Ethernet port gi1:

```
switchxxxxxx# clear cdp counters interface gi1
```

8.15 clear cdp table

To delete the CDP Cache tables, use the `clear cdp table` command in Privileged EXEC mode.

Syntax

`clear cdp table`

Parameters

N/A
Command Mode

Privileged EXEC mode

Example The example deletes all entries from the CDP Cache tables:

```
switchxxxxxx# clear cdp table
```

8.16 show cdp

To display the interval between advertisements, the number of seconds the advertisements are valid and version of the advertisements, use the `show cdp` Privileged EXEC mode command in Privileged EXEC mode.

Syntax

```
show cdp
```

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp
Global CDP information:
   cdp is globally enabled
   cdp log duplex mismatch is globally enabled
   cdp log voice VLAN mismatch is globally enabled
   cdp log native VLAN mismatch is globally disabled
Mandatory TLVs are
   Device-ID TLV (0x0001)
   Address TLV (0x0002)
   Port-ID TLV (0x0003)
   Capabilities TLV (0x0004)
   Version TLV (0x0005)
   Platform TLV (0x0006)
Sending CDPv2 advertisements is enabled
```
Sending Appliance TLV is enabled
Device ID format is Serial Number
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds

8.17 show cdp entry

To display information about specific neighbors, use the **show cdp entry** command in Privileged EXEC mode.

Syntax

```bash
show cdp entry {* | device-name} [protocol | version]
```

Parameters

- `*`—Specifies all neighbors
- `device-name`—Specifies the name of the neighbor.
- `protocol`—Limits the display to information about the protocols enabled on neighbors.
- `version`—Limits the display to information about the version of software running on the neighbors.

Default Configuration

Version

Command Mode

Privileged EXEC mode

Example

```bash
switchxxxxxx# show cdp entry

device.cisco.com
Device ID: device.cisco.com
Advertisement version: 2
Entry address(es):
  IP address: 192.168.68.18
  CLNS address: 490001.1111.1111.1111.00
```
DECnet address: 10.1
Platform: cisco 4500, Capabilities: Router
Interface: gi1, Port ID (outgoing port): Ethernet0
Holdtime: 125 sec
Version:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart

switchxxxxxx# show cdp entry device.cisco.com protocol
Protocol information for device.cisco.com:
 IP address: 192.168.68.18
 CLNS address: 490001.1111.1111.1111.00
 DECnet address: 10.1

switchxxxxxx# show cdp entry device.cisco.com version
Version information for device.cisco.com:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart

8.18 show cdp interface

To display information about ports on which CDP is enabled, use the `show cdp interface` command in Privileged EXEC mode.

Syntax

```
show cdp interface interface-id
```

Parameters

`interface-id`—Port ID.
Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp interface gi1
CDP is globally enabled
CDP log duplex mismatch
  Globally is enabled
  Per interface is enabled
CDP log voice VLAN mismatch
  Globally is enabled
  Per interface is enabled
CDP log native VLAN mismatch
  Globally is disabled
  Per interface is enabled
gi1 is Down, CDP is enabled
Sending CDP packets every 60 seconds
Holdtime is 180 seconds
```

8.19 show cdp neighbors

To display information about neighbors kept in the main or secondary cache, use the **show cdp neighbors** command in Privileged EXEC mode.

Syntax

```
show cdp neighbors [interface-id] [detail | secondary]
```

Parameters

- **interface-id**—Displays the neighbors attached to this port.
- **detail**—Displays detailed information about a neighbor (or neighbors) from the main cache including network address, enabled protocols, hold time, and software version.
- **secondary**—Displays information about neighbors from the secondary cache.
8

CDP Commands

Default Configuration
If an interface ID is not specified, the command displays information for the neighbors of all
ports.
If detail or secondary are not specified, the default is secondary.
Command Mode
Privileged EXEC mode
Example
switchxxxxxx# show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,P - VoIP Phone,
M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone
M - Remotely-Managed Device, C - CAST Phone Port,
W - Two-Port MAC Relay
Device ID

Local

Adv

Interface

Ver. Live

Time To Capability

Platform

Port ID

------------------ ----------- ---- ------- ---------- ------------ ----------PTK-SW-A-86.company

gi48

2

147

S I

ESW-520-8P

gi48

2

153

S I M

ESW-520-8P

g1

ESW-540-8P

g9

Company

fa2/1

l.com

Company

gi3/39

XX-10R-E

ESW-540-8P

gi48

2

146

S I M

003106131611

gi48

2

143

S I

001828100211

gi48

2

173

S I

XX-23R-E
Company

fa2/2

XX-23R-E
c47d4fed9302

gi48

2

137

S I

Company

fa2/5

XX-23R-E

switchxxxxxx# show cdp neighbors detail
------------------------Device ID: lab-7206
Advertisement version: 2
Entry address(es):
IP address: 172.19.169.83

188

Cisco Sx250 Ph. 2.4.5 Devices - Command Line Interface Reference Guide


Platform: company x5660, Capabilities: Router
Interface: Ethernet0, Port ID (outgoing port): gi0
Time To Live: 123 sec
Version:
Company Network Operating System Software
NOS (tm) x5660 Software (D5660-I-N), Version 18.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by company Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by xxdeeert
Duplex: half

Device ID: lab-as5300-1
Entry address(es):
 IP address: 172.19.169.87
Platform: company TD6780, Capabilities: Router
Device ID: SEP000427D400ED
Advertisement version: 2
Entry address(es):
 IP address: 1.6.1.81
Platform: Company IP Phone x8810, Capabilities: Host
Interface: gi1, Port ID (outgoing port): Port 1
Time To Live: 150 sec
Version:
P00303020204
Duplex: full
sysName: a-switch
Power drawn: 6.300 Watts

switchxxxxxxx# show cdp neighbors secondary

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay

Local Interface gi1, MAC Address: 00:00:01:23:86:9c
 TimeToLive: 157
 Capabilities: R S
 VLAN-ID: 10
 Platform: 206VXRYC

Local Interface gi1, MAC Address: 00:00:01:53:86:9c
 TimeToLive: 163
 Capabilities: R S
 VLAN-ID: 10
 Platform: ABCD-VSD

 Power Available TLV: Request-ID is 1
 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

Local Interface gi2, MAC Address: 00:00:01:2b:86:9c
 TimeToLive: 140
 Capabilities: R S
 VLAN-ID: 1210
 Platform: QACSZ

 4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: Yes
 Spare pair Detection/Classification required: Yes
 PD Spare Pair Desired State: Disabled
 PSE Spare Pair Operational State: Disabled
 Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

Local Interface gi2, MAC Address: 00:00:01:2c:86:9c
 TimeToLive: 132

Capabilities: T
VLAN-ID: 1005
Platform: CAT-3000

Field Definitions:

- **Advertisement version**—The version of CDP being used for CDP advertisements.

- **Capabilities**—The device type of the neighbor. This device can be a router, a bridge, a transparent bridge, a source-routing bridge, a switch, a host, an IGMP device, or a repeater.

- **COS for Untrusted Ports**—The COS value with which all packets received on an untrusted port should be marked by a simple switching device which cannot itself classify individual packets.

- **Device ID**—The name of the neighbor device and either the MAC address or the serial number of this device.

- **Duplex**—The duplex state of connection between the current device and the neighbor device.

- **Entry address(es)**—A list of network addresses of neighbor devices.

- **Extended Trust**—The Extended Trust.

- **External Port-ID**—Identifies the physical connector port on which the CDP packet is transmitted. It is used in devices, such as those with optical ports, in which signals from multiple hardware interfaces are multiplexed through a single physical port. It contains the name of the external physical port through which the multiplexed signal is transmitted.

- **Interface**—The protocol and port number of the port on the current device.

- **IP Network Prefix**—It is used by On Demand Routing (ODR). When transmitted by a hub router, it is a default route (an IP address). When transmitted by a stub router, it is a list of network prefixes of stub networks to which the sending stub router can forward IP packets.

- **Management Address**—When present, it contains a list of all the addresses at which the device will accept SNMP messages, including those it will only accept when received on interface(s) other than the one over which the CDP packet is being sent.

- **MTU**—The MTU of the interface via which the CDP packet is sent.

- **Native VLAN**—The ID number of the VLAN on the neighbor device.
• **Physical Location**—A character string indicating the physical location of a connector which is on, or physically connected to, the interface over which the CDP packet containing this TLV is sent.

• **Platform**—The product name and number of the neighbor device. In the case of the Secondary Cache only the 8 last characters of the value are printed.

• **Power Available**—Every switch interface transmits information in the Power Available TLV, which permits a device which needs power to negotiate and select an appropriate power setting. The Power Available TLV includes four fields.

• **Power Consumption**—The maximum amount of power, in milliwatts, expected to be obtained and consumed from the interface over which the CDP packet is sent.

• **Power Drawn**—The maximum requested power.

 Note: For IP Phones the value shown is the maximum requested power (6.3 Watts). This value can be different than the actual power supplied by the routing device (generally 5 watts; shown using the show power command).

• **Protocol-Hello**—Specifies that a particular protocol has asked CDP to piggyback its "hello" messages within transmitted CDP packets.

• **Remote Port_ID**—Identifies the port the CDP packet is sent on

• **sysName**—An ASCII string containing the same value as the sending device's sysName MIB object.

• **sysObjectID**—The OBJECT-IDENTIFIER value of the sending device's sysObjectID MIB object.

• **Time To Live**—The remaining amount of time, in seconds, the current device will hold the CDP advertisement from a transmitting router before discarding it.

• **Version**—The software version running on the neighbor device.

• **Voice VLAN-ID**—The Voice VLAN-ID.

• **VTP Management Domain**—A string that is the name of the collective group of VLANs associated with the neighbor device.

8.20 show cdp tlv

To display information about TLVs sent by CDP on all ports or on a specific port, use the `show cdp tlv` command in Privileged EXEC mode.
Syntax

`show cdp tlv [interface-id]`

Parameters

`interface-id`—Port ID.

Default Configuration

TLVs for all ports.

Command Mode

Privileged EXEC mode

User Guidelines

You can use the `show cdp tlv` command to verify the TLVs configured to be sent in CDP packets. The `show cdp tlv` command displays information for a single port if specified or for all ports if not specified. Information for a port is displayed if only CDP is really running on the port, i.e. CDP is enabled globally and on the port, which is UP.

Examples:

Example 1 - In this example, CDP is disabled and no information is displayed.

```
switchxxxxxx# show cdp tlv
cdp globally is disabled
```

Example 2 - In this example, CDP is globally enabled but disabled on the port and no information is displayed.

```
switchxxxxxx# show cdp tlv gi2
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone,M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi2
```
Example 3 - In this example, CDP is globally enabled and enabled on the port, but the port is down and no information is displayed.

```
switchxxxxxx# show cdp tlv interface gi2
```

cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi3
CDP is enabled on gi3
Ethernet gi3 is down

Example 4 - In this example, CDP is globally enabled, and no ports are specified, so information is displayed for all ports on which CDP is enabled who are up.

```
switchxxxxxx# show cdp tlv interface
```

cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1
CDP is enabled
Ethernet gi1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: No
Power Available TLV: Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

Interface TLV: gi2
 CDP is disabled on gi2
Interface TLV: gi3
 CDP is enabled on gi3
Ethernet gi3 is down

Example 5 - In this example, CDP is globally enabled and enabled on the PSE PoE port, which is up and information is displayed.

```
switchxxxxxx# show cdp tlv interface gi1
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
  S - Switch, H - Host, I - IGMP, r - Repeater,
  P - VoIP Phone, M - Remotely-Managed Device,
  C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1
  CDP is enabled
  Ethernet gi1 is up,
  Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
  Address TLV: IPv4: 1.2.2.2 IPv6:
  Port_ID TLV: gi1
```
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF
4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: Yes
 Spare pair Detection/Classification required: Yes
 PD Spare Pair Desired State: Disabled
 PSE Spare Pair Operational State: Disabled
Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

Example 6 - In this example, CDP is globally enabled and enabled on the PD PoE port, which is up and information is displayed.

switchxxxxxxx# show cdp tlv interface gi1

CDP is enabled

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1
CDP is enabled
Ethernet gi1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: No
Power Requested TLV: Request-ID is 1
 Power management-ID is 1;
 Requested Power Level is 10;
 Requested Power Level is 8;
Power Consumption TLV: 10

8.21 show cdp traffic

To display the CDP counters, including the number of packets sent and received and checksum errors, use the **show cdp traffic** command in Privileged EXEC mode.

Syntax

```
show cdp traffic [global | interface-id]
```

Parameters

- **global**—Display only the global counters
- **interface-id**—Port for which counters should be displayed.
Command Mode

Privileged EXEC mode

User Guidelines

Use the command `show cdp traffic` without parameters to display all the counters.

Use the `show cdp traffic global` to display only the global counters.

Use the `show cdp traffic interface-id` command to display the counters of the given port.

Example

```
switchxxxxxx# show cdp traffic

CDP Global counters:
  Total packets output: 81684, Input: 81790
  Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
  No memory in main cache: 0, in secondary cache: 0
  CDP version 1 advertisements output: 100, Input 0
  CDP version 2 advertisements output: 81784, Input 0

  gi1
    Total packets output: 81684, Input: 81790
    Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
    No memory in main cache: 0, in secondary cache: 0
    CDP version 1 advertisements output: 100, Input 0
    CDP version 2 advertisements output: 81784, Input 0

  gi2
    Total packets output: 81684, Input: 81790
    Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
    No memory in main cache: 0, in secondary cache: 0
    CDP version 1 advertisements output: 100, Input 0
    CDP version 2 advertisements output: 81784, Input 0
```

Field Definition:
• **Total packets output**—The number of CDP advertisements sent by the local device. Note that this value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.

• **Input**—The number of CDP advertisements received by the local device. Note that this value is the sum of the CDP Version 1 advertisements input and CDP Version 2 advertisements input fields.

• **Hdr syntax**—The number of CDP advertisements with bad headers, received by the local device.

• **Chksum error**—The number of times the checksum (verifying) operation failed on incoming CDP advertisements.

• **No memory**—The number of times the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.

• **Invalid**—The number of invalid CDP advertisements received.

• CDP version 1 advertisements output The number of CDP Version 1 advertisements sent by the local device.

• **CDP version 1 advertisements Input**—The number of CDP Version 1 advertisements received by the local device.

• **CDP version 2 advertisements output**—The number of CDP Version 2 advertisements sent by the local device.

• **CDP version 2 advertisements Input**—The number of CDP Version 2 advertisements received by the local device.
9.1 absolute

To specify an absolute time when a time range is in effect, use the `absolute` command in Time-range Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
absolute start hh:mm day month year
no absolute start

absolute end hh:mm day month year
no absolute end
```

Parameters

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.

- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.

- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- **day**—Day (by date) in the month. (Range: 1–31)

- **month**—Month (first three letters by name). (Range: Jan...Dec)

- **year**—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode
Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```

9.2 clock dhcp timezone

To specify that the timezone and the Summer Time (Daylight Saving Time) of the system can be taken from the DHCP Timezone option, use the `clock dhcp timezone` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

clock dhcp timezone

no clock dhcp timezone

Parameters

N/A

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The TimeZone taken from the DHCP server has precedence over the static TimeZone.
The Summer Time taken from the DHCP server has precedence over static SummerTime.
The TimeZone and SummerTime remain effective after the IP address lease time has expired.
The TimeZone and SummerTime that are taken from the DHCP server are cleared after reboot.
The `no` form of the command clears the dynamic Time Zone and Summer Time from the DHCP server are cleared.

In case of multiple DHCP-enabled interfaces, the following precedence is applied:

- information received from DHCPv6 precedes information received from DHCPv4
- Information received from DHCP client running on lower interface precedes information received from DHCP client running on higher interface.

Disabling the DHCP client from where the DHCP-TimeZone option was taken, clears the dynamic Time Zone and Summer Time configuration.

Example

```
switchxxxxxx(config)# clock dhcp timezone
```

9.3 clock set

To set the system clock manually, use the `clock set` command in Privileged EXEC mode.

Syntax

```
clock set hh:mm:ss {{day month} | {month day}} year
```

Parameters

- `hh:mm:ss`—Specifies the current time in hours (military format), minutes, and seconds. (Range: `hh`: 0-23, `mm`: 0-59, `ss`: 0-59)
- `day`—Specifies the current day of the month. (Range: 1-31)
- `month`—Specifies the current month using the first three letters of the month name. (Range: Jan–Dec)
- `year`—Specifies the current year. (Range: 2000–2037)

Default Configuration

The time of the image creation.

Command Mode

Privileged EXEC mode

User Guidelines

After boot the system clock is set to the time of the image creation.
Example

The following example sets the system time to 13:32:00 on March 7th, 2005.

```
switchxxxxxx# clock set 13:32:00 7 Mar 2005
```

9.4 clock source

To configure an external time source for the system clock, use the `clock source` command in Global Configuration mode. To disable the external time source, use the `no` form of this command.

Syntax

```
clock source {sntp | browser}
```

```
no clock source {sntp | browser}
```

Parameters

- `sntp`—(Optional) Specifies that an SNTP server is the external clock source.
- `browser`—(Optional) Specifies that if the system clock is not already set (either manually or by SNTP) and a user login to the device using a WEB browser (either via HTTP or HTTPS), the system clock will be set according to the browser’s time information.

Default Configuration

SNTP

Command Mode

Global Configuration mode

User Guidelines

After boot the system clock is set to the time of the image creation.

If no parameter is specified, SNTP will be configured as the time source.

If the command is executed twice, each time with a different clock source, both sources will be operational, SNTP has higher priority than time from browser.
Example

The following example configures an SNTP server as an external time source for the system clock.

```
switchxxxxxx(config)# clock source sntp
switchxxxxxx(config)# clock source browser
switchxxxxxx(config)# exit
switchxxxxxx# show clock
*10:46:48 UTC May 28 2013
Time source is sntp
Time from Browser is enabled
```

9.5 clock summer-time

To configure the system to automatically switch to summer time (Daylight Saving Time), use the `clock summer-time` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock summer-time zone recurring {usa | eu | \{week day month hh:mm week day month hh:mm\}} [offset]
clock summer-time zone date day month year hh:mm date month year hh:mm [offset]
clock summer-time zone date month day year hh:mm month day year hh:mm [offset]
no clock summer-time
```

Parameters

- `zone`—The acronym of the time zone to be displayed when summer time is in effect. (Range: up to 4 characters)
- `recurring`—Indicates that summer time starts and ends on the corresponding specified days every year.
- `date`—Indicates that summer time starts on the first date listed in the command and ends on the second date in the command.
- `usa`—The summer time rules are the United States rules.
Clock Commands

- **eu**—The summer time rules are the European Union rules.
- **week**—Week of the month. Can be 1–5, first to last.
- **day**—Day of the week (first three characters by name, such as Sun).
- **date**—Date of the month. (Range: 1–31)
- **month**—Month (first three characters by name, such as Feb).
- **year**—Year (no abbreviation). (Range: 2000–2097)
- **hh:mm**—Time (military format) in hours and minutes. (Range: hh:mmhh: 0-23, mm: 0-59)
- **offset**—(Optional) Number of minutes to add during summer time (default is 60). (Range: 1440)

Default Configuration

Summer time is disabled.

Command Mode

Global Configuration mode

User Guidelines

In both the **date** and **recurring** forms of the command, the first part of the command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is chronologically after the ending month, the system assumes that you are in the southern hemisphere.

USA rules for Daylight Saving Time:

- **From 2007:**
 - **Start**: Second Sunday in March
 - **End**: First Sunday in November
 - **Time**: 2 AM local time

- **Before 2007:**
 - **Start**: First Sunday in April
 - **End**: Last Sunday in October
 - **Time**: 2 AM local time
EU rules for Daylight Saving Time:

- **Start**: Last Sunday in March
- **End**: Last Sunday in October
- **Time**: 1.00 am (01:00) Greenwich Mean Time (GMT)

Example

```
switchxxxxxx(config)# clock summer-time abc date apr 1 2010 09:00 aug 2 2010 09:00
```

9.6 clock timezone

To set the time zone for display purposes, use the `clock timezone` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock timezone zone hours-offset [minutes-offset]
no clock timezone
```

Parameters

- `zone`—The acronym of the time zone. (Range: Up to 4 characters)
- `hours-offset`—Hours difference from UTC. (Range: (-12)–(+13))
- `minutes-offset`—(Optional) Minutes difference from UTC. (Range: 0–59)

Default Configuration

Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT), which is the same:

- Offsets are 0.
- Acronym is empty.

Command Mode

Global Configuration mode
User Guidelines

The system internally keeps time in UTC, so this command is used only for display purposes and when the time is manually set.

Example

```
switchxxxxxxx(config)# clock timezone abc +2 minutes 32
```

9.7 periodic

To specify a recurring (weekly) time range for functions that support the time-range feature, use the periodic command in Time-range Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

```
periodic day-of-the-week hh:mm to day-of-the-week hh:mm
no periodic day-of-the-week hh:mm to day-of-the-week hh:mm
periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2 ... day-of-the-week7]
no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2 ... day-of-the-week7]
periodic list hh:mm to hh:mm all
no periodic list hh:mm to hh:mm all
```

Parameters

- day-of-the-week—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

- hh:mm—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- list day-of-the-week1—Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.
Command Mode
Time-range Configuration mode

User Guidelines
The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```

9.8 sntp anycast client enable

To enable the SNTP Anycast client, use the `sntp anycast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp anycast client enable [both | ipv4 | ipv6]
```

Parameters

- `both`—(Optional) Specifies the IPv4 and IPv6 SNTP Anycast clients are enabled. If the parameter is not defined it is the default value.
- `ipv4`—(Optional) Specifies the IPv4 SNTP Anycast clients are enabled.
- `ipv6`—(Optional) Specifies the IPv6 SNTP Anycast clients are enabled.

Default Configuration

The SNTP anycast client is disabled.

Command Mode
Global Configuration mode

User Guidelines
Use this command to enable the SNTP Anycast client.
Example
The following example enables SNTP Anycast clients.

```
switchxxxxxx(config)# sntp anycast client enable
```

9.9 sntp authenticate

To enable authentication for received SNTP traffic from servers, use the `sntp authenticate` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp authenticate
no sntp authenticate
```

Parameters

N/A

Default Configuration
Authentication is disabled.

Command Mode
Global Configuration mode

Examples
The following example enables authentication for received SNTP traffic and sets the key and encryption key.

```
switchxxxxxx(config)# sntp authenticate
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
```
9.10 sntp authentication-key

To define an authentication key for Simple Network Time Protocol (SNTP), use the sntp authentication-key command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

sntp authentication-key key-number md5 key-value

encrypted sntp authentication-key key-number md5 encrypted-key-value

no sntp authentication-key key-number

Parameters

- key-number—Specifies the key number. (Range: 1–4294967295)
- key-value—Specifies the key value. (Length: 1–8 characters)
- encrypted-key-value—Specifies the key value in encrypted format.

Default Configuration

No authentication key is defined.

Command Mode

Global Configuration mode

Examples

The following example defines the authentication key for SNTP.

```
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```
9.11 sntp broadcast client enable

To enable SNTP Broadcast clients, use the `sntp broadcast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp broadcast client enable [both | ipv4 | ipv6]
```

```
no sntp broadcast client enable
```

Parameters

- `both` — (Optional) Specifies the IPv4 and IPv6 SNTP Broadcast clients are enabled. If the parameter is not defined it is the default value.
- `ipv4` — (Optional) Specifies the IPv4 SNTP Broadcast clients are enabled.
- `ipv6` — (Optional) Specifies the IPv6 SNTP Broadcast clients are enabled.

Default Configuration

The SNTP Broadcast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp broadcast client enable` Interface Configuration mode command to enable the SNTP Broadcast client on a specific interface.

After entering this command, you must enter the `clock source` command with the `sntp` keyword for the command to be run. If this command is not run, the switch will not synchronize with Broadcast servers.

Example

The following example enables SNTP Broadcast clients.

```
switchxxxxxx(config)# sntp broadcast client enable
```
9.12 sntp client enable

To enable the SNTP Broadcast and Anycast client, use the sntp client enable command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

sntp client enable interface-id

no sntp client enable interface-id

Parameters

- interface-id—Specifies an interface ID, which can be one of the following types: Ethernet port, Port-channel or VLAN.

Default Configuration

The SNTP client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the sntp client enable command to enable SNTP Broadcast and Anycast clients.

Example

The following example enables the SNTP Broadcast and Anycast clients on VLAN 100:

switchxxxxxx(config)# sntp client enable vlan 100

9.13 sntp client enable (interface)

To enable the SNTP Broadcast and Anycast client on an interface, use the sntp client enable command in Interface Configuration mode. To restore the default configuration, use the no form of this command.
9.14 sntp server

To configure the device to use the SNTP to request and accept Network Time Protocol (NTP) traffic from a specified server (meaning to accept system time from an SNTP server), use the `sntp server` command in Global Configuration mode. To remove a server from the list of SNTP servers, use the `no` form of this command.

Syntax

```
sntp server {default | {{ip-address | hostname} [poll] [key keyid]}}
no sntp server [ip-address | hostname]
```
Parameters

- **default**—Default defined SNTP servers.
- **ip-address**—Specifies the server IP address. This can be an IPv4, IPv6 or IPv6z address.
- **hostname**—Specifies the server hostname. Only translation to IPv4 addresses is supported. (Length: 1–158 characters. Maximum label length for each part of the hostname: 63 characters)
- **poll**—(Optional) Enables polling.
- **key keyid**—(Optional) Specifies the Authentication key to use when sending packets to this peer. (Range: 1–4294967295)

Default Configuration

The following servers with polling and without authentication are defined:

- time-a.timefreq.bldrdoc.gov
- time-b.timefreq.bldrdoc.gov
- time-c.timefreq.bldrdoc.gov

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server {ip-address | hostname} [poll] [key keyid]` command to define a SNTP server. The switch supports up to 8 SNTP servers.

Use the `sntp server default` command to return to the default configuration.

Use the `no sntp server ip-address | hostname` command to remove one SNTP server.

Use the `no sntp server` to remove all SNTP servers.

Example

The following example configures the device to accept SNTP traffic from the server on 192.1.1.1 with polling.

```
switchxxxxxxx(config)# sntp server 192.1.1.1 poll
```
9.15 sntp source-interface

To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SNTP servers, use the `sntp source-interface` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp source-interface interface-id
no sntp source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SNTP server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sntp source-interface vlan 10
```
9.16 sntp source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SNTP servers, use the `sntp source-interface-ipv6` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
sntp source-interface-ipv6 interface-id

no sntp source-interface-ipv6
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC 6724.

Command Mode

Global Configuration mode

User Guidelines

The outgoing interface is selected based on the SNTP server's IP address. If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SNTP server.

Example

The following example configures the VLAN 10 as the source interface.

```plaintext
switchxxxxxx(config)# sntp source-interface-ipv6 vlan 10
```
9.17 sntp trusted-key

To define the trusted key, use the `sntp trusted-key` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp trusted-key key-number
no sntp trusted-key key-number
```

Parameters

- `key-number`—Specifies the key number of the authentication key to be trusted. (Range: 1–4294967295).

Default Configuration

No keys are trusted.

Command Mode

Global Configuration mode

User Guidelines

The trusted key is used for authentication of all servers not having personal keys assigned by the `sntp server` command.

Examples

The following example authenticates key 8.

```
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```
9.18 sntp unicast client enable

To enable the device to use Simple Network Time Protocol (SNTP) Unicast clients, use the `sntp unicast client enable` command in Global Configuration mode. To disable the SNTP Unicast clients, use the `no` form of this command.

Syntax

```
sntp unicast client enable
no sntp unicast client enable
```

Parameters

N/A

Default Configuration

The SNTP unicast clients are enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server` Global Configuration mode command to define SNTP servers.

Example

The following example enables the device to use SNTP Unicast clients.

```
switchxxxxxx(config)# sntp unicast client enable
```

9.19 sntp unicast client poll

To enable polling for the SNTP Unicast clients, use the `sntp unicast client poll` command in Global Configuration mode. To disable the polling, use the `no` form of this command.

Syntax

```
sntp unicast client poll
no sntp unicast client poll
```
9.20 show clock

To display the time and date from the system clock, use the `show clock` command in User EXEC mode.

Syntax

`show clock [detail]`

Parameters

- `detail`—(Optional) Displays the time zone and summer time configuration.

Command Mode

User EXEC mode

User Guidelines

Before the time, there is displayed either a star (*), period (.), or blank:

- star (*)—The clock is invalid.
• period (.)—The clock was set manually or by Browser.
• blank—The clock was set by SNTP.

Examples

Example 1 - The following example displays the system time and date.

```
switchxxxxxx# show clock
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP
Time from Browser is enabled
```

Example 2 - The following example displays the system time and date along with the time zone and summer time configuration.

```
switchxxxxxx# show clock detail
Time source is snntp
Time from Browser is enabled
Time zone (DHCPv4 on VLAN1):
Acronym is RAIN
Offset is UTC+2
Time zone (Static):
Offset is UTC+0
Summertime (DHCPv4 on VLAN1):
Acronym is SUN
Recurring every year.
Begins at first Sunday of Apr at 02:00.
Ends at first Tuesday of Sep at 02:00.
Offset is 60 minutes.
Summertime (Static):
Acronym is GMT
```
Recurring every year.
Begins at first Sunday of Mar at 10:00.
Ends at first Sunday of Sep at 10:00.
Offset is 60 minutes.
DHCP timezone: Enabled

9.21 show sntp configuration

To display the SNTP configuration on the device, use the show sntp configuration command in Privileged EXEC mode.

Syntax

show sntp configuration

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Examples

The following example displays the device’s current SNTP configuration.

switchxxxxxx# show sntp configuration
SNTP port : 123
Polling interval: 1024 seconds
MD5 Authentication Keys

 2 John123
 3 Alice456
Authentication is not required for synchronization.
No trusted keys
Unicast Clients: enabled
Unicast Clients Polling: enabled
Server: 1.1.1.121
 Polling: disabled
 Encryption Key: disabled
Server: 3001:1:1::1
 Polling: enabled
 Encryption Key: disabled
Server: dns_server1.company.com
 Polling: enabled
 Encryption Key: disabled
Server: dns_server2.company.com
 Polling: enabled
 Encryption Key: disabled
Broadcast Clients: enabled for IPv4 and IPv6
Anycast Clients: disabled
No Broadcast Interfaces
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10

9.22 show snntp status

To display the SNTP servers status, use the show snntp status command in Privileged EXEC mode.

Syntax

show snntp status
Clock Commands

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays the SNTP servers status:

switchxxxxxx# show sntp status
Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is afe2525e.70597b34 (00:10:22.438 PDT Jul 5 1993)
Unicast servers:
Server: 176.1.1.8
 Source: DHCPv4 on VLAN 1
 Status: Up
 Last response: 19:58:22.289 PDT Feb 19 2005
 Stratum Level: 1
 Offset: 7.33mSec
 Delay: 117.79mSec
 Source: static
 Status: Unknown
 Last response: 12:17:17.987 PDT Feb 19 2005
 Stratum Level: 1
 Offset: 8.98mSec
 Delay: 189.19mSec
Server: dns_server.comapany.com
 Source: static
 Status: Unknown
 Last response: 12:17:17.987 PDT Feb 19 2005
 Stratum Level: 1
 Offset: 8.98mSec
 Delay: 189.19mSec
Server: 3001:1:1::1
 Source: DHCPv6 on VLAN 2
 Status: Unknown
 Last response:
 Offset: mSec
 Delay: mSec
Server: dns1.company.com
 Source: DHCPv6 on VLAN 20
 Status: Unknown
Last response:
Offset: mSec
Delay: mSec
Anycast servers:
Server: 176.1.11.8
 Interface: VLAN 112
 Status: Up
 Stratum Level: 10
 Offset: 9.98mSec
 Delay: 289.19mSec
Broadcast servers:
Server: 3001:1::12
 Interface: VLAN 101
 Stratum Level: 255

9.23 show time-range

To display the time range configuration, use the show time-range command in User EXEC mode.

Syntax

 show time-range time-range-name

Parameters

 • time-range-name—Specifies the name of an existing time range.

Command Mode

User EXEC mode

Example

switchxxxxxx# show time-range
http-allowed

absolute start 12:00 1 Jan 2005 end 12:00 31 Dec 2005
periodic Monday 12:00 to Wednesday 12:00
9.24 time-range

To define time ranges and to enter to Time-range Configuration mode, use the time-range command to define time ranges and to enter to Time-range Configuration mode in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

```
 time-range time-range-name

 no time-range time-range-name
```

Parameters

- `time-range-name`—Specifies the name for the time range. (Range: 1–32 characters).

Default Configuration

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

After entering to Time-range Configuration mode with this command, use the absolute and periodic commands to actually configure the time-range. Multiple periodic commands are allowed in a time range. Only one absolute command is allowed.

If a time-range command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range is not activated.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
Denial of Service (DoS) Commands

10.1 security-suite deny fragmented

To discard IP fragmented packets from a specific interface, use the security-suite deny fragmented Interface (Ethernet, Port Channel) Configuration mode command.

To permit IP fragmented packets, use the no form of this command.

Syntax

security-suite deny fragmented {add ip-address | any} {mask | /prefix-length} | remove {ip-address | any} {mask | /prefix-length}]

no security-suite deny fragmented

Parameters

- add ip-address | any—Specifies the destination IP address. Use any to specify all IP addresses.
- mask—Specifies the network mask of the IP address.
- prefix-length—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

Fragmented packets are allowed from all interfaces.

If mask is unspecified, the default is 255.255.255.255.

If prefix-length is unspecified, the default is 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode
Denial of Service (DoS) Commands

10

User Guidelines

For this command to work, show security-suite configuration must be enabled both globally and for interfaces.

Example

The following example attempts to discard IP fragmented packets from an interface.

```
switchxxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxxx(config)# interface gi
switchxxxxxxx(config-if)# security-suite deny fragmented add any /32
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

10.2 security-suite deny icmp

To discard ICMP echo requests from a specific interface (to prevent attackers from knowing that the device is on the network), use the `security-suite deny icmp` Interface (Ethernet, Port Channel) Configuration mode command.

To permit echo requests, use the no form of this command.

Syntax

```
security-suite deny icmp {add {ip-address | any} {mask | /prefix-length]} | [remove {ip-address | any} {mask | /prefix-length}]}
no security-suite deny icmp
```

Parameters

- **ip-address | any**—Specifies the destination IP address. Use any to specify all IP addresses.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

Echo requests are allowed from all interfaces.

If **mask** is not specified, it defaults to 255.255.255.255.
If \texttt{prefix-length} is not specified, it defaults to 32.

\textbf{Command Mode}

Interface (Ethernet, Port Channel) Configuration mode

\textbf{User Guidelines}

For this command to work, \texttt{show security-suite configuration} must be enabled both globally and for interfaces.

This command discards ICMP packets with "ICMP type= Echo request" that ingress the specified interface.

\textbf{Example}

The following example attempts to discard echo requests from an interface.

\begin{verbatim}
switchxxxxx(config)# security-suite enable global-rules-only
switchxxxxx(config)# interface gi 1
switchxxxxx(config-if)# security-suite deny icmp add any /32
\end{verbatim}

To perform this command, DoS Prevention must be enabled in the per-interface mode.

\section*{10.3 \texttt{security-suite deny martian-addresses}}

To deny packets containing system-reserved IP addresses or user-defined IP addresses, use the \texttt{security-suite deny martian-addresses} Global Configuration mode command.

To restore the default, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
security-suite deny martian-addresses \{add \{ip-address \{mask | /prefix-length\}\} | remove \{ip-address \{mask | /prefix-length\}\}\} (Add/remove user-specified IP addresses)

security-suite deny martian-addresses reserved \{add | remove\} (Add/remove system-reserved IP addresses, see tables below)

no security-suite deny martian-addresses (This command removes addresses reserved by security-suite deny martian-addresses \{add \{ip-address \{mask | /prefix-length\}\} | remove \{ip-address \{mask | /prefix-length\}\}, and removes all entries added by the user. The user can remove a specific entry by using \texttt{remove ip-address \{mask | /prefix-length\} parameter.}
\end{verbatim}
There is no form of the `security-suite deny martian-addresses reserved {add | remove}` command. Use instead the `security-suite deny martian-addresses reserved remove` command to remove protection (and free up hardware resources).

Parameters

- **reserved add/remove**—Add or remove the table of reserved addresses below.
- **ip-address**—Adds/discards packets with the specified IP source or destination address.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).
- **reserved**—Discards packets with the source or destination IP address in the block of the reserved (Martian) IP addresses. See the User Guidelines for a list of reserved addresses.

Default Configuration

Martian addresses are allowed.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration` must be enabled globally.

`security-suite deny martian-addresses reserved` adds or removes the addresses in the following table:

<table>
<thead>
<tr>
<th>Address Block</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/8 (except when 0.0.0.0/32 is the source address)</td>
<td>Addresses in this block refer to source hosts on "this" network.</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>This block is assigned for use as the Internet host loopback address.</td>
</tr>
<tr>
<td>192.0.2.0/24</td>
<td>This block is assigned as "TEST-NET" for use in documentation and example code.</td>
</tr>
</tbody>
</table>
Note that if the reserved addresses are included, individual reserved addresses cannot be removed.

Example

The following example discards all packets with a source or destination address in the block of the reserved IP addresses.

```
switchxxxxxx(config)# security-suite deny martian-addresses reserved add
```

10.4 security-suite deny syn

To block the creation of TCP connections from a specific interface, use the `security-suite deny syn` Interface (Ethernet, Port Channel) Configuration mode command. This a complete block of these connections.

To permit creation of TCP connections, use the `no` form of this command.

Syntax

```
security-suite deny syn [{add {tcp-port | any} {ip-address | any} {mask | /prefix-length}} | {remove {tcp-port | any} {ip-address | any} {mask | /prefix-length}}]
```

Parameters

- `ip-address | any`—Specifies the destination IP address. Use `any` to specify all IP addresses.
- `mask`—Specifies the network mask of the destination IP address.
- `prefix-length`—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).
Denial of Service (DoS) Commands

- **tcp-port** | **any**—Specifies the destination TCP port. The possible values are: **http**, **ftp-control**, **ftp-data**, **ssh**, **telnet**, **smtp**, or **port number**. Use **any** to specify all ports.

Default Configuration

Creation of TCP connections is allowed from all interfaces.

If the **mask** is not specified, it defaults to 255.255.255.255.

If the **prefix-length** is not specified, it defaults to 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, **show security-suite configuration** must be enabled both globally and for interfaces.

The blocking of TCP connection creation from an interface is done by discarding ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses and destination TCP ports.

Example

The following example attempts to block the creation of TCP connections from an interface. It fails because security suite is enabled globally and not per interface.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite deny syn add any /32 any
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

10.5 security-suite deny syn-fin

To drop all ingressing TCP packets in which both SYN and FIN are set, use the **security-suite deny syn-fin** Global Configuration mode command.

To permit TCP packets in which both SYN and FIN are set, use the **no** form of this command.
Denial of Service (DoS) Commands

Syntax

security-suite deny syn-fin
no security-suite deny syn-fin

Parameters

This command has no arguments or keywords.

Default Configuration

The feature is disabled by default.

Command Mode

Global Configuration mode

Example

The following example blocks TCP packets in which both SYN and FIN flags are set.

switchxxxxxxx(config)# security-suite deny sin-fin

10.6 security-suite dos protect

To protect the system from specific well-known Denial of Service (DoS) attacks, use the security-suite dos protect Global Configuration mode command. There are three types of attacks against which protection can be supplied (see parameters below).

To disable DoS protection, use the no form of this command.

Syntax

security-suite dos protect {add attack | remove attack}
no security-suite dos protect

Parameters

add/remove attack—Specifies the attack type to add/remove. To add an attack is to provide protection against it; to remove the attack is to remove protection.

The possible attack types are:

- stacheldraht—Discards TCP packets with source TCP port 16660.
Denial of Service (DoS) Commands

- **invasor-trojan**—Discards TCP packets with destination TCP port 2140 and source TCP port 1024.
- **back-orifice-trojan**—Discards UDP packets with destination UDP port 31337 and source UDP port 1024.

Default Configuration

No protection is configured.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration` must be enabled globally.

Example

The following example protects the system from the Invasor Trojan DOS attack.

```
switchxxxxxx(config)# security-suite dos protect add invasor-trojan
```

10.7 security-suite dos syn-attack

To rate limit Denial of Service (DoS) SYN attacks, use the `security-suite dos syn-attack` Interface Configuration mode command. This provides partial blocking of SNY packets (up to the rate that the user specifies).

To disable rate limiting, use the `no` form of this command.

Syntax

```
security-suite dos syn-attack syn-rate \{any | ip-address\} \{mask | prefix-length\}
no security-suite dos syn-attack \{any | ip-address\} \{mask | prefix-length\}
```

Parameters

- **syn-rate**—Specifies the maximum number of connections per second. (Range: 199–1000)
- **any | ip-address**—Specifies the destination IP address. Use `any` to specify all IP addresses.
Denial of Service (DoS) Commands

- **mask**—Specifies the network mask of the destination IP address.

- **prefix-length**—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

No rate limit is configured.

If **ip-address** is unspecified, the default is 255.255.255.255.

If **prefix-length** is unspecified, the default is 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, **show security-suite configuration** must be enabled both globally and for interfaces.

This command rate limits ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses.

SYN attack rate limiting is implemented after the security suite rules are applied to the packets. The ACL and QoS rules are not applied to those packets.

Since the hardware rate limiting counts bytes, it is assumed that the size of “SYN” packets is short.

Example

The following example attempts to rate limit DoS SYN attacks on a port. It fails because security suite is enabled globally and not per interface.

```bash
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.
10.8 security-suite enable

To enable the security suite feature, use the `security-suite enable` Global Configuration mode command. This feature supports protection against various types of attacks.

When this command is used, hardware resources are reserved. These hardware resources are released when the `no security-suite enable` command is entered.

The security-suite feature can be enabled in one of the following ways:

- **Global-rules-only**—This enables the feature globally but per-interface features are not enabled.

- **All** (no keyword)—The feature is enabled globally and per-interface.

To disable the security suite feature, use the **no** form of this command.

When security-suite is enabled, you can specify the types of protection required. The following commands can be used:

- `show security-suite configuration`

Syntax

```
security-suite enable [global-rules-only]
```

```
no security-suite enable
```

Parameters

global-rules-only—(Optional) Specifies that all the security suite commands are global commands only (they cannot be applied per-interface). This setting saves space in the Ternary Content Addressable Memory (TCAM). If this keyword is not used, security-suite commands can be used both globally on per-interface.
Default Configuration

The security suite feature is disabled.

If `global-rules-only` is not specified, the default is to enable security-suite globally and per interfaces.

Command Mode

Global Configuration mode

User Guidelines

MAC ACLs must be removed before the security-suite is enabled. The rules can be re-entered after the security-suite is enabled.

If ACLs or policy maps are assigned on interfaces, per interface security-suite rules cannot be enabled.

Examples

Example 1—The following example enables the security suite feature and specifies that security suite commands are global commands only. When an attempt is made to configure security-suite on a port, it fails.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.

Example 2—The following example enables the security suite feature globally and on interfaces. The security-suite command succeeds on the port.

```
switchxxxxxx(config)# security-suite enable
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
switchxxxxxx(config-if)#
```
10.9 security-suite syn protection mode

To set the TCP SYN protection mode, use the security-suite syn protection mode Global Configuration mode command.

To set the TCP SYN protection mode to default, use the no form of this command.

Syntax

security-suite syn protection mode {disabled | report | block}

no security-suite syn protection mode

Parameters

• disabled—Feature is disabled
• report—Feature reports about TCP SYN traffic per port (including rate-limited SYSLOG message when an attack is identified)
• block—TCP SYN traffic from attacking ports destined to the local system is blocked, and a rate-limited SYSLOG message (one per minute) is generated

Default Configuration
The default mode is block.

Command Mode
Global Configuration mode

User Guidelines

On ports in which an ACL is defined (user-defined ACL etc.), this feature cannot block TCP SYN packets. In case the protection mode is block but SYN Traffic cannot be blocked, a relevant SYSLOG message will be created, e.g.: “port gi1 is under TCP SYN attack. TCP SYN traffic cannot be blocked on this port since the port is bound to an ACL.”

Examples

Example 1: The following example sets the TCP SYN protection feature to report TCP SYN attack on ports in case an attack is identified from these ports.

switchxxxxxx(config)# security-suite syn protection mode report

01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi1
Example 2: The following example sets the TCP SYN protection feature to block TCP SYN attack on ports in case an attack is identified from these ports.

```plaintext
switchxxxxxx(config)# security-suite syn protection mode block
```

01-Jan-2012 05:29:46: A TCP SYN Attack was identified on port gi1. TCP SYN traffic destined to the local system is automatically blocked for 100 seconds.

10.10 security-suite syn protection recovery

To set the time period for the SYN Protection feature to block an attacked interface, use the `security-suite syn protection period` Global Configuration mode command.

To set the time period to its default value, use the `no` form of this command.

Syntax

```plaintext
security-suite syn protection recovery timeout

no security-suite syn protection recovery
```

Parameters

`timeout`—Defines the timeout (in seconds) by which an interface from which SYN packets are blocked gets unblocked. Note that if a SYN attack is still active on this interface it might become blocked again. (Range: 10-600)

Default Configuration

The default timeout is 60 seconds.

Command Mode

Global Configuration mode

User Guidelines

If the timeout is modified, the new value will be used only on interfaces which are not currently under attack.

Example

The following example sets the TCP SYN period to 100 seconds.

```plaintext
switchxxxxxx(config)# security-suite syn protection recovery 100
```
10.11 security-suite syn protection threshold

To set the threshold for the SYN protection feature, use the `security-suite syn protection threshold` Global Configuration mode command.

To set the threshold to its default value, use the `no` form of this command.

Syntax

```
security-suite syn protection threshold syn-packet-rate
no security-suite syn protection threshold
```

Parameters

- `syn-packet-rate`—defines the rate (number of packets per second) from each specific port that triggers identification of TCP SYN attack. (Range: 20-200)

Default Configuration

The default threshold is 80pps (packets per second).

Command Mode

Global Configuration mode

Example

The following example sets the TCP SYN protection threshold to 40 pps.

```
switchxxxxxxx(config)# security-suite syn protection threshold 40
```

10.12 show security-suite configuration

To display the security-suite configuration, use the `show security-suite configuration` command.

Syntax

```
show security-suite configuration
```

Command Mode

User EXEC mode
Example

The following example displays the security-suite configuration.

```
switchxxxxx# show security-suite configuration
Security suite is enabled (Per interface rules are enabled).
Denial Of Service Protect: stacheldraht, invasor-trojan, back-office-trojan.
Denial Of Service SYN-FIN Attack is enabled
Denial Of Service SYN Attack
Interface IP Address SYN Rate (pps)
----------------- --------------- -------------
g1 176.16.23.0/24 100

Martian addresses filtering
Reserved addresses: enabled.
Configured addresses: 10.0.0.0/8, 192.168.0.0/16
SYN filtering
Interface IP Address TCP port
----------------- --------------- -------------
g2 176.16.23.0/24 FTP

ICMP filtering
Interface IP Address
----------------- -------------
g2 176.16.23.0/24

Fragmented packets filtering
Interface IP Address
----------------- -------------
g2 176.16.23.0/24

10.13 show security-suite syn protection

To display the SYN Protection feature configuration and the operational status per interface-id, including the time of the last attack per interface, use the `show security-suite syn protection` command.

Syntax

```
show security-suite syn protection [interface-id]
```
Parameters

(interface-id)—(Optional) Specifies an interface-ID. The interface-ID can be one of the following types:
Ethernet port of Port-Channel.

Command Mode

User EXEC mode

User Guidelines

Use the Interface-ID to display information on a specific interface.

Example

The following example displays the TCP SYN protection feature configuration and current status on all interfaces. In this example, port gi2 is attacked but since there is a user-ACL on this port, it cannot become blocked so its status is Reported and not Blocked and Reported.


cswitchxxxxxx# show security-suite syn protection

Protection Mode: Block
Threshold: 40 Packets Per Second
Period: 100 Seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Current Status</th>
<th>Last Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
<tr>
<td>gi2</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Reported</td>
</tr>
<tr>
<td>gi3</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
</tbody>
</table>
DHCP Relay Commands

11.1  ip dhcp relay enable (Global)

Use the `ip dhcp relay enable` Global Configuration mode command to enable the DHCP relay feature on the device. Use the `no` form of this command to disable the DHCP relay feature.

**Syntax**

```
ip dhcp relay enable
no ip dhcp relay enable
```

**Parameters**

N/A

**Default Configuration**

DHCP relay feature is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables the DHCP relay feature on the device.

```
switchxxxxxx(config)# ip dhcp relay enable
```

11.2  ip dhcp relay enable (Interface)

Use the `ip dhcp relay enable` Interface Configuration mode command to enable the DHCP relay feature on an interface. Use the `no` form of this command to disable the DHCP relay agent feature on an interface.
DHCP Relay Commands

Syntax

ip dhcp relay enable
no ip dhcp relay enable

Parameters

N/A

Default Configuration

Disabled

Command Mode

Interface Configuration mode

User Guidelines

The operational status of DHCP Relay on an interface is active if one of the following conditions exist:

- DHCP Relay is globally enabled, and there is an IP address defined on the interface. Or

- DHCP Relay is globally enabled, there is no IP address defined on the interface, the interface is a VLAN, and option 82 is enabled.

Example

The following example enables DHCP Relay on VLAN 21.

```
switchxxxxxx(config)# interface vlan 21
switchxxxxxx(config-if)# ip dhcp relay enable
```

11.3 ip dhcp relay address (Global)

Use the `ip dhcp relay address` Global Configuration mode command to define the DHCP servers available for the DHCP relay. Use the `no` form of this command to remove the server from the list.
DHCP Relay Commands

Syntax

```
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters

- `ip-address`—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip dhcp relay address` command to define a global DHCP Server IP address. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the `no` form of the command with the `ip-address` argument.

The `no` form of the command without the `ip-address` argument deletes all global defined DHCP servers.

Example

The following example defines the DHCP server on the device.

```
switchxxxxxx(config)# ip dhcp relay address 176.16.1.1
```

11.4  **show ip dhcp relay**

Use the `show ip dhcp relay` EXEC mode command to display the DHCP relay information.

Syntax

```
show ip dhcp relay
```
Command Mode

User EXEC mode

Example

**Example 1:** The following example gives an example of the command output:

```
switchxxxxxx# show ip dhcp relay
DHCP relay is globally enabled
DHCP relay is enabled on Ports: gi1, po1-2
 Active: gi1
 Inactive: po1-2
DHCP relay is enabled on VLANs: 1, 2, 4, 5
 Active: 1, 2, 4, 5
 Inactive:
Global Servers: 1.1.1.1, 2.2.2.2
```
12.1 clear ipv6 dhcp client

To restart DHCP for an IPv6 client on an interface, use the `clear ipv6 dhcp client` command in Privileged EXEC mode.

Syntax

`clear ipv6 dhcp client interface-id`

Parameters

- `interface-id`—Interface identifier.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This command restarts DHCP for an IPv6 client on a specified interface after first releasing and unconfiguring previously-acquired prefixes and other configuration options (for example, Domain Name System [DNS] servers).

Example

The following example restarts the DHCP for IPv6 client on VLAN 100:

```
switchxxxxxx# clear ipv6 dhcp client vlan 100
```
12.2 ipv6 address dhcp

To enable DHCP for an IPv6 client process and acquire an IPv6 address on an interface, use the `ipv6 address dhcp` command in Interface Configuration mode. To remove the address from the interface, use the `no` form of this command.

Syntax

```
ipv6 address dhcp [rapid-commit]
no ipv6 address dhcp
```

Parameters

- `rapid-commit`—Allows the two-message exchange method for address assignment.

Default Configuration

No IPv6 addresses are acquired from the DHCPv6 server.

Command Mode

Interface (VLAN) Configuration mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

This command enables IPv6 on an interface (if it is not enabled) and starts the DHCP for IPv6 client process, if this process is not yet running and if an IPv6 interface is enabled on the interface. This command allows an interface to dynamically learn its IPv6 address by using DHCPv6 and enables the DHCPv6 Stateless service.

The `rapid-commit` keyword enables the use of the two-message exchange for address allocation and other configuration. If it is enabled, the client includes the rapid-commit option in a solicit message.

This command allows an interface to dynamically learn its IPv6 address by using DHCPv6.

The DHCPv6 stateless service allows to receive the configuration from a DHCP server, passed in the following options:

- Option 7: OPTION_PREFERENCE - The preference value for the server in this message
- Option 12: OPTION_UNICAST - The IP address to which the client should send messages delivered using unicast
• Option 23: OPTION_DNS_SERVERS - List of DNS Servers IPv6 Addresses
• Option 24: OPTION_DOMAIN_LIST - Domain Search List
• Option 31: OPTION_SNTP_SERVERS - List of SNTP Servers IPv6 Addresses
• Option 32: OPTION_INFORMATION_REFRESH_TIME - Information Refresh Time Option
• Option 41: OPTION_NEW_POSIX_TIMEZONE - New Timezone Posix String
• Option 59: OPT_BOOTFILE_URL - Configuration Server URL
• Option 60: OPT_BOOTFILE_PARAM, the first parameter - Configuration File Path Name

The DHCPv6 client uses the following IAID format based on the interface-id on which it is running:

• Octet 1, bits 7-4: These bits are reserved and must be 0
• Octet 1, Bits 3-0: These bits contain the interface type:
  - 0—VLAN
  - 1—Ethernet port
  - 2—Port channel
  - 3—Tunnel
• Octets 2-4: The octets contain a value depending on the interface type in the network format:
  - VLAN
    Octet 2: Reserved, must be 0
    Octets 3-4: VLAN ID (1-4095)
  - Ethernet port
    Octet 2, bits 7-4: Slot number
    Octet 2, bits 3-0: Port Type:
    0—Ethernet
    1—Fast Ethernet
    2—Giga Ethernet
    3—2.5Giga Ethernet
4—5Giga Ethernet
5—10Giga Ethernet
6—12Giga Ethernet
7—13.6Giga Ethernet
8—16Giga Ethernet
9—20Giga Ethernet
10—40Giga Ethernet
11—100Giga Ethernet

Octet 3: Unit number
Octet 4: Port number

- Port channel
  Octets 2-3: Reserved, must be 0
  Octet 4: Port channel number

- Tunnel
  Octets 2-3: Reserved, must be 0
  Octet 4: Tunnel number

When IPv6 Forwarding is enabled only stateless information is required from a DHCPv6 server.

When IPv6 forwarding is changed from disabled to enabled, IPv6 addresses assigned by a DHCPv6 are removed.

When IPv6 forwarding is changed from enabled to disabled receiving IPv6 addresses from a DHCPv6 server is resumed.

The DHCPv6 client, server, and relay functions are mutually exclusive on an interface.

Example

The following example enables IPv6 on VLAN 100 and acquires an IPv6 address:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 address dhcp
switchxxxxxx(config-if)# exit
```
12.3 ipv6 dhcp client information refresh

To configure the refresh time for IPv6 client information refresh time on a specified interface if the DHCPv6 server reply does not include the Information Refresh Time, use the `ipv6 dhcp client information refresh` command in Interface Configuration mode. To return to the default value of the refresh time, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp client information refresh seconds | infinite

no ipv6 dhcp client information refresh
```

**Parameters**

- `seconds`—The refresh time, in seconds. The value cannot be less than the minimal acceptable refresh time configured by the `ipv6 dhcp client information refresh` command. The maximum value that can be used is 4,294967,294 seconds (0xFFFFFFFF).
- `infinite`—Infinite refresh time.

**Default Configuration**

The default is 86,400 seconds (24 hours).

**Command Mode**

Interface Configuration mode

**User Guidelines**

The `ipv6 dhcp client information refresh` command specifies the information refresh time. If the server does not send an information refresh time option then a value configured by the command is used.

Use the `infinite` keyword, to prevent refresh, if the server does not send an information refresh time option.

**Example**

The following example configures an upper limit of 2 days:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
```
12.4 **ipv6 dhcp client information refresh minimum**

To configure the minimum acceptable refresh time on the specified interface, use the `ipv6 dhcp client information refresh minimum` command in Interface Configuration mode. To remove the configured refresh time, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp client information refresh minimum seconds | infinite
no ipv6 dhcp client information refresh minimum
```

**Parameters**

- `seconds`—The refresh time, in seconds. The minimum value that can be used is 600 seconds. The maximum value that can be used is 4,294,967,294 seconds (0xFFFFFFFF).
- `infinite`—Infinite refresh time.

**Default Configuration**

The default is 86,400 seconds (24 hours).

**Command Mode**

Interface Configuration mode

**User Guidelines**

The `ipv6 dhcp client information refresh minimum` command specifies the minimum acceptable information refresh time. If the server sends an information refresh time option of less than the configured minimum refresh time, the configured minimum refresh time will be used instead.

This command may be configured in the following situations:

- In unstable environments where unexpected changes are likely to occur.
- For planned changes, including renumbering. An administrator can gradually decrease the time as the planned event nears.
• Limit the amount of time before new services or servers are available to the client, such as the addition of a new Simple Network Time Protocol (SNTP) server or a change of address of a Domain Name System (DNS) server.

If you configure the infinite keyword client never refreshes the information.

Example

The following example configures an upper limit of 2 days:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
switchxxxxxx(config-if)# exit
```

12.5 ipv6 dhcp duid-en

To set the Vendor Based on Enterprise Number DHVPv6 Unique Identified (DUID-EN) format, use the ipv6 dhcp duid-en command in Global Configuration mode.

To return to the default value, use the no form of this command.

Syntax

```
ipv6 dhcp duid-en enterprise-number identifier
no ipv6 dhcp duid-en
```

Parameters

- `enterprise-number`—The vendor’s registered Private Enterprise number as maintained by IANA.

- `identifier`—The vendor-defined non-empty hex string (up to 64 hex characters). If the number of the character is not even ‘0’ is added at the right. Each 2 hex characters can be separated by a period or colon.

Default Configuration

DUID Based on Link-layer Address (DUID-LL) is used. The base MAC Address is used as a Link-layer Address.

Command Mode

Global Configuration mode
User Guidelines

By default, the DHCPv6 uses the DUID Based on Link-layer Address (see RFC3315) with the Base MAC Address as a Link-layer Address.

Use this command to change the DUID format to the Vendor Based on Enterprise Number.

Examples

Example 1. The following sets the DIID-EN format:

```
ipv6 dhcp duid-en 9 0CC084D303000912
```

Example 2. The following sets the DIID-EN format using colons as delimiter:

```
switchxxxxxx(config)# ipv6 dhcp duid-en 9 0C:CO:84:D3:03:00:09:12
```

12.6 show ipv6 dhcp

To display the Dynamic DHCP unique identifier (DUID) on a specified device, use the show ipv6 dhcp command in User EXEC mode. This information is relevant for DHCPv6 clients and DHCPv6 relays.

Syntax

```
show ipv6 dhcp
```

Parameters

- NA

Command Mode

User EXEC mode

User Guidelines

This command uses the DUID, which is based on the link-layer address for both client and server identifiers. The device uses the MAC address from the lowest-numbered interface to form the DUID.
Examples

**Example 1.** The following is sample output from this command when the switch’s DUID format is vendor based on enterprise number:

```bash
switchxxxxxx# show ipv6 dhcp
The switch’s DHCPv6 unique identifier(DUID)is 0002000000090CC084D303000912
 Format: 2
 Enterprise Number: 9
 Identifier: 0CC084D303000912
```

**Example 2.** The following is sample output from this command when the switch’s DUID format is the vendor-based on link-layer address:

```bash
switchxxxxxx# show ipv6 dhcp
The switch’s DHCPv6 unique identifier(DUID)is 000300010024012607AA
 Format: 3
 Hardware type: 1
 MAC Address: 0024.0126.07AA
```

### 12.7  show ipv6 dhcp interface

To display DHCP for IPv6 interface information, use the `show ipv6 dhcp interface` command in User EXEC mode.

**Syntax**

```
show ipv6 dhcp interface [interface-id]
```

**Parameters**

- `interface-id`—Interface identifier.

**Command Mode**

User EXEC mode
User Guidelines

If no interfaces are specified in the command, all interfaces on which DHCP for IPv6 (client or server) is enabled are displayed. If an interface is specified in the command, only information about the specified interface is displayed.

Note. This new output format is supported starting with the SW version supporting statefull configuration

Example

The following is sample output from this command when DHCPv6 client is enabled:

```
switchxxxxxx# show ipv6 dhcp interface
VLAN 100 is in client mode
 Configuration:
 Statefull Service is enabled (rapid-commit)
 Auto-Configuration is enabled
 Information Refresh Time: 86400 seconds
 Information Refresh Minimum Time: 600 seconds
State:
 DHCP Operational mode is enabled
 Statefull Service is available
DHCP server:
 Address: FE80::204:FCFF:FEA1:7439
 DUID: 000300010002FCA17400
 Preference: 20
IPv6 Address Information:
 IA NA: IA ID 0x00040001, T1 120, T2 192
 IPv6 Address: 30e0::12:45:11
 preferred lifetime: 300, valid lifetime: 54333
 expires at Nov 08 2002 09:11 (54331 seconds)
 renew for address will be sent in 54301 seconds
 IPv6 Address: 3012::13:af:25
 preferred lifetime: 280, valid lifetime: 51111
```
expires at Nov 08 2002 08:17 (51109 seconds)

renew for address will be sent in 5101 seconds

Stateless Information:

- Information Refresh Time: 86400 seconds
- expires at Nov 08 2002 08:17 (51109 seconds)
- DNS Servers: 1001::1, 2001::10
- DNS Domain Search List: company.com beta.org
- SNTP Servers: 2004::1
- POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
- Configuration Server: config.company.com
- Configuration Path Name: qqq/config/aaa_config.dat
- Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 105 is in client mode

Configuration:

- Statefull Service is enabled
- Auto-Configuration is disabled
- Information Refresh Time: 86400 seconds
- Information Refresh Minimum Time: 600 seconds

State:

- DHCP Operational mode is enabled
- Statefull Service is not available (IPv6 routing is enabled)

DHCP server:

- Address: FE80::204:FCFF:FEA1:7439
- DUID: 000300010002FCA17400
- Preference: 20

Stateless Information:

- Information Refresh Time: 86400 seconds
- expires at Nov 08 2002 08:17 (51109 seconds)
- DNS Servers: 1001::1, 2001::10
- DNS Domain Search List: company.com beta.org
- SNTP Servers: 2004::1
DHCPv6 Commands

POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 107 is in client mode

Configuration:

  Statefull Service is enabled
  Auto-Configuration is enabled
  Information Refresh Time: 86400 seconds
  Information Refresh Minimum Time: 600 seconds

State:

  DHCP Operational mode is enabled
  Statefull Service is not available (IPv6 routing is enabled)

DHCP server:

  Address: FE80::204:FCFF:FEA1:7439
  DUID: 000300010002FCA17400
  Preference: 20

Stateless Information:

  Information Refresh Time: 86400 seconds
  expires at Nov 08 2002 08:17 (51109 seconds)
  DNS Servers: 1001::1, 2001::10
  DNS Domain Search List: company.com beta.org
  SNTP Servers: 2004::1

POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 110 is in client mode

Configuration:

  Statefull Service is enabled
  Auto-Configuration is disabled
Information Refresh Time: 86400 seconds
Information Refresh Minimum Time: 600 seconds

State:
DHCP Operational mode is disabled (IPv6 is not enabled)

VLAN 1000 is in client mode

Configuration:
Statefull Service is enabled
Auto-Configuration is enabled
Information Refresh Time: 86400 seconds
Information Refresh Minimum Time: 600 seconds

State:
DHCP Operational mode is disabled (Interface status is DOWN)

DHCP server:
Address: FE80::204:FCFF:FEA1:7439
DUID: 000300010002FCA17400
Preference: 20

Stateless Information:
Information Refresh Time: 86400 seconds
expires at Nov 08 2002 08:17 (51109 seconds)
DNS Servers: 1001::1, 2001::10
DNS Domain Search List: company.com beta.org
SNTP Servers: 2004::1
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt
13.1 clear host

Use the `clear host` command in privileged EXEC mode to delete dynamic hostname-to-address mapping entries from the DNS client name-to-address cache.

**Syntax**

```
clear host {hostname | *}
```

**Parameters**

- `hostname`—Name of the host for which hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.
- `*`—Specifies that all the dynamic hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.

**Default Configuration**

No hostname-to-address mapping entries are deleted from the DNS client name-to-address cache.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

To remove the dynamic entry that provides mapping information for a single hostname, use the `hostname` argument. To remove all the dynamic entries, use the `*` keyword.

To define a static hostname-to-address mappings in the DNS hostname cache, use the `ip host` command.

To delete a static hostname-to-address mappings in the DNS hostname cache, use the `no ip host` command.
Example

The following example deletes all dynamic entries from the DNS client name-to-address cache.

```
switchxxxxxx# clear host *
```

13.2  **ip domain lookup**

Use the **ip domain lookup** command in Global Configuration mode to enable the IP Domain Naming System (DNS)-based host name-to-address translation.

To disable the DNS, use the **no** form of this command.

**Syntax**

- `ip domain lookup`
- `no ip domain lookup`

**Parameters**

- N/A

**Default Configuration**

Enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables DNS-based host name-to-address translation.

```
switchxxxxxx(config)# ip domain lookup
```
13.3  ip domain name

Use the **ip domain name** command in Global Configuration mode to define a default domain name that the switch uses to complete unqualified hostnames (names without a dotted-decimal domain name).

To delete the static defined default domain name, use the **no** form of this command.

**Syntax**

```
ip domain name name
no ip domain name
```

**Parameters**

- **name**—Default domain name used to complete unqualified hostnames. Do not include the initial period that separates an unqualified name from the domain name. Length: 1–158 characters. Maximum label length of each domain level is 63 characters.

**Default Configuration**

No default domain name is defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Any IP hostname that does not contain a domain name (that is, any name without a dot) will have the dot and the default domain name appended to it before being added to the host table.

Domain names and host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

The maximum size of each domain level is 63 characters. The maximum name size is 158 bytes.

**Example**

The following example defines the default domain name as ‘www.website.com’.

```
switchxxxxxxx(config)# ip domain name website.com
```
13.4  ip domain polling-interval

Use the `ip domain polling-interval` command in Global Configuration mode to specify the polling interval.

Use the `no` form of this command to return to the default behavior.

**Syntax**

```
ip domain polling-interval seconds
no ip domain polling-interval
```

**Parameters**

- `seconds`—Polling interval in seconds. The range is from \((2 \cdot (R+1) \cdot T)\) to \(3600\).

**Default Configuration**

The default value is \(2 \cdot (R+1) \cdot T\), where

- \(R\) is a value configured by the `ip domain retry` command.
- \(T\) is a value configured by the `ip domain timeout` command.

**Command Mode**

Global Configuration mode

**User Guidelines**

Some applications communicate with the given IP address continuously. DNS clients for such applications, which have not received resolution of the IP address or have not detected a DNS server using a fixed number of retransmissions, return an error to the application and continue to send DNS Request messages for the IP address using the polling interval.

**Example**

The following example shows how to configure the polling interval of 100 seconds:

```
switchxxxxxx(config)# ip domain polling-interval 100
```
13.5 ip domain retry

Use the **ip domain retry** command in Global Configuration mode to specify the number of times the device will send Domain Name System (DNS) queries when there is no replay.

To return to the default behavior, use the **no** form of this command.

**Syntax**

```
ip domain retry number
no ip domain retry
```

**Parameters**

*number*—Number of times to retry sending a DNS query to the DNS server. The range is from 0 to 16.

**Default Configuration**

The default value is 1.

**Command Mode**

Global Configuration mode

**User Guidelines**

The number argument specifies how many times the DNS query will be sent to a DNS server until the switch decides that the DNS server does not exist.

**Example**

The following example shows how to configure the switch to send out 10 DNS queries before giving up:

```
switchxxxxxx(config)# ip domain retry 10
```

13.6 ip domain timeout

Use the **ip domain timeout** command in Global Configuration mode to specify the amount of time to wait for a response to a DNS query.

To return to the default behavior, use the **no** form of this command.
DNS Client Commands

Syntax

**ip domain timeout** *seconds*

**no ip domain timeout**

Parameters

*seconds*—Time, in seconds, to wait for a response to a DNS query. The range is from 1 to 60.

Default Configuration

The default value is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

Use the command to change the default time out value. Use the **no** form of this command to return to the default time out value.

Example

The following example shows how to configure the switch to wait 50 seconds for a response to a DNS query:

```
switchxxxxxx(config)# ip domain timeout 50
```

13.7 **ip host**

Use the **ip host** Global Configuration mode command to define the static host name-to-address mapping in the DNS host name cache.

Use the **no** form of this command to remove the static host name-to-address mapping.

Syntax

**ip host** *hostname* *address1* [ *address2*...*address8* ]

**no ip host** *name* **ip host** *name* [ *address1*...*address8* ]
Parameters

- **hostname**—Name of the host. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters).
- **address1**—Associated host IP address (IPv4 or IPv6, if IPv6 stack is supported).
- **address2...address8**—Up to seven additional associated IP addresses, delimited by a single space (IPv4 or IPv6, if IPv6 stack is supported).

Default Configuration

No host is defined.

Command Mode

Global Configuration mode

User Guidelines

Host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

An IP application will receive the IP addresses in the following order:

1. IPv6 addresses in the order specified by the command.
2. IPv4 addresses in the order specified by the command.

Use the no format of the command with the **address1...address8** argument to delete the specified addresses. The entry is deleted if all its addresses are deleted.

Example

The following example defines a static host name-to-address mapping in the host cache.

```
switchxxxxxx(config)# ip host accounting.website.com 176.10.23.1
```

13.8 **ip name-server**

Use the **ip name-server** command in Global Configuration mode to specify the address of one or more name servers to use for name and address resolution.

Use the no form of this command to remove the static specified addresses.
Syntax

**ip name-server** server1-address [server-address2...server-address8]

**no ip name-server** [server-address1...server-address8]

Parameters

- **server-address1**—IPv4 or IPv6 addresses of a single name server.
- **server-address2...server-address8**—IPv4 or IPv6 addresses of additional name servers.

Default Configuration

No name server IP addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

The preference of the servers is determined by the order in which they were entered.

Each **ip name-server** command replaces the configuration defined by the previous one (if one existed).

Example

The following example shows how to specify IPv4 hosts 172.16.1.111, 172.16.1.2, and IPv6 host 2001:0DB8::3 as the name servers:

```
switchxxxxxx (config)# ip name-server 172.16.1.111 172.16.1.2 2001:0DB8::3
```

13.9 **show hosts**

Use the **show hosts** command in privileged EXEC mode to display the default domain name, the style of name lookup service, a list of name server hosts, and the cached list of hostnames and addresses.

Syntax

**show hosts** [all | hostname]
Parameters

- **all**—The specified host name cache information is to be displayed for all configured DNS views. This is the default.

- **hostname**—The specified host name cache information displayed is to be limited to entries for a particular host name.

Command Mode

Privileged EXEC mode

Default Configuration

Default is **all**.

User Guidelines

This command displays the default domain name, a list of name server hosts, and the cached list of host names and addresses.

Example

The following is sample output with no parameters specified:

```
switchxxxxxx# show hosts
Name/address lookup is enabled
Domain Timeout: 3 seconds
Domain Retry: 4 times
Domain Polling Interval: 10 seconds

Default Domain Table
Source Interface Preference Domain
static website.com
dhcpv6 vlan 100 1 qqtca.com
dhcpv6 vlan 100 2 company.com
dhcpv6 vlan 1100 1 pptca.com

Name Server Table
```
<table>
<thead>
<tr>
<th>Source</th>
<th>Interface Preference</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>1</td>
<td>192.0.2.204</td>
</tr>
<tr>
<td>static</td>
<td>2</td>
<td>192.0.2.205</td>
</tr>
<tr>
<td>static</td>
<td>3</td>
<td>192.0.2.105</td>
</tr>
<tr>
<td>DHCPv6</td>
<td>vlan 100 1</td>
<td>2002:0:22AC::11:231A:0BB4</td>
</tr>
<tr>
<td>DHCPv4</td>
<td>vlan 1 1</td>
<td>192.1.122.20</td>
</tr>
<tr>
<td>DHCPv4</td>
<td>vlan 1 2</td>
<td>154.1.122.20</td>
</tr>
</tbody>
</table>

**Cache Table**

Flags: (static/dynamic, OK/Ne/??)

OK - Okay, Ne - Negative Cache, ?? - No Response

Host Flag Address;Age...in preference order

- example1.company.com (dynamic, OK) 2002:0:130F::0A0:1504:0BB4;1 112.0.2.10 176.16.8.8;123 124 173.0.2.30;39
- example2.company.com (dynamic, ??)
- example3.company.com (static, OK) 120.0.2.27
- example4.company.com (dynamic, OK) 24 173.0.2.30;15
- example5.company.com (dynamic, Ne); 12
14.1 eee enable (global)

To enable the EEE mode globally, use the `eee enable` Global Configuration command. To disable the mode, use the `no` format of the command.

Syntax

```
eee enable
no eee enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

EEE is enabled.

Command Mode

Global Configuration mode

User Guidelines

In order for EEE to work, the device at the other end of the link must also support EEE and have it enabled. In addition, for EEE to work properly, auto-negotiation must be enabled; however, if the port speed is negotiated as 1Giga, EEE always works regardless of whether the auto-negotiation status is enabled or disabled.

If auto-negotiation is not enabled on the port and its speed is less than 1 Giga, the EEE operational status is disabled.

Example

```
switchxxxxxx(config)# eee enable
```
14.2  eee enable (interface)

To enable the EEE mode on an Ethernet port, use the **eee enable** Interface Configuration command. To disable the mode, use the **no** format of the command.

**Syntax**

```
 eee enable
 no eee enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

EEE is enabled.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

If auto-negotiation is not enabled on the port and its speed is 1 Giga, the EEE operational status is disabled.

**Example**

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# eee enable
```

14.3  eee lldp enable

To enable EEE support by LLDP on an Ethernet port, use the **eee lldp enable** Interface Configuration command. To disable the support, use the **no** format of the command.

**Syntax**

```
 eee lldp enable
 no eee lldp enable
```
Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
Enabling EEE LLDP advertisement enables devices to choose and change system wake-up times in order to get the optimal energy saving mode.

Example

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# eee lldp enable
```

14.4 show eee

Use the **show eee** EXEC command to display EEE information.

Syntax

```
show eee [interface-id]
```

Parameters

**interface-id**—(Optional) Specify an Ethernet port.

Defaults

None

Command Mode

Privileged EXEC mode
EEE Commands

User Guidelines

If the port is a 10G port, but the link speed is 1G, the EEE Remote status cannot be resolved (and displayed).

Examples

Example 1 - The following displays brief Information about all ports.

```
switchxxxxxx# show eee
EEE globally enabled
EEE Administrate status is enabled on ports: gi1-2, gi4
EEE Operational status is enabled on ports: gi1-2, gi4
EEE LLDP Administrate status is enabled on ports: gi1-3
EEE LLDP Operational status is enabled on ports: gi1-2
```

Example 2 - The following is the information displayed when a port is in the Not Present state; no information is displayed if the port supports EEE.

```
switchxxxxxx# show eee gi1
Port Status: notPresent
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
```

Example 3 - The following is the information displayed when the port is in status DOWN.

```
switchxxxxxx# show eee gi1
Port Status: DOWN
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
```
EEE Commands

EEE Administrate status: enabled
EEE LLDP Administrate status: enabled

Example 4 - The following is the information displayed when the port is in status UP and does not support EEE.

```
switchxxxxxx# show eee gi2
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
```

Example 5 - The following is the information displayed when the neighbor does not support EEE.

```
switchxxxxxx# show eee gi4
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: disabled
EEE Administrate status: enabled
EEE Operational status: disabled (neighbor does not support)
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
```
**Example 6** - The following is the information displayed when EEE is disabled on the port.

```plaintext
switchxxxxxx# show eee gi1
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Administrative status: disabled
EEE Operational status: disabled
EEE LLDP Administrative status: enabled
EEE LLDP Operational status: disabled
```

**Example 7** - The following is the information displayed when EEE is running on the port, and EEE LLDP is disabled.

```plaintext
switchxxxxxx# show eee gi2
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrative status: enabled
EEE Operational status: enabled
EEE LLDP Administrative status: disabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Resolved Timer: 25 usec
```
Example 8 - The following is the information displayed when EEE and EEE LLDP are running on the port.

switchxxxxxxx# show eee gi3
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec

Example 9 - The following is the information displayed when EEE is running on the port, EEE LLDP is enabled but not synchronized with the remote link partner.

switchxxxxxxx# show eee gi4
Port Status: up
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
EEE Commands

Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Resolved Rx Timer: 16
Local Rx Timer: 16

Example 10 - The following is the information displayed when EEE and EEE LLDP are running on the port.

show eee gi3

Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
15.1 interface

To enter Interface configuration mode in order to configure an interface, use the interface Global Configuration mode command.

Syntax

interface interface-id

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, port-channel, VLAN, range, IP interface or tunnel.

Default Configuration

None

Command Mode

Global Configuration mode

Examples

Example 1—For Ethernet ports:

switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)#

Example 2—For port channels (LAGs):

switchxxxxxx(config)# interface pol
15.2 interface range

To execute a command on multiple ports at the same time, use the interface range command.

Syntax

interface range interface-id-list

Parameters

interface-id-list—Specify list of interface IDs. The interface ID can be one of the following types: Ethernet port, VLAN, or port-channel

Default Configuration

None

Command Mode

Interface (Ethernet, Port Channel, VLAN) Configuration mode

User Guidelines

Commands under the interface range context are executed independently on each interface in the range. If the command returns an error on one of the interfaces, it does not stop the execution of the command on other interfaces.

Example

switchxxxxxx(config-if)#

switchxxxxxx(config-if-range)#

15.3 shutdown

To disable an interface, use the shutdown Interface Configuration mode command. To restart a disabled interface, use the no form of this command.
Syntax

`shutdown`
`no shutdown`

Parameters

This command has no arguments or keywords.

Default Configuration

The interface is enabled.

Command Mode

Interface Configuration mode

User Guidelines

The shutdown command set a value of ifAdminStatus (see RFC 2863) to DOWN. When ifAdminStatus is changed to DOWN, ifOperStatus will be also changed to DOWN.

The DOWN state of ifOperStatus means that the interface does not transmit/receive messages from/to higher levels. For example, if you shut down a VLAN, on which an IP interface is configured, bridging into the VLAN continues, but the switch cannot transmit and receive IP traffic on the VLAN.

Notes:

- If the switch shuts down an Ethernet port it additionally shuts down the port MAC sublayer too.
- If the switch shuts down a port channel it additionally shuts down all ports of the port channel too.

Examples

**Example 1**—The following example disables gi4 operations.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```
Example 2—The following example restarts the disabled Ethernet port.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# no shutdown
switchxxxxxx(config-if)#
```

Example 3—The following example shuts down vlan 100.

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

Example 4—The following example shuts down tunnel 1.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

Example 5—The following example shuts down Port Channel 3.

```
switchxxxxxx(config)# interface po3
switchxxxxxx(config-if)# shutdown
switchxxxxxx(config-if)#
```

15.4 operation time

To control the time that the port is up, use the operation time Interface (Ethernet, Port Channel) Configuration mode command. To cancel the time range for the port operation time, use the no form of this command.

Syntax

```
operation time time-range-name
```
no operation time

Parameters

- time-range-name—Specifies a time range the port operates (in up state). When the Time Range is not in effect, the port is shutdown. (Range: 1–32 characters)

Default Configuration

There is no time range configured on the port authorized state.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1x edge ports (ports in auto state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example

The operation time command influences the port if the port status is up. This command defines the time frame during which the port stays up and at which time the port will be shutdown. While the port is in shutdown because of other reasons, this command has no effect.

The following example activates an operation time range (named "morning") on port gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# operation time morning
```

15.5 description

To add a description to an interface, use the description Interface (Ethernet, Port Channel) Configuration mode command. To remove the description, use the no form of this command.

Syntax

description string

no description
Parameters

- **string**—Specifies a comment or a description of the port to assist the user. (Length: 1–64 characters).

Default Configuration

The interface does not have a description.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example adds the description ‘SW#3’ to gi4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# description SW#3
```

15.6 speed

To configure the speed of a given Ethernet interface when not using auto-negotiation, use the `speed` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
speed {10 | 100 | 1000 | 10000}
no speed
```

Parameters

- **10**—Forces 10 Mbps operation
- **100**—Forces 100 Mbps operation
- **1000**—Forces 1000 Mbps operation
- **10000**—Forces 10000 Mbps operation

Default Configuration

The port operates at its maximum speed capability.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The **no speed** command in a port-channel context returns each port in the port-channel to its maximum capability.

Example

The following example configures the speed of gi4 to 100 Mbps operation.

```
switchxxxxxx(config)# interface gi4
switchxxxxxxx(config-if)# speed 100
```

15.7 **duplex**

To configure the full/half duplex operation of a given Ethernet interface when not using auto-negotiation, use the **duplex** Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
duplex {half | full}
```

**no duplex**

Parameters

- **half**—Forces half-duplex operation.
- **full**—Forces full-duplex operation.

Default Configuration

The interface operates in full duplex mode.

Command Mode

Interface (Ethernet) Configuration mode
Example

The following example configures gi1 to operate in full duplex mode.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# duplex full
```

15.8 negotiation

To enable auto-negotiation operation for the speed and duplex parameters and master-slave mode of a given interface, use the `negotiation` Interface (Ethernet, Port Channel) Configuration mode command. To disable auto-negotiation, use the `no` form of this command.

Syntax

```
negotiation [capability [capability2... capability5]] [preferred {master | slave}]
no negotiation
```

Parameters

- **Capability**—(Optional) Specifies the capabilities to advertise. (Possible values: 10h, 10f, 100h, 100f, 1000f, 10000f).
  - 10h—Advertise 10 half-duplex
  - 10f—Advertise 10 full-duplex
  - 100h—Advertise 100 half-duplex
  - 100f—Advertise 100 full-duplex
  - 1000f—Advertise 1000 full-duplex
  - 10000f—Advertise 10000 full-duplex
- **Preferred**—(Optional) Specifies the master-slave preference:
  - Master—Advertise master preference
  - Slave—Advertise slave preference

Default Configuration

If capability is unspecified, defaults to list of all the capabilities of the port and preferred slave mode.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables auto-negotiation on gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# negotiation
```

15.9 flowcontrol

To configure the Flow Control on a given interface, use the `flowcontrol` Interface (Ethernet, Port Channel) Configuration mode command. To disable Flow Control, use the `no` form of this command.

Syntax

```
flowcontrol {auto | on | off}
no flowcontrol
```

Parameters

- **auto**—Specifies auto-negotiation of Flow Control.
- **on**—Enables Flow Control.
- **off**—Disables Flow Control.

Default Configuration

Flow control is Disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `negotiation` command to enable `flow control auto`. 
Example

The following example enables Flow Control on port gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# flowcontrol on
```

15.10 mdix

To enable cable crossover on a given interface, use the `mdix` Interface (Ethernet) Configuration mode command. To disable cable crossover, use the `no` form of this command.

Syntax

```
mdix {on | auto}
no mdix
```

Parameters

- `on`—Enables manual MDIX.
- `auto`—Enables automatic MDI/MDIX.

Default Configuration

The default setting is Auto.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables automatic crossover on port gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# mdix auto
```
15.11 back-pressure

To enable back pressure on a specific interface, use the `back-pressure` Interface (Ethernet) Configuration mode command. To disable back pressure, use the `no` form of this command.

Syntax

```
back-pressure
no back-pressure
```

Parameters

This command has no arguments or keywords.

Default Configuration

Back pressure is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Back-pressure cannot be enabled when EEE is enabled.

Example

The following example enables back pressure on port gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# back-pressure
```

15.12 port jumbo-frame

To enable jumbo frames on the device, use the `port jumbo-frame` Global Configuration mode command. To disable jumbo frames, use the `no` form of this command.

Syntax

```
port jumbo-frame
```

15.13  link-flap prevention

To enable setting a physical interface to err-disable state due to excessive link flapping, use the `link-flap prevention` Global Configuration mode command. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
link-flap prevention {enable | disable}
no link-flap prevention
```

**Parameters**

- **enable**—Enables Link-flap Prevention.
- **disable**—Disables Link-flap Prevention.
Default Configuration

Link-flap prevention is enabled on the device.

Command Mode

Global Configuration mode

User Guidelines

This command will shutdown Ethernet (Physical) interfaces if the interface experienced, for a duration of 10 seconds, 3 link flaps (link status changes) within each second.

You can use the following commands to reset an interface shut down by link-flap prevention:

- The `errdisable recovery reset` command with the `link-flapping` parameter to recover all interfaces in this state due to link-flap prevention, or the `interface interface-id` parameter to reset a given interface.
- The `errdisable recovery cause` with the `link-flapping` parameter to automatically recover from the link-flap prevention error-disabled state.
- The command sequence of "shutdown" and then "no shutdown" on required interface.

Example

The following example enables link-flap prevention on the device.

```
switchxxxxxx(config)# link-flap prevention
```

15.14 clear counters

To clear counters on all or on a specific interface, use the `clear counters` Privileged EXEC mode command.

Syntax

```
clear counters [interface-id]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
Default Configuration
All counters are cleared.

Command Mode
Privileged EXEC mode

Example
The following example clears the statistics counters for gi1.

```
switchxxxxxx# clear counters gi1
```

15.15 set interface active
To reactivate an interface that was shut down, use the `set interface active` Privileged EXEC mode command.

Syntax
```
set interface active interface-id
```

Parameters
```
interface-id — Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
```

Command Mode
Privileged EXEC mode

User Guidelines
This command is used to activate interfaces that were configured to be active, but were shut down by the system.

Example
The following example reactivates gi1.

```
switchxxxxxx# set interface active gi1
```
15.16 errdisable recovery cause

To enable automatic re-activation of an interface after an Err-Disable shutdown, use the `errdisable recovery cause` Global Configuration mode command. To disable automatic re-activation, use the `no` form of this command.

Syntax

```
errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-loopback-guard | loopback-detection | storm-control | link-flap }

no errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-loopback-guard | loopback-detection | storm-control | link-flap }
```

Parameters

- **all**—Enables the error recovery mechanism for all reasons described below.
- **port-security**—Enables the error recovery mechanism for the port security Err-Disable state.
- **dot1x-src-address**—Enables the error recovery mechanism for the 802.1x Err-Disable state.
- **acl-deny**—Enables the error recovery mechanism for the ACL Deny Err-Disable state.
- **stp-loopback-guard**—Enables the error recovery mechanism for the STP Loopback Guard Err-Disable state.
- **loopback-detection**—Enables the error recovery mechanism for the Loopback Detection Err-Disable state.
- **storm-control**—Enables the error recovery mechanism for the Storm Control Shutdown state.
- **link-flap**—Enables the error recovery mechanism for the link-flap prevention Err-Disable state.

Default Configuration

Automatic re-activation is disabled, except for link-flap reason where automatic re-creation is enabled by default.

Command Mode

Global Configuration mode
Example

The following example enables automatic re-activation of an interface after all states.

```
switchxxxxxxx(config)# errdisable recovery cause all
```

### 15.17 errdisable recovery interval

To set the error recovery timeout interval use the `errdisable recovery interval` Global Configuration mode command. To return to the default configuration, use the `no` form of this command.

**Syntax**

```
errdisable recovery interval seconds

no errdisable recovery interval
```

**Parameters**

- **seconds**—Specifies the error recovery timeout interval in seconds. (Range: 30–86400)

**Default Configuration**

The default error recovery timeout interval is 300 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the error recovery timeout interval to 10 minutes.

```
switchxxxxxxx(config)# errdisable recovery interval 600
```

### 15.18 errdisable recovery reset

To reactivate one or more interfaces that were shut down by a given application, use the `errdisable recovery reset` Privileged EXEC mode command. A single interface, multiple interfaces or all interfaces can be specified.
Syntax

```
erdisable recovery reset {all | port-security | dot1x-src-address | acl-deny | stp-loopback-guard | loopback-detection | storm-control | link-flap | interface interface-id}
```

Parameters

- **all**—Reactivate all interfaces regardless of their state.
- **port-security**—Reactivate all interfaces in the Port Security Err-Disable state.
- **dot1x-src-address**—Reactivate all interfaces in the 802.1x Err-Disable state.
- **acl-deny**—Reactivate all interfaces in the ACL Deny Err-Disable state.
- **stp-loopback-guard**—Reactivate all interfaces in the STP Loopback Guard Err-Disable state.
- **loopback-detection**—Reactivate all interfaces in the Loopback Detection Err-Disable state.
- **storm-control**—Reactivate all interfaces in the Storm Control Shutdown state.
- **link-flap**—Reactivate all interfaces in the link-flap prevention Err-Disable state.
- **interface interface-id**—Reactivate interfaces that were configured to be active, but were shut down by the system.

Default Configuration

None.

Command Mode

Privileged EXEC mode

Examples

**Example 1**—The following example reactivates interface gi1:

```
switchxxxxxx# erdisable recovery reset interface gi1
```

**Example 2**—The following example reactivates all interfaces regardless their state:
**Example 3**—The following example enables all interfaces in the port security Err-Disable state

```
switchxxxxxx# errdisable recovery reset all
```

```
switchxxxxxx# errdisable recovery reset port-security
```

### 15.19 show interfaces configuration

To display the configuration for all configured interfaces or for a specific interface, use the `show interfaces configuration` Privileged EXEC mode command.

**Syntax**

```
show interfaces configuration [interface-id | detailed]
```

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the configuration of all configured interfaces:

```
switchxxxxxx# show interfaces configuration
```

<table>
<thead>
<tr>
<th>Flow</th>
<th>Admin</th>
<th>Back</th>
<th>Mdix</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Port</td>
<td>Type</td>
<td>Duplex</td>
<td>Speed</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
15.20 show interfaces status

To display the status of all interfaces or of a specific interface, use the `show interfaces status` Privileged EXEC mode command.

Syntax

```
show interfaces status [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
• **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

**Command Mode**

Privileged EXEC mode

**Default Configuration**

Display for all interfaces. If detailed is not used, only present ports are displayed.

**Example**

The following example displays the status of all configured interfaces.

```
switchxxxxxx# show interfaces status

 Flow Link Back Mdix
Port Type Duplex Speed Neg ctrl State Pressure Mode
------ --------- ------ ----- -------- ---- ------ -------- --
gi1 1G-Copper Full 1000 Disabled Off Up Disabled Off

Flow Link
PO Type Duplex Speed Neg control State
----- ------- ------ ----- ------- ---- ------
Po1 1G Full 10000 Disabled Off Up

*: The interface was suspended by the system.
```

### 15.21 show interfaces advertise

To display auto-negotiation advertisement information for all configured interfaces or for a specific interface, use the `show interfaces advertise` Privileged EXEC mode command.

**Syntax**

```
show interfaces advertise [interface-id | detailed]
```
Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

The following examples display auto-negotiation information.

```
switchxxxxxx# show interfaces advertise
Port Type Neg Preferred Operational Link Advertisement
------ ------ ---- ---------- -------------------------------------
 gi1 1G-Copper Enable Master 1000f, 100f, 10f, 10h
 gi2 1G-Copper Enable Slave 1000f
 te1 10G-Copper Enable Slave 10000f,1000f
```
switchxxxxxx#  show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled
Preference: Master

<table>
<thead>
<tr>
<th></th>
<th>10h</th>
<th>10f</th>
<th>100h</th>
<th>100f</th>
<th>1G</th>
<th>10G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Local link Advertisement</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Oper Local link Advertisement</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Remote Local link Advertisement</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Priority Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

switchxxxxxx#  show interfaces advertise gi1
Port: gi1
Type: 1G-Copper
Link state: Up
Auto negotiation: disabled.

15.22  show interfaces description

To display the description for all configured interfaces or for a specific interface, use the show interfaces description Privileged EXEC mode command.

Syntax

show interfaces description [interface-id | detailed]
Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display description for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the description of all configured interfaces.

```
switchxxxxxx# show interfaces description
Port Descriptions
------------- ---
 gi1 Port that should be used for management only
 gi2
 gi3
 gi4
 Po Description
 ---- ---------
 Po1 Output
```

15.23  **show interfaces counters**

To display traffic seen by all the physical interfaces or by a specific interface, use the **show interfaces counters** Privileged EXEC mode command.

Syntax

```
show interfaces counters [interface-id | detailed]
```
Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display counters for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays traffic seen by all the physical interfaces.

```plaintext
switchxxxxxx# show interfaces counters gi1
Port InUcastPkts InMcastPkts InBcastPkts InOctets
---------- ------------ ------------ ------------ ------------
gi1 0 0 0 0
Port OutUcastPkts OutMcastPkts OutBcastPkts OutOctets
---------- ------------ ------------ ------------ ------------
gi1 0 1 35 7051

FCS Errors: 0
Single Collision Frames: 0
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
```
Symbol Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0
The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>InBeastPkts</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutBeastPkts</td>
<td>Number of transmitted Broadcast packets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>Number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>Number of frames that are involved in a single collision, and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>Number of frames that are involved in more than one collision and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>Number of times that the SQE TEST ERROR is received. The SQE TEST ERROR is set in accordance with the rules for verification of the SQE detection mechanism in the PLS Carrier Sense Function as described in IEEE Std. 802.3, 2000 Edition, section 7.2.4.6.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>Number of frames for which the first transmission attempt is delayed because the medium is busy.</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>Number of times that a collision is detected later than one slotTime into the transmission of a packet.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>Number of frames for which transmission fails due to excessive collisions.</td>
</tr>
<tr>
<td>Oversize Packets</td>
<td>Number of frames received that exceed the maximum permitted frame size.</td>
</tr>
<tr>
<td>Internal MAC Rx Errors</td>
<td>Number of frames for which reception fails due to an internal MAC sublayer receive error.</td>
</tr>
</tbody>
</table>
15.24 show ports jumbo-frame

To display the whether jumbo frames are enabled on the device, use the show ports jumbo-frame Privileged EXEC mode command.

Syntax

```
show ports jumbo-frame
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays whether jumbo frames are enabled on the device.

```
switchxxxxxx# show ports jumbo-frame
Jumbo frames are disabled
Jumbo frames will be enabled after reset
```
15.25  show link-flap prevention

To display whether link-flap prevention is enabled on the device, use the `show link-flap prevention` Privileged EXEC mode command.

Syntax

```plaintext
show link-flap prevention
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays whether link-flap prevention is enabled on the device.

```
switchxxxxxx# show link-flap prevention
link-flap prevention is currently enabled on device
```

15.26  show errdisable recovery

To display the Err-Disable configuration of the device, use the `show errdisable recovery` Privileged EXEC mode command.

Syntax

```plaintext
show errdisable recovery
```

Parameters

This command has no arguments or keywords.
Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the Err-Disable configuration.

```
switchxxxxxx# show errdisable recovery
Timer interval: 300 Seconds

<table>
<thead>
<tr>
<th>Reason</th>
<th>Automatic Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-security</td>
<td>Disable</td>
</tr>
<tr>
<td>dot1x-src-address</td>
<td>Disable</td>
</tr>
<tr>
<td>acl-deny</td>
<td>Enable</td>
</tr>
<tr>
<td>stp-loopback-guard</td>
<td>Disable</td>
</tr>
<tr>
<td>loop-detection</td>
<td>Disable</td>
</tr>
<tr>
<td>storm control</td>
<td>Disable</td>
</tr>
<tr>
<td>link-flap</td>
<td>Disable</td>
</tr>
</tbody>
</table>
```

15.27 show errdisable interfaces

To display the Err-Disable state of all interfaces or of a specific interface, use the show errdisable interfaces Privileged EXEC mode command.

Syntax

`show errdisable interfaces [interface-id]`

Parameters

- `interface`—(Optional) Port or port-channel number.
Default Configuration
Display for all interfaces.

Command Mode
Privileged EXEC mode

Example
The following example displays the Err-Disable state of gi1.

```
switchxxxxxx# show errdisable interfaces

Interface Reason
------------------- ------------------

gi1 port-security
```

15.28 clear switchport monitor
To clear monitored statistics on all or on a specific interface or interface list, use the clear switchport monitor Privileged EXEC mode command.

Syntax
```
clear switchport monitor [interface-id-list]
```

Parameters
```
interface-id-list—(Optional) Specifies a list of interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
```

Default Configuration
All monitored statistics are cleared.

Command Mode
Privileged EXEC mode
Example

The following example clears the monitored statistics for gi1.

```
switchxxxxxx# clear switchport monitor gi1
```

15.29 show switchport monitor

To display the monitored statistics gathered by a specific interface, use the `show switchport monitor` Privileged EXEC mode command.

Syntax

```
show switchport monitor interface-id {seconds | minutes | hours} [utilization | tx | rx | frames]
show switchport monitor interface-id {days | weeks}
show switchport monitor utilization [interface-id]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **seconds**—last 20 samples, sampled every 15 seconds.
- **minutes**—last 60 samples, sampled every 60 seconds (every round minute according to system time).
- **hours**—last 24 samples, sampled every 60 minutes (every round hour according to system time).
- **days**—last 7 samples, sampled every 24 hours (midnight to midnight according to system time).
- **weeks**—last 12 samples, sampled every 7 days (midnight saturday to midnight saturday according to system time).
- **utilization**—shows per time frame the utilization calculated.
- **rx**—shows received counters statistics.
- **tx**—shows sent counters statistics.
- **frames**—show received counters statistics collected per packet size.
Default Configuration

Display monitored statistics for an interface or all interface in case of `show switchport monitor utilization` command.

Command Mode

Privileged EXEC mode

User Guidelines

The `show switchport monitor utilization` is used to show a utilization summary per interface of the last time frame in each time frame(i.e. last minute, last hour, last day and last week).

The `show switchport monitor interface-id` is used to show monitored statistics samples collected per time frame and per counter types.

Examples

Example 1—The following example displays monitored statistics utilization seen by interface gil.

```
switchxxxxxx# show switchport monitor utilization gil

Interface Minutes Rx/TX Hours Rx/TX Days Rx/TX Weeks Rx/TX
utilization utilization utilization utilization
------------------------ ------------------------------- ------------------------------- ------------------------------- -------------------------------
gil 95% 80% 60% 20%
```

Example 2—The following example displays monitored Tx statistics gathered in minutes time frame seen by interface gil.

```
```
switchxxxxxxx# show switchport monitor gi1 minutes tx

<table>
<thead>
<tr>
<th>Time</th>
<th>Unicast frames</th>
<th>Broadcast frames</th>
<th>Multicast frames</th>
<th>Good Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sent</td>
<td>Sent</td>
<td>Sent</td>
<td>Sent</td>
</tr>
<tr>
<td>04:22:00 (~)</td>
<td>95%</td>
<td>80%</td>
<td>60%</td>
<td>20%</td>
</tr>
<tr>
<td>04:23:00</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
</tbody>
</table>

(~) Not all samples are available.
```
The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time stamp of the current sample in system real time clock.</td>
</tr>
<tr>
<td></td>
<td>For seconds, minutes and hours format is: hh:mm:ss.</td>
</tr>
<tr>
<td></td>
<td>For days and weeks format is: <day of week> dd/mm/yy.</td>
</tr>
<tr>
<td>Good Octets Received</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>Good Unicast frames</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>Received</td>
<td></td>
</tr>
<tr>
<td>Good Multicast frames</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>Received</td>
<td></td>
</tr>
<tr>
<td>Good Broadcast frames</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>Received</td>
<td></td>
</tr>
<tr>
<td>Good Octets Sent</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>Good Unicast frames</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>Sent</td>
<td></td>
</tr>
<tr>
<td>Good Multicast frames</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>Sent</td>
<td></td>
</tr>
<tr>
<td>Good Broadcast frames</td>
<td>Number of transmitted Broadcast packets.</td>
</tr>
<tr>
<td>Sent</td>
<td></td>
</tr>
<tr>
<td>Frames of 64 bytes</td>
<td>Number of received packets size of 64 bytes.</td>
</tr>
<tr>
<td>Frames of 65-127 bytes</td>
<td>Number of received packets size of 65-127 bytes.</td>
</tr>
<tr>
<td>Frames of 128-255 bytes</td>
<td>Number of received packets size of 128-255 bytes.</td>
</tr>
<tr>
<td>Frames of 256-511 bytes</td>
<td>Number of received packets size of 256-511 bytes.</td>
</tr>
<tr>
<td>Frames of 512-1023 bytes</td>
<td>Number of received packets size of 512-1023 bytes.</td>
</tr>
<tr>
<td>Frames of 1024-1518 bytes</td>
<td>Number of received packets size of 1024-1518 bytes.</td>
</tr>
<tr>
<td>Rx Error Frames Received</td>
<td>Number of frames received that are an integral number of octets in length</td>
</tr>
<tr>
<td></td>
<td>but do not pass the FCS check.</td>
</tr>
<tr>
<td>Rx Utilization</td>
<td>Utilization in percentage for Received frames on the interface.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tx Utilization</td>
<td>Utilization in percentage for Sent frames on the interface.</td>
</tr>
<tr>
<td>Rx/Tx Utilization</td>
<td>An average of the Rx Utilization and the Tx Utilization in percentage on the interface.</td>
</tr>
</tbody>
</table>
16.1 findit probe enable

To enable the FindIT Network Probe operation on device, use the `findit probe enable` command in Global Configuration mode. To disable the FindIT Network Probe operation, use the `no` form of this command.

Syntax

```
findit probe enable
no findit probe enable
```

Parameters

N/A

Default Configuration

FindIT Network Probe is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the command to enable the FindIT Network Probe on the device.

Example

The following example enables the FindIT Network Probe on the device:

```
switchxxxxxxx(config)# findit probe enable
This operation may take a few seconds....
```
16.2 show findit

To display information about FindIT Network Probe Configuration and status, use the show findit command in Privileged EXEC mode.

Syntax

```
show findit
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Use the show findit command, to display information about the FindIT Network Probe running on the device.

Example

The following example shows the output from the show findit command:

```
switchxxxxxx# show findit
FindIT Network Probe is enabled
FindIT Operational Status: Active
```
The following table describes the different FindIT Network Probe setting and behavior and the relevant Administrative & Operational state display.

<table>
<thead>
<tr>
<th>FindIT Network Probe Setting and Status</th>
<th>Administrative State indication</th>
<th>Operational State indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindIT Network Probe Disabled</td>
<td>Disabled</td>
<td>Inactive</td>
</tr>
<tr>
<td>FindIT Network Probe Enabled and active</td>
<td>Enabled</td>
<td>Active</td>
</tr>
<tr>
<td>FindIT Network Probe Enabled but is not active (indicates a failure)</td>
<td>Enabled</td>
<td>Fault</td>
</tr>
</tbody>
</table>
17.1 File Specification

The files may be located on:

- Network: TFTP servers and/or SCP servers - Network files
- FLASH - Flash files
- mass-storage connected to a USB port - USB files. Only one mass-storage is supported.

Uniform Resource Locators (URLs) are used to specify the location of a file or a directory. The URL has the following syntax:

```
<url> ::= tftp://<location>/<file-path> |
scp://[<username>]:<password>@]<location>/<file-path> |
flash://<file-path> | <current-directory>[/<file-path>] | <higher-directory>[/<file-path>] | <file-path>
```

- `<username>` ::= string up to 70 characters
- `<password>` ::= string up to 70 characters
- `<location>` ::= `<ipv4-address>` | `<ipv6-address>` | `<dns-name>`
- `<current-directory>` ::= [`<usb` | `<flash`]
- `<higher-directory>` ::= [`<usb` | `<flash`]
- `<file-path>` ::= [`<directories-path`]<filename>
- `<directories-path>` ::= `<directory-name>` | `<directories-path`>/<directory-name>

The maximum number of directories in `<directories-path>` is 16.

- `<directory-name>` ::= string up to 63 characters
- `<filename>` ::= string up to 63 characters

Filenames and directory names consist only of characters from the portable filename character set. The set includes the following characters:
The last three characters are the <period>, <underscore>, and <hyphen> characters, respectively. If an URL includes spaces it must be enclosed by the " characters.

For example:

"flash://aaa it/alpha/file 125"

The maximal length of URL is 160 characters.

The following File systems are supported on USB:

- **FAT32**—Full support.
- **NTFS**—Partially support: read only.

The switch supports the following predefined URL aliases:

- **active-image**—The predefined URL alias specifies the Active Image file. This file has the following permissions:
 - readable
 - executable

- **inactive-image**—The predefined URL alias specifies the Inactive Image file. This file has the following permissions:
 - readable
 - executable

- **running-config**—The predefined URL alias specifies the Running Configuration File.

- **startup-config**—The predefined URL alias specifies the Startup Configuration File. This file has the following permissions:
 - readable

- **localization**. The predefined URL alias specifies the Secondary Language Dictionary files. These files have the following permissions:
 - readable
- **logging**. The predefined URL alias specifies the Syslog file. This file has the following permissions:
 - readable

- **mirror-config**. The predefined URL alias specifies the Mirror Configuration file. This file has the following permissions:
 - readable

Example

Example 1. The following example specifies a file on TFTP server using an IPv4 address:

```
tftp://1.1.1.1/aaa/dat/file.txt
```

Example 2. The following example specifies a file on TFTP server using an IPv6 address:

```
tftp://3000:1:2::11/aaa/dat/file.txt
```

Example 3. The following example specifies a file on TFTP server using a DNS name:

```
tftp://files.export.com/aaa/dat/file.txt
```

Example 4. The following example specifies a file on FLASH:

```
flash://aaa/dat/file.txt
```

Example 5. The following example specifies files using the current directory:

```
./dat/file.txt
dat/file.txt
```
Example 6. The following example specifies a file using the higher directory:

```
../dat/file.txt
```

Example 7. The following example specifies a file on mass-storage device connected to the USB port:

```
usb://aaa/dat/file.txt
```

Example 8. The following example specifies files on mass-storage device connected to the USB port using the current directory:

```
usb:aaa/dat/file.txt
usb:./aaa/dat/file.txt
```

Example 9. The following example specifies a file on mass-storage device connected to the USB port using the higher directory:

```
usb:../aaa/dat/file.txt
```

17.2 System Flash Files

The system files used by the switch are in the `flash://system/` directory. A user cannot add, delete, and rename the system files and directories, a user cannot create new directories under the system directory.

The system files are divided to the following groups:

- Inner System files. The files are created by the switch itself. For example the Syslog file.
- Files installed/Uninstalled by user. This group includes the following files:
 - Active and Inactive Images
 - Startup Configuration
The following boot commands install/uninstall these files:

- `boot config`
- `boot localization`
- `boot system`

Additionally, the following commands from previous versions can be used too:

- `copy (copy running-config startup-config)`
- `write`

Note. Reset to Factory Default removes all files from the FLASH except the following files:

- `active-image`
- `inactive-image`
- `mirror-config`
- `localization`

The `flash://system/` directory contains the following directories:

- `flash://system/images/`—The directory contains the Active and Inactive Image files.
- `flash://system/configuration/`—The directory contains the Startup and Mirror Configuration files.
- `flash://system/applications/`—The directory contains inner system files managed by the switch applications.

17.3 boot config

To install a file as Startup Configuration after reload, use the `boot config` command in Privileged EXEC mode. To uninstall the Startup configuration file, use the `no` form of this command.
Syntax

```plaintext
boot config startup-config-url
boot config running-config
boot config mirror-config
no boot config
```

Parameters

- `startup-config-url`—the url of a file. The predefined URLs cannot be configured.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Use the `boot config startup-config-url` command to install Startup Configuration from the `startup-config-url` file. The file must be a text file containing CLI commands. The command performs the following actions:

- Copies the file into the system directory `flash://system/configuration/`
- Converts the file format from the text format in the inner binary format.
- Installs the converted file as Startup Configuration. The previous Startup Configuration file is deleted.

Use the `boot config running-config` command to install Startup Configuration from Running Configuration.

Use the `boot config mirror-config` command to install Startup Configuration from the Mirror Configuration file.

Use the `no boot config` command, to uninstall Startup Configuration. The uninstalled file is deleted.

Example

Example 1. The following example installs Startup Configuration from a TFTP server:
switchxxxxxx(config)# boot config
tftp://1.1.1./conflation-files/config-v1.9.dat

Example 2. The following example installs Startup Configuration from FLASH:

switchxxxxxx(config)# boot config flash://conflation-files/config-v1.9.dat

Example 3. The following example unsets the current Startup Configuration:

switchxxxxxx(config)# no boot config

Example 4. The following example installs Startup Configuration from the Running Configuration file:

switchxxxxxx(config)# boot config running-confg

Example 5. The following example installs Startup Configuration from the Mirror Configuration file:

switchxxxxxx(config)# boot config mirror-confg

17.4 boot localization

To install a file as the Secondary Language Dictionary file, use the `boot localization` command in Privileged EXEC mode. To remove all the installed language files, use the `no` form of this command.

Syntax

`boot localization dictionary-url`

`no boot localization`

Parameters

- `dictionary-url`—the url of a file. The predefined URLs cannot be configured.
Default Configuration

Default language.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `boot localization dictionary-url` command to install a Secondary Language Dictionary from the `dictionary-url` file. The command performs the following actions:

- Copies the file into the system directory `flash://system/localization/`
- Validates installed file format and if the file language is supported by the device. If the file does not have the correct format, or if the file language is not supported by the device, the file is not copied and the command will finish with an error.
- Replaces the relevant language file on device with the installed file. Update of language file does not change the active secondary language used by web GUI user.

Use the `no boot dictionary` command, to uninstall Secondary Language Dictionary. The uninstalled files are deleted.

Example

Example 1. The following example installs the Secondary Language Dictionary file from a TFTP server:

```
switchxxxxxx(config)# boot localization
    tftp://196.1.1.1/web-dictionaries/germany-dictionary.lang
```

Example 2. The following example installs the Secondary Language Dictionary file from FLASH:

```
switchxxxxxx(config)# boot localization
    flash://web-dictionaries/germany-dictionary.lang
```

17.5 `boot system`

To install the system (active) image that the switch loads at startup, use the `boot system` command in Privileged EXEC mode.
Syntax

```
boot system image-url
boot system inactive-image
```

Parameters

- `image-url`—The URL of a file. The predefined URLs cannot be configured.

Default Configuration

No default.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `boot system image-url` command to install a new active image from the `image-url` file. The command performs the following actions:

- Copies the file into the system directory `flash://system/image/`
- Validates its format. If the file does not have the correct image format the file is deleted and the command is finished with an error.
- Installs the copied file as the active image that will be used be loaded at startup. The previous active image file is save as inactive image. The previous inactive image is deleted.

Use the `boot system inactive-image` command to set the inactive image as active one and the active image as inactive one.

Use the `show bootvar / show version` command to display information about the active and inactive images.

Example

Example 1. The following example sets a new active image from a TFTP server:

```
switchxxxxxxx(config)# boot system tftp://145.21.2.3/image/image-v1-1.ros
```

Example 2. The following example sets a new active image from FLASH:
switchxxxxxx(config)# boot system flash://images/image-v1-1.ros

Example 3. The following example sets the inactive image:

switchxxxxxx(config)# boot system inactive-image

17.6 cd

To change the current directory or file system, use the `cd` command in User EXEC mode.

Syntax

```plaintext
cd url
```

Parameters

- `url`—Specifies a directory on FLASH or on USB.

Default Configuration

The flash root directory (`flash://`)

Command Mode

User EXEC mode

User Guidelines

When a terminal session is started the current directory of the session is set to `flash://`. Use the `cd` command to change the current directory.

Example

Example 1. The following example sets a new current directory on FLASH:

```
switchxxxxxx> pwd
flash://
switchxxxxxx> cd date/aaa
switchxxxxxx> pwd
```
flash://date/aaa

Example 2. The following example sets a new current directory on USB:

switchxxxxxxx> pwd
flash://
switchxxxxxxx> cd usb://
switchxxxxxxx> pwd
usb://

17.7 copy

To copy any file from a source to a destination, use the copy command in Privileged EXEC mode.

Syntax

copy src-url dst-url

copy {running-config | startup-config} dst-url [exclude | include-encrypted | include-plaintext]

copy src-url running-config

copy running-config startup-config

Parameters

- src-url—The location URL of the source file to be copied. The predefined URL aliases can be configured.

- dst-url—The URL of the destination file or the directory to be copied. The predefined URL aliases cannot be configured.

- exclude—The file does not include sensitive data in the file being copied.

- include-encrypted—The file includes sensitive data in its encrypted form. This secure option is applied by default, if no secure option is configured.

- include-plaintext—The file includes sensitive data in its plaintext form.
Command Mode

Privileged EXEC mode

User Guidelines

The following guidelines are relevant:

- You cannot copy one network file to another network file.
- **Localization** is not supported as a predefined `src-url` or `dst-url`.
- Use the `copy src-url dst-url` command to copy any file. If the `dst-url` argument defines an existed flash file the command fails if this file does not have the writable permission. If the `dst-url` argument defines a directory file then the file is copied into the directory with the same name. No file format validation or conversion is performed. If the `src-url` argument and `dst-url` arguments define flash files the `dst-url` file will have the permissions of the `src-url` file. If the `src-url` argument defines a non-flash file and the `dst-url` argument defines a flash files the `dst-url` file will have the following permissions:
 - readable
 - writable
- Use the `copy src-url running-config` command to add a file to the Running Configuration file.
- The `copy running-config startup-config` command has exactly the same functionality as the `boot config` command with the `running-config` keyword.

Example

Example 1. The following example copies file `file1` from the TFTP server 172.16.101.101 to the `flash://aaaa/file1` file:

```plaintext
switchxxxxxx# copy tftp://172.16.101.101/file1 flash://aaa/file1
```

Example 2. The following example saves the Startup configuration file in the `tftp://172.16.101.101/config.txt` file:

```plaintext
switchxxxxxx# copy startup-config tftp://172.16.101.101/config.txt
```

include-encrypted
Example 3. The following example copies the Running Configuration file to the Startup configuration:

```
switchxxxxxx# copy running-config startup-config
```

Example 4. The following example copies the Syslog file to a TFTP server:

```
switchxxxxxx# copy logging tftp://1.1.1.1/syslog.txt
```

Example 5. The following example copies a file from the mass-storage device connected to the USB port to Flash:

```
switchxxxxxx# copy usb://aaa/file1.txt flash://dir1/file2
```

17.8 delete

To delete a local file, use the delete command in Privileged EXEC mode.

Syntax

delete url

delete startup-config

Delete SNA Storage file-name

Parameters

- *url*—Specifies the local URL of the local file to be deleted. The predefined and network URLs cannot be configured.

- *file-name*—Specifies the name of SNA user file to delete.

Command Mode

Privileged EXEC mode
User Guidelines

The **delete url** command cannot delete a network file.

Use the **delete startup-config** command to delete the Startup Configuration file.

Use the **Delete SNA Storage file-name** command to delete SNA Settings saved for specific user (as specified in the file-name parameter).

Example

Example 1. The following example deletes the file called ‘backup/config’ from FLASH:

```
switchxxxxxx# cd flash://backup/
switchxxxxxx# delete aaa.ttt
Delete flash://backup/aaa.ttt? [Y/N]Y
```

Example 2. The following example deletes the file called ‘aaa/config’ from the mass-storage device connected to the USB port:

```
switchxxxxxx# delete usb://aaa/config
Delete usb://aaa/config? [Y/N]Y
```

17.9 dir

To display a list of files on a file system, use the **dir** command in User EXEC mode.

Syntax

```
dir [url]
```

Parameters

- **url**—Specifies the local URL of the directory to be displayed. The predefined and network URLs cannot be configured. If the argument is omitted the current directory is used.

Command Mode

User EXEC mode
User Guidelines

The command cannot be applied to a network directory.

Use the `dir` command without the argument to display the current directory.

Examples

The following example displays the `flash://mng/` directory:

```
switchxxxxxx> dir flash://mng/
Permissions
  d-directory
  r-readable
  w-writable
  x-executable
134560K of 520000K are free
Directory of flash://mng/
<table>
<thead>
<tr>
<th>Permission</th>
<th>File Size</th>
<th>Last Modified</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>drw-</td>
<td>4720148</td>
<td>Dec 12 2010</td>
<td>bin</td>
</tr>
<tr>
<td>-r--</td>
<td>60</td>
<td>Dec 12 2011</td>
<td>config-list</td>
</tr>
<tr>
<td>-r--</td>
<td>160</td>
<td>Feb 12 2011</td>
<td>image-list</td>
</tr>
<tr>
<td>-r-x</td>
<td>6520148</td>
<td>Nov 29 2010</td>
<td>image1</td>
</tr>
<tr>
<td>-rw-</td>
<td>2014</td>
<td>Nov 20 2010</td>
<td>data</td>
</tr>
</tbody>
</table>
```

17.10 mkdir

To create a new directory, use the `mkdir` command in Privileged EXEC mode.

Syntax

```
mkdir url
```

Parameters

- `url`—Specifies the URL of the created directory. The predefined and network URLs cannot be configured.
Command Mode
Privileged EXEC mode

User Guidelines
The `mkdir` command cannot be applied to a network directory.
The `mkdir` command cannot create a directory into the `flash://system/` directory.
All directories defined in the `url` argument except the created one must exist.

Example

Example 1. The following example creates a directory on FLASH:

```
switchxxxxxx# mkdir flash://date/aaa/
```

Example 2. The following example creates a directory on the mass-storage device connected to the USB port:

```
switchxxxxxx# mkdir usb://newdir/
```

17.11 more

To display the contents of a file, use the `more` command in User EXEC mode.

Syntax

```
more url
```

Parameters

- `url`—Specifies the local URL or predefined file name of the file to display.

Command Mode

User EXEC mode

User Guidelines

The command cannot be applied to a network file.
The `more running-config` command displays the same output as the `show running-config` command regardless the specified format.

The `more startup-config` command displays the same output as the `show startup-config` command regardless the specified format.

The `more active-image` and `more inactive-image` commands display only the version number of the image regardless the specified format.

Example

The following example displays the running configuration file contents:

```
switchxxxxxxx> more running-config
no spanning-tree
interface range gi1/1//11-48
  speed 1000
  exit
no lldp run
line console
exec-timeout 0
```

17.12 `pwd`

To show the current directory, use the `pwd` command in User EXEC mode.

Syntax

```
pwd [usb: | flash:]
```

Parameters

- `usb:`—Display the current directory on the USB driver.
- `flash:`—Display the current directory on the FLASH driver.

Command Mode

User EXEC mode
User Guidelines

Use the `pwd usb: I flash:` command to show the current directory on the specified driver.

Use the `pwd` command to show the current directory set by the recent `cd` command.

Example

The following example uses the `cd` command to change the current directory and then uses the `pwd` command to display that current directory:

```
switchxxxxxx> pwd
flash://
switchxxxxxx> cd date/aaa
switchxxxxxx> pwd
flash://date/aaa
```

17.13 `reload`

To reload the operating system, use the `reload` command in Privileged EXEC mode.

Syntax

```
reload [in [hh:mm | mmm] | at hh:mm [day month]] | cancel]
```

`reload cancel`

Parameters

- `in hh:mm | mmm`—Schedules a reload of the image to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days.

- `at hh:mm`—Schedules a reload of the image to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 hours.

- `day`—Number of the day in the range from 1 to 31.
• **month**—Month of the year. (Range: Jan–Dec)

• **cancel**—Cancels a scheduled reload.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `reload` command to reload the switch.

Use the `reload {in hh:mm | mmm | at hh:mm [day month]}` command to specify scheduled switch reload.

The `at` keyword can be configured only if the system clock has been set on the switch.

When you specify the reload time using the `at` keyword, if you specify the month and day, the reload takes place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time), or on the next day (if the specified time is earlier than the current time).

Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

Use the `reload cancel` command to cancel the scheduled reload.

To display information about a scheduled reload, use the `show reload` command.

Example

Example 1. The following example reloads the switch:

```
switchxxxxxx# reload
This command will reset the whole system and disconnect your current session.
Do you want to continue? (Y/N) [Y]
```

Example 2. The following example reloads the image in 10 minutes:

```
switchxxxxxx# reload in 10
This command will reset the whole system and disconnect your current session.
Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you want to continue? (Y/N) [Y]
```
Example 3. The following example reloads the image at 12:10 24 Aug:

```
switchxxxxxx# reload at 12:10 24 Aug
This command will reset the whole system and disconnect your current session.
Reload is scheduled for 12:10:00 UTC Sun Aug 24 2014 (in 1 hours and 12
minutes). Do you want to continue ? (Y/N)[N]
```

Example 4. The following example reloads the image at 13:00:

```
switchxxxxxx# reload at 13:00 soft
This command will reset the whole system and disconnect your current session.
Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3
minutes). Do you want to continue? (Y/N) [Y]
```

Example 5. The following example cancels a reload.

```
switchxxxxxx# reload cancel
Reload cancelled.
```

17.14 rename

To rename a local file or directory, use the `rename` command in Privileged EXEC mode.

Syntax

```
rename url new-url
```

Parameters

- `url`—Specifies the URL of the file or directory to be renamed. The predefined and network URLs cannot be configured.

- `new-url`—Specifies the new URL of the renamed file or directory. The predefined and network URLs cannot be configured.
User Guidelines

The *url* and *new-url* arguments must specify the same driver.

The command cannot rename a network file or network directory.

The command cannot rename a file or directory into the *flash://system* directory.

Examples

Example 1. The following example renames the *flash://bin/text1.txt* file to *flash://archive/text1sav.txt*:

```
switchxxxxxx# cd flash://archive
switchxxxxxx# rename flash://bin/text1.txt ./text1sav.txt
```

Example 2. The following example renames the *flash://a/b* directory to the *flash://e/g/h* directory:

```
switchxxxxxx# pwd
flash://a/b/c/d
switchxxxxxx> dir flash://a
Permissions
• d-directory
• r-readable
• w-writable
• x-executable
134560K of 520000K are free
Directory of flash://a
File Name     Permission  File Size      Last Modified
---------     ----------  ---------   -------------------
b                drw-        472148   Dec 13 2010 15:49:36
switchxxxxxx> dir flash://e/g/h
Permissions
• d-directory
• r-readable
• w-writable
• x-executable
134560K of 520000K are free

Directory of flash://e/g/h

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>File Size</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switchxxxxxx# **rename flash://a/b flash://e/g/h**

switchxxxxxx# **pwd**

flash://e/g/h/c/d

switchxxxxxx> **dir flash://a**

Permissions

- d-directory
- r-readable
- w-writable
- x-executable

134560K of 520000K are free

Directory of flash://mng/

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>File Size</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switchxxxxxx> **dir flash://e/g/h**

Permissions

- d-directory
- r-readable
- w-writable
- x-executable

134560K of 520000K are free

Directory of flash://e/g/h

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>File Size</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>drw-</td>
<td>720148</td>
<td>Dec 12 2010 17:49:36</td>
</tr>
</tbody>
</table>

17.15 **rmdir**

To remove a local directory, use the **rmdir** command in Privileged EXEC mode.
Syntax

```plaintext
rmdir url
```

Parameters

- `url`—Specifies the URL of the file or directory to be deleted. The predefined and network URLs cannot be configured.

Command Mode

Privileged EXEC mode

User Guidelines

Only empty directory can be deleted.

The command cannot remove a network directory.

The command cannot remove a directory into the `flash://system` directory.

Example

**Example 1.** The following example removes the directory called ‘backup/config/’ from FLASH:

```plaintext
switchxxxxxx# rmdir flash://backup/config/
Remove flash://backup/config? [Y/N]Y
```

**Example 2.** The following example removes the directory called ‘aaa/config’ from the mass-storage device connected to the USB port:

```plaintext
switchxxxxxx# rmdir usb://aaa/config/
Remove directory usb://aaa/config? [Y/N]Y
```

17.16 service mirror-configuration

Use the `service mirror-configuration` Global Configuration mode command to enable the mirror-configuration service. Use `no service mirror-configuration` command to disable the service.
Syntax

```
service mirror-configuration
no service mirror-configuration
```

Parameters

This command has no arguments or keywords.

Default Configuration

The default configuration is mirror-configuration service enabled.

Command Mode

Global Configuration mode

User Guidelines

The mirror-configuration service automatically keeps a copy of the last known stable configuration (startup configuration that has not been modified for 24H).

When this service is disabled, the mirror-configuration file is deleted.

Examples

**Example 1** - The following example disables the mirror-configuration service:

```
switchxxxxxx(config)# no service mirror-configuration
```

This operation will delete the mirror-config file if exists. Do you want to continue? (Y/N) [N]

**Example 2** - The following example enables the mirror-configuration service

```
switchxxxxxx(config)# service mirror-configuration
```

Service is enabled.
17.17 show bootvar / show version

To display the active system image file that was loaded by the device at startup, and to display the system image file that will be loaded after rebooting the switch, use the `show bootvar` or `show version` command in User EXEC mode.

**Syntax**

```
show bootvar
show version
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

User EXEC mode

**User Guidelines**

The `show bootvar` and `show version` commands have the same functionality.

**Example**

**Example 1.** The following example gives an example of the command output after reload:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive-image: flash://system/images/image_v12-01.ros
 Version: 12.01
 MD5 Digest: 3FA000012857D8855AABC7577AB8999
 Date: 04-Feb-2001
 Time: 11:13:17
```
**Example 2.** This example continues the inactive one, after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command:

```plaintext
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
 Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
 Version: 14.01
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 24-Jul-2014
 Time: 23:11:17
 Active after reboot
```

**Example 3.** This example continues the inactive one, after a system reload:

```plaintext
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v14-01.ros
 Version: 14.01
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 24-Jul-2014
 Time: 23:11:17
Inactive-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
```

**Example 4.** This example continues the inactive one, after applying the `boot system inactive-image` command:

```plaintext
switchxxxxxx# show bootvar
```
Example 5. This example continues the inactive one, after a system reload:

```
switchxxxxxx# show bootvar
```

```
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive-image: flash://system/images/_image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
```

Example 7. The following example gives an example of the command output after applying the `boot system` command two times:

```
switchxxxxxx# show bootvar
```

```
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
```
switchxxxxxx# boot system tftp://1.1.1.1/image_v14-01.ros

switchxxxxxx# show bootvar

Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot

Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot

switchxxxxxx# boot system tftp://1.1.1.1/image_v14-04.ros

switchxxxxxx# show bootvar

Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot

Inactive-image: flash://system/images/image_v14-04.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Example 8. The following example gives an example of the command output after applying the **boot system tftp://1.1.1.1/image_v14-01.ros** command and the **boot system inactive-image** command:

```plaintext
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive-image: flash://system/images/image_v12-01.ros
 Version: 12.01
 MD5 Digest: 3FA000012857D8855AABC7577AB8999
 Date: 04-Feb-2001
 Time: 11:13:17
switchxxxxxx# boot system tftp://1.1.1.1/image_v14-01.ros
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
 Version: 14.01
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 24-Jul-2014
 Time: 23:11:17
 Active after reboot
switchxxxxxx# boot system inactive-image
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
```
17.18 show mirror-configuration service

To display the mirror-configuration service status, use the `show mirror-configuration service` command in User EXEC mode.

**Syntax**

```
show mirror-configuration service
```

**Command Mode**

User EXEC mode

**Example**

The following example displays the status of the mirror-configuration service

```
switchxxxxx# show mirror-configuration service
Mirror-configuration service is enabled
```

17.19 show reload

To display the reload status on the switch, use the `show reload` command in User EXEC mode.

**Syntax**

```
show reload
```
Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

User Guidelines

You can use the `show reload` command to display a pending image reload. To cancel the reload, use the `reload` command with the `cancel` keyword.

Example

**Example 1.** The following example displays information when scheduled reload has been configured:

```
switchxxxxxx> show reload
Image reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)
```

**Example 2.** The following example displays information when scheduled reload has not been configured:

```
switchxxxxxx> show reload
No scheduled reload
```

### 17.20  `show running-config`

To display the contents of the currently running configuration file, use the `show running-config` command in Privileged EXEC mode.

`show running-config [interface interface-id-list | detailed | brief]`

Parameters

- **interface interface-id-list**—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.
- **detailed**—Displays configuration with SSL and SSH keys.
- **brief**—Displays configuration without SSL and SSH keys.
Default Configuration

All interfaces are displayed. If the `detailed` or `brief` keyword is not specified, the `brief` keyword is applied.

Command Mode

Privileged EXEC mode

Example

The following example displays the running configuration file contents.

```
switchxxxxxx# show running-config
config-file-header
 AA307-02
 v1.2.5.76 / R750_NIK_1_2_584_002
 CLI v1.0
 file SSD indicator encrypted
 @
 ssd-control-start
 ssd config
 ssd file passphrase control unrestricted
 no ssd file integrity control
 ssd-control-end cb0a3fda1f3a1af4e443003719968c0
!

 no spanning-tree
 interface range gi1-4
 speed 1000
 exit
 no lldp run
 interface vlan 1
 ip address 1.1.1.1 255.0.0.0
 exit
 line console
 exec-timeout 0
```
17.21  show startup-config

To display the Startup Configuration file contents, use the `show startup-config` command in Privileged EXEC mode.

Syntax

`show startup-config [interface interface-id-list]`

Parameters

- `interface interface-id-list`—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.

Command Mode

Privileged EXEC mode

Example

The following example displays the startup configuration file contents.

```
switchxxxxxx# show startup-config
config-file-header
AA307-02
v1.2.5.76 / R750_NIK_1_2_584_002
CLI v1.0
file SSD indicator encrypted
@
ssd-control-start
ssd config
ssd file passphrase control unrestricted
no ssd file integrity control
ssd-control-end cb0a3f6b1f3a1af4e4430033719968c0
!
no spanning-tree
```
interface range gi1-4
speed 1000
exit
no lldp run
interface vlan 1
ip address 1.1.1.1 255.0.0.0
exit
line console
eexec-timeout 0
exit
switchxxxxxx#
17.22  write

To save the running configuration to the startup configuration file, use the write command in Privileged EXEC mode.

Syntax

write

write memory

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

Use the write command or the write memory command to save the Running Configuration file into the Startup Configuration file.

Examples

The following example shows how to overwrite the startup-config file with the running-config file with the write command.

```
switchxxxxxx# write
Overwrite file [startup-config] ?[Yes/press any key for no]....15-Sep-2010 11:27
:48 %COPY-I-FILECPY: Files Copy - source URL running-config destination URL flash://startup-config
15-Sep-2010 11:27:50 %COPY-N-TRAP: The copy operation was completed successfully
Copy succeeded
```
GARP VLAN Registration Protocol (GVRP) Commands

18.1 clear gvrp statistics

To clear GVRP statistical information for all interfaces or for a specific interface, use the clear gvrp statistics Privileged EXEC mode command.

Syntax

```
clear gvrp statistics [interface-id]
```

Parameters

**Interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears all GVRP statistical information on gi4.

```
switchxxxxxx# clear gvrp statistics gi4
```
18.2 gvrp enable (Global)

To enable the Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) globally, use the `gvrp enable` Global Configuration mode command. To disable GVRP on the device, use the `no` form of this command.

**Syntax**

```
gvrp enable
no gvrp enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

GVRP is globally disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables GVRP globally on the device.

```
switchxxxxxx(config)# gvrp enable
```

18.3 gvrp enable (Interface)

To enable GVRP on an interface, use the `gvrp enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable GVRP on an interface, use the `no` form of this command.

**Syntax**

```
gvrp enable
no gvrp enable
```

**Example**

The following example enables GVRP on an interface.

```
switchxxxxxx(config-if)# gvrp enable
```
Parameters

This command has no arguments or keywords.

Default Configuration

GVRP is disabled on all interfaces.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

An access port does not dynamically join a VLAN because it is always a member of a single VLAN only. Membership in an untagged VLAN is propagated in the same way as in a tagged VLAN. That is, the PVID must be manually defined as the untagged VLAN ID.

Example

The following example enables GVRP on gi4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# gvrp enable
```

18.4 gvrp registration-forbid

To deregister all dynamic VLANs on a port and prevent VLAN creation or registration on the port, use the `gvrp registration-forbid` Interface Configuration mode command. To allow dynamic registration of VLANs on a port, use the `no` form of this command.

Syntax

```
gvrp registration-forbid

no gvrp registration-forbid
```

Parameters

This command has no arguments or keywords.

Default Configuration

Dynamic registration of VLANs on the port is allowed.
GARP VLAN Registration Protocol (GVRP) Commands

18.5 gvrp vlan-creation-forbid

To disable dynamic VLAN creation or modification, use the `gvrp vlan-creation-forbid` Interface Configuration mode command. To enable dynamic VLAN creation or modification, use the `no` form of this command.

Syntax

`gvrp vlan-creation-forbid`

`no gvrp vlan-creation-forbid`

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables dynamic VLAN creation on gi3.

switchxxxxxx(config-if)# interface gi3
switchxxxxxx(config-if)# gvrp vlan-creation-forbid
18.6 show gvrp configuration

To display GVRP configuration information, including timer values, whether GVRP and dynamic VLAN creation are enabled, and which ports are running GVRP, use the show gvrp configuration EXEC mode command.

Syntax

show gvrp configuration [interface-id | detailed]

Parameters

- interface-id—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- detailed—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

All GVRP statistics are displayed for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP configuration.

switchxxxxxx# show gvrp configuration
GVRP Feature is currently Enabled on the device.
Maximum VLANs: 4094

<table>
<thead>
<tr>
<th>Port(s)</th>
<th>GVRP-Status</th>
<th>Registration</th>
<th>Dynamic VLAN Creation</th>
<th>Timers(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>Forbidden</td>
<td>Disabled</td>
<td>600 200 10000</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>Normal</td>
<td>Enabled</td>
<td>1200 400 20000</td>
</tr>
</tbody>
</table>
18.7 *show gvrp error-statistics*

Use the *show gvrp error-statistics* EXEC mode command to display GVRP error statistics for all interfaces or for a specific interface.

**Syntax**

*show gvrp error-statistics [interface-id]*

**Parameters**

*interface-id*—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Default Configuration**

All GVRP error statistics are displayed.

**Command Mode**

User EXEC mode

**Example**

The following example displays GVRP error statistics.

```
switchxxxxxx# show gvrp error-statistics
GVRP Error Statistics:

Legend:
INVPROT : Invalid Protocol Id
INVALEN : Invalid Attribute Length
INVAVAL : Invalid Attribute Value INVEVENT: Invalid Event
Port INVPROT INVALEN INVAVAL INVEVENT
-------- ------- ------- ------- -------
gi1 0 0 0 0
 gi2 0 0 0 0
 gi3 0 0 0 0
 gi4 0 0 0 0
```
18.8 show gvrp statistics

To display GVRP statistics for all interfaces or for a specific interface, use the `show gvrp statistics` EXEC mode command.

**Syntax**

```
show gvrp statistics [interface-id]
```

**Parameters**

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Default Configuration**

All GVRP statistics are displayed.

**Command Mode**

User EXEC mode

**Example**

The following example displays GVRP statistical information.

```
switchxxxxxx# show gvrp statistics
GVRP statistics:

Legend:
rJE : Join Empty Received rJIn: Join In Received
rEmp: Empty Received rLIn: Leave In Received
rLE : Leave Empty Received rLA : Leave All Received
sJE : Join Empty Sent sJIn: Join In Sent
sEmp: Empty Sent sLIn: Leave In Sent
sLE : Leave Empty Sent sLA : Leave All Sent
```
## GARP VLAN Registration Protocol (GVRP) Commands

### Cisco Sx250 Ph. 2.4.5 Devices - Command Line Interface Reference Guide

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLE</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
</tr>
</tbody>
</table>
Green Ethernet

19.1 green-ethernet energy-detect (global)

To enable Green-Ethernet Energy-Detect mode globally, use the `green-ethernet energy-detect` Global Configuration mode command. To disable this feature, use the `no` form of this command.

Syntax

```
green-ethernet energy-detect
no green-ethernet energy-detect
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet energy-detect
```

19.2 green-ethernet energy-detect (interface)

Use the `green-ethernet energy-detect` Interface configuration mode command to enable Green Ethernet-Energy-Detect mode on a port. Use the no form of this command, to disable it on a port.
Syntax

green-ethernet energy-detect
no green-ethernet energy-detect

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Energy-Detect only works on copper ports. When a port is enabled for auto selection, copper/fiber Energy-Detect cannot work.

It takes the PHY ~5 seconds to fall into sleep mode when the link is lost after normal operation.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# green-ethernet energy-detect
```

19.3 green-ethernet short-reach (global)

Use the green-ethernet short-reach Global Configuration mode command to enable Green-Ethernet Short-Reach mode globally. Use the no form of this command to disabled it.

Syntax

green-ethernet short-reach
no green-ethernet short-reach

Parameters

This command has no arguments or keywords.
Default Configuration
Disabled.

Command Mode
Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet short-reach
```

19.4 green-ethernet short-reach (interface)

Use the `green-ethernet short-reach` Interface Configuration mode command to enable green-ethernet short-reach mode on a port. Use the `no` form of this command to disable it on a port.

Syntax

```
green-ethernet short-reach
no green-ethernet short-reach
```

Parameters

This command has no arguments or keywords.

Default Configuration
Disabled.

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines

The VCT length check can be performed only on a copper port operating at a speed of 1000 Mbps. If the media is not copper or the link speed is not 1000, Mbps Short-Reach mode is not applied.

When the interface is set to enhanced mode, after the VCT length check has completed and set the power to low, an active monitoring for errors is done continuously. In the case of errors crossing a certain threshold, the PHY will be reverted to long reach.
Note that EEE cannot be enabled if the Short-Reach mode is enabled.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# green-ethernet short-reach
```

### 19.5 green-ethernet power-meter reset

Use the `green-ethernet power meter reset` Privileged EXEC mode command to reset the power save meter.

**Syntax**

```
green-ethernet power-meter reset
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Privileged EXEC mode

**Example**

```
switchxxxxxx# green-ethernet power-meter reset
```

### 19.6 show green-ethernet

To display green-ethernet configuration and information, use the `show green-ethernet` Privileged EXEC mode command.

**Syntax**

```
show green-ethernet [interface-id | detailed]
```
Parameters

- **interface-id**—(Optional) Specifies an Ethernet port
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

User Guidelines

The power savings displayed is relevant to the power saved by:

- Port LEDs
- Energy detect
- Short reach

The EEE power saving is dynamic by nature since it is based on port utilization and is therefore not taken into consideration.

The following describes the reasons for non-operation displayed by this command.

If there are a several reasons, then only the highest priority reason is displayed.

### Energy-Detect Non-Operational Reasons

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber, auto media select)</td>
</tr>
<tr>
<td>3</td>
<td>LU</td>
<td>Port Link is up – NA</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber)</td>
</tr>
<tr>
<td>3</td>
<td>LS</td>
<td>Link Speed Is not Supported (10mbps,100mbps)</td>
</tr>
<tr>
<td>4</td>
<td>LL</td>
<td>Link Length received from VCT test exceeds threshold</td>
</tr>
<tr>
<td>6</td>
<td>LD</td>
<td>Port Link is Down – NA</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show green-ethernet

Energy-Detect mode: Enabled
Short-Reach mode: Disabled
Disable Port LEDs mode: Enabled
Power Savings: 24% (1.08W out of maximum 4.33W)
Cumulative Energy Saved: 33 [Watt*Hour]
* Estimated Annual Power saving: 300 [Watt*Hour]
* Annual estimate is based on the saving during the previous week
NA – information for previous week is not available
Short-Reach cable length threshold: 50m

<table>
<thead>
<tr>
<th>Port</th>
<th>Energy-Detect</th>
<th>Short-Reach</th>
<th>VCT Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin Oper Reason</td>
<td>Admin Force Oper Reason</td>
<td>Length</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>gi1</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>gi2</td>
<td>on</td>
<td>off</td>
<td>LU</td>
</tr>
<tr>
<td>gi3</td>
<td>on</td>
<td>off</td>
<td>LU</td>
</tr>
</tbody>
</table>
```

Short-Reach Non-Operational Reasons

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber)</td>
</tr>
<tr>
<td>3</td>
<td>LS</td>
<td>Link Speed Is not Supported (10mbps,100mbps)</td>
</tr>
<tr>
<td>4</td>
<td>LL</td>
<td>Link Length received from VCT test exceeds threshold</td>
</tr>
<tr>
<td>6</td>
<td>LD</td>
<td>Port Link is Down – NA</td>
</tr>
</tbody>
</table>
20.1 ip igmp last-member-query-count

To configure the Internet Group Management Protocol (IGMP) last member query counter, use the `ip igmp last-member-query-count` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

```
ip igmp last-member-query-count count
no ip igmp last-member-query-count
```

Parameters

- `count`—The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

Default Configuration

A value of IGMP Robustness variable.

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip igmp robustness` command to change the IGMP last member query counter.

Example

The following example changes a value of the IGMP last member query counter to 3:

```
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ip igmp last-member-query-count 3
switchxxxxxxx(config-if)# exit
```
20.2 ip igmp last-member-query-interval

To configure the Internet Group Management Protocol (IGMP) last member query interval, use the `ip igmp last-member-query-interval` command in Interface Configuration mode. To restore the default IGMP query interval, use the `no` form of this command.

**Syntax**

```
ip igmp last-member-query-interval milliseconds
no ip igmp last-member-query-interval
```

**Parameters**

- `milliseconds`—Interval, in milliseconds, at which IGMP group-specific host query messages are sent on the interface. (Range: 100–25500).

**Default Configuration**

The default IGMP last member query interval is 1000 milliseconds.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

Use the `ip igmp last-member-query-interval` command to configure the IGMP last member query interval on an interface.

**Example**

The following example shows how to increase the IGMP last member query interval to 1500 milliseconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp last-member-query-interval 1500
switchxxxxxx(config-if)# exit
```

20.3 ip igmp query-interval

To configure the frequency at which the IGMP querier sends Internet Group Management Protocol (IGMP) host-query messages from an interface, use the `ip igmp query-interval` command.
command in Interface Configuration mode. To restore the default IGMP query interval, use the no form of this command.

Syntax

\texttt{ip igmp query-interval \textit{seconds}}

\texttt{no ip igmp query-interval}

Parameters

\begin{itemize}
\item \textit{seconds}—Frequency, in seconds, at which the switch sends IGMP query messages from the interface. The range is from 30 to 18000.
\end{itemize}

Default Configuration

The default IGMP query interval is 125 seconds.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the \texttt{ip igmp query-interval} command to configure the frequency at which the IGMP querier sends IGMP host-query messages from an interface. The IGMP querier sends query-host messages to discover which multicast groups have members on the attached networks of the router.

The query interval must be bigger than the maximum query response time.

Example

The following example shows how to increase the frequency at which the IGMP querier sends IGMP host-query messages to 180 seconds:

\begin{verbatim}
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp query-interval 180
switchxxxxxx(config-if)# exit
\end{verbatim}
20.4 ip igmp query-max-response-time

To configure the maximum response time advertised in Internet Group Management Protocol (IGMP) queries, use the `ip igmp query-max-response-time` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

```plaintext
ip igmp query-max-response-time seconds
no ip igmp query-max-response-time
```

**Parameters**

- `seconds`—Maximum response time, in seconds, advertised in IGMP queries. (Range: 5–20)

**Default Configuration**

10 seconds.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

This command controls the period during which the responder can respond to an IGMP query message before the router deletes the group.

This command controls how much time the hosts have to answer an IGMP query message before the router deletes their group. Configuring a value of fewer than 10 seconds enables the router to prune groups faster.

The maximum query response time must be less than the query interval.

**Note.** If the hosts do not respond fast enough, they might be pruned inadvertently. Therefore, the hosts must know to respond faster than 10 seconds (or the value you configure).

**Example**

The following example configures a maximum response time of 8 seconds:

```
switchxxxxxxx(config)# interface vlan 100
switchxxxxxxx(config-if)# ip igmp query-max-response-time 8
switchxxxxxxx(config-if)# exit
```
20.5  ip igmp robustness

To configure the Internet Group Management Protocol (IGMP) robustness variable, use the ip igmp robustness command in Interface Configuration mode. To restore the default value, use the no form of this command.

Syntax

ip igmp robustness count
no ip igmp robustness

Parameters

- count—The number of expected packet loss on a link. Parameter range. (Range: 1–7).

Default Configuration

The default value is 2.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the ip igmp robustness command to change the IGMP robustness variable.

Example

The following example changes a value of the IGMP robustness variable to 3:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp robustness 3
switchxxxxxx(config-if)# exit
```

20.6  ip igmp version

To configure which version of Internet Group Management Protocol (IGMP) the router uses, use the ip igmp version command in Interface Configuration mode. To restore the default value, use the no form of this command.
IGMP Commands

20.7 show ip igmp interface

To display multicast-related information about an interface, use the `show ip igmp interface` command in User EXEC mode.

Syntax

```plaintext
show ip igmp interface [interface-id]
```
Parameters

- `interface-id`—(Optional) Interface identifier.

Command Mode

User EXEC mode

User Guidelines

If you omit the optional `interface-id` argument, the `show ip igmp interface` command displays information about all interfaces.

Example

The following is sample output from the `show ip igmp interface` command for Ethernet interface 2/1/1:

```
switchxxxxxx# show ip igmp interface vlan 100

VLAN 100 is up
 Administrative IGMP Querier IP address is 1.1.1.1
 Operational IGMP Querier IP address is 1.1.1.1
 Current IGMP version is 3
 Administrative IGMP robustness variable is 2 seconds
 Operational IGMP robustness variable is 2 seconds
 Administrative IGMP query interval is 125 seconds
 Operational IGMP query interval is 125 seconds
 Administrative IGMP max query response time is 10 seconds
 Operational IGMP max query response time is 10 seconds
 Administrative Last member query response interval is 1000 milliseconds
 Operational Last member query response interval is 1000 milliseconds
```
IGMP Snooping Commands

21.1 ip igmp snooping (Global)

To enable Internet Group Management Protocol (IGMP) snooping, use the `ip igmp snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ip igmp snooping`

`no ip igmp snooping`

**Default Configuration**

Disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables IGMP snooping.

```
switchxxxxxx(config)# ip igmp snooping
```

---

21.2 ip igmp snooping vlan

To enable IGMP snooping on a specific VLAN, use the `ip igmp snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ip igmp snooping vlan vlan-id`
no ip igmp snooping vlan \textit{vlan-id}

Parameters

- \textit{vlan-id}—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

IGMP snooping can be enabled only on static VLANs.

IGMPv1 and IGMPv2 Snooping are supported.

To activate IGMP snooping, bridge multicast filtering must be enabled by the \texttt{bridge multicast filtering} command.

The user guidelines of the \texttt{bridge multicast mode} command describes the configuration that is written into the FDB as a function of the FDB mode and the IGMP version that is used in the network.

Example

\begin{verbatim}
switchxxxxxx(config)# ip igmp snooping vlan 2
\end{verbatim}

21.3 \texttt{ip igmp snooping vlan mrouter}

To enable automatic learning of Multicast router ports on a VLAN, use the \texttt{ip igmp snooping vlan mrouter} command in Global Configuration mode. To remove the configuration, use the \texttt{no} form of this command.

Syntax

\texttt{ip igmp snooping vlan \textit{vlan-id} mrouter learn pim-dvmrp}

\texttt{no ip igmp snooping vlan \textit{vlan-id} mrouter learn pim-dvmrp}

Parameters

- \textit{vlan-id}—Specifies the VLAN.
Default Configuration

Learning **pim-dvmrp** is enabled.

Command Mode

Global Configuration mode

User Guidelines

Multicast router ports are learned according to:

- Queries received on the port
- PIM/PIMv2 received on the port
- DVMRP received on the port
- MRDISC received on the port
- MOSPF received on the port

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 mrouter learn pim-dvmrp
```

### 21.4 `ip igmp snooping vlan mrouter interface`

To define a port that is connected to a Multicast router port, use the **ip igmp snooping mrouter interface** command in Global Configuration mode. To return to the default, use the **no** form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id mrouter interface interface-list
no ip igmp snooping vlan vlan-id mrouter interface interface-list
```

**Parameters**

- **vlan-id**—Specifies the VLAN.
- **interface-list**—Specifies the list of interfaces. The interfaces can be one of the following types: Ethernet port or Port-channel.
Default Configuration
No ports defined

Command Mode
Global Configuration mode

User Guidelines
A port that is defined as a Multicast router port receives all IGMP packets (reports and queries) as well as all Multicast data.
You can execute the command before the VLAN is created.

Example

```
switchxxxxx(config)# ip igmp snooping vlan 1 mrouter interface gi1
```

### 21.5  ip igmp snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the `ip igmp snooping vlan forbidden mrouter` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
no ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration
No ports defined.

Command Mode
Global Configuration mode
User Guidelines

A port that is a forbidden mrouter port cannot be a Multicast router port (i.e. cannot be learned dynamically or assigned statically).

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 forbidden mrouter interface gi1
```

### 21.6 ip igmp snooping vlan static

To register an IP-layer Multicast address to the bridge table, and to add static ports to the group defined by this address, use the `ip igmp snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
no ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
```

**Parameter**

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Specifies the IP Multicast address.
- `interface interface-list`—(Optional) Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No Multicast addresses are defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Static Multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.
You can register an entry without specifying an interface.
Using the **no** command without a port-list removes the entry.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 static 239.2.2.2 interface gi1
```

### 21.7 **ip igmp snooping querier**

To enable globally the IGMP Snooping querier, use the **ip igmp snooping querier** command in Global Configuration mode. To disable the IGMP Snooping querier globally, use the **no** form of this command.

**Syntax**

- **ip igmp snooping querier**
- **no ip igmp snooping querier**

**Parameters**

- N/A

**Default Configuration**

- Enabled

**Command Mode**

- Global Configuration mode

**User Guidelines**

To run the IGMP Snooping querier on a VLAN, you have enable it globally and on the VLAN.

**Example**

The following example disables the IGMP Snooping querier globally:

```
switchxxxxxx(config)# no ip igmp snooping querier
```
21.8  ip igmp snooping vlan querier

To enable the IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier` command in Global Configuration mode. To disable the IGMP Snooping querier on the VLAN interface, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id querier
no ip igmp snooping vlan vlan-id querier
```

**Parameters**

- `vlan-id`—Specifies the VLAN.

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

The IGMP Snooping querier can be enabled on a VLAN only if IGMP Snooping is enabled for that VLAN.

**Example**

The following example enables the IGMP Snooping querier on VLAN 1:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier
```

21.9  ip igmp snooping vlan querier address

To define the source IP address that the IGMP snooping querier uses, use the `ip igmp snooping vlan querier address` command in Global Configuration mode. To return to the default, use the `no` form of this command.
Syntax

```
ip igmp snooping vlan vlan-id querier address ip-address
no ip igmp snooping vlan vlan-id querier address
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Source IP address.

Default Configuration

If an IP address is configured for the VLAN, it is used as the source address of the IGMP snooping querier. If there are multiple IP addresses, the minimum IP address defined on the VLAN is used.

Command Mode

Global Configuration mode

User Guidelines

If an IP address is not configured by this command, and no IP address is configured for the querier’s VLAN, the querier is disabled.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier address 10.5.234.205
```

21.10  ip igmp snooping vlan querier election

To enable IGMP Querier election mechanism of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id querier election
no ip igmp snooping vlan vlan-id querier election
```

Parameters

- `vlan-id`—Specifies the VLAN.
IGMP Snooping Commands

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

Use the no form of the `ip igmp snooping vlan querier election` command to disable IGMP Querier election mechanism on a VLAN.

If the IGMP Querier election mechanism is enabled, the IGMP Snooping querier supports the standard IGMP Querier election mechanism specified in RFC2236 and RFC3376.

If IGMP Querier election mechanism is disabled, IGMP Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if the switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to $<\text{Robustness} > \times <\text{Query Interval} > + 0.5 \times <\text{Query Response Interval} >$.

See the `ip igmp robustness`, `ip igmp query-interval`, and `ip igmp query-max-response-time` commands for configurations of these parameters.

It is recommended to disable IGMP Querier election mechanism if there is an IPM Multicast router on the VLAN.

Example

The following example disables IGMP Snooping Querier election on VLAN 1:

```
switchxxxxxx(config)# no ip igmp snooping vlan 1 querier election
```

21.11 `ip igmp snooping vlan querier version`

To configure the IGMP version of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier version` command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

`ip igmp snooping vlan vlan-id querier version {2 | 3}`
no ip igmp snooping vlan vlan-id querier version

Parameters

- vlan-id—Specifies the VLAN.
- querier version 2—Specifies that the IGMP version would be IGMPv2.

Default Configuration

IGMPv2.

Command Mode

Global Configuration mode

Example

The following example sets the version of the IGMP Snooping Querier VLAN 1 to 3:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier version 3
```

21.12 ip igmp snooping vlan immediate-leave

To enable the IGMP Snooping Immediate-Leave processing on a VLAN, use the `ip igmp snooping vlan immediate-leave` Global Configuration mode command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ip igmp snooping vlan vlan-id immediate-leave

no ip igmp snooping vlan vlan-id immediate-leave

Parameters

- vlan-id—Specifies the VLAN ID value. (Range: 1–4094).

Default Configuration

Disabled

Command Mode

Global Configuration mode
User Guidelines

You can execute the command before the VLAN is created.

Example

The following example enables IGMP snooping immediate-leave feature on VLAN 1.

```
switchxxxxxx(config)# ip igmp snooping vlan 1 immediate-leave
```

21.13 show ip igmp snooping groups

To display the Multicast groups learned by the IGMP snooping, use the `show ip igmp snooping groups` command in User EXEC mode.

Syntax

```
show ip igmp snooping groups [vlan vlan-id] [address ip-multicast-address] [source ip-address]
```

Parameters

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.
- `address ip-multicast-address`—(Optional) Specifies the IP multicast address.
- `source ip-address`—(Optional) Specifies the IP source address.

Command Mode

User EXEC mode

User Guidelines

To see all Multicast groups learned by IGMP snooping, use the `show ip igmp snooping groups` command without parameters.

Use the `show ip igmp snooping groups` command with parameters to see a needed subset of all Multicast groups learned by IGMP snooping.

To see the full Multicast address table (including static addresses), use the `show bridge multicast address-table` command.
Example

The following example shows sample output:

```
switchxxxxxx# show ip igmp snooping groups vlan 1
```

```
switchxxxxxx# show ip igmp snooping groups
Vlan Group Source Include Ports Exclude Ports Comp-Mode
 Address Address
 ---- -------- --------- ----------- --------
 1 239.255.255.250 * gi1 v2
```

21.14  `show ip igmp snooping interface`

To display the IGMP snooping configuration for a specific VLAN, use the `show ip igmp snooping interface` command in User EXEC mode.

Syntax

```
show ip igmp snooping interface vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays the IGMP snooping configuration for VLAN 1000

```
switchxxxxxx# show ip igmp snooping interface 1000
IGMP Snooping is globally enabled
IGMP Snooping Querier is globally enabled
VLAN 1000
 IGMP Snooping is enabled
 IGMP snooping last immediate leave: enable
```
Automatic learning of Multicast router ports is enabled
IGMP Snooping Querier is enabled
IGMP Snooping Querier operation state: is running
IGMP Snooping Querier version: 2
IGMP Snooping Querier election is enabled
IGMP Snooping Querier address: 194.12.10.166
IGMP snooping robustness: admin 2  oper 2
IGMP snooping query interval: admin 125 sec oper 125 sec
IGMP snooping query maximum response: admin 10 sec oper 10 sec
IGMP snooping last member query counter: admin 2 oper 2
IGMP snooping last member query interval: admin 1000 msec oper 500 msec
Groups that are in IGMP version 1 compatibility mode:
  231.2.2.3, 231.2.2.3

21.15 show ip igmp snooping mrouter

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the `show ip igmp snooping mrouter` command in User EXEC mode.

Syntax

```
show ip igmp snooping mrouter [interface vlan-id]
```

Parameters

- `interface vlan-id`—(Optional) Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

```
switchxxxxx# show ip igmp snooping mrouter interface 1000
```
<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>gi1</td>
<td>gi2</td>
<td>gi3-4</td>
</tr>
</tbody>
</table>
IP Addressing Commands

IP addresses and Layer 2 Interfaces

IP addresses can be configured on the following Layer 2 interfaces:

- Ethernet port
- Port channel
- VLAN
- Loopback port

Lists of Commands

22.1 ip address

Use the ip address Interface Configuration (Ethernet, VLAN, Port-channel) mode command to define an IP address for an interface. Use the no form of this command to remove an IP address definition.

Syntax

```
ip address ip-address {mask | /prefix-length}
no ip address [ip-address]
```

Parameters

- `ip-address`—Specifies the IP address.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 8–30)
Default Configuration

No IP address is defined for interfaces.

Command Mode

Interface Configuration mode

User Guidelines

Use the **ip address** command to define a static IP address on an interface.

Multiple IP addresses are supported. A new defined IP address is added on the interface.

Defining a static IP address on an interface stops a DHCP client running on the interface and removes the IP address assigned by the DHCP client.

If a configured IP address overlaps another configured one a warning message is displayed. To change an existed IP address, delete the existed one and add the new one.

While no IP address is assigned either by DHCP client or manually the default IP address **192.168.1.254** is assigned on the Default VLAN.

Examples

**Example 1.** The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```plaintext
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0
```

**Example 2.** The following example configures 3 overlapped IP addresses.

```plaintext
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 1.1.1.1 255.0.0.0
switchxxxxxx(config)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ip address 1.2.1.1 255.255.0.0
switchxxxxxx(config)# This IP address overlaps IP address 1.1.1.1/8 on vlan1, are you sure? [Y/N] Y
switchxxxxxx(config)# exit
```
22.2  ip address dhcp

Use the **ip address dhcp** Interface Configuration (Ethernet, VLAN, Port-channel) mode command to acquire an IP address for an Ethernet interface from the Dynamic Host Configuration Protocol (DHCP) server. Use the **no** form of this command to release an acquired IP address.

**Syntax**

```
ip address dhcp
no ip address dhcp
```

**Parameters**

N/A

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the **ip address dhcp** command to enable DHCP client on the interface.

The **ip address dhcp** command removes all the manually configured addresses on the interface.

The default route (Default Gateway) received in DHCP Router option (Option 3) is assigned a metric of 8.

Use the **no** form of the command to disable DHCP client on interface.

**Example**

The following example acquires an IP address for VLAN 100 from DHCP.

```
switchxxxxxx(config)# interface vlan 3
switchxxxxxx(config-if)# ip address 1.3.1.1 255.255.0.0
switchxxxxxx(config-if)# This IP address overlaps IP address 1.1.1.1/8 on vlan1, are you sure? [Y/N]Y
switchxxxxxx(config-if)# exit
```
### 22.3 renew dhcp

Use the `renew dhcp` Privileged EXEC mode command to renew an IP address that was acquired from a DHCP server for a specific interface.

**Syntax**

```
renew dhcp interface-id [force-autoconfig]
```

**Parameters**

- `interface-id`—Specifies an interface.
- `force-autoconfig` - If the DHCP server holds a DHCP option 67 record for the assigned IP address, the record overwrites the existing device configuration.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `renew dhcp` command to renew a DHCP address on an interface. This command does not enable DHCP client on an interface and if DHCP client is not enabled on the interface, the command returns an error message.

**Example**

The following example renews an IP address on VLAN 19 that was acquired from a DHCP server:

```
switchxxxxxx# renew dhcp vlan 19
```
Syntax

```bash
ip default-gateway ip-address
no ip default-gateway [ip-address]
```

Parameters

- `ip-address`—Specifies the default gateway IP address.

Command Mode

Global Configuration mode

Default Configuration

No default gateway is defined.

User Guidelines

Use the `ip default-gateway` command to define a default gateway (default route).
The `ip default-gateway` command adds the default route with metric of 4.
Use the `no ip default-gateway ip-address` command to delete one default gateway.
Use the `no ip default-gateway` command to delete all default gateways.

Example

The following example defines default gateway 192.168.1.1.

```
switchxxxxxx(config)# ip default-gateway 192.168.1.1
```

22.5 show ip interface

Use the `show ip interface` EXEC mode command to display the usability status of configured IP interfaces.

Syntax

```bash
show ip interface [interface-id]
```
Parameters

- `interface-id`—Specifies an interface ID on which IP addresses are defined.

Default Configuration

All IP addresses.

Command Mode

User EXEC mode

Examples

**Example 1** - The following example displays all configured IP addresses and their types:

```
switchxxxxxx# show ip interface
```

```
!source_precedence_is_supported && !broadcast_address_configuration_is_supported && !ip_redirects_is_supported

| IP Address | I/F | I/F Status | Type | Directed | Status
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.230.232/24</td>
<td>vlan 1</td>
<td>UP/UP</td>
<td>Static</td>
<td>disable</td>
<td>Valid</td>
</tr>
<tr>
<td>10.5.234.202/24</td>
<td>vlan 4</td>
<td>UP/DOWN</td>
<td>Static</td>
<td>disable</td>
<td>Valid</td>
</tr>
</tbody>
</table>
```

**Example 2** - The following example displays the IP addresses configured on the given L2 interfaces and their types:

```
switchxxxxxx# show ip interface vlan 1
```

```
!source_precedence_is_supported && !broadcast_address_configuration_is_supported && !ip_redirects_is_supported

| IP Address | I/F | I/F Status | Type | Directed | Status
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.230.232/24</td>
<td>vlan 1</td>
<td>UP/UP</td>
<td>Static</td>
<td>disable</td>
<td>Valid</td>
</tr>
</tbody>
</table>
22.6 arp

Use the **arp** Global Configuration mode command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the **no** form of this command to remove an entry from the ARP cache.

Syntax

```
arp ip-address mac-address [interface-id]
no arp ip-address
```

Parameters

- *ip-address*—IP address or IP alias to map to the specified MAC address.
- *mac-address*—MAC address to map to the specified IP address or IP alias.
- *interface-id*—Address pair is added for specified interface.

Command Mode

Global Configuration mode

Default Configuration

No permanent entry is defined.

If no interface ID is entered, address pair is relevant to all interfaces.

User Guidelines

The software uses ARP cache entries to translate 32-bit IP addresses into 48-bit hardware (MAC) addresses. Because most hosts support dynamic address resolution, static ARP cache entries generally do not need to be specified.

Example

The following example adds IP address 198.133.219.232 and MAC address 00:00:0c:40:0f:bc to the ARP table.

```
switchxxxxxxxx(config)# arp 198.133.219.232 00:00:0c:40:0f:bc vlan100
```
22.7 arp timeout (Global)

Use the **arp timeout** Global Configuration mode command to set the time interval during which an entry remains in the ARP cache. Use the **no** form of this command to restore the default configuration.

Syntax

```plaintext
arp timeout seconds
no arp timeout
```

Parameters

- **seconds**—Specifies the time interval (in seconds) during which an entry remains in the ARP cache. (Range: 1–40000000).

Default Configuration

The default ARP timeout is 60000 seconds, if IP Routing is enabled, and 300 seconds if IP Routing is disabled.

Command Mode

Global Configuration mode

Example

The following example configures the ARP timeout to 12000 seconds.

```
switchxxxxxx(config)# arp timeout 12000
```

22.8 ip arp proxy disable

Use the **ip arp proxy disable** Global Configuration mode command to globally disable proxy Address Resolution Protocol (ARP). Use the **no** form of this command reenable proxy ARP.

Syntax

```plaintext
ip arp proxy disable
no ip arp proxy disable
```
Parameters
N/A

Default
Disabled by default.

Command Mode
Global Configuration mode

User Guidelines
This command overrides any proxy ARP interface configuration. The command is supported only when IP Routing is enabled.

Example
The following example globally disables ARP proxy.

```
switchxxxxxx(config)# ip arp proxy disable
```

22.9 ip proxy-arp

Use the ip proxy-arp Interface Configuration mode command to enable an ARP proxy on specific interfaces. Use the no form of this command to disable it.

Syntax

```
ip proxy-arp
no ip proxy-arp
```

Default Configuration
ARP Proxy is enabled.

Command Mode
Interface Configuration mode
User Guidelines

This configuration can be applied only if at least one IP address is defined on a specific interface.

The command is supported only when IP Routing is enabled.

Example

The following example enables ARP proxy when the switch is in router mode.

```
switchxxxxxx(config-if)# ip proxy-arp
```

22.10 clear arp-cache

Use the `clear arp-cache` Privileged EXEC mode command to delete all dynamic entries from the ARP cache.

Syntax

```
clear arp-cache
```

Command Mode

Privileged EXEC mode

Example

The following example deletes all dynamic entries from the ARP cache.

```
switchxxxxxx# clear arp-cache
```

22.11 show arp

Use the `show arp` Privileged EXEC mode command to display entries in the ARP table.

Syntax

```
show arp [ip-address ip-address] [mac-address mac-address] [interface-id]
```
Parameters

- **ip-address** ip-address—Specifies the IP address.
- **mac-address** mac-address—Specifies the MAC address.
- **interface-id**—Specifies an interface ID.

Command Mode

Privileged EXEC mode

User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

If an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

Example

The following example displays entries in the ARP table.

```
switchxxxxxx# show arp
ARP timeout: 80000 Seconds

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Interface</th>
<th>IP Address</th>
<th>HW Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN 1</td>
<td>gi1</td>
<td>10.7.1.102</td>
<td>00:10:B5:04:DB:4B</td>
<td>Dynamic</td>
</tr>
<tr>
<td>VLAN 1</td>
<td>gi2</td>
<td>10.7.1.135</td>
<td>00:50:22:00:2A:A4</td>
<td>Static</td>
</tr>
<tr>
<td>VLAN 2</td>
<td>gi1</td>
<td>11.7.1.135</td>
<td>00:12:22:00:2A:A4</td>
<td>Dynamic</td>
</tr>
<tr>
<td></td>
<td>gi2</td>
<td>12.10.1.13</td>
<td>00:11:55:04:DB:4B</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>
```

22.12 show arp configuration

Use the **show arp configuration** privileged EXEC command to display the global and interface configuration of the ARP protocol.

Syntax

```
show arp configuration
```
Parameters

This command has no arguments or key words.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show arp configuration
Global configuration:
    ARP Proxy: enabled
    ARP timeout: 80000 Seconds
Interface configuration:
VLAN 1:
    ARP Proxy: disabled
    ARP timeout: 60000 Seconds
VLAN 10:
    ARP Proxy: enabled
    ARP timeout: 70000 Seconds
VLAN 20:
    ARP Proxy: enabled
    ARP timeout: 80000 Seconds (Global)
```

22.13 interface ip

Use the `interface ip` Global Configuration mode command to enter the IP Interface Configuration mode.

Syntax

```
interface ip ip-address
```

Parameters

- `ip-address`—Specifies one of the IP addresses of the device.
Command Mode

Global Configuration mode

Example

The following example enters the IP interface configuration mode.

```
switchxxxxxx(config)# interface ip 192.168.1.1
switchxxxxxx(config-ip)#
```

22.14 ip helper-address

Use the `ip helper-address` Global Configuration mode command to enable the forwarding of UDP Broadcast packets received on an interface to a specific (helper) address. Use the `no` form of this command to disable the forwarding of broadcast packets to a specific (helper) address.

Syntax

```
ip helper-address {ip-interface | all} address [udp-port-list]

no ip helper-address {ip-interface | all} address
```

Parameters

- `ip-interface`—Specifies the IP interface.
- `all`—Specifies all IP interfaces.
- `address`—Specifies the destination broadcast or host address to which to forward UDP broadcast packets. A value of 0.0.0.0 specifies that UDP broadcast packets are not forwarded to any host.
- `udp-port-list`—Specifies the destination UDP port number to which to forward Broadcast packets (Range: 1–59999). This can be a list of port numbers separated by spaces.

Default Configuration

Forwarding of UDP Broadcast packets received on an interface to a specific (helper) address is disabled.
If `udp-port-list` is not specified, packets for the default services are forwarded to the helper address.

Command Mode

Global Configuration mode

User Guidelines

This command forwards specific UDP Broadcast packets from one interface to another, by specifying a UDP port number to which UDP broadcast packets with that destination port number are forwarded. By default, if no UDP port number is specified, the device forwards UDP broadcast packets for the following six services:

- IEN-116 Name Service (port 42)
- DNS (port 53)
- NetBIOS Name Server (port 137)
- NetBIOS Datagram Server (port 138)
- TACACS Server (port 49)
- Time Service (port 37)

Many helper addresses may be defined. However, the total number of address-port pairs is limited to 128 for the device.

The setting of a helper address for a specific interface has precedence over the setting of a helper address for all the interfaces.

Forwarding of BOOTP/DHCP (ports 67, 68) cannot be enabled with this command. Use the DHCP relay commands to relay BOOTP/DHCP packets.

Example

The following example enables the forwarding of UDP Broadcast packets received on all interfaces to the UDP ports of a destination IP address and UDP port 1 and 2.

```bash
switchxxxxxx(config)# ip helper-address all 172.16.9.9 49 53 1 2
```

22.15 show ip helper-address

Use the `show ip helper-address` Privileged EXEC mode command to display the IP helper addresses configuration on the system.
IP Addressing Commands

Syntax

show ip helper-address

Parameters

This command has no arguments or key words.

Command Mode

Privileged EXEC mode

User Guidelines

Example

The following example displays the IP helper addresses configuration on the system:

```
switchxxxxxx# show ip

Interface         Helper Address     UDP Ports
----------------- --------------- ---------------
192.168.1.1       172.16.8.8       37, 42, 49, 53, 137, 138
192.168.2.1       172.16.9.9       37, 49
```

22.16 show ip dhcp client interface

Use the `show ip dhcp client interface` command in User EXEC or Privileged EXEC mode to display DHCP client interface information.

Syntax

```show ip dhcp client interface [interface-id]```

Parameters

- `interface-id`—Interface identifier.
Command Mode

User EXEC mode

User Guidelines

If no interfaces are specified, all interfaces on which DHCP client is enabled are displayed. If an interface is specified, only information about the specified interface is displayed.

Example

The following is sample output of the `show ip dhcp client interface` command:

```
switchxxxxxx# show ip dhcp client interface

VLAN 100 is in client mode
 Address: 170.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
 Default Gateway: 170.10.100.1
 DNS Servers: 115.1.1.1, 87.12.34.20
 DNS Domain Search List: company.com
 Host Name: switch_floor7
 Configuration Server Addresses: 192.1.1.1 202.1.1.1
 Configuration Path Name: qqq/config/aaa_config.dat
 Image Path Name: qqq/image/aaa_image.ros
 POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
VLAN 1200 is in client mode
 Address: 180.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
 Default Gateway: 180.10.100.1
 DNS Servers: 115.1.1.1, 87.12.34.20
 DNS Domain Search List: company.com
 Host Name: switch_floor7
 Configuration Server Addresses: configuration.company.com
 Configuration Path Name: qqq/config/aaa_config.dat
 Image Path Name: qqq/image/aaa_image.ros
 POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
```

Option 43: 5A1N;K4;B3;IFE80::2E0:81FF:FE2D:3799;J6088
23.1 ip route

To establish static routes, use the `ip route` command in global configuration mode. To remove static routes, use the `no` form of this command.

Syntax

```
ip route prefix {mask | /prefix-length} {ip-address [metric value]} | reject-route
no ip route prefix {mask | /prefix-length} [ip-address]
```

Parameters

- `prefix`—IP route prefix for the destination.
- `mask`—Prefix mask for the destination.
- `/prefix-length`—Prefix mask for the destination. Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 0–32)
- `ip-address`—IP address of the next hop that can be used to reach that network.
- `metric value`—Metric of the route. The default metric is 4. Range: 1–255.
- `reject-route`—Stopping routing to the destination network.

Default Configuration

No static routes are established.

Command Mode

Global Configuration mode

User Guidelines

Use the `no ip route` command without the `ip-address` parameter to remove all static routes to the given subnet.
Use the **no ip route** command with the *ip-address* parameter to remove only one static route to the given subnet via the given next hop.

**Examples**

**Example 1**—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using mask:

```
switchxxxxxx(config)# ip route 172.31.0.0 255.255.0.0 172.31.6.6 metric 2
```

**Example 2**—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using prefix length:

```
switchxxxxxx(config)# ip route 172.31.0.0 /16 172.31.6.6 metric 2
```

**Example 3**—The following example shows how to reject packets for network 194.1.1.0:

```
switchxxxxxx(config)# ip route 194.1.1.0 255.255.255.0 reject-route
```

**Example 4**—The following example shows how to remove all static routes to network 194.1.1.0/24:

```
switchxxxxxx(config)# no ip route 194.1.1.0 /24
```

**Example 5**—The following example shows how to remove one static route to network 194.1.1.0/24 via 1.1.1.1:

```
switchxxxxxx(config)# no ip route 194.1.1.0 /24 1.1.1.1
```

**23.2 ip routing**

To enable IP routing, use the **ip routing** command in global configuration mode. To disable IP routing, use the **no** form of this command.
Syntax

`ip routing`

`no ip routing`

Parameters

This command has no arguments or keywords.

Default Configuration

IP routing is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the command to enable IP Routing.

Example

The following example enables IP routing

```
switchxxxxxx(config)# ip routing
```

### 23.3 show ip route

To display the current state of the routing table, use the `show ip route` command in user EXEC or privileged EXEC mode.

Syntax

```
show ip route [address ip-address {mask [longer-prefixes]}] [static | rejected | icmp | connected]
```

Parameters

- **address ip-address**—IP address about which routing information should be displayed.
- **mask**—The value of the subnet mask.
- **longer-prefixes**—Specifies that only routes matching the IP address and mask pair should be displayed.
- **connected**—Displays connected routes.
• **icmp**—Displays routes added by ICMP Direct.
• **rejected**—Displays rejected routes.
• **static**—Displays static routes.

**Command Mode**

User EXEC mode
Privileged EXEC mode

**User Guidelines**

Use this command without parameters to display the whole IPv6 Routing table.
Use this command with parameters to specify required routes.

**Examples**

**Example 1.** The following is sample output from the *show ip route* command when IP Routing is not enabled:

```
switchxxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: disabled
Codes: > - best, C - connected, S - static, I - ICMP
IP Routing Table - 5 entries
Code IP Route Distance/ Next Hop Last Time Outgoing
 IP Address Metric Updated Interface
------ ------------------- ----------- --------------- ------------- ------------
S 10.10.0.0/16 1/2 10.119.254.244 00:02:22 vlan2
S> 10.10.0.0/16 1/1 10.120.254.244 00:02:22 vlan3
S> 10.16.2.0/24 1/1 10.119.254.244 00:02:22 vlan2
C> 10.119.0.0/16 0/1 0.0.0.0 vlan2
C> 10.120.0.0/16 0/1 0.0.0.0 vlan3
```

**Example 2.** The following is sample output from the *show ip route* command when IP Routing is enabled:
**Example 3.** In the following example, the logical AND operation is performed on the address 10.16.0.0 and the mask 255.255.0.0, resulting in 10.16.0.0. On each destination in the routing table the logical AND operation is also performed with the mask and the result is compared with 10.16.0.0. Any destinations that fall into that range are displayed in the output:

```
switchxxxxxx# show ip route 10.16.0.0 255.255.0.0 longer-prefix
```

Maximum Parallel Paths: 1 (1 after reset)

IP Forwarding: enabled

Directed Broadcast Forwarding: disabled

Codes: > - best, C - connected, S - static

IEP Routing Table - 6 entries

<table>
<thead>
<tr>
<th>Code</th>
<th>IP Route</th>
<th>Distance/Metric</th>
<th>Next Hop</th>
<th>Last Time</th>
<th>Outgoing Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&gt;</td>
<td>10.16.0.0/24</td>
<td>1/1</td>
<td>10.119.254.244</td>
<td>00:02:22</td>
<td>vlan2</td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.2.0/24</td>
<td>1/1</td>
<td>10.119.254.244</td>
<td>00:02:22</td>
<td>vlan3</td>
</tr>
<tr>
<td>C&gt;</td>
<td>10.16.2.128/26</td>
<td>1/1</td>
<td>110.9.2.2</td>
<td>00:02:22</td>
<td>vlan3</td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.208.0/24</td>
<td>1/1</td>
<td>120.120.5.44</td>
<td>00:02:22</td>
<td>vlan2</td>
</tr>
</tbody>
</table>
23.4 show ip route summary

Use the show ip route summary command in User EXEC or Privileged EXEC mode to display the current contents of the IP routing table in summary format.

Syntax

show ip route summary

Parameters

N/A.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

Example

The following is sample output from the show ip route summary command:

```
switchxxxxxx# show ip route summary
IP Routing Table Summary - 90 entries
35 connected, 25 static
Number of prefixes:
```
/16: 16, /18: 10, /22: 15, /24: 19
24.1 ping

Use the ping EXEC mode command to send ICMP echo request packets to another node on the network.

Syntax

```
ping [ip] {ipv4-address | hostname} [size packet_size] [count packet_count] [timeout time_out] [source source-address]
```

```
ping ipv6 {ipv6-address | hostname} [size packet_size] [count packet_count] [timeout time_out] [source source-address]
```

Parameters

- **ip**—Use IPv4 to check the network connectivity.
- **ipv6**—Use IPv6 to check the network connectivity.
- **ipv4-address**—IPv4 address to ping.
- **ipv6-address**—Unicast or Multicast IPv6 address to ping. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified.
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64–1518, IPv6: 68–1518)
- **count packet_count**—Number of packets to send, from 1 to 65535 packets. The default is 4 packets. If 0 is entered, it pings until stopped (0–65535).
- **time time-out**—Timeout in milliseconds to wait for each reply, from 50 to 65535 milliseconds. The default is 2000 milliseconds (50–65535).
- **source source-address**—Source address (Unicast IPv4 address or global Unicast IPv6 address).
Default Usage
N/A

Command Mode
Privileged EXEC mode

User Guidelines
Press Esc to stop pinging. Following are sample results of the ping command:

- **Destination does not respond**—If the host does not respond, a “no answer from host” appears within 10 seconds.

- **Destination unreachable**—The gateway for this destination indicates that the destination is unreachable.

- **Network or host unreachable**—The switch found no corresponding entry in the route table.

When using the `ping ipv6` command to check network connectivity of a directly attached host using its link local address, the egress interface may be specified in the IPv6Z format. If the egress interface is not specified, the default interface is selected.

When using the `ping ipv6` command with a Multicast address, the information displayed is taken from all received echo responses.

When the `source` keyword is configured and the source address is not an address of the switch, the command is halted with an error message and pings are not sent.

Examples

**Example 1** - Ping an IP address.

```
switchxxxxxx> ping ip 10.1.1.1
Pinging 10.1.1.1 with 64 bytes of data:
64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms
---10.1.1.1 PING Statistics-----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11
```
Example 2 - Ping a site.

```
switchxxxxxx> ping ip yahoo.com
Pinging yahoo.com [66.218.71.198] with 64 bytes of data:
64 bytes from 66.218.71.198: icmp_seq=0. time=11 ms
64 bytes from 66.218.71.198: icmp_seq=1. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=2. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=3. time=7 ms
----10.1.1.1 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11
```

Example 3 - Ping an IPv6 address.

```
switchxxxxxx> ping ipv6 3003::11
Pinging 3003::11 with 64 bytes of data:
64 bytes from 3003::11: icmp_seq=1. time=0 ms
64 bytes from 3003::11: icmp_seq=2. time=50 ms
64 bytes from 3003::11: icmp_seq=3. time=0 ms
64 bytes from 3003::11: icmp_seq=4. time=0 ms
----3003::11 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/12/50
```

```
switchxxxxxx> ping ipv6 FF02::1
Pinging FF02::1 with 64 bytes of data:
64 bytes from FF02::1: icmp_seq=1. time=0 ms
64 bytes from FF02::1: icmp_seq=1. time=70 ms
64 bytes from FF02::1: icmp_seq=2. time=0 ms
64 bytes from FF02::1: icmp_seq=1. time=1050 ms
64 bytes from FF02::1: icmp_seq=2. time=70 ms
64 bytes from FF02::1: icmp_seq=2. time=1050 ms
64 bytes from FF02::1: icmp_seq=3. time=0 ms
```
64 bytes from FF02::1: icmp_seq=3. time=70 ms
64 bytes from FF02::1: icmp_seq=4. time=0 ms
64 bytes from FF02::1: icmp_seq=3. time=1050 ms
64 bytes from FF02::1: icmp_seq=4. time=70 ms
64 bytes from FF02::1: icmp_seq=4. time=1050 ms
---- FF02::1 PING Statistics-----
4 packets transmitted, 12 packets received

24.2 ssh

To start an encrypted session with a remote networking device, use the ssh command in user EXEC or privileged EXEC mode.

Syntax

ssh {ip-address | hostname} [port] [keyword...]

Parameters

- *ip-address*—Specifies the destination host IP address (IPv4 or IPv6).
- *hostname*—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- *port*—Specifies the decimal TCP port number. The default port is the SSH port (22).
- *keyword*—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.
Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/password password</td>
<td>Specifies the password to use when logging in on the remote networking device running the SSH server. If the keyword is not specified, the password configured by the ip ssh-client password command is used. If this keyword is specified the /user keyword must be specified too.</td>
</tr>
<tr>
<td>/source-interface interface-id</td>
<td>Specifies the source interface which minimal IPv4/v6 address will be used as the source IPv4/v6 address. If the keyword is not specified, the source IPv4/IPv6 address configured by the ip ssh-client source-interface command is used.</td>
</tr>
<tr>
<td>/user user-name</td>
<td>Specifies the user name to use when logging in on the remote networking device running the SSH server. If the keyword is not specified, the user name configured by the ip ssh-client username command is used. If this keyword is specified the /password keyword must be specified too.</td>
</tr>
</tbody>
</table>

Default Configuration

The default port is the SSH port (22) on the host.

Command Mode

Privileged EXEC mode

User Guidelines

The ssh command enables the switch to make a secure, encrypted connection to another switch running an SSH server. This connection provides functionality that is similar to that of a Telnet connection except that the connection is encrypted. With authentication and encryption, the SSH client allows for a secure communication over an insecure network.

Only one SSH terminal connection can be active at the same time.
Examples

**Example 1.** The following example sets a secure session between the local device and the edge device HQedge. The user name and password configured by the `ip ssh-client username` and `ip ssh-client password` commands are used.

```bash
switchxxxxxx> ssh HQedge
```

**Example 2.** The following example sets a secure session between the local device and the edge device 1.1.1.1. The user name is HQhost and the password is a password configured by the `ip ssh-client password` command.

```bash
switchxxxxxx> ssh 1.1.1.1 /user HQhost
```

**Example 3.** The following example sets a secure session between the local device and the edge device HQedge. The user name is HQhost and the password is ar3245ddd.

```bash
switchxxxxxx> ssh HQedge /user HQhost /password ar3245ddd
```

**Example 4.** The following example sets a lookback interface as a source interface:

```bash
switchxxxxxx> ssh HQedge /source-interface loopback1
```

### 24.3 telnet

The **telnet** EXEC mode command logs on to a host that supports Telnet.

#### Syntax

```
telnet {ip-address | hostname} [port] [keyword...]
```

#### Parameters

- **ip-address**—Specifies the destination host IP address (IPv4 or IPv6).
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
• **port**—Specifies the decimal TCP port number or one of the keywords listed in the Ports table in the User Guidelines.

• **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

**Default Configuration**

The default port is the Telnet port (23) on the host.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Telnet software supports special Telnet commands in the form of Telnet sequences that map generic terminal control functions to operating system-specific functions. To enter a Telnet sequence, press the escape sequence keys (Ctrl-shift-6) followed by a Telnet command character.

**Special Telnet Sequences**

<table>
<thead>
<tr>
<th>Telnet Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-shift-6-b</td>
<td>Break</td>
</tr>
<tr>
<td>Ctrl-shift-6-c</td>
<td>Interrupt Process (IP)</td>
</tr>
<tr>
<td>Ctrl-shift-6-h</td>
<td>Erase Character (EC)</td>
</tr>
<tr>
<td>Ctrl-shift-6-o</td>
<td>Abort Output (AO)</td>
</tr>
<tr>
<td>Ctrl-shift-6-t</td>
<td>Are You There? (AYT)</td>
</tr>
<tr>
<td>Ctrl-shift-6-u</td>
<td>Erase Line (EL)</td>
</tr>
</tbody>
</table>

At any time during an active Telnet session, available Telnet commands can be listed by pressing the `?/help` keys at the system prompt.

A sample of this list follows.

```
switchxxxxxx> `/help`

[Special telnet escape help]

^^ B sends telnet BREAK

^^ C sends telnet IP

^^ H sends telnet EC

^^ O sends telnet AO
```
Several concurrent Telnet sessions can be opened, enabling switching between the sessions. To open a subsequent session, the current connection has to be suspended by pressing the escape sequence keys (Ctrl-shift-6) and x to return to the system command prompt. Then open a new connection with the telnet EXEC mode command.

This command lists concurrent Telnet connections to remote hosts that were opened by the current Telnet session to the local device. It does not list Telnet connections to remote hosts that were opened by other Telnet sessions.

### Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/echo</td>
<td>Enables local echo.</td>
</tr>
<tr>
<td>/quiet</td>
<td>Prevents onscreen display of all messages from the software.</td>
</tr>
<tr>
<td>/source-interface</td>
<td>Specifies the source interface.</td>
</tr>
<tr>
<td>/stream</td>
<td>Turns on stream processing, which enables a raw TCP stream with no Telnet control sequences. A stream connection does not process Telnet options and can be appropriate for connections to ports running UNIX-to-UNIX Copy Program (UUCP) and other non-Telnet protocols.</td>
</tr>
</tbody>
</table>

| Ctrl-shift-6 x | Returns to the System Command Prompt.                                      |

### Ports Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
<td>179</td>
</tr>
<tr>
<td>chargen</td>
<td>Character generator</td>
<td>19</td>
</tr>
<tr>
<td>cmd</td>
<td>Remote commands</td>
<td>514</td>
</tr>
<tr>
<td>daytime</td>
<td>Daytime</td>
<td>13</td>
</tr>
<tr>
<td>discard</td>
<td>Discard</td>
<td>9</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name Service</td>
<td>53</td>
</tr>
<tr>
<td>echo</td>
<td>Echo</td>
<td>7</td>
</tr>
<tr>
<td>exec</td>
<td>Exec</td>
<td>512</td>
</tr>
</tbody>
</table>
### IP System Management Commands

#### Example

The following example displays logging in to IP address 176.213.10.50 via Telnet.

```
switchxxxxxx> telnet 176.213.10.50
```
24.4 traceroute

To display the routes that packets will take when traveling to their destination, use the traceroute EXEC mode command.

Syntax

```
traceroute ip {ipv4-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address]
```

```
traceroute ipv6 {ipv6-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address]
```

Parameters

- **ip**—Use IPv4 to discover the route.
- **ipv6**—Use IPv6 to discover the route.
- **ipv4-address**—IPv4 address of the destination host.
- **ipv6-address**—IPv6 address of the destination host.
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64-1518, IPv6: 68-1518)
- **ttl max-ttl**—The largest TTL value that can be used. The default is 30. The traceroute command terminates when the destination is reached or when this value is reached. (Range: 1–255)
- **count packet_count**—The number of probes to be sent at each TTL level. The default count is 3. (Range: 1–10)
- **timeout time_out**—The number of seconds to wait for a response to a probe packet. The default is 3 seconds. (Range: 1–60)
- **source ip-address**—One of the interface addresses of the device to use as a source address for the probes. The device selects the optimal source address by default. (Range: Valid IP address)

Default Usage

N/A

Command Mode

Privileged EXEC mode
User Guidelines

The **traceroute** command works by taking advantage of the error messages generated by routers when a datagram exceeds its time-to-live (TTL) value.

The **traceroute** command starts by sending probe datagrams with a TTL value of one. This causes the first router to discard the probe datagram and send back an error message. The traceroute command sends several probes at each TTL level and displays the round-trip time for each.

The **traceroute** command sends out one probe at a time. Each outgoing packet can result in one or two error messages. A "time exceeded" error message indicates that an intermediate router has seen and discarded the probe. A "destination unreachable" error message indicates that the destination node has received the probe and discarded it because it could not deliver the packet. If the timer goes off before a response comes in, the traceroute command prints an asterisk (*).

The **traceroute** command terminates when the destination responds, when the maximum TTL is exceeded, or when the user interrupts the trace with Esc.

The **traceroute ipv6** command is not relevant to IPv6 link local addresses.

Example

```
switchxxxxxx> traceroute ip umaxp1.physics.lsa.umich.edu
Type Esc to abort.
Tracing the route to umaxp1.physics.lsa.umich.edu (141.211.101.64)
1 i2-gateway.stanford.edu (192.68.191.83) 0 msec 0 msec 0 msec
2 STAN.POS.calren2.NET (171.64.1.213) 0 msec 0 msec 0 msec
3 SUNV--STAN.POS.calren2.net (198.32.249.73) 1 msec 1 msec 1 msec
4 Abilene--QSV.POS.calren2.net (198.32.249.162) 1 msec 1 msec 1 msec
5 kscyng-snvang.abilene.ucaid.edu (198.32.8.103) 33 msec 35 msec 35 msec
6 iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 47 msec 45 msec 45 msec
7 so-0-2-0x1.aal.mich.net (192.122.183.9) 56 msec 53 msec 54 msec
8 atm1-0x24.michnet8.mich.net (198.108.23.82) 56 msec 56 msec 57 msec
9 * * *
10 A-ARB3-LSA-NG.c-SEB.umnet.umich.edu(141.211.5.22)58 msec 58 msec 58 msec
11 umaxp1.physics.lsa.umich.edu (141.211.101.64) 62 msec 63 msec 63 msec
Trace completed
```
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicates the sequence number of the router in the path to the host.</td>
</tr>
<tr>
<td>i2-gateway.stanford.edu</td>
<td>Host name of this router.</td>
</tr>
<tr>
<td>192.68.191.83</td>
<td>IP address of this router.</td>
</tr>
<tr>
<td>1 msec 1 msec 1 msec</td>
<td>Round-trip time for each of the probes that are sent.</td>
</tr>
</tbody>
</table>

The following are characters that can appear in the traceroute command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output indicates that an access list is blocking traffic.</td>
</tr>
<tr>
<td>F</td>
<td>Fragmentation required and DF is set.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>R</td>
<td>Fragment reassembly time exceeded</td>
</tr>
<tr>
<td>S</td>
<td>Source route failed.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>
IPv6 Commands

25.1 clear ipv6 neighbors

Use the clear ipv6 neighbors command in privileged EXEC mode to delete all entries in the IPv6 neighbor discovery cache, except static entries.

Syntax

clear ipv6 neighbors

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Example

The following example deletes all entries, except static entries, in the neighbor discovery cache:

```
switchxxxxxx# clear ipv6 neighbors
```

25.2 ipv6 address

Use the ipv6 address command in Interface Configuration mode to configure a global unicast IPv6 address based on an IPv6 general prefix and enable IPv6 processing on an interface. To remove the address from the interface, use the no form of this command.
Syntax

ipv6 address ipv6-address/prefix-length

no ipv6 address [ipv6-address/prefix-length]

Parameters

- ipv6-address—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- prefix-length—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface Configuration mode

User Guidelines

The ipv6 address command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the no IPv6 address command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually configured addresses.

Example

The following example defines the IPv6 global address 2001:DB8:2222:7272::72 on vlan 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 address 2001:DB8:2222:7272::72/64
switchxxxxxx(config-if)# exit
```
25.3 ipv6 address anycast

Use the `ipv6 address anycast` command in Interface Configuration mode to configure a global unicast IPv6 Anycast address and enable IPv6 processing on an interface. To remove the address from the interface, use the `no` form of this command.

Syntax

```
ipv6 address ipv6-prefix/prefix-length anycast
no ipv6 address [ipv6-prefix/prefix-length]
```

Parameters

- `ipv6-address`—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface Configuration mode

User Guidelines

An Anycast address is an address that is assigned to a set of interfaces that typically belong to different nodes. A packet sent to an Anycast address is delivered to the closest interface—as defined by the routing protocols in use—identified by the Anycast address. Anycast addresses are syntactically indistinguishable from Unicast addresses because Anycast addresses are allocated from the Unicast address space. Nodes to which the Anycast address is assigned must be explicitly configured to recognize that the address is an Anycast address.

Anycast addresses can be used only by a router, not a host, and Anycast addresses must not be used as the source address of an IPv6 packet.

The subnet router Anycast address has a prefix concatenated by a series of zeros (the interface ID). The subnet router Anycast address can be used to reach a router on the link that is identified by the prefix in the subnet router Anycast address.
The **ipv6 address anycast** command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the **no** form of the **ipv6 address** command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.

**Example**

The following example enables IPv6 processing on the interface, assigns the prefix 2001:0DB8:1:1::/64 to the interface, and configures the IPv6 Anycast address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFFE:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFFE/64 anycast
switchxxxxxx(config-if)# exit
```

### 25.4 ipv6 address autoconfig

Use the **ipv6 address autoconfig** command in Interface Configuration mode to enable automatic configuration of IPv6 addresses using stateless auto configuration on an interface and enable IPv6 processing on the interface. Addresses are configured depending on the prefixes received in Router Advertisement messages. To disable automatic configuration of IPv6 addresses and to remove the automatically configured address from the interface, use the **no** form of this command.

**Syntax**

```
ipv6 address autoconfig
no ipv6 address autoconfig
```

**Parameters**

N/A.

**Default Configuration**

Stateless Auto configuration is enabled.
Command Mode

Interface Configuration mode

User Guidelines

This command enables IPv6 on an interface (if it was disabled) and causes the switch to perform IPv6 stateless address auto-configuration to discover prefixes on the link and then to add the eui-64 based addresses to the interface.

Stateless auto configuration is applied only when IPv6 Forwarding is disabled.

When IPv6 forwarding is changed from disabled to enabled, and stateless auto configuration is enabled the switch stops stateless auto configuration and removes all stateless auto configured ipv6 addresses from all interfaces.

When IPv6 forwarding is changed from enabled to disabled and stateless auto configuration is enabled the switch resumes stateless auto configuration.

Additionally the `ipv6 address autoconfig` command enables on the interface the DHCPv6 Stateless client to receive DHCP stateless information and this information is received from a DHCPv6 server regardless whether IPv6 Forwarding is enabled or not.

Example

The following example assigns the IPv6 address automatically:

```
switchxxxxxxx(config)# interface vlan 100
switchxxxxxxx(config-if)# ipv6 address autoconfig
switchxxxxxxx(config-if)# exit
```

25.5 `ipv6 address eui-64`

Use the `ipv6 address eui-64` command in Interface Configuration mode to configure a global unicast IPv6 address for an interface and enables IPv6 processing on the interface using an EUI-64 interface ID in the low order 64 bits of the address. To remove the address from the interface, use the `no` form of this command.

Syntax

```
ipv6 address ipv6-prefix/prefix-length eui-64
no ipv6 address [ipv6-prefix/prefix-length eui-64]
```
Parameters

- `ipv6-prefix`—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface Configuration mode

User Guidelines

If the value specified for the `prefix-length` argument is greater than 64 bits, the prefix bits have precedence over the interface ID.

The IPv6 address is built from `ipv6-prefix` and the EUI-64 Interface ID by the following way:

- The first `prefix-length` bits are taken from `ipv6-prefix`.
- If `prefix-length < 64` then
  - The following `(64-prefix-length)` bits are filled by 0s.
  - The last 64 bits are taken from the EUI-64 Interface ID.
- If `prefix-length` equals to 64 then the following 64 bits are taken from the EUI-64 Interface ID.
- If `prefix-length > 64` then the following `(128-prefix-length)` bits are taken from the last `(64-(prefix-length -64))` bits of the EUI-64 Interface ID.

If the switch detects another host using one of its IPv6 addresses, it adds the IPv6 address and displays an error message on the console.

Using the **no** form of the `ipv6 address` command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.
Example

The following example enables IPv6 processing on VLAN 1, configures IPv6 global address 2001:0DB8:0:1::/64 and specifies an EUI-64 interface ID in the low order 64 bits of the address:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:0:1::/64 eui-64
switchxxxxxx(config-if)# exit
```

25.6 ipv6 address link-local

Use the `ipv6 address link-local` command in Interface Configuration mode to configure an IPv6 link local address for an interface and enable IPv6 processing on the interface. To remove the manually configured link local address from the interface, use the `no` form of this command.

Syntax

`ipv6 address ipv6-prefix link-local`

`no ipv6 address [link-local]`

Parameters

- `ipv6-address`—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

Default Configuration

The default Link-local address is defined.

Command Mode

Interface Configuration mode

User Guidelines

The switch automatically generates a link local address for an interface when IPv6 processing is enabled on the interface, typically when an IPv6 address is configured on the interface. To manually specify a link local address to be used by an interface, use the `ipv6 address link-local` command.
The `ipv6 address link-local` command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the `no` form of the `ipv6 address` command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually-configured addresses.

**Example**

The following example enables IPv6 processing on VLAN 1 and configures FE80::260:3EFF:FE11:6770 as the link local address for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address FE80::260:3EFF:FE11:6770 link-local
switchxxxxxx(config-if)# exit
```

### 25.7 `ipv6 default-gateway`

Use the `ipv6 default-gateway` Global Configuration mode command to define an IPv6 default gateway. To remove the IPv6 default gateway, use the `no` form of this command.

**Syntax**

```
ipv6 default-gateway ipv6-address [outgoing-interface-id]
no ipv6 default-gateway [ipv6-address [outgoing-interface-id]]
```

**Parameters**

- `ipv6-address`—Specifies the IPv6 address of an IPv6 router that can be used to reach a network.
- `outgoing-interface-id`—Outgoing Interface identifier.

**Default Configuration**

No default gateway is defined.

**Command Mode**

Global Configuration mode
User Guidelines

The command is an alias of the `ipv6 route` command with the predefined (default) route:

```
ipv6 route ::/0 ipv6-address | interface-id
```

See the definition of the `ipv6 route` command for details.

Examples

**Example 1.** The following example defines a default gateway with a global IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway 5::5
```

**Example 2.** The following example defines a default gateway with a link-local IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway FE80::260:3EFF:FE11:6770%vlan1
```

### 25.8 ipv6 enable

Use the `ipv6 enable` command in Interface Configuration mode to enable IPv6 processing on an interface.

To disable IPv6 processing on an interface that has not been configured with an explicit IPv6 address, use the `no` form of this command.

**Syntax**

```
ipv6 enable
no ipv6 enable
```

**Parameters**

N/A.

**Default Configuration**

IPv6 interface is disabled.

**Command Mode**

Interface Configuration mode
User Guidelines

This command automatically configures an IPv6 link-local Unicast address on the interface while also enabling the interface for IPv6 processing. The **no ipv6 enable** command does not disable IPv6 processing on an interface that is configured with an explicit IPv6 address.

Example

The following example enables VLAN 1 for the IPv6 addressing mode.

```bash
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 enable
switchxxxxxx(config-if)# exit
```

25.9 **ipv6 hop-limit**

Use the **ipv6 hop-limit** command in Global Configuration mode to configure the maximum number of hops used in all IPv6 packets that are originated by the router.

To return the hop limit to its default value, use the **no** form of this command.

**Syntax**

```
ipv6 hop-limit value
```

**no ipv6 hop-limit**

**Parameters**

- **value**—Maximum number of hops. The acceptable range is from 1 to 255.

**Default Configuration**

The default is 64 hops.

**Command Mode**

Global Configuration mode
Example

The following example configures a maximum number of 15 hops for all IPv6 packets that are originated from the router:

```
switchxxxxxx(config)# ipv6 hop-limit 15
```

### 25.10 ipv6 icmp error-interval

Use the `ipv6 icmp error-interval` command in Global Configuration mode to configure the interval and bucket size for IPv6 ICMP error messages. To return the interval to its default setting, use the `no` form of this command.

**Syntax**

```
ipv6 icmp error-interval milliseconds [bucketsize]
```

```
no ipv6 icmp error-interval
```

**Parameters**

- `milliseconds`—Time interval between tokens being placed in the bucket. Each token represents a single ICMP error message. The acceptable range is from 0 to 2147483647. A value of 0 disables ICMP rate limiting.
- `bucketsize`—Maximum number of tokens stored in the bucket. The acceptable range is from 1 to 200.

**Default Configuration**

The default interval is 100ms and the default bucketsize is 10 i.e. 100 ICMP error messages per second.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to limit the rate at which IPv6 ICMP error messages are sent. A token bucket algorithm is used with one token representing one IPv6 ICMP error message. Tokens are placed in the virtual bucket at a specified interval until the maximum number of tokens allowed in the bucket is reached.
The milliseconds argument specifies the time interval between tokens arriving in the bucket. The optional bucketsize argument is used to define the maximum number of tokens allowed in the bucket. Tokens are removed from the bucket when IPv6 ICMP error messages are sent, which means that if the bucketsize is set to 20, a rapid succession of 20 IPv6 ICMP error messages can be sent. When the bucket is empty of tokens, IPv6 ICMP error messages are not sent until a new token is placed in the bucket.

Average Packets Per Second = \((1000/ \text{milliseconds}) \times \text{bucketsize}\).

To disable ICMP rate limiting, set the milliseconds argument to zero.

Example

The following example shows an interval of 50 milliseconds and a bucket size of 20 tokens being configured for IPv6 ICMP error messages:

```
switchxxxxxx(config)# ipv6 icmp error-interval 50 20
```

## 25.11 ipv6 link-local default zone

Use the IPv6 link-local default zone command to configure an interface to egress a link local packet without a specified interface or with the default zone 0.

Use the no form of this command to return the default link local interface to the default value.

### Syntax

```
ipv6 link-local default zone interface-id
```

```
o ipv6 link-local default zone
```

### Parameters

- **interface-id**—Specifies the interface that is used as the egress interface for packets sent without a specified IPv6Z interface identifier or with the default 0 identifier.

### Default

By default, link local default zone is disabled.

### Command Mode

Global Configuration mode
Example
The following example defines VLAN 1 as a default zone:

```
switchxxxxxx(config)# ipv6 link-local default zone vlan1
```

### 25.12 ipv6 nd advertisement-interval

Use the **ipv6 nd advertisement-interval** in Interface Configuration mode to configure the advertisement interval option in router advertisements (RAs).

To reset the interval to the default value, use the **no** form of this command.

**Syntax**

```
ipv6 nd advertisement-interval
no ipv6 nd advertisement-interval
```

**Parameters**

N/A.

**Default Configuration**

Advertisement interval option is not sent.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the **ipv6 nd advertisement-interval** command to indicate to a visiting mobile node the interval at which that node may expect to receive RAs. The node may use this information in its movement detection algorithm.

**Example**

The following example enables the advertisement interval option to be sent in RAs:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd advertisement-interval
```
IPv6 Commands

25

switchxxxxxx(config-if)# exit

25.13 ipv6 nd dad attempts

Use the **ipv6 nd dad attempts** command in Interface Configuration mode to configure the number of consecutive neighbor solicitation messages that are sent on an interface while duplicate address detection is performed on the Unicast IPv6 addresses of the interface.

To return the number of messages to the default value, use the **no** form of this command.

Syntax

ipv6 nd dad attempts **value**

no ipv6 nd dad attempts

Parameters

- value—The number of neighbor solicitation messages. The acceptable range is from 0 to 600. Configuring a value of 0 disables duplicate address detection processing on the specified interface; a value of 1 configures a single transmission without follow-up transmissions.

Default Configuration

1

Command Mode

Interface Configuration mode

User Guidelines

Duplicate address detection verifies the uniqueness of new Unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while duplicate address detection is performed). Duplicate address detection uses neighbor solicitation messages to verify the uniqueness of Unicast IPv6 addresses.

The DupAddrDetectTransmits node configuration variable (as specified in RFC 4862, IPv6 Stateless Address Autoconfiguration) is used to automatically determine the number of consecutive neighbor solicitation messages that are sent on an interface, while duplicate address detection is performed on a tentative Unicast IPv6 address.

The interval between duplicate address detection, neighbor solicitation messages (the duplicate address detection timeout interval) is specified by the neighbor discovery-related variable RetransTimer (as specified in RFC 4861, Neighbor Discovery for IPv6), which is
used to determine the time between retransmissions of neighbor solicitation messages to a
neighbor when resolving the address or when probing the reachability of a neighbor. This is
the same management variable used to specify the interval for neighbor solicitation messages
during address resolution and neighbor unreachability detection. Use the `ipv6 nd ns-interval`
command to configure the interval between neighbor solicitation messages that are sent during
duplicate address detection.

Duplicate address detection is suspended on interfaces that are administratively down. While
an interface is administratively down, the Unicast IPv6 addresses assigned to the interface are
set to a pending state. Duplicate address detection is automatically restarted on an interface
when the interface returns to being administratively up.

An interface returning to administratively up, restarts duplicate address detection for all of the
Unicast IPv6 addresses on the interface. While duplicate address detection is performed on the
link-local address of an interface, the state for the other IPv6 addresses is still set to
TENTATIVE. When duplicate address detection is completed on the link-local address,
duplicate address detection is performed on the remaining IPv6 addresses.

When duplicate address detection identifies a duplicate address, the state of the address is set
to DUPLICATE and the address is not used. If the duplicate address is the link-local address of
the interface, the processing of IPv6 packets is disabled on the interface and an error SYSLOG
message is issued.

If the duplicate address is a global address of the interface, the address is not used and an error
SYSLOG message is issued.

All configuration commands associated with the duplicate address remain as configured while
the state of the address is set to DUPLICATE.

If the link-local address for an interface changes, duplicate address detection is performed on
the new link-local address and all of the other IPv6 address associated with the interface are
regenerated (duplicate address detection is performed only on the new link-local address).

**Note.** Since DAD is not supported on NBMA interfaces the command is allowed but does not
impact on an IPv6 tunnel interface of the ISATAP type it does not impact. The configuration is
saved and will impacted when the interface type is changed on another type on which DAD is
supported (for example, to the IPv6 manual tunnel).

**Example**

The following example configures five consecutive neighbor solicitation messages to be sent
on VLAN 1 while duplicate address detection is being performed on the tentative Unicast IPv6
address of the interface. The example also disables duplicate address detection processing on
VLAN 2.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd dad attempts 5
```
ipv6 nd hop-limit

Use the `ipv6 nd hop-limit` command in Global Configuration mode to configure the maximum number of hops used in router advertisements.

To return the hop limit to its default value, use the `no` form of this command.

**Syntax**

```
ipv6 nd hop-limit value

no ipv6 nd hop-limit
```

**Parameters**

- `value`—Maximum number of hops. The acceptable range is from 1 to 255.

**Default Configuration**

The default value is defined by the `ipv6 hop-limit` command, or is set to 64 hops, if the command was not configured.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use this command if you want to change the default value. The default value is defined by the `ipv6 hop-limit` command.

**Example**

The following example configures a maximum number of 15 hops for router advertisements on VLAN 2:

```
switchxxxxxxx(config)# interface vlan 2
```
ipv6 nd hop-limit 15

exit

25.15 ipv6 nd managed-config-flag

Use the **ipv6 nd managed-config-flag** command in Interface Configuration mode to set the “managed address configuration flag” in IPv6 router advertisements.

To clear the flag from IPv6 router advertisements, use the **no** form of this command.

**Syntax**

```
ipv6 nd managed-config-flag

no ipv6 nd managed-config-flag
```

**Parameters**

N/A.

**Default Configuration**

The “managed address configuration flag” flag is not set in IPv6 router advertisements.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Setting the Managed Address Configuration flag in IPv6 router advertisements indicates to attached hosts whether they should use stateful autoconfiguration to obtain addresses. If this flag is set, the attached hosts should use stateful autoconfiguration to obtain addresses, and if it is not set, the attached hosts should not use stateful autoconfiguration to obtain addresses.

Hosts may use stateful and stateless address autoconfiguration simultaneously.

**Example**

The following example configures the Managed Address Configuration flag in IPv6 router advertisements on VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd managed-config-flag
```
25.16 \textbf{ipv6 nd ns-interval}

Use the \texttt{ipv6 nd ns-interval} command in Interface Configuration mode to configure the interval between IPv6 neighbor solicitation retransmissions on an interface.

To restore the default interval, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
ipv6 nd ns-interval milliseconds
no ipv6 nd ns-interval
\end{verbatim}

\textbf{Parameters}

- \texttt{milliseconds}—Interval between IPv6 neighbor solicit transmissions. The acceptable range is from 1000 to 3600000 milliseconds.

\textbf{Default Configuration}

0 seconds (unspecified) is advertised in router advertisements and the value 1000 milliseconds is used for the neighbor discovery activity of the router itself.

\textbf{Command Mode}

Interface Configuration mode

\textbf{User Guidelines}

This value will be included in all IPv6 router advertisements sent out this interface. Very short intervals are not recommended in normal IPv6 operation. When a non-default value is configured, the configured time is both advertised and used by the router itself.

\textbf{Example}

The following example configures an IPv6 neighbor solicit transmission interval of 9000 milliseconds for VLAN 1:

\begin{verbatim}
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ipv6 nd ns-interval 9000
switchxxxxxxx(config-if)# exit
\end{verbatim}
25.17  ipv6 nd other-config-flag

Use the `ipv6 nd other-config-flag` command in Interface Configuration mode to set the Other Stateful configuration flag in IPv6 router advertisements.

To clear the flag from IPv6 router advertisements, use the `no` form of this command.

Syntax

`ipv6 nd other-config-flag`

`no ipv6 nd other-config-flag`

Parameters

N/A.

Default Configuration

The Other Stateful configuration flag is not set in IPv6 router advertisements.

Command Mode

Interface Configuration mode

User Guidelines

The setting of the Other Stateful configuration flag in IPv6 router advertisements indicates to attached hosts how they can obtain autoconfiguration information other than addresses. If the flag is set, the attached hosts should use stateful autoconfiguration to obtain the other (nonaddress) information.

Note. If the Managed Address Configuration flag is set using the `ipv6 nd managed-config-flag` command, then an attached host can use stateful autoconfiguration to obtain the other (nonaddress) information regardless of the setting of the Other Stateful configuration flag.

Example

The following example configures the Other Stateful configuration flag in IPv6 router advertisements on VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd other-config-flag
switchxxxxxx(config-if)# exit
```
25.18 ipv6 nd prefix

Use the ipv6 nd prefix command in Interface Configuration mode to configure which IPv6 prefixes are included in IPv6 Neighbor Discovery (ND) router advertisements.

To remove the prefixes, use the no form of this command.

Syntax

ipv6 nd prefix {ipv6-prefix/prefix-length | default} [no-advertise | {[valid-lifetime preferred-lifetime] [no-autoconfig] [off-link | no-onlink]}]

no ipv6 nd prefix [ipv6-prefix/prefix-length | default]

Parameters

- **ipv6-prefix**—IPv6 network number to include in router advertisements. This argument must be in the form documented in RFC4293, where the address is specified in hexadecimal using 16-bit values between colons.

- **/prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **default**—Default values used for automatic advertised prefixes configured as addresses on the interface using the ipv6 address command.

- **no-advertise**—Prefix is not advertised.

- **valid-lifetime**—Remaining length of time, in seconds, that this prefix will continue to be valid, i.e., time until invalidation. A value of 4,294,967,295 represents infinity. The address generated from an invalidated prefix should not appear as the destination or source address of a packet.

- **preferred-lifetime**—Remaining length of time, in seconds, that this prefix will continue to be preferred, i.e., time until deprecation. A value of 4,294,967,295 represents infinity. The address generated from a deprecated prefix should no longer be used as a source address in new communications, but packets received on such an interface are processed as expected. The preferred-lifetime must not be larger than the valid-lifetime.

- **no-autoconfig**—Indicates to hosts on the local link that the specified prefix cannot be used for IPv6 autoconfiguration. The prefix will be advertised with the A-bit clear.

- **off-link**—Configures the specified prefix as off-link. The prefix will be advertised with the L-bit clear. The prefix will not be inserted into the routing table as a connected prefix. If the prefix is already present in the routing table as a connected prefix (for
example, because the prefix was also configured using the `ipv6 address` command, then it will be removed.

- **no-onlink**—Configures the specified prefix as not on-link. The prefix will be advertised with the L-bit clear.

### Default Configuration

All prefixes configured on interfaces that originate IPv6 router advertisements are advertised with a valid lifetime of 2,592,000 seconds (30 days) and a preferred lifetime of 604,800 seconds (7 days).

Note that by default:

- All prefixes are inserted in the routing table as connected prefixes.
- All prefixes are advertised as on-link (for example, the L-bit is set in the advertisement)
- All prefixes are advertised as an auto-configuration prefix (for example, the A-bit is set in the advertisement)

### Command Mode

Interface Configuration mode

### User Guidelines

This command enables control over the individual parameters per prefix, including whether the prefix should be advertised.

Use the `ipv6 nd prefix ipv6-prefix/prefix-length` command to add the prefix to the Prefix table.

Use the `no ipv6 nd prefix ipv6-prefix/prefix-length` command to remove the prefix from the Prefix table.

Use the `no ipv6 nd prefix` command without the `ipv6-prefix/prefix-length` argument to remove all prefixes from the Prefix Table.

**Note.** The `no ipv6 nd prefix` command does not return the default values to the original default values.

The switch supports the following advertisement algorithm:

- Advertise all prefixes that are configured as addresses on the interface using the parameters defined by the `ipv6 nd prefix default` command (or the default value if the command has not been configured) except prefixes that are placed in the Prefix table (changed (configured) by the `ipv6 nd prefix` command).
• Advertise all prefixes configured by the `ipv6 nd prefix` command without the `no-advertise` keyword.

Default Keyword

The `default` keyword can be used to set default values for automatic advertised prefixes configured as addresses on the interface using the `ipv6 address` command.

**Note.** These default values are not used as the default values in the `ipv6 nd prefix` command.

Use the `no ipv6 nd prefix default` command to return the default values to the original default values.

On-Link

When on-link is “on” (by default), the specified prefix is assigned to the link. Nodes sending traffic to such addresses that contain the specified prefix consider the destination to be locally reachable on the link. An on-link prefix is inserted into the routing table as a Connected prefix.

Auto-configuration

When auto-configuration is on (by default), it indicates to hosts on the local link that the specified prefix can be used for IPv6 auto-configuration.

The configuration options affect the L-bit and A-bit settings associated with the prefix in the IPv6 ND Router Advertisement, and presence of the prefix in the routing table, as follows:

- **Default**
  - L=1 A=1, In the Routing Table
- **no-onlink**
  - L=0 A=1, In the Routing Table
- **no-autoconfig**
  - L=1 A=0, In the Routing Table
- **no-onlink no-autoconfig**
  - L=0 A=0, In the Routing Table
- **off-link**
  - L=0 A=1, Not in the Routing Table
- **off-link no-autoconfig**
  - L=0 A=0, Not in the Routing Table

Examples

**Example 1.** The following example includes the IPv6 prefix 2001:0DB8::/35 in router advertisements sent out VLAN 1 with a valid lifetime of 1000 seconds and a preferred lifetime of 900 seconds. The prefix is inserted in the Routing table:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8::/35 1000 900
```
Example 2. The following example advertises the prefix with the L-bit clear:

```
switchxxxxxx(config)# exit
```

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 2001::1/64
switchxxxxxx(config-if)# ipv6 nd prefix 2001::/64 3600 3600 no-onlink
switchxxxxxx(config-if)# exit
```

### 25.19 ipv6 nd ra interval

Use the `ipv6 nd ra interval` command in Interface Configuration mode to configure the interval between IPv6 router advertisement (RA) transmissions on an interface.

To restore the default interval, use the `no` form of this command.

**Syntax**

```
ipv6 nd ra interval maximum-secs [minimum-secs]
```

```
no ipv6 nd ra interval
```

**Parameters**

- `maximum-secs`—Maximum interval between IPv6 RA transmissions in seconds. The range is from 4 to 1800.
- `minimum-secs`—Minimum interval between IPv6 RA transmissions in seconds. The range is from 3 to 1350.

**Default Configuration**

- `maximum-secs` is 600 seconds.
- `minimum-secs` is `0.33*maximum-secs`, if the value `>=` 3 seconds and is 3 seconds, if the value `<` 3 seconds.

**Command Mode**

Interface Configuration mode
User Guidelines

The interval between transmissions should be less than or equal to the IPv6 router advertisement lifetime if you configure the route as a default router by using this command. To prevent synchronization with other IPv6 nodes, the actual interval used is randomly selected from a value between the minimum and maximum values.

The minimum RA interval may never be more than 75% of the maximum RA interval and never less than 3 seconds.

Examples

Example 1. The following example configures an IPv6 router advertisement interval of 201 seconds for VLAN 1:

```
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ipv6 nd ra interval 201
switchxxxxxxx(config-if)# exit
```

Example 2. The following examples shows a maximum RA interval of 200 seconds and a minimum RA interval of 50 seconds:

```
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ipv6 nd ra interval 200 50
switchxxxxxxx(config-if)# exit
```

25.20 ipv6 nd ra lifetime

Use the `ipv6 nd ra lifetime` command in Interface Configuration mode to configure the Router Lifetime value in IPv6 router advertisements on an interface.

To restore the default lifetime, use the `no` form of this command.

Syntax

```
ipv6 nd ra lifetime seconds
no ipv6 nd ra lifetime
```
Parameters

- **seconds**—Remaining length of time, in seconds, that this router will continue to be useful as a default router (Router Lifetime value). A value of zero indicates that it is no longer useful as a default router. The acceptable range is 0 or from `<Maximum RA Interval>` to 9000 seconds.

Default Configuration

The default lifetime value is 3*<Maximum RA Interval> seconds.

Command Mode

Interface Configuration mode

User Guidelines

The Router Lifetime value is included in all IPv6 router advertisements sent out the interface. The value indicates the usefulness of the router as a default router on this interface. Setting the value to 0 indicates that the router should not be considered a default router on this interface. The Router Lifetime value can be set to a non-zero value to indicate that it should be considered a default router on this interface. The non-zero value for the Router Lifetime value should not be less than the router advertisement interval.

Example

The following example configures an IPv6 router advertisement lifetime of 1801 seconds for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd ra lifetime 1801
switchxxxxxx(config-if)# exit
```

25.21 ipv6 nd ra suppress

Use the **ipv6 nd ra suppress** command in Interface Configuration mode to suppress IPv6 router advertisement transmissions on an interface. To re-enable the sending of IPv6 router advertisement transmissions on an interface, use the **no** form of this command.

Syntax

```
ipv6 nd ra suppress
```
no ipv6 nd ra suppress

Parameters
N/A.

Default Configuration
LAN interface - IPv6 router advertisements are automatically sent.
NBMA interface - IPv6 router advertisements are suppressed.

Command Mode
Interface Configuration mode

User Guidelines
NBMA interface - IPv6 router advertisements are suppressed.
Use the no ipv6 nd ra suppress command to enable the sending of IPv6 router advertisement transmissions on a NBMA interface (for example, ISATAP tunnel).

Examples
Example 1. The following example suppresses IPv6 router advertisements on vlan 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd ra suppress
switchxxxxxx(config-if)# exit
```

Example 2. The following example enables the sending of IPv6 router advertisements on tunnel 1:

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# no ipv6 nd ra suppress
switchxxxxxx(config-if)# exit
```
25.22 ipv6 nd reachable-time

Use the `ipv6 nd reachable-time` command in Interface Configuration mode to configure the amount of time that a remote IPv6 node is considered reachable after some reachability confirmation event has occurred.

To restore the default time, use the `no` form of this command.

**Syntax**

```
ipv6 nd reachable-time milliseconds
no ipv6 nd reachable-time
```

**Parameters**

- `milliseconds`—Amount of time that a remote IPv6 node is considered reachable (in milliseconds). The acceptable range is from 0 to 3600000 milliseconds.

**Default Configuration**

0 milliseconds (unspecified) is advertised in router advertisements and the value 30000 (30 seconds) is used for the neighbor discovery activity of the router itself.

**Command Mode**

Interface Configuration mode

**User Guidelines**

The configured time enables the router to detect unavailable neighbors. Shorter configured times enable the router to detect unavailable neighbors more quickly; however, shorter times consume more IPv6 network bandwidth and processing resources in all IPv6 network devices. Very short configured times are not recommended in normal IPv6 operation.

The configured time is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value. A value of 0 means indicates that the configured time is unspecified by this router.

**Example**

The following example configures an IPv6 reachable time of 1,700,000 milliseconds for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd reachable-time 1700000
```
25.23   ipv6 nd router-preference

Use the `ipv6 nd router-preference` command in Interface Configuration mode to configure a default router preference (DRP) for the router on a specific interface.

To return to the default DRP, use the `no` form of this command.

**Syntax**

```
ipv6 nd router-preference {high | medium | low}
```

**no ipv6 nd router-preference**

**Parameters**

- `high`—Preference for the router specified on an interface is high.
- `medium`—Preference for the router specified on an interface is medium.
- `low`—Preference for the router specified on an interface is low.

**Default Configuration**

Router advertisements (RAs) are sent with the medium preference.

**Command Mode**

Interface Configuration mode

**User Guidelines**

RA messages are sent with the DRP configured by this command. If no DRP is configured, RAs are sent with a medium preference.

A DRP is useful when, for example, two routers on a link may provide equivalent, but not equal-cost, routing, and policy may dictate that hosts should prefer one of the routers.

**Example**

The following example configures a DRP of high for the router on VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd router-preference high
```
25.24 ipv6 neighbor

Use the ipv6 neighbor command in Global Configuration mode to configure a static entry in the IPv6 neighbor discovery cache. To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the no form of this command.

Syntax

ipv6 neighbor ipv6-address interface-id mac-address
no ipv6 neighbor [[ipv6-address] interface-id]

Parameters

- ipv6-address—Specified IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- interface-id—Specified interface identifier.
- mac-address—Interface MAC address.

Default Configuration

Static entries are not configured in the IPv6 neighbor discovery cache.

Command Mode

Global Configuration mode

User Guidelines

This command is similar to the arp command.

Use the ipv6 neighbor command to add a static entry in the IPv6 neighbor discovery cache.

If the specified IPv6 address is a global IPv6 address it must belong to one of static on-link prefixes defined in the interface. When a static on-link prefix is deleted all static entries in the IPv6 neighbor discovery cache corresponding the prefix is deleted to.

If an entry for the specified IPv6 address already exists in the neighbor discovery cache, learned through the IPv6 neighbor discovery process, the entry is automatically converted to a static entry.
Static entries in the IPv6 neighbor discovery cache are not modified by the neighbor discovery process.

Use the `no ipv6 neighbor ipv6-address interface-id` command to remove the one given static entry on the given interface. The command does not remove the entry from the cache, if it is a dynamic entry, learned from the IPv6 neighbor discovery process.

Use the `no ipv6 neighbor interface-id` command to delete the all static entries on the given interface.

Use the `no ipv6 neighbor` command to remove the all static entries on all interfaces.

Use the `show ipv6 neighbors` command to view static entries in the IPv6 neighbor discovery cache. A static entry in the IPv6 neighbor discovery cache can have one of the following states:

- NCMP (Incomplete)—The interface for this entry is down.
- REACH (Reachable)—The interface for this entry is up.

**Note.** Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP and REACH states are different for dynamic and static cache entries.

**Examples**

**Example 1.** The following example configures a static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7D1A.9472 on VLAN 1:

```
switchxxxxxx(config)# ipv6 neighbor 2001:0DB8::45A vlan1 0002.7D1A.9472
```

**Example 2.** The following example deletes the static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7D1A.9472 on VLAN 1:

```
switchxxxxxx(config)# no ipv6 neighbor 2001:0DB8::45A vlan1
```

**Example 3.** The following example deletes all static entries in the IPv6 neighbor discovery cache on VLAN 1:

```
switchxxxxxx(config)# no ipv6 neighbor vlan1
```
Example 4. The following example deletes all static entries in the IPv6 neighbor discovery cache on all interfaces:

```bash
switchxxxxxx(config)# no ipv6 neighbor
```

25.25 ipv6 redirects

Use the **ipv6 redirects** command in Interface Configuration mode to enable the sending of ICMP IPv6 redirect messages to re-send a packet through the same interface on which the packet was received.

To disable the sending of redirect messages, use the **no** form of this command.

Syntax

**ipv6 redirects**

**no ipv6 redirects**

Parameters

N/A.

Default Configuration

The sending of ICMP IPv6 redirect messages is enabled.

Command Mode

Interface Configuration mode

Example

The following example disables the sending of ICMP IPv6 redirect messages on VLAN 100 and re-enables the messages on VLAN 2:

```bash
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 redirects
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ipv6 redirects
```
25.26 ipv6 route

Use the **ipv6 route** command in Global Configuration mode to establish static IPv6 routes.

To remove a previously configured static route, use the **no** form of this command.

**Syntax**

```plaintext
ipv6 route ipv6-prefix/prefix-length next-ipv6-address [outgoing-interface-id] [metric]
no ipv6 route ipv6-prefix/prefix-length [next-ipv6-address [outgoing-interface-id]]
```

**Parameters**

- **ipv6-prefix**—IPv6 network that is the destination of the static route. Can also be a host name when static host routes are configured.

- **/prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **next-ipv6-address**—IPv6 address of the next hop that can be used to reach the specified network.
  - If the `next-ipv6-address` argument is a link local address it must be defined in the zone format: IPv6 Zone Format> ::= IPv6-Link-Local-Address%Interface-ID
  - The `interface-id` argument must be coded without spaces.

- **outgoing-interface-id**—Outgoing Interface identifier.

- **metric**—Static route metric. Acceptable values are from 1 to 65535. The default value is 1.

**Default Configuration**

Static entries are not configured in the IPv6 neighbor discovery cache.

**Command Mode**

Global Configuration mode
User Guidelines

Use the `ipv6 route ipv6-prefix/prefix-length next-ipv6-address [outgoing-interface-id] [metric]` command to define a static route, if the outgoing interface is not a manual tunnel.

If the `next-ipv6-address` argument is a global IPv6 address that belongs to an on-link prefix you can omit the `outgoing-interface-id` argument and in this case the L2 interface on which this on-link prefix is defined will be used as the outgoing interface. If the `outgoing-interface-id` argument is configured it overrides this switch decision.

If the `next-ipv6-address` argument is a global IPv6 address that does not belong to any on-link prefix you must configure the `outgoing-interface-id` argument.

If the `next-ipv6-address` argument is a link-local IPv6 address and the `outgoing-interface-id` argument is omitted the zone of the `next-ipv6-address` argument will be used as the outgoing interface. If the `outgoing-interface-id` argument is configured it overrides this zone.

Examples

**Example 1.** The following example defines a static route with a global next hop:

```
switchxxxxxx(config)# ipv6 route 2001::/64 5::5 10
```

**Example 2.** The following example defines a static route with a link-local next hop:

```
switchxxxxxx(config)# ipv6 route 2001:DB8:2222::/48
FE80::260:3EFF:FE11:6770%vlan1 12
```

**Example 4.** The following example defines a static route on with the outgoing interface:

```
switchxxxxxx(config)# ipv6 route 2001::/64 5::5 vlan10 10
```

### 25.27 ipv6 unicast-routing

Use the `ipv6 unicast-routing` command in Global Configuration mode to enable the forwarding of IPv6 Unicast datagrams.

To disable the forwarding of IPv6 Unicast datagrams, use the `no` form of this command.

**Syntax**

`ipv6 unicast-routing`
**no ipv6 unicast-routing**

**Parameters**

N/A.

**Default Configuration**

IPv6 Unicast routing is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables the forwarding of IPv6 Unicast datagrams:

```
switchxxxxxx(config)# ipv6 unicast-routing
```

---

**25.28 ipv6 unreachables**

Use the `ipv6 unreachables` command in Interface Configuration mode to enable the generation of Internet Control Message Protocol for IPv6 (ICMPv6) unreachable messages for any packets arriving on a specified interface.

To prevent the generation of unreachable messages, use the `no` form of this command.

**Syntax**

```
ipv6 unreachables

no ipv6 unreachables
```

**Parameters**

N/A.

**Default Configuration**

The sending of ICMP IPv6 unreachable messages is enabled.

**Command Mode**

Interface Configuration mode
User Guidelines

If the switch receives a Unicast packet destined for itself that uses a protocol it does not recognize, it sends an ICMPv6 unreachable message to the source.

If the switch receives a datagram that it cannot deliver to its ultimate destination because it knows of no route to the destination address, it replies to the originator of that datagram with an ICMP host unreachable message.

Example

The following example disables the generation of ICMPv6 unreachable messages, as appropriate, on an interface:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 unreachables
switchxxxxxx(config-if)# exit
```

25.29 show ipv6 interface

Use the `show ipv6 interface` command in user EXEC or privileged EXEC mode to display the usability status of interfaces configured for IPv6.

Syntax

```
show ipv6 interface [brief] | [[interface-id] [prefix]]
```

Parameters

- **brief**—Displays a brief summary of IPv6 status and configuration for each interface where IPv6 is defined.
- **interface-id**—Interface identifier about which to display information.
- **prefix**—Prefix generated from a local IPv6 prefix pool.

Default Configuration

Option `brief` - all IPv6 interfaces are displayed.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

Use this command to validate the IPv6 status of an interface and its configured addresses. This command also displays the parameters that IPv6 uses for operation on this interface and any configured features.

If the interface’s hardware is usable, the interface is marked up.

If you specify an optional interface identifier, the command displays information only about that specific interface. For a specific interface, you can enter the prefix keyword to see the IPv6 neighbor discovery (ND) prefixes that are configured on the interface.

The keyword is supported only if IPv6 unicast routing is enabled.

Examples

Example 1. The show ipv6 interface command displays information about the specified interface:

```
switchxxxxxx# show ipv6 interface vlan 1
VLAN 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
IPv6 Forwarding is enabled
Global unicast address(es):
 IPv6 Global Address Type
 2000:0DB8::2/64 (ANY) Manual
 2000:0DB8::2/64 Manual
 2000:1DB8::2011/64 Manual
Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF11:6770
MTU is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
```
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router maximum advertisement interval is 600 seconds
ND router minimum advertisement interval is 198 seconds (DEFAULT)
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Stateless autoconfiguration is enabled.
Stateless autoconfiguration is not available (IPv6 Forwarding is enabled).
MLD Version is 2

Field Descriptions:

- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked Enabled. If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked Stalled. If IPv6 is not enabled, the interface is marked Disabled.

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global unicast address(es):**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

- **Joined group address(es):**—Indicates the Multicast groups to which this interface belongs.

- **MTU is 1500 bytes**—Maximum transmission unit of the interface.

- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

- **ICMP redirects**—State of ICMP IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled).

- **number of DAD attempts**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.
• **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

• **ND advertised reachable time**—Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.

• **ND advertised retransmit interval**—Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.

• **ND router advertisements**—Specifies the interval (in seconds) for neighbor discovery router advertisements sent on this interface and the amount of time before the advertisements expire.

• **ND advertised default router preference is Medium**—DRP for the router on a specific interface.

• **MLD Version**—Version of MLD

---

**Example 2.** The **show ipv6 interface** command displays information about the specified ISATAP tunnel:

```plaintext
switchxxxxxx# show ipv6 interface tunnel 1
Tunnel 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
ICMP redirects are disabled
Global unicast address(es):
IPv6 Global Address Type
2000:0DB8::2/64 (ANY) Manual
2000:0DB8::2/64 Manual
2000:1DB8::2011/64 Manual
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF11:6770
is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ICMP redirects are enabled
```
ND DAD is disabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Stateless autoconfiguration is disabled.
MLD Version is 2
Tunnel mode is ISATAP
Tunnel Local IPv4 address : 10.10.10.1(VLAN 1)
ISATAP Router DNS name is isatap

Field Descriptions:

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled). **Note.** The state of duplicate address detection on an IPv6 tunnel interface of ISATAP type always is displayed as disabled regardless of a value of the **number of DAD attempts** parameter because DAD is not supported on NBMA interfaces. The switch will enable DAD automatically when the user change the type of the tunnel to manual if a the parameter value bigger than 0.

- **number of DAD attempts:**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked “enabled.” If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked “stalled.” If IPv6 is not enabled, the interface is marked “disabled.”

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global Unicast address(es):**—Displays the global Unicast addresses assigned to the interface. The type is **manual** or **autoconfig**.

- **Joined group address(es):**—Indicates the Multicast groups to which this interface belongs.
IPv6 Commands

- Maximum transmission unit of the interface.

- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

- **ICMP redirects**—The state of Internet Control Message Protocol (ICMP) IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).

- **number of DAD attempts**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

- **ND advertised reachable time**—Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.

- **ND advertised retransmit interval**—Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.

- **ND router advertisements**—Specifies the interval (in seconds) for neighbor discovery router advertisements sent on this interface and the amount of time before the advertisements expire.

- **ND advertised default router preference is Medium**—The DRP for the router on a specific interface.

- **MLD Version**—The version of MLD

- **Tunnel mode**—Specifies the tunnel mode: **isatap**

- **Tunnel Local IPv4 address**—Specifies the tunnel local IPv4 address and have one of the following formats:
  - `ipv4-address`
  - `ipv4-address (auto)`
  - `ipv4-address (interface-id)`

- **Tunnel Remote IPv4 address**—Specifies the tunnel remote IPv4 address

- **ISATAP Router DNS name is**—The DNS name of the ISATAP Router

---

**Example 3.** The following command with the **brief** keyword displays information about all interfaces that IPv6 is defined on:
**Example 4.** This sample output shows the characteristics of VLAN 1 that has generated a prefix from a local IPv6 prefix pool:

```
switchxxxxxx# show ipv6 interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>State</th>
<th>IPv6 Address</th>
<th>Version</th>
<th>Global Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan 1</td>
<td>up/up</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>vlan 2</td>
<td>up/up</td>
<td>stalled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>vlan 3</td>
<td>up/down</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>vlan 4</td>
<td>down/down</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>vlan 5</td>
<td>up/up</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>vlan 100</td>
<td>up/up</td>
<td>enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>vlan 1000</td>
<td>up/up</td>
<td>stalled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
switchxxxxxx# configure terminal
switchxxxxxx(config)# interface vlan1
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:1::1/64
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:2::1/64
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:3::1/64
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:1::/64 no-advertise
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:3::/64 2912000 564900 off-link
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:4::/64
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:5::/64 2912000 564900 off-link
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# exit
switchxxxxxx# show ipv6 interface vlan 1 prefix
```

IPv6 Prefix Advertisements VLAN 1

Codes: A - Address, P - Prefix is advertised, R is in Routing Table

<table>
<thead>
<tr>
<th>Code Prefix</th>
<th>Flags</th>
<th>Valid Lifetime</th>
<th>Preferred Lifetime</th>
</tr>
</thead>
</table>

25.30 show ipv6 link-local default zone

Use the show ipv6 link-local default zone command in user EXEC or privileged EXEC mode to display the IPv6 link local default zone.

Syntax

show ipv6 link-local default zone

Command Mode

User EXEC mode

Privileged EXEC mode

Examples

Example 1. The following example displays the default zone when it is defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is VLAN 1
```

Example 2. The following example displays the default zone when it is not defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is not defined
```
25.31  show ipv6 nd prefix

Use the `show ipv6 nd prefix` command in user EXEC or privileged EXEC mode to display IPv6 prefixes included in IPv6 Neighbor Discovery (ND) router advertisements.

Syntax

```
show ipv6 nd prefix [interface-id]
```

Parameters

- `interface-id`—Specified interface identifier on which prefixes are advertised.

Default Configuration

No prefixes are displayed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

Use the `show ipv6 nd prefix` command with the `interface-id` argument to display prefixes advertised on a single interface.

Example

The following example displays IPv6 prefixes:

```
switchxxxxxx# show ipv6 nd prefix vlan 100
vlan 100
 default
 valid-lifetime 2,592,000 secs
 preferred-lifetime 604,800 secs
 on-link
 auto-config
 prefix 2001::1/64
 valid-lifetime 3,600 secs
```
preferred-lifetime 2,700 secs
prefix 2001:2:12/64
    no advertise
prefix 2002::1/64
    valid-lifetime 3,600 secs
    preferred-lifetime 2,700 secs
    on-link
prefix 2011::1/64
    valid-lifetime 3,600 secs
    preferred-lifetime 2,700 secs
    off-link
    auto-config

25.32  show ipv6 neighbors

Use the **show ipv6 neighbors** command in User EXEC or Privileged EXEC mode to display IPv6 neighbor discovery (ND) cache information.

**Syntax**

```
show ipv6 neighbors [interface-id | ipv6-address | ipv6-hostname]
```

**Parameters**

- **interface-id**—Specifies the identifier of the interface from which IPv6 neighbor information is to be displayed.

- **ipv6-address**—Specifies the IPv6 address of the neighbor. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **ipv6-hostname**—Specifies the IPv6 host name of the remote networking device.

**Default Configuration**

All IPv6 ND cache entries are listed.
Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

When the `interface-id` argument is not specified, cache information for all IPv6 neighbors is displayed. Specifying the `interface-id` argument displays only cache information about the specified interface.

Examples

Example 1. The following is sample output from the show ipv6 neighbors command when entered with an interface-id:

```
switchxxxxxx# show ipv6 neighbors vlan 1
IPv6 Address Age Link-layer Addr State Interface Router
2000:0:0:4::2 0 0003.a0d6.141e REACH VLAN1 Yes
3001:1::45a - 0002.7d1a.9472 REACH VLAN1 -
FE80::203:A0FF:FED6:141E 0 0003.a0d6.141e REACH VLAN1 No
```

Example 2. The following is sample output from the show ipv6 neighbors command when entered with an IPv6 address:

```
switchxxxxxx# show ipv6 neighbors 2000:0:0:4::2
IPv6 Address Age Link-layer Addr State Interface Router
2000:0:0:4::2 0 0003.a0d6.141e REACH VLAN1 Yes
```

Field Descriptions:

- **Total number of entries**—Number of entries (peers) in the cache.
- **IPv6 Address**—IPv6 address of neighbor or interface.
- **Age**—Time (in minutes) since the address was confirmed to be reachable. A hyphen (-) indicates a static entry.
- **Link-layer Addr**—MAC address. If the address is unknown, a hyphen (-) is displayed.
- **Interface**—Interface which the neighbor is connected to.
IPv6 Commands

25.33 show ipv6 route

Use the show ipv6 route command in user EXEC or privileged EXEC mode to display the current contents of the IPv6 routing table.

Syntax

show ipv6 route [ipv6-address | ipv6-prefix/prefix-length | protocol | interface interface-id]

Parameters

- **ipv6-address**—Displays routing information for a specific IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **ipv6-prefix**—Displays routing information for a specific IPv6 network. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **/prefix-length**—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **protocol**—Displays routes for the specified routing protocol using any of these keywords: bgp, isis, ospf, or rip; or displays routes for the specified type of route using any of these keywords: connected, static, nd, or icmp.

- **interface interface-id**—Identifier of an interface.

Default Configuration

All IPv6 routing information for all active routing tables is displayed.

Command Mode

User EXEC mode

Privileged EXEC mode
User Guidelines

This command provides output similar to the `show ip route` command, except that the information is IPv6-specific.

When the `ipv6-address` or `ipv6-prefix/prefix-length` argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. When the `icmp`, `nd`, `connected`, `local`, or `static` keywords are specified, only that type of route is displayed. When the `interface-id` argument are specified, only the specified interface-specific routes are displayed.

Examples

**Example 1.** The following is sample output from the `show ipv6 route` command when IPv6 Routing is not enabled and the command is entered without an IPv6 address or prefix specified:

```
switchxxxxxx# show ipv6 route
Codes: > - Best
 S - Static, C - Connected(from ipv6 address), I - ICMP Redirect, ND - Router Advertisement
[d/m]: d - route’s distance, m - route’s metric
IPv6 Forwarding is disabled
IPv6 Routing Table - 4 entries
S> ::/0 [1/1]
 via:: fe80::77 VLAN 1
ND> ::/0 [3/2]
 via:: fe80::200:cff:fe4a:dfa8 VLAN 1 Lifetime 1784 sec
C> 3002:1:1:1:1/64 [0/0]
 via:: VLAN 1
ND> 3004:1:1:1:1/64 [0/0]
 via:: VLAN 100 Lifetime 1784 sec
```

**Example 2.** The following is sample output from the `show ipv6 route` command when IPv6 Routing is enabled and the command is entered without an IPv6 address or prefix specified and IPv6 Routing is enabled:
IPv6 Commands

switchxxxxxxx# show ipv6 route

Codes: > - Best

S - Static, C - Connected(from ipv6 address),
L - Local(on-link prefixes defined by the ipv6 nd prefix command with on-link keyword,
[d/m]: d - route’s distance, m - route’s metric

IPv6 Routing Table - 3 entries
S> 3000::/64 [1/1]
   via:: FE80::A8BB:CCFF:FE02:8B00  VLAN 100
C> 4001::/64 [0/0]
   via:: VLAN 100
L> 4002::/64 [0/0]
   via:: VLAN 100 Lifetime 9000 sec

25.34  show ipv6 route summary

Use the show ipv6 route summary command in User EXEC or Privileged EXEC mode to display the current contents of the IPv6 routing table in summary format.

Syntax

show ipv6 route summary

Parameters

N/A.

Command Mode

User EXEC mode
Privileged EXEC mode

Example

The following is sample output from the show ipv6 route summary command:

switchxxxxxxx# show ipv6 route summary
IPv6 Routing Table Summary - 97 entries
37 local, 35 connected, 25 static

Number of prefixes:
/16: 1, /28: 10, /32: 5, /35: 25, /40: 1, /64: 9
/96: 5, /112: 1, /127: 4, /128: 36

25.35  show ipv6 static

Use the show ipv6 static command in user EXEC or privileged EXEC mode to display the current static routes of the IPv6 routing table.

Syntax

show ipv6 static [ipv6-address | ipv6-prefix/prefix-length] [interface interface-id][detail]

Parameters

- ipv6-address—Provides routing information for a specific IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- ipv6-prefix—Provides routing information for a specific IPv6 network. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- /prefix-length—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- interface interface-id—Identifier of an interface.
- detail—Specifies for invalid routes, the reason why the route is not valid.

Default Configuration

All IPv6 static routing information for all active routing tables is displayed.

Command Mode

User EXEC mode
Privileged EXEC mode
User Guidelines

When the `ipv6-address` or `ipv6-prefix/prefix-length` argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. Only the information matching the criteria specified in the command syntax is displayed. For example, when the `interface-id` argument is specified, only the specified interface-specific routes are displayed.

When the `detail` keyword is specified, the reason why the route is not valid is displayed for invalid direct or fully specified routes.

Examples

**Example 1.** The following is sample output from the `show ipv6 static` command without specified options:

```
switchxxxxxx# show ipv6 static
IPv6 Static routes Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
 * 5555::/16, via outgoing interface VLAN100 nexthop 4000::1 metric 1
 5555::/16, via outgoing interface VLAN10 nexthop 9999::1 vlan100 metric 1
 * 5555::/16, via outgoing interface VLAN100 nexthop 4001:AF00::1, metric 1
 * 6000::/16, via outgoing interface VLAN1 nexthop 2007::1 metric 1
```

**Example 2.** The following is sample output from the `show ipv6 static` command when entered with the IPv6 prefix `2001:200::/35`:

```
switchxxxxxx# show ipv6 static 2001:200::/35
IPv6 Static routes Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
 * 2001:200::/35, via outgoing interface VLAN100 nexthop 4000::1, metric 1
 2001:200::/35, via outgoing interface VLAN100 nexthop 9999::1 vlan100 metric 1
```

**Example 3.** The following is sample output from the `show ipv6 static` command when entered with the interface VLAN 1:

```
switchxxxxxx# show ipv6 static interface vlan 1
```

---

IPv6 Commands
IPv6 Static routes   Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
* 5000::/16, via outgoing interface VLAN1 nexthop 4000::1, metric 1

Example 4. The following is sample output from the `show ipv6 static` command with the `detail` keyword:

```
switchxxxxxx# show ipv6 static detail
IPv6 Static routes Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
 5000::/16, via outgoing interface VLAN2 nexthop 2003::1, metric 1
 Interface is down
* 5555::/16, via outgoing interface VLAN100 nexthop 4000::1, metric 1
 5555::/16, via outgoing interface VLAN10 nexthop 9999::1, metric 1
 Route does not fully resolve
* 5555::/16, via outgoing interface VLAN12 nexthop 4001:AF00::1, metric 1
* 6000::/16, via outgoing interface VLAN102 nexthop 2007::1, metric 1
```
IPv6 Prefix List Commands

26.1 clear ipv6 prefix-list

Use the clear ipv6 prefix-list command in privileged EXEC mode to reset the hit count of the IPv6 prefix list entries.

Syntax

```
clear ipv6 prefix-list [prefix-list-name [ipv6-prefix/prefix-length]]
```

Parameters

- `prefix-list-name`—The name of the prefix list from which the hit count is to be cleared.
- `ipv6-prefix`—The IPv6 network from which the hit count is to be cleared. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.
- `/prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Default Configuration

The hit count is automatically cleared for all IPv6 prefix lists.

Command Mode

Privileged EXEC mode

User Guidelines

The hit count is a value indicating the number of matches to a specific prefix list entry.
Example

The following example clears the hit count from the prefix list entries for the prefix list named first_list that match the network mask 2001:0DB8::/35:

```
switchxxxxxx# clear ipv6 prefix-list first_list 2001:0DB8::/35
```

### 26.2 ipv6 prefix-list

Use the `ipv6 prefix-list` command in Global Configuration mode to create an entry in an IPv6 prefix list. To delete the entry, use the `no` form of this command.

**Syntax**

```
ipv6 prefix-list list-name [seq number] {{deny|permit} ipv6-prefix/prefix-length [ge ge-length] [le le-length]} | description text
```

```
no ipv6 prefix-list list-name [seq number]
```

**Parameters**

- `list-name`—Name of the prefix list. The name may contain up to 32 characters.
- `seq seq-number`—Sequence number of the prefix list entry being configured. This is an integer value from 1 to 4294967294.
- `deny`—Denies networks that matches the condition.
- `permit`—Permits networks that matches the condition.
- `ipv6-prefix`—IPv6 network assigned to the specified prefix list. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal—using 16-bit values between colons.
- `/prefix-length`—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value from 0 to 128. The zero `prefix-length` may be used only with the zero `ipv6-prefix (::)`.
- `description text`—Text that can be up to 80 characters in length.
- `ge ge-value`—Specifies a prefix length greater than or equal to the `/prefix-length` argument. It is the lowest value of a range of the length (the “from” portion of the length range).
IPv6 Prefix List Commands

- **le le-value**—Specifies a prefix length greater than or equal to the `/prefix-length` argument. It is the highest value of a range of the length (the “to” portion of the length range).

**Default Configuration**

No prefix list is created.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command without the `seq` keyword adds the new entry after the last entry of the prefix list with the sequence number equals to the last number plus 5. For example, if the last configured sequence number is 43, the new entry will have the sequence number of 48. If the list is empty, the first prefix-list entry is assigned the number 5 and subsequent prefix list entries increment by 5.

This command with the `seq` keyword puts the new entry into the place specified by the parameter, if an entry with the number exists it is replaced by the new one.

This command without the `seq` keyword removes the prefix list.

The `no` version of this command with the `seq` keyword removes the specified entry.

The sequence number of a prefix list entry determines the order of the entries in the list. The router compares network addresses to the prefix list entries. The router begins the comparison at the top of the prefix list, with the entry having the lowest sequence number.

If multiple entries of a prefix list match a prefix, the entry with the lowest sequence number is considered the real match. Once a match or deny occurs, the router does not go through the rest of the prefix list. For efficiency, you might want to put the most common permits or denies near the top of the list, using the seq-number argument.

The `show ipv6 prefix-list` command displays the sequence numbers of entries.

IPv6 prefix lists are used to specify certain prefixes or a range of prefixes that must be matched before a permit or deny statement can be applied. Two operand keywords can be used to designate a range of prefix lengths to be matched. A prefix length of less than, or equal to, a value is configured with the `le` keyword. A prefix length greater than, or equal to, a value is specified using the `ge` keyword. The `ge` and `le` keywords can be used to specify the range of the prefix length to be matched in more detail than the usual `ipv6-prefix/prefix-length` argument.

For a candidate prefix to match against a prefix list entry the following conditions must exist:

- The candidate prefix must match the specified prefix list and prefix length entry
• The value of the optional le keyword specifies the range of allowed prefix lengths from 0 up to the value of the le-length argument, and including, this value.

• The value of the optional ge keyword specifies the range of allowed prefix lengths from the value of the ge-length argument up to, and including, 128.

**Note** that the first condition must match before the other conditions take effect.

An exact match is assumed when the ge or le keywords are not specified. If only one keyword operand is specified then the condition for that keyword is applied, and the other condition is not applied. The prefix-length value must be less than the ge value. The ge value must be less than, or equal to, the le value. The le value must be less than or equal to 128.

Every IPv6 prefix list, including prefix lists that do not have permit and deny condition statements, has an implicit **deny any any** statement as its last match condition.

**Formal Specification**

Checked prefix is \texttt{cP} and checked prefix length is \texttt{cL}.

Function \texttt{PrefixIsEqual}(P1, P2, L) compares the first L bits of two addresses P1 and P2 and returns TRUE if they are equal.

**Case 1.** A prefix-list entry is:

- \texttt{P} - prefix address
- \texttt{L} - prefix length
- \texttt{ge} - is not defined
- \texttt{le} - is not defined

The prefix \texttt{cP/cL} matches the prefix-list entry if \texttt{PrefixIsEqual}(cP,P,L) && \texttt{cL} == \texttt{L}

**Case 2.** An prefix-list entry is:

- \texttt{P} - prefix address
- \texttt{L} - prefix length
- \texttt{ge} - is defined
- \texttt{le} - is not defined

The prefix \texttt{cP/cL} matches the prefix-list entry if \texttt{PrefixIsEqual}(cP,P,L) && \texttt{cL} >= \texttt{ge}

**Case 3.** An prefix-list entry is:

- \texttt{P} - prefix address
- \texttt{L} - prefix length
IPv6 Prefix List Commands

- ge - is not defined
- le - is defined

The prefix cP/cL matches to the prefix-list entry if \texttt{PrefixIsEqual(cP,P,L) && cL <= le}

**Case 4.** An prefix-list entry is:

- P - prefix address
- L - prefix length
- ge - is defined
- le - is defined

The prefix cP/cL matches the prefix-list entry if \texttt{PrefixIsEqual(cP,P,L) && ge <= cL <= le}

**Examples**

**Example 1.** The following example denies all routes with a prefix of \texttt{::/0}:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0
```

**Example 2.** The following example permits the prefix \texttt{2002::/16}:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2002::/16
```

**Example 3.** The following example shows how to specify a group of prefixes to accept any prefixes from prefix \texttt{5F00::/48} up to and including prefix \texttt{5F00::/64}:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit 5F00::/48 le 64
```

**Example 4.** The following example denies prefix lengths greater than 64 bits in routes that have the prefix \texttt{2001:0DB8::/64}:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
```
Example 5. The following example permits mask lengths from 32 to 64 bits in all address space:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0 ge 32 le 64
```

Example 6. The following example denies mask lengths greater than 32 bits in all address space:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0 ge 32
```

Example 7. The following example denies all routes with a prefix of 2002::/128:

```
switchxxxxxx(config)# ipv6 prefix-list abc deny 2002::/128
```

Example 8. The following example permits all routes with a prefix of ::/0:

```
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0
```

26.3 show ipv6 prefix-list

Use the `show ipv6 prefix-list` command in user EXEC or privileged EXEC mode to display information about an IPv6 prefix list or IPv6 prefix list entries.

Syntax

```
show ipv6 prefix-list [detail [list-name] | summary [list-name]]
show ipv6 prefix-list list-name ipv6-prefix/prefix-length [longer | first-match]
show ipv6 prefix-list list-name seq seq-num
```

Parameters

- **detail | summary**—Displays detailed or summarized information about all IPv6 prefix lists.
- **list-name**—Name of a specific IPv6 prefix list.
IPv6 Prefix List Commands

- **ipv6-prefix**—All prefix list entries for the specified IPv6 network. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **/prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **longer**—Displays all entries of an IPv6 prefix list that are more specific than the given ipv6-prefix/prefix-length values.

- **first-match**—Displays the entry of an IPv6 prefix list that matches the given ipv6-prefix/prefix-length values.

- **seq seq-num**—Sequence number of the IPv6 prefix list entry.

**Command Mode**

User EXEC mode

Privileged EXEC mode

**User Guidelines**

If the **detail** and **summary** keywords are omitted, the **detail** option is applied.

If the **longer** and **first-match** keywords are omitted, all entries of the specified prefix list that matches the given network/length are displayed.

**Examples**

**Example 1.** The following example shows the output of this command with the **detail** keyword:

```
switchxxxxxx# ipv6 prefix-list detail
ipv6 prefix-list aggregate:
 count: 3, range entries: 2
 seq 5 deny 3FFE:C00::/24 ge 25 (hit count: 568)
 seq 10 description The Default Action
 seq 15 permit ::/0 le 48 (hit count: 31310)
```

**Field Descriptions**

- **count**—Number of entries in the list.
- **range entries**—Number of entries with matching range.
- **seq**—Entry number in the list.
- **permit, deny**—Granting status.
- **description**—Comment.
- **hit count**—Number of matches for the prefix entry.

Example 2. The following example shows the output of the `show ipv6 prefix-list` command with the `summary` keyword:

```
switchxxxxxx# show ipv6 prefix-list summary
ipv6 prefix-list aggregate:
 count: 2, range entries: 2
```

Example 3. The following example shows the output of the `show ipv6 prefix-list` command with the `seq` keyword:

```
switchxxxxxx# show ipv6 prefix-list bgp-in seq 15
 seq 15 deny ::/1 (hit count: 0)
```
IPv6 Tunnel Commands

27.1 interface tunnel

To enter into the Interface Configuration (Tunnel) mode, use the `interface tunnel` command in Global Configuration mode.

Syntax

```
interface tunnel number
```

Parameters

- `number`—Specifies the tunnel number.

Default Configuration

N/A

Command Mode

Global Configuration mode

Example

The following example enters the Interface Configuration (Tunnel) mode.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel source auto
switchxxxxxx(config-if)# exit
```
27.2  tunnel isatap solicitation-interval

To set the time interval between unsolicited router solicitation messages, use the `tunnel isatap solicitation-interval` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
tunnel isatap solicitation-interval seconds
```

```
no tunnel isatap solicitation-interval
```

**Parameters**

- `seconds`—Specifies the time interval in seconds between ISATAP router solicitation messages. (Range: 10–3600).

**Default Configuration**

The default time interval between ISATAP router solicitation messages is 10 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command determines the interval between unsolicited router solicitation messages sent to discovery an ISATAP router.

**Example**

The following example sets the time interval between ISATAP router solicitation messages to 30 seconds.

```
switchxxxxxx(config)# tunnel isatap solicitation-interval 30
```

27.3  tunnel isatap robustness

To configure the number of router solicitation refresh messages that the device sends, use the `tunnel isatap robustness` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.
27.4 tunnel isatap router

To configure a global string that represents a specific automatic tunnel router domain name, use the `tunnel isatap router` command in Interface (Tunnel) Configuration mode. To remove this router name and restore the default configuration, use the `no` form of this command.

Syntax

`tunnel isatap router router-name`

`no tunnel isatap router`
Parameters

• router-name—Specifies the router’s domain name.

Default Configuration

The automatic tunnel router's default domain name is ISATAP.

Command Mode

Interface (Tunnel) Configuration mode

User Guidelines

This command determines the string that the host uses for automatic tunnel router lookup in the IPv4 DNS procedure. By default, the string ISATAP is used for the corresponding automatic tunnel types.

Only one string can represent the automatic tunnel router name per tunnel. Using this command, therefore, overwrites the existing entry.

The empty string means that automatic lookup is not applied.

Example

The following example configures the global string ISATAP2 as the automatic tunnel router domain name.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel isatap router ISATAP2
switchxxxxxx(config-if)# exit
```

27.5 tunnel mode ipv6ip

To configure a static IPv6 tunnel interface, use the tunnel mode ipv6ip command in Interface (Tunnel) Configuration mode. To remove an IPv6 tunnel interface, use the no form of this command.

Syntax

```
tunnel mode ipv6ip isatap
no tunnel mode ipv6ip
```
Parameters

- isatap—(Optional) Specifies IPv6 automatic tunneling mode as ISATAP to connect IPv6 nodes (hosts and routers) within IPv4 networks.

Default Configuration

IPv6 tunnel interfaces are not configured.

Command Mode

Interface (Tunnel) Configuration mode

User Guidelines

IPv6 tunneling consists of encapsulating IPv6 packets within IPv4 packets for transmission across an IPv4 routing infrastructure.

The IPv6 interface is automatically enabled on a tunnel when it is configured as an IPv6 tunnel by the `tunnel mode ipv6ip` command and the local IPv4 is defined by the `tunnel source` command.

The IPv6 interface on an IPv6 tunnel is disabled if the tunnel stops to be an IPv6 tunnel or the tunnel local IPv4 address is removed and the new IPv4 cannot be chosen.

ISATAP Tunnels

Using this command with the isatap keyword specifies an automatic ISATAP tunnel. ISATAP tunnels enable transport of IPv6 packets within network boundaries. ISATAP tunnels allow individual IPv4/IPv6 dual-stack hosts within a site to connect to an IPv6 network using the IPv4 infrastructure.

ISATAP IPv6 addresses can use any initial Unicast /48 prefix. The final 64 bits are an interface identifier. Of these, the leading 32 bits are the fixed pattern 0000:5EFE; the last 32 bits carry the tunnel endpoint IPv4 address.

Only the `ipv6 address eui-64` command can be used to configured a global unicast IPv6 on an ISATAP tunnel.

Examples

**Example 1**—The following example configures an ISATAP tunnel:

```bash
switchxxxxxxx(config)# interface vlan 1
switchxxxxxxx(config-if)# ip address 1.1.1.1 255.255.255.0
switchxxxxxxx(config-if)# exit
switchxxxxxxx(config)# interface vlan 1
```
IPv6 Tunnel Commands

switchxxxxxx(config-if)# tunnel mode ipv6ip isatap
switchxxxxxx(config-if)# tunnel source 1.1.1.1
switchxxxxxx(config-if)# ipv6 address 3ffe:b00:c18:1::/64 eui-64
switchxxxxxx(config-if)# exit

27.6 tunnel source

To set the local (source) IPv4 address of a tunnel interface, use the **tunnel source** command in Interface (Tunnel) Configuration mode. To delete the tunnel local address, use the **no** form of the command.

**Syntax**

```
tunnel source {auto | ipv4-address | interface-id}
```

**no tunnel source**

**Parameters**

- **auto**—The system minimum IPv4 address is used as the local IPv4 address (IPv4 address of the local tunnel endpoint).
- **ipv4-address**—Specifies the IPv4 address to use as the local IPv4 address (IPv4 address of the local tunnel endpoint).
- **interface-id**—Interface which the minimum IPv4 address is used as the local IPv4 address (IPv4 address of the local tunnel endpoint).

**Default**

No source address is defined.

**Command Mode**

Interface (Tunnel) Configuration mode

**User Guidelines**

If the **auto** or **interface-id** option is configured once time chosen IPv4 is used as the tunnel local IPv4 address until it is defined. A new IPv4 interface is only chosen in the following cases:

- After reboot.
• The used IPv4 is removed from the switch configuration.
• The tunnel mode is changed.

When the tunnel local IPv4 address is changed the IPv6 interface on the tunnel is re-enabled that causes removing static IPv6 configuration on the tunnel (for example, global IPv6 addresses, static IPv6 routes via the tunnel, etc.).

Example

switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel source 120.12.3.4
switchxxxxxx(config-if)# exit

27.7 show ipv6 tunnel

To display information on IPv6 tunnels, use the show ipv6 tunnel command in User EXEC mode.

Syntax

show ipv6 tunnel [all]

Parameters

• all—(Optional) The switch displays all parameters of the tunnel. If the keyword is not configured only the tunnel parameters corresponding to its type are displayed.

Command Mode

User EXEC mode

Examples

Example 1. The following example displays information on the ISATAP tunnel, when the all keyword is not configured:

switchxxxxxx# show ipv6 tunnel
Tunnel 2
         Tunnel type : ISATAP
         Tunnel status : UP
Tunnel Local address type : auto
Tunnel Local Ipv4 address : 192.1.3.4
Router DNS name : ISATAP
Router IPv4 addresses
  1.1.1.1          Detected
  100.1.1.1        Detected
  14.1.100.1       Not Detected
Router Solicitation interval : 10 seconds
Robustness : 2
Link Aggregation Control Protocol (LACP) Commands

28.1 lacp port-priority

To set the physical port priority, use the `lacp port-priority` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lacp port-priority value

no lacp port-priority
```

Parameters

- `value`—Specifies the port priority. (Range: 1–65535)

Default Configuration

The default port priority is 1.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example sets the priority of `gi6`.

```
switchxxxxxx(config)# interface gi6
switchxxxxxx(config-if)# lacp port-priority 247
```
28.2  lacp system-priority

To set the system priority, use the **lacp system-priority** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

**Syntax**

```
lacp system-priority value
no lacp system-priority
```

**Parameters**

- **value**—Specifies the system priority value. (Range: 1–65535)

**Default Configuration**

The default system priority is 1.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the system priority to 120.

```
switchxxxxxx(config)# lacp system-priority 120
```

28.3  lacp timeout

To assign an administrative LACP timeout to an interface, use the **lacp timeout** Interface (Ethernet) Configuration mode command. To restore the default configuration, use the **no** form of this command.

**Syntax**

```
lacp timeout {long | short}
no lacp timeout
```

**Parameters**

- **long**—Specifies the long timeout value.
• short—Specifies the short timeout value.

Default Configuration

The default port timeout value is Long.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example assigns a long administrative LACP timeout to gi6.

```
switchxxxxx(config)# interface gi6
switchxxxxx(config-if)# lacp timeout long
```

### 28.4 show lacp

To display LACP information for all Ethernet ports or for a specific Ethernet port, use the `show lacp` Privileged EXEC mode command.

**Syntax**

```
show lacp interface-id [parameters | statistics | protocol-state]
```

**Parameters**

- **interface-id**—Specify an interface ID. The interface ID must be an Ethernet port.
- **parameters**—(Optional) Displays parameters only.
- **statistics**—(Optional) Displays statistics only.
- **protocol-state**—(Optional) Displays protocol state only.

**Command Mode**

Privileged EXEC mode
Example

The following example displays LACP information for gi1.

```
switchxxxxxx# show lacp ethernet gi1
Port gi1 LACP parameters:
 Actor
 system priority: 1
 system mac addr: 00:00:12:34:56:78
 port Admin key: 30
 port Oper key: 30
 port Oper number: 21
 port Admin priority: 1
 port Oper priority: 1
 port Admin timeout: LONG
 port Oper timeout: LONG
 LACP Activity: ACTIVE
 Aggregation: AGGREGATABLE
 synchronization: FALSE
 collecting: FALSE
 distributing: FALSE
 expired: FALSE
 Partner
 system priority: 0
 system mac addr: 00:00:00:00:00:00
 port Admin key: 0
 port Oper key: 0
 port Oper number: 0
 port Admin priority: 0
 port Oper priority: 0
 port Admin timeout: LONG
 port Oper timeout: LONG
 LACP Activity: PASSIVE
 Aggregation: AGGREGATABLE
 synchronization: FALSE
 collecting: FALSE
 distributing: FALSE
 expired: FALSE
```
Port gi1 LACP Statistics:
LACP PDUs sent: 2
LACP PDUs received: 2
Port gi1 LACP Protocol State:
LACP State Machines:
Receive FSM: Port Disabled State
Mux FSM: Detached State
Control Variables:
BEGIN: FALSE
LACP_Enabled: TRUE
Ready_N: FALSE
Selected: UNSELECTED
Port Moved: FALSE
NNT: FALSE
Port enabled: FALSE
Timer counters:
periodic tx timer: 0
current while timer: 0
wait while timer: 0

28.5 show lacp port-channel
To display LACP information for a port-channel, use the show lacp port-channel Privileged EXEC mode command.

Syntax
show lacp port-channel [port_channel_number]

Parameters
port_channel_number—(Optional) Specifies the port-channel number.

Command Mode
Privileged EXEC mode
Example

The following example displays LACP information about port-channel 1.

```
switchxxx# show lacp port-channel 1
```

Port-Channel 1: Port Type 1000 Ethernet

**Actor**

- System: 1
- Priority: 000285:0E1C00
- MAC Address: 29
- Admin Key: 29
- Oper Key: 

**Partner**

- System: 0
- Priority: 00:00:00:00:00:00
- MAC Address: 14
- Oper Key: 
Loopback Detection Commands

29.1 loopback-detection enable (Global)

To enable the Loopback Detection (LBD) feature globally, use the `loopback-detection enable` Global Configuration mode command. To disable the Loopback Detection feature, use the `no` form of this command.

Syntax

```
loopback-detection enable
no loopback-detection enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

Loopback Detection is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables the Loopback Detection feature globally. Use the `loopback-detection enable` Interface Configuration mode command to enable Loopback Detection on an interface.

Example

The following example enables the Loopback Detection feature on the device.

```
switchxxxxxx(config)# loopback-detection enable
```
29.2 loopback-detection enable (Interface)

To enable the Loopback Detection (LBD) feature on an interface, use the `loopback-detection enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable the Loopback Detection feature on the interface, use the `no` form of this command.

**Syntax**

`loopback-detection enable`

`no loopback-detection enable`

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Loopback Detection is enabled on an interface.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

This command enables Loopback Detection on an interface. Use the `loopback-detection enable` Global Configuration command to enable Loopback Detection globally.

**Example**

The following example enables the Loopback Detection feature on port gi4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# loopback-detection enable
```

29.3 loopback-detection interval

To set the time interval between LBD packets, use the `loopback-detection interval` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.
Syntax

`loopback-detection interval seconds`

`no loopback-detection interval`

Parameters

seconds—Specifies the time interval in seconds between LBD packets. (Range: 10–60 seconds)

Default Configuration

The default time interval between LBD packets is 30 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the time interval between LBD packets to 45 seconds.

```
switchxxxxxx(config)# loopback-detection interval 45
```

29.4  `show loopback-detection`

To display information about Loopback Detection, use the `show loopback-detection` Privileged EXEC mode command.

Syntax

`show loopback-detection [interface-id | detailed]`

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

- **detailed**—(Optional) Displays information for non-present ports in addition to present ports. If this is not set, the default is to display all present ports.

Default Configuration

All ports are displayed. If detailed is not used, only present ports are displayed.
Command Mode

Privileged EXEC mode

User Guidelines

Operational status of **Active** indicates the following conditions are meet:

- Loopback is globally enabled.
- Loopback is enabled on the interface.
- Interface operational state of the interface is up.
- Interface STP state is Forwarding or STP state is disabled.

Operational status of **LoopDetected** indicates that the interface entered errDisabled state (see `set interface active` or `errdisable recovery cause` for more information).

Operational status of **Inactive** indicates that loopback detection is not actively attempting to detect loops, i.e. the **Active** status conditions are not meet.

Example

The following example displays information about the status of Loopback Detection.

```
Console# show loopback-detection
Loopback detection: Enabled
LBD packets interval: 30 Seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Loopback Detection</th>
<th>Operational State</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>Active</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>LoopDetected</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>Inactive</td>
</tr>
<tr>
<td>gi4</td>
<td>Disabled</td>
<td>Inactive</td>
</tr>
</tbody>
</table>
```
30.1 clear lldp table

To clear the neighbors table for all ports or for a specific port, use the `clear lldp table` command in Privileged EXEC mode.

**Syntax**

```plaintext
clear lldp table [interface-id]
```

**Parameters**

`interface-id`—(Optional) Specifies a port ID.

**Default Configuration**

If no interface is specified, the default is to clear the LLDP table for all ports.

**Command Mode**

Privileged EXEC mode

**Example**

```plaintext
switchxxxxxx# clear lldp table gi1
```

30.2 lldp chassis-id

To configure the source of the chassis ID of the port, use the `lldp chassis-id` Global Configuration mode command. To restore the chassis ID source to default, use the `no` form of this command.

**Syntax**

```plaintext
lldp chassis-id {mac-address | host-name}
```
**no lldp chassis-id**

**Parameters**

- **mac-address**—Specifies the chassis ID to use the device MAC address.
- **host-name**—Specifies the chassis ID to use the device configured host name.

**Default Configuration**

MAC address.

**Command Mode**

Global Configuration mode

**User Guidelines**

The host name should be configured to be a unique value.

If the chassis ID configured to be used in LLDP packets is empty, LLDP uses the default chassis ID (specified above).

**Example**

The following example configures the chassis ID to be the MAC address.

```
switchxxxxxx(config)# lldp chassis-id mac-address
```

### 30.3 lldp hold-multiplier

To specify how long the receiving device holds a LLDP packet before discarding it, use the **lldp hold-multiplier** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

**Syntax**

```
lldp hold-multiplier number
no lldp hold-multiplier
```

**Parameters**

- **hold-multiplier number**—Specifies the LLDP packet hold time interval as a multiple of the LLDP timer value (range: 2-10).
Default Configuration

The default LLDP hold multiplier is 4.

Command Mode

Global Configuration mode

User Guidelines

The actual Time-To-Live (TTL) value of LLDP frames is calculated by the following formula:

\[ \text{TTL} = \min(65535, \text{LLDP-Timer} \times \text{LLDP-hold-multiplier}) \]

For example, if the value of the LLDP timer is 30 seconds, and the value of the LLDP hold multiplier is 4, then the value 120 is encoded in the TTL field of the LLDP header.

Example

The following example sets the LLDP packet hold time interval to 90 seconds.

```
switchxxxxxx(config)# lldp timer 30
switchxxxxxx(config)# lldp hold-multiplier 3
```

30.4 lldp lldpdu

To define LLDP packet handling when LLDP is globally disabled, use the `lldp lldpdu` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp lldpdu {filtering | flooding}
no lldp lldpdu
```

Parameters

- **filtering**—Specifies that when LLDP is globally disabled, LLDP packets are filtered (deleted).
- **flooding**—Specifies that when LLDP is globally disabled, LLDP packets are flooded (forwarded to all interfaces).
Default Configuration

LLDP packets are filtered when LLDP is globally disabled.

Command Mode

Global Configuration mode

User Guidelines

If the STP mode is MSTP, the LLDP packet handling mode cannot be set to flooding and vice versa.

If LLDP is globally disabled, and the LLDP packet handling mode is flooding, LLDP packets are treated as data packets with the following exceptions:

- VLAN ingress rules are not applied to LLDP packets. The LLDP packets are trapped on all ports for which the STP state is Forwarding.
- Default deny-all rules are not applied to LLDP packets.
- VLAN egress rules are not applied to LLDP packets. The LLDP packets are flooded to all ports for which the STP state is Forwarding.
- LLDP packets are sent as untagged.

Example

The following example sets the LLDP packet handling mode to Flooding when LLDP is globally disabled.

```
switchxxxxxx(config)# lldp lldpdu flooding
```

30.5 lldp management-address

To specify the management address advertised by an interface, use the lldp management-address Interface (Ethernet) Configuration mode command. To stop advertising management address information, use the no form of this command.

Syntax

```
lldp management-address {ip-address | none | automatic [interface-id]}
no lldp management-address
```
Parameters

- **ip-address**—Specifies the static management address to advertise.
- **none**—Specifies that no address is advertised.
- **automatic**—Specifies that the software automatically selects a management address to advertise from all the IP addresses of the product. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses.
- **automatic interface-id**—Specifies that the software automatically selects a management address to advertise from the IP addresses that are configured on the interface ID. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses of the interface. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses of the interface. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN. Note that if the port or port-channel are members in a VLAN that has an IP address, that address is not included because the address is associated with the VLAN.

Default Configuration

No IP address is advertised.

The default advertisement is **automatic**.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Each port can advertise one IP address.

Example

The following example sets the LLDP management address advertisement mode to **automatic** on gi2.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# lldp management-address automatic
```
30.6  lldp med

To enable or disable LLDP Media Endpoint Discovery (MED) on a port, use the **lldp med** Interface (Ethernet) Configuration mode command. To return to the default state, use the no form of this command.

**Syntax**

```plaintext
lldp med {enable [tlv ... tlv4]} | disable
no lldp med
```

**Parameters**

- **enable**—Enable LLDP MED
- **tlv**—Specifies the TLV that should be included. Available TLVs are: Network-Policy, Location, and POE-PSE, Inventory. The Capabilities TLV is always included if LLDP-MED is enabled.
- **disable**—Disable LLDP MED on the port

**Default Configuration**

Enabled with network-policy TLV

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

The following example enables LLDP MED with the **location** TLV on gi3.

```plaintext
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# lldp med enable location
```

30.7  lldp med notifications topology-change

To enable sending LLDP MED topology change notifications on a port, use the **lldp med notifications topology-change** Interface (Ethernet) Configuration mode command. To restore the default configuration, use the no form of this command.
Link Layer Discovery Protocol (LLDP) Commands

30.8 lldp med fast-start repeat-count

When a port comes up, LLDP can send packets more quickly than usual using its fast-start mechanism.

To configure the number of packets that is sent during the activation of the fast start mechanism, use the **lldp med fast-start repeat-count** Global Configuration mode command. To return to default, use the **no** form of this command.

**Syntax**

```plaintext
lldp med fast-start repeat-count number

no lldp med fast-start repeat-count
```
Parameters

**repeat-count number**—Specifies the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism. The range is 1-10.

Default Configuration

3

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp med fast-start repeat-count 4
```

### 30.9 lldp med location

To configure the location information for the LLDP Media Endpoint Discovery (MED) for a port, use the `lldp med location` Interface (Ethernet) Configuration mode command. To delete location information for a port, use the `no` form of this command.

Syntax

```
lldp med location {{coordinate data} | {civic-address data} | {ecs-elin data}}
no lldp med location {coordinate | civic-address | ecs-elin}
```

Parameters

- **coordinate data**—Specifies the location data as coordinates in hexadecimal format.
- **civic-address data**—Specifies the location data as a civic address in hexadecimal format.
- **ecs-elin data**—Specifies the location data as an Emergency Call Service Emergency Location Identification Number (ECS ELIN) in hexadecimal format.
- **data**—Specifies the location data in the format defined in ANSI/TIA 1057: dotted hexadecimal data: Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. (Length: coordinate: 16 bytes. Civic-address: 6-160 bytes. Ecs-elin: 10-25 bytes)
Default Configuration
The location is not configured.

Command Mode
Interface (Ethernet) Configuration mode

Example
The following example configures the LLDP MED location information on gi2 as a civic address.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# lldp med location civic-address 616263646566
```

30.10 lldp med network-policy (global)
To define a LLDP MED network policy, use the `lldp med network-policy` Global Configuration mode command. For voice applications, it is simpler to use `lldp med network-policy voice auto`.

The `lldp med network-policy` command creates the network policy, which is attached to a port by `lldp med network-policy (interface)`.

The network policy defines how LLDP packets are constructed.

To remove LLDP MED network policy, use the `no` form of this command.

Syntax
```
lldp med network-policy number application [vlan vlan-id] [vlan-type {tagged | untagged}] [up priority] [dscp value]
no lldp med network-policy number
```

Parameters
- **number**—Network policy sequential number. The range is 1-32.
- **application**—The name or the number of the primary function of the application defined for this network policy. Available application names are:
  - voice
- voice-signaling
- guest-voice
- guest-voice-signaling
- softphone-voice
- video-conferencing
- streaming-video
- video-signaling.

- **vlan vlan-id**—(Optional) VLAN identifier for the application.
- **vlan-type**—(Optional) Specifies if the application is using a tagged or an untagged VLAN.
- **up priority**—(Optional) User Priority (Layer 2 priority) to be used for the specified application.
- **dscp value**—(Optional) DSCP value to be used for the specified application.

Default Configuration

No network policy is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the `lldp med network-policy` Interface Configuration command to attach a network policy to a port.

Up to 32 network policies can be defined.

Example

This example creates a network policy for the voice-signaling application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
switchxxxxxx(config)# vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi1
```
30.11  lldp med network-policy (interface)

To attach or remove an LLDP MED network policy on a port, use the **lldp med network-policy** Interface (Ethernet) Configuration mode command. Network policies are created in **lldp med network-policy (global)**.

To remove all the LLDP MED network policies from the port, use the **no** form of this command.

**Syntax**

```
lldp med network-policy {add | remove} number
no lldp med network-policy number
```

**Parameters**

- **add/remove number**—Attaches/removes the specified network policy to the interface.
- **number**—Specifies the network policy sequential number. The range is 1-32

**Default Configuration**

No network policy is attached to the interface.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

For each port, only one network policy per application (voice, voice-signaling, etc.) can be defined.

**Example**

This example creates a network policy for the voice-signalingly application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1
vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi1
```
30.12  **lldp med network-policy voice auto**

A network policy for voice LLDP packets can be created by using the **lldp med network-policy (global)**. The **lldp med network-policy voice auto** Global Configuration mode is simpler in that it uses the configuration of the Voice application to create the network policy instead of the user having to manually configure it.

This command generates an LLDP MED network policy for voice, if the voice VLAN operation mode is **auto voice VLAN**. The voice VLAN, 802.1p priority, and the DSCP of the voice VLAN are used in the policy.

To disable this mode, use the **no** form of this command.

The network policy is attached automatically to the voice VLAN.

**Syntax**

```
lldp med network-policy voice auto
no lldp med network-policy voice auto
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**User Guidelines**

In Auto mode, the Voice VLAN feature determines on which interfaces to advertise the network policy TLV with application type **voice**, and controls the parameters of that TLV.

To enable the auto generation of a network policy based on the auto voice VLAN, there must be no manually pre-configured network policies for the voice application.

In Auto mode, you cannot manually define a network policy for the voice application using the **lldp med network-policy (global)** command.
Example

```
switchxxxxxx(config)# lldp med network-policy voice auto
```

### 30.13 lldp notifications

To enable/disable sending LLDP notifications on an interface, use the `lldp notifications` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
lldp notifications {enable | disable}
no lldp notifications
```

**Parameters**

- `enable`—Enables sending LLDP notifications.
- `disable`—Disables sending LLDP notifications.

**Default Configuration**

Disabled.

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

The following example enables sending LLDP notifications on gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp notifications enable
```
30.14  lldp notifications interval

To configure the maximum transmission rate of LLDP notifications, use the `lldp notifications interval` Global Configuration mode command. To return to the default, use the `no` form of this command.

Syntax

```
lldp notifications interval seconds
no lldp notifications interval
```

Parameters

`interval seconds`—The device does not send more than a single notification in the indicated period (range: 5–3600).

Default Configuration

5 seconds

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp notifications interval 10
```

30.15  lldp optional-tlv

To specify which optional TLVs are transmitted, use the `lldp optional-tlv` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp optional-tlv tlv [tlv2 … tlv5 | none]
```
Parameters

- **tlv**—Specifies the TLVs to be included. Available optional TLVs are: port-desc, sys-name, sys-desc, sys-cap, 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size, Power-via-MDI, 4-wirePower-via-MDI.

- **none**—(Optional) Clear all optional TLVs from the interface.

If the 802.1 protocol is selected, see the command below.

**Default Configuration**

The following TLV are transmitted:

- sys-name
- sys-cap

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

The following example specifies that the port description TLV is transmitted on gi2.

```
switchxxxxx(config)# interface gi2
switchxxxxx(config-if)# lldp optional-tlv port-desc
```

**30.16 lldp optional-tlv 802.1**

To specify whether to transmit the 802.1 TLV, use the **lldp optional-tlv 802.1** Interface (Ethernet) Configuration mode command. To revert to the default setting, use the **no** form of this command.

**Syntax**

- **lldp optional-tlv 802.1 pvid {enable | disable}** - The PVID is advertised or not advertised.
- **no lldp optional-tlv 802.1 pvid** - The PVID advertise state is returned to default.
- **lldp optional-tlv 802.1 ppvid add ppvid** - The Protocol Port VLAN ID (PPVID) is advertised. The PPVID is the PVID that is used depending on the packet’s protocol.
- **lldp optional-tlv 802.1 ppvid remove ppvid** - The PPVID is not advertised.
**lldp optional-tlv 802.1 vlan add vlan-id** - This vlan-id is advertised.

**lldp optional-tlv 802.1 vlan remove vlan-id** - This vlan-id is not advertised.

**lldp optional-tlv 802.1 protocol add {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}** - The protocols selected are advertised.

**lldp optional-tlv 802.1 protocol remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}** - The protocols selected are not advertised.

**Parameters**

- **lldp optional-tlv 802.1 pvid {enable | disable}** — Advertises or stop advertize the PVID of the port.

- **lldp optional-tlv 802.1 ppvid add/remove ppvid** — Adds/removes PPVID for advertising. (range: 0–4094). PPVID = 0 indicates that the port is not capable of supporting port and protocol VLANs and/or the port is not enabled with any protocol VLANs.

- **add/remove vlan-id** — Adds/removes VLAN for advertising (range: 0–4094).

- **add/remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}** — Add specifies to advertise the specified protocols; remove specifies not to advertise the specified protocol.

**Default Configuration**

The following 802.1 TLV is transmitted:

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

```
switchxxxxxx(config)# lldp optional-tlv 802.1 protocol add stp
```

**30.17 lldp run**

To enable LLDP, use the **lldp run** Global Configuration mode command. To disable LLDP, use the **no** form of this command.
Link Layer Discovery Protocol (LLDP) Commands

30.18  lldp receive

To enable receiving LLDP on an interface, use the **lldp receive** Interface (Ethernet) Configuration mode command. To stop receiving LLDP on an Interface (Ethernet) Configuration mode interface, use the **no** form of this command.

**Syntax**

```plaintext
lldp receive
no lldp receive
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled

**Command Mode**

Interface (Ethernet) Configuration mode
User Guidelines

LLDP manages LAG ports individually. LLDP data received through LAG ports is stored individually per port.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are received on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp receive
```

30.19 lldp reinit

To specify the minimum time an LLDP port waits before reinitializing LLDP transmission, use the `lldp reinit` Global Configuration mode command. To revert to the default setting, use the `no` form of this command.

Syntax

```
lldp reinit seconds
no lldp reinit
```

Parameters

```
reinit seconds—Specifies the minimum time in seconds an LLDP port waits before reinitializing LLDP transmission.(Range: 1–10)
```

Default Configuration

2 seconds

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp reinit 4
```
30.20 lldp timer

To specify how often the software sends LLDP updates, use the lldp timer Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

lldp timer seconds

no lldp timer

Parameters

timer seconds—Specifies, in seconds, how often the software sends LLDP updates (range: 5-32768 seconds).

Default Configuration

30 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the interval for sending LLDP updates to 60 seconds.

switchxxxxxx(config)# lldp timer 60

30.21 lldp transmit

To enable transmitting LLDP on an interface, use the no form of this command to stop transmitting LLDP on an interface, use the lldp transmit Interface (Ethernet) Configuration mode command.

Syntax

lldp transmit

no lldp transmit
**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled

**Command Mode**

Interface (Ethernet) Configuration mode

```
switchxxxxxx(config-if)#
```

**User Guidelines**

LLDP manages LAG ports individually. LLDP sends separate advertisements on each port in a LAG.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are sent on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

**Example**

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# lldp transmit
```

**30.22 lldp tx-delay**

To set the delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB, use the `lldp tx-delay` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
lldp tx-delay seconds
no lldp tx-delay
```
Parameters

**tx-delay seconds**—Specifies the delay in seconds between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB (range: 1-8192 seconds).

Default Configuration

The default LLDP frame transmission delay is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

It is recommended that the tx-delay be less than 25% of the LLDP timer interval.

Example

The following example sets the LLDP transmission delay to 10 seconds.

```
switchxxxxxx(config)# lldp tx-delay 10
```

### 30.23 show lldp configuration

To display the LLDP configuration for all ports or for a specific port, use the `show lldp configuration` Privileged EXEC mode command.

Syntax

```
show lldp configuration [interface-id | detailed]
```

Parameters

- **interface-id**—(Optional) Specifies the port ID.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.
Command Mode

Privileged EXEC mode

Examples

Example 1 - Display LLDP configuration for all ports.

```
switchxxxxxx# show lldp configuration
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering
Port State Optional TLVs Address Notifications
-------- ----- -------------- ----------- ------------
gi1 RX,TX PD, SN, SD, SC , 4W 172.16.1.1 Disabled
gi2 TX PD, SN 172.16.1.1 Disabled
gi3 RX,TX PD, SN, SD, SC None Disabled
gi4 RX,TX D, SN, SD, SC automatic Disabled
```

Example 2 - Display LLDP configuration for port 1.

```
switchxxxxxx# show lldp configuration gi1
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering
```
Chassis ID: mac-address

<table>
<thead>
<tr>
<th>Port State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC, 4W</td>
<td>72.16.1.1</td>
</tr>
</tbody>
</table>

802.3 optional TLVs: 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size

802.1 optional TLVs

PVID: Enabled

PPVIDs: 0, 1, 92

VLANs: 1, 92

Protocols: 802.1x

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>The time interval between LLDP updates.</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>The amount of time (as a multiple of the timer interval) that the receiving device holds a LLDP packet before discarding it.</td>
</tr>
<tr>
<td>Reinit timer</td>
<td>The minimum time interval an LLDP port waits before re-initializing an LLDP transmission.</td>
</tr>
<tr>
<td>Tx delay</td>
<td>The delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>State</td>
<td>The port’s LLDP state.</td>
</tr>
<tr>
<td>Optional TLVs</td>
<td>Optional TLVs that are advertised. Possible values are:</td>
</tr>
<tr>
<td>Address</td>
<td>The management address that is advertised.</td>
</tr>
<tr>
<td>Notifications</td>
<td>Indicates whether LLDP notifications are enabled or disabled.</td>
</tr>
<tr>
<td>PVID</td>
<td>Port VLAN ID advertised.</td>
</tr>
</tbody>
</table>
30.24 show lldp local

To display the LLDP information that is advertised from a specific port, use the `show lldp local` Privileged EXEC mode command.

**Syntax**

```
show lldp local interface-id
```

**Parameters**

- `Interface-id`—(Optional) Specifies a port ID.

**Default Configuration**

If no port ID is entered, the command displays information for all ports.

**Command Mode**

Privileged EXEC mode

**Example**

The following examples display LLDP information that is advertised from `gi1` and `2`.

```
switchxxxxx# show lldp local gi1
Device ID: 0060.704C.73FF
Port ID: gi1
Capabilities: Bridge
System Name: ts-7800-1
System description:
Port description:
Management address: 172.16.1.8
802.3 MAC/PHY Configuration/Status
```
Auto-negotiation support: Supported
Auto-negotiation status: Enabled
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex
Operational MAU type: 1000BaseTFD
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
Power Type: Type 1 PSE
Power Source: Primary Power Source
Power Priority: Unknown
PD Requested Power Value: 30
4-Pair POE supported: Yes
Spare Pair Detection/Classification required: Yes
PD Spare Pair Desired State: Enabled
802.3 EEE
Local Tx: 30 usec
Local Rx: 25 usec
Remote Tx Echo: 30 usec
Remote Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
802.1 Protocol: 88 08 00 01 (PAUSE)
LLDP-MED capabilities: Network Policy, Location Identification
LLDP-MED Device type: Network Connectivity
LLDP-MED Network policy
Application type: Voice
Flags: Tagged VLAN
VLAN ID: 2
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Sourcing Entity
Power source: Primary Power Source
Power priority: High
Power value: 9.6 Watts
LLDP-MED Location
Hardware Revision: B1
Firmware Revision: A1
Software Revision: 3.8
Serial number: 7978399
Manufacturer name: Manufacturer
Model name: Model 1
Asset ID: Asset 123
switchxxxxxx# show lldp local gi2
LLDP is disabled.

30.25 show lldp local tlvs-overloading

When an LLDP packet contains too much information for one packet, this is called overloading. To display the status of TLVs overloading of the LLDP on all ports or on a specific port, use the `show lldp local tlvs-overloading` EXEC mode command.

Syntax

```
show lldp local tlvs-overloading [interface-id]
```

Parameters

interface-id—(Optional) Specifies a port ID.
Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

User EXEC mode

User Guidelines

The command calculates the overloading status of the current LLDP configuration, and not for the last LLDP packet that was sent.

Example

```
switchxxxxxx# show lldp local tlvs-overloading gi1
 TLVs Group Bytes Status
 ------------ ------ --------------
 Mandatory 31 Transmitted
 LLDP-MED Capabilities 9 Transmitted
 LLDP-MED Location 200 Transmitted
 802.1 1360 Overloading
 Total: 1600 bytes
 Left: 100 bytes
```

30.26  show lldp med configuration

To display the LLDP Media Endpoint Discovery (MED) configuration for all ports or for a specific port, use the `show lldp med configuration` Privileged EXEC mode command.

Syntax

```
show lldp med configuration [interface-id | detailed]
```

Parameters

- **interface-id**—(Optional) Specifies the port ID.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.
Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Examples

Example 1 - The following example displays the LLDP MED configuration for all interfaces.

switchxxxxxx# show lldp med configuration
Fast Start Repeat Count: 4.
lldp med network-policy voice: manual
Network policy 1
--------------------
Application type: voiceSignaling
VLAN ID: 1 untagged
Layer 2 priority: 0
DSCP: 0
Port Capabilities Network Policy Location Notifications Inventory
------- -------------- -------------- ---------- -------------   --------
gi1 Yes             Yes            Yes         Enabled        Yes
    No              No             No          Enabled        No

Example 2 - The following example displays the LLDP MED configuration for gi1.

switchxxxxxx# show lldp med configuration gi1
Port Capabilities Network Policy Location Notifications Inventory
------- -------------- -------------- ---------- -------------   --------
gi1 Yes             Yes            Yes         Enabled        Yes

Network policies:
30.27 show lldp neighbors

To display information about neighboring devices discovered using LLDP, use the `show lldp neighbors` Privileged EXEC mode command. The information can be displayed for all ports or for a specific port.

Syntax

```
show lldp neighbors [interface-id]
```

Parameters

- `interface-id` — (Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

Privileged EXEC mode

User Guidelines

A TLV value that cannot be displayed as an ASCII string is displayed as an hexadecimal string.

Examples

**Example 1** - The following example displays information about neighboring devices discovered using LLDP on all ports on which LLDP is enabled and who are up.

Location information, if it exists, is also displayed.

```
switchxxxxxx# show lldp neighbors
```

System capability legend:

- B - Bridge; R - Router; W - Wlan Access Point; T - telephone;
- D - DOCSIS Cable Device; H - Host; r - Repeater;
- TP - Two Ports MAC Relay; S - S-VLAN; C - C-VLAN; O - Other
### Link Layer Discovery Protocol (LLDP) Commands

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port ID</th>
<th>System Name</th>
<th>Capabilities</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>00:00:00:11:11:11</td>
<td>gi1</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>gi2</td>
<td>00:00:26:08:13:24</td>
<td>gi3</td>
<td>ts-7900-1</td>
<td>B,R</td>
<td>90</td>
</tr>
<tr>
<td>gi3</td>
<td>00:00:26:08:13:24</td>
<td>gi2</td>
<td>ts-7900-2</td>
<td>W</td>
<td>90</td>
</tr>
</tbody>
</table>

**Example 2** - The following example displays information about neighboring devices discovered using LLDP on port 1.

```bash
switchxxxxxx# show lldp neighbors gi1
Device ID: 00:00:00:11:11:11
Port ID: gi1
System Name: ts-7800-2
Capabilities: B
System description:
Port description:
Management address: 172.16.1.1
Time To Live: 90 seconds
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported.
Auto-negotiation status: Enabled.
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex.
Operational MAU type: 1000BaseTFD
802.3 Power via MDI
MDI Power support Port Class: PD
PSE MDI Power Support: Not Supported
PSE MDI Power State: Not Enabled
PSE power pair control ability: Not supported.
PSE Power Pair: Signal
```
PSE Power class: 1
Power Type: Type 1 PSE
Power Source: Primary Power Source
Power Priority: Unknown
PSE Allocated Power Value: 30
4-Pair POE supported: Yes
Spare Pair Detection/Classification required: Yes
PD Spare Pair Desired State: Enabled
PD Spare Pair Operational State: Enabled
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Remote Tx: 25 usec
Remote Rx: 30 usec
Local Tx Echo: 30 usec
Local Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2(VLAN2)
802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy.
LLDP-MED Device type: Endpoint class 2.
LLDP-MED Network policy
Application type: Voice
Flags: Unknown policy
VLAN ID: 0
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Device
Power source: Primary power
Power priority: High
Power value: 9.6 Watts
Hardware revision: 2.1
Firmware revision: 2.3
Software revision: 2.7.1
Serial number: LM759846587
Manufacturer name: VP
Model name: TR12
Asset ID: 9
LLDP-MED Location

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
</tbody>
</table>
### Link Layer Discovery Protocol (LLDP) Commands

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are: B - Bridge, R - Router, W - WLAN Access Point, T - Telephone, D - DOCSIS cable device, H - Host, r - Repeater, O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port. (supported or not supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port. (enabled or disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source, Backup power source, Unknown Power source, PSE and local power source, Local Only power source and PSE only power source.</td>
</tr>
</tbody>
</table>

### LLDP MED

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities</td>
<td>The sender's LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
</tbody>
</table>

### LLDP MED - Network Policy

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application type</td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
</tbody>
</table>
### Link Layer Discovery Protocol (LLDP) Commands

**30.28 show lldp statistics**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Flags**                         | Flags. The possible values are:  
|                                    | Unknown policy: Policy is required by the device, but is currently unknown.  
|                                    | Tagged VLAN: The specified application type is using a tagged VLAN.  
|                                    | Untagged VLAN: The specified application type is using an Untagged VLAN. |
| **VLAN ID**                       | The VLAN identifier for the application. |
| **Layer 2 priority**              | The Layer 2 priority used for the specified application. |
| **DSCP**                          | The DSCP value used for the specified application. |

**LLDP MED - Power Over Ethernet**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Power type</strong></td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td><strong>Power Source</strong></td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td><strong>Power priority</strong></td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
<tr>
<td><strong>Power value</strong></td>
<td>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</td>
</tr>
</tbody>
</table>

**LLDP MED - Location**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates, Civic address, ECS ELIN.</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
To display LLDP statistics on all ports or a specific port, use the show `lldp statistics` EXEC mode command.

**Syntax**

```
show lldp statistics [interface-id | detailed]
```

**Parameters**

- `interface-id`—(Optional) Specifies the port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

**Default Configuration**

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

**Command Mode**

User EXEC mode

**Example**

```
switchxxxxxxx# show lldp statistics
Tables Last Change Time: 14-Oct-2010 32:08:18
Tables Inserts: 26
Tables Deletes: 2
Tables Dropped: 0
Tables Ageouts: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>TX Frames</th>
<th>RX Frame</th>
<th>RX TLVs</th>
<th>RX Ageouts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Discarded Errors</td>
<td>Discarded</td>
</tr>
<tr>
<td>gi1</td>
<td>730</td>
<td>850</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi3</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>B - Bridge</td>
</tr>
<tr>
<td></td>
<td>R - Router</td>
</tr>
<tr>
<td></td>
<td>W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>T - Telephone</td>
</tr>
<tr>
<td></td>
<td>D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>H - Host</td>
</tr>
<tr>
<td></td>
<td>r - Repeater</td>
</tr>
<tr>
<td></td>
<td>O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port. (Supported or Not Supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port. (Enabled or Disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>LLDP MED</td>
<td></td>
</tr>
<tr>
<td>Capabilities</td>
<td>The sender’s LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
<tr>
<td>LLDP MED - Network Policy</td>
<td></td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application type</strong></td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Flags. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>- Unknown policy: Policy is required by the device, but is currently unknown.</td>
</tr>
<tr>
<td></td>
<td>- Tagged VLAN: The specified application type is using a Tagged VLAN.</td>
</tr>
<tr>
<td></td>
<td>- Untagged VLAN: The specified application type is using an Untagged VLAN.</td>
</tr>
<tr>
<td><strong>VLAN ID</strong></td>
<td>The VLAN identifier for the application.</td>
</tr>
<tr>
<td><strong>Layer 2 priority</strong></td>
<td>The Layer 2 priority used for the specified application.</td>
</tr>
<tr>
<td><strong>DSCP</strong></td>
<td>The DSCP value used for the specified application.</td>
</tr>
<tr>
<td><strong>LLDP MED - Power Over Ethernet</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Power type</strong></td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td><strong>Power Source</strong></td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td><strong>Power priority</strong></td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
<tr>
<td><strong>Power value</strong></td>
<td>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</td>
</tr>
<tr>
<td><strong>LLDP MED - Location</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Coordinates, Civic address, ECS ELIN.</strong></td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
31.1  macro name

Use the **macro name** Global Configuration mode command to define a macro. There are two types of macros that can be defined:

- Global macros define a group of CLI commands that can be run at any time.
- Smartport macros are associated with Smartport types. For each Smartport macro there must be an anti macro (a macro whose name is concatenated with `no_`). The anti macro reverses the action of the macro.

If a macro with this name already exists, it overrides the previously-defined one.

Use the **no** form of this command to delete the macro definition.

**Syntax**

```
macro name macro-name
no macro name [macro-name]
```

**Parameters**

- `macro-name`—Name of the macro. Macro names are case sensitive.

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**User Guidelines**

A macro is a script that contains CLI commands and is assigned a name by the user. It can contain up to 3000 characters and 200 lines.
Keywords

Macros may contain keywords (parameters). The following describes these keywords:

- A macro can contain up to three keywords.
- All matching occurrences of the keyword are replaced by the corresponding value specified in the macro command.
- Keyword matching is case-sensitive
- Applying a macro with keywords does not change the state of the original macro definition.

User Feedback

The behavior of a macro command requiring user feedback is the same as if the command is entered from terminal: it sends its prompt to the terminal and accepts the user reply.

Creating a Macro

Use the following guidelines to create a macro:

- Use **macro name** to create the macro with the specified name.
- Enter one macro command per line.
- Use the @ character to end the macro.
- Use the # character at the beginning of a line to enter a comment in the macro.

In addition, # is used to identify certain preprocessor commands that can only be used within a macro. There are two possible preprocessor commands:

- **#macro key description** - Each macro can be configured with up to 3 keyword/description pairs. The keywords and descriptions are displayed in the GUI pages when the macro is displayed.

The syntax for this preprocessor command is as follows:

```
#define macro key description $keyword1 description1 $keyword2 description2 $keyword3 description3
```

A keyword must be prefixed with '$'.

- **#macro keywords** - This instruction enables the device to display the keywords as part of the CLI help. It accepts up to 3 keywords. The command creates a CLI help string with the keywords for the macro. The help string will be displayed if help on the macro is requested from the macro and macro global commands. The GUI also uses the keywords specified in the command as the parameter names for the
Macro Commands

macro. See Example 2 and 3 below for a description of how this command is used in the CLI.

The syntax for this preprocessor command is as follows:

```
#macro keywords $keyword1 $keyword2 $keyword3
```

where $keywordn is the name of the keyword.

Editing a Macro

Macros cannot be edited. Modify a macro by creating a new macro with the same name as the existing macro. The newer macro overwrites the existing macro.

The exceptions to this are the built-in macros and corresponding anti-macros for the Smartport feature. You cannot override a Smartport macro. To change a Smartport macro, create a new macro (my_macro) and an anti macro (no_my_macro) and associate it with the Smartport type using the `macro auto user smartport macro` command.

Scope of Macro

It is important to consider the scope of any user-defined macro. Because of the potential hazards of applying unintended configurations, do not change configuration modes within the macro by using commands such as `exit`, `end`, or `interface interface-id`. With a few exceptions, there are other ways of executing macros in the various configuration modes. Macros may be executed in Privileged Exec mode, Global Configuration mode, and Interface Configuration mode (when the interface is NOT a VLAN.)

Examples

**Example 1** - The following example shows how to create a macro that configures the duplex mode of a port.

```
switchxxxxxxx(config)# macro name dup
Enter macro commands one per line. End with the character '@'.

#macro description dup
duplex full
negotiation
@
```

**Example 2** - The following example shows how to create a macro with the parameters: DUPLEX and SPEED. When the macro is run, the values of DUPLEX and SPEED must be provided by the user. The `#macro keywords` command enables the user to receive help for the macro as shown in Example 3.
switchxxxxxxx(config)# macro name duplex
Enter macro commands one per line. End with the character ‘@’.
duplex $DUPLEX
no negotiation
speed $SPEED
#macro keywords $DUPLEX $SPEED
@

Example 3 - The following example shows how to display the keywords using the help character ? (as defined by the #macro keywords command above) and then run the macro on the port. The #macro keywords command entered in the macro definition enables the user to receive help for the macro, as shown after the words e.g. below.

switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# macro apply duplex ?
   WORD <1-32>  Keyword to replace with value e.g. $DUPLEX, $SPEED
   <cr>
switchxxxxxxx(config-if)# macro apply duplex $DUPLEX ?
   WORD<1-32>  First parameter value
   <cr>
switchxxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED ?
   WORD<1-32>  Second parameter value
switchxxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100

31.2 macro

Use the macro apply/trace Interface Configuration command to either:

- Apply a macro to an interface without displaying the actions being performed
- Apply a macro to the interface while displaying the actions being performed

Syntax

macro {apply | trace} macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
Parameters

- **apply**—Apply a macro to the specific interface.
- **trace**—Apply and trace a macro to the specific interface.
- **macro-name**—Name of the macro.
- **parameter-name value**—For each parameter defined in the macro, specify its name and value. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameter name in the macro are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The **macro apply** command hides the commands of the macro from the user while it is being run. The **macro trace** command displays the commands along with any errors which are generated by them as they are executed. This is used to debug the macro and find syntax or configuration errors.

When you run a macro, if a line in it fails because of a syntax or configuration error, the macro continues to apply the remaining commands to the interface.

If you apply a macro that contains parameters in its commands, the command fails if you do not provide the values for the parameters. You can use the **macro apply macro-name** with a "?" to display the help string for the macro keywords (if you have defined these with the **#macro keywords** preprocessor command).

Parameter (keyword) matching is case sensitive. All matching occurrences of the parameter are replaced with the provided value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

When you apply a macro to an interface, the switch automatically generates a macro description command with the macro name. As a result, the macro name is appended to the macro history of the interface. The **show parser macro** command displays the macro history of an interface.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When a macro is applied to an interface range, it is applied sequentially to each interface within the range. If a macro command fails on one interface, it is nonetheless attempted to be applied and may fail or succeed on the remaining interfaces.
Examples

**Example 1** - The following is an example of a macro being applied to an interface with the trace option.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# macro trace dup $DUPLEX full $SPEED 100
 Applying command... ‘duplex full’
 Applying command... ‘speed 100’
switchxxxxxx(config-if)#
```

**Example 2** - The following is an example of a macro being applied without the trace option.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# macro apply dup $DUPLEX full $SPEED 100
switchxxxxxx(config-if)#
```

**Example 3** - The following is an example of an incorrect macro being applied.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# macro trace dup
 Applying command...‘duplex full’
 Applying command...‘speed auto’
 % bad parameter value
switchxxxxxx(config-if)#
```

### 31.3 macro description

Use the **macro description** Interface Configuration mode command to append a description, for example, a macro name, to the macro history of an interface. Use the **no** form of this command to clear the macro history of an interface. When the macro is applied to an interface, the switch automatically generates a macro description command with the macro name. As a result, the name of the macro is appended to the macro history of the interface.

**Syntax**

```
macro description text
```
no macro description

Parameters

- text—Description text. The text can contain up to 160 characters. The text must be double quoted if it contains multiple words.

Default Configuration

The command has no default setting.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When multiple macros are applied on a single interface, the description text is a concatenation of texts from a number of previously-applied macros.

To verify the settings created by this command, run the `show parser macro` command.

Example

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# macro apply dup
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100
switchxxxxxx(config-if)# macro description dup
switchxxxxxx(config-if)# macro description duplex
switchxxxxxx(config-if)# end
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description
Global Macro(s):
Interface Macro Description(s)

gi2 dup
gi3 duplex | dup | duplex
```
---

```
switchxxxxxx# configure
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# no macro description
switchxxxxxx(config-if)# end
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description

Global Macro(s):

<table>
<thead>
<tr>
<th>Interface</th>
<th>Macro Description(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi3</td>
<td>duplex</td>
</tr>
</tbody>
</table>
```

---

## 31.4 macro global

Use the `macro global` Global Configuration command to apply a macro to a switch (with or without the trace option).

### Syntax

```
macro global {apply | trace} macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
```

### Parameters

- **apply**—Apply a macro to the switch.
- **trace**—Apply and trace a macro to the switch.
- **macro-name**—Specify the name of the macro.
- **parameter-name value**—Specify the parameter values required for the switch. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameters are replaced with the corresponding value.

### Default Configuration

The command has no default setting.
Command Mode

Global Configuration mode

User Guidelines

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

If you apply a macro that contains keywords in its commands, the command fails if you do not specify the proper values for the keywords when you apply the macro. You can use this command with a '?' to display the help string for the macro keywords. You define the keywords in the help string using the preprocessor command #macro keywords when you define a macro.

When you apply a macro in Global Configuration mode, the switch automatically generates a global macro description command with the macro name. As a result, the macro name is appended to the global macro history. Use show parser macro to display the global macro history.

Example.

The following is an example of a macro being defined and then applied to the switch with the trace option.

```
switchxxxxxx(config)# macro name console-timeout
Enter macro commands one per line. End with the character '@'.
line console
exec-timeout $timeout-interval
@
```

```
switchxxxxxx(config)# macro global trace console-timeout $timeout-interval 100
Applying command... ‘line console’
Applying command... ‘exec-timeout 100’
```
31.5  macro global description

Use the `macro global description` Global Configuration command to enter a description which is used to indicate which macros have been applied to the switch. Use the `no` form of this command to remove the description.

**Syntax**

```
macro global description text
no macro global description
```

**Parameters**

- `text`—Description text. The text can contain up to 160 characters.

**Default Configuration**

The command has no default setting.

**Command Mode**

Global Configuration mode

**User Guidelines**

When multiple global macros are applied to a switch, the global description text is a concatenation of texts from a number of previously applied macros.

You can verify your settings by entering the `show parser macro` command with the `description` keyword.

**Examples**

```
switchxxxxxx(config)# macro global description "set console timeout interval"
```

31.6  show parser macro

Use the `show parser macro` User EXEC mode command to display the parameters for all configured macros or for one macro on the switch.
**Syntax**

```
show parser macro [{brief | description [interface interface-id] | detailed] | name macro-name}]
```

**Parameters**

- **brief**—Display the name of all macros.
- **description [interface interface-id]**—Display the macro descriptions for all interfaces or if an interface is specified, display the macro descriptions for that interface.
- **name macro-name**—Display information about a single macro identified by the macro name.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display description of all macros on present ports.

If the **detailed** keyword is not used, only present ports are displayed.

**Command Mode**

User EXEC mode

**Examples**

**Example 1** - This is a partial output example from the `show parser macro` command.

```
switchxxxxxx# show parser macro
Total number of macros = 6

--
Macro name : company-global
Macro type : default global
Enable dynamic port error recovery for link state
failures
--
Macro name : company-desktop
Macro type : default interface
macro keywords $AVID
```
# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

---

**Example 2** - This is an example of output from the *show parser macro name* command.

```
switchxxxxxx# show parser macro standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
Trust QoS settings on VOIP packets
auto qos voip trust
Allow port channels to be automatically formed
channel-protocol pagp
```

---

**Example 3** - This is an example of output from the *show parser macro brief* command.

```
switchxxxxxx# show parser macro brief
default global : company-global
default interface: company-desktop
default interface: company-phone
default interface: company-switch
default interface: company-router
customizable : snmp
```

---

**Example 4** - This is an example of output from the *show parser macro description* command.

```
switchxxxxxx# show parser macro description
Global Macro(s): company-global
```
Example 5 - This is an example of output from the `show parser macro description interface` command.

```
switchxxxxxxxx# show parser macro description interface gi2
Interface Macro Description
--
$gi2 this is test macro
```
Management ACL Commands

32.1 deny (Management)

To set permit rules (ACEs) for the management access list (ACL), use the `deny` Management Access-list Configuration mode command.

Syntax

```plaintext
deny [interface-id] [service service]
deny ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service**—(Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address**—Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length**—Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask**— Specifies the source IPv4 address network mask. The parameter is relevant only to IPv4 addresses.
- **mask prefix-length**—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). The parameter is relevant only to IPv4 addresses. (Range: 0–32)

Default Configuration

No rules are configured.
Management ACL Commands

Command Mode
Management Access-list Configuration mode

User Guidelines
Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example
The following example denies all ports in the ACL called mlist.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# deny
```

32.2 permit (Management)

To set permit rules (ACEs) for the management access list (ACL), use the `permit` command.

Syntax

```
permit [interface-id] [service service]
permit ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]
```

Parameters

- **interface-id** — (Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service** — (Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address** — Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length** — Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask mask** — Specifies the source IPv4 address network mask. This parameter is relevant only to IPv4 addresses.
Management ACL Commands

- **mask prefix-length** — Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). This parameter is relevant only to IPv4 addresses. (Range: 0–32)

Default Configuration

No rules are configured.

Command Mode

Management Access-list Configuration mode

User Guidelines

Rules with Ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example

The following example permits all ports in the ACL called **mlist**

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit
```

32.3 **management access-list**

To configure a management access list (ACL) and enter the Management Access-list Configuration mode, use the **management access-list** Global Configuration mode command. To delete an ACL, use the **no** form of this command.

Syntax

```
management access-list name
no management access-list name
```

Parameters

- **name**—Specifies the ACL name. (Length: 1–32 characters)

Default Configuration

N/A
Command Mode

Global Configuration mode

User Guidelines

Use this command to configure a management access list. This command enters the Management Access-list Configuration mode, where the denied or permitted access conditions are defined with the **deny** and **permit** commands.

If no match criteria are defined, the default value is **deny**.

When re-entering the access-list context, the new rules are entered at the end of the access list.

Use the **management access-class** command to select the active access list.

The active management list cannot be updated or removed.

For IPv6 management traffic that is tunneled in IPv4 packets, the management ACL is applied first on the external IPv4 header (rules with the service field are ignored), and then again on the inner IPv6 header.

Examples

**Example 1** - The following example creates a management access list called **mlist**, configures management gi1 and gi9, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit gi1
switchxxxxxx(config-macl)# permit gi9
switchxxxxxx(config-macl)# exit
switchxxxxxx(config)#
```

**Example 2** - The following example creates a management access list called ‘mlist’, configures all interfaces to be management interfaces except gi1 and gi9, and makes the new access list the active list.

```
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# deny gi1
switchxxxxxx(config-macl)# deny gi9
switchxxxxxx(config-macl)# permit
switchxxxxxx(config-macl)# exit
```
32.4  management access-class

To restrict management connections by defining the active management access list (ACL), use the **management access-class** Global Configuration mode command. To disable management connection restrictions, use the **no** form of this command.

**Syntax**

```
management access-class {console-only | name}
no management access-class
```

**Parameters**

- **console-only**—Specifies that the device can be managed only from the console.
- **name**—Specifies the ACL name to be used. (Length: 1–32 characters)

**Default Configuration**

The default configuration is no management connection restrictions.

**Command Mode**

Global Configuration mode

**Example**

The following example defines an access list called *mlist* as the active management access list.

```
switchxxxxxxx(config)# management access-class mlist
```

32.5  show management access-list

To display management access lists (ACLs), use the **show management access-list** Privileged EXEC mode command.

**Syntax**

```
show management access-list [name]
```

Parameters

**name**—(Optional) Specifies the name of a management access list to be displayed. (Length: 1–32 characters)

Default Configuration

All management ACLs are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the **mlist** management ACL.

```
switchxxxxxx# show management access-list mlist
ml
--
deny service telnet
permit gi1 service telnet
! (Note: all other access implicitly denied)
console(config-macl)#
```

### 32.6 show management access-class

To display information about the active management access list (ACLs), use the **show management access-class** Privileged EXEC mode command.

Syntax

```
show management access-class
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode
Example

The following example displays the active management ACL information.

```
switchxxxxxx# show management access-class
Management access-class is enabled, using access list mlist
```
33.1 ipv6 mld last-member-query-count

To configure the Multicast Listener Discovery (MLD) last member query counter, use the `ipv6 mld last-member-query-count` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

```plaintext
ipv6 mld last-member-query-count count
no ipv6 mld last-member-query-count
```

**Parameters**

`count`—The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

**Default Configuration**

A value of MLD Robustness variable.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld robustness` command to change the MLD last member query counter.

**Example**

The following example changes a value of the MLD last member query counter to 3:

```
switchxxxxxx(config)# interface vlan 1
ipv6 mld last-member-query-count 3
exit
```
33.2 ipv6 mld last-member-query-interval

To configure the Multicast Listener Discovery (MLD) last member query interval, use the `ipv6 mld last-member-query-interval` command in Interface Configuration mode. To restore the default MLD query interval, use the `no` form of this command.

**Syntax**

```
ipv6 mld last-member-query-interval milliseconds
no ipv6 mld last-member-query-interval
```

**Parameters**

- `milliseconds`—Interval, in milliseconds, at which MLD group-specific host query messages are sent on the interface. (Range: 100–25500).

**Default Configuration**

The default MLD last member query interval is 1000 milliseconds.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

Use the `ipv6 mld last-member-query-interval` command to configure the MLD last member query interval on an interface.

**Example**

The following example shows how to increase the MLD last member query interval to 1500 milliseconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld last-member-query-interval 1500
switchxxxxxx(config-if)# exit
```
33.3 ipv6 mld query-interval

To configure the frequency at which the switch sends Multicast Listener Discovery (MLD) host-query messages, use the `ipv6 mld query-interval` command in Interface Configuration mode. To return to the default frequency, use the `no` form of this command.

**Syntax**

```
ipv6 mld query-interval seconds
```

```
no ipv6 mld query-interval
```

**Parameters**

- `seconds`—Frequency, in seconds, at which the switch sends MLD query messages from the interface. The range is from 30 to 18000.

**Default Configuration**

The default MLD query interval is 125 seconds.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

Use the `ipv6 mld query-interval` command to configure the frequency at which the MLD querier sends MLD host-query messages from an interface. The MLD querier sends query-host messages to discover which multicast groups have members on the attached networks of the router.

The query interval must be bigger than the maximum query response time.

**Example**

The following example shows how to increase the frequency at which the MLD querier sends MLD host-query messages to 180 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld query-interval 180
switchxxxxxx(config-if)# exit
```
33.4  ipv6 mld query-max-response-time

To configure the maximum response time advertised in Multicast Listener Discovery (MLD) queries, use the `ipv6 mld query-max-response-time` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

```
ipv6 mld query-max-response-time seconds
no ipv6 mld query-max-response-time
```

Parameters

- `seconds`—Maximum response time, in seconds, advertised in MLD queries. (Range: 5–20)

Default Configuration

10 seconds.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

This command controls the period during which the responder can respond to an MLD query message before the router deletes the group.

This command controls how much time the hosts have to answer an MLD query message before the router deletes their group. Configuring a value of fewer than 10 seconds enables the router to prune groups faster.

The maximum query response time must be less than the query interval.

Note. If the hosts do not respond fast enough, they might be pruned inadvertently. Therefore, the hosts must know to respond faster than 10 seconds (or the value you configure).

Example

The following example configures a maximum response time of 8 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld query-max-response-time 8
switchxxxxxx(config-if)# exit
```
33.5 ipv6 mld robustness

To configure the Multicast Listener Discovery (MLD) robustness variable, use the `ipv6 mld robustness` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

```
ipv6 mld robustness count

no ipv6 mld robustness
```

**Parameters**

- `count`—The number of expected packet loss on a link. Parameter range. (Range: 1–7).

**Default Configuration**

The default value is 2.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

Use the `ipv6 mld robustness` command to change the MLD robustness variable.

**Example**

The following example changes a value of the MLD robustness variable to 3:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld robustness 3
switchxxxxxx(config-if)# exit
```

33.6 ipv6 mld version

To configure which version of Multicast Listener Discovery Protocol (MLD) the router uses, use the `ipv6 mld version` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.
Syntax

ipv6 mld version \{1 | 2\}
no ipv6 mld version

Parameters

- 1—MLD Version 1.

Default Configuration

1

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the command to change the default version of MLD.

Example

The following example configures the router to use MLD Version 1:

```
switchxxxxxxx(config)# interface vlan 100
switchxxxxxxx(config-if)# ipv6 mld version 1
switchxxxxxxx(config-if)# exit
```

33.7 show ipv6 mld interface

To display multicast-related information about an interface, use the `show ipv6 mld interface` command in User EXEC mode.

Syntax

show ipv6 mld interface \[interface-id\]

Parameters

- `interface-id`—Interface identifier.
**Command Mode**

User EXEC mode

**User Guidelines**

If you omit the optional *interface-id* argument, the `show ipv6 mld interface` command displays information about all interfaces.

**Example**

The following is sample output from the `show ipv6 mld interface` command for Ethernet interface 2/1/1:

```
switchxxxxxxx# show ipv6 mld interface vlan 100

VLAN 100 is up
 Administrative MLD Querier IPv6 address is FE80::260:3EFF:FE86:5649
 Operational MLD Querier IPv6 address is FE80::260:3EFF:FE86:5649
 Current MLD version is 3
 Administrative MLD robustness variable is 2 seconds
 Operational MLD robustness variable is 2 seconds
 Administrative MLD query interval is 125 seconds
 Operational MLD query interval is 125 seconds
 Administrative MLD max query response time is 10 seconds
 Operational MLD max query response time is 10 seconds
 Administrative Last member query response interval is 1000 milliseconds
 Operational Last member query response interval is 1000 milliseconds
```
MLD Snooping Commands

34.1 ipv6 mld snooping (Global)

To enable IPv6 Multicast Listener Discovery (MLD) snooping, use the `ipv6 mld snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 mld snooping`

`no ipv6 mld snooping`

Parameters

N/A

Default Configuration

IPv6 MLD snooping is disabled.

Command Mode

Global Configuration mode

Example

The following example enables IPv6 MLD snooping.

```
switchxxxxxx(config)# ipv6 mld snooping
```

34.2 ipv6 mld snooping vlan

To enable MLD snooping on a specific VLAN, use the `ipv6 mld snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.
MLD Snooping Commands

Syntax
ipv6 mld snooping vlan vlan-id
no ipv6 mld snooping vlan vlan-id

Parameters
- vlan-id—Specifies the VLAN.

Default Configuration
Disabled

Command Mode
Global Configuration mode

User Guidelines
MLD snooping can only be enabled on static VLANs.
MLDv1 and MLDv2 are supported.
To activate MLD snooping, bridge multicast filtering must be enabled by the `bridge multicast filtering` command.
The user guidelines of the `bridge multicast mode` command describe the configuration that can be written into the FDB as a function of the FDB mode, and the MLD version that is used in the network.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 2
```

34.3 ipv6 mld snooping querier

To enable globally the MLD Snooping querier, use the `ipv6 mld snooping querier` command in Global Configuration mode. To disable the MLD Snooping querier globally, use the `no` form of this command.

Syntax

ipv6 mld snooping querier
no ipv6 mld snooping querier
Parameters
N/A

Default Configuration
Enabled

Command Mode
Global Configuration mode

User Guidelines
To run the MLD Snooping querier on a VLAN, you have enable it globally and on the VLAN.

Example
The following example disables the MLD Snooping querier globally:

```
switchxxxxxx(config)# no ipv6 mld snooping querier
```

34.4 ipv6 mld snooping vlan querier

To enable the Internet MLD Snooping querier on a specific VLAN, use the `ipv6 mld snooping vlan querier` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier
no ipv6 mld snooping vlan vlan-id querier
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration
Disabled

Command Mode
Global Configuration mode
User Guidelines

The MLD Snooping querier can be enabled on a VLAN only if MLD Snooping is enabled for that VLAN.

Example

The following example enables the MLD Snooping querier on VLAN 1:

```
switchxxxxxxx(config)# ipv6 mld snooping vlan 1 querier
```

34.5 `ipv6 mld snooping vlan querier election`

To enable MLD Querier election mechanism of an MLD Snooping querier on a specific VLAN, use the `ipv6 mld snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier election

no ipv6 mld snooping vlan vlan-id querier election
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

Use the `no` form of the `ipv6 mld snooping vlan querier election` command to disable MLD Querier election mechanism on a VLAN.

If the MLD Querier election mechanism is enabled, the MLD Snooping querier supports the standard MLD Querier election mechanism specified in RFC2710 and RFC3810.

If MLD Querier election mechanism is disabled, MLD Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if
switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to

\(<\text{Robustness} >^*<\text{Query Interval}> + 0.5^*<\text{Query Response Interval} >\).

See the `ipv6 mld robustness`, `ipv6 mld query-interval`, and `ipv6 mld query-max-response-time` commands for configurations of these parameters.

It is recommended to disable MLD Querier election mechanism if there is an IPMv6 Multicast router on the VLAN.

Example

The following example disables MLD Snooping Querier election on VLAN 1:

```
switchxxxxxx(config)# no ipv6 mld snooping vlan 1 querier election
```

### 34.6 `ipv6 mld snooping vlan querier version`

To configure the IGMP version of an IGMP querier on a specific VLAN, use the `ipv6 mld snooping vlan querier version` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ipv6 mld snooping vlan `vlan-id` querier version {1 | 2}
no ipv6 mld snooping vlan `vlan-id` querier version
```

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `querier version {1 | 2}`—Specifies the MLD version.

**Default Configuration**

MLDv1.

**Command Mode**

Global Configuration mode
Example

The following example sets the version of the MLD Snooping Querier VLAN 1 to 2:

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 querier version 2
```

### 34.7 ipv6 mld snooping vlan mrouter

To enable automatic learning of Multicast router ports, use the `ipv6 mld snooping vlan mrouter` command in Global Configuration mode. To remove the configuration, use the `no` form of this command.

**Syntax**

```
ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
no ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
```

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `pim-dvmrp`—Learn Multicast router port by PIM, DVMRP and MLD messages.

**Default Configuration**

Learning `pim-dvmrp` is enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Multicast router ports can be configured statically with the `bridge multicast forward-all` command.

You can execute the command before the VLAN is created.

**Example**

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 mrouter learn pim-dvmrp
```
34.8 ipv6 mld snooping vlan mrouter interface

To define a port that is connected to a Multicast router port, use the ipv6 mld snooping mrouter interface command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id mrouter interface interface-list
```

Parameters

- **vlan-id**—Specifies the VLAN.
- **interface-list**—Specifies a list of interfaces. The interfaces can be from one of the following types: port or port-channel.

Default Configuration

No ports defined

Command Mode

Global Configuration mode

User Guidelines

This command may be used in conjunction with the bridge multicast forward-all command, which is used in older versions to statically configure a port as a Multicast router.

A port that is defined as a Multicast router port receives all MLD packets (reports and queries) as well as all Multicast data.

You can execute the command before the VLAN is created and for a range of ports as shown in the example.

Example

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# ipv6 mld snooping vlan 1 mrouter interface gi1-4
```
34.9  ipv6 mld snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the `ipv6 mld snooping vlan forbidden mrouter` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id forbidden mrouter interface interface-list
```

Parameters

- \texttt{vlan-id}—Specifies the VLAN.
- \texttt{interface-list}—Specifies list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No forbidden ports by default

Command Mode

Global Configuration mode

User Guidelines

A port that is forbidden to be defined as a Multicast router port (mrouter port) cannot be learned dynamically or assigned statically.

The \texttt{bridge multicast forward-all} command was used in older versions to forbid dynamic learning of Multicast router ports.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 forbidden mrouter interface gi1
```

34.10  ipv6 mld snooping vlan static

To register a IPv6-layer Multicast address to the bridge table, and to add statically ports to the group, use the `ipv6 mld snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.
Syntax

ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]

no ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]

Parameters

- **vlan-id**—Specifies the VLAN.
- **ipv6-address**—Specifies the IP multicast address
- **interface interface-list**—(Optional) Specifies list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

Default Configuration

No Multicast addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

Static multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.

You can register an entry without specifying an interface.

Using the no command without a port-list removes the entry.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 static FF12::3 gi1
```

### 34.11 ipv6 mld snooping vlan immediate-leave

To enable MLD Snooping Immediate-Leave processing on a VLAN, use the `ipv6 mld snooping vlan immediate-leave` command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

ipv6 mld snooping vlan vlan-id immediate-leave

no ipv6 mld snooping vlan vlan-id immediate-leave
Parameters

*vlan-id*—Specifies the VLAN ID value. (Range: 1–4094)

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

When an MLD Leave Group message is received from a host, the system removes the host port from the table entry. After it relays the MLD queries from the Multicast router, it deletes entries periodically if it does not receive any MLD membership reports from the Multicast clients.

MLD snooping Immediate-Leave processing allows the switch to remove an interface that sends a leave message from the forwarding table without first sending out MAC-based general queries to the interface.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 immediate-leave
```

### 34.12 show ipv6 mld snooping groups

To display the multicast groups learned by the MLD snooping, use the `show ipv6 mld snooping groups` EXEC mode command in User EXEC mode.

**Syntax**

```
show ipv6 mld snooping groups [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-address]
```

**Parameters**

- *vlan vlan-id*—(Optional) Specifies the VLAN ID.
- *address ipv6-multicast-address*—(Optional) Specifies the IPv6 multicast address.
- *source ipv6-address*—(Optional) Specifies the IPv6 source address.
Command Mode
User EXEC mode

Default Configuration
Display information for all VLANs and addresses defined on them.

User Guidelines
To see the full multicast address table (including static addresses), use the `show bridge multicast address-table` command.

The Include list contains the ports which are in a forwarding state for this group according to the snooping database. In general, the Exclude list contains the ports which have issued an explicit Exclude for that specific source in a multicast group.

The Reporters That Are Forbidden Statically list contains the list of ports which have asked to receive a multicast flow but were defined as forbidden for that multicast group in a multicast bridge.

Note: Under certain circumstances, the Exclude list may not contain accurate information; for example, in the case when two Exclude reports were received on the same port for the same group but for different sources, the port will not be in the Exclude list but rather in the Include list.

Example
The following example shows the output for show ipv6 mld snooping groups.

```
Switchxxxxxx# show ipv6 mld snooping groups

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Include Ports</th>
<th>Exclude Ports</th>
<th>Compatibility Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8002</td>
<td>gi2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8003</td>
<td>gi4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8004</td>
<td>gi1</td>
<td>gi2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8005</td>
<td>gi10-11</td>
<td>gi3</td>
<td>2</td>
</tr>
</tbody>
</table>

MLD Reporters that are forbidden statically:

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi3</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi4</td>
</tr>
</tbody>
</table>
```
34.13  show ipv6 mld snooping interface

To display the IPv6 MLD snooping configuration for a specific VLAN, use the `show ipv6 mld snooping interface` EXEC mode command in User EXEC mode.

Syntax

```plaintext
show ipv6 mld snooping interface vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

Display information for all VLANs.

Command Mode

User EXEC mode

Example

The following example displays the MLD snooping configuration for VLAN 1000.

```
switchxxxxxx# show ipv6 mld snooping interface 1000
MLD Snooping is globally enabled
MLD Snooping Querier is globally enabled
VLAN 1000
 MLD Snooping is enabled
 MLD snooping last immediate leave: enable
 Automatic learning of multicast router ports is enabled
 MLD Snooping Querier is enabled
 MLD Snooping Querier operation state: is running
 MLD Snooping Querier version: 2
 MLD Snooping Querier election is enabled
 MLD snooping robustness: admin 2 oper 2
 MLD snooping query interval: admin 125 sec oper 125 sec
 MLD snooping query maximum response: admin 10 sec oper 10 sec
 MLD snooping last member query counter: admin 2 oper 2
 MLD snooping last member query interval: admin 1000 msec oper 500 msec
```
Groups that are in MLD version 1 compatibility mode:

FF12::3, FF12::8

### 34.14 `show ipv6 mld snooping mrouter`

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the `show ipv6 mld snooping mrouter` EXEC mode command in User EXEC mode.

**Syntax**

```
show ipv6 mld snooping mrouter [interface vlan-id]
```

**Parameters**

- `interface vlan-id`—(Optional) Specifies the VLAN ID.

**Default Configuration**

Display information for all VLANs.

**Command Mode**

User EXEC mode

**Example**

The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

```
switchxxxxxx# show ipv6 mld snooping mrouter interface 1000
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>gi1</td>
<td>gi2</td>
<td>gi3-4</td>
</tr>
</tbody>
</table>
35.1 snmp-server community

To set the community access string (password) that permits access to SNMP commands (v1 and v2), use the `snmp-server community` Global Configuration mode command. This is used for SNMP commands, such as GETs and SETs.

This command configures both SNMP v1 and v2.

To remove the specified community string, use the `no` form of this command.

Syntax

```
snmp-server community community-string [ro | rw | su] [ip-address | ipv6-address] [mask mask | prefix prefix-length] [view view-name]
no snmp-server community community-string [ip-address]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **ro**—(Optional) Specifies read-only access (default)
- **rw**—(Optional) Specifies read-write access
- **su**—(Optional) Specifies SNMP administrator access
- **ip-address**—(Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **mask**—(Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
• **prefix-length**—(Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

• **view view-name**—(Optional) Specifies the name of a view configured using the command `snmp-server view` (no specific order of the command configurations is imposed on the user). The view defines the objects available to the community. It is not relevant for `su`, which has access to the whole MIB. If unspecified, all the objects, except the community-table and SNMPv3 user and access tables, are available. (Range: 1–30 characters)

**Default Configuration**

No community is defined

**Command Mode**

Global Configuration mode

**User Guidelines**

The logical key of the command is the pair (community, ip-address). If ip-address is omitted, the key is (community, All-IPs). This means that there cannot be two commands with the same community, ip address pair.

The `view-name` is used to restrict the access rights of a community string. When a view-name is specified, the software:

• Generates an internal security-name.

• Maps the internal security-name for SNMPv1 and SNMPv2 security models to an internal group-name.

• Maps the internal group-name for SNMPv1 and SNMPv2 security models to view-name (read-view and notify-view always, and for rw for write-view also),

**Example**

Defines a password for administrator access to the management station at IP address 1.1.1.121 and mask 255.0.0.0.

```
switchxxxxxx(config)# snmp-server community abcd su 1.1.1.121 mask 255.0.0.0
```
35.2  snmp-server community-group

To configure access rights to a user group, use `snmp-server community-group`. The group must exist in order to be able to specify the access rights. This command configures both SNMP v1 and v2.

Syntax

```
snmp-server community-group community-string group-name [ip-address | ipv6-address] [mask mask | prefix prefix-length]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **group-name**—This is the name of a group configured using `snmp-server group` with v1 or v2 (no specific order of the two command configurations is imposed on the user). The group defines the objects available to the community. (Range: 1–30 characters)
- **ip-address**—(Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **mask**—(Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- **prefix-length**—(Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.

Default Configuration

No community is defined

Command Mode

Global Configuration mode

User Guidelines

The `group-name` is used to restrict the access rights of a community string. When a group-name is specified, the software:

- Generates an internal security-name.
• Maps the internal security-name for SNMPv1 and SNMPv2 security models to the
group-name.

Example

Defines a password *tom* for the group *abcd* that enables this group to access the management
station 1.1.1.121 with prefix 8.

```
switchxxxxxx(config)# snmp-server community-group tom abcd 1.1.1.122 prefix 8
```

### 35.3 snmp-server server

To enable the device to be configured by the SNMP protocol, use the `snmp-server server`
Global Configuration mode command. To disable this function, use the `no` form of this
command.

**Syntax**

```
snmp-server server
no snmp-server server
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(config)# snmp-server server
```
35.4  snmp-server source-interface

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

**Syntax**

```
snmp-server source-interface {traps | informs} interface-id
no snmp-server source-interface [traps | informs]
```

**Parameters**

- `traps`—Specifies the SNMP traps interface.
- `informs`—Specifies the SNMP informs.
- `interface-id`—Specifies the source interface.

**Default Configuration**

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface traps` command to remove the source interface for SNMP traps.

Use the `no snmp-server source-interface informs` command to remove the source interface for SNMP informs.
Use the `no snmp-server source-interface` command to remove the source interface for SNMP traps and informs.

**Example**

The following example configures the VLAN 10 as the source interface for traps.

```
switchxxxxxxx(config)# snmp-server source-interface traps vlan 100
```

### 35.5 snmp-server source-interface-ipv6

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

**Syntax**

```
snmp-server source-interface-ipv6 {traps | informs} interface-id

no snmp-server source-interface-ipv6 [traps | informs]
```

**Parameters**

- **traps**—Specifies the SNMP traps interface.
- **informs**—Specifies the SNMP traps informs.
- **interface-id**—Specifies the source interface.

**Default Configuration**

The IPv6 source address is the IPv6 address of the outgoing interface and selected in accordance with RFC6724.

If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces is selected in accordance with RFC 6724.
If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface-ipv6 traps` command to remove the source IPv6 interface for SNMP traps.

Use the `no snmp-server source-interface-ipv6 informs` command to remove the source IPv6 interface for SNMP informs.

Use the `no snmp-server source-interface-ipv6` command to remove the source IPv6 interface for SNMP traps and informs.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# snmp-server source-interface-ipv6 traps vlan 100
```

### 35.6 snmp-server view

To create or update an SNMP view, use the `snmp-server view` Global Configuration mode command. To remove an SNMP view, use the `no` form of this command.

**Syntax**

```
snmp-server view view-name oid-tree {included | excluded}
no snmp-server view view-name [oid-tree]
```

**Parameters**

- `view-name`—Specifies the name for the view that is being created or updated. (Length: 1–30 characters)
- `included`—Specifies that the view type is included.
- `excluded`—Specifies that the view type is excluded.
- `oid-tree`—(Optional) Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System and, optionally, a sequence of numbers. Replace a single sub-identifier with the asterisk (*) wildcard to specify a
subtree family; for example 1.3.*.4. This parameter depends on the MIB being specified.

Default Configuration

The following views are created by default:

- **Default**—Contains all MIBs except for those that configure the SNMP parameters themselves.
- **DefaultSuper**—Contains all MIBs.

Command Mode

Global Configuration mode

User Guidelines

This command can be entered multiple times for the same view.

The command’s logical key is the pair (view-name, oid-tree). Therefore there cannot be two commands with the same view-name and oid-tree.

The number of views is limited to 64.

Default and DefaultSuper views are reserved for internal software use and cannot be deleted or modified.

Example

The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interface group (this format is specified on the parameters specified in ifEntry).

```bash
switchxxxxxx(config)# snmp-server view user-view system included
switchxxxxxx(config)# snmp-server view user-view system.7 excluded
switchxxxxxx(config)# snmp-server view user-view ifEntry.*.1 included
```

### 35.7 snmp-server group

To configure an SNMP group, use the `snmp-server group` Global Configuration mode command. Groups are used to map SNMP users to SNMP views. To remove an SNMP group, use the `no` form of this command.
Syntax

```
snmp-server group groupname {v1 | v2 | v3 {noauth | auth | priv} [notify notifyview]} [read readview] [write writeview]

no snmp-server group groupname {v1 | v2 | v3 {noauth | auth | priv}}
```

Parameters

- **group groupname**—Specifies the group name. (Length: 1–30 characters)
- **v1**—Specifies the SNMP Version 1 security model.
- **v2**—Specifies the SNMP Version 2 security model.
- **v3**—Specifies the SNMP Version 3 security model.
- **noauth**—Specifies that no packet authentication will be performed. Applicable only to the SNMP version 3 security model.
- **auth**—Specifies that packet authentication without encryption will be performed. Applicable only to the SNMP version 3 security model.
- **priv**—Specifies that packet authentication with encryption will be performed. Applicable only to the SNMP version 3 security model. Note that creation of SNMPv3 users with both authentication and privacy must be done in the GUI. All other users may be created in the CLI.
- **notify notifyview**—(Optional) Specifies the view name that enables generating informs or a traps. An inform is a trap that requires acknowledgement. Applicable only to the SNMP version 3 security model. (Length: 1–32 characters)
- **read readview**—(Optional) Specifies the view name that enables viewing only. (Length: 1–32 characters)
- **write writeview**—(Optional) Specifies the view name that enables configuring the agent. (Length: 1–32 characters)

Default Configuration

No group entry exists.

If `notifyview` is not specified, the notify view is not defined.

If `readview` is not specified, all objects except for the community-table and SNMPv3 user and access tables are available for retrieval.

If `writeview` is not specified, the write view is not defined.
Command Mode

Global Configuration mode

User Guidelines

The group defined in this command is used in the `snmp-server user` command to map users to the group. These users are then automatically mapped to the views defined in this command.

The command logical key is `(groupname, snmp-version, security-level)`. For snmp-version v1/v2 the security-level is always `noauth`.

Example

The following example attaches a group called `user-group` to SNMPv3, assigns the encrypted security level to the group, and limits the access rights of a view called `user-view` to read-only. User `tom` is then assigned to `user-group`. So that user `tom` has the rights assigned in `user-view`.

```
switchxxxxxx(config)# snmp-server group user-group v3 priv read user-view
switchxxxxxx(config)# snmp-server user tom user-group v3
```

35.8 show snmp views

To display SNMP views, use the `show snmp views` Privileged EXEC mode command.

Syntax

```
show snmp views [viewname]
```

Parameters

`viewname`—(Optional) Specifies the view name. (Length: 1–30 characters)

Default Configuration

If `viewname` is not specified, all views are displayed.

Command Mode

Privileged EXEC mode
Example

The following example displays the configured SNMP views.

\[\text{switchxxxxxx}\# \text{show snmp views}\]

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>iso</td>
<td>Included</td>
</tr>
<tr>
<td>Default</td>
<td>snmpNotificationMIB</td>
<td>Excluded</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>iso</td>
<td>Included</td>
</tr>
</tbody>
</table>

35.9 show snmp groups

To display the configured SNMP groups, use the `show snmp groups` Privileged EXEC mode command.

Syntax

`show snmp groups [groupname]`

Parameters

- `groupname`—(Optional) Specifies the group name. (Length: 1–30 characters)

Default Configuration

Display all groups.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP groups.:.

\[\text{switchxxxxxx}\# \text{show snmp groups}\]
The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Group name.</td>
</tr>
<tr>
<td>Security Model</td>
<td>SNMP model in use (v1, v2 or v3).</td>
</tr>
<tr>
<td>Security Level</td>
<td>Packet security. Applicable to SNMP v3 security only.</td>
</tr>
<tr>
<td>Views</td>
<td>Read View name enabling viewing the agent contents. If unspecified, all objects except the community-table and SNMPv3 user and access tables are available.</td>
</tr>
<tr>
<td></td>
<td>Write View name enabling data entry and managing the agent contents.</td>
</tr>
<tr>
<td></td>
<td>Notify View name enabling specifying an inform or a trap.</td>
</tr>
</tbody>
</table>

### 35.10 snmp-server user

To configure a new SNMP Version user, use the `snmp-server user` Global Configuration mode command. To remove a user, use the `no` form of the command. To enter the authentication and privacy passwords in encrypted form (see SSD), use the `encrypted` form of this command.

**Syntax**

```plaintext
snmp-server user username groupname {v1 | v2c | [remote host] v3[auth {md5 | sha} auth-password [priv priv-password]]}

encrypted snmp-server user username groupname {v1 | v2c | [remote host] v3[auth {md5 | sha} encrypted-auth-password [priv encrypted-auth-password]]}

no snmp-server user username {v1 | v2c | [remote host] v3[auth {md5 | sha} auth-password [priv auth-password]]}
```
Parameters

- **username**—Define the name of the user on the host that connects to the agent. (Range: Up to 20 characters).

- **groupname**—The name of the group to which the user belongs. The group should be configured using the command `snmp-server group` with v1 or v2c parameters (no specific order of the 2 command configurations is imposed on the user). (Range: Up to 30 characters)

- **v1**—Specifies that the user is a v1 user.

- **v2c**—Specifies that the user is a v2c user.

- **v3**—Specifies that the user is a v3 user.

- **remote host**—(Optional) IP address (IPv4, IPv6 or IPv6z) or host name of the remote SNMP host. See IPv6z Address Conventions.

- **auth**—(Optional) Specifies which authentication level is to be used.

- **md5**—(Optional) Specifies the HMAC-MD5-96 authentication level.

- **Sha**—(Optional) Specifies the HMAC-SHA-96 authentication level.

- **auth-password**—(Optional) Specifies the authentication password. Range: Up to 32 characters.

- **encrypted-auth-password**—(Optional) Specifies the authentication password in encrypted format.

- **priv-password**—(Optional) Specifies the privacy password (The encryption algorithm used is data encryption standard - DES). Range: Up to 32 characters.

- **encrypted-priv-password**—(Optional) Specifies the privacy password in encrypted format.

Default Configuration

No group entry exists.

Command Mode

Global Configuration mode

User Guidelines

For SNMP v1 and v2, this command performs the same actions as `snmp-server community-group`, except that `snmp-server community-group` configures both v1 and v2 at the same time. With this command, you must perform
it once for v1 and once for v2.

When you enter the `show running-config` command, you do not see a line for the SNMP user defined by this command. To see if this user has been added to the configuration, type the `show snmp user` command.

A local SNMP EngineID must be defined in order to add SNMPv3 users to the device (use the `snmp-server engineID remote` command). For remote hosts users a remote SNMP EngineID is also required (use the `snmp-server engineID remote` command).

Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users’ database.

The logical key of the command is username.

Configuring a remote host is required in order to send informs to that host, because an inform is a trap that requires acknowledgement. A configured remote host is also able to manage the device (besides getting the informs).

To configure a remote user, specify the IP address for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID remote` command. The remote agent's SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command fails.

Since the same group may be defined several times, each time with different version or different access level (noauth, auth or auth & priv), when defining a user it is not sufficient to specify the group name, rather you must specify group name, version and access level for complete determination of how to handle packets from this user.

**Example**

This example assigns user `tom` to group `abcd` using SNMP v1 and v2c. The default is assigned as the engineID. User `tom` is assigned to group `abcd` using SNMP v1 and v2c.

```
switchxxxxxx(config)# snmp-server user tom acbd v1
switchxxxxxx(config)# snmp-server user tom acbd v2c
switchxxxxxx(config)# snmp-server user tom acbd v3
```

### 35.11 show snmp users

To display the configured SNMP users, use the `show snmp users` Privileged EXEC mode command.
Syntax

`show snmp users [username]`

Parameters

`username`—(Optional) Specifies the user name. (Length: 1–30 characters)

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

Example

The following examples displays the configured SNMP users:

```
switchxxxxxx# show snmp users
User name :u1rem
Group name :group1
Authentication Algorithm : None
Privacy Algorithm : None
Remote :1122344556677
Auth Password :
Priv Password :
User name : qqq
Group name : www
Authentication Algorithm : MD5
Privacy Algorithm : None
Remote :
Auth Password : helloworld1234567890987665
Priv Password :
User name : hello
Group name : world
```
Network Management Protocol (SNMP) Commands

Authentication Algorithm : MD5
Privacy Algorithm : DES
Remote :
Auth Password (encrypted) : Z/tC3UFF5j0pYfmXm8xeMvc10Q6LQ4GOACCGLRdAgOE6XQKTC
qMlrnpWuHraR1Zj
Priv Password (encrypted) : kN12HzSLO6Wx1kuZVzhLOolgI5waaNF7Vq6yLBpJdS4N68tL
1tbTRSs2H4cQ4o
User name : u1noAuth
Group name : group1
Authentication Algorithm : None
Privacy Algorithm : None
Remote :
Auth Password (encrypted) :
Priv Password (encrypted) :
User name : u1OnlyAuth
Group name : group1
Authentication Algorithm : SHA
Privacy Algorithm : None
Remote :
Auth Password (encrypted) : 8nPzy2hzuba9pG3iIC/q0451RynUn7qk94L9WQRFrRM=
Priv Password (encrypted) :

35.12 snmp-server filter

To create or update an SNMP server notification filter, use the snmp-server filter Global Configuration mode command. To remove a notification filter, use the no form of this command.

Syntax

snmp-server filter filter-name oid-tree {included | excluded}
no snmp-server filter filter-name [oid-tree]
Parameters

- **filter-name**—Specifies the label for the filter record that is being updated or created. The name is used to reference the filter in other commands. (Length: 1–30 characters)

- **oid-tree**— Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example, 1.3.*.4.

- **included**— Specifies that the filter type is included.

- **excluded**— Specifies that the filter type is excluded.

Default Configuration

No view entry exists.

Command Mode

Global Configuration mode

User Guidelines

This command can be entered multiple times for the same filter. If an object identifier is included in two or more lines, later lines take precedence. The command's logical key is the pair (filter-name, oid-tree).

Example

The following example creates a filter that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group (this format depends on the parameters defined in ifEntry).

```
switchxxxxxx(config)# snmp-server filter f1 system included
switchxxxxxx(config)# snmp-server filter f2 system.7 excluded
switchxxxxxx(config)# snmp-server filter f3 ifEntry.*.1 included
```

35.13 show snmp filters

To display the defined SNMP filters, use the **show snmp filters** Privileged EXEC mode command.
Syntax

show snmp filters [filtername]

Parameters

filtername—Specifies the filter name. (Length: 1–30 characters)

Default Configuration

If filtername is not defined, all filters are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP filters.

switchxxxxxx# show snmp filters user-filter

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1</td>
<td>Included</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1.7</td>
<td>Excluded</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.2.1.*.1</td>
<td>Included</td>
</tr>
</tbody>
</table>

35.14  snmp-server host

To configure the host for SNMP notifications: (traps/informs), use the snmp-server host Global Configuration mode command. To remove the specified host, use the no form of this command.

Syntax

snmp-server host {host-ip | hostname} [ traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [filter filtername] [timeout seconds] [retries retries]

no snmp-server host {ip-address | hostname} [ traps | informs] [version {1 | 2c | 3}]
Network Management Protocol (SNMP) Commands

Parameters

- **host-ip**—IP address of the host (the targeted recipient). The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address. See IPv6z Address Conventions.

- **hostname**—Hostname of the host (the targeted recipient). (Range: 1–158 characters. Maximum label size of each part of the host name: 63)

- **trap**—(Optional) Sends SNMP traps to this host (default).

- **informs**—(Optional) Sends SNMP informs to this host. An inform is a trap that requires acknowledgement. Not applicable to SNMPv1.

- **version 1**—(Optional) SNMPv1 traps are used.

- **version 2c**—(Optional) SNMPv2 traps or informs are used

- **version 3**—(Optional) SNMPv2 traps or informs are used

Authentication options are available for SNMP v3 only. The following options are available:

- **noauth**—(Optional) Specifies no authentication of a packet.

- **auth**—(Optional) Specifies authentication of a packet without encryption.

- **priv**—(Optional) Specifies authentication of a packet with encryption.

- **community-string**—Password-like community string sent with the notification operation. (Range: 1–20 characters). For v1 and v2, any community string can be entered here. For v3, the community string must match the user name defined in snmp-server user (ISCLI) command for v3.

- **udp-port port**—(Optional) UDP port of the host to use. The default is 162. (Range: 1–65535)

- **filter filtername**—(Optional) Filter for this host. If unspecified, nothing is filtered. The filter is defined using snmp-server filter (no specific order of commands is imposed on the user). (Range: Up to 30 characters)

- **timeout seconds**—(Optional) (For informs only) Number of seconds to wait for an acknowledgment before resending informs. The default is 15 seconds. (Range: 1–300)

- **retries retries**—(Optional) (For informs only) Maximum number of times to resend an inform request, when a response is not received for a generated message. The default is 3. (Range: 0–255)

Default Configuration

Version: SNMP V1
Type of notification: Traps
udp-port: 162
If informs are specified, the default for retries: 3
Timeout: 15

Command Mode
Global Configuration mode

User Guidelines
The logical key of the command is the list (ip-address/hostname, traps/informs, version).
When configuring SNMP v1 or v2 notifications recipient, the software automatically generates a notification view for that recipient for all MIBs.
For SNMPv3 the software does not automatically create a user or a notify view.
, use the commands snmp-server user (ISCLI) and snmp-server group to create a user or a group.

Example
The following defines a host at the IP address displayed.

```bash
switchxxxxxx(config)# snmp-server host 1.1.1.121 abc
```

35.15 snmp-server engineID local

To specify the SNMP engineID on the local device for SNMP v3, use the `snmp-server engineID local` Global Configuration mode command. To remove this engine ID, use the `no` form of this command.

Syntax

```
snmp-server engineID local {engineid-string | default}
no snmp-server engineID local
```

Parameters

- **engineid-string**—Specifies a concatenated hexadecimal character string identifying the engine ID. Each byte in a hexadecimal character string is two hexadecimal digits.
Bytes are separated by a period or colon. If an odd number of hexadecimal digits are entered, the system automatically prefixes the digit 0 to the string. (Length: 5–32 characters, 9–64 hexadecimal digits)

- **default**—Specifies that the engine ID is created automatically based on the device MAC address.

**Default Configuration**

The default engine ID is defined per standard as:

- First 4 octets: First bit = 1, the rest is IANA Enterprise number = 674.
- Fifth octet: Set to 3 to indicate the MAC address that follows.
- Last 6 octets: The device MAC address.

**Command Mode**

Global Configuration mode

**User Guidelines**

To use SNMPv3, an engine ID must be specified for the device. Any ID can be specified or the default string, which is generated using the device MAC address, can be used.

As the engineID should be unique within an administrative domain, the following guidelines are recommended:

- Since the engineID should be unique within an administrative domain, use the default keyword to configure the Engine ID or configure it explicitly. In the latter case verify that it is unique within the administrative domain.
- Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users database.
- The SNMP EngineID cannot be all 0x0 or all 0xF or 0x00000001.

**Example**

The following example enables SNMPv3 on the device and sets the device local engine ID to the default value.

```
switchxxxxxx(config)# snmp-server engineid local default
```

The engine-id must be unique within your administrative domain.

Do you wish to continue? [Y/N] Y
The SNMPv3 database will be erased. Do you wish to continue? [Y/N] Y

35.16 snmp-server engineID remote

To specify the SNMP engine ID of a remote SNMP device, use the **snmp-server engineID remote** Global Configuration mode command. To remove the configured engine ID, use the **no** form of this command.

**Syntax**

```
snmp-server engineID remote ip-address engineid-string
no snmp-server engineID remote ip-address
```

**Parameters**

- **ip-address** — IPv4, IPv6 or IPv6z address of the remote device. See IPv6z Address Conventions.
- **engineid-string** — The character string that identifies the engine ID. The engine ID is a concatenated hexadecimal string. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon. If the user enters an odd number of hexadecimal digits, the system automatically prefixes the hexadecimal string with a zero. (Range: engineid-string 5–32 characters. 9–64 hexadecimal digits)

**Default Configuration**

The remote engineID is not configured by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

A remote engine ID is required when an SNMP version 3 inform is configured. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

**Example**

```
switchxxxxxx(config)# snmp-server engineID remote 1.1.1.1 11:AB:01:CD:23:44
```
35.17  show snmp engineID

To display the local SNMP engine ID, use the show snmp engineID Privileged EXEC mode command.

Syntax

show snmp engineID

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the SNMP engine ID.

```
switchxxxxx# show snmp engineID
 Local SNMP engineID: 08009009020C0B099C075878
 IP address Remote SNMP engineID
 --------- -------------------------------
 172.16.1.1 08009009020C0B099C075879
```

35.18  snmp-server enable traps

To enable the device to send SNMP traps, use the snmp-server enable traps Global Configuration mode command. To disable all SNMP traps, use the no form of the command.

Syntax

snmp-server enable traps

no snmp-server enable traps
Default Configuration

SNMP traps are enabled.

Command Mode

Global Configuration mode

User Guidelines

If **no snmp-server enable traps** has been entered, you can enable failure traps by using **snmp-server trap authentication** as shown in the example.

Example

The following example enables SNMP traps except for SNMP failure traps.

```
switchxxxxxx(config)# snmp-server enable traps
switchxxxxxx(config)# no snmp-server trap authentication
```

### 35.19  snmp-server trap authentication

To enable the device to send SNMP traps when authentication fails, use the **snmp-server trap authentication** Global Configuration mode command. To disable SNMP failed authentication traps, use the **no** form of this command.

**Syntax**

```
snmp-server trap authentication
no snmp-server trap authentication
```

**Parameters**

This command has no arguments or keywords.

Default Configuration

SNMP failed authentication traps are enabled.

Command Mode

Global Configuration mode
User Guidelines

The command `snmp-server enable traps` enables all traps including failure traps. Therefore, if that command is enabled (it is enabled by default), this command is not necessary.

Example

The following example disables all SNMP traps and enables only failed authentication traps.

```
switchxxxxxx(config)# no snmp-server enable traps
switchxxxxxx(config)# snmp-server trap authentication
```

35.20 snmp-server contact

To set the value of the system contact (sysContact) string, use the `snmp-server contact` Global Configuration mode command. To remove the system contact information, use the `no` form of the command.

Syntax

```
snmp-server contact text
no snmp-server contact
```

Parameters

- **text**—Specifies system contact information. (Length: 1–160 characters)

Default Configuration

None

Command Mode

Global Configuration mode

Example

The following example sets the system contact information to Technical_Support.

```
switchxxxxxx(config)# snmp-server contact Technical_Support
```
35.21 snmp-server location

To set the value of the system location string, use the `snmp-server location` Global Configuration mode command. To remove the location string, use the `no` form of this command.

**Syntax**

```
snmp-server location text
no snmp-server location
```

**Parameters**

*text*—Specifies the system location information. (Length: 1–160 characters)

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**Example**

The following example sets the device location to New_York.

```
switchxxxxxx(config)# snmp-server location New_York
```

35.22 snmp-server set

To define SNMP MIB commands in the configuration file if a MIB performs an action for which there is no corresponding CLI command, use the `snmp-server set` Global Configuration mode command.

**Syntax**

```
snmp-server set variable-name name value [name2 value2...]
```
Parameters

- **variable-name**—Specifies an SNMP MIB variable name, which must be a valid string.

- **name value**—Specifies a list of names and value pairs. Each name and value must be a valid string. In the case of scalar MIBs, there is only a single name-value pair. In the case of an entry in a table, there is at least one name-value pair, followed by one or more fields.

Default Configuration

None

Command Mode

Global Configuration mode

User Guidelines

Although the CLI can set any required configuration, there might be a situation where an SNMP user sets a MIB variable that does not have an equivalent CLI command. To generate configuration files that support those situations, the system uses `snmp-server set`. This command is not intended for the end user.

Example

The following example configures the scalar MIB sysName with the value TechSupp.

```
switchxxxxxx(config)# snmp-server set sysName sysname TechSupp
```

35.23 **snmp trap link-status**

To enable link-status generation of SNMP traps, use the `snmp trap link-status` Interface Configuration mode command. To disable generation of link-status SNMP traps, use the `no` form of this command.

Syntax

- `snmp trap link-status`
- `no snmp trap link-status`
Parameters

This command has no arguments or keywords.

Default Configuration

Generation of SNMP link-status traps is enabled

Command Mode

Interface Configuration mode

Example

The following example disables generation of SNMP link-status traps.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# # no snmp trap link-status
```

35.24  show snmp

To display the SNMP status, use the show snmp Privileged EXEC mode command.

Syntax

```
show snmp
```

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

Privileged EXEC mode
Example

The following example displays the SNMP communications status.

```
switchxxxxxx# show snmp
SNMP is enabled
SNMP traps Source IPv4 interface: vlan 1
SNMP informs Source IPv4 interface: vlan 11
SNMP traps Source IPv6 interface: vlan 10
SNMP informs Source IPv6 interface:

--- Table ---
<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>View name</th>
<th>IP Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>read only</td>
<td>user-view</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>read write</td>
<td>Default</td>
<td>172.16.1.1/10</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>su</td>
<td>DefaultSuper</td>
<td>172.16.1.1</td>
<td></td>
</tr>
<tr>
<td>Community-string</td>
<td>Group name</td>
<td>IP Address</td>
<td>Mask</td>
<td>Type</td>
</tr>
<tr>
<td>public</td>
<td>user-group</td>
<td>All</td>
<td>Router</td>
<td></td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication trap is enabled.
Version 1,2 notifications

--- Table ---
<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Community</th>
<th>Version</th>
<th>UDP Port</th>
<th>Filter Name</th>
<th>TO Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Trap</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Version 3 notifications

--- Table ---
<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Username</th>
<th>Security Level</th>
<th>UDP Port</th>
<th>Filter name</th>
<th>TO Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>Bob</td>
<td>Priv</td>
<td>162</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

System Contact: Robert
System Location: Marketing
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-string</td>
<td>The community access string permitting access to SNMP.</td>
</tr>
<tr>
<td>Community-access</td>
<td>The permitted access type—read-only, read-write, super access.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The management station IP Address.</td>
</tr>
<tr>
<td>Target Address</td>
<td>The IP address of the targeted recipient.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version for the sent trap.</td>
</tr>
</tbody>
</table>
36.1 test cable-diagnostics tdr

To use Time Domain Reflectometry (TDR) technology to diagnose the quality and characteristics of a copper cable attached to a port, use the **test cable-diagnostics tdr** Privileged EXEC mode command.

Syntax

```
test cable-diagnostics tdr interface interface-id
```

Parameters

- **interface-id**—(Optional) Specifies an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

This command does not work on fiber ports (if they exist on the device). The port to be tested should be shut down during the test, unless it is a combination port with fiber port active. In this case, it does not need to be shut down, because the test does not work on fiber ports.

The maximum length of cable for the TDR test is 120 meters.

Examples

Example 1 - Test the copper cables attached to port gi1 (a copper port).

```
switchxxxxxx# test cable-diagnostics tdr interface gi1
Cable is open at 64 meters
```
Example 2 - Test the copper cables attached to port 2 (a combo port with fiber active).

```
switchxxxxxx# test cable-diagnostics tdr interface gi2
Fiber ports are not supported
```

36.2 show cable-diagnostics tdr

To display information on the last Time Domain Reflectometry (TDR) test performed on all copper ports or on a specific copper port, use the `show cable-diagnostics tdr` Privileged EXEC mode command.

Syntax

```
show cable-diagnostics tdr [interface interface-id]
```

Parameters

- `interface-id` — (Optional) Specify an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

The maximum length of cable for the TDR test is 120 meters.

Example

The following example displays information on the last TDR test performed on all copper ports.

```
switchxxxxxx# show cable-diagnostics tdr
                  Port | Result | Length [meters] | Date
-----------------+--------+----------------+-------
                 ---+--------+----------------+-------
                 gi1   OK               
                 gi2   Short 50         13:32:00 23 July 2010
```
36.3 show cable-diagnostics cable-length

To display the estimated copper cable length attached to all ports or to a specific port, use the `show cable-diagnostics cable-length` Privileged EXEC mode command.

Syntax

```
show cable-diagnostics cable-length [interface interface-id]
```

Parameters

- `interface-id`—(Optional) Specify an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

The port must be active. The cable length results are not available if link is running at 100Mbps. The cable length results provided with this command may be effected if Green Ethernet Short Reach feature is enabled on the interface.

Example

The following example displays the estimated copper cable length attached to all ports.

```
switchxxxxxx# show cable-diagnostics cable-length
Port   Length [meters]
----   ----------------
  gi1   <  50
  gi2   Copper not active
  gi3   110-140
```
36.4 show fiber-ports optical-transceiver

To display the optical transceiver diagnostics, use the `show fiber-ports optical-transceiver` Privileged EXEC mode command.

Syntax

```
show fiber-ports optical-transceiver [interface interface-id]
```

Parameters

- `interface-id`—(Optional) Specify an Ethernet port ID.

Default Configuration

All ports are displayed. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show fiber-ports optical-transceiver

Port   Temp  Voltage Current Output  Input   LOS
[C]    [Volt] [mA]    Power   Power
                         [mWatt] [mWatt]
------------------------
  gi1    Copper
  gi2    Copper
  gi3    28 3.32   7.26    3.53    3.68   No
  gi4    29 3.33   6.50    3.53    3.71   No

Temp         - Internally measured transceiver temperature
Voltage      - Internally measured supply voltage
Current      - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power  - Measured RX received power in milliWatts
LOS          - Loss of signal
```
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
PnP Agent Commands

37.1 pnp device

To define the device username and the passport, use the pnp device command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

```
pnp device username username password password
encrypted pnp device username username password encrypted-password
no pnp device
```

Parameters

- `username`—Specifies device user name (range: 1-64 characters).
- `password`—Specifies device password (range: 1-64 characters).
- `encrypted-password`—Specifies encrypted device password.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

Use the pnp device command to configure a username and a password used in each PnP message sent by the PnP agent to a PnP server.

Example

The following example configures device name and password:

```
switchxxxxxx(config)# pnp device username sjohn password Tan123
```
37.2 pnp discovery timeout

To define the PnP agent discovery timeout in seconds and the exponential factor, use the `pnp discovery timeout` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp discovery timeout timeout exponential-factor max-timeout
no pnp discovery timeout
```

Parameters

- `timeout`—Specifies the time to wait, in seconds, before attempting to discovery after a discovery is failed. The range is from 1 to 2000000.
- `exponential-factor`—Exponential factor value is the value that triggers the discovery attempt exponentially. The range is from 1 to 9.
- `max-timeout`—Specifies the maximum value of the timeout. The range is from 1 to 2000000.

Default Configuration

```
timeout—60 seconds
exponential-factor—3
max-timeout—540 seconds
```

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp discovery timeout` command to configure a discovery timeout in seconds and an exponential factor. The following formula is used to calculate the next timeout using the previous one:

```
next-timeout = (previous-timeout*exponential-factor < max-timeout) ?
               previous-timeout*exponential-factor : max-timeout;
```
Example

The following example configures the discovery timeout and factor:

```
switchxxxxxx(config)# pnp discovery timeout 100 2 800
```

37.3 pnp enable

To enable the PnP agent, use the `pnp enable` command in Global Configuration mode. To disable the PnP agent, use the `no` form of this command.

Syntax

```
pnp enable
no pnp enable
```

Parameters

N/A

Default Configuration

PnP agent is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the command to enable the PnP agent.

Example

The following example disables the PnP agent:

```
switchxxxxxx(config)# no pnp enable
```
37.4 pnp reconnect interval

To define the PnP agent interval between sequential PnP sessions, use the `pnp reconnect interval` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp reconnect interval timeout
no pnp reconnect interval
```

Parameters

- `timeout`—Specifies the interval in seconds time before attempting to reconnect the session after a connection is lost. The range is from 1 to 2000000. The default is 60.

Default Configuration

30 seconds

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp reconnect interval` command to configure an interval between PnP sessions.

Example

The following example configures PnP session interval:

```
switchxxxxxx(config)# pnp interval reconnect interval 100
```

37.5 pnp resume

To resume the PnP agent, use the `pnp resume` command in Global Configuration mode.

Syntax

```
pnp resume
```
Parameters
N/A

Default Configuration
PnP agent is enabled

Command Mode
Global Configuration mode

User Guidelines
Use the `pnp resume` command, to take out immediately the PnP agent from a waiting state:
- From the Discovery Waiting state to the Discovery state OR
- From the PnP Session Waiting state to the PnP Session state

Example
The following example resumes the PnP Server discovery:

```
switchxxxxxx(config)# pnp resume
```

37.6 pnp transport

To define the PnP transport, use the `pnp transport` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax
```
pnp transport http ip-address [port port-number]
```
```
no pnp transport
```

Parameters
- `ip-address`—Specifies the IPv4 address or IPv6 address, or DNS name of the PnP server.
- `port-number`—Specifies the TCP port of the PnP server. If the parameter is not defined then the following default value is applied:
 - 80
Default Configuration

- DHCP Option 43
- Default:
 - PnP Server IP Address—pnpserver
 - Protocol—HTTP
 - Port—80

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp transport` command to configure a transport protocol on which the PnP protocol is running.

Example

The following example configures the PnP transport:

```
switchxxxxxx(config)# pnp transport http 145.1.3.4
```

37.7 `pnp watchdog timeout`

To define the PnP agent watchdog timeout, use the `pnp watchdog timeout` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp watchdog timeout timeout
no pnp watchdog timeout
```

Parameters

- `timeout`—Specifies the time to wait a reply from a PnP or File server. The range is from 1 to 180.
Default Configuration
30 seconds

Command Mode
Global Configuration mode

User Guidelines
Use the **pnp watchdog timeout** command to configure a watchdog timeout in seconds.

Example
The following example configures the watchdog timeout:

```
switchxxxxxx(config)# pnp watchdog timeout 120
```

37.8 show pnp

To display the PnP agent information, use the **show pnp** command in Privileged EXEC mode.

Syntax

```
show pnp
```

Parameters
N/A

Command Mode
Privileged EXEC mode

User Guidelines
Use the command to display information of the PnP agent.

Examples

Example 1. The following example displays PnP agent information when the PnP agent is disabled:

```
switchxxxxxx# show pnp
Administrative status: disabled
```
Operational status:
PnP Agent state:
Source Ip address:
TCP port: 80 (default)
Username:
Password’s MD5 digest:
Discovery
 Timeout: 60 seconds (default)
 Exponential Factor: 3 (default)
 Maximum Timeout: 540 seconds
PnP Session Reconnection Interval:
 Current:
> Default: 60 sec
Manual Configuration:
PnP:
PnP Watchdog Timeout: 60 seconds

Example 2. The following example displays PnP agent information when the PnP agent is not ready:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: notReady (No PnP Server IP Address)
PnP Agent state:
Server IP address:
Source Ip address:
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery
   Timeout: 60 seconds (default)
```
Example 3. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session state:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43)
Source Ip address:
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
```

Example 4. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session state and the PnP server was changed:

```
switchxxxxxx# show pnp
```

Exponential Factor: 3 (default)
Maximum Timeout: 540 seconds
PnP Session Reconnection Interval:
Current:
>Default: 60 sec
Manual Configuration:
PnP:
PnP Watchdog Timeout: 60 seconds
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43
Server IP address: 176.1.1.1 (from DHCP Option 43);
 Next session: 167.21.3.4 (from DHCP Option 43)
Source Ip address:
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds

Example 5. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session Waiting state:

switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session Waiting
Transport protocol: HTTPS
Server IP address: 176.1.1.1
Source Ip address: 120.10.10.10
TCP port: 180
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Example 6. The following example displays PnP agent information when the PnP agent is in state Discovery:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43);
    Next session: 167.21.3.4 (from DHCP Option 43)
Source Ip address:
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
```

Example 7. The following example displays PnP agent information when the PnP agent is in state Discovery Waiting:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
```
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43);
 Next session: 167.21.3.4 (from DHCP Option 43)
Source IP address:
TCP port: 80 (default)
Username: atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
38.1 power inline

To configure the inline power administrative mode on an interface, use the power inline Interface Configuration mode command.

Syntax

```
power inline auto [time-range time-range-name]
power inline never
```

Parameters

- **auto**—Turns on the device discovery protocol and applies power to the device.
- **never**—Turns off the device discovery protocol and stops supplying power to the device.
- **time-range-name**—Specifies a time range. When the time range is not in effect the power is not supplied the attached device. If a time range is not specified, there is no time range bounded to the port. (Range: 1–32 characters)

Default Configuration

The default configuration is set to auto.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The **never** parameter cannot be used with a time range.
Example

The following example turns on the device discovery protocol on port 4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# power inline auto
```

38.2 power inline inrush test disable

To disable the inrush test (a hardware test that checks input surge current for PoE devices), use the `power inline inrush test disable` Global Configuration mode command. To enable the inrush test, use the `no` form of this command.

Syntax

```
power inline inrush test disable
no power inline inrush test disable
```

Parameters

N/A.

Default Configuration

Inrush test is enabled.

Command Mode

Global Configuration mode

Example

The following example disable inrush test.

```
switchxxxxxx(config)# power inline inrush test disable
```
38.3 power inline legacy support disable

To disable the legacy PDs support, use the **power inline legacy support disable** Global Configuration mode command. To enable the legacy support, use the no form of this command.

Syntax

```
power inline legacy support disable
```

```
o power inline legacy support disable
```

Parameters

N/A.

Default Configuration

Legacy support is enabled.

Command Mode

Global Configuration mode

Example

The following example disables legacy PDs support.

```
switchxxxxxx(config)# power legacy support disable
```

38.4 power inline class-error-detection

To disable PoE class error detection, use the **power inline class-error-detection** Global Configuration mode command. To return to default setting, use the no form of this command.

Syntax

```
power inline class-error-detection [enable|disable]
```

```
o power inline class-error-detection
```
Parameters

- **enable**—Enables class error detection. With this setting, if a class error is detected on an interface port will not provide power.

- **disable**—Disables class error detection. With this setting, if a class error is detected on an interface, it will be ignored and PD will be classified as class 0.

Default Configuration

Class error detection is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use this command to allow device to power up connected PDs even if they may display class errors.

Example

The following example disables class error detection.

```
switchxxxxxx(config)# power inline class-error-detection disable
```

38.5 power inline powered-device

To add a description of the device type, use the **power inline powered-device** Interface Configuration mode command. To remove the description, use the **no** form of this command.

Syntax

```
power inline powered-device pd-type
no power inline powered-device
```

Parameters

- **pd-type**—Enters a comment or a description to assist in recognizing the type of the device attached to this interface. (Length: 1–24 characters)
Default Configuration
There is no description.

Command Mode
Interface (Ethernet) Configuration mode

Example
The following example adds the description ‘ip phone’ to the device connected to port 4.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# power inline powered-device ip_phone
```

38.6 power inline priority
To configure the interface inline power management priority, use the power inline priority Interface Configuration (Ethernet) mode command. To restore the default configuration, use the no form of this command.

Syntax
```
power inline priority {critical | high | low}
no power inline priority
```

Parameters
- **critical**—Specifies that the device operation is critical.
- **high**—Specifies that the device operation is high priority.
- **low**—Specifies that the device operation is low priority.

Default Configuration
The default configuration is set to low priority.

Command Mode
Interface (Ethernet) Configuration mode
Example

The following example sets the inline power management priority of port gi4 to High.

```bash
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# power inline priority high
```

38.7 power inline usage-threshold

To configure the threshold for initiating inline power usage alarms, use the `power inline usage-threshold` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
power inline usage-threshold percent
no power inline usage-threshold
```

Parameters

- **percent**—Specifies the threshold in percent to compare to the measured power. (Range: 1–99)

Default Configuration

The default threshold is 95 percent.

Command Mode

Global Configuration mode

Example

The following example configures the threshold for initiating inline power usage alarms to 90 percent.

```bash
switchxxxxxx(config)# power inline usage-threshold 90
```
38.8 power inline traps enable

To enable inline power traps, use the **power inline traps enable** Global Configuration mode command. To disable traps, use the *no* form of this command.

Syntax

```
power inline traps enable
no power inline traps enable
```

Default Configuration

Inline power traps are disabled.

Command Mode

Global Configuration mode

Example

The following example enables inline power traps.

```
switchxxxxxxx(config)# power inline traps enable
```

38.9 power inline limit

To configure the power limit per port on an interface, use the **power inline limit** Interface Configuration mode command. To return to default, use the *no* form of the command.

Syntax

```
power inline limit power
no power inline limit
```

Parameters

- **power**—States the port power consumption limit in Milliwatts, Range is 0- 30000 .

Default Configuration

The default value is 30W
Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The operational power limit is the minimum of the configured power limit value and the maximum power capability on port. For example, if the configured value is higher than 15.4W on a PoE port, the operational power limit is 15.4W.

Example

The following example sets inline power on a port.

switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# power inline limit 2222

38.10 power inline limit-mode

To set the power limit mode of the system, use the `power inline limit-mode` Global Configuration mode command. To return to default, use the `no` form of this command.

Syntax

`power inline limit-mode {class | port}`

`no power inline limit-mode`

Parameters

- **class**—The power limit of a port is based on the class of the PD (Power Device) as detected during the classification process
- **port**—The power limit of a port is fixed regardless of the class of the discovered PD.

Default Configuration

The default value is class

Command Mode

Global Configuration mode

User Guidelines
Power over Ethernet (PoE) Commands

Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports.

Example

The following example sets the power limit to class.

```
switchxxxxxx(config)# power inline limit-mode class
"Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports. Are you sure? [y/n]"
```

38.11 powered device forced

To configure the powered device to match a PSE not using protocol based negotiation, use the `powered device forced` Interface Configuration mode command.

Syntax

```
powered device forced {60watts | 802.3AF | 802.3AT}
```

Parameters

Default Configuration

The default configuration is set to no powered device forced.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

This command should only be used for ports that are connected to devices that do not support the CDP/LLDP protocol or the new 4-wire power via MDI TLV.

The command is used to force the powered device to identify powered received from PSE, this allows the usage of 802.3AF or 802.3AT or 60 Watts PoE without the usage of negotiation protocol.

CDP/LLDP will reflect power requested and power consumption of 60W.

Use the no command to return to dynamic detection (hardware or protocol based) of PSE uplink ports. However if previous setting was 60Watts - changing to different value, or using...
no command changes the level of negotiated power, but does not remove 2 pair support. To remove 2 pair support port link must go down and then up again.

Example

The following example force the powered device to identify the PSE uplink as 60 watts.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# powered device forced 60watts
```

38.12 show power inline

To display information about the inline power for all interfaces or for a specific interface, use the `show power inline` privileged EXEC mode command.

Syntax

```
show power inline [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

Default Configuration

Show information for all ports.

Command Mode

Privileged EXEC mode

Examples

Example 1—the following example displays information about the inline power for all ports (port power based).

```
switchxxxxxx(config)# show power inline
Port limit mode: Enabled
Usage threshold: 95%
Trap: Enabled
Legacy Mode: Disabled
```
Inrush test: Enabled
Class Error Detection: Enabled
SW Version: 1.222.3.44

<table>
<thead>
<tr>
<th>Unit</th>
<th>Module</th>
<th>Nominal power (w)</th>
<th>Consumed Power (w)</th>
<th>Temp (c)</th>
<th>PSE chipset</th>
<th>HW Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48P</td>
<td>320</td>
<td>120 (37.5%)</td>
<td>30</td>
<td>PD69208</td>
<td>0x4BC2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD69204</td>
<td>0x4AC2</td>
</tr>
<tr>
<td>2</td>
<td>24P</td>
<td>240</td>
<td>0 (0%)</td>
<td>50</td>
<td>PD69208*</td>
<td>0x4AC2</td>
</tr>
<tr>
<td>3</td>
<td>24P</td>
<td>120</td>
<td>0 (0%)</td>
<td>50</td>
<td>PD69208</td>
<td>0x4AC2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power</th>
<th>Class</th>
<th>Device</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Auto</td>
<td>On</td>
<td>15.4(30)</td>
<td>3</td>
<td>IP Phone Model A</td>
<td>Critical</td>
</tr>
<tr>
<td>gi2</td>
<td>Auto</td>
<td>Searching</td>
<td>0</td>
<td>0</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>gi3</td>
<td>Never</td>
<td>Off</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Low</td>
</tr>
</tbody>
</table>

Example 2—The following example displays information about the inline power for a specific port.

```
switchxxxxxx(config)# show power inline gi1
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power</th>
<th>Class</th>
<th>Device</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Auto</td>
<td>On</td>
<td></td>
<td>3</td>
<td>IP Phone Model A</td>
<td>Critical</td>
</tr>
</tbody>
</table>

Port status: Port is on - Valid PD resistor signature detected
Port standard: 802.3AT
Admin power limit: 30.0 watts
Time range:
Link partner standard: 802.3AF
Operational power limit: 30 watts
Negotiated power: 18 watts (LLDP)

#EDITOR: Power negotiation is done via CDP/LLDP. In case there was no power negotiation with PD, the display of protocol type will be (none). In case there was power negotiation, but it did not end in allocation of power by PSE, display will be "0 watts (LLDP)" (power could still be allocated by Hardware). In case negotiation has expired, the word "Expired" will be added, with the latest value that was negotiated (e.g. "20Watts (LLDP - Expired)").

Current (mA): 81
Voltage (V): 50.8
Overload Counter: 5
Short Counter: 0
Denied Counter: 2
Absent Counter: 0
Invalid Signature Counter: 0

The following table describes the fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Inline power sourcing equipment operational status.</td>
</tr>
<tr>
<td>Nominal Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Port</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>device</td>
<td>Description of the device type.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the device.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a device was detected.</td>
</tr>
<tr>
<td>Inrush Test</td>
<td>Displays whether the inrush test is enabled or disabled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port limit mode</td>
<td>Enabled for port limit and Disable for class limit.</td>
</tr>
<tr>
<td>Legacy Mode</td>
<td>Enabled of Disabled legacy device support.</td>
</tr>
<tr>
<td>Inrush Test</td>
<td>Displays whether the inrush test is enabled or disabled.</td>
</tr>
<tr>
<td>SW version</td>
<td>The POE firmware version.</td>
</tr>
<tr>
<td>HW Version</td>
<td>The POE hardware version</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Module</td>
<td>The module name.</td>
</tr>
<tr>
<td>Available Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Temp</td>
<td>Show the POE device temperature.</td>
</tr>
<tr>
<td>Interface</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>Admin</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Oper</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Power</td>
<td>Power consumed in watts.</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the device (0-4).</td>
</tr>
</tbody>
</table>
Following is a list of port status values:

Port is on - Valid capacitor/resistor detected.
Port is on - Valid resistor/capacitor detected.
Port is off - Main supply voltage is high.
Port is off - Main supply voltage is low.
Port is off - Hardware pin disables all ports.
Port is off - User setting.
Port is off - Detection is in process.
Port is off - Non-802.3af powered device.
Port is off - Overload & Underload states.
Port is off - Underload state.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Description of the device type set by the user.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Port status</td>
<td>The port status on/off with detailed reason (see below for details).</td>
</tr>
<tr>
<td>Port standard</td>
<td>802.3AF /802.3AT .</td>
</tr>
<tr>
<td>Admin power limit</td>
<td>Port limit in watts used when the Port limit mode is Enabled.</td>
</tr>
<tr>
<td>Time Range</td>
<td>The name of the time range associated with the interface.</td>
</tr>
<tr>
<td>Link partner standard</td>
<td>802.3AF/802.3AT.</td>
</tr>
<tr>
<td>Operational Power Limit</td>
<td>Port actual power limit in watts.</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>Port current in Milli-Ampere.</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>Port voltage in volts.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a device was detected.</td>
</tr>
</tbody>
</table>
Port is off - Overload state.
Port is off - Power budget exceeded.
Port is off - Voltage injection into the port.
Port is off - Improper Capacitor Detection results.
Port is off - Discharged load.
Port is on - Detection regardless (Force On).
Port is off - Forced power error due to Overload.
Port is off - Out of power budget while in Force On.
Port is off - Short condition.
Port is off - Over temperature at the port.
Port is off - Device is too hot.
Port is off - Class Error - Illegal class.

38.13 show power inline savings

To display information about the device inline power saving, use the show power inline savings privileged EXEC mode command.

Syntax

show power inline savings

Parameters

NA

Default Configuration

NA.

Command Mode

Privileged EXEC mode

User Guidelines

Use the show power inline savings command to display the total power saved by using the PoE time range feature which shuts down PoE to ports in specific times.
Examples

Example 1—The following example displays PoE power saving on device.

```
switchxxxxxx(config)# show power inline savings
Current Power Savings: 45W
Cumulative Energy Saved: 180 [Watt*Hour]
* Estimated Annual Power saving: 1800 [Watt*Hour]
* Annual estimate is based on the saving during the previous week
NA – information for previous week is not available
```

38.14 clear power inline counters

To clear power inline interface counters, use the `clear power inline counters` Privileged EXEC mode command.

Syntax

```
clear power inline counters [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID must be an Ethernet port type. If interface ID is not specified - counters for all interfaces are cleared.

Default Configuration

All interface counters are cleared.

Command Mode

Privileged EXEC mode

User Guidelines

The `clear power inline counters` command is used to reset power inline interface counters: Overload, Short, Denied, Absent and Invalid Signature.

Example
The following example clears the power inline counters for gi2.

```
switchxxxxx# clear power inline counters gi2
```

38.15 clear power inline monitor consumption

To clear power inline consumption monitor info on all or on a specific interface or interface list, use the `clear power inline monitor consumption` Privileged EXEC mode command.

Syntax

```
clear power inline monitor consumption [interface-id-list]
```

Parameters

`interface-id-list`—(Optional) Specifies a list of interface ID. The interface ID must be an Ethernet port type. If interface ID is not specified - consumption information for all interfaces is cleared.

Default Configuration

All monitored interface info are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears the monitored statistics for gi1.

```
switchxxxxx# clear power inline monitor consumption gi1
```

38.16 show power inline monitor consumption

To display the average monitored power consumption info, use the `show power inline monitor consumption` Privileged EXEC mode command.
Syntax

`show power inline monitor consumption [interface-id] {minutes|hours | days |weeks}`

Parameters

- `interface-id` — (Optional) Specifies an interface ID. The interface ID must be an Ethernet port. If interface ID is not specified total device PoE consumption info will be displayed.
- `minutes` — Average minute consumption. Displays the last 60 samples, sampled every 60 seconds (every round minute according to system time).
- `hours` — Average hour consumption. Displays the last 24 samples, sampled every 60 minutes (every round hour according to system time).
- `days` — Average daily consumption. Displays the last 7 samples, sampled every 24 hours (midnight to midnight according to system time).
- `weeks` — Average Weekly Consumption. Displays the last 52 samples, sampled every 7 days (midnight Saturday to midnight Saturday according to system time).

Default Configuration

This command has no default settings.

Command Mode

Privileged EXEC mode

User Guidelines

The `show power inline monitor` is used to show average power consumption for specified time frame.

Examples

Example 1:

The following example displays the average hourly power consumption for the past day gathered for interface gi1.
switchxxxxxx# show power inline monitor consumption gil hours

Sample Consumption
Time (W)

---------- ----------
03:00:00 7.1
02:00:00 7.1
01:00:00(~) 8.5
00:00:00 9.0

(~) Not all samples are available.
* time stamp represents end of sampling period

Example 2:
The following example displays the average weekly power consumption for the past 52 weeks
gathered for entire device.

switchxxxxxx# show power inline monitor consumption weeks

Sample Consumption
Time (W)

------------------ -------
Sun 15/11/2015 00:00:00 55.1
Sun 22/11/2015 00:00:00 75.2
Sun 29/11/2015 00:00:00(~) 45.3

(~) Not all samples are available.
* time stamp represents end of sampling period
38.17 show powered-device

To display information about the inline power of PD for all interfaces or for a specific interface, use the `show powered-device` privileged EXEC mode command.

Syntax

`show powered-device [interface-id]`

Parameters

`Interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

Default Configuration

Show information for all ports.

Command Mode

Global Configuration mode

Example

The following example displays information about the inline power consumption.

```
switchxxxxxx# show powered-device

<table>
<thead>
<tr>
<th>Port</th>
<th>PD</th>
<th>Power Requested (W)</th>
<th>PSE standard (link partner)</th>
<th>Power Available (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>802.3AT</td>
<td>25.5</td>
<td>802.3AT</td>
<td>25.5 (cdp)</td>
</tr>
<tr>
<td>gi2</td>
<td>802.3AT</td>
<td>25.5 (forced)</td>
<td>802.3AF</td>
<td>0 (LLDP)</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD standard</td>
<td>This indicated the PD port physical capability.</td>
</tr>
<tr>
<td>Power Requested</td>
<td>This indicates the PD requested power (as requested from the PSE side in Watts). If port is forced to specific power, the value reflects the forced power and is indicated by " (Forced) ". If port is not connected to PSE or is in down state the status is N/A.</td>
</tr>
<tr>
<td></td>
<td>If CDP/LLDP negotiation is activated than this represent the maximum request power level. If no negotiation is activated this value is derived from the PD standard.</td>
</tr>
<tr>
<td>PSE standard</td>
<td>This indicated the PSE physical capability as detected by the PD port (at power up time, some devices may indicated 802.1AF at up time but allow 802.1At/60W POE power as result of power negotiation). 60W indication will be provided only if PD is set to force 60W or if negotiated with PSE via CDP/LLDP</td>
</tr>
<tr>
<td></td>
<td>If port is not connected to PSE or is in down state the status is N/A. If CDP/LLDP negotiation is activated than the negotiation protocol is displayed "(CDP)" or "(LLDP)".</td>
</tr>
<tr>
<td></td>
<td>If CDP/LLDP negotiation is activated than this represent the maximum allocated power level. In case the power negotiation is not completed or has failed to negotiate power the value of "0" is displayed.</td>
</tr>
<tr>
<td></td>
<td>In case negotiation has expired, the word “Expired” will be added, with the latest value that was negotiated (e.g. "20Watts (LLDP - Expired)")</td>
</tr>
<tr>
<td>Power available</td>
<td>This indicates the PSE allocated power (in Watts). If port is not connected to PSE or is in down state the status is N/A. If CDP/LLDP negotiation is activated than the negotiation protocol is displayed "(CDP)" or "(LLDP)".</td>
</tr>
<tr>
<td></td>
<td>If CDP/LLDP negotiation is activated than this represent the maximum allocated power level. In case the power negotiation is not completed or has failed to negotiate power the value of "0" is displayed.</td>
</tr>
<tr>
<td></td>
<td>In case negotiation has expired, the word “Expired” will be added, with the latest value that was negotiated (e.g. "20Watts (LLDP - Expired)")</td>
</tr>
<tr>
<td></td>
<td>If no negotiation is activated this value is derived from the PSE standard.</td>
</tr>
</tbody>
</table>
Port Channel Commands

39.1 channel-group

To associate a port with a port-channel, use the `channel-group` Interface (Ethernet) Configuration mode command. To remove a port from a port-channel, use the no form of this command.

Syntax

```
channel-group port-channel mode {on | auto}
no channel-group
```

Parameters

- `port-channel`—Specifies the port channel number for the current port to join.
- `mode`—Specifies the mode of joining the port channel. The possible values are:
 - `on`—Forces the port to join a channel without an LACP operation.
 - `auto`—Forces the port to join a channel as a result of an LACP operation.

Default Configuration

The port is not assigned to a port-channel.

Command Mode

Interface (Ethernet) Configuration mode

Default mode is `on`.

User Guidelines

LACP starts to manage port joining.

When the `auto` mode is configured and there are not received LACP messages on all port-candidates then one of candidates is joined. When the first LACP message is received the port is disjoined and LACP starts to manage port joining.
Example

The following example forces port gi1 to join port-channel 1 without an LACP operation.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# channel-group 1 mode on
```

39.2 port-channel load-balance

To configure the load balancing policy of the port channeling, use the `port-channel load-balance` Global Configuration mode command. To reset to default, use the `no` form of this command.

Syntax

```
port-channel load-balance {src-dst-mac | src-dst-mac-ip}
no port-channel load-balance
```

Parameters

- **src-dst-mac**—Port channel load balancing is based on the source and destination MAC addresses.
- **src-dst-mac-ip**—Port channel load balancing is based on the source and destination of MAC and IP addresses.

Default Configuration

src-dst-mac is the default option.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# port-channel load-balance src-dst-mac
```
39.3 show interfaces port-channel

To display port-channel information for all port channels or for a specific port channel, use the `show interfaces port-channel` Privileged EXEC mode command.

Syntax

`show interfaces port-channel [interface-id]`

Parameters

`interface-id`—(Optional) Specify an interface ID. The interface ID must be a port channel.

Command Mode

Privileged EXEC mode

Examples

The following example displays information on all port-channels.

```
switchxxxxxx# show interfaces port-channel
Load balancing: src-dst-mac.
Gathering information...
Channel Ports
-------- -----
Po1    Active: 1, Inactive: gi2-3
Po2    Active: 5, Inactive: gi4
```
40.1 qos

Use the **qos** Global Configuration mode command to enable QoS on the device and set its mode. Use the **no** form of this command to disable QoS on the device.

Syntax

```
qos [basic | {advanced [ports-not-trusted | ports-trusted]}]
```

no qos

Parameters

- **basic**—QoS basic mode. If no option is specified, the QoS mode defaults to the basic mode.

- **advanced**— Specifies the QoS advanced mode, which enables the full range of QoS configuration.

- **ports-not-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to egress queue 0. This is the default setting in advanced mode.

- **ports-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to an egress queue based on the packet's fields. Use the `qos advanced-mode trust` command to specify the trust mode.

Default Configuration

QoS basic mode

Command Mode

Global Configuration mode
Examples

Example 1—The following example disables QoS on the device.

```
switchxxxxx(config)# no qos
```

Example 2—The following example enables QoS advanced mode on the device with the `ports-not-trusted` option.

```
switchxxxxx(config)# qos advanced
```

40.2 qos advanced-mode trust

Use the `qos advanced-mode trust` Global Configuration mode command to configure the trust mode in advanced mode. Use the `no` form of this command to return to default.

Syntax

```
qos advanced-mode trust {cos | dscp | cos-dscp}
no qos advanced-mode trust
```

Parameters

- **cos**—Classifies ingress packets with the packet CoS values. For untagged packets, the port default CoS is used.
- **dscp**—Classifies ingress packets with the packet DSCP values.
- **cos-dscp**—Classifies ingress packets with the packet DSCP values for IP packets. For other packet types, use the packet CoS values.

Default Configuration

`cos-dscp`

Command Mode

Global Configuration mode

User Guidelines

The configuration is relevant for advanced mode in the following cases:
• **ports-not-trusted mode:** For packets that are classified to the QoS action trust.

• **ports-trusted mode:** For packets that are not classified by any QoS action or classified to the QoS action trust.

Example

The following example sets cos as the trust mode for QoS on the device.

```
switchxxxxxx(config)# qos advanced-mode trust cos
```

40.3 show qos

Use the **show qos** Privileged EXEC mode command to display the QoS information for the device. The trust mode is displayed for the QoS basic mode.

Syntax

show qos

Parameters

N/A

Default Configuration

Disabled Command Mode

Command Mode

Privileged EXEC mode

User Guidelines

Trust mode is displayed if QoS is enabled in basic mode.

Examples

```
switchxxxxxx(config)# show qos
Qos: Disabled
switchxxxxxx(config)# show qos
Qos: Basic mode
```
Basic trust: dscp

switchxxxxxx(config)# show qos
Qos: Advanced mode
Advanced mode trust type: cos
Advanced mode ports state: Trusted

40.4 class-map

Use the class-map Global Configuration mode command to create or modify a class map and enter the Class-map Configuration mode (only possible when QoS is in the advanced mode). Use the no form of this command to delete a class map.

Syntax

class-map class-map-name [match-all | match-any]

no class-map class-map-name

Parameters

- class-map-name—Specifies the class map name. (Length: 1–32 characters)
- match-all—Performs a logical AND of all the criteria of the ACLs belonging to this class map. All match criteria in this class map must be matched. If neither match-all nor match-any is specified, the match-all parameter is selected by default.
- match-any—Performs a logical OR of the criteria of the ACLs belonging to this class map. Only a single match criteria in this class map must be matched.

Default Configuration

No class map.

Command Mode

Global Configuration mode

User Guidelines

The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally-named service policy applied on a per-interface basis.
A class map consists of one or more ACLs. It defines a traffic flow by determining which packets match some or all of the criteria specified in the ACLs.

All class map commands are only available when QoS is in advanced mode.

The class-map enters Class-map Configuration mode. In this mode, up to two match commands can be entered to configure the criteria for this class. Each match specifies an ACL.

When using a few match commands, each must point to a different type of ACL, such as: one IP ACL, one IPv6 ACL, and one MAC ACL. The classification is by first match, therefore, the order of the ACLs is important.

Error messages are generated in the following cases:

- There is more than one match command in a match-all class map
- There is a repetitive classification field in the participating ACLs.

After entering the Class-map Configuration mode, the following configuration commands are available:

- exit: Exits the Class-map Configuration mode.
- match: Configures classification criteria.
- no: Removes a match statement from a class map.

Example

The following example creates a class map called Class1 and configures it to check that packets match all classification criteria in the ACL specified.

```
switchxxxxxx(config)# class-map class1 match-all
switchxxxxxx(config-cmap)# match access-group acl-name
```

40.5 show class-map

The show class-map Privileged EXEC mode command displays all class maps when QoS is in advanced mode.

Syntax

```
show class-map [class-map-name]
```
Parameters

`class-map-name`—Specifies the name of the class map to be displayed. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

Example

The following example displays the class map for Class1.

```
switchxxxxxx(config)# show class-map
Class Map matchAny class1
    Match access-group mac
```

40.6 match

Use the `match` Class-map Configuration mode command to bind the ACLs that belong to the class-map being configured. Use the `no` form of this command to delete the ACLs.

Syntax

```
match access-group acl-name
no match access-group acl-name
```

Parameters

`acl-name`—Specifies the MAC, IP ACL name, or IPv6 ACL name. (Length: 1–32 characters)

Default Configuration

No match criterion is supported.

User Guidelines

This command is available only when the device is in QoS advanced mode.

Command Mode

Class-map Configuration mode.
Example

The following example defines a class map called Class1. Class1 contains an ACL called enterprise. Only traffic matching all criteria in enterprise belong to the class map.

```
switchxxxxxx(config)# class-map class1
switchxxxxxx(config-cmap)# match access-group enterprise
```

40.7 policy-map

Use the `policy-map` Global Configuration mode command to creates a policy map and enter the Policy-map Configuration mode. Use the `no` form of this command to delete a policy map.

Syntax

```
policy-map policy-map-name
no policy-map policy-map-name
```

Parameters

`policy-map-name`—Specifies the policy map name. (Length: 1–32 characters)

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

This command is only available when QoS is in advanced mode.

Use the `policy-map` Global Configuration mode command to specify the name of the policy map to be created, added to, or modified before configuring policies for classes whose match criteria are defined in a class map.

A policy map contains one or more class maps and an action that is taken if the packet matches the class map. Policy maps may be bound to ports/port-channels.

Entering the `policy-map` Global Configuration mode command also enables configuring or modifying the class policies for that policy map. Class policies in a policy map can be configured only if the classes have match criteria defined for them.
Policy map is applied on the ingress path.

The match criteria is for a class map. Only one policy map per interface is supported. The same policy map can be applied to multiple interfaces and directions.

The **service-policy** command binds a policy map to a port/port-channel.

Example

The following example creates a policy map called Policy1 and enters the Policy-map Configuration mode.

```plaintext
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)#
```

40.8 **class**

Use the **class** Policy-map Configuration mode. command after the **policy-map** command to attach ACLs to a policy-map. Use the **no** form of this command to detach a class map from a policy map.

Syntax

```plaintext
class class-map-name [access-group acl-name]
no class class-map-name
```

Parameters

- **class-map-name**—Specifies the name of an existing class map. If the class map does not exist, a new class map is created under the specified name. (Length: 1–32 characters)

- **access-group acl-name**—Specifies the name of an IP, IPv6, or MAC Access Control List (ACL). (Length: 1–32 characters)

Default Configuration

No class map is defined for the policy map.

Command Mode

Policy-map Configuration mode.
User Guidelines

This command is only available when QoS is in advanced mode.

This is the same as creating a class map and then binding it to the policy map.

You can specify an existing class map in this command, or you can use the access-group parameter to create a new class map.

After the policy-map is defined, use the service-policy command to attach it to a port/port-channel.

Example

The following example defines a traffic classification (class map) called class1 containing an ACL called enterprise. The class is in a policy map called policy1. The policy-map policy1 now contains the ACL enterprise.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1 access-group enterprise
```

40.9 show policy-map

Use the show policy-map Privileged EXEC mode command to display all policy maps or a specific policy map.

This command is only available when QoS is in advanced mode.

Syntax

```
show policy-map [policy-map-name]
```

Parameters

- **policy-map-name**—Specifies the policy map name. (Length: 1–32 characters)

Default Configuration

All policy-maps are displayed.

Command Mode

Privileged EXEC mode
Example
The following example displays all policy maps.

```
switchxxxxxx(config)#   show policy-map
Policy Map policy1
class class1
  set dscp 7
Policy Map policy2
class class 2
  police 96000 4800 exceed-action drop
```

40.10 trust
Use the trust Policy-map Class Configuration mode. command to configure the trust state. Use the no form of this command to return to the default trust state.

Syntax
```
trust
no trust
```

Parameters
N/A

Default Configuration
The default state is according to the mode selected in the qos command (advanced mode). The type of trust is determined in qos advanced-mode trust.

Command Mode
Policy-map Class Configuration mode.

User Guidelines
This command is relevant only when QoS is in advanced, ports-not-trusted mode. Trust indicates that traffic is sent to the queue according to the packet’s QoS parameters (UP or DSCP).
Use this command to distinguish the QoS trust behavior for certain traffic from others. For example, incoming traffic with certain DSCP values can be trusted. A class map can be configured to match and trust the DSCP values in the incoming traffic.

The type of trust is determined in \texttt{qos _advanced-mode _trust}.

Trust values set with this command supersede trust values set on specific interfaces with the \texttt{qos trust (Interface) Interface Configuration mode} command.

The \texttt{trust} and \texttt{set} commands are mutually exclusive within the same policy map.

The \texttt{set} command is not supported into egress policies.

If specifying \texttt{trust cos}, QoS maps a packet to a queue, the received or default port CoS value, and the CoS-to-queue map.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and configures the trust state.

\begin{verbatim}
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map pl
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# trust
\end{verbatim}

40.11 \texttt{set}

Use the \texttt{set} Policy-map Class Configuration mode command to select the value that QoS uses as the DSCP value, the egress queue or to set user priority values.

Syntax

\begin{verbatim}
set \{dscp new-dscp | queue queue-id | cos new-cos\}
\end{verbatim}

no set
Parameters

- `dscp new-dscp`—Specifies the new DSCP value for the classified traffic. (Range: 0–63)
- `queue queue-id`—Specifies the egress queue. (Range: 1-8)
- `cos new-cos`—Specifies the new user priority to be marked in the packet. (Range: 0–7)

Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is only available when QoS is in advanced mode.
The `set` and `trust` commands are mutually exclusive within the same policy map.
To return to the Configuration mode, use the `exit` command. To return to the Privileged EXEC mode, use the `end` command.
The `queue` keyword is not supported into egress policies.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and sets the DSCP value in the packet to 56 for classes in the policy map called p1.

```plaintext
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# set dscp 56
```
40.12 police

Use the `police` Policy-map Class Configuration mode command to define the policer for classified traffic. This defines another group of actions for the policy map (per class map). Use the `no` form of this command to remove a policer.

Syntax

```
police committed-rate-kbps committed-burst-byte [exceed-action action]

no police
```

Parameters

- `committed-rate-kbps`—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3–maximal port speed)
- `committed-burst-byte`—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- `exceed-action`—Specifies the action taken when the committed rate is exceeded. If the keyword is not configured then the `drop` action is applied.
- `action`—Specifies the taken action. The possible values are:
 - `drop`—Drops the packet.
 - `policed-dscp-transmit`—Remarks the packet DSCP of IP traffic. The DSCP remarking is configured by the `qos map policed-dscp` command. DSCP remarking will have effect only if the mode is trust dscp.

Default Usage

No policer

Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is used after the `policy-map` and `class` commands.

This command is only available when QoS is in advanced mode.

Policing uses a token bucket algorithm.
Examples

Example 1. The following example defines a policer for classified traffic. When the traffic rate exceeds 124,000 kbps and the normal burst size exceeds 9600 bytes, the packet is dropped. The class is called class1 and is in a policy map called policy1.

```markdown
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class cls1
switchxxxxxx(config-pmap-c)# police 124000 9600 exceed-action drop
```

40.13 service-policy

Use the `service-policy` Interface (Ethernet, Port Channel) Configuration mode command to bind a policy map to an interface. Use the `no` form of this command to detach a policy map from an interface.

Syntax

```markdown
service-policy {input | output} policy-map-name [default-action {permit-any | deny-any}]  
no service-policy input | output
```

Parameters

- **input**—Specifies an ingress policy.
- **output**—Specifies an egress policy.
- **policy-map-name**—Specifies the policy map name to apply to the input interface. (Length: 1–32 characters)
- **default-action**—Specifies the default action. If the keyword is not configured then the **deny-any** default action is applied.
- **deny-any**—Deny all the packets (which were ingress of the port) that do not meet the rules in a policy.
- **permit-any**—Forward all the packets (which were ingress of the port) that do not meet the rules in a policy.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Default

Policy map is not bound.

User Guidelines

This command is only available in QoS advanced mode.

Only one policy map per interface per direction is supported.

If the policy map includes the **police** command a separate copy of the policy map rules is created in TCAM for each Ethernet port.

An egress policy cannot support the following actions:

- **set** with the **queue** keyword
- **trust**
- **police**

The **service-policy output** command fails if the bound policy contains actions not supported by egress policies.

A policy map cannot be bound as input and output at the same time.

Example

The following example attaches a policy map called Policy1 to the input interface.

```
switchxxxxxx(config-if)# service-policy input policy1
```

The following example attaches a policy map called Policy1 to the input interface and forwards all packets that do not meet the rules of the policy.

```
switchxxxxxx(config-if)# service-policy input policy1 permit-any
```

The following example attaches a policy map called Policy2 to the output interface.

```
switchxxxxxx(config-if)# service-policy output policy2
```
40.14 qos aggregate-policer

Use the qos aggregate-policer Global Configuration mode command to define the policer parameters that can be applied to multiple traffic classes. Use the no form of this command to remove an existing aggregate policer.

Syntax

```
qos aggregate-policer aggregate-policer-name committed-rate-kbps committed-burst-byte [exceed-action action]
```

```
no qos aggregate-policer aggregate-policer-name
```

Parameters

- **aggregate-policer-name**—Specifies the aggregate policer name. (Length: 1–32 characters)

- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–57982058)

- **committed-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)

- **exceed-action**—Specifies the action taken when the committed rate is exceeded. If the keyword is not configured then the drop action is applied.

- **action**—Specifies the taken action. The possible values are:
 - drop—Drops the packet.
 - policed-dscp-transmit—Remarks the packet DSCP of IP traffic. The DSCP remarking is configured by the qos map policed-dscp command. DSCP remarking will have effect only if the mode is trust dscp.

Default Configuration

No aggregate policer is defined.

Command Mode

Global Configuration mode

User Guidelines

This command is only available when QoS is in advanced mode.
Use the `qos aggregate-policer` command to define a policer that aggregates traffic from multiple class maps.

Aggregate policers cannot aggregate traffic from multiple devices. If the aggregate policer is applied to more than one device, the traffic on each device is counted separately and is limited per device.

Traffic from two different ports on the same device can be aggregated for policing purposes.

An aggregate policer can be applied to multiple classes in the same policy map.

An aggregate policer cannot be deleted if it is being used in a policy map. The `no police aggregate` Policy-map Class Configuration mode command must first be used to delete the aggregate policer from all policy maps before using the `no qos aggregate-policer` command.

Policing uses a token bucket algorithm. CIR represents the speed with which the token is added to the bucket. CBS represents the depth of the bucket.

Examples

Example 1. The following example defines the parameters of a policer called `policer1` that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
```

40.15 show qos aggregate-policer

Use the `show qos aggregate-policer` Privileged EXEC mode mode command to display aggregate policers

This command is only available in QoS advanced mode.

Syntax

```
show qos aggregate-policer [aggregate-policer-name]
```

Parameters

`aggregate-policer-name`—Specifies the aggregate policer name. (Length: 1–32 characters)

Default Configuration

All policers are displayed.
Command Mode

Privileged EXEC mode

Examples

Example 1. The following example displays the parameters of the aggregate policer called Policerc1.

```
switchxxxxxx# show qos aggregate-policer policerc1
aggregate-policer policerc1 96000 4800 exceed-action drop
not used by any policy map.
```

40.16 police aggregate

Use the `police aggregate` Policy-map Class Configuration mode command to apply an aggregate policer to multiple class maps within the same policy map. Use the `no` form of this command to remove an existing aggregate policer from a policy map.

This command is only available in QoS advanced mode.

Syntax

```
police aggregate aggregate-policer-name
no police aggregate aggregate-policer-name
```

Parameters

```
aggregate-policer-name—Specifies the aggregate policer name. (Length: 1–32 characters)
```

Command Mode

Policy-map Class Configuration mode.

User Guidelines

An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps or interfaces.

Use the `exit` command to return to the Configuration mode. Use the `end` command to return to the Privileged EXEC mode.
Example

The following example applies the aggregate policer called Policer1 to a class called class1 in a policy map called policy1 and class2 in policy map policy2.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1
switchxxxxxx(config-pmap-c)# police aggregate policer1
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap)# exit
switchxxxxxx(config)# policy-map policy2
switchxxxxxx(config-pmap)# class class2
switchxxxxxx(config-pmap-c)# police aggregate policer1
```

40.17 wrr-queue cos-map

Use the `wrr-queue cos-map` Global Configuration mode command to map Class of Service (CoS) values to a specific egress queue. Use the `no` form of this command to restore the default configuration.

Syntax

```
wrr-queue cos-map queue-id cos0... cos7
no wrr-queue cos-map [queue-id]
```

Parameters

- `queue-id`—Specifies the queue number to which the CoS values are mapped.
- `cos0... cos7`—Specifies up to 8 CoS values to map to the specified queue number. (Range: 0–7)

Default Configuration

The default CoS value mapping to 8 queues is as follows:

CoS value 0 is mapped to queue 1.
CoS value 1 is mapped to queue 2.
CoS value 2 is mapped to queue 3.
CoS value 3 is mapped to queue 6.
CoS value 4 is mapped to queue 5.
CoS value 5 is mapped to queue 8.
CoS value 6 is mapped to queue 8.
CoS value 7 is mapped to queue 7.

Command Mode

Global Configuration mode

User Guidelines

Use this command to distribute traffic to different queues.

Example

The following example maps CoS value 4 and 6 to queue 2.

```
switchxxxxxx(config)# wrr-queue cos-map 2 4 6
```

40.18 wrr-queue bandwidth

Use the **wrr-queue bandwidth** Global Configuration mode command to assign Weighted Round Robin (WRR) weights to egress queues. The weight ratio determines the frequency at which the packet scheduler removes packets from each queue. Use the **no** form of this command to restore the default configuration.

Syntax

```
wrr-queue bandwidth weight1 weight2... weighting
no wrr-queue bandwidth
```

Parameters

- **weight1 weight2... weighting** the ratio of bandwidth assigned by the WRR packet scheduler to the packet queues. See explanation in the User Guidelines. Separate each value by a space. (Range for each weight: 0–255)
Default Configuration

wrr is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

The ratio for each queue is defined as the queue weight divided by the sum of all queue weights (the normalized weight). This sets the bandwidth allocation of each queue.

A weight of 0 indicates that no bandwidth is allocated for the same queue, and the shared bandwidth is divided among the remaining queues. It is not recommended to set the weight of a queue to a 0 as it might stop transmission of control-protocols packets generated by the device.

All queues participate in the WRR, excluding the expedite queues, whose corresponding weight is not used in the ratio calculation.

An expedite queue is a priority queue, which is serviced until empty before the other queues are serviced. The expedite queues are designated by the priority-queue out num-of-queues command.

Example

The following assigns WRR values to the queues.

```
switchxxxxxx(config)# priority-queue out num-of-queues 0
switchxxxxxx(config)# wrr-queue bandwidth 6 6 6 6 6 6 6
```

40.19 priority-queue out num-of-queues

Use the priority-queue out num-of-queues Global Configuration mode command to configure the number of expedite queues. Use the no form of this command to restore the default configuration.

Syntax

priority-queue out num-of-queues number-of-queues

no priority-queue out num-of-queues
Parameters

- **number-of-queues**—Specifies the number of expedite (strict priority) queues. Expedite queues are assigned to the queues with the higher indexes. (Range: 0–8). There must be either 0 wrr queues or more than one.

 If **number-of-queues** = 0, all queues are assured forwarding (according to wrr weights). If the **number-of-queues** = 8, all the queues are expedited (strict priority queues).

Default Configuration

All queues are expedite queues.

Command Mode

Global Configuration mode

User Guidelines

An expedite queue is a strict priority queue, which is serviced until empty before the other lower priority queues are serviced.

The weighted round robin (WRR) weight ratios are affected by the number of expedited queues, because there are fewer queues participating in WRR. This indicates that the corresponding weight in the **wrr-queue bandwidth** Interface Configuration mode command is ignored (not used in the ratio calculation).

Example

The following example configures the number of expedite queues as 2.

```
switchxxxxx(config)# priority-queue out num-of-queues 2
```

40.20 traffic-shape

Use the **traffic-shape** Interface (Ethernet, Port Channel) Configuration mode command to configure the egress port shaper. Use the **no** form of this command to disable the shaper.

Syntax

```
traffic-shape committed-rate [committed-burst]
```

```
no traffic-shape
```
Parameters

- **committed-rate**—Specifies the maximum average traffic rate (CIR) in kbits per second (kbps). (Range: FE, GE: 64kbps–maximum port speed, 10GE: 64Kbps–maximum port speed))

- **committed-burst**—Specifies the maximum permitted excess burst size (CBS) in bytes. (Range: 4096 - 16670940 bytes)

Default Configuration

The shaper is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The egress port shaper controls the traffic transmit rate (Tx rate) on a port.

Example

The following example sets a traffic shaper on gi1 when the average traffic rate exceeds 64 kbps or the normal burst size exceeds 4096 bytes.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# traffic-shape 64 4096
```

40.21 traffic-shape queue

Use the `traffic-shape queue` Interface (Ethernet, Port Channel) Configuration mode command to configure the egress queue shaper. Use the `no` form of this command to disable the shaper.

Syntax

```
traffic-shape queue queue-id committed-rate [committed-burst]
no traffic-shape queue queue-id
```

Parameters

- **queue-id**—Specifies the queue number to which the shaper is assigned. (Range: 1-8).
Quality of Service (QoS) Commands

- **committed-rate**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 64 kbps–maximum port speed)

- **committed-burst**—Specifies the excess burst size (CBS) in bytes. (Range: 4096 - 16670940 bytes)

Default Configuration

The shaper is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The egress port shaper controls the traffic transmit rate (Tx rate) on a queue on a port.

Example

The following example sets a shaper on queue 1 on gi1 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# traffic-shape queue 1 64 4096
```

Use the `qos wrr-queue wrtd` Global Configuration mode command to enable Weighted Random Tail Drop (WRTD). Use the `no` form of this command to disable WRTD.

Syntax

- `qos wrr-queue wrtd`
- `no qos wrr-queue wrtd`

Parameters

N/A

Default

Disabled
Command Mode

Global Configuration mode

User Guidelines

The command is effective after reset.

Example

```
switchxxxxxx(config)# qos wrr-queue wrtd
This setting will take effect only after copying running configuration to startup configuration and resetting the device
switchxxxxxx(config)#
```

40.23 show qos wrr-queue wrtd

Use the `show qos wrr-queue wrtd` Privileged EXEC mode command to display the Weighted Random Tail Drop (WRTD) configuration.

Syntax

```
show qos wrr-queue wrtd
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx(config)# show qos wrr-queue wrtd
Weighted Random Tail Drop is disabled
Weighted Random Tail Drop will be enabled after reset
```
40.24 show qos interface

Use the `show qos interface` Privileged EXEC mode command to display Quality of Service (QoS) information on the interface.

Syntax

```
show qos interface [buffers | queueing | policers | shapers] [interface-id]
```

Parameters

- **buffers**—Displays the buffer settings for the interface's queues. For GE ports, displays the queue depth for each of the queues. For FE ports, displays the minimum reserved setting.
- **queueing**—Displays the queue's strategy (WRR or EF), the weight for WRR queues, the CoS to queue map and the EF priority.
- **policers**—Displays all the policers configured for this interface, their settings, and the number of policers currently unused (on a VLAN).
- **shapers**—Displays the shaper of the specified interface and the shaper for the queue on the specified interface.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, or Port-channel.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

If no parameter is specified with the `show qos interface` command, the port QoS mode (DSCP trusted, CoS trusted, untrusted, and so on), default CoS value, DSCP-to-DSCP- map (if any) attached to the port, and policy map (if any) attached to the interface are displayed. If a specific interface is not specified, the information for all interfaces is displayed.

In case of Policers, Shapers and Rate Limit - only the ports which are not in the default configuration will be showed.
Examples

Example 1—The following is an example of the output from the `show qos interface` command.

```
switchxxxxxxx(config)# show qos interface gi1
Ethernet gi0/1
Default CoS: 0
Trust mode: disabled
Ingress Policy applied: AV1
Egress Policy applied: AV2
Default ACE ingress action: deny-all
Default ACE egress action: deny-all
```

Example 2—The following is an example of the output from the `show qos interface queueing` command for 4 queues.

```
switchxxxxxxx(config)# show qos interface queueing gi1
Ethernet gi0/1
wrr bandwidth weights and EF priority:
qid-weights    Ef - Priority
1 - N/A        ena- 1
2 - N/A        ena- 2
3 - N/A        ena- 3
4 - N/A        ena- 4
Cos-queue map:
cos-qid
0 - 1
1 - 1
2 - 2
3 - 3
4 - 3
```
Example 3 — The following an example of the output from the `show qos interface buffers` command for 8 queues

```
switchxxxxxx(config)# show qos interface buffers gi1

Notify Q depth:
buffers gi1
Ethernet gi1

<table>
<thead>
<tr>
<th>qid</th>
<th>thresh0</th>
<th>thresh1</th>
<th>thresh2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>
```
Example 4—This is an example of the output from the `show qos interface shapers` command.

```bash
switchxxxxxx(config)# show qos interface shapers gi1

Port shaper: enable
Committed rate: 64 kbps
Committed burst: 9600 bytes

<table>
<thead>
<tr>
<th>QID</th>
<th>Status</th>
<th>Committed Rate [kbps]</th>
<th>Committed Burst [bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable</td>
<td>64</td>
<td>17000</td>
</tr>
<tr>
<td>2</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Enable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Enable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
```
Example 5—This is an example of the output from `show qos interface policer`

```
switchxxxxxx(config)# show qos interface policer gi1
Ethernet gi1
Ingress Policers:
Class map: A
  Policer type: aggregate
  Committed rate: 19 kbps
  Committed burst: 9600 bytes
  Exceed-action: policed-dscp-transmit
Class map: B
  Policer type: single
  Committed rate: 19 kbps
  Committed burst: 9600 bytes
  Exceed-action: drop
Class map: C
  Policer type: none
Egress Policers:
  Class map: D
```

40.25 qos map policed-dscp

Use the `qos map policed-dscp` Global Configuration mode command to configure the policed-DSCP map for remarking purposes. Use the `no` form of this command to restore the default configuration.

Syntax

```
quos map policed-dscp dscp-list to dscp-mark-down
no qos map policed-dscp [dscp-list]
```

Parameters

- `dscp-list`—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- `dscp-mark-down`—Specifies the DSCP value to mark down. (Range: 0–63)
Default Configuration
The default map is the Null map, which means that each incoming DSCP value is mapped to
the same DSCP value.

Command Mode
Global Configuration mode

User Guidelines
The original DSCP value and policed-DSCP value must be mapped to the same queue in order
to prevent reordering.

Example
The following example marks incoming DSCP value 3 as DSCP value 5 on the policed-DSCP
map.

```
switchxxxxxx(config)# qos map policed-dscp 3 to 5
```

40.26 qos map dscp-queue
Use the qos map dscp-queue Global Configuration mode command to configure the DSCP to
queue map. Use the no form of this command to restore the default configuration.

Syntax
```
qos map dscp-queue dscp-list to queue-id
no qos map dscp-queue [dscp-list]
```

Parameters
- `dscp-list`—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- `queue-id`—Specifies the queue number to which the DSCP values are mapped.

Default Configuration
The default map for 8 queues is as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

Example

The following example maps DSCP values 33, 40 and 41 to queue 1.

```
switchxxxxxx(config)# qos map dscp-queue 33 40 41 to 1
```

40.27 qos trust (Global)

Use the `qos trust` Global Configuration mode command to configure the system to the basic mode and trust state. Use the `no` form of this command to return to the default configuration.

Syntax

```
qos trust {cos | dscp | cos-dscp}
```

no qos trust

Parameters

- **cos**— Specifies that ingress packets are classified with packet CoS values. Untagged packets are classified with the default port CoS value.
- **dscp**— Specifies that ingress packets are classified with packet DSCP values.
- **cos-dscp**— Specifies that ingress packets are classified with packet DSCP values, if they are IP packets and by CoS value if non IP.

Default Configuration

`dscp`

Command Mode

Global Configuration mode
User Guidelines

This command can be used only in QoS basic mode.

Packets entering a QoS domain are classified at its edge. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain.

Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When the system is configured with trust DSCP, the traffic is mapped to the queue by the DSCP-queue map.

When the system is configured with trust CoS, the traffic is mapped to the queue by the CoS-queue map.

For an inter-QoS domain boundary, configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different in the QoS domains.

Example

The following example configures the system to the DSCP trust state.

```
switchxxxxxx(config)# qos trust dscp
```

40.28 qos trust (Interface)

Use the **qos trust** Interface (Ethernet, Port Channel) Configuration mode command to enable port trust state while the system is in the basic QoS mode. Use the **no** form of this command to disable the trust state on each port.

Syntax

```
qos trust
no qos trust
```

Parameters

N/A

Default Configuration

Each port is enabled while the system is in basic mode.
Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures gi1 to the default trust state.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# qos trust
```

40.29 qos cos

Use the qos cos Interface (Ethernet, Port Channel) Configuration mode command to define the default CoS value of a port. Use the no form of this command to restore the default configuration.

Syntax

```
qos cos default-cos
no qos cos
```

Parameters

default-cos—Specifies the default CoS value (VPT value) of the port. If the port is trusted and the packet is untagged, then the default CoS value become the CoS value. (Range: 0–7)

Default Configuration

The default CoS value of a port is 0.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the default CoS value to assign a CoS value to all untagged packets entering the interface.
Example

The following example defines the port gi1 default CoS value as 3.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# qos cos 3
```

40.30 qos dscp-mutation

Use the `qos dscp-mutation` Global Configuration mode command to apply the DSCP Mutation map to system DSCP trusted ports. Use the `no` form of this command to restore the trusted port with no DSCP mutation.

Syntax

```
qos dscp-mutation
no qos dscp-mutation
```

Parameters

N/A

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

Apply the DSCP-to-DSCP-mutation map to a port at the boundary of a Quality of Service (QoS) administrative domain. If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of another domain. Apply the map to ingress and to DSCP-trusted ports only. Applying this map to a port causes IP packets to be rewritten with newly mapped DSCP values at the ingress ports. If applying the DSCP mutation map to an untrusted port, to class of service (CoS), or to an IP-precedence trusted port.

Global trust mode must be DSCP or CoS-DSCP. In advanced CoS mode, ports must be trusted.
Example

The following example applies the DSCP Mutation map to system DSCP trusted ports.

```
switchxxxxx(config)# qos dscp-mutation
```

40.31 qos map dscp-mutation

Use the **qos map dscp-mutation** Global Configuration mode command to configure the DSCP to DSCP Mutation table. Use the **no** form of this command to restore the default configuration.

Syntax

```
qos map dscp-mutation in-dscp to out-dscp
no qos map dscp-mutation [in-dscp]
```

Parameters

- **in-dscp**—Specifies up to 8 DSCP values to map, separated by spaces. (Range: 0–63)
- **out-dscp**—Specifies up to 8 DSCP mapped values, separated by spaces. (Range: 0–63)

Default Configuration

The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

Command Mode

Global Configuration mode

User Guidelines

This is the only map that is not globally configured. It is possible to have several maps and assign each one to a different port.

Example

The following example changes DSCP values 1, 2, 4, 5 and 6 to DSCP Mutation Map value 63.

```
switchxxxxx(config)# qos map dscp-mutation 1 2 4 5 6 to 63
```
40.32 show qos map

Use the `show qos map` Privileged EXEC mode command to display the various types of QoS mapping.

Syntax

```
show qos map [dscp-queue | dscp-dp| dscp-mutation | policed-dscp | policed-cos]
```

Parameters

- `dscp-queue`—Displays the DSCP to queue map.
- `dscp-dp`—Displays the DSCP to Drop Precedence map.
- `policed-dscp`—Displays the DSCP to DSCP remark table.
- `dscp-mutation`—Displays the DSCP-DSCP mutation table.

Default Configuration

Display all maps.

Command Mode

Privileged EXEC mode

Examples

Example 1. The following example displays the QoS mapping information:

```
switchxxxxxx(config)# show qos map dscp-queue
Dscp-queue map:
    d1 : d2 0 1 2 3 4 5 6 7 8 9
    ------------------------------------
    0 :   01 01 01 01 01 01 01 01 01 01
    1 :   01 01 01 01 01 02 02 02 02 02
    2 :   02 02 02 02 02 02 02 02 02 02
    3 :   02 03 03 03 03 03 03 03 03 03
    4 :   03 03 03 03 03 03 03 03 03 03
    5 :   04 04 04 04 04 04 04 04 04 04
```
Example 2. The following example displays the dscp remapping information:

```
switchxxxxxx(config)# show qos map policed-dscp
Policed-dscp map:
    d1 : d2 0 1 2 3 4 5 6 7 8 9
    -------------------------------
    0 :   00 01 02 03 04 05 06 07 08 09
    1 :   10 11 12 13 14 15 16 17 18 19
    2 :   20 21 22 23 24 25 26 27 28 29
    3 :   30 31 32 33 34 35 36 37 38 39
    4 :   40 41 42 43 44 45 46 47 48 49
    5 :   50 51 52 53 54 55 56 57 58 59
    6 :   21 21 21
```

40.33 clear qos statistics

Use the `clear qos statistics` Privileged EXEC mode command to clear the QoS statistics counters.

Syntax

```
clear qos statistics
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
Example

The following example clears the QoS statistics counters.

```plaintext
switchxxxxxx(config)# clear qos statistics
```

40.34 qos statistics policer

Use the `qos statistics policer` Interface (Ethernet, Port Channel) Configuration mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

This command is relevant only when policers are defined.

Syntax

```
qos statistics policer policy-map-name class-map-name
no qos statistics policer policy-map-name class-map-name
```

Parameters

- `policy-map-name`—Specifies the policy map name. (Length: 1–32 characters)
- `class-map-name`—Specifies the class map name. (Length: 1–32 characters)

Default Configuration

Counting in-profile and out-of-profile is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables counting in-profile and out-of-profile on the interface.

```plaintext
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# qos statistics policer policy1 class1
```
40.35 qos statistics aggregate-policer

Use the `qos statistics aggregate-policer` Global Configuration mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

Syntax

```
qos statistics aggregate-policer aggregate-policer-name
no qos statistics aggregate-policer aggregate-policer-name
```

Parameters

- `aggregate-policer-name`—Specifies the aggregate policer name. (Length: 1–32 characters)

Default Configuration

Counting in-profile and out-of-profile is disabled.

Command Mode

Global Configuration mode

Example

The following example enables counting in-profile and out-of-profile on the interface.

```
switchxxxxxx(config)# qos statistics aggregate-policer policer1
```

40.36 clear queue statistics

Use the `clear queue statistics` Privileged EXEC mode command to clear the queue statistics.

Syntax

```
clear queue statistics [interface-id]
```

Parameters

- `interface-id`—Specifies an Ethernet port which queue statistics are cleared.
Command Mode
Privileged EXEC mode

User Guidelines
Use the `clear queue statistics interface-id` command to clear the queue statistics of the given port.
Use the `clear queue statistics` command to clear the queue statistics of all ports.

Example
The following example clears queue statistics of Ethernet port gi2:

```
switchxxxxxx# clear queue statistics gi2
```

40.37 show queue statistics
Use the `show queue statistics` Privileged EXEC mode command to display the queue statistics.

Syntax

```
show queue statistics [interface-id]
```

Parameters

- `interface-id`—Specifies an Ethernet port which queue statistics are displayed.

Default Configuration
N/A

Command Mode
Privileged EXEC mode

User Guidelines
Use the `show queue statistics interface-id` command to display the queue statistics of the given port.
Use the `show queue statistics` command to display the queue statistics of all ports.
Example

The following example displays queue statistics of Ethernet port gi2:

```
switchxxxxxx# show queue statistics gi2
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Queue</th>
<th>Tx Pkts</th>
<th>Tx Bytes</th>
<th>Tail Dropped Pkts</th>
<th>Tail Dropped Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi2</td>
<td>1</td>
<td>2700221</td>
<td>0</td>
<td>44543278</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>4</td>
<td>1850</td>
<td>257369</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>5</td>
<td>233017</td>
<td>50313150</td>
<td>12</td>
<td>10234</td>
</tr>
<tr>
<td>gi2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

40.38 show qos statistics

Use the `show qos statistics` Privileged EXEC mode command to display Quality of Service statistical information.

Syntax

```
show qos statistics
```

Parameters

N/A

Default Configuration

N/A

Command Mode

Privileged EXEC mode
User Guidelines

Use the `show qos statistics` command to display QoS statistics.

Up to 16 sets of counters can be enabled for policers. The counters can be enabled in the creation of the policers.

Example

The following example displays Quality of Service statistical information.

```
switchxxxxxx# show qos statistics
Policers

---------
Interface Policy Map Class Map
---------
Aggregate Policers

Name In-Profile Out-Profile
Bytes Bytes
--------- ----------------
Policer 756457 5427
```
RADIUS Commands

41.1 radius-server host

Use the radius-server host Global Configuration mode command to configure a RADIUS server host. Use the no form of the command to delete the specified RADIUS server host.

Syntax

radius-server host {ip-address | hostname} [auth-port auth-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key key-string] [priority priority] [usage {login | dot1.x | all}]

encrypted radius-server host {ip-address | hostname} [auth-port auth-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key encrypted-key-string] [priority priority] [usage {login | dot1.x | all}]

no radius-server host {ip-address | hostname}

Parameters

- ip-address—Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

- hostname—Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. (Length: 1–158 characters. Maximum label length of each part of the hostname: 63 characters)

- auth-port auth-port-number—Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. (Range: 0–65535)

- timeout timeout—Specifies the timeout value in seconds. (Range: 1–30)

- retransmit retries—Specifies the number of retry retransmissions (Range: 1–15)

- deadtime deadtime—Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

- key key-string—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter "".
(Length: 0–128 characters). If this parameter is omitted, the globally-configured radius key will be used.

- **key encrypted-key-string**—Same as key-string, but the key is in encrypted format.

- **priority priority**—Specifies the order in which servers are used, where 0 has the highest priority. (Range: 0–65535)

- **usage {login | dot1.x | all}**—Specifies the RADIUS server usage type. The possible values are:
 - **login**—Specifies that the RADIUS server is used for user login parameters authentication.
 - **dot1.x**—Specifies that the RADIUS server is used for 802.1x port authentication.
 - **all**—Specifies that the RADIUS server is used for user login authentication and 802.1x port authentication.

Default Configuration

The default authentication port number is 1812.

If **timeout** is not specified, the global value (set in the `radius-server timeout` command) is used.

If **retransmit** is not specified, the global value (set in the `radius-server retransmit` command) is used.

If **key-string** is not specified, the global value (set in the `radius-server key` command) is used.

If the **usage** keyword is not specified, the **all** argument is applied.

Command Mode

Global Configuration mode

User Guidelines

To specify multiple hosts, this command is used for each host.

Example

The following example specifies a RADIUS server host with IP address 192.168.10.1, authentication request port number 20, and a 20-second timeout period.

```
switchxxxxxx(config)# radius-server host 192.168.10.1 auth-port 20 timeout 20
```
41.2 radius-server key

Use the `radius-server key` Global Configuration mode command to set the authentication key for RADIUS communications between the device and the RADIUS daemon. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server key [key-string]
encrypted radius-server key [encrypted-key-string]
no radius-server key
```

Parameters

- `key-string`—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. (Range: 0–128 characters)
- `encrypted-key-string`—Same as the key-string parameter, but the key is in encrypted form.

Default Configuration

The key-string is an empty string.

Command Mode

Global Configuration mode

Example

The following example defines the authentication key for all RADIUS communications between the device and the RADIUS daemon.

```
switchxxxxxx(config)# radius-server key enterprise-server
```

41.3 radius-server retransmit

Use the `radius-server retransmit` Global Configuration mode command to specify the number of times the software searches the list of RADIUS server hosts. Use the no form of this command to restore the default configuration.
41. RADIUS Commands

41.4 radius-server host source-interface

Use the **radius-server host source-interface** Global Configuration mode command to specify the source interface whose IPv4 address will be used as the Source IPv4 address for communication with IPv4 RADIUS servers. Use the **no** form of this command to restore the default configuration.

Syntax

```
radius-server host source-interface interface-id
```  

Parameters

- **interface-id**—Specifies the source interface.

Syntax

```
radius-server retransmit retries
no radius-server retransmit
```  

Parameters

- **retransmit retries**—Specifies the number of retry retransmissions (Range: 1–15).

Default Configuration

The software searches the list of RADIUS server hosts 3 times.

Command Mode

Global Configuration mode

Example

The following example configures the number of times the software searches all RADIUS server hosts as 5.

```
switchxxxxxx(config)# radius-server retransmit 5
```
Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 RADIUS server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface vlan 100
```

41.5 radius-server host source-interface-ipv6

Use the `radius-server host source-interface-ipv6` Global Configuration mode command to specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 RADIUS servers. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server host source-interface-ipv6 interface-id
no radius-server host source-interface-ipv6
```

Parameters

- `interface-id`—Specifies the source interface.
Default Configuration

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 RADIUS server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface-ipv6 vlan 100
```

41.6 radius-server timeout

Use the `radius-server timeout` Global Configuration mode command to set how long the device waits for a server host to reply. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server timeout timeout-seconds
no radius-server timeout
```

Parameters

- `timeout timeout-seconds`—Specifies the timeout value in seconds. (Range: 1–30).
Default Configuration
The default timeout value is 3 seconds.

Command Mode
Global Configuration mode

Example
The following example sets the timeout interval on all RADIUS servers to 5 seconds.

```
switchxxxxxx(config)# radius-server timeout 5
```

41.7 radius-server deadtime

Use the `radius-server deadtime` Global Configuration mode command to configure how long unavailable RADIUS servers are skipped over by transaction requests. This improves RADIUS response time when servers are unavailable. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server deadtime 
defadtime
do radius-server deadtime
```

Parameters

```
- deadtime—Specifies the time interval in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000).
```

Default Configuration
The default deadtime interval is 0.

Command Mode
Global Configuration mode

Example
The following example sets all RADIUS server deadtimes to 10 minutes.

```
```
41.8 show radius-servers

Use the `show radius-servers` Privileged EXEC mode command to display the RADIUS server settings.

Syntax

`show radius-servers`

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server settings:

```
switchxxxxxx# show radius-servers

  IP address  Port Time     Dead   Auth Out Retransmission time Priority Usage
  ----------  ---- ----  ------------- ------ -------- ----- ----- ----- 
     172.16.1.1  1812 125   Global  Global 1        All     
     172.16.1.2  1812 101     8       Global 2        All     

Global values

  TimeOut: 3
  Retransmit: 3
  Deadtime: 0
  Source IPv4 interface: vlan 120
  Source IPv6 interface: vlan 10
```

41.9 show radius-servers key

Use the `show radius-servers key` Privileged EXEC mode command to display the RADIUS server key settings.
Syntax

show radius-servers key

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server key settings

```
switchxxxxxx# show radius-servers key
IP address         Key (Encrypted)  
--------------------
172.16.1.1          1238af77aaca17568f1298cced165fec
172.16.1.2          1238af77aaca17568f12988601fcabed

Global key (Encrypted)
----------------------
1238af77aaca17568f1298bc5476ddad
```
Rate Limit and Storm Control Commands

42.1 clear storm-control counters

To clear storm control counters, use the `clear storm-control counters` command in Privileged EXEC mode.

Syntax

`clear storm-control counters [broadcast | multicast | unicast] [interface interface-id]`

Parameters

- **broadcast**—(Optional) Clear Broadcast storm control counters.
- **multicast**—(Optional) Clear Multicast storm control counters.
- **unicast**—(Optional) Clear Unicast Unknown storm control counters.
- **interface interface-id**—(Optional) Clear storm control counters for the specified Ethernet port.

Command Mode

Privileged EXEC mode

User Guidelines

The switch clears the port counter of a given traffic type when storm control for this traffic type on this port is enabled.

Use this command to clear the storm control counters when storm control is running.

Use the `clear storm-control counters` command to clear all the storm control counters of all Ethernet ports.

Use the `clear storm-control counters interface interface-id` command to clear all the storm control counters of a given port.
Use the `clear storm-control counters broadcast | multicast | unicast` command to clear all storm control counters of a given traffic type of all Ethernet ports.

Use the `clear storm-control counters broadcast | multicast | unicast interface interface-id` command to clear one storm control counter of a given traffic type and of a given port.

Example

Example 1. The following example clears all storm control counters of all ports:

```bash
switchxxxxx# clear storm-control counters
```

Example 2. The following example clears all storm control counters of port gi1:

```bash
switchxxxxx# clear storm-control counters interface gi1
```

Example 3. The following example clears broadcast storm control counter of all ports:

```bash
switchxxxxx# clear storm-control counters broadcast
```

Example 4. The following example clears multicast storm control counter of port gi1:

```bash
switchxxxxx# clear storm-control counters multicast interface gi1
```

42.2 rate-limit (Ethernet)

To limit the incoming traffic rate on a port, use the `rate-limit` command in Interface (Ethernet) Configuration mode. To disable the rate limit, use the `no` form of this command.

Syntax

```
rate-limit committed-rate-kbps [burst committed-burst-bytes]
no rate-limit
```
Parameters

- **committed-rate-kbps**—Specifies the maximum number of kilobits per second of ingress traffic on a port. The range is 3–maximal port speed.

- **burst committed-burst-bytes**—(Optional) The burst size in bytes. (Range: 3000–19173960). If unspecified, defaults to 128K.

Default Configuration

Rate limiting is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

The Rate Limit does not calculate traffic controlled by Storm control. The real allowed rate will be sum of the rate specified by the command and the rates specified by the Storm control commands for particular traffic types.

Example

The following example limits the incoming traffic rate on gi1 to 150,000 kbps.

```bash
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# rate-limit 150000
```

42.3 **rate-limit vlan**

To limit the incoming traffic rate for a VLAN in, use the `rate-limit vlan` command in Global Configuration mode. To disable the rate limit, use the `no` form of this command.

Syntax

```
rate-limit vlan vlan-id committed-rate [burst committed-burst-bytes]
no rate-limit vlan vlan-id
```

Parameters

- **vlan-id**—Specifies the VLAN ID.
Rate Limit and Storm Control Commands

- **committed-rate**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3-57982058)
- **burst committed-burst**—(Optional) Specifies the maximum burst size (CBS) in bytes. (Range: 3000–19173960). If unspecified, defaults to 128K.

Default Configuration

Rate limiting is disabled.

Command Mode

Global Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Traffic policing in a policy map takes precedence over VLAN rate limiting. If a packet is subject to traffic policing in a policy map and is associated with a VLAN that is rate limited, the packet is counted only in the traffic policing of the policy map.

It does not work in conjunction with IP Source Guard.

Example

The following example limits the rate on VLAN 11 to 150000 kbps or the normal burst size to 9600 bytes.

```
switchxxxxxx(config)# rate-limit vlan 11 150000 burst 9600
```

42.4 **storm-control**

To enable broadcast, multicast, or unicast storm control on a port, use the `storm-control` command in Interface (Ethernet) Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
storm-control broadcast {level level | kbps kbps} [trap] [shutdown]
no storm-control broadcast
storm-control multicast [registered | unregistered] {level level | kbps kbps} [trap] [shutdown]
```

no storm-control multicast

storm-control unicast \{level level | kbps kbps\} [trap] [shutdown]

no storm-control unicast

no storm-control

Parameters

• broadcast—Enables broadcast storm control on the port.

• multicast [registered | unregistered]—Enables ether all multicast, only registered multicast, or only unregistered multicast storm control on the port.

• unicast—Enables unicast unknown storm control on the port.

• level level—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1-100)

• kbps kbps—Maximum of kilobits per second of Broadcast traffic on a port. (Range 1 – 10000000)

• trap—(Optional) Sends a trap when a storm occurs on a port. If the keyword is not specified the trap is not sent.

• shutdown—(Optional) Shut down a port when a storm occurs on the port. If the keyword is not specified extra traffic is discarded.

Default Configuration

Storm control is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

The rate limit on a port does not calculate traffic controlled by storm control on this port.

Use the no storm-control command to disable storm control of all traffic type on the port.

You can use the following commands to reset an interface shut down by Storm Control:

• The errdisable recovery reset command with the interface interface-id parameter to reset a given interface.
Rate Limit and Storm Control Commands

- The `errdisable recovery cause` with the `storm-control` parameter to automatically recover from the Storm Control error-disabled state.

Example

The following example enables broadcast, multicast, and unicast unknown storm control on port gi1 and multicast unregistered and unicast unknown on port gi2:

Enable group 1 for registered and unregistered multicast traffic on interface gi1. Extra traffic is discarded.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# storm-control broadcast kbps 10000 shutdown
switchxxxxxx(config-if)# storm-control multicast level 20 trap
switchxxxxxx(config-if)# storm-control unicast level 5 trap shutdown
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# storm-control multicast unregistered level 5 trap shutdown
switchxxxxxx(config-if)# storm-control unicast level 5 trap
switchxxxxxx(config-if)# exit
```

42.5 show rate-limit interface

To display rate limit configuration on an interface, use the `show rate-limit interface` command in Privileged EXEC mode.

Syntax

```
show rate-limit interface [interface-id]
```

Parameters

- `interface-id`—(Optional) Specifies an Ethernet port. If the argument is not configured rate limit configuration of all Ethernet ports is displayed.

Default Configuration

N/A
Command Mode
Privileged EXEC mode

Examples
The following is an example of the output from the `show rate-limit interface`:

```
switchxxxxxx> show rate-limit interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>Rate Limit (kbps)</th>
<th>Burst (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1gi2</td>
<td>80000</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>100000</td>
<td>1024</td>
</tr>
</tbody>
</table>
```

42.6 show rate-limit vlan

To display rate limit configuration on a VLAN, use the `show rate-limit vlan` command in Privileged EXEC mode.

Syntax
`show rate-limit vlan [vlan-id]`

Parameters
- `vlan-id`—(Optional) Specifies a VLAN ID. If the argument is not configured rate limit configuration of all VLANs is displayed.

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Examples
The following is an example of the output from the `show rate-limit vlan`:
42.7 show storm-control interface

To display storm control information of an interface, use the `show storm-control interface` command in Privileged EXEC mode.

Syntax

```
show storm-control interface [interface-id]
```

Parameters

- `interface-id`—(Optional) Specifies an Ethernet port. If the argument is not configured storm control information of all Ethernet ports is displayed.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Examples

The following is an example of the output from the `show storm-control interface`:

```
switchxxxxxx> show storm-control interface

gi1
    Broadcast
        Rate: 5%
        Action: Shutdown
```
Passed Counter (Bytes): 124997
Dropped Counter (Bytes): 10
Last drop time: 27-Jan-2014, 09:00:01

Multicast
Rate: 1000 kbps
Action: Drop, Trap
Passed Counter (Bytes): 112876
Dropped Counter (Bytes): 1272
Last drop time: 20-Jan-2014, 11:00:01

Unicast
Rate: 10%
Action: drop
Passed Counter (Bytes): 27653
Dropped Counter (Bytes): 1
Last drop time: 27-Feb-2014, 09:00:01

`gi2`

Broadcast
Rate: 5%
Action: Shutdown
Passed Counter (Bytes): 124997
Dropped Counter (Bytes): 0
Last drop time:

Multicast Unregistered
Rate: 5%
Action: Shutdown
Traffic Type: Broadcast
Passed Counter (Bytes): 124997
Dropped Counter (Bytes): 3
Last drop time: 26-Jan-2014, 10:00:01
43.1 rmon alarm

To configure alarm conditions, use the `rmon alarm` Global Configuration mode command. To remove an alarm, use the `no` form of this command.

Syntax

```
  rmon alarm index mib-object-id interval rising-threshold falling-threshold rising-event falling-event [type {absolute | delta}] [startup {rising | rising-falling | falling}] [owner name]
```

```
  no rmon alarm index
```

Parameters

- **index**—Specifies the alarm index. (Range: 1–65535)
- **mib-object-id**—Specifies the object identifier of the variable to be sampled. (Valid OID)
- **interval**—Specifies the interval in seconds during which the data is sampled and compared with rising and falling thresholds. (Range: 1–2147483647)
- **rising-threshold**—Specifies the rising threshold value. (Range: 0–2147483647)
- **falling-threshold**—Specifies the falling threshold value. (Range: 0–2147483647)
- **rising-event**—Specifies the index of the event triggered when a rising threshold is crossed. (Range: 0–65535)
- **falling-event**—Specifies the index of the event triggered when a falling threshold is crossed. (Range: 0–65535)
- **type {absolute | delta}**—(Optional) Specifies the method used for sampling the selected variable and calculating the value to be compared against the thresholds. The possible values are:
- **absolute**—Specifies that the selected variable value is compared directly with the thresholds at the end of the sampling interval.

- **delta**—Specifies that the selected variable value of the last sample is subtracted from the current value, and the difference is compared with the thresholds.

- **startup {rising | rising-falling | falling}**—(Optional) Specifies the alarm that may be sent when this entry becomes valid. The possible values are:
 - **rising**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated.
 - **rising-falling**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated. If the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.
 - **falling**—Specifies that if the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.

- **owner name**—(Optional) Specifies the name of the person who configured this alarm. (Valid string)

Default Configuration

The default method type is **absolute**.

The default startup direction is **rising-falling**.

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an alarm with index 1000, MIB object ID D-Link, sampling interval 360000 seconds (100 hours), rising threshold value 1000000, falling threshold value 1000000, rising threshold event index 10, falling threshold event index 10, absolute method type and rising-falling alarm.

```
switchxxxxxx(config)# rmon alarm 1000 1.3.6.1.2.1.2.2.1.10.1 360000 1000000 1000000 10 20
```
43.2 show rmon alarm-table

To display a summary of the alarms table, use the `show rmon alarm-table` Privileged EXEC mode command.

Syntax

```
show rmon alarm-table
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the alarms table.

```
switchxxxxxx#  show rmon alarm-table
Index   OID             Owner
-----   --------------   ------
1       1.3.6.1.2.1.2.2.1.10.1 CLI
2       1.3.6.1.2.1.2.2.1.10.1 Manager
3       1.3.6.1.2.1.2.2.1.10.9 CLI
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

43.3 show rmon alarm

To display alarm configuration, use the `show rmon alarm` Privileged EXEC mode command.
Syntax

```
show rmon alarm number
```

Parameters

- `alarm number`—Specifies the alarm index. (Range: 1–65535)

Command Mode

Privileged EXEC mode

Example

The following example displays RMON 1 alarms.

```
switchxxxxxx# show rmon alarm 1
Alarm 1
-------
OID: 1.3.6.1.2.1.2.2.1.10.1
Last sample Value: 878128
Interval: 30
Sample Type: delta
Startup Alarm: rising
Rising Threshold: 8700000
Falling Threshold: 78
Rising Event: 1
Falling Event: 1
Owner: CLI
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarm index.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
</tbody>
</table>

43.4 rmon event

To configure an event, use the `rmon event` Global Configuration mode command. To remove an event, use the `no` form of this command.

Syntax

```
rmon event index {none | log | trap | log-trap} [community text] [description text] [owner name]
no rmon event index
```
Remote Network Monitoring (RMON) Commands

Parameters

- **index**—Specifies the event index. (Range: 1–65535)
- **none**—Specifies that no notification is generated by the device for this event.
- **log**—Specifies that a notification entry is generated in the log table by the device for this event.
- **trap**—Specifies that an SNMP trap is sent to one or more management stations by the device for this event.
- **log-trap**—Specifies that an entry is generated in the log table and an SNMP trap is sent to one or more management stations by the device for this event.
- **community text**—(Optional) Specifies the SNMP community (password) used when an SNMP trap is sent. (Octet string; length: 0–127 characters). Note this must be a community used in the definition of an SNMP host using the “snmp-server host” command.
- **description text**—(Optional) Specifies a comment describing this event. (Length: 0–127 characters)
- **owner name**—(Optional) Specifies the name of the person who configured this event. (Valid string)

Default Configuration

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an event identified as index 10, for which the device generates a notification in the log table.

```
switchxxxxxx(config)# rmon event 10 log
```

43.5 show rmon events

To display the RMON event table, use the **show rmon events** Privileged EXEC mode command.
Remote Network Monitoring (RMON) Commands

Syntax

show rmon events

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the RMON event table.

```console
switchxxxxxx# show rmon events
Index Description Type Community Owner Last time sent
----- ----------- ------ ---------- ------ ------------------
1  Errors Log router CLI Jan 18 2006 23:58:17
2  High Log Manager Jan 18 2006 23:59:48
Broadcast Trap
```

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Unique index that identifies this event.</td>
</tr>
<tr>
<td>Description</td>
<td>Comment describing this event.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of notification that the device generates about this event. Can have the following values: none, log, trap, log-trap. In the case of log, an entry is made in the log table for each event. In the case of trap, an SNMP trap is sent to one or more management stations.</td>
</tr>
<tr>
<td>Community</td>
<td>If an SNMP trap is to be sent, it is sent with the SNMP community string specified by this octet string.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this event.</td>
</tr>
<tr>
<td>Last time sent</td>
<td>The time this entry last generated an event. If this entry has not generated any events, this value is zero.</td>
</tr>
</tbody>
</table>

43.6 show rmon log

To display the RMON log table, use the `show rmon log` Privileged EXEC mode command.
Remote Network Monitoring (RMON) Commands

Syntax

show rmon log [event]

Parameters

event—(Optional) Specifies the event index. (Range: 0–65535)

Command Mode

Privileged EXEC mode

Example

The following example displays event 1 in the RMON log table.

```
switchxxxxxx# show rmon log 1
Maximum table size: 500 (800 after reset)

Event       Description                                      Time
------------- ----------- ______________________________________
1            MIB Var.: 1.3.6.1.2.1.2.2.1.10.
             53, Delta, Rising,
             Actual Val: 800,
             Thres.Set: 100,
             Interval (sec): 1
```

43.7 rmon table-size

To configure the maximum size of RMON tables, use the rmon table-size Global Configuration mode command. To return to the default size, use the no form of this command.

Syntax

rmon table-size {history entries | log entries}

no rmon table-size {history | log}

Parameters

- history entries—Specifies the maximum number of history table entries. (Range: 20–32767)
• log entries—Specifies the maximum number of log table entries. (Range: 20–32767)

Default Configuration

The default history table size is 270 entries.
The default log table size is 200 entries.

Command Mode

Global Configuration mode

User Guidelines

The configured table size takes effect after the device is rebooted.

Example

The following example configures the maximum size of RMON history tables to 100 entries.

```
switchxxxxxx(config)# rmon table-size history 100
```

43.8 show rmon statistics

To display RMON Ethernet statistics, use the show rmon statistics Privileged EXEC mode command.

Syntax

```
show rmon statistics {interface-id}
```

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode
Example

The following example displays RMON Ethernet statistics for port gi1.

```
switchxxxxxx# show rmon statistics gi1
Port gi1
Dropped: 0
Octets: 0 Packets: 0
Broadcast: 0 Multicast: 0
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0 Oversize Pkts: 0
Fragments: 0 Jabbers: 0
64 Octets: 0 65 to 127 Octets: 1
128 to 255 Octets: 1 256 to 511 Octets: 1
512 to 1023 Octets: 0 1024 to max Octets: 0
```

The following table describes the significant fields displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped. It is the number of times this condition was detected.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets (including bad packets, broadcast packets, and multicast packets) received.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good packets received and directed to the broadcast address. This does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good packets received and directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>Total number of packets received with a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but with either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>Total number of packets received, less than 64 octets long (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
</tbody>
</table>
Remote Network Monitoring (RMON) Commands

43.9 rmon collection stats

To enable RMON MIB collecting history statistics (in groups) on an interface, use the `rmon collection stats` Interface Configuration mode command. To remove a specified RMON history group of statistics, use the `no` form of this command.

Syntax

```
rmon collection stats index [owner ownername] [buckets bucket-number] [interval seconds]
no rmon collection stats index
```
Parameters

- **index**—The requested group of statistics index. (Range: 1–65535)
- **owner** *ownername*—(Optional) Records the name of the owner of the RMON group of statistics. If unspecified, the name is an empty string. (Range: Valid string)
- **buckets** *bucket-number*—(Optional) A value associated with the number of buckets specified for the RMON collection history group of statistics. If unspecified, defaults to 50. (Range: 1–50)
- **interval** *seconds*—(Optional) The number of seconds in each polling cycle. If unspecified, defaults to 1800 (Range: 1–3600).

Command Mode

Interface Configuration mode.

43.10 show rmon collection stats

To display the requested RMON history group statistics, use the **show rmon collection stats** Privileged EXEC mode command.

Syntax

```
show rmon collection stats [interface-id]
```

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode
Example

The following example displays all RMON history group statistics.

```
switchxxxxxx# show rmon collection stats
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested</th>
<th>Granted</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gi1</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>CLI</td>
</tr>
<tr>
<td>1</td>
<td>gi1</td>
<td>1800</td>
<td>50</td>
<td>50</td>
<td>Manager</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The sampled Ethernet interface.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds between samples.</td>
</tr>
<tr>
<td>Requested Samples</td>
<td>The requested number of samples to be saved.</td>
</tr>
<tr>
<td>Granted Samples</td>
<td>The granted number of samples to be saved.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

43.11 show rmon history

To display RMON Ethernet history statistics, use the `show rmon history` Privileged EXEC mode command.

Syntax

```
show rmon history index {throughput | errors | other} [period seconds]
```

Parameters

- **index**—Specifies the set of samples to display. (Range: 1–65535)
- **throughput**—Displays throughput counters.
- **errors**—Displays error counters.
- **other**—Displays drop and collision counters.
Remote Network Monitoring (RMON) Commands

- **period seconds**—(Optional) Specifies the period of time in seconds to display. (Range: 1–2147483647)

Command Mode

Privileged EXEC mode

Example

The following examples display RMON Ethernet history statistics for index 1:

```
switchxxxxxx# show rmon history 1 throughput
Sample Set: 1          Owner: CLI
Interface: gi1          Interval: 1800
Requested samples: 50   Granted samples: 50
Maximum table size: 500

Time          Octets   Packets  Broadcast  Multicast  Util
-------------  --------  --------  ---------  --------  ----
Jan 18 2005 21:57:00  303595962  357568  3289  7287     19%
Jan 18 2005 21:57:30  287696304  275686  2789  5878     20%
```

```
switchxxxxxx# show rmon history 1 errors
Sample Set: 1          Owner: Me
Interface:gi1          Interval: 1800
Requested samples: 50   Granted samples: 50
Maximum table size: 500 (800 after reset)

Time          CRC  Align  Under  Oversize  Fragments  Jabbers
-------------  -----  -----  -----  ------  --------  ----
Jan 18 2005 21:57:00     1     1     0     49      0       
Jan 18 2005 21:57:30     1     1     0      27      0       
```
switchxxxxxx# show rmon history 1 other
Sample Set: 1 Owner: Me
Interface: gi1 Interval: 1800
Requested samples: 50 Granted samples: 50
Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Dropped</th>
<th>Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2005 21:57:00</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Jan 18 2005 21:57:30</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date and Time the entry is recorded.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets and excluding framing bits but including FCS octets) received on the network.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets (including bad packets) received during this sampling interval.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Number of good packets received during this sampling interval that were directed to the broadcast address.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Number of good packets received during this sampling interval that were directed to a multicast address. This number does not include packets addressed to the broadcast address.</td>
</tr>
<tr>
<td>Utilization</td>
<td>Best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.</td>
</tr>
<tr>
<td>CRC Align</td>
<td>Number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Undersize</td>
<td>Number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received during this sampling interval that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error), or a bad FCS with a non-integral number of octets (Alignment Error). It is normal for etherHistoryFragments to increment because it counts both runts (which are normal occurrences due to collisions) and noise hits.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources during this sampling interval. This number is not necessarily the number of packets dropped, it is the number of times this condition has been detected.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment during this sampling interval.</td>
</tr>
</tbody>
</table>
Router Resources Commands

44.1 show system resources

To display the currently used and max allowed entries for IP Entries, use the `show system resources` command in User EXEC mode.

Syntax

`show system resources`

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

User Guidelines

Use the `show system resources` command to display the currently used and the maximum allowed IP Entries.

IP entries include the following entry types:

<table>
<thead>
<tr>
<th>Logical Entity</th>
<th>Number of IP entries consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP host/Neighbor</td>
<td>1 entry per neighbor</td>
</tr>
<tr>
<td>IPv4 interface</td>
<td>2 entries per interface</td>
</tr>
<tr>
<td>IPv4 (Remote) Route</td>
<td>1 entries per route</td>
</tr>
<tr>
<td>IPv6 host/Neighbor</td>
<td>4 entries per neighbor</td>
</tr>
<tr>
<td>IPv6 interface</td>
<td>8 entries per interface</td>
</tr>
<tr>
<td>IPv6 On Link Prefix</td>
<td>4 entries per Prefix</td>
</tr>
<tr>
<td>IPv6 (Remote) Route</td>
<td>4 entries per route</td>
</tr>
</tbody>
</table>
Example

In the following example, per each type, the in use and max entries are displayed:

```
switchxxxxxx# show system resources

In-Use       Max
------  --------
IP Entries   10      500
```

RSA and Certificate Commands

Keys and Certificates

The device automatically generates default RSA/DSA keys and certificates at following times:

- When the device is booted with an empty configuration.
- When user-defined keys/certificates are deleted.

Some commands in this section are used to generate user-defined RSA/DSA keys and certificates that replace the default keys and are used by SSL and SSH server commands. Other commands can be used to import these keys from an external source.

These keys and certificates are stored in the configuration files.

The following table describes when these keys/certificates are displayed.

<table>
<thead>
<tr>
<th>File Type Being Displayed</th>
<th>What is Displayed in a Show Command Without Detailed</th>
<th>What is Displayed in a Show Command With Detailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined keys/certificates.</td>
<td>Option is not supported.</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user-defined)</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, or remote backup config. file)</td>
<td>Keys are displayed as they were copied. There is no distinction here between default and user-defined keys.</td>
<td>Option is not supported.</td>
</tr>
</tbody>
</table>
The following table describes how keys/certificates can be copied from one type of configuration file to another (using the `copy` command).

<table>
<thead>
<tr>
<th>Destination File Type</th>
<th>Copy from Running Config.</th>
<th>Copy from Startup Config.</th>
<th>Copy from Remote/Local Backup Config. File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config.</td>
<td>All keys/certificates are copied (but only user-defined ones can be displayed)</td>
<td>Option is not supported.</td>
<td>All keys/certificates present in this file are copied (*, **).</td>
</tr>
<tr>
<td>Running Config</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied (*).</td>
</tr>
<tr>
<td>Text-based CLI (local backup config. file, or remote backup config. file)</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>All keys/certificates present in this file are copied (**).</td>
</tr>
</tbody>
</table>

* If the Running Configuration file on the device contains default keys (not user-defined ones), the same default keys remain after reboot.

** In a text-based configuration file, there is no distinction between automatically-defined, default keys and user-defined keys.

Lists of Commands

45.1 crypto key generate dsa

The `crypto key generate dsa` Global Configuration mode command generates a DSA key pair for SSH Public-Key authentication.

Syntax

```plaintext
crypto key generate dsa
```

Parameters

N/A
Default Configuration
The application creates a default key automatically.

Command Mode
Global Configuration mode

User Guidelines
The size of the created DSA key is 1024 bits

DSA keys are generated in pairs - one public DSA key and one private DSA key.

If the device already has DSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

This command is not saved in the Running configuration file. However, the keys generated by this command are saved to the Running Configuration file.

See Keys and Certificates for information on how to display and copy this key pair.

Example
The following example generates a DSA key pair.

```
switchxxxxxx(config)# crypto key generate dsa
The SSH service is generating a private DSA key.
This may take a few minutes, depending on the key size.
..........
```

45.2 crypto key generate rsa
The `crypto key generate rsa` Global Configuration mode command generates RSA key pairs for SSH Public-Key Authentication.

Syntax

```
crypto key generate rsa
```
RSA and Certificate Commands

Parameters
N/A

Default Configuration
The application creates a default key automatically.

Command Mode
Global Configuration mode

User Guidelines
The size of the created RSA key is 2048 bits
RSA keys are generated in pairs - one public RSA key and one private RSA key.
If the device already has RSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.
Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.
This command is not saved in the Running configuration file. However, the keys generated by this command are saved to the Running Configuration file.
See Keys and Certificates for information on how to display and copy this key pair.

Example
The following example generates RSA key pairs where a RSA key already exists.

```
switchxxxxxx(config)# crypto key generate rsa
Replace Existing RSA Key [y/n]? N
switchxxxxxx(config)#
```

45.3 crypto key import

The crypto key import Global Configuration mode command imports the DSA/RSA key pair. Use the no form of the command to remove the user key and generate a new default in its place.
Syntax

crypto key import {dsa|rsa}
encrypted crypto key import {dsa|rsa}
no crypto key {dsa|rsa}

Parameters

N/A

Default Configuration

DSA and RSA key pairs do not exist.

Command Mode

Global Configuration mode

User Guidelines

The imported key must follow the format defined in RFC 4716
DSA key size for import is between 512 bits and 1024 bits
RSA key size for import is between 1024 bits and 2048 bits

DSA/RSA keys are imported in pairs - one public DSA/RSA key and one private DSA/RSA key.

If the device already has DSA/RSA key keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is saved in the Running Configuration file.

When using the encrypted key-word, the private key is imported in its encrypted form.

Example

switchxxxxxxxx(config)# encrypted crypto key import rsa
---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
switchxxxxxxxx(config)# encrypted crypto key import rsa
---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
Comment: RSA Private Key
84et9C2XufcRlpemuGINAygnLwfkKJcDM6m2OReALHScqqLhi0wMSSYNY1T1WF2PlkEVHH
Fpt1aECZi7HFGLcp1pMPzWjn+1aHxBtBqPDiEtbpScXrq6m1/1OEwmpFK2TrmUy0ifiwk8
E/mMFX3i/2rRZLkEBea5jrAr6Q62g15nawRwzKgOes+GNeibtvZYSk1jzr56LUr6fT7Xu5i
KMUCu2b2NsuSD57WBR/xOCW2elqDZl/bIA2gSgd6FfnW2HV48bTC55eCRkslD2MmjbExUdZ
+BQRhzjcGBMYp6HzkD66z8HmShOU+hKd7ML9U4Sr+Pr1vyWUJ1Ekg0g9O6aZ0Ibp4tgmm4
VDy/K/G/sI5nVL0+br81LFXUO/U5shohBcyRUFO2fHYY2RhT1PT5Rw+FHT6/+EXXG9E+TRs
1UADMtCRvs+1sB33IBdvoRRd198Ya2htZay1TkbbMQCUBdf10+74UOqa/b+bp67wCYKe9
yen418MaYKtcHJBQmF7sUQZQGP34VpmOMyZzon68S/ZoT77cy0ihRZx9wcid1lyYhJnDiyXP
dgXHYYhW6kCTcTj6LrUSQuxCJ9ssf92IWNN50wdgonLSpvfnavb2GHmmelaveL7J7/J7UcfO
61q5D4PjE76Vx2xL7PqyHXX931rseTzPuJpLkSLCFZ5uqTMSwWyyQEkmHD10x35vlGou5fky
9LgIwxGd+9edctZzagegq5cgjnsZWJgUoB4Bn4hireyOdHIdFUPRkoyhGOGnJuVxG9T9
K6BF1wBTdDQS+Gv47/0/qRoD/50q4sGkzqHsRJJ53WOT0Q1bHMTMLPwnn2NxzvQzWL/bu
QhZSsRonG6MX1cF7KT7T4TPq2w2k3TGTNBvVYHx6OoNcaTmg1N2s50gRsyX99tF++6nY
RfMN8CsV+9jQKQP72aGc8Ju+u727jySwppSr032HY+IpzZ4ujkK+/X5oawZL5NkaEQTQXK
RSL55S405NP0j/sP9h7GaVjyo2m7Q7HdpSUBeTIDT1vwC2skA9C6af/Axj2dXLweQd5
lxk7m0/mMNaiJnSN6y33LcuKjIxpRNNkJ9n9kzRfGnMfObprfenWKteDftjQ==
---- END SSH2 PRIVATE KEY ----
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NaClyc2EAAAABIBlAAAIeAvRHsKry6NMKXymb+yWE9p042vupLwVYq3ngt1sB9JH
OcdK/2nw7lCqguymLmsX8/bXMYXSX/3aBEvaoJQ82+r/nRf0y3HTy4Wp9v0S1VC8jLD+7
7t0aHrizefUhr0FReWwClNvYwr+nmrYDpS6FADMC2hVA85KZRe9ifx7otE=
---- END SSH2 PUBLIC KEY ----

45.4 show crypto key

The **show crypto key** Privileged EXEC mode command displays the device’s SSH private and public keys for both default and user-defined keys.

Syntax

```
show crypto key [mypubkey] [dsa| rsa]
```
Parameters

- `mypubkey`—Displays only the public key.
- `rsa`—Displays the RSA key.
- `dsa`—Displays the DSA key.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

See [Keys and Certificates](#) for information on how to display and copy this key pair.

Example

The following example displays the SSH public DSA keys on the device.

```bash
switchxxxxxx# show crypto key mypubkey dsa

---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABAlwAAAIEAzN31fu56KSE0ZdrGVPJHApAs8G8NDIkB
dqZ2qQPiKcnLp0xsk9tTVKaHZQ5jJbXn81QZpolaPLJlIH3B1cc96D7If
VkBvM7Rdz24dpuWmP3VLUlQy5nCKdDCu15KKVD6zj3gphLhMJo77AyAu5e
BrIi2IuMvJuak5M98=

---- END SSH2 PUBLIC KEY ----
```

45.5 crypto certificate generate

The **crypto certificate generate** Global Configuration mode command generates a self-signed certificate for HTTPS.
Syntax

crypto certificate number generate [key-generate [length]] [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country] [duration days]

Parameters

- **number**—Specifies the certificate number. (Range: 1–2)
- **key-generate rsa length**—Regenerates SSL RSA key and specifies the key length. (Supported lengths: 2048 (bits) or 3092 (bits))

The following elements can be associated with the key. When the key is displayed, they are also displayed.

- **cn common-name**—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
- **ou organization-unit**—Specifies the organization-unit or department name. (Length: 1–64 characters)
- **or organization**—Specifies the organization name. (Length: 1–64 characters)
- **loc location**—Specifies the location or city name. (Length: 1–64 characters)
- **st state**—Specifies the state or province name. (Length: 1–64 characters)
- **cu country**—Specifies the country name. (Length: 2 characters)
- **duration days**—Specifies the number of days a certification is valid. (Range: 30–3650)

Default Configuration

If the **key-generate** parameter is not used the certificate is generated using the existing key. The default SSL’s RSA key length is 2048.

The default SSL’s EC key length is 256.

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

If **duration days** is not specified, it defaults to 365 days.

Command Mode

Global Configuration mode
User Guidelines

If the specific certificate key does not exist, you must use the parameter `key-generate`.

If both certificates 1 and 2 have been generated, use the `ip https certificate` command to activate one of them.

See Keys and Certificates for information on how to display and copy this key pair.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

Example

The following example generates a self-signed certificate for HTTPS whose length is 2048 bytes.

```
switchxxxxxx(config)# crypto certificate 1 generate key-generate 2048
```

45.6 crypto certificate request

The `crypto certificate request` Privileged EXEC mode command generates and displays a certificate request for HTTPS.

Syntax

```
crypto certificate number request [cn common-name] [ou organization-unit] [or
organization] [loc location] [st state] [cu country]
```

Parameters

- `number`—Specifies the certificate number. (Range: 1–2)
- The following elements can be associated with the key. When the key is displayed, they are also displayed.
 - `cn common-name`—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
 - `ou organization-unit`—Specifies the organization-unit or department name. (Length: 1–64 characters)
 - `or organization`—Specifies the organization name. (Length: 1–64 characters)
 - `loc location`—Specifies the location or city name. (Length: 1–64 characters)
- **st state**—Specifies the state or province name. (Length: 1–64 characters)
- **cu country**—Specifies the country name. (Length: 2 characters)

Default Configuration

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

Command Mode

Privileged EXEC mode

User Guidelines

Use this command to export a certificate request to a Certification Authority. The certificate request is generated in Base64-encoded X.509 format.

Before generating a certificate request, first generate a self-signed certificate using the `crypto certificate generate` command to generate the keys. The certificate fields must be re-entered.

After receiving the certificate from the Certification Authority, use the `crypto certificate import` command to import the certificate into the device. This certificate replaces the self-signed certificate.

Example

The following example displays the certificate request for HTTPS.

```
switchxxxxxx# crypto certificate 1 request
-----BEGIN CERTIFICATE REQUEST-----
MIwTCCAsCAQAwYjELMAkGA1UEChMB.../fa8TF0n3
```
45.7 crypto certificate import

The `crypto certificate import` Global Configuration mode command imports a certificate signed by a Certification Authority for HTTPS. In addition, the relevant key-pair can also be imported.

Use the no form of the command to delete the user-defined keys and certificate.

Syntax

```
crypto certificate number import
encrypted crypto certificate number import
no crypto certificate number
```

Parameters

- `number`—Specifies the certificate number. (Range: 1–2).

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

Certificate needs to be imported from PEM encoding/file extension

To end the session (return to the command line to enter the next command), enter a blank line.

The imported certificate must be based on a certificate request created by the `crypto certificate request` command.

If only the certificate is imported, and the public key found in the certificate does not match the device's SSL key, the command fails. If both the public key and the certificate are imported, and the public key found in the certificate does not match the imported key, the command fails.

This command is saved in the Running configuration file.
When using the encrypted form of the command, only the private key must be in encrypted format.

See **Keys and Certificates** for information on how to display and copy this key pair.

Examples

Example 1 - The following example imports a certificate signed by the Certification Authority for HTTPS.

```
switchxxxxxx(config)# crypto certificate 1 import
```

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

```
-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUNQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMB
IDEVMBMGA1UEAxMMN4yMzQuMjA5MQowCAYDVQQKEwEgMQowCAYDVQQLEwEg
MIg5MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDK+beogIcke73sBSL7tC2DMrY
OOG9XMIAxfOiqlLQ2JHd4xP+BHGZwfwkJkJUDpZn52LxdDu1KrpB/h0+TZP0Fv38
7m1DqtnoF1NLsWxkVKRM5LPka0L/halpYxp7EWA75iDBzSw5s04lvbSN7oaGjFA
6t4SW2rrnDy8JbwjWQIDAQABAAwDQYJKoZIhvQCEBQAdgYEAuqYiINJst6hI
XFDxe7I8od3Uyt3Dm7KE/AmU0Pif2yUly/RuxRwKhp/L1GrK12tzLQz+s50x7
Klft/IcjbBYXLivi5ASWG3TRv2WVKyWs89rPPXu5hKxggEeTvWqpuS+gXrIjw
WVZd0nlFxHmacofignMemweIzmrqXBs= .
-----END CERTIFICATE-----
```

Certificate imported successfully.

```
Issued by : C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788
```

Example 2 - The following example imports a certificate signed by the Certification Authority for HTTPS, and the RSA key-pair.
switchxxxxxx(config)# crypto certificate 1 import

Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGLxkwBuZU1AQGh9Q1GIJskf7/MauGFqxt5vfDf77uQ5CPf49JWQuh07cVXh
20wr8hJqB6vLULJujiM9p11XFPmK8qR3NS7jZ1InYAYjHKKbEZBMsKSA6+tu/UzVxevKK6H
TGB7vMr+hlv1L9zygvmQ6+/6QfqA51c4nF/8a6nJo/ZOAgrvNAMKzNw2Wa+tGu0AgL0b/Z
11EoqczpC5mT7+V0PhsP04dUU+NwLvlYCb1Fb7MF0oa0+N+2Nw0Gp0px0vDA9ENY17qsZ
MWMnCfYu52/IxC7fD8FWxEbtks4V81Xqa7K6ET657xS7m8y7TFJLZyVawGKKn1Us6uTzhnW
dKWNc0e/vwMgPtL1WyxWynnaf0AJ+PawOAdk75bo79NBim3HCNVxHNfzqfg23AYCRBx
WuGoazpxH23s47+swmMztS0xI74ek4d37RacedGKljPqLhuxHUn07zlx15CUtP3sblH+1tXI
B3u4EEengYmewy50b1vnFSo+dt5JHuRzwEaRAIKfbHa34alVJaN+2AMCbohpI3IkreY0
A8Ik6UMOuIqAmnhYf+RyFQhPOqs01ppIPHKBGFT6pj39XMviyRxVsSp5+ElIhyPhe5jYaEn
UeOnV2RhNcvnruJAYXSlhjAp5iIqr1JiJb/mVt8+zpqcCu9HCQqMsMrNFOPFrSpbcHu5V4
X4jmd9tTJZmhekoQf1dwU2bfkRyRsK70s8u8u7BtpgRfSRUR7g0LfzhMusoDShN65pkC
q17yZnBeRSorUDGRLRfwjwmxjwObxyRfGMLp4=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVuFgfJYLbUzmbH6UcLD3esWHd1ZMXY4A3KLF2SXud1TIXq84aME8DItSfB2
Cqy4Q85inhAobBK969RvesUe2RzcNO4QDkJ2L9uKQOvFBNmbzhC7a+7043wFvMh+QOXf
TbnRdhIMvZJGBz1c91zGkylZ1xImCy0/nwSXDAgEj
-----END RSA PUBLIC KEY-----

-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBMGbabyIwZhUD3sMwHd1ZMXY4A3KLF2SXud1TIXq84aME8DItSfB2
Cqy4Q85inhAobBK969RvesUe2RzcNO4QDkJ2L9uKQOvFBNmbzhC7a+7043wFvMh+QOXf
TbnRdhIMvZJGBz1c91zGkylZ1xImCy0/nwSXDAgEj
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=

Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

Certificate imported successfully.
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key

switchxxxxxx(config)# encrypted crypto certificate 1 import

wJijj/tFEI/23GFkT15C+SFOeSyTxnSfsaNo9CoHJ6X9Jg1SukjtXU49kaUbtj0QVQatZ
AdQwqNM5mnjUaJ1mM3WfrApY7HaBL3iXS9jDVrf++Q/KkhVH6Pxlv6cKVYxHg43Um
CNI2n5zf9oisMH0U6gsIDs4ysWD1zNgoVQwD7RqKpL9wo3+YVFV6SXC7bPDb71pePefaa6
GD/crN28vTlGf/NpyKoHdAMRuwEoqapMo0Py2Cvyy+slqIV4Zkck1FP1sVYF7X7sh+zVa3
We84pmzyjGiY980tPdB5GhJ2xDNcqTyvUpffFEJYrdGKYbybDo0t3d/ioUQ3UJgxbDGByw
aLI1oavoSjyiWkdPjcbn5MVrdUSiApcQjXWv3MYC8GQ4Hda6UD6NaobUa1Uhqjt+REwWO
DXpJnvmmXT4/u5W4DpVElqTHYETxgKNEr107gR12yIIcybUokh+SP+XuRkG4IKnn8KyHz
XeoDojSe60YOQww2R0nAqnZsZPgrDzj0zJTDl8qvkyurfW4jWa4cv1SClhDEFT:HH7NDlJq
FkPFNakvFMcyidadpGRwc0m3JKLcEpNXpFEE3v1mCeyNlpPe6eSqMcBxa2VmbInutup
CZM927oxkb41g+lUs0xQxhMk7OeZTmfsf1fdLCmfqV0DH2NR4l+4KgqcsijWPQeYSzbB+FW
Qmy4fTF4wqdvCLY+wlvEplJWprdCnx1S1RWucNekrm9uf5zd1lFA9w8XSRJWuAq8q
zzFFmDMHptey9A02a1pjwPjOHPjKjCmdjHT9gugkF30eyeni19sGN6Y063IvkuRBy0nbWsa
J0srxvt3q6cbKJYoZMQE5LSqXLNVQ1H4BhtUz+LNgYBv3V5S18DrKrejBm9eaCyJsvLF
+yAI5xABzdTPqz107FMNzhIrVxQCcCXX+JbgP1PwyTfD0+m2H5vY8v6s37y7fZC9+5/Sn
Vf&jPTrLMWFGPvF9ULw9BAA7K42E3R5R1do0eUrXQXkuRxAHkkfD7bHR7ud0mTfp9
W3PQtJzbttjVMj5/5/hoC6oLNP6qf0TEn78EdfaHpmMmUtMF01eKuzizen2Q==

------END RSA PRIVATE KEY------

------BEGIN RSA PUBLIC KEY------

MIGJAsGAM0MoCkA+b9hTgrzEwWjdZe55F0wW8s5Mk5VpuRtve5r12p7hzIL6mvCCXk6J9c
kkT+TmWx63b95t3ayuPgwDhw3q5QkaqInzzuH7j2+A++mxCSuH1BhFNY/gmE9iG9f
puuknoTvBnvz7zVoxx6hw1UHMT0e0+QSbe7WwVAvMBAAE=

------END RSA PUBLIC KEY------

------BEGIN CERTIFICATE------

MIICHDCAYUCEFCCCI4/dhLsUhTWxOwzngMwDQYJKoZIhvcNAQEEBQAwwTzELMAkG
A1UEBhMCICACxJjAIByNVBAgTASACxJjAIByNVBAcTASAcEDAOBgNVBAMTbAzAuMC4w
LjAxCjAIByNVBAoTASACxJjAIByNVBAaTASAWhcNMT1wNTIxMTIlNzE2WhcNMTMw
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=router.gm.com, O= General Motors, OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key
encrypted crypto certificate 1 import

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----

wJIjj/tFEI/Z3GFkT15c+SFOesTyxnSfssNo9CoHj6X9Jg1SukjtUXU49kaUbTjoQVQatZ
AdQwqWM5mnjUhjaJ1MM3wrAfY7HaBL1sXS9jDVrf++/Q/KKhVH6Fx1v6cKvYzHg43Unm
CNI2n5zf9oisMH0U6gsIDsyWVD1zNgoVQwD7RqPgL9wo3+YVFVS6XCB7pDb7iPePefaba
GD/crN28vTLGf/NpyKoOhdAMRuweQOapMoOy2Cvy+sqLi4Z2Kck1FP1sVFV7X7sh+zVa3
We84pmyyjGlY980tpdBSGhJ2xDNcqTyrUpffEFJYrdbGBKybqD0o3t/D/ioUQ3UjgXBgyw
aLLiOaVSmjY1wKdpfcbn5MVrdU5iApCQXWv3MYC8GQ4HDa6UDN6aoUBalaUhqjT+REwWO
DXpJnmvXT/4/u5N4DvPrELqTHyETXqKNe107grl2yyLcybUohk+SP+XurkG4IKn8KHyhtz
XeoDojSe60YQww2R0nAgnZsZgrDrz10zTDL8qvykurfW4jWa4cv1SclhDEFlTh7NdDLjQ
FkPFNAILVMcYinidapGrwrc0m31KBLcEpNXpFEE3vlmCeyN1pe6eSgMcBxa2VmbInutuP
CZM927oxkb41g+U50YQxxGhM70EzTmfs1FdILcmfqv0DH2N41t4KgqcSjWYPQeYsZB+4FW
Qmy4TF4qdvCly+WlvePljWPbrdCNixIS13RWucNekrm9uf5zuhd1FA9w8xSwSJRjWuAaq8q
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
45.8 show crypto certificate

The `show crypto certificate` Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

Syntax

```
show crypto certificate [mycertificate] [number]
```

Parameters

- `number`—Specifies the certificate number. (Range: 1,2)
- `mycertificate`—Specifies that only the certificate will be displayed

Default Configuration

displays both keys.

Command Mode

Privileged EXEC mode

Examples

The following example displays SSL certificate # 1 present on the device and the key-pair.

```
switchxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
```

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

```

45.8 show crypto certificate

The `show crypto certificate` Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

Syntax

```
show crypto certificate [mycertificate] [number]
```

Parameters

- `number`—Specifies the certificate number. (Range: 1,2)
- `mycertificate`—Specifies that only the certificate will be displayed

Default Configuration

displays both keys.

Command Mode

Privileged EXEC mode

Examples

The following example displays SSL certificate # 1 present on the device and the key-pair.

```
switchxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
```

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

```

45.8 show crypto certificate

The `show crypto certificate` Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

Syntax

```
show crypto certificate [mycertificate] [number]
```

Parameters

- `number`—Specifies the certificate number. (Range: 1,2)
- `mycertificate`—Specifies that only the certificate will be displayed

Default Configuration

displays both keys.

Command Mode

Privileged EXEC mode

Examples

The following example displays SSL certificate # 1 present on the device and the key-pair.

```
switchxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
```

SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

```

-----END CERTIFICATE-----

-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGlXkwxBuU1AO9nhq91GJsnkf7/MauGPvqxt5vfDf77uQ5CPf49JWQhu07cVXh2
0wrBhJgB69vULujuJhM9Lp11Xvpmh8qR3NS7JzIInFvYAWj HawkKbE7BMskSAn6+t/uzVxevKK6H
TGB7vMxi-hvd1bL9zgyvmQ6+/68qRq51c4nP/8a6NjO/Z0AgvNAMKnc2WacGuOoaGqL0b/C
11e0qzCpq5m7+V0fRPS04dUU+NswLv1cCblFb7MfOaaON+y+Z0woGoP0pxOvDA9ENy17qS
MWhCFxU52/1xC7F8FwEXbks4V81Xga7K6ET657xS7m8yTJFL2JyVawGXXnIUs6TuZhhW
dKsWC0e/vwMgPtL1WyxWyonnaP0fAJ+PawOAdsK75bo79N8im3HcnNVXhWNzfqg2s3AYCRBx
WuGoazpxHZ0s4+7swmN2tSOxI4ek43d7RacedGKljPgLHuzXHoUon7zX15CUtP3sbH1+Xl
B3u4EEcEngYmewy50b1vnFSot+d5JHuRzwEaRAIKFbHa34alVJNa+2AMC8b0hpI3IkreYo
A8Lk6UMOuIqaMnhYf+RyFXhPQGQs01PpIFHKBGT6p39XMviyRxvSn5+sIEYpve5jYaEn
UeOnV2RhNCvnuJAYXSLhjApf5i1qRjJjB/mVt8+zpqcU9HCWqqsMrNF0FRSpcebHu5V4
X4jmd9tTJ2mhekoQf1dwU2BfYKRYsK70ps8u7BtpgRfSRUR7g0LfhzhzMuswoDSnB65pkC
q17y2nBeRs0zrUDgHLLRfzwjwmjxjmwObxYfGRMLp4=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVuFgfJYlBuZmbm6UcLD3ewHYd12MXJ4AKL2SUXUd1TIxQs84aME8DIitSB2
Cqy4QB5InhgAmhBKC96VRsUE2rzoNG4QDKj2L9ukQOvoFBYNmbzHc7a+a7043wFVmh+QOXf
TbnRDhIMvRZJGz1lc9IzGkly121Xmicy0/nwsXDAgEj
-----END RSA PUBLIC KEY-----

Issued by: www.verisign.com

Valid from: 8/9/2003 to 8/9/2004

Subject: CN= router.gm.com, 0= General Motors, C= US

Finger print: DC789788 DC88A988 1278978C BB789788
46.1  macro auto (Global)

The macro auto Global Configuration mode command sets the Auto Smartports administrative global state. The no format of the command returns to the default.

Syntax

    macro auto {enabled | disabled | controlled}

    no macro auto

Parameters

- **enabled**—Auto Smartport administrative global and operational states are enabled.
- **disabled**—Auto Smartport administrative global and operational states are disabled.
- **controlled**—Auto Smartport administrative global and operational states are enabled when Auto Voice VLAN is in operation.

Default Configuration

Administrative state is **controlled**.

Command Mode

Global Configuration mode

User Guidelines

Regardless of the status of Auto Smartport, you can always manually apply a Smartport macro to its associated Smartport type. A Smartport macro is either a built-in macro or a user-defined macro. You can define and apply a macro using the CLI commands presented in the Macro Commands section.

If the Auto Smartport Administrative state is controlled, the Auto Smartport Operational state is managed by the Voice VLAN manager and is set as follows:

- Auto Smartport Operational state is disabled when the OUI Voice VLAN is enabled.
• Auto Smartport Operational state is enabled when the Auto Voice VLAN is enabled. A user cannot enable Auto Smartport globally if the OUI Voice VLAN is enabled.

Example

This example shows an attempt to enable the Auto Smartport feature globally in the controlled mode. This is not possible because the OUI voice feature is enabled. The voice VLAN state is then disabled, after which Auto Smartports can be enabled. The appropriate VLANs are automatically enabled because the ports are configured for Auto Smartports on these VLANs.

```
switchxxxxxx(config)# macro auto controlled
switchxxxxxx(config)# macro auto enabled
Auto smartports cannot be enabled because OUI voice is enabled.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# macro auto enabled
```

```
10-Apr-2011 16:11:31 %LINK-I-Up: Vlan 20
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 5
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 6
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 7
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 8
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 9
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 10
```

46.2 macro auto built-in parameters

The macro auto built-in parameters Global Configuration mode command replaces the default Auto Smartport values of built-in Smartport macros. The no format of the command returns to the default values.

Syntax

```
macro auto built-in parameters smartport-type [parameter-name value [parameter-name value [parameter-name value]]]
no macro auto built-in parameters smartport-type
```
Parameters

- `smartport-type`—Smartport type (range: `printer`, `desktop`, `guest`, `server`, `host`, `ip_camera`, `ip_phone`, `ip_phone_desktop`, `switch`, `router` or wireless access point (`ap`)).

- `parameter-name value`—Specifies the parameter name and its value. These are the parameters of the built-in or user-defined macro defined in the `macro auto user smartport macro` command.

Default Configuration

The default value of parameter `$native_vlan` of the built-in Smartport macros is 1.

For other parameters, the default value is the parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

Command Mode

Global Configuration mode

User Guidelines

By default, each Smartport type is associated with a pair of built-in macros: a macro that applies the configuration and the anti macro (no macro) to remove the configuration. The Smartport types are the same as the name of the corresponding built-in Smartport macros, with the anti macro prefixed with `no_`.

The value of the parameter `$voice_vlan` cannot be changed by this command.

Example

To change the parameters of a built-in macro:

```bash
switchxxxxxx(config)# macro auto built-in parameters switch $native_vlan 2
```

46.3 `macro auto persistent`

The `macro auto persistent` Interface Configuration mode command sets the interface as a Smartport persistent interface. The `no` format of the command returns it to default.

Syntax

`macro auto persistent`
no macro auto persistent

Parameters
This command has no parameters or keywords.

Default Configuration
Persistent is set.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
A Smartport’s persistent interface retains its dynamic configuration in the following cases:
link down/up, the attaching device ages out, and reboot. Note that for persistence and the
Smartport configuration to be effective across reboot, the Running Configuration file must be
saved to the Startup Configuration file.

Example
The example establishes two port ranges and makes one persistent and the other not.

```
switchxxxxxx(config)# interface range gi1-2
switchxxxxxx(config-if-range)# macro auto persistent
switchxxxxxx(config-if-range)# exit
switchxxxxxx(config)# interface range gi3-4
switchxxxxxx(config-if-range)# no macro auto persistent
```

46.4 macro auto processing cdp

The macro auto processing cdp Global Configuration mode command enables using CDP
capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch
automatically applies the corresponding Smartport type to the interface based on the CDP
capabilities advertised by the attaching device(s).

The no format of the command disables the feature.
**46.5 macro auto processing lldp**

The **macro auto processing lldp** Global Configuration mode command enables using the LLDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the LLDP capabilities advertised by the attaching device(s).

The **no** format of the command disables the feature.

**Syntax**

```plaintext
macro auto processing lldp
no macro auto processing lldp
```

**Parameters**

This command has no parameters or keywords.
Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

To enable LLDP globally:

```
switchxxxxxx(config)# macro auto processing lldp
```

46.6  macro auto processing type

The `macro auto processing type` Global Configuration mode command enables or disables automatic detection of devices of given type. The no format of the command returns to the default.

Syntax

```
macro auto processing type smartport-type {enabled | disabled}
no macro auto processing type smartport-type
```

Parameters

- `smartport-type`—Smartport type (range: `host`, `ip_phone`, `ip_phone_desktop`, `switch`, `router` or wireless access point (`ap`)).

Default Configuration

By default, auto detection of `ip_phone`, `ip_phone_desktop`, `switch`, and wireless access point (`ap`) is enabled.

Command Mode

Global Configuration mode

Example
In this example, automatic detection of wireless access points (ap) is enabled.

```
switchxxxxxx(config)# macro auto processing type ?
 host set type to host
 ip_phone set type to ip_phone
 ip_phone_desktop set type to ip_phone_desktop
 switch set type to switch
 router set type to router
 ap set type to access point
```

```
switchxxxxxx(config)# macro auto processing type ap enabled
```

46.7 macro auto resume

The `macro auto resume` Interface Configuration mode command changes the Smartport type from `unknown` to `default` and resumes the Smartport feature on a given interface (but does not reapply the Smartport macro; this is done by the `macro auto trunk refresh` command).

**Syntax**

`macro auto resume`

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

None

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

When a Smartport macro fails at an interface, the Smartport type of the interface becomes **Unknown**. You must diagnose the reason for the failure on the interface and/or Smartport macro, and correct the error. Before you or Auto Smartport are allowed to reapply the desired Smartport macro, you must reset the interface using the `macro auto built-in parameters` command, which changes the Smartport type of the interface to **default**.
Example

Changes the Smartport type from **unknown** to **default** and resumes the Smartport feature on port 1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# macro auto resume
```

### 46.8 **macro auto smartport** (Interface)

The **macro auto smartport** Interface Configuration mode command enables the Auto Smartport feature on a given interface. The **no** format of the command disables the feature on the interface.

**Syntax**

- `macro auto smartport`
- `no macro auto smartport`

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

Enabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

This command is effective only when Auto Smartport is globally enabled.

**Example**

Enables the Auto Smartport feature on port 1:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# macro auto smartport
```
46.9 macro auto smartport type

The **macro auto smartport type** Interface Configuration mode command manually (statically) assigns a Smartport type to an interface. The **no** format of the command removes the manually-configured type and returns it to **default**.

**Syntax**

```
macro auto smartport type smartport-type [parameter-name value [parameter-name value [parameter-name value]]]
```

```
no macro auto smartport type
```

**Parameters**

- **smartport-type**—Smartport type.
- **parameter-name value**—Specify the parameter name and its value (Range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

**Default Configuration**

```
parameter-name value—Parameter default value. For instance, if the parameter is the voice VLAN, the default value is the default voice VLAN.
```

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

A static type set by the command cannot be changed by a dynamic type.

**Example**

This example shows an attempt to set the Smartport type of port 1 to printer (statically). The macro fails at line 10. The **show parser macro** command is run to display the contents of the macro printer in order to see which line failed.

```
switchxxxxxxx(config)# interface gi1
switchxxxxxxx(config-if)# macro auto smartport type printer
30-May-2011 15:02:45 %AUTOSMARTPORT-E-FAILEDMACRO: Macro printer for auto smartport type Printer on interface gi1 failed at command number 10
```
switchxxxxxx(config-if)# exit

switchxxxxxx(config)# do show parser macro name printer

Macro name: printer
Macro type: default interface
1. #macro description printer
2. #macro keywords $native_vlan
3. #
4. #macro key description: $native_vlan: The untag VLAN which will be configured on the port
5. #Default Values are
6. #$$native_vlan = Default VLAN
7. #
8. #the port type cannot be detected automatically
9. #
10. switchport mode access
11. switchport access vlan $native_vlan
12. #
13. #single host
14. port security max 1
15. port security mode max-addresses
16. port security discard trap 60
17. #
18. smartport storm-control broadcast level 10
19. smartport storm-control include-multicast
20. smartport storm-control broadcast enable

switchxxxxxx(config)#

## 46.10 macro auto trunk refresh

The **macro auto trunk refresh** Global Configuration command reapplies the Smartport macro on a specific interface, or to all the interfaces with the specified Smartport type.
Syntax

**macro auto trunk refresh** [smartport-type] [interface-id]

Parameters

- **smartport-type**—Smartport type (**switch**, **router**, wireless access point (**ap**))
- **interface-id**—Interface Identifier (port or port channel).

Default Configuration

See User Guidelines.

Command Mode

Global Configuration mode

User Guidelines

The **macro auto smartport** command becomes effective only when the Auto Smartport is globally enabled.

If both **smartport-type** and **interface-id** are defined, the attached Smartport macro is executed on the interface if it has the given Smartport type.

If only **smartport-type** is defined, the attached Smartport macro is executed on all interfaces having the given Smartport type.

If only **interface-id** is defined then the corresponding attached Smartport macro is executed if the interface has one of the following Smartport types: **switch**, **router** or wireless access point (**ap**).

If a Smartport macro contains configuration commands that are no longer current on one or more interfaces, you can update their configuration by reapplying the Smartport macro on the interfaces.

Example

Adds the ports of Smartport type **switch** to all existing VLANs by running the associated Smartport macros.

```
switchxxxxxx(config)# macro auto trunk refresh switch
```
46.11  macro auto user smartport macro

The **macro auto user smartport macro** Global Configuration mode command links user-defined Smartport macros to a Smartport type. This is done by replacing the link to the built-in macro with the link to the user-defined macro. The **no** format of the command returns the link to the default built-in Smartport macro.

**Syntax**

```
macro auto user smartport macro smartport-type user-defined-macro-name
[parameter-name value [parameter-name value [parameter-name value]]]
no macro auto user smartport macro smartport-type
```

**Parameters**

- **smartport-type**—Smartport type (range: *printer*, *desktop*, *guest*, *server*, *host*, *ip_camera*, *ip_phone*, *ip_phone_desktop*, *switch*, *router* or wireless access point (*ap*)).
- **user-defined-macro-name**—Specifies the user-defined macro name that replaces the built-in Smartport macro.
- **parameter-name value**—Specifies the parameter name and its value in the user-defined macro.

**Default Configuration**

**parameter-name value**—Parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

**Command Mode**

Global Configuration mode

**User Guidelines**

The scope of each parameter is the macro in which it is defined, with the exception of the parameter **$voice_vlan**, which is a global parameter and its value is specified by the switch and cannot be defined in a macro.

The macros must be defined before linking them in this command.

Smartport macros must be disconnected from the Smartport type before removing them (using the **no** version of this command).
To associate a Smartport type with a user-defined macros, you must have defined a pair of macros: one to apply the configuration, and the other (anti macro) to remove the configuration. The macros are paired by their name. The name of the anti macro is the concatenation of `no_` with the name of the corresponding macro. Please refer to the Macro Command section for details about defining macro.

**Example**

To link the user-defined macro: `my_ip_phone_desktop` to the Smartport type: `ip_phone_desktop` and provide values for its two parameters:

```
switchxxxxxx(config)# macro auto user smartport macro ip_phone_desktop
my_ip_phone_desktop $p1 1 $p2 2
```

### 46.12 show macro auto ports

The `show macro auto ports` EXEC mode command displays information about all Smartport ports or a specific one. If a macro was run on the port and it failed, the type of the port is displayed as Unknown.

**Syntax**

```
show macro auto ports [interface-id | detailed]
```

**Parameters**

- `interface-id`—Interface Identifier (Ethernet interface, port channel)
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Information about all ports is displayed.

**Command Mode**

User EXEC mode

**Examples**

**Example 1**—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.

```
switchxxxxxx# show macro auto ports
```
Smartport is enabled
Administrative Globally Auto Smartport is enabled
Operational Globally Auto Smartport is enabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Auto Smartport</th>
<th>Persistent State</th>
<th>Smartport Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin State</td>
<td>State</td>
<td></td>
</tr>
<tr>
<td>g1</td>
<td>disabled</td>
<td>enabled</td>
<td>router(static)</td>
</tr>
<tr>
<td>g2</td>
<td>disabled</td>
<td>enabled</td>
<td>switch</td>
</tr>
<tr>
<td>g3</td>
<td>enabled</td>
<td>enabled</td>
<td>default</td>
</tr>
<tr>
<td>g4</td>
<td>enabled</td>
<td>enabled</td>
<td>phone</td>
</tr>
</tbody>
</table>

**Example 2**—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.

```
switchxxxxxx# show macro auto ports
```

Smartport is enabled
Administrative Globally Auto Smartport is disabled
Operational Globally Auto Smartport is disabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Auto Smartport</th>
<th>Persistent State</th>
<th>Smartport Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin State</td>
<td>State</td>
<td></td>
</tr>
<tr>
<td>g1</td>
<td>disabled</td>
<td>enabled</td>
<td>router(STATIC)</td>
</tr>
<tr>
<td>g2</td>
<td>disabled</td>
<td>enabled</td>
<td>switch</td>
</tr>
<tr>
<td>g3</td>
<td>enabled</td>
<td>enabled</td>
<td>default</td>
</tr>
<tr>
<td>g4</td>
<td>enabled</td>
<td>enabled</td>
<td>phone</td>
</tr>
</tbody>
</table>
**Example 3**—Disabling auto SmartPort on gi2:

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# no macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi2
SmartPort is Enabled
Administrative Globally Auto SmartPort is controlled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is disabled on gi2
Persistent state is not-persistent
Interface type is default
No macro has been activated
```

**Example 4**—Enabling auto SmartPort on gi1:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi1
SmartPort is Enabled
Administrative Globally Auto SmartPort is enabled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is enabled on gi1
Persistent state is persistent
Interface type is switch
Last activated macro is switch
```

### 46.13 show macro auto processing

The `show macro auto processing` EXEC mode command displays information about which protocols (CDP/LLDP) are enabled and which device types can be detected automatically.
Syntax

show macro auto processing

Parameters

This command has no parameters or keywords.

Default Configuration

None

Command Mode

User EXEC mode

Example

switchxxxxxx# show macro auto processing
CDB: enabled
LLDP: enabled
host : disabled
ip_phone : enabled
ip_phone_desktop: enabled
switch : enabled
router : disabled
ap : enabled

46.14 show macro auto smart-macros

The show macro auto smart-macros EXEC mode command displays the name of Smartport macros, their type (built-in or user-defined) and their parameters. This information is displayed for all Smartport types or for the specified one.

Syntax

show macro auto smart-macros [smartport-type]
Parameters

- `smartport-type`—Smartport type (range: `printer`, `desktop`, `guest`, `server`, `host`, `ip_camera`, `ip_phone`, `ip_phone_desktop`, `switch`, `router` or wireless access point (ap)).

Default Configuration

None

Command Mode

User EXEC mode

Example

```bash
switchxxxxxx# show macro auto smart-macros
SG300-52-R#show macro auto smart-macros
SmartPort type : printer
Parameters : $native_vlan=1
SmartPort Macro: printer (Built-In)
SmartPort type : desktop
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: desktop (Built-In)
SmartPort type : guest
Parameters : $native_vlan=1
SmartPort Macro: guest (Built-In)
SmartPort type : server
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: server (Built-In)
SmartPort type : host
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: host (Built-In)
SmartPort type : ip-camera
Parameters : $native_vlan=1
SmartPort Macro: ip_camera (Built-In)
SmartPort type : ip-phone
```
Parameters     : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone (Built-In)
SmartPort type : ip-phone-desktop
Parameters     : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone_desktop (Built-In)
SmartPort type : switch
Parameters     : $native_vlan=1 $voice_vlan=1
SmartPort Macro: switch (Built-In)
SmartPort type : router
Parameters     : $native_vlan=1 $voice_vlan=1
SmartPort Macro: router (Built-In)
SmartPort type : ap
Parameters     : $native_vlan=1 $voice_vlan=1
SmartPort Macro: ap (Built-In)

46.15 smartport storm-control

To enable broadcast, multicast, or unicast storm control on an interface, use the storm-control command in Interface (Ethernet, Port Channel) Configuration mode. To return to default, use the no form of this command.

Syntax

smartport storm-control broadcast {level level | kbps kbps} [trap] [shutdown]
o smartport storm-control broadcast
smartport storm-control multicast [registered | unregistered] {level level | kbps kbps} [trap] [shutdown]
o smartport storm-control multicast
smartport storm-control unicast {level level | kbps kbps} [trap] [shutdown]
o smartport storm-control unicast
o smartport storm-control

SG300-52-R#
Parameters

- **broadcast**—Enables broadcast storm control on the port.

- **multicast [registered | unregistered]**—Enables ether all multicast, only registered multicast, or only unregistered multicast storm control on the port.

- **unicast**—Enables unicast unknown storm control on the port.

- **level level**—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1-100)

- **kbps kbps**—Maximum of kilobits per second of Broadcast traffic on a port. (Range 1 – 1000000)

- **trap**—(Optional) Sends a trap when a storm occurs on a port. If the keyword is not specified the trap is not sent.

- **shutdown**—(Optional) Shut down a port when a storm occurs on the port. If the keyword is not specified extra traffic is discarded.

Default Configuration
Storm control is disabled.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

Examples

**Example 1** - Set the maximum number of kilobits per second of Broadcast traffic on port 1 to 10000.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# smartport storm-control broadcast kbps 10000
```

**Example 2** - Set the maximum percentage of kilobits per second of Broadcast traffic on port 1 to 30%.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# smartport storm-control broadcast level 30
```
47.1 monitor session destination

To create a new Switched Port Analyzer (SPAN) destination session, use the `monitor session destination` command in Global Configuration mode. To remove a destination session, use the `no` form of the command.

**Syntax**

```
monitor session session_number destination interface interface-id [network]
no monitor session session_number destination
```

**Parameters**

- `session_number`—Specify the session number identified with the SPAN session. The range is 1 to 7.
- `interface interface-id`—Specify the destination interface for the SPAN session (Ethernet port).
- `network`—Specify that the destination port acts also as a network port.

**Default Configuration**

No SPAN sessions are configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `monitor session session_number destination interface interface-id`, to create a SPAN destination session to copy traffic to a destination port.
A destination port cannot be a source port.

If the `network` keyword is not defined only mirrored traffic sent on a destination port and all input traffic is discard and a value of DOWN is advertised as its operational status to all applications running on it.

A destination port configured without the `network` keyword has the following limitations:

- 802.1x cannot be enabled on the port.

A port cannot be configured as destination port with the `network` keyword if it belongs to the source VLAN.

Please, do not add the destination port to the source VLAN.

Mirrored traffic is sent to queue number 1 of the destination port.

Use the `no monitor session session_number destination` command to remove one destination session.

**Example**

**Example.** The following example configures a SPAN session consisting from 3 source and one destination session. The first source session copies traffic for both directions from the source port `gi2`, the second source session copies bridges traffic from VLAN 100, and the third source session copies traffic for received on the source port `gi3`. The destination session defines port `gi1` as the destination port.

```
switchxxxxxx(config)# monitor session 1 source interface gi2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 source interface gi3 rx
switchxxxxxx(config)# monitor session 1 destination interface gi1
```

### 47.2 monitor session source

To create a new Switched Port Analyzer (SPAN) source session, use the `monitor session source` command in Global Configuration mode. To remove a source session, use the `no` form of the command.

**Syntax**

```
monitor session session_number source {interface interface-id [both | rx | tx]} | {vlan vlan-id}
```
no monitor session session_number source [{interface interface-id} | {vlan vlan-id}]

Parameters

- **session_number**—Specify the session number identified with the SPAN session. The range is 1 to 7.
- **interface interface-id**—Specify the source interface for a SPAN session (Ethernet port).
- **both, rx, tx**—Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both transmitted and received traffic.
- **vlan vlan-id**—Specify the SPAN source interface as a VLAN ID. In this case only a value of 1 is allowed for the session_number argument.

Default Configuration

No SPAN sessions are configured.

Command Mode

Global Configuration mode

User Guidelines

Use the **monitor session session_number source interface interface-id [both | rx | tx]** command, to create a SPAN start source session to monitor traffic that enters or leaves a source port.

Use the **monitor session session_number source vlan vlan-id** command, to create a SPAN source session to monitor traffic that bridged into a source VLAN.

A SPAN session consists from up to 8 sources and one destination with the same session number.

Each **monitor session source** command defines one source port or VLAN. Different **monitor session source** commands must define different sources. A new command with the same session number and the same source overrides the previous defined one.

Up to 8 sources can be defined in one session.

If a packet is mirrored by both the port-based ingress mirroring mechanism, and one of the other ingress mirroring mechanisms, the selected session is the one with the higher session number.
All definitions of different source ports for the same source session must be of the same type: SPAN.

A source port cannot be a destination port.

Use the `no monitor session session_number source {interface interface-id} | {vlan vlan-id}` command to remove one source.

Use the `no monitor session session_number source` command to remove all sources ports of the given source session.

**Example**

**Example.** The following example configures a SPAN session consisting from 3 source and one destination session. The first source session copies traffic for both directions from the source port `gi2`, the second source session copies bridges traffic from VLAN 100, and the third source session copies traffic for received on the source port `gi3`. The destination session defines port `gi1` as the destination port.

```
switchxxxxxx(config)# monitor session 1 source interface gi2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 source interface gi3 rx
switchxxxxxx(config)# monitor session 1 destination interface gi1
```

### 47.3 show monitor session

To display information about Switched Port Analyzer (SPAN) sessions on the switch, use the `show monitor` command in User EXEC mode.

**Syntax**

```
show monitor session [session_number]
```

**Parameters**

- `session_number`—Specify the session number identified with the SPAN session. The range is 1 to 7. If the argument is not defined information about all sessions are displayed.
Default Configuration

This command has no default settings.

Command Mode

User EXEC mode

User Guidelines

Use the `show monitor session session_number` command to display information about one session.

Use the `show monitor session` command to display information about all sessions

Example

Example. The following example displays information about all SPAN sessions defined into the switch:

```
switchxxxxxx> show monitor session

Session 1
 Type: SPAN
 Source: gi2, rx only
 Source: VLAN 100
 Destination: gi1, network port

Field Definitions:

- **Type**—The type of the session.
- **Source**—A source of the session. The following options are supported:
 - Source: `interface-id, traffic-direction(rx only, tx only, or both)`
 The Source is an interface.
 - Source: `vlan vlan-id`
 The Source is a VLAN.
- **Destination**—A destination of the session. The following options are supported:
- Destination: `interface-id`

 The Destination is an interface, regular forwarding on the interface is not supported.

- Destination: `interface-id, network`

 The Destination is an interface, regular forwarding on the interface is supported.
Spanning-Tree Commands

48.1 spanning-tree

Use the `spanning-tree` Global Configuration mode command to enable spanning-tree functionality. Use the `no` form of this command to disable the spanning-tree functionality.

Syntax

```
spanning-tree
no spanning-tree
```

Parameters

N/A

Default Configuration

Spanning-tree is enabled.

Command Mode

Global Configuration mode

Example

The following example enables spanning-tree functionality.

```
switchxxxxxx(config)# spanning-tree
```

48.2 spanning-tree mode

Use the `spanning-tree mode` Global Configuration mode command to select which Spanning Tree Protocol (STP) protocol to run. Use the `no` form of this command to restore the default configuration.
Spanning-Tree Commands

Syntax

`spanning-tree mode {stp | rstp | mst}`

`no spanning-tree mode`

Parameters

- **stp**—Specifies that STP is enabled.
- **rstp**—Specifies that the Rapid STP is enabled.
- **mst**—Specifies that the Multiple STP is enabled.

Default Configuration

The default is RSTP.

Command Mode

Global Configuration mode

User Guidelines

In the RSTP mode, the device uses STP on a port, when the neighbor device uses STP.

In the MSTP mode, the device uses RSTP when the neighbor device uses RSTP, and uses STP when the neighbor device uses STP.

Examples

The following example enables MSTP.

```
switchxxxxxx(config)# spanning-tree mode mst
```

48.3 `spanning-tree forward-time`

Use the `spanning-tree forward-time` Global Configuration mode command to configure the spanning-tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

`spanning-tree forward-time seconds`
no spanning-tree forward-time

Parameters

- `seconds`—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

Default Configuration

15 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the forwarding time, the following relationship should be maintained:

\[2 \times \text{(Forward-Time - 1)} \geq \text{Max-Age} \]

Example

The following example configures the spanning tree bridge forwarding time to 25 seconds.

```
switchxxxxxx(config)# spanning-tree forward-time 25
```

48.4 spanning-tree hello-time

Use the `spanning-tree hello-time` Global Configuration mode command to configure how often the device broadcasts Hello messages to other devices. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree hello-time seconds
```

```
o spanning-tree hello-time
```

Parameters

- `seconds`—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)
Default Configuration

2 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the Hello time, the following relationship should be maintained:

Max-Age >= 2*(Hello-Time + 1)

Example

The following example configures the spanning-tree bridge hello time to 5 seconds.

```
switchxxxxxx(config)# spanning-tree hello-time 5
```

48.5 spanning-tree max-age

Use the `spanning-tree max-age` Global Configuration mode command to configure the STP maximum age. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree max-age seconds
```

```
no spanning-tree max-age
```

Parameters

- `seconds`—Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)

Default Configuration

The default maximum age is 20 seconds.

Command Mode

Global Configuration mode
User Guidelines

When configuring the maximum age, the following relationships should be maintained:

\[2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age} \]
\[\text{Max-Age} \geq 2 \times (\text{Hello-Time} + 1) \]

Example

The following example configures the spanning-tree bridge maximum age to 10 seconds.

```
switchxxxxxx(config)# spanning-tree max-age 10
```

48.6 spanning-tree priority

Use the `spanning-tree priority` Global Configuration mode command to configure the device STP priority, which is used to determine which bridge is selected as the root bridge. Use the `no` form of this command to restore the default device spanning-tree priority.

Syntax

```
spanning-tree priority priority
no spanning-tree priority
```

Parameters

- `priority`—Specifies the bridge priority. (Range: 0–61440)

Default Configuration

Default priority = 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree. When more than one switch has the lowest priority, the switch with the lowest MAC address is selected as the root.
Example

The following example configures the spanning-tree priority to 12288.

```
switchxxxxxx(config)# spanning-tree priority 12288
```

48.7 spanning-tree disable

Use the `spanning-tree disable` Interface (Ethernet, Port Channel) Configuration mode command to disable the spanning tree on a specific port. Use the `no` form of this command to enable the spanning tree on a port.

Syntax

```
spanning-tree disable
no spanning-tree disable
```

Parameters

`spanning-tree disable`

N/A

Default Configuration

Spanning tree is enabled on all ports.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables the spanning tree on gi5

```
switchxxxxxx(config)# interface gi5
switchxxxxxx(config-if)# spanning-tree disable
```
48.8 spanning-tree cost

Use the `spanning-tree cost` Interface (Ethernet, Port Channel) Configuration mode command to configure the spanning-tree path cost for a port. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree cost cost
no spanning-tree cost
```

Parameters

- `cost`—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by port speed and path cost method (long or short) as shown below.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>Half the default cost based on Port-channel interface speed</td>
<td>Half the default cost based on Port-channel interface speed</td>
</tr>
<tr>
<td>TenGigabit Ethernet (10000 Mbps)</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Fast Ethernet (100 Mbps)</td>
<td>200,000</td>
<td>19</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures the spanning-tree cost on gi15 to 35000.

```
switchxxxxxx(config)# interface gi15
```
48.9 spanning-tree port-priority

Use the `spanning-tree port-priority` Interface (Ethernet, Port Channel) Configuration mode command to configure the port priority. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree port-priority priority
no spanning-tree port-priority
```

Parameters

- `priority`—Specifies the port priority. (Range: 0–240)

Default Configuration

The default port priority is 128.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the spanning priority on `gi15` to 96

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree port-priority 96
```
48.10 spanning-tree portfast

Use the `spanning-tree portfast` Interface (Ethernet, Port Channel) Configuration mode command to enable the PortFast mode. Use the `no` form of this command to disable the PortFast mode.

Syntax

```
spanning-tree portfast [auto]
no spanning-tree portfast
```

Parameters

- `auto`—Specifies delay before putting the interface into the PortFast mode.

Default Configuration

PortFast mode is set to auto.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

In the PortFast mode, the interface is immediately put into the forwarding state upon linkup, without waiting for the standard forward time delay.

Use the `spanning-tree portfast` command to enable immediately the PortFast mode.

Use the `spanning-tree portfast auto` to delay the PortFast mode for 3 seconds. The interface will turn into the PortFast mode if for this interval it does not receive a Spanning Tree protocol message.

Example

The following example enables the PortFast mode on gi15.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree portfast
```
48.11 spanning-tree link-type

Use the `spanning-tree link-type` Interface (Ethernet, Port Channel) Configuration mode command to override the default link-type setting determined by the port duplex mode, and enable RSTP transitions to the Forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree link-type {point-to-point | shared}
no spanning-tree spanning-tree link-type
```

Parameters

- **point-to-point**—Specifies that the port link type is point-to-point.
- **shared**—Specifies that the port link type is shared.

Default Configuration

The device derives the port link type from the duplex mode. A full-duplex port is considered a point-to-point link and a half-duplex port is considered a shared link.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables shared spanning-tree on gi15.

```
switchxxxxxx(config)# interface gi15
switchxxxxxx(config-if)# spanning-tree link-type shared
```

48.12 spanning-tree pathcost method

Use the `spanning-tree pathcost method` Global Configuration mode command to set the default path cost method. Use the `no` form of this command to return to the default configuration.
Syntax

```
spanning-tree pathcost method {long | short}
no spanning-tree pathcost method
```

Parameters

- **long**—Specifies that the default port path costs are within the range: 1–200,000,000.
- **short**—Specifies that the default port path costs are within the range: 1–65,535.

Default Configuration

Long path cost method.

Command Mode

Global Configuration mode

User Guidelines

This command applies to all the spanning tree instances on the switch.

- If the short method is selected, the switch calculates the default cost as 100.
- If the long method is selected, the switch calculates the default cost as 20000.

Example

The following example sets the default path cost method to Long.

```
switchxxxxxx(config)# spanning-tree pathcost method long
```

48.13 `spanning-tree bpdu` (Global)

Use the `spanning-tree bpdu` Global Configuration mode command to define Bridge Protocol Data Unit (BPDU) handling when the spanning tree is disabled globally or on a single interface. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

```
Parameters

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.

- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to all ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

Default Configuration

The default setting is **flooding**.

Command Mode

Global Configuration mode

User Guidelines

The **filtering** and **flooding** modes are relevant when the spanning tree is disabled globally or on a single interface.

Example

The following example defines the BPDU packet handling mode as **flooding** when the spanning tree is disabled on an interface.

```
switchxxxxxx(config)# spanning-tree bpdu flooding
```

48.14 spanning-tree bpdu (Interface)

Use the **spanning-tree bpdu** Interface (Ethernet, Port Channel) Configuration mode command to define BPDU handling when the spanning tree is disabled on a single interface. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```
Parameters

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

Default Configuration

The `spanning-tree bpdu (Global)` command determines the default configuration.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example defines the BPDU packet as **flooding** when the spanning tree is disabled on `gi3`.

```
switchxxxxxx(config)## interface gi3
switchxxxxxx(config-if)## spanning-tree bpdu flooding
```

### 48.15 clear spanning-tree detected-protocols

Use the `clear spanning-tree detected-protocols` Privileged EXEC mode command to restart the STP migration process (force renegotiation with neighboring switches) on all interfaces or on the specified interface.

**Syntax**

```
clear spanning-tree detected-protocols [interface interface-id]
```

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All interfaces.
Spanning-Tree Commands

Command Mode
Privileged EXEC mode

User Guidelines
This feature can only be used when working in the RSTP or MSTP mode.

Example
This restarts the STP migration process on all interfaces.

```
switchxxxxxx# clear spanning-tree detected-protocols
```

48.16 spanning-tree mst priority

Use the `spanning-tree mst priority` Global Configuration mode command to configure the device priority for the specified spanning-tree instance. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst instance-id priority priority
no spanning-tree mst instance-id priority
```

Parameters

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–7)
- `priority`—Specifies the device priority for the specified spanning-tree instance. This setting determines the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. (Range: 0–61440)

Default Configuration

The default priority is 32768.

Command Mode

Global Configuration mode
User Guidelines

The priority value must be a multiple of 4096.
The switch with the lowest priority is the root of the spanning tree.

Example

The following example configures the spanning tree priority of instance 1 to 4096.

```
switchxxxxxx(config)# spanning-tree mst 1 priority 4096
```

48.17 spanning-tree mst max-hops

Use the `spanning-tree mst max-hops` Global Configuration mode command to configure the number of hops in an MST region before the BDPU is discarded and the port information is aged out. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst max-hops hop-count

no spanning-tree mst max-hops
```

Parameters

- `hop-count`—Specifies the number of hops in an MST region before the BDPU is discarded. (Range: 1–40)

Default Configuration

The default number of hops is 20.

Command Mode

Global Configuration mode

Example

The following example configures the maximum number of hops that a packet travels in an MST region before it is discarded to 10.

```
switchxxxxxx(config)# spanning-tree mst max-hops 10
```
48.18  **spanning-tree mst port-priority**

Use the **spanning-tree mst port-priority** Interface (Ethernet, Port Channel) Configuration mode command to configure the priority of a port. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

**Parameters**

- `instance-id`—Specifies the spanning tree instance ID. (Range: 1–15)
- `priority`—Specifies the port priority. (Range: 0–240 in multiples of 16)

**Default Configuration**

The default port priority is 128.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The priority value must be a multiple of 16.

**Example**

The following example configures the port priority of gi1 to 144.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# spanning-tree mst 1 port-priority 144
```

---

### 48.19  **spanning-tree mst cost**

Use the **spanning-tree mst cost** Interface (Ethernet, Port Channel) Configuration mode command to configure the path cost for MST calculations. If a loop occurs, the spanning tree considers path cost when selecting an interface to put in the Forwarding state. Use the **no** form of this command to restore the default configuration.
Spanning-Tree Commands

Syntax

```
spanning-tree mst instance-id cost cost
no spanning-tree mst instance-id cost
```

Default Configuration

N/A

Parameters

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–15)
- `cost`—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by the port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>TenGigabit Ethernet (10000 Mbps)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures the MSTP instance 1 path cost for port gi9 to 4.

```
switchxxxxxx(config)# interface gi9
switchxxxxxx(config-if)# spanning-tree mst 1 cost 4
```

48.20 spanning-tree mst configuration

Use the `spanning-tree mst configuration` Global Configuration mode command to enable configuring an MST region by entering the MST mode.
Syntax

```
spanning-tree mst configuration
```

Command Mode

Global Configuration mode

User Guidelines

For two or more switches to be in the same MST region, they must contain the same VLAN mapping, the same configuration revision number, and the same name.

Example

The following example configures an MST region.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
switchxxxxxx(config-mst)# name region1
switchxxxxxx(config-mst)# revision 1
```

48.21 instance (MST)

Use `instance` MST Configuration mode command to map VLANs to an MST instance. Use the `no` form of this command to restore the default mapping.

Syntax

```
instance instance-id vlan vlan-range
no instance instance-id vlan vlan-range
```

Parameters

- `instance-id`—MST instance (Range: 1–7)
- `vlan-range`—The specified range of VLANs is added to the existing ones. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 1–4094)
Default Configuration

All VLANs are mapped to the common and internal spanning tree (CIST) instance (instance 0).

Command Mode

MST Configuration mode

User Guidelines

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST.

For two or more devices to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

Example

The following example maps VLANs 10-20 to MST instance 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
```

48.22  name (MST)

Use the name MST Configuration mode command to define the MST instance name. Use the no form of this command to restore the default setting.

Syntax

```name string```

```
no name
```

Parameters

- `string`—Specifies the MST instance name. (Length: 1–32 characters)

Default Configuration

The default name is the bridge MAC address.
Command Mode
MST Configuration mode

Example
The following example defines the instance name as Region1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# name region1
```

48.23 revision (MST)

Use the `revision` MST Configuration mode command to define the MST configuration revision number. Use the `no` form of this command to restore the default configuration.

Syntax

```
revision value
no revision
```

Parameters

- `value`—Specifies the MST configuration revision number. (Range: 0–65535)

Default Configuration

The default configuration revision number is 0.

Command Mode

MST Configuration mode

Example

The following example sets the configuration revision to 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# revision 1
```
48.24 show (MST)

Use the show MST Configuration mode command to display the current or pending MST region configuration.

Syntax

```
show {current | pending}
```

Parameters

- **current**—Displays the current MST region configuration.
- **pending**—Displays the pending MST region configuration.

Default Configuration

N/A

Command Mode

MST Configuration mode

Example

The following example displays a pending MST region configuration

```
switchxxxxxx(config-mst)# show pending
Gathering information ..........
Current MST configuration
Name: Region1
Revision: 1

<table>
<thead>
<tr>
<th>Instance</th>
<th>VLANs Mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-4094</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```

switchxxxxxx(config-mst)#
48.25 exit (MST)

Use the `exit` MST Configuration mode command to exit the MST region Configuration mode and apply all configuration changes.

Syntax

```plaintext
exit
```

Parameters

N/A

Default Configuration

N/A

Command Mode

MST Configuration mode

Example

The following example exits the MST Configuration mode and saves changes.

```plaintext
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# exit
switchxxxxxx(config)#
```

48.26 abort (MST)

Use the `abort` MST Configuration mode command to exit the MST Configuration mode without applying the configuration changes.

Syntax

```plaintext
abort
```

Parameters

N/A
Default Configuration
N/A

Command Mode
MST Configuration mode

Example
The following example exits the MST Configuration mode without saving changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# abort
```

48.27 show spanning-tree

Use the `show spanning-tree` Privileged EXEC mode command to display the spanning-tree configuration.

Syntax
```
show spanning-tree [interface-id] [instance instance-id]
show spanning-tree [detail] [active | blockedports] [instance instance-id]
show spanning-tree mst-configuration
```

Parameters
- `interface-id`—Specifies an interface ID (optional). The interface ID can be one of the following types: Ethernet port or Port-channel.
- `detail`—Displays detailed information.
- `active`—Displays active ports only. Active ports are ports that are STP enabled and in the operational status of up.
- `blockedports`—Displays blocked ports only.
- `instance instance-id`—Specifies the spanning tree instance ID (range: 1–7). The parameter could be defined only when mode MSTP is enabled.
- `mst-configuration`—Displays the MST configuration identifier.
Default Configuration

If no interface is specified, the default is all interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This command only works when MST is enabled.

Example

The following examples display spanning-tree information in various configurations:

- Display examples for a device that is in STP or RSTP mode -

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled

Root ID  Priority     32768
         Address      00:01:42:97:e0:00
         Cost         20000
         Port         gi1
Hello Time 2 sec  Hello Time 2 sec
Max Age 20 sec  Max Age 20 sec
Forward Delay 15 sec  Forward Delay 15 sec

Bridge ID  Priority     36864
           Address      00:02:4b:29:7a:00
Hello Time 2 sec  Hello Time 2 sec
Max Age 20 sec  Max Age 20 sec
Forward Delay 15 sec  Forward Delay 15 sec
```
Spanning-Tree Commands

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. No</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td>gi5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree
Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. No</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree
Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long

Root ID Priority | N/A
Address N/A
Path Cost N/A
Root Port N/A
Hello Time N/A Max Age N/A Forward Delay N/A

Bridge ID Priority | 36864
Address 00:02:4b:29:7a:00
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec
Spanning-Tree Commands

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree active
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID   Priority     32768
          Address      00:01:42:97:e0:00
          Path Cost    20000
          Root Port   gi1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority     36864
          Address      00:02:4b:29:7a:00
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree blockedports
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID  Priority  32768
         Address  00:01:42:97:e0:00
         Path Cost 20000
         Root Port  gi1
         Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority  36864
         Address  00:02:4b:29:7a:00
         Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFastType</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>19</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode RSTP
Default port cost method: long

Root ID  Priority  32768
         Address  00:01:42:97:e0:00
         Path Cost 20000
         Root Port  gi1
         Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority  36864
         Address  00:02:4b:29:7a:00
         Hello Time 2 sec  Max Age 20 sec Forward Delay 15 sec

Number of topology changes 2 last change occurred 2d18h ago
Times:  hold 1, topology change 35, notification 2
         hello 2, max age 20, forward delay 15
Port 1 (gi1) enabled
State: Forwarding
Port id: 128.1
Type: P2p (configured: auto) RSTP
Designated bridge Priority: 32768
Designated port id: 128.25
Guard root: Disabled
Role: Root
Port cost: 20000
Address: 00:01:42:97:e0:00
Designated path cost: 0
BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 2 (gi2) enabled
State: Forwarding
Port id: 128.2
Type: Shared (configured: auto) STP
Designated bridge Priority: 32768
Designated port id: 128.2
Guard root: Disabled
Role: Designated
Port cost: 20000
Address: 00:02:4b:29:7a:00
Designated path cost: 20000
BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi3) disabled
State: N/A
Port id: 128.3
Type: N/A (configured: auto)
Designated bridge Priority: N/A
Designated port id: N/A
Guard root: Disabled
Role: N/A
Port cost: 20000
Address: N/A
Designated path cost: N/A
BPDU guard: Disabled
Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

Port 4 (gi4) enabled
State: Blocking
Port id: 128.4
Type: Shared (configured: auto) STP
Designated bridge Priority: 28672
Designated port id: 128.25
Guard root: Disabled
Role: Alternate
Port cost: 20000
Address: 00:30:94:41:62:c8
Designated path cost: 20000
BPDU guard: Disabled
Spanning-Tree Commands

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638
Port 5 (gi5) enabled
State: Disabled  Role: N/A
Port id: 128.5  Port cost: 20000
Type: N/A (configured: auto)  Port Fast: N/A (configured: no)
Designated bridge Priority: N/A  Address: N/A
Designated port id: N/A  Designated path cost: N/A
Guard root: Disabled  BPDU guard: Disabled

Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

switchxxxxxx# show spanning-tree ethernet gi1

Port 1 (gi1) enabled
State: Forwarding  Role: Root
Port id: 128.1  Port cost: 20000
Type: P2p (configured: auto) RSTP  Port Fast: No (configured: no)
Designated bridge Priority: 32768  Address: 00:01:42:97:e0:00
Designated port id: 128.25  Designated path cost: 0
Guard root: Disabled  BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

• Display examples for a device that is in MSTP mode -

switchxxxxxx# show spanning-tree mst-configuration
Name: Region1
Revision: 1

<table>
<thead>
<tr>
<th>Instance</th>
<th>Vlans mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-9, 21-4094</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>10-20</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree
Spanning tree enabled mode MSTP
Default port cost method: long
### MST 0 Vlans Mapped: 1-9

**CST Root ID**
- Priority: 32768
- Address: 00:01:42:97:e0:00
- Path Cost: 20000
- Root Port: gi1
- Hello Time: 2 sec
- Max Age: 20 sec
- Forward Delay: 15 sec

**IST Master ID**
- Priority: 32768
- Address: 00:02:4b:29:7a:00
- This switch is the IST master.
- Hello Time: 2 sec
- Max Age: 20 sec
- Forward Delay: 15 sec
- Max hops: 20

#### Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>P2p Bound</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>(RSTP)</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>Shared Bound</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>(STP) P2p</td>
</tr>
</tbody>
</table>

### MST 1 Vlans Mapped: 10-20

**Root ID**
- Priority: 24576
- Address: 00:02:4b:29:89:76
- Path Cost: 20000
- Root Port: gi4
- Rem hops: 19

**Bridge ID**
- Priority: 32768
- Address: 00:02:4b:29:7a:00
### Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Boun</td>
<td>No</td>
<td>P2p Bound</td>
</tr>
<tr>
<td>gi2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Boun</td>
<td>No</td>
<td>(RSTP)</td>
</tr>
<tr>
<td>gi3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared Bound</td>
</tr>
<tr>
<td>gi4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2p</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode MSTP
Default port cost method: long
####### MST 0 Vlans Mapped: 1-9

CST Root ID | Priority | 32768
 | Address | 00:01:42:97:e0:00
 | Path Cost| 20000
 | Root Port| gi1
 | Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

IST Master ID | Priority | 32768
 | Address | 00:02:4b:29:7a:00
This switch is the IST master.
 | Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec
 | Max hops | 20
Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15```
Spanning-Tree Commands

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Role</th>
<th>Port id</th>
<th>Type</th>
<th>Port cost</th>
<th>Designated bridge Priority</th>
<th>Designated port id</th>
<th>Number of transitions to forwarding state</th>
<th>BPDU Sent, Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>enabled</td>
<td>Root</td>
<td>128.1</td>
<td>P2p (configured: auto) Boundary RSTP</td>
<td>20000</td>
<td>32768</td>
<td>128.25</td>
<td>1</td>
<td>2, 120638</td>
</tr>
<tr>
<td>Port 2</td>
<td>enabled</td>
<td>Designated</td>
<td>128.2</td>
<td>Shared (configured: auto) Boundary STP</td>
<td>20000</td>
<td>32768</td>
<td>128.2</td>
<td>1</td>
<td>2, 170638</td>
</tr>
<tr>
<td>Port 3</td>
<td>enabled</td>
<td>Designated</td>
<td>128.3</td>
<td>Shared (configured: auto) Internal</td>
<td>20000</td>
<td>32768</td>
<td>128.3</td>
<td>1</td>
<td>2, 170638</td>
</tr>
<tr>
<td>Port 4</td>
<td>enabled</td>
<td>Designated</td>
<td>128.4</td>
<td>Shared (configured: auto) Internal</td>
<td>20000</td>
<td>32768</td>
<td>128.2</td>
<td>1</td>
<td>2, 170638</td>
</tr>
</tbody>
</table>
MST 1 Vlans Mapped: 10-20

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
<th>Rem hops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24576</td>
<td>00:02:4b:29:89:76</td>
<td>20000</td>
<td>gi4</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
<th>Number of topology changes</th>
<th>last change occurred</th>
<th>Times:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
<td>2</td>
<td>1d9h ago</td>
<td>hold 1, topology change 2, notification 2, hello 2, max age 20, forward delay 15</td>
</tr>
</tbody>
</table>

Port 1 (gi1) enabled
- State: Forwarding
- Port id: 128.1
- Type: P2p (configured: auto) Boundary RSTP
- Designated bridge Priority: 32768
- Designated port id: 128.1
- Number of transitions to forwarding state: 1
- BPDU: sent 2, received 120638
- Role: Boundary
- Port cost: 20000
- Port Fast: No (configured: no)
- Designated path cost: 20000

Port 2 (gi2) enabled
- State: Forwarding
- Port id: 128.2
- Type: Shared (configured: auto) Boundary STP
- Designated bridge Priority: 32768
- Designated port id: 128.2
- Number of transitions to forwarding state: 1
- BPDU: sent 2, received 170638
- Role: Designated
- Port cost: 20000
- Port Fast: No (configured: no)
- Designated path cost: 20000
48.28 show spanning-tree bpdu

Use the `show spanning-tree bpdu` User EXEC mode command to display the BPDU handling when spanning-tree is disabled.

Syntax

`show spanning-tree bpdu [interface-id | detailed]`

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Show information for all interfaces. If `detailed` is not used, only present ports are displayed.

Command Mode

User EXEC mode
Example

The following examples display spanning-tree BPDU information:

```
switchxxxxx# show spanning-tree bpdu
```

The following is the output if the global BPDU handling command is not supported.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi2</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi3</td>
<td>Filtering</td>
<td>Guard</td>
</tr>
</tbody>
</table>

The following is the output if both the global BPDU handling command and the per-interface BPDU handling command are supported.

Global: Flooding

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1</td>
<td>Global</td>
<td>Flooding</td>
</tr>
<tr>
<td>gi2</td>
<td>Global</td>
<td>STP</td>
</tr>
<tr>
<td>gi3</td>
<td>Flooding</td>
<td>STP</td>
</tr>
</tbody>
</table>

48.29 spanning-tree loopback-guard

Use the `spanning-tree loopback-guard global configuration` command to shut down an interface if it receives a loopback BPDU. Use the `no` form of this command to return the default setting.

Syntax

```
spanning-tree loopback-guard

no spanning-tree loopback-guard
```
Parameters
N/A

Default Configuration
N/A

Command Mode
Global

User Guidelines
This enables shutting down all interfaces if a loopback BPDU is received on it.

Example

switchxxxxxx(config)# spanning-tree loopback-guard
SSH Client Commands

49.1 ip ssh-client authentication

To define the SSH client authentication method used by the local SSH clients to be authenticated by remote SSH servers, use the **ip ssh-client authentication** command in Global Configuration mode.

To return to default, use the **no** format of the command.

Syntax

```
ip ssh-client authentication {password | public-key {rsa | dsa}}
no ip ssh-client authentication
```

Parameters

- **password**—Username and password are used for authentication.
- **public-key rsa**—Username and RSA public key are used for authentication.
- **public-key dsa**—Username and DSA public key are used for authentication.

Default Configuration

Username and password are used for authentication by the local SSH clients.

Command Mode

Global Configuration mode

User Guidelines

A user can use the **ip ssh-client key** command to generate/configure RSA/DSA keys if SSH authentication is by public key. Otherwise, the default keys generated by the switch are used.
Example

The following example specifies that, username and public key are used for authentication:

```
switchxxxxxx(config)# ip ssh-client authentication public-key rsa
```

49.2 ip ssh-client change server password

To change a password of an SSH client on a remote SSH server, use the `ip ssh-client change server password` command in Global Configuration mode.

Syntax

```
ip ssh-client change server password server {host | ip-address | ipv6-address} username username old-password old-password new-password new-password
```

Parameters

- `host`—DNS name of a remote SSH server.
- `ip-address`—Specifies the IP address of a remote SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
- `username`—Username of the local SSH clients (1 - 70 characters).
- `old-password`—Old password of the local SSH client (1 - 70 characters).
- `new-password`—New password for the local SSH client (1 - 70 characters). The password cannot include the characters "@" and ":".

Default Configuration

None

Command Mode

Global Configuration mode

User Guidelines

Use the command to change a password on a remote SSH server. Use the `ip ssh-client password` command to change the SSH client password of the switch’s SSH client so that it matches the new password set on the remote SSH server.
Example

The following example changes a password of the local SSH clients:

```
switchxxxxxx(config)# ip ssh-client change server password server 10.7.50.155
username john old-password &&&@@@aaff new-password &&&@@@aaee
```

49.3 ip ssh-client key

To create a key pair for SSH client authentication by public key (either by generating a key or by importing a key), use the `ip ssh-client key` command in Global Configuration mode. To remove a key, use the `no` form of the command.

Syntax

```
ip ssh-client key {dsa | rsa} {generate | key-pair privkey pubkey}
encrypted ip ssh-client key {dsa | rsa} key-pair encrypted-privkey pubkey
no ip ssh-client key [dsa | rsa]
```

Parameters

- **dsa**—DSA key type.
- **rsa**—RSA key type.
- **key-pair**—Key that is imported to the device.
 - **privkey**—Plaintext private key.
 - encrypted-privkey—private key is in encrypted format.
 - **pubkey**—The plaintext public key.

Default Configuration

The application creates a key automatically; this is the default key.

Command Mode

Global Configuration mode
User Guidelines

When using the keyword **generate**, a private key and a public key of the given type (RSA/DSA) are generated for the SSH client. Downloading a configuration file with a Key Generating command is not allowed, and such download will fail.

When using the keyword **key-pair**, the user can import a key-pair created by another device. In this case, the keys must follow the format specified by RFC 4716.

If the specified key already exists, a warning will be issued before replacing the existing key with a new key.

Use the **no ip ssh-client key** command to remove a key pair. Use this command without specifying a key-type to remove both key pairs.

Table 3 describes the expected behavior of keys, default and users within the various operations.

<table>
<thead>
<tr>
<th>From/To</th>
<th>Show</th>
<th>Show (detailed)</th>
<th>Copy/Upload of Running Config</th>
<th>Copy/Upload of Startup Config</th>
<th>Download text-based CLI (TFTP/Backup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>All keys (default and user)</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>Only user defined.</td>
<td>Same as user configuration</td>
</tr>
<tr>
<td>Text-based CLI (TFTP/Backup)</td>
<td>As it was copied.</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>Only user defined.</td>
<td>As a text file.</td>
</tr>
</tbody>
</table>

If no keys are included in text-based configuration file, the device generates it’s own keys during initialization. If the Running Configuration contains default keys (not user-defined), the same default keys remain.

Examples

Example 1 - In the following example, a key pair of the RSA type is created:

```
switchxxxxxxx(config)# ip ssh-client key rsa generate
```

The SSH service is generating a private RSA key.

This may take a few minutes, depending on the key size.
Example 2 - In the following example, both public and private keys of the RSA type are imported (private key as plaintext):

```
switchxxxxxxx(config)# ip ssh-client key rsa key-pair
Please paste the input now, add a period (.) on a separate line after the input
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDH6Cu/eK2Yk8sR5T1vwS4zvhBmci4I31m9cRI1RTFvIMRuJ++TEr
p9ssqWyI1T90jxmG0N3jHsp2j6e/DU7HZXvYaUzchBdnsPTJo8dyiB14YbqYHoCjUhk
xtqvoy+1uxRJTAAaLVXCAamuIU/kMLoExx8/zwjB/jsF9wIBwKBgC2xZ5mQmvy0+yo2GU
FwLQ05f0yewuMI1j9MScTmqDgfVTRrdbroXwbs3exVsfaUPY9wa8Le6Jxf+Dp4XovEfc/
ig12BSC85eDM12U7D6HzrkAyD9Hff/r32jukB+527B1H6z2Xczs2c100wRnTyeYTzjLxy
WS7V/IxhB1llpLAkEA/QluVSFFmdMlZxaEjVzqPO1cF8guovswLteBF/ggHuvbHuNy0t
OWEpGbRZs1m/mtCWpgkgcgrB00JaYbUFQJBAmo/cCyrkhsIv/+Z5ryeD26NbrPEnkiak16V
Ts2ayDstdGuuvCvm2YF7DjM6n6NYz3+/2Lyc5n8okbd1WhDONSQCQCmSAs+C4HdQ1n
zSU+/1W1D88As4qhN2DmGJbtswVHqXHAG4tBVWa8bV12+RPyuam/jk8iirni4Vz4a
FPAkEAiq8oV+1XYxA8V39V/a42d7FvRjmckUmKD14Rmt32+u916sFzaWcdgs87+2vS3A2Q
afQDE5U6YSMiGLVeWc4YWwJBAOFZmho+diaXT8rZf2cUZggpfnX6Y+L+Y109Mu2HbwH
tXaB6j6ayMYvXnloONecnApBjGEm37YyWkq02Dv2w=
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMfoJT/YphGKytisrn5Mi/BLjO+EGa1LgjWb1x/H/WJFMVWXG4n75MSun2yyp
b1jvOLO13SP0YbQ3eMf0naN7n8NRMdle9hpTNyEE0ew9MmjrXKIGXhgGpqdCAKNSGS1eq+W
jL7W7FE1MbotVcIECA4hT+QwugSjHz/PCMuC0wX3AqEj
-----END RSA PUBLIC KEY-----
```

Example 3 - In the following example, both public and private keys of the DSA type are imported (private key as encrypted):

```
switchxxxxxxx(config)# encrypted ip ssh-client key rsa key-pair
(Need to encrypted SSH client RSA key pair, for example:

switchxxxxxxx(config)#
```
SSH Client Commands

-------BEGIN RSA ENCRYPTED PRIVATE KEY------
gxe0js6OzGRtL4qstmQg18/4geXQb1fa56RdjgHAMEjvUT02elYmNi+m4aTu6mlyXPHmYP
1X1Xmy7j2kHRvgg8EzcppEB003yQzq3kNi756cNg40qbk7TU0tdqYFEz/h8rJ0qVvUFh
BsEQ3e16E/OPitWgK43WTzedsuYFeOoMXR9BCuxPUJc2UeqQVM2Ijt5OM0FbVt0S6oqXhG
seEEdoTlh1DwHWg977CF7x+bEnPfzFGmbrUxccOxlkFsuCNo3/94PHK8zEXyWtrx2KoCDQ
qFRuM8uecpjmDh6MO2GURVstctohEWEIVCIOr5SBCcixav5oS0jIzXMrJA==
-------END RSA PRIVATE KEY------

-------BEGIN RSA PUBLIC KEY------
MIGHAoGBALLOeh3css8tBL8ujPt3tcX0XJyJLlxxt4sGp8Q3Ex1SRN25+Mcac6togpIEg
t1zk6t1IEJscuAih9BrwhIovgMLRaMe25jYj04xG6Fp42nhHiRcie+YTS1o309EdZkiXa
QeJtJdYL/r3uTIRVGbXI5nxwtfWpwEgxxDwfqzHAgEj
-------END RSA PUBLIC KEY------

Example 4 - In the following example, a DSA key pair is removed:

```plaintext
switchxxxxxx(config)# no ip ssh-client key dsa
```

Example 5 - In the following example, all key pairs (RSA and DSA types) are removed.

```plaintext
switchxxxxxx(config)# no ip ssh-client key
```

49.4 ip ssh-client password

To configure the password for SSH client authentication by password, use the `ip ssh-client password` command in Global Configuration mode. To return to default, use the `no` form of the command.

Syntax

- `ip ssh-client password string`
- `encrypted ip ssh-client password encrypted-string`
- `no ip ssh-client password`
Parameters

- **string**—Password for the SSH clients (1 - 70 characters). The password cannot include the characters "@" and ":".
- **encrypted-string**—Password for the SSH client in encrypted form.

Default Configuration

The default password is anonymous.

Command Mode

Global Configuration mode

User Guidelines

If authentication is configured to use a password (using the command `ip ssh-client authentication`), use the `ip ssh-client password` command to define the password.

If the `encrypted` keyword is used, the password must be in the encrypted form.

Use the command `ip ssh-client change server password` to change the password on the remote SSH server so that it will match the new password of the SSH client.

Example

The following example specifies a plaintext password for the local SSH clients:

```
switchxxxxxx(config)# ip ssh-client password &4q11111aaff
```

49.5 **ip ssh-client server authentication**

To enable remote SSH server authentication by the SSH client, use the `ip ssh-client server authentication` command in Global Configuration mode.

To disable remote SSH server authentication, use the `no` form of the command.

Syntax

```
ip ssh-client server authentication
no ip ssh-client server authentication
```
Parameters

This command has no arguments or keywords.

Default Configuration

SSH server authentication is disabled

Command Mode

Global Configuration mode

User Guidelines

When remote SSH server authentication is disabled, any remote SSH server is accepted (even if there is no entry for the remote SSH server in the SSH Trusted Remote Server table).

When remote SSH server authentication is enabled, only trusted SSH servers are accepted. Use the `ip ssh-client server fingerprint` command to configure trusted SSH servers.

Example

The following example enables SSH server authentication:

```
switchxxxxxx(config)# ip ssh-client server authentication
```  

49.6 `ip ssh-client server fingerprint`

To add a trusted server to the Trusted Remote SSH Server Table, use the `ip ssh-client server fingerprint` command in Global configuration mode. To remove an entry or all entries from the Trusted Remote SSH Server Table, use the `no` form of the command.

Syntax

```
ip ssh-client server fingerprint {host | ip-address} fingerprint
no ip ssh-client server fingerprint [host | ip-address]
```

Parameters

- `host`—DNS name of an SSH server.
- `ip-address`—Specifies the address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
• *fingerprint*—Fingerprint of the SSH server public key (32 Hex characters).

Default Configuration

The Trusted Remote SSH Server table is empty.

Command Mode

Global Configuration mode

User Guidelines

Fingerprints are created by applying a cryptographic hash function to a public key. Fingerprints are shorter than the keys they refer to, making it simpler to use (easier to manually input than the original key). Whenever the switch is required to authenticate an SSH server’s public key, it calculates the received key’s fingerprint and compares it to the previously-configured fingerprint.

The fingerprint can be obtained from the SSH server (the fingerprint is calculated when the public key is generated on the SSH server).

The no ip ssh-client server fingerprint command removes all entries from the Trusted Remote SSH Server table.

Example

In the following example, a trusted server is added to the Trusted Servers table (with and without a separator ":").

```
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1
DC789788DC88A988127897BCBB789788
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1
```

49.7 ip ssh-client source-interface

To specify the source interface which IPv4 address will be used as the Source IPv4 address for communication with IPv4 SSH servers, use the ip ssh-client source-interface Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

```
ip ssh-client source-interface interface-id
```
no ip ssh-client source-interface

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# ip ssh-client source-interface vlan 100
```

49.8 ipv6 ssh-client source-interface

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SSH servers, use the `ipv6 ssh-client source-interface` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
ipv6 ssh-client source-interface interface-id

no ipv6 ssh-client source-interface
```
Parameters

- \textit{interface-id}—(Optional) Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

\begin{verbatim}
switchxxxxxx(config)# ipv6 ssh-client source-interface vlan 100
\end{verbatim}

49.9 \textbf{ip ssh-client username}

To configure the SSH client username of the switch, use the \texttt{ip ssh-client username} command in Global Configuration mode.

To return to default, use the \texttt{no} form of the command.

Syntax

\begin{verbatim}
\texttt{ip ssh-client username string}
\texttt{no ip ssh-client username}
\end{verbatim}
SSH Client Commands

Parameters

- **string**—Username of the SSH client. The length is 1 - 70 characters. The username cannot include the characters "@" and ":".

Default Configuration

The default username is anonymous.

Command Mode

Global Configuration mode

User Guidelines

The configured username is used when SSH client authentication is done both by password or by key.

Example

The following example specifies a username of the SSH client:

```
switchxxxxxx(config)# ip ssh-client username jeff
```

49.10 show ip ssh-client

To display the SSH client credentials, both default and user-defined keys, use the `show ip ssh-client` command in Privilege EXEC mode.

Syntax

```
show ip ssh-client
show ip ssh-client {mypubkey | key} {dsa | rsa}
```

Parameters

- **dsa**—Specifies displaying the DSA key type.
- **rsa**—Specifies displaying the RSA key type.
- **mypubkey**—Specifies that only the public key is selected to be displayed.
Command Mode

Privileged EXEC mode

User Guidelines

Use the command with a specific key-type to display the SSH client key; You can either specify display of public key or private key, or with no parameter to display both private and public keys. The keys are displayed in the format specified by RFC 4716.

Examples

Example 1. The following example displays the authentication method and the RSA public key:

```
switchxxxxxxx# show ip ssh-client mypubkey rsa
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method:   DSA key
Username:                john
Key Source:              User Defined
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABIwAAIAEAdaGeIaPARsKoVJVjs8XALAKqBN1WmXnY
kUf5o2jGY3QoMGDvNipQvdN3YmwLUBiKk31WvWvFB3N2K5a7fUBjoblkdjns
QKTZiu4V+IL5rds/bD6LOEkJbjUzOjmp9hIkh9uc0ceZ3ZwMtKhnORLrXL
aRyxYszO5FuirTo6xW8=
---- END SSH2 PUBLIC KEY ----
```

Example 2. The following example displays the authentication method and DSA private key in encrypted format:

```
switchxxxxxxx# show ip ssh-client key DSA
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
```
Authentication method: DSA key
Username: john
Key Source: User Defined

---- BEGIN SSH2 PUBLIC KEY ----
AAAAB3NzaC1kc3MAACABAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rzZdzoSOXxbET
W6ToHv8D1UJ/z+zHo9Fiko5Xyb2nDIAbDhtblQ+Yp7Stxyl1tHnXF1YLfKDI1G4T6JYrdH
YI14Omleg9e4NnCRleaqo2PF3UGFzZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPfX0D2s9Rd7NBvQAAAIAEALN92+Bb7D4KLYk3IwRbXb1wXdkPggA4pdfdW9vGF
J0/RHd+Njb4eo1D+0dix6tXwYGN7PKS5R/FPXNWxHPapcj9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMo2uWoS0EsNHvDx3WdvVcCcBq9cetzrtOKW0ocjMj80qadxTRHetUAAAACB
AN7CY+Kv1gHpRzFwdQm7HK9bb1LAn02KwaoXnadFgeptNBQeSXGlvO+JsvphVMBJc9HS
n24VYtYtsMu74qVxiYjziVucWkjjKEb11juqnF0GD1B3VmxHLMxnAz643WK4227dLM5
sY29ouezv4xz2Pumc5VGP+CDqzCM41oWgV

---- END SSH2 PUBLIC KEY ----

---- BEGIN SSH2 PRIVATE KEY ----
AAAAB3NzaC1kc3MAACABAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rzZdzoSOXxbET
W6ToHv8D1UJ/z+zHo9Fiko5Xyb2nDIAbDhtblQ+Yp7Stxyl1tHnXF1YLfKDI1G4T6JYrdH
YI14Omleg9e4NnCRleaqo2PF3UGFzZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPfX0D2s9Rd7NBvQAAAIAEALN92+Bb7D4KLYk3IwRbXb1wXdkPggA4pdfdW9vGF
J0/RHd+Njb4eo1D+0dix6tXwYGN7PKS5R/FPXNWxHPapcj9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMo2uWoS0EsNHvDx3WdvVcCcBq9cetzrtOKW0ocjMj80qadxTRHetUAAAACB
AN7CY+Kv1gHpRzFwdQm7HK9bb1LAn02KwaoXnadFgeptNBQeSXGlvO+JsvphVMBJc9HS
n24VYtYtsMu74qVxiYjziVucWkjjKEb11juqnF0GD1B3VmxHLMxnAz643WK4227dLM5
sY29ouezv4xz2Pumc5VGP+CDqzCM41oWgV

---- END SSH2 PRIVATE KEY ----

Comment: DSA Private Key
AAAAB3NzaC1kc3MAACABAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rzZdzoSOXxbET
W6ToHv8D1UJ/z+zHo9Fiko5Xyb2nDIAbDhtblQ+Yp7Stxyl1tHnXF1YLfKDI1G4T6JYrdH
YI14Omleg9e4NnCRleaqo2PF3UGFzZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPfX0D2s9Rd7NBvQAAAIAEALN92+Bb7D4KLYk3IwRbXb1wXdkPggA4pdfdW9vGF
J0/RHd+Njb4eo1D+0dix6tXwYGN7PKS5R/FPXNWxHPapcj9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMo2uWoS0EsNHvDx3WdvVcCcBq9cetzrtOKW0ocjMj80qadxTRHetUAAAACB
AN7CY+Kv1gHpRzFwdQm7HK9bb1LAn02KwaoXnadFgeptNBQeSXGlvO+JsvphVMBJc9HS
n24VYtYtsMu74qVxiYjziVucWkjjKEb11juqnF0GD1B3VmxHLMxnAz643WK4227dLM5
sY29ouezv4xz2Pumc5VGP+CDqzCM41oWgV

---- END SSH2 PRIVATE KEY ----

Comment: RSA Public Key
AAAAB3NzaC1kc3MAACABAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rzZdzoSOXxbET
W6ToHv8D1UJ/z+zHo9Fiko5Xyb2nDIAbDhtblQ+Yp7Stxyl1tHnXF1YLfKDI1G4T6JYrdH
YI14Omleg9e4NnCRleaqo2PF3UGFzZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPfX0D2s9Rd7NBvQAAAIAEALN92+Bb7D4KLYk3IwRbXb1wXdkPggA4pdfdW9vGF
J0/RHd+Njb4eo1D+0dix6tXwYGN7PKS5R/FPXNWxHPapcj9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMo2uWoS0EsNHvDx3WdvVcCcBq9cetzrtOKW0ocjMj80qadxTRHetUAAAACB
AN7CY+Kv1gHpRzFwdQm7HK9bb1LAn02KwaoXnadFgeptNBQeSXGlvO+JsvphVMBJc9HS
n24VYtYtsMu74qVxiYjziVucWkjjKEb11juqnF0GD1B3VmxHLMxnAz643WK4227dLM5
sY29ouezv4xz2Pumc5VGP+CDqzCM41oWgV

---- END SSH2 PUBLIC KEY ----

Comment: RSA Private Key
AAAAB3NzaC1kc3MAACABAPY8ZOHY2yFSJA6XYC9HRwNHxaehvx5wOJ0rzZdzoSOXxbET
W6ToHv8D1UJ/z+zHo9Fiko5Xyb2nDIAbDhtblQ+Yp7Stxyl1tHnXF1YLfKDI1G4T6JYrdH
YI14Omleg9e4NnCRleaqo2PF3UGFzZia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFQDb8D5c
vwHTZDPfX0D2s9Rd7NBvQAAAIAEALN92+Bb7D4KLYk3IwRbXb1wXdkPggA4pdfdW9vGF
J0/RHd+Njb4eo1D+0dix6tXwYGN7PKS5R/FPXNWxHPapcj9uL1Jn2AWQ2dsknf+i/FAA
vioUPkmdMo2uWoS0EsNHvDx3WdvVcCcBq9cetzrtOKW0ocjMj80qadxTRHetUAAAACB
AN7CY+Kv1gHpRzFwdQm7HK9bb1LAn02KwaoXnadFgeptNBQeSXGlvO+JsvphVMBJc9HS
n24VYtYtsMu74qVxiYjziVucWkjjKEb11juqnF0GD1B3VmxHLMxnAz643WK4227dLM5
sY29ouezv4xz2Pumc5VGP+CDqzCM41oWgV

---- END SSH2 PRIVATE KEY ----
Example 3. The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method:   DSA key
Username:                anonymous (default)
Password:                anonymous (default)
pASSWORD(Encrypted):     KzGqzpYa7GzCHhaveSJDehGJ6L3Yf92BAU5nsxSxwic=
```

49.11 show ip ssh-client server

To display the SSH remote server authentication method and the Trusted Remote SSH Server table, use the `show ip ssh-client server` command in Privilege EXEC Configuration mode.

Syntax

```
show ip ssh-client server [host | ip-address]
```

Parameters

- `host`—(Optional) DNS name of an SSH server.
- `ip-address`—(Optional) IP Address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

Default Configuration

None

Command Mode

Privileged EXEC mode

User Guidelines

If a specific SSH server is specified, only the fingerprint of this SSH server is displayed. Otherwise, all known servers are displayed.
Examples

Example 1 - In the following example, the SSH remote server authentication method and all trusted remote SSH servers are displayed:

switchxxxxxx# show ip ssh-client server

SSH Server Authentication is enabled
server address: 11.1.0.1
server address: 192.165.204.111
server address: 4002:0011::12

Example 2 - The following example displays the authentication method and DSA private key in encrypted format:

switchxxxxxx# show ip ssh-client key DSA

Authentication method: DSA key
Username: john
Key Source: Default
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1kc3MAAAAAB3NzaC1qYXRlcmF3c1RlbC1wcm9jZXNzZXQx
W6TTohv8DsLJZ/z+Ho9Fi05XybZnDIa5DHtb1Q+yP7StxylHnXP1YLfKDiG4T6JYrdH
Y1l4Om1eg9e4NnCRleaqoZPF3UGf3ia6bXrGTQf3gJq2e7Yisk/gF+1VAAAFAQDb8D5c
vwHT2DPeX0D2s9Rd7NBvQAAAIAEAI1N92+Bb7D4KLYk3IwRbx1xXdkPggA4pftdW9vGf
J0/RHD+NjB4e0I1D+0dix6tXwYGN7PKS5R/FXPNnxHPapcj9uLLJn2A3QW2dsknf+i/FAA
vioUPkdMc0zuWoS0EsSnhVdtX3WdvVcGcBq9cetzrtoKWOocJmJ80qadxTRHtUAACB
AN7CY+Kkv1gHpRzFwQm7HK9bb1LAo2KwaoXnadFgpeoNBQeXGLvG+JsvphVMBJc9HS
n24VYtYtsMu74qXviYjziVucWKjjKEb11juqnF0GD1B3VmxHLmxnAz643WK4Z7dLM5

---- END SSH2 PUBLIC KEY ----
Example 3 - The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Authentication method: password (default)
Username: anonymous (default)
password(Encrypted): KzGgzpYa7GzCHhaveSJDehGJ6L3yf92BAU5
```
SSD Commands

50.1 ssd config

To enter the Secure Sensitive Data (SSD) command mode, use `ssd config` in Global Configuration mode. In this command mode, an administrator can configure how the sensitive data on the device, such as keys and passwords, is to be protected.

Syntax

```
ssd config
```

Parameters

This command has no arguments or keywords.

Command Mode

Global Configuration mode

User Guidelines

Only users with sufficient permission can use this command, which edits and displays the SSD configuration. See `ssd rule` for a description of these permissions.

Example

```
switchxxxxxx(config)# ssd config
switchxxxxxx(config-ssd)#
```

50.2 passphrase

To change the passphrase in the system, use `passphrase` in SSD Configuration mode. A device protects its sensitive data by encrypting them using the key generated from the passphrase.

To reset the passphrase to the default passphrase, use the `no passphrase`.
Syntax

passphrase {passphrase}

encrypted passphrase {encrypted-passphrase}

no passphrase

Parameters

• passphrase—New system passphrase.

• encrypted-passphrase—The passphrase in its encrypted form.

Default Usage

If this command is not entered, the default passphrase is used.

Command Mode

SSD Configuration mode

User Guidelines

To use this command, enter passphrase and Enter, a confirmation message is displayed and the user must confirm the intention to change the passphrase. Then the passphrase can be entered (see example).

Encrypted passphrase is allowed only in the SSD Control Block of a source file that is being copied to the startup configuration file (user cannot manually enter this command).

When generating a passphrase, the user must use 4 different character classes (similar to strong password/passwords complexity). These can be: uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard.

Example

The following example defines a decrypted passphrase.

switchxxxxxx(config-ssd)# passphrase
This operation will change the system SSD passphrase. Are you sure? [Y/N][N] Y
Please enter SSD passphrase:**********
Please reenter SSD passphrase:**********
50.3 ssd rule

To configure an SSD rule, use `ssd rule` in SSD Configuration mode. A device grants read permission of sensitive data to users based on the SSD rules. A user that is granted Both or Plaintext read permission is also granted permission to enter SSD Configuration mode.

To delete user-defined rules and restore default rules, use `no ssd rule`.

Syntax

```
[encrypted] SSD rule {all | level-15 | default-user | user user-name}
    {secure | insecure | secure-xml-snmp | insecure-xml-snmp}
    permission {encrypted-only | plaintext-only | both | exclude}
    default-read {encrypted | plaintext | exclude}

no ssd rule [ {all | level-15 | default-user | user user-name}
    {secure | insecure | secure-xml-snmp | insecure-xml-snmp}]
```

Command Mode

SSD Configuration mode.

Default Rules

The device has the following factory default rules:

Table 4: Default SSD Rules

<table>
<thead>
<tr>
<th>Rule Key</th>
<th>Rule Action</th>
<th>Rule Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Channel</td>
<td>Read Permission</td>
</tr>
<tr>
<td>level-15</td>
<td>secure-xml-snmp</td>
<td>Plaintext Only</td>
</tr>
<tr>
<td>level-15</td>
<td>secure</td>
<td>Both</td>
</tr>
<tr>
<td>level-15</td>
<td>insecure</td>
<td>Both</td>
</tr>
<tr>
<td>all</td>
<td>insecure-xml-snmp</td>
<td>Exclude</td>
</tr>
<tr>
<td>all</td>
<td>secure</td>
<td>Encrypted Only</td>
</tr>
<tr>
<td>all</td>
<td>insecure</td>
<td>Encrypted Only</td>
</tr>
</tbody>
</table>

User Guidelines

Use `no ssd rule` to delete a user-defined rule or to restore the default of a modified default rule.
Use **no ssd rule** (without parameters) to remove all SSD rules and restore the default SSD rules. A confirmation message will be displayed asking permission to do this.

To delete specific rules (applicable for the user defined), provide parameters specifying the user and security of the channel.

encrypted SSD rule is used to copy an SSD rule from one device to another in a secure manner.

You can modify but cannot delete the default SSD rules.

The following is the order in which SSD rules are applied:

- The SSD rules for specified *users*.
- The SSD rule for the *default-user (cisco)*.
- The SSD rules for *level-15* users.
 - The remaining SSD rules for *all*.

The user can enter the commands in any order. The ordering is done implicitly by the device.

Examples

Example 1 - The following example modifies a rule.

```plaintext
switchxxxxxx(config-ssd)# ssd rule level-15 secure permission encrypted-only default-read encrypted
```

Example 2 - The following example adds a rule.

```plaintext
switchxxxxxx(config-ssd)# ssd rule user james secure permission both default-read encrypted
```

Example 3 - The following example adds a rule as encrypted format.

```plaintext
switchxxxxxx(config-ssd)# encrypted ssd rule iurwe874jho32iu9ufjo32i83232fdefsd
```

Example 4 - The following example deletes a default rule.
switchxxxxxx(config-ssd)# no ssd rule all secure

Example 5 - The following example deletes a user-defined rule.

switchxxxxxx(config-ssd)# no ssd rule user james secure

Example 6 - The following example deletes all rules.

switchxxxxxx(config-ssd)# no ssd rule
This operation will delete all user-defined rules and retrieve the default rules instead.
Are you sure (Y/N): N

50.4 show SSD

To present the current SSD rules; the rules will be displayed as plaintext, use `show ssd rules` in SSD Configuration mode.

Syntax

`show SSD [rules | brief]`

Parameters

- **rules**—(Optional) Display only the SSD rules.
- **brief**—(Optional) Display the encrypted passphrase, File Passphrase Control and File Integrity attributes.

Command Mode

SSD Configuration mode

Default Configuration

Display all SDD information.
Examples

Example 1 - The following example displays all SSD information.

```
switchxxxxxx(config-ssd)# show ssd
SSD current parameters:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled

SSD parameters after reset:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin11</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>secure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>Default</td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>insecure</td>
<td>Both</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>*Default</td>
</tr>
</tbody>
</table>

* Modified default entry
```

Example 2 - The following example displays the SSD rules.

```
switchxxxxxx(config-ssd)# show ssd rules

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Channel</th>
<th>Read Permission</th>
<th>Default Read</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>admin11</td>
<td>secure</td>
<td>Both</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Specific</td>
<td>admin2</td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>User-Define</td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>secure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>Default</td>
</tr>
<tr>
<td>Level-15</td>
<td></td>
<td>insecure</td>
<td>Both</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>secure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure</td>
<td>Encrypted-Only</td>
<td>Encrypted</td>
<td>Default</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>insecure-xml-snmp</td>
<td>Plaintext-Only</td>
<td>Plaintext</td>
<td>*Default</td>
</tr>
</tbody>
</table>
```
* Modified default entry

Example 3 - The following example displays the SSD attributes.

```
switchxxxxxx(config-ssd)# show ssd brief
SSD current parameters:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled
SSD parameters after reset:
Local Passphrase:        Default
File Passphrase Control: Unrestricted
File Integrity Control:  Disabled
```

50.5 ssd session read

To override the current SSD default read of the current session, use `ssd session read` in Global Configuration mode.

Syntax

```
ssd session read {encrypted | plaintext | exclude}
no ssd session read
```

Parameters

- **encrypted**—Override the SSD default option to encrypted
- **plaintext**—Override the SSD default option to plaintext
- **exclude**—Override the SSD default option to exclude

Command Mode

Global Configuration mode.
SSD Commands

50

Default

The command itself does not have a default. However, note that the read mode of the session itself, defaults to the default read mode of the SSD rule that the device uses to grant SSD permission to the user of the session.

User Guidelines

Use **no ssd session read** to restore the default read option of the SSD rules. This configuration will be allowed only if the user of the current session has sufficient read permissions; otherwise, the command will fail and an error will be displayed. The setting will take effect immediately and will terminate when the user restores the settings or exits the session.

Example

```
switchxxxxxx(config)# ssd session read plaintext
```

50.6 show ssd session

To view the SSD read permission and default read mode of the user of the current session, use **show ssd session** in Privileged EXEC mode.

Syntax

```
show ssd session
```

Command Mode

Privileged EXEC mode

Default

None

Examples

```
switchxxxxxx# show ssd session
User Name/Level: James / Level 15
User Read Permission: Both
Current Session Read mode: Plaintext
```
50.7 ssd file passphrase control

To provide an additional level of protection when copying configuration files to the startup configuration file, use **ssd file passphrase control** in SSD Configuration mode. The passphrase in a configuration file is always encrypted with the default passphrase key.

Syntax

```
ssd file passphrase control {restricted | unrestricted}
```

```
no ssd file passphrase control
```

Parameters

- **Restricted**—In this mode, a device restricts its passphrase from being exported into a configuration file. Restricted mode protects the encrypted sensitive data in a configuration file from devices that do not have the passphrase. The mode should be used when a user does not want to expose the passphrase in a configuration file.

- **Unrestricted**—In this mode, a device will include its passphrase when creating a configuration file. This allows any devices accepting the configuration file to learn the passphrase from the file.

Default

The default is **unrestricted**.

Command Mode

SSD Configuration mode.

User Guidelines

To revert to the default state, use the **no ssd file passphrase control** command.

Note that after a device is reset to the factory default, its local passphrase is set to the default passphrase. As a result, the device will not be able to decrypted sensitive data encrypted with a user-defined passphrase key in its own configuration files until the device is manually configured with the user-passphrase again or the files are created in unrestricted mode.

If a user-defined passphrase in Unrestricted mode are configured, it is highly recommended to enable SSD File Integrity Control. Enabling SSD File Integrity Control protects configuration files from tampering.

Examples

```
console(ssd-config)# ssd file passphrase control restricted
```
50.8 ssd file integrity control

To instruct the device to protect newly-generated configuration files that contain encrypted sensitive data from tampering, use **ssd file integrity control** command in SSD Configuration mode.

To disable Integrity Control, use **no ssd file integrity control**.

Syntax

```
ssd file integrity control enabled
no ssd file integrity control
```

Parameters

- **enabled**—Enable file integrity control to protect newly-generated configuration files from tampering.

Default

The default file input control is **disable**.

Command Mode

SSD Configuration mode.

User Guidelines

TA user can protect a configuration file from being tampered by creating the file with File Integrity Control enabled. It is recommended that File Integrity Control be enabled when a devices users a user-defined passphrase with Unrestricted Configuration File Passphrase Control.

A device determines whether the integrity of a configuration file is protected by examining the File Integrity Control command in the file. If a file in integrity-protected, but a device finds the integrity of the file is not intact, the device rejects the file. Otherwise, the file is accepted for further processing.

Examples

```
switchxxxxx(config-ssd)#  ssd file integrity control enabled
```
When File Integrity is enabled, an internal digest command is added to the end of the entire configuration file. This is used in downloading the configuration file to the startup configuration.

`config-file-digest 0AC78001122334400AC780011223344`
51.1 aaa logging

To enable logging AAA logins, use the `aaa logging` Global Configuration mode command. To disable logging AAA logins, use the `no` form of this command.

Syntax

```plaintext
aaa logging {login}
no aaa logging {login}
```

Parameters

- `login`—Enables logging messages related to successful AAA login events, unsuccessful AAA login events and other AAA login-related events.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables logging messages related to successful login events, unsuccessful login events and other login-related events. Other types of AAA events are not subject to this command.

Example

The following example enables logging AAA login events.

```plaintext
switchxxxxxx(config)# aaa logging login
```
51.2 clear logging

To clear messages from the internal logging buffer, use the `clear logging` Privileged EXEC mode command.

Syntax

`clear logging`

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example clears messages from the internal logging buffer.

```
switchxxxxxx# clear logging
Clear Logging Buffer ? (Y/N)[N]
```

51.3 clear logging file

To clear messages from the logging file, use the `clear logging file` Privileged EXEC mode command.

Syntax

`clear logging file`

Parameters

This command has no arguments or keywords.
Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example clears messages from the logging file.

```
switchxxxxxx# clear logging file
Clear Logging File [y/n]
```

51.4 file-system logging

To enable logging file system events, use the `file-system logging` Global Configuration mode command. To disable logging file system events, use the `no` form of this command.

Syntax

```
file-system logging {copy | delete-rename}
no file-system logging {copy | delete-rename}
```

Parameters

- **copy**—Specifies logging messages related to file copy operations.
- **delete-rename**—Specifies logging messages related to file deletion and renaming operations.

Default Configuration

Enabled.

Command Mode

Global Configuration mode
Example

The following example enables logging messages related to file copy operations.

```
switchxxxxxx(config)# file-system logging copy
```

51.5 logging buffered

To limit the SYSLOG message display to messages with a specific severity level, and to define the buffer size (number of messages that can be stored), use the `logging buffered` Global Configuration mode command. To cancel displaying the SYSLOG messages, and to return the buffer size to default, use the `no` form of this command.

Syntax

```
logging buffered [buffer-size] [severity-level | severity-level-name]
```

```
no logging buffered
```

Parameters

- **buffer-size**—(Optional) Specifies the maximum number of messages stored in buffer. (Range: 20–1000)

- **severity-level**—(Optional) Specifies the severity level of messages logged in the buffer. The possible values are: 1-7.

- **severity-level-name**—(Optional) Specifies the severity level of messages logged in the buffer. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is informational.

The default buffer size is 1000.

Command Mode

Global Configuration mode
User Guidelines

All the SYSLOG messages are logged to the internal buffer. This command limits the messages displayed to the user.

Example

The following example shows two ways of limiting the SYSLOG message display from an internal buffer to messages with severity level `debugging`. In the second example, the buffer size is set to 100 and severity level `informational`.

```
switchxxxxxx(config)# logging buffered debugging
switchxxxxxx(config)# logging buffered 100 informational
```

51.6 logging console

To limit messages logged to the console to messages to a specific severity level, use the logging console Global Configuration mode command. To restore the default, use the no form of this command.

Syntax

```
logging console level

no logging console
```

Parameters

`level`—Specifies the severity level of logged messages displayed on the console. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

Informational.

Command Mode

Global Configuration mode
Example

The following example limits logging messages displayed on the console to messages with severity level **errors**.

```
switchxxxxxx(config)# logging console errors
```

51.7 **logging file**

To limit SYSLOG messages sent to the logging file to messages with a specific severity level, use the **logging file** Global Configuration mode command. To cancel sending messages to the file, use the **no** form of this command.

Syntax

```
logging file level

no logging file
```

Parameters

- **level**—Specifies the severity level of SYSLOG messages sent to the logging file. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is **errors**.

Command Mode

Global Configuration mode

Example

The following example limits SYSLOG messages sent to the logging file to messages with severity level **alerts**.

```
switchxxxxxx(config)# logging file alerts
```
51.8 logging host

To log messages to the specified SYSLOG server, use the **logging host** Global Configuration command. To delete the SYSLOG server with the specified address from the list of SYSLOG servers, use the **no** form of this command.

Syntax

```
logging host {ip-address | ipv6-address | hostname} [port port] [severity level] [facility facility] [description text]
```

```
no logging host {ipv4-address | ipv6-address | hostname}
```

Parameters

- **ip-address**—IP address of the host to be used as a SYSLOG server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

- **hostname**—Hostname of the host to be used as a SYSLOG server. Only translation to IPv4 addresses is supported. (Range: 1–158 characters. Maximum label size for each part of the host name: 63)

- **port port**—(Optional) Port number for SYSLOG messages. If unspecified, the port number defaults to 514. (Range: 1–65535)

- **severity level**—(Optional) Limits the logging of messages to the SYSLOG servers to a specified level: Emergencies, Alerts, Critical, Errors, Warnings, Notifications, Informational, Debugging.

- **facility facility**—(Optional) The facility that is indicated in the message. It can be one of the following values: local0, local1, local2, local3, local4, local5, local 6, local7. If unspecified, the port number defaults to local7.

- **description text**—(Optional) Description of the SYSLOG server. (Range: Up to 64 characters)

Default Configuration

No messages are logged to a SYSLOG server.

If unspecified, the **severity level** defaults to Informational.

Command Mode

Global Configuration mode
User Guidelines

You can use multiple SYSLOG servers.

Examples

```
switchxxxxxx(config)# logging host 1.1.1.121

switchxxxxxxx(config)# logging host 3000::100/SYSLOG1
```

51.9 logging on

To enable message logging, use the `logging on` Global Configuration mode command. This command sends debug or error messages asynchronously to designated locations. To disable the logging, use the `no` form of this command.

Syntax

```
logging on
no logging on
```

Parameters

This command has no arguments or keywords.

Default Configuration

Message logging is enabled.

Command Mode

Global Configuration mode

User Guidelines

The logging process controls the logging messages distribution at various destinations, such as the logging buffer, logging file or SYSLOG server. Logging on and off at these destinations can be individually configured using the `clear logging file`, `logging console`, and `aaa logging` Global Configuration mode commands. However, if the `aaa logging` command is disabled, no messages are sent to these destinations. Only the console receives messages.
Example
The following example enables logging error messages.

```
switchxxxxxx(config)# logging on
```

51.10 logging source-interface
To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SYSLOG servers, use the `logging source-interface` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`logging source-interface` `interface-id`

`no logging source-interface`

Parameters

`interface-id`—Specifies the source interface.

Default Configuration
The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode
Global Configuration mode

User Guidelines
If the source interface is the outgoing interface, the interface IP address belonging to the next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the lowest IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SYSLOG server.
Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface vlan 100
```

51.11 logging source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 SYSLOG servers, use the `logging source-interface-ipv6` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
logging source-interface-ipv6 interface-id
no logging source-interface-ipv6
```

Parameters

`interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the defined IPv6 address of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SYSLOG server.
Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface-ipv6 vlan 100
```

51.12 logging aggregation on

To control aggregation of SYSLOG messages, use the **logging aggregation on** Global Configuration mode command. If aggregation is enabled, logging messages are displayed every time interval (according to the aging time specified by **logging aggregation aging-time**). To disable aggregation of SYSLOG messages, use the **no** form of this command.

Syntax

```
logging aggregation on
no logging aggregation on
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Global Configuration mode

Example

To turn off aggregation of SYSLOG messages:

```
switchxxxxxx(config)# no logging aggregation on
```

51.13 logging aggregation aging-time

To configure the aging time of the aggregated SYSLOG messages, use the **logging aggregation aging-time** Global Configuration mode command. The SYSLOG messages are
aggregated during the time interval set by the aging-time parameter. To return to the default, use the no form of this command.

Syntax

```
logging aggregation aging-time sec
no logging aggregation aging-time
```

Parameters

```
aging-time sec—Aging time in seconds (Range: 15–3600)
```

Default Configuration

300 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# logging aggregation aging-time 300
```

51.14 logging origin-id

To configure the origin field of the SYSLOG message packet headers sent to the SYSLOG server, use the logging origin-id Global Configuration mode command. To return to the default, use the no form of this command.

Syntax

```
logging origin-id {hostname | IP | IPv6 | string user-defined-id}
no logging origin-id
```

Parameters

```
hostname—The system hostname will be used as the message origin identifier.
```
```
IP—IP address of the sending interface that is used as the message origin identifier.
```
```
IPv6—IPv6 address of the sending interface that is used as the message origin identifier. If the sending interface is IPv4, the IPv4 address will be used instead.
```
• **string** *user-defined-id*—Specifies an identifying description chosen by the user. The *user-defined-id* argument is the identifying description string.

Default Configuration

No header is sent apart from the PRI field.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# logging origin-id string "Domain 1, router B"
```

51.15 show logging

To display the logging status and SYSLOG messages stored in the internal buffer, use the `show logging` Privileged EXEC mode command.

Syntax

```
show logging
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the internal buffer.

```
switchxxxxxx# show logging
Loggin is enabled.
```
Origin id: hostname

Console Logging: Level info. Console Messages: 0 Dropped.

4 messages were not logged

Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.
Aggregation aging time: 300 Sec

01-Jan-2010 05:29:46 :%INIT-I-Startup: Warm Startup
01-Jan-2010 05:29:02 :%LINK-I-Up: Vlan 1
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG6
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG7
01-Jan-2010 05:29:00 :%LINK-W-Down: SYSLOG8

51.16 show logging file

To display the logging status and the SYSLOG messages stored in the logging file, use the `show logging file` Privileged EXEC mode command.

Syntax

`show logging file`

Parameters

This command has no arguments or keywords.
Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the logging file.

```
switchxxxxxx# show logging file
Logging is enabled.

Origin id: hostname

Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged
Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.

Aggregation aging time: 300 Sec

1-Jan-2010 05:57:00 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:56:36 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:37 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
```
51.17 show syslog-servers

To display the SYSLOG server settings, use the **show syslog-servers** Privileged EXEC mode command.

Syntax

```
show syslog-servers
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example provides information about the SYSLOG servers.

```
switchxxxxxxx# show syslog-servers
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Device Configuration
------------------------
IP address   Port   Facility Severity  Description
-------------- ---   --------- -------- --------------
```
<table>
<thead>
<tr>
<th>Source IP</th>
<th>Port</th>
<th>Facility</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.121</td>
<td>514</td>
<td>local7</td>
<td>info</td>
</tr>
<tr>
<td>3000::100</td>
<td>514</td>
<td>local7</td>
<td>info</td>
</tr>
</tbody>
</table>
52.1 disable ports leds

To turn off the LEDs on all ports on a device, use the disable ports leds Global Configuration mode command.

To set the LEDs of all the ports on the device to their current operational status of the port, use the no disable ports leds command.

Syntax

disable ports leds

no disable ports leds

Parameters

This command has no arguments or keywords.

Default Configuration

The default is no disable port leds; that is the LEDs of all the ports reflect their current status.

Command Mode

Global Configuration mode

Examples

The following example turns off the port LEDs.

switchxxxxx(config)# disable ports leds
52.2 hostname

To specify or modify the device host name, use the hostname Global Configuration mode command. To remove the existing host name, use the no form of the command.

Syntax

hostname name

no hostname

Parameters

Name—Specifies the device host name. (Length: 1-58 characters). The hostname must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens.

Default Configuration

No host name is defined.

Command Mode

Global Configuration mode

Example

The following example specifies the device host name as ‘enterprise’.

switchxxxxxx(config)# hostname enterprise
enterprise(config)#

52.3 reload

To reload the operating system at a user-specified time, use the reload Privileged EXEC mode command.

Syntax

reload [in [hh:mm | mmm] | at hh:mm [day month]] | cancel]
Parameters

- **in hh:mm | mmm**—(Optional) Schedules a reload of the software to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days.

- **at hh:mm**—(Optional) Schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

- **day**—(Optional) Number of the day in the range from 1 to 31.

- **month**—(Optional) Month of the year.

- **cancel**—(Optional) Cancels a scheduled reload.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

The **at** keyword can be used only if the system clock has been set on the device. To schedule reloads across several devices to occur simultaneously, synchronize the time on each device with SNTP.

When you specify the reload time using the **at** keyword, if you specify the month and day, the reload takes place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time), or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

To display information about a scheduled reload, use the **show reload** command.

Examples

Example 1: The following example reloads the operating system.
switchxxxxx> **reload**
This command will reset the whole system and disconnect your current session. Do you want to continue? (y/n) [Y]

Example 2: The following example reloads the operating system in 10 minutes.

switchxxxxx> **reload in 10**
This command will reset the whole system and disconnect your current session. Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you want to continue? (y/n) [Y]

Example 3: The following example reloads the operating system at 13:00.

switchxxxxx> **reload at 13:00**
This command will reset the whole system and disconnect your current session. Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3 minutes). Do you want to continue? (y/n) [Y]

Example 4: The following example cancels a reload.

switchxxxxx> **reload cancel**
Reload cancelled.

52.4 **resume**

To enable switching to another open Telnet session, use the **resume** EXEC mode command.

Syntax

```
resume [connection]
```

Parameters

connection—(Optional) Specifies the connection number. (Range: 1-4 connections.)
Default Configuration
The default connection number is that of the most recent connection.

Command Mode
Privileged EXEC mode

Example
The following command switches to open Telnet session number 1.

```
switchxxxxxx> resume 1
```

52.5 service cpu-utilization
To enable measuring CPU utilization, use the service cpu-utilization Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax
```
service cpu-utilization
no service cpu-utilization
```

Parameters
This command has no arguments or keywords.

Default Configuration
Measuring CPU utilization is enabled.

Command Mode
Global Configuration mode

User Guidelines
Use the service cpu utilization command to measure information on CPU utilization.
Example
The following example enables measuring CPU utilization.

```
switchxxxxxxx(config)# service cpu-utilization
```

52.6 show cpld version

To display the device CPLD code version, use the `show cpld version` User EXEC mode command.

Syntax
`show cpld version`

Parameters
This command has no arguments or keywords.

Command Mode
User EXEC mode

Examples

Example 1 - The following example displays the CPLD version of device.

```
switchxxxxxxx> show cpld version
Unit ID  Unit Type    CPLD code Version
----     -----------     ------------
1        SG250-24P      1.0.1
```

Example 2 - The following example displays the CPLD version where the device does not have a CPLD.

```
switchxxxxxxx> show cpld version
Unit ID  Unit Type    CPLD code Version
----     -----------     ------------
```
52.7 show cpu input rate

To display the rate of input frames to the CPU in packets per seconds (pps), use the `show cpu input rate` User EXEC mode command.

Syntax

`show cpu input rate`

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example

The following example displays CPU input rate information.

```
switchxxxxxx> show cpu input rate
Input Rate to CPU is 1030 pps.
```

52.8 show cpu utilization

To display information about CPU utilization, use the `show cpu utilization` Privileged EXEC mode command.

Syntax

`show cpu utilization`

Parameters

This command has no arguments or keywords.
Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show cpu-utilization` command to enable measuring CPU utilization.

Example

The following example displays CPU utilization information.

```
switchxxxxxx> show cpu utilization
CPU utilization service is on.
CPU utilization
--------------------------------------------------
five seconds: 5%; one minute: 3%; five minutes: 3%
```

52.9 `show environment`

To display environment information, use the `show environment` User EXEC mode command.

Syntax

```
show environment {all | power | fan | temperature {status} }
```

Parameters

- `all`—Displays the power, fan and temperature general status.
- `power`—Displays the power supply status
- `fan`—Displays the fan(s) status
- `temperature {status}`—Displays the temperature status

Command Mode

User EXEC mode
User Guidelines

The power parameters displays power supply information.

Main Power supply available statuses:

- Active - Main power supply is used.
- Failure - The main power supply has failed.

PD Power supply available status:

- Active - power supply is used.
- Available - Power supply is connected but is not used.
- Not Connected - The PD port is not connected or not connected to PSE.

The **fan** and **temperature status** parameters are available only on devices on which fan and/or temperature sensor are installed.

Fan status can be one of:

- **OK** - The fan/s functions correctly.
- **Failure** - One or more of the fans failed.
- **Fan read fail** - Reading information from one or more fans failed.
- **NA** - No fan is installed.

Temperature can be one of:

- **OK** - The temperature is below the warning threshold.
- **Warning** - The temperature is between the warning threshold and the critical threshold.
- **Critical** - the temperature is above the critical threshold.

Sensor status can be one of:

- **OK** - All Sensors on device are functioning properly.
- **Failure** - One or more of the sensors failed.
- **NA** - No sensor installed.

Examples

Example 1 - The following example displays the general environment status of a device.

```
switchxxxxxx> show environment all
```
Internal power supply Active.
PD power supply Available.
fans OK
Sensor is OK
Temperature is OK

Example 2 - The following example displays the power status of a device.

```bash
switchxxxxxx> show environment power
Internal power supply Active.
PD power supply Available.
```

Example 3 - The following example displays the general fan status of a device.

```bash
switchxxxxxx> show environment fan
fans OK
```

Example 4 - The following example displays the temperature status of a device.

```bash
switchxxxxxx> show environment temperature status
TEMPERATURE level is Warning
```

52.10 show inventory

To display product inventory list, use the `show inventory` User EXEC mode command.

Syntax

```
show inventory [entity]
```
Parameters

entity—Specifies the entity to be displayed. It can be an interface (Ethernet) name.

Command Mode

User EXEC mode

User Guidelines

Use the `show inventory` command to retrieve and display inventory information about the device and connected entities such as SFPs.

In case no entity is specified the command will display information for device and all connected entities.

If the specified entity is an interface (Ethernet) name, and an SFP is not inserted into the port - Only the NAME & DESCR fields will be displayed, and DESCR will be “No SFP Inserted”.

Examples

Example 1 - The following example displays all the entities in a standalone system.

```
switchxxxxxx> show inventory
NAME: "1", DESCR: "52-Port Gigabit PoE Stackable Managed Switch"
PID: SRW224G4P-K9, VID: V01, SN: 123456789
```

Example 2 - The following example displays a specific entity in a standalone system.

```
switchxxxxxx> show inventory gigabitethernet1/0/49
NAME: "GigabitEthernet1/0/49", DESCR: "1000M base-LX Mini-GBIC SFP Transceiver"
PID: MGBLX1, VID: V01, SN: AGC1525UR7G
```

Example 3 - The following example displays information for specific entity - where VID information cannot be read from SFP

```
switchxxxxxx> show inventory gi1
NAME: "gi1", DESCR: "SFP-1000Base-LX"
PID: SFP-1000-LX, VID: Information Unavailable, SN: 613bbgr8
```
Example 4 - The following example displays information for specific interface - where SFP is not inserted into the interface

```
switchxxxxxx> show inventory gi2
NAME: "gi2", DESCR: "SFP not inserted"
```

52.11 show reload

To display whether there is a pending reload for status of the device, use the `show reload` Privileged EXEC mode command.

Syntax

```
show reload
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

You can use this command to display a pending software reload. To cancel a pending reload, use this command with the `cancel` parameter.

Example

The following example displays that reboot is scheduled for 00:00 on Saturday, April-20.

```
switchxxxxxx> show reload
Reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)
```
52.12 show sessions

To display open Telnet sessions, use the \textbf{show sessions} User EXEC mode command.

Syntax

\textbf{show sessions}

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

User Guidelines

The \textbf{show sessions} command displays Telnet sessions to remote hosts opened by the current Telnet session to the local device. It does not display Telnet sessions to remote hosts opened by other Telnet sessions to the local device.

Example

The following example displays open Telnet sessions.

```
switchxxxxxx> show sessions
```

<table>
<thead>
<tr>
<th>Connection</th>
<th>Host</th>
<th>Address</th>
<th>Port</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote router</td>
<td>172.16.1.1</td>
<td>23</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.2</td>
<td>172.16.1.2</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The connection number.</td>
</tr>
<tr>
<td>Host</td>
<td>The remote host to which the device is connected through a Telnet session.</td>
</tr>
</tbody>
</table>
52.13 show system

Use the **show system** User EXEC mode command to display system information.

Syntax

```
show system
```

Command Mode

User EXEC mode

User Guidelines

Use the **show system** command to display system information.

The *System contact* output displays the system contact information as configured in command `snmp-server contact`

The *System Name* output displays the system name as configured via command `hostname`

The System Location output displays the system location as configured via command `snmp-server location`

The *System MAC address* output displays device base MAC address (not configurable by user).

The *System Object ID* output displays the unique System Object ID (not configurable by user).

The *fan* output displays the device fan(s) status summary. To view specific status per each fan in device use the command `show system fans`.

The *sensor* and *temperature* output displays the device temperature level and general status of all sensors. To view per sensor status, temperature read and threshold levels, use command `show system sensors`.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>The remote host IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>The Telnet TCP port number.</td>
</tr>
<tr>
<td>Byte</td>
<td>The number of unread bytes for the user to see on the connection.</td>
</tr>
</tbody>
</table>
Examples

Example 1: The following example displays system information of a device.

```
switchxxxxxx> show system

System Description:                        SG250-24P
System Up Time (days,hour:min:sec):        03,02:27:46
System Contact:
System Name:                               switch151400
System Location:
System MAC Address:                        00:24:ab:15:14:00
System Object ID:                          1.3.6.1.4.1.9.6.1.98.24.1

Unit Fans Status
---- ---------
1        OK

Unit    Sensor Status       Temperature Level
---- --------------------- -------------------------
1       OK                   Warning
```

52.14 show system languages

To display the list of supported languages, use the `show system languages` User EXEC mode command.

Syntax

```
show system languages
```
Parameters
This command has no arguments or keywords.

Default Usage
None

Command Mode
User EXEC mode

Example
The following example displays the languages configured on the device. Number of Sections indicates the number of languages permitted on the device.

```
switchxxxxxx> show system languages
Language Name  Unicode Name  Code   Num of Sections
--------------- -------------- ------ --------------
English         English       en-US   2
Japanese        µùѵ£¼F¬P     ja-JP   2
```

52.15 `show system tcam utilization`

To display the Ternary Content Addressable Memory (TCAM) utilization, use the `show system tcam utilization` EXEC mode command.

Syntax
```
show system tcam utilization
```

Default Usage
None

Command Mode
User EXEC mode
Example

The following example displays TCAM utilization information.

```
switchxxxxxx> show system tcam utilization
TCAM utilization: 58%
```

52.16 show services tcp-udp

To display information about the active TCP and UDP services, use the `show services tcp-udp` Privileged EXEC mode command.

Syntax

```
show services tcp-udp
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The output does not show sessions where the device is a TCP/UDP client.

Examples

```
switchxxxxxx> show services tcp-udp
Type   Local IP Address   Remote IP address   Service Name   State
TCP    All:22               All:22              SSH            LISTEN
TCP    All:23               All:23              Telnet          LISTEN
TCP    All:80               All:80              HTTP            LISTEN
TCP    All:443              All:443             HTTPS           LISTEN
```
52.17 show tech-support

To display system and configuration information that can be provided to the Technical Assistance Center when reporting a problem, use the `show tech-support` User EXEC mode command.

Syntax

```
show tech-support [config | memory ]
```

Parameters

- `memory`—(Optional) Displays memory and processor state data.
- `config`—(Optional) Displays switch configuration within the CLI commands supported on the device.

Default Configuration

By default, this command displays the output of technical-support-related show commands. Use keywords to specify the type of information to be displayed. If you do not specify any parameters, the system displays all configuration and memory data.

Command Types

Switch command.

Command Mode

User EXEC mode

User Guidelines

Caution: Avoid running multiple `show tech-support` commands on a switch or multiple switches on the network segment. Doing so may cause starvation of some time sensitive protocols, like STP.
The `show tech-support` command may time out if the configuration file output takes longer to display than the configured session time out time. If this happens, enter a `set logout timeout` value of 0 to disable automatic disconnection of idle sessions or enter a longer timeout value.

The `show tech-support` command output is continuous, meaning that it does not display one screen at a time. To interrupt the output, press Esc.

If the user specifies the `memory` keyword, the `show tech-support` command displays the following output:

- Flash info (dir if exists, or flash mapping)
- Output of command `show bootvar`
- Buffers info (like `print os buff`)
- Memory info (like `print os mem`)
- Proc info (like `print OS tasks`)
- Versions of software components
- Output of command `show cpu utilization`

52.18 show system fans

To view the status of the fans on the device, use the `show system fans` User EXEC mode command.

Syntax

```
show system fans
```

Command Mode

User EXEC mode

User Guidelines

Use the `show system fans` command to display detailed information per fan. The following information will be displayed:

- Expected fan speed (in RPM) - The Expected RPM value is based on temperature reading from sensors.
- Per fan actual RPM.
- Per fan status - Possible values are: OK, fail; read fail; N/A (no fan installed).
Examples

Example 1: Display for devices whose hardware supports variable fan speed.

```
show system fans
```

Unit ID: 1
Expected fan(s) RPM: 6000 (Range 5000-12000)

<table>
<thead>
<tr>
<th>Unit/fan ID</th>
<th>Fan Actual Speed (RPM)</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>6000</td>
<td>OK</td>
</tr>
<tr>
<td>1/2</td>
<td>NA</td>
<td>Fail</td>
</tr>
<tr>
<td>1/3</td>
<td>NA</td>
<td>Read fail</td>
</tr>
<tr>
<td>1/4</td>
<td>4000</td>
<td>OK</td>
</tr>
</tbody>
</table>

52.19 show system sensors

To view the temperature sensor status, use the `show system sensors` User EXEC mode command.

Syntax

```
show system sensors
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode
Examples

Example 1: Display for standalone systems with multiple sensor statuses

switchxxxxxx> show system sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor status</th>
<th>Temperature (C)</th>
<th>Warning Alarm Temp (C)</th>
<th>Critical Alarm Temp (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OK</td>
<td>44</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

52.20 show system power-supply

To view the power-supply status, use the show system power-supply User EXEC mode command.

Syntax

show system power-supply

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

User Guidelines

Power supply supported:

- Main (internal power supply).
- PD (POE Powered Device port).

Main Power supply statuses:
• Active - Main power supply is used.
• Failure - Main power has failed.

When the power supply changes to Main power supply, the following syslog message is created: Power supply source changed to Main Power Supply.

PD Power supply statuses:
• Active - power supply is used.
• Available - Power supply is connected but is not used.
• Not Connected - The PD port is not connected or not connected to PSE.

When the PD Power supply status is Active or Available the PD power supply type can be one of the following:
• 802.3AF.
• 802.3AT.

When the power supply changes to PD power supply (PD), the following syslog message is created: Power supply source changed to PD Power Supply.

Examples

Example 1: Display of main power supply and redundant power supply status on standalone unit

```
switchxxxxxx> show system power-supply

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>Active</td>
</tr>
<tr>
<td>Redundant</td>
<td>Available</td>
</tr>
</tbody>
</table>
```

Example 3: Show power supply with PoE (PD) support:

```
switchxxxxxx> show system power-supply
```

```
52.21  show system id

To display the system identity information, use the show system id User EXEC mode command.

Syntax

show system id

Command Mode

User EXEC mode

Example

The following example displays the system identity information.

switchxxxxxx> show system id
serial number 114

52.22  show ports leds configuration

To display whether the LEDs of the ports are enabled or disabled, use the show port leds configuration User EXEC mode command.

Syntax

show ports leds configuration

Parameters

This command has no arguments or keywords.
Command Mode

User EXEC mode

Examples

Example 1: The following example displays the status of the port’s LEDs when they are turned on.

switchxxxxxx> show ports leds configuration
Port leds are not disabled

Example 2: The following example displays the status of the port LEDs when they are turned off.

switchxxxxxx> show port leds configuration
Port leds are disabled

52.23 show users

To display information about the active users, use the show users User EXEC mode command.

Syntax

show users

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode


Example

The following example displays information about the active users.

```
switchxxxxx> show users
Username Protocol Location
-------- -------- --------
 Bob Serial
 John SSH 172.16.0.1
 Robert HTTP 172.16.0.8
 Betty Telnet 172.16.1.7
 Sam 172.16.1.6
```

52.24 show hardware version

To display hardware version information, use the show hardware version User EXEC mode command.

Syntax

**show hardware version**

Command Mode

User EXEC mode

Example

The following example displays hardware version information.

```
switchxxxxx> show hardware version
Hardware Version 1.0.0
```
52.25  system light
To light the networks port LEDs of a device, use the system light EXEC mode command.

Syntax

system light[/duration seconds]

system light stop

Parameters

- duration seconds—The number of seconds to light the LEDs. If unspecified, defaults to 60 seconds. (Range: 5–300)
- stop—Stop lighting the LEDs.

Default Usage

None

Command Mode

User EXEC mode

Example

The following example lights the system LED for 6 seconds.

switchxxxxxx> system light duration 6

52.26  system recovery
To set the system to automatically recover from temperature that reached the critical threshold, use the system recovery Global Configuration mode command.

To return to disable automatic recovery, use the no form of the command.

Syntax

system recovery
**no system recovery**

**Parameters**
This command has no arguments or keywords.

**Default Configuration**
System recovery is enabled by default.

**Command Mode**
Global Configuration mode

**Example**
```
switchxxxxxxx(config)# no system recovery
```
Telnet, Secure Shell (SSH) and Secure Login (Slogin) Commands

53.1 ip telnet server

Use the `ip telnet server` Global Configuration mode command to enable the device as a Telnet server that accepts connection requests from remote Telnet clients. Remote Telnet clients can configure the device through the Telnet connections.

Use the `no ip telnet server` command to disable the Telnet server functionality on the device.

Syntax

`ip telnet server`

`no ip telnet server`

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The device can be enabled to accept connection requests from both remote SSH and Telnet clients. It is recommended that the remote client connects to the device using SSH (as opposed to Telnet), since SSH is a secure protocol and Telnet is not. To enable the device to be an SSH server, use the `ip ssh server` command.

Example

The following example enables the device to be configured from a Telnet server.

```
switchxxxxxx(config)# ip telnet server
```
53.2  ip ssh server

The **ip ssh server** Global Configuration mode command enables the device to be an SSH server and so to accept connection requests from remote SSH clients. Remote SSH clients can manage the device through the SSH connection.

Use the **no** form of this command to disable the SSH server functionality from the device.

**Syntax**

```
ip ssh server
no ip ssh server
```

**Default Configuration**

The SSH server functionality is disabled by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

The device, as an SSH server, generates the encryption keys automatically.

To generate new SSH server keys, use the `crypto key generate dsa` and `crypto key generate rsa` commands.

**Example**

The following example enables configuring the device to be an SSH server.

```
switchxxxxxx(config)# ip ssh server
```

53.3  ip ssh port

The **ip ssh port** Global Configuration mode command specifies the TCP port used by the SSH server. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
ip ssh port port-number
no ip ssh port
```
Parameters

- **port-number**—Specifies the TCP port number to be used by the SSH server. (Range: 1–59999).

Default Configuration

The default TCP port number is 22.

Command Mode

Global Configuration mode

Example

The following example specifies that TCP port number 808 is used by the SSH server.

```
switchxxxxxx(config)# ip ssh port 808
```

### 53.4 **ip ssh password-auth**

Use the `ip ssh password-auth` Global Configuration mode command to enable password authentication of incoming SSH sessions.

Use the `no` form of this command to disable this function.

**Syntax**

```
ip ssh password-auth
no ip ssh password-auth
```

Default Configuration

Password authentication of incoming SSH sessions is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables password key authentication by a local SSH server of remote SSH clients.
The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

Example

The following example enables password authentication of the SSH client.

```
switchxxxxxx(config)# ip ssh password-auth
```

### 53.5 ip ssh pubkey-auth

Use the `ip ssh pubkey-auth` Global Configuration mode command to enable public key authentication of incoming SSH sessions.

Use the `no` form of this command to disable this function.

**Syntax**

```text
ip ssh pubkey-auth [auto-login]
```

```text
no ip ssh pubkey-auth
```

**Parameters**

- **auto-login**—Specifies that the device management AAA authentication (CLI login) is not needed. By default, the login is required after the SSH authentication.

**Default Configuration**

Public key authentication of incoming SSH sessions is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables public key authentication by a local SSH server of remote SSH clients.
The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device, except if the auto-login parameter was specified.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

If the **auto-login** keyword is specified for SSH authentication by public key management access is granted if SSH authentication succeeds and the name of SSH used is found in the local user database. The device management AAA authentication is transparent to the user. If the user name is not in the local user database, then the user receives a warning message, and the user will need to pass the device management AAA authentication independently of the SSH authentication.

If the **auto-login** keyword is not specified, management access is granted only if the user engages and passes both SSH authentication and device management AAA authentication independently. If no SSH authentication method is enabled management access is granted only if the user is AAA authenticated by the device management. No SSH authentication method means SSH is enabled and neither SSH authentication by public key nor password is enabled.

**Example**

The following example enables authentication of the SSH client.

```
switchxxxxxx(config)# ip ssh pubkey-auth
```

**53.6 crypto key pubkey-chain ssh**

The **crypto key pubkey-chain ssh** Global Configuration mode command enters the SSH Public Key-chain Configuration mode. This mode is used to manually specify device public keys, such as SSH client public keys.

**Syntax**

```
crypto key pubkey-chain ssh
```

**Default Configuration**

Keys do not exist.

**Command Mode**

Global Configuration mode
User Guidelines

Use this command when you want to manually specify SSH client’s public keys.

Example

The following example enters the SSH Public Key-chain Configuration mode and manually configures the RSA key pair for SSH public key-chain to the user ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string
AAAAB3NzaC1yc2EAAAAADAQABAAABAAQCVnRwFWl
A14kpIw9GRonZQZxjHRCqKL6rMLQ+
ZNxZSkvHG+QusIZ/76IlfT34v7u7ChFAE+
Vu4GRfpsWQvV35LqJk67IOU/zfwOl1g
kTwml75QR9gHujs6KwGN2QWXg3ub8gDSq
muSn/Wd05iDX2IEQWu081icglk02LYciz
+Z4TrEU/9FJxwPiVQOjc+KBXuR0juNg5nFysY
0ZckON/W9a/tmkm1shRE7Di71+w3fNiOA
6w9o44t6+AINEICBCCA4YcF6zMzaT1wefWwX6f+
Rmt5nhqAtN/4oJfcele66DqVXl9WmN
zNR4DYDvSzg01DnwCACQWh
```

53.7 user-key

The `user-key` SSH Public Key-string Configuration mode command associates a username with a manually-configured SSH public key.

Use the `no user-key` command to remove an SSH user and the associated public key.

Syntax

```
user-key username {rsa | dsa}
no user-key username
```
Parameters

- **username**—Specifies the remote SSH client username. (Length: 1–48 characters)
- **rsa**—Specifies that the RSA key pair is manually configured.
- **dsa**—Specifies that the DSA key pair is manually configured.

Default Configuration

No SSH public keys exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

After entering this command, the existing key, if any, associated with the user will be deleted. You must follow this command with the key-string command to configure the key to the user.

Example

The following example enables manually configuring an SSH public key for SSH public key-chain bob.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string row
AAAAB3NzaC1yc2EAAAADAQABAAABAQAABAAAABQQvTnRwPWl
```

53.8 **key-string**

The **key-string** SSH Public Key-string Configuration mode command manually specifies an SSH public key.

Syntax

```
key-string [row key-string]
```

Parameters

- **row**—Specifies the SSH public key row by row. The maximum length of a row is 160 characters.
• **key-string**—Specifies the key in UU-encoded DER format. UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

**Default Configuration**

Keys do not exist.

**Command Mode**

SSH Public Key-string Configuration mode

**User Guidelines**

Use the `key-string` SSH Public Key-string Configuration mode command without the `row` parameter to specify which SSH public key is to be interactively configured next. Enter a row with no characters to complete the command.

Use the `key-string row` SSH Public Key-string Configuration mode command to specify the SSH public key, row by row. Each row must begin with a `key-string row` command.

The UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

**Example**

The following example enters public key strings for SSH public key client ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWlAl4kpqIw9GBRonZQZxjHKcqKL6rM1Q+
ZNxfZSkvHG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRfpsSwQvV35LqJJk67IOU/zfwQ11g
kTwm175QR9gHujS6KwGNA2QWXgh3ub8gDjTSq
muSn/Wd05iDX2IEQWu08licglkO2LYciz
+Z4TrEU/9FJxwPiVQ0j+c+KBXuR0juNg5nFYsY
0Zck0N/W9a/tnkmlshRE7Di71+w3fNIOA
6w9o4tt6+AINEICBCCA4YeF6zMzaT1wefWwX6f+
Rmt5nhhqdAtN/4oJfce166DqVX1gWmN
```
53.9 **show ip ssh**

The **show ip ssh** Privileged EXEC mode command displays the SSH server configuration.

**Syntax**

`show ip ssh`

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the SSH server configuration.

```
switchxxxxxx# show ip ssh

SSH server enabled. Port: 22
RSA key was generated.
DSA (DSS) key was generated.
SSH Public Key Authentication is enabled with auto-login.
SSH Password Authentication is enabled.
Active incoming sessions:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>SSH Username</th>
<th>Version</th>
<th>Cipher</th>
<th>Auth Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.1</td>
<td>John Brown</td>
<td>1.5</td>
<td>3DES</td>
<td>HMAC-SHA1</td>
</tr>
<tr>
<td>192.20.2.1</td>
<td>Bob Smith</td>
<td>1.5</td>
<td>3DES</td>
<td>Password</td>
</tr>
</tbody>
</table>
```
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The client address</td>
</tr>
<tr>
<td>SSH Username</td>
<td>The user name</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number</td>
</tr>
<tr>
<td>Cipher</td>
<td>The encryption type (3DES, Blowfish, RC4)</td>
</tr>
<tr>
<td>Auth Code</td>
<td>The authentication Code (HMAC-MD5, HMAC-SHA1) or Password</td>
</tr>
</tbody>
</table>

### 53.10 show crypto key pubkey-chain ssh

The `show crypto key pubkey-chain ssh` Privileged EXEC mode command displays SSH public keys stored on the device.

**Syntax**

`show crypto key pubkey-chain ssh [username username] [fingerprint {bubble-babble | hex}]`

**Parameters**

- **username username**—Specifies the remote SSH client username. (Length: 1–48 characters)
- **fingerprint {bubble-babble | hex}**—Specifies the fingerprint display format. The possible values are:
  - **bubble-babble**—Specifies that the fingerprint is displayed in Bubble Babble format.
  - **hex**—Specifies that the fingerprint is displayed in hexadecimal format.

**Default Configuration**

The default fingerprint format is hexadecimal.

**Command Mode**

Privileged EXEC mode
Example

The following examples display SSH public keys stored on the device.

```
switchxxxxxx# show crypto key pubkey-chain ssh
Username Fingerprint
----------- --

switchxxxxxx# show crypto key pubkey-chain ssh username bob
Username Fingerprint
----------- --
```
User Interface Commands

54.1 configure

To enter the Global Configuration mode, use the configure Privileged EXEC mode command.

Syntax

configure [terminal]

Parameters

terminal—(Optional) Enter the Global Configuration mode with or without the keyword terminal.

Command Mode

Privileged EXEC mode

Example

The following example enters Global Configuration mode.

switchxxxxxx# configure
switchxxxxxx(config)#

54.2 disable

To leave the Privileged EXEC mode and return to the User EXEC mode, use the disable Privileged EXEC mode command.

Syntax

disable [privilege-level]
Parameters

**privilege-level**—(Optional) Reduces the privilege level to the specified privileged level. If privilege level is left blank, the level is reduce to the minimal privilege level.

Default Configuration

The default privilege level is 15.

Command Mode

Privileged EXEC mode

Example

The following example returns the user to user level 1.

```
switchxxxxxx# disable 1
switchxxxxxx#
```

54.3 do

To execute an EXEC-level command from Global Configuration mode or any configuration submode, use the **do** command.

Syntax

```
do command
```

Parameters

**command**—Specifies the EXEC-level command to execute.

Command Mode

All configuration modes

Example

The following example executes the **show vlan** Privileged EXEC mode command from Global Configuration mode.

Example
switchxxxxxx(config)# do show vlan

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gi1-4, Po1, Po2</td>
<td>other</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>gi1</td>
<td>dynamicGvrp</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>V0010</td>
<td>gi1</td>
<td>permanent</td>
<td>Not Required</td>
</tr>
<tr>
<td>11</td>
<td>V0011</td>
<td>gi1, gi3</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>gi1</td>
<td>permanent</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>gi1, gi3</td>
<td>permanent</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>gi1</td>
<td>permanent</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>gi1, gi4</td>
<td>permanent</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>4093</td>
<td>guest-vlan</td>
<td>gi1, gi3</td>
<td>permanent</td>
<td>Guest</td>
</tr>
</tbody>
</table>

switchxxxxxx(config)#

54.4 enable

To enter the Privileged EXEC mode, use the `enable` User EXEC mode command.

**Syntax**

`enable [privilege-level]`

**Parameters**

`privilege-level`—(Optional) Specifies the privilege level at which to enter the system. (Range: 1, 7, 15)

**Default Configuration**

The default privilege level is 15.

**Command Mode**

User EXEC mode
Example

The following example enters privilege level 7.

```
switchxxxxxx# enable 7
enter password:**********
switchxxxxxx# Accepted
```

The following example enters privilege level 15.

```
switchxxxxxx# enable
enter password:**********
switchxxxxxx# Accepted
```

54.5 end

To end the current configuration session and return to the Privileged EXEC mode, use the `end` command.

Syntax

```
end
```

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

All configuration modes
Example

The following example ends the Global Configuration mode session and returns to the Privileged EXEC mode.

```
switchxxxxxx(config)# end
switchxxxxxx#
```

54.6  exit (Configuration)

To exit any mode and bring the user to the next higher mode in the CLI mode hierarchy, use the `exit` command.

Syntax

```
exit
```

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

All configuration modes

Examples

The following examples change the configuration mode from Interface Configuration mode to Privileged EXEC mode.

```
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# exit
```
54.7  exit (EXEC)

To close an active terminal session by logging off the device, use the `exit` User EXEC mode command.

**Syntax**

```
exit
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

User EXEC mode

**Example**

The following example closes an active terminal session.

```
switchxxxxxx# exit
```

54.8  help

To display a brief description of the Help system, use the `help` command.

**Syntax**

```
help
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None
Command Mode

All configuration modes

Example

The following example describes the Help system.

```
switchxxxxxxx# help
```

Help may be requested at any point in a command by entering a question mark '?' . If nothing matches the currently entered incomplete command, the help list is empty. This indicates that there is no command matching the input as it currently appears. If the request is within a command, press the Backspace key and erase the entered characters to a point where the request results in a match.

Help is provided when:

1. There is a valid command and a help request is made for entering a parameter or argument (e.g. 'show ?'). All possible parameters or arguments for the entered command are then displayed.

2. An abbreviated argument is entered and a help request is made for arguments matching the input (e.g. 'show pr?').

54.9 history

To enable saving commands that have been entered, use the **history** Line Configuration Mode command. To disable the command, use the **no** form of this command.

**Syntax**

```
history
no history
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

Enabled.
**Command Mode**

Line Configuration Mode

**User Guidelines**

This command enables saving user-entered commands for a specified line. You can return to previous lines by using the up or down arrows.

It is effective from the next time that the user logs in via console/telnet/ssh.

The following are related commands:

- Use the `terminal history size` User EXEC mode command to enable or disable this command for the current terminal session.

- Use the `history size` Line Configuration Mode command to set the size of the command history buffer.

**Example**

The following example enables the command for Telnet.

```plaintext
switchxxxxx(config)# line telnet
switchxxxxx(config-line)# history
```

**54.10 history size**

To change the maximum number of user commands that are saved in the history buffer for a particular line, use the `history size` Line Configuration Mode command. To reset the command history buffer size to the default value, use the `no` form of this command.

**Syntax**

```
history size number-of-commands
no history size
```

**Parameters**

- `number-of-commands`—Specifies the number of commands the system records in its history buffer.
Default Configuration
The default command history buffer size is 10 commands.

Command Mode
Line Configuration Mode

User Guidelines
This command configures the command history buffer size for a particular line. It is effective from the next time that the user logs in via console/telnet/ssh.

Use the terminal history size User EXEC mode command to configure the command history buffer size for the current terminal session.

The allocated command history buffer is per terminal user, and is taken from a shared buffer. If there is not enough space available in the shared buffer, the command history buffer size cannot be increased above the default size.

Example
The following example changes the command history buffer size to 100 entries for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history size 100
```

54.11 login
To enable changing the user that is logged in, use the login User EXEC mode command. When this command is logged in, the user is prompted for a username/password.

Syntax
```
login
```

Parameters
This command has no arguments or keywords

Default Configuration
None
**Command Mode**

User EXEC mode

**Example**

The following example enters Privileged EXEC mode and logs in with the required username ‘bob’.

```
switchxxxxx# login
User Name: bob
Password: *****
switchxxxxx#
```

---

**54.12 terminal datadump**

To enable dumping all the output of a show command without prompting, use the `terminal datadump` User EXEC mode command. To disable dumping, use the `no` form of this command.

**Syntax**

```
terminal datadump
terminal no datadump
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

When printing, dumping is disabled and printing is paused every 24 lines.

**Command Mode**

User EXEC mode

**User Guidelines**

By default, a `More` prompt is displayed when the output contains more than 24 lines. Pressing the `Enter` key displays the next line; pressing the `Spacebar` displays the next screen of output.
The **terminal datadump** command enables dumping all output immediately after entering the show command by removing the pause.

The width is not limited, and the width of the line being printed on the terminal is based on the terminal itself.

This command is relevant only for the current session.

**Example**

The following example dumps all output immediately after entering a show command.

```
switchxxxxxx# terminal datadump
```

### 54.13 terminal history

To enable the command history function for the current terminal session, meaning that it will not be stored in the Running Configuration file, use the **terminal history** User EXEC mode command. To disable the command, use the **no** form of this command.

**Syntax**

```
terminal history
terminal no history
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

The default configuration for all terminal sessions is defined by the **history** Line Configuration Mode command.

**Command Mode**

User EXEC mode

**User Guidelines**

The command enables the command history for the current session. The default is determined by the **history** Line Configuration Mode command.

This command is effective immediately.
Example

The following example disables the command history function for the current terminal session.

```
switchxxxxxx# terminal no history
```

54.14 terminal history size

To change the command history buffer size for the current terminal session, meaning it will not be stored in the Running Configuration file, use the `terminal history size` User EXEC mode command. Use the `no` form of this command to reset the command history buffer size to the default value.

Syntax

```
terminal history size number-of-commands

terminal no history size
```

Parameters

- **number-of-commands**—Specifies the number of commands the system maintains in its history buffer. (Range: 10–206)

Default Configuration

The default configuration for all terminal sessions is defined by the `history size` Line Configuration Mode command.

Command Mode

User EXEC mode

User Guidelines

The `terminal history size` EXEC command changes the command history buffer size for the current terminal session. Use the `history` Line Configuration Mode command to change the default history buffer size.

The maximum number of commands in all buffers is 207.
Example

The following example sets the command history buffer size to 20 commands for the current terminal session.

```
switchxxxxxx# terminal history size 20
```

54.15 terminal prompt

To enable the terminal prompts, use the `terminal prompt` User EXEC mode command. To disable the terminal prompts, use `terminal no prompt` command.

The command is per session and will not be saved in the configuration database.

Syntax

- `terminal prompt`
- `terminal no prompt`

Parameters

This command has no arguments or keywords.

Default Configuration

The default configuration is prompts enabled.

Command Mode

Privileged EXEC mode

Example

The following example disables the terminal prompts

```
switchxxxxxx# terminal no prompt
```

54.16 terminal width

To determine the width of the display for the echo input to CLI sessions, use the `terminal width` User EXEC mode command. To return to the default, use `terminal no width`. 
The command is per session and will not be saved in the configuration database.

**Syntax**

```markdown
terminal width number-of-characters
terminal no width
```

**Parameters**

- **number-of-characters** - Specifies the number of characters to be displayed for the echo output of the CLI commands and the configuration file, '0' means endless number of characters on a screen line. (Range: 0, 70-512)

**Default Configuration**

The default number of characters is 77.

**Command Mode**

Privileged EXEC mode

**Example**

The following example sets the terminal width to 100 characters

```bash
switchxxxxxx# terminal width 100
```

---

**54.17 show history**

To list the commands entered in the current session, use the **show history** User EXEC mode command.

**Syntax**

```markdown
show history
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

None
**Command Mode**

User EXEC mode

**User Guidelines**

The buffer includes executed and unexecuted commands.

Commands are listed from the first to the most recent command.

The buffer remains unchanged when entering into and returning from configuration modes.

**Example**

The following example displays all the commands entered while in the current Privileged EXEC mode.

```
switchxxxxxx# show version
SW version 3.131 (date 23-Jul-2005 time 17:34:19)
HW version 1.0.0

switchxxxxxx# show clock
15:29:03 Jun 17 2005

switchxxxxxx# show history
show version
show clock
show history
3 commands were logged (buffer size is 10)
```

**54.18 show privilege**

To display the current privilege level, use the `show privilege` User EXEC mode command.

**Syntax**

`show privilege`

**Parameters**

This command has no arguments or keywords.
Default Configuration

None

Command Mode

User EXEC mode

Example

The following example displays the privilege level for the user logged on.

```
switchxxxxxx# show privilege
Current privilege level is 15
```
Virtual Local Area Network (VLAN) Commands

55.1 vlan database

Use the `vlan database` Global Configuration mode command to enter the VLAN Configuration mode. This mode is used to create VLAN(s) and define the default VLAN.

Use the `exit` command to return to Global Configuration mode.

Syntax

`vlan database`

Parameters

N/A

Default Configuration

VLAN 1 exists by default.

Command Mode

Global Configuration mode

Example

The following example enters the VLAN Configuration mode, creates VLAN 1972 and exits VLAN Configuration mode.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 1972
switchxxxxxx(config-vlan)# exit
```
55.2  vlan

Use the `vlan` VLAN Configuration mode or Global Configuration mode command to create a VLAN and assign it a name (if only a single VLAN is being created). Use the `no` form of this command to delete the VLAN(s).

Syntax

```
vlan vlan-range | {vlan-id [name vlan-name]} [media ethernet] [state active]
no vlan vlan-range
```

Parameters

- `vlan-range`—Specifies a list of VLAN IDs. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs (range: 2-4094).
- `vlan-id`—Specifies a VLAN ID. (range: 2-4094).
- `vlan-name`—Specifies the VLAN name. (range: 1–32 characters).
- `media`—Specifies the media type of the VLAN. Valid values are `ethernet`.
- `state`—Specifies whether the state of the VLAN. Valid values are `active`.

Default Configuration

VLAN 1 exists by default.

Command Mode

Global Configuration mode

VLAN Database Configuration mode

User Guidelines

If the VLAN does not exist, it is created. If the VLAN cannot be created then the command is finished with error and the current context is not changed.

Example

The following example creates a few VLANs. VLAN 1972 is assigned the name Marketing.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 19-23
switchxxxxxx(config-vlan)# vlan 100
switchxxxxxx(config-vlan)# vlan 1972 name Marketing
```
55.3 show vlan

Use the **show vlan** Privileged EXEC mode command to display the following VLAN information.

**Syntax**

`show vlan [tag vlan-id | name vlan-name]`

**Parameters**

- **tag vlan-id**—Specifies a VLAN ID.
- **name vlan-name**—Specifies a VLAN name string (length: 1–32 characters)

**Default Configuration**

All VLANs are displayed.

**Command Mode**

Privileged EXEC mode

**Examples**

**Example 1**—The following example displays information for all VLANs:

```
switchxxxxxx# show vlan

Created by: S-Static, G-GVRP, R-Radius Assigned VLAN, V-Voice VLAN

+-----+----------+----------------+--------------+----------------+
| VLAN| Name | Tagged Ports | UnTagged Ports| Created by |
|-----+----------+----------------+--------------+----------------|
| 1 | Default | | gi1 | S |
| 10 | Marketing| gi2 | gi2 | S |
| 91 | 11 | gi2-4 | gi2 | SGR |
| 92 | 11 | gi3-4 | | G |
| 93 | 11 | gi3-4 | | GR |
```
55.4 interface vlan

Use the `interface vlan` Global Configuration mode command to enter the Interface Configuration (VLAN) mode for a specific VLAN. After this command is entered, all commands configure this VLAN.

**Syntax**

```
interface vlan vlan-id
```

**Parameters**

- `vlan-id`—Specifies the VLAN to be configured.

**Default Configuration**

N/A

**Command Mode**

Global Configuration mode

**User Guidelines**

If the VLAN does not exist, the VLAN is created. If the VLAN cannot be created, this command is finished with an error and the current context is not changed.

**Example**

The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0
```

55.5 interface range vlan

Use the `interface range vlan` Global Configuration mode command to configure multiple VLANs simultaneously.

**Syntax**

```
interface range vlan vlan-range
```
Parameters

- `vlan-range`—Specifies a list of VLANs. Separate nonconsecutive VLANs with a comma and no spaces. Use a hyphen to designate a range of VLANs.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

Commands under the interface VLAN range context are executed independently on each VLAN in the range. If the command returns an error on one of the VLANs, an error message is displayed, and the system attempts to configure the remaining VLANs.

Example

The following example groups VLANs 221 through 228 and 889 to receive the same command(s).

```
switchxxxxxxx(config)# interface range vlan 221-228, vlan 889
```

55.6 `name`

Use the `name` Interface Configuration (VLAN) mode command to name a VLAN. Use the `no` form of this command to remove the VLAN name.

Syntax

```
name string

no name
```

Parameters

- `string`—Specifies a unique name associated with this VLAN. (Length: 1–32 characters).

Default Configuration

No name is defined.
Command Mode
Interface (VLAN) Configuration mode

User Guidelines
The VLAN name must be unique.

Example
The following example assigns VLAN 19 the name Marketing.

```
switchxxxxx(config)# interface vlan 19
switchxxxxx(config-if)# name Marketing
```

55.7 **switchport**

Use the **switchport** Interface Configuration mode command to put an interface that is in Layer 3 mode into Layer 2 mode. Use the no form of this command to put an interface in Layer 3 mode.

Syntax
```
switchport
no switchport
```

Parameters
N/A

Default Configuration
Layer 2 mode

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
Use the no switchport command to set the interface as a Layer 3 interface.

An interface cannot be set as a Layer 3 interface if 802x.1 is enabled on the interface and one of the following conditions is true:

- The host mode differs from multi-host.
• MAC-Based or WEB-Based authentication is enabled.
• Radius VLAN assignment is enabled.

Examples

Example 1 - The following example puts the port \texttt{gi1} into Layer 2 mode.

```plaintext
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport
```

Example 2 - The following example puts the port \texttt{gi1} into Layer 3 mode.

```plaintext
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# no switchport
```

55.8 switchport mode

Use the \texttt{switchport mode} Interface Configuration mode command to configure the VLAN membership mode. Use the \texttt{no} form of this command to restore the default configuration.

Syntax

```
switchport mode access | trunk | general | customer
```

```
no switchport mode
```

Parameters

• \texttt{access}—Specifies an untagged layer 2 VLAN port.
• \texttt{trunk}—Specifies a trunking layer 2 VLAN port.
• \texttt{general}—Specifies a full 802-1q-supported VLAN port.
• \texttt{customer}—Specifies that an edge port connected to customer equipment. Traffic received from this port will be tunneled with the additional 802.1q VLAN tag (Q-in-Q VLAN tunneling).

Default Configuration

Access mode.
Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
When the port’s mode is changed, it receives the configuration corresponding to the mode.
If the port mode is changed to access and the access VLAN does not exist, then the port does not belong to any VLAN.

The following features cannot be enabled if vlan-mapping is allowed:

- IPv4 routing
- IPv6 routing
- Auto Smart Port
- Voice VLAN

The `switchport vlan-mapping` commands cannot add a port to a S-VLAN.
IPv4 and IPv6 interfaces cannot be defined on VLANs containing edge interfaces.
The following Layer 2 features are not supported into VLANs containing edge interfaces:

- IGMP Snooping
- MLD Snooping

Examples

**Example 1** - The following example configures gi1 as an access port (untagged layer 2) VLAN port.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

55.9 `switchport access vlan`

A port in access mode can be an untagged member of at most a single VLAN. The `switchport access vlan` Interface Configuration command reassigns an interface to a different VLAN than it currently belongs or assigns it to none, in which case it is not a member of any VLAN.
The no form of this command to restore the default configuration.

Syntax

```
switchport access vlan {vlan-id | none}
```

```
no switchport access vlan
```

Parameters

- `vlan-id`—Specifies the VLAN to which the port is configured.
- `none`—Specifies that the access port cannot belong to any VLAN.

Default Configuration

The interface belongs to the Default VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When the port is assigned to a different VLAN, it is automatically removed from its previous VLAN and added it to the new VLAN. If the port is assigned to `none`, it is removed from the previous VLAN and not assigned to any other VLAN.

A non-existed VLAN can be assigned as an Access VLAN. If the Access VLAN does not exist the `show interfaces switchport` command adds text "(Inactive)" after VLAN ID.

Example

The following example assigns access port `gi1` to VLAN 2 (and removes it from its previous VLAN).

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

55.10 switchport trunk allowed vlan

A trunk interface is an untagged member of a single VLAN, and, in addition, it may be a tagged member of one or more VLANs. Use the `switchport trunk allowed vlan` Interface Configuration mode command to add/remove VLAN(s) to/from a trunk port. Use the no form of the command to return to the default.
**Syntax**

```
switchport trunk allowed vlan {all | none | add vlan-list | remove vlan-list | except vlan-list}
```

no switchport trunk allowed vlan

**Parameters**

- **all**—Specifies all VLANs from 1 to 4094. At any time, the port belongs to all VLANs existing at the time. (range: 1–4094).

- **none**—Specifies an empty VLAN list. The port does not belong to any VLAN.

- **add vlan-list**—List of VLAN IDs to add to the port. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

- **remove vlan-list**—List of VLAN IDs to remove from a port. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

- **except vlan-list**—List of VLAN IDs including all VLANs from range 1-4094 except VLANs belonging to `vlan-list`.

**Default Configuration**

By default, trunk ports belong to all created VLANs.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Use the `switchport trunk allowed vlan` command to specify which VLANs the port belongs to when its mode is configured as trunk.

Non-existed VLANs can be configured. When a non-existed VLAN is created the port will add to it automatically.

Forbidden VLANs can be configured.

**Example**

To add VLANs 2,3 and 100 to trunk ports 1 to 13

```
switchxxxxxx(config)# interface range gi1-3
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed vlan add 2-3,100
switchxxxxxx(config-if)# exit
```
55.11  switchport trunk native vlan

If an untagged packet arrives on a trunk port, it is directed to the port’s native VLAN. Use the switchport trunk native vlan Interface Configuration mode command to define the native VLAN for a trunk interface. Use the no form of this command to restore the default native VLAN.

Syntax

switchport trunk native vlan {vlan-id | none}

no switchport trunk native vlan

Parameters

- vlan-id—Specifies the native VLAN ID.
- none—Specifies the access port cannot belong to any VLAN.

Default Configuration

The default native VLAN is the Default VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

A value of the interface PVID is set to this VLAN ID. When the interface belongs to the Native VLAN it is set as VLAN untagged egress interface.

The configuration is applied only when the port mode is trunk.

Examples

The following example defines VLAN 2 as native VLAN for port gi1:

```bash
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport trunk native vlan 2
switchxxxxxx(config-if)# exit
```
55.12 switchport general allowed vlan

General ports can receive tagged or untagged packets. Use the `switchport general allowed vlan` Interface Configuration mode command to add/remove VLANs to/from a general port and configure whether packets on the egress are tagged or untagged. Use the `no` form of this command to reset to the default.

**Syntax**

```shell
switchport general allowed vlan add vlan-list [tagged | untagged]
switchport general allowed vlan remove vlan-list
no switchport general allowed vlan
```

**Parameters**

- **add vlan-list**—List of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. (range: 1–4094)
- **remove vlan-list**—List of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- **tagged**—Specify that packets are transmitted tagged for the configured VLANs
- **untagged**—Specify that packets are transmitted untagged for the configured VLANs (this is the default)

**Default Configuration**

The port is not a member of any VLAN.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

If the interface is a forbidden member of an added VLAN, the interface does not become a member of this specific VLAN. There will be an error message in this case ("An interface cannot become a a member of a forbidden VLAN. This message will only be displayed once.") and the command continues to execute in case if there are more VLANs in the vlan-list.

A non-existed VLAN cannot be configured. When a VLAN is removed it is deleted from the vlan-list.

The configuration is applied only when the port mode is general.
Example
The example adds gi1 and gi2 to VLAN 2 and 3. Packets are tagged on the egress:

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
```

55.13 switchport general pvid

Use the `switchport general pvid` Interface Configuration mode command to configure the Port VLAN ID (PVID) of an interface when it is in general mode. Use the `no` form of this command to restore the default configuration.

Syntax
```
switchport general pvid vlan-id
no switchport general pvid
```

Parameters
- `vlan-id`—Specifies the Port VLAN ID (PVID).

Default Configuration
The PVID is the Default VLAN PVID.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

Examples
**Example 1** - The following example sets the gi2 PVID to 234.

```
switchxxxxxx(config)# interface gi2
switchxxxxxx(config-if)# switchport general pvid 234
```

**Example 2** - The following example performs the following:
- Adds VLANs 2&3 as tagged, and VLAN 100 as untagged to gi4
- Defines VID 100 as the PVID
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
switchxxxxxx(config-if)# switchport general allowed vlan add 100 untagged
switchxxxxxx(config-if)# switchport general pvid 100
switchxxxxxx(config-if)# exit

55.14 switchport general ingress-filtering disable

Use the `switchport general ingress-filtering disable` Interface Configuration mode command to disable port ingress filtering (no packets are discarded at the ingress) on a general port. Use the no form of this command to restore the default configuration.

Syntax

```
switchport general ingress-filtering disable
no switchport general ingress-filtering disable
```

Parameters

N/A

Default Configuration

Ingress filtering is enabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables port ingress filtering on gi1.

```
switchxxxxxx(config)# interface gi1
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general ingress-filtering disable
```
### 55.15 switchport general acceptable-frame-type

The **switchport general acceptable-frame-type** Interface Configuration mode command configures the types of packets (tagged/untagged) that are filtered (discarded) on the interface. Use the **no** form of this command to return ingress filtering to the default.

**Syntax**

```
switchport general acceptable-frame-type {tagged-only | untagged-only | all}
no switchport general acceptable-frame-type
```

**Parameters**

- **tagged-only**—Ignore (discard) untagged packets and priority-tagged packets.
- **untagged-only**—Ignore (discard) VLAN-tagged packets (not including priority-tagged packets)
- **all**—Do not discard packets untagged or priority-tagged packets.

**Default Configuration**

All frame types are accepted at ingress (**all**).

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example configures port gi3 to be in general mode and to discard untagged frames at ingress.

```
switchxxxxxx(config)# interface gi3
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general acceptable-frame-type tagged-only
```

### 55.16 switchport general forbidden vlan

Use the **switchport general forbidden vlan** Interface Configuration mode command to forbid adding/removing specific VLANs to/from a port. Use the **no** form of this command to restore the default configuration.
### Syntax

**switchport general forbidden vlan** {add vlan-list | remove vlan-list}

**no switchport general forbidden vlan**

### Parameters

- **add vlan-list**—Specifies a list of VLAN IDs to add to interface. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

- **remove vlan-list**—Specifies a list of VLAN IDs to remove from interface. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen designate a range of IDs.

### Default Configuration

All VLANs are allowed.

### Command Mode

Interface (Ethernet, Port Channel) Configuration mode

### User Guidelines

The forbidden VLAN cannot be one that does not exist on the system, or one that is already defined on the port.

### Example

The following example define s gi4 as a forbidden membership in VLANs 5-7:

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# switchport general forbidden vlan add 5-7
switchxxxxxx(config-if)# exit
```

### 55.17 switchport customer vlan

Use the **switchport customer vlan** Interface Configuration mode command to set the port's VLAN when the interface is in customer mode (set by the **switchport mode** command). Use the **no** form of this command to restore the default configuration.

### Syntax

**switchport customer vlan** vlan-id
no switchport customer vlan

Parameters

• vlan-id—Specifies the customer VLAN.

Default Configuration

No VLAN is configured as customer.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When a port is in customer mode it is in QinQ mode. This enables the user to use their own VLAN arrangements (PVID) across a provider network. The switch is in QinQ mode when it has one or more customer ports.

Example

The following example defines gi4 as a member of customer VLAN 5.

```
switchxxxxxx(config)# interface gi4
switchxxxxxx(config-if)# switchport mode customer
switchxxxxxx(config-if)# switchport customer vlan 5
```

55.18 show interfaces switchport

Use the **show interfaces switchport** Privileged EXEC command to display the administrative and operational status of all interfaces or a specific interface.

Syntax

**show interfaces switchport** [interface-id]

Parameters

• Interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode
Default
Displays the status of all interfaces.

User Guidelines
Each port mode has its own private configuration. The `show interfaces switchport` command displays all these configurations, but only the port mode configuration that corresponds to the current port mode displayed in "Administrative Mode" is active.

Example
```
switchxxxxxx# show interfaces switchport gi1
Gathering information...
Name: gi1
Switchport: enable
Administrative Mode: access
Operational Mode: down
Access Mode VLAN: 1
Access Multicast TV VLAN: none
Trunking Native Mode VLAN: 1
Trunking VLANs: 1
 2-4094 (Inactive)
General PVID: 1
General VLANs: none
General Egress Tagged VLANs: none
General Forbidden VLANs: none
General Ingress Filtering: enabled
General Acceptable Frame Type: all
General GVRP status: Enabled
General GVRP VLANs: none
Customer Mode VLAN: none
Protected: Enabled, Uplink is gi1
```
55.19  vlan prohibit-internal-usage

Use the `vlan prohibit-internal-usage` command in Global configuration mode to specify VLANs that cannot be used by the switch as internal VLANs.

Syntax

```
vlan prohibit-internal-usage none | {add | except | remove} vlan-list
```

Parameters

- **none**—The Prohibit Internal Usage VLAN list is empty: any VLAN can be used by the switch as internal.
- **except**—The Prohibit Internal Usage VLAN list includes all VLANs except the VLANs specified by the `vlan-list` argument: only the VLANs specified by the `vlan-list` argument can be used by the switch as internal.
- **add**—Add the given VLANs to the Prohibit Internal Usage VLAN list.
- **remove**—Remove the given VLANs from the Prohibit Internal Usage VLAN list.
- **vlan-list**—List of VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. The VLAN ID that can be used is from 1 through 4094.

Default Configuration

The Prohibit Internal usage VLAN list is empty.

Command Mode

Global Configuration mode

User Guidelines

The switch requires an internal VLAN in the following cases:

- One VLAN for each IP interface is defined directly on an Ethernet port or on a Port channel.
- One VLAN for each IPv6 tunnel.
- One VLAN for 802.1x.

When a switch needs an internal VLAN it takes a free VLAN with the highest VLAN ID.

Use the `vlan prohibit-internal-usage` command to define a list of VLANs that cannot be used as internal VLANs after reload.
If a VLAN was chosen by the software for internal usage, but you want to use that VLAN for a static or dynamic VLAN, do one of the following:

- Add the VLAN to the Prohibited User Reserved VLAN list.
- Copy the Running Configuration file to the Startup Configuration file
- Reload the switch
- Create the VLAN

Examples

**Example 1**—The following example specifies that VLANs 4010, 4012, and 4090-4094 cannot be used as internal VLANs:

```
novlan prohibit-internal-usage add 4010,4012,4090-4094
```

**Example 2**—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:

```
novlan prohibit-internal-usage all
novlan prohibit-internal-usage remove 4000-4107
```

**Example 3**—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:

```
novlan prohibit-internal-usage 4000-4107
```

55.20  **show vlan internal usage**

Use the **show vlan internal usage** Privileged EXEC mode command to display a list of VLANs used internally by the device (defined by the user).

**Syntax**

```
s.show vlan internal usage
```
Virtual Local Area Network (VLAN) Commands

Parameters
N/A

Default Configuration
N/A

Command Mode
Privileged EXEC mode

Example
The following example displays VLANs used internally by the switch:

```
show vlan internal usage
User Reserved VLAN list after reset: 4010,4012,4080-4094
Current User Reserved VLAN list: 4010,4012,4090-4094
VLAN Usage
---- --------
4089 gi2
4088 gi3
4087 tunnel 1
4086 802.1x
```
Voice VLAN Commands

56.1 show voice vlan

To display the voice VLAN status for all interfaces or for a specific interface if the voice VLAN type is OUI, use the show voice vlan Privileged EXEC mode command.

Syntax

show voice vlan [type {oui [interface-id | detailed]} | auto]

Parameters

- **type oui**—(Optional) Common and OUI-voice-VLAN specific parameters are displayed.
- **type auto**—(Optional) Common and Auto Voice VLAN-specific parameters are displayed.
- **interface-id**—(Optional) Specifies an Ethernet port ID.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If the type parameter is omitted the current Voice VLAN type is used.

If the interface-id parameter is omitted then information about all present interfaces is displayed. If detailed is used, non-present ports are also displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Using this command without parameters displays the current voice VLAN type parameters and local and agreed voice VLAN settings.
Using this command with the **type** parameter displays the voice VLAN parameters relevant to the type selected. The the local and agreed voice VLAN settings are displayed only if this is the current voice VLAN state.

The `interface-id` parameter is relevant only for the OUI VLAN type.

**Examples**

The following examples display the output of this command in various configurations.

**Example 1**—Displays the **auto** voice VLAN parameters (this is independent of the voice VLAN state actually enabled).

```plaintext
switch>show voice vlan type auto
switchxxxxxx# show voice vlan type auto
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51
switchxxxxxx#
```

**Example 2**—Displays the current voice VLAN parameters when the voice VLAN state is auto-enabled.

```plaintext
switch>show voice vlan
Administrative Voice VLAN state is auto-enabled on IPv4
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
```
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 16:48:13
switchxxxxxx#

---

**Example 3**—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered but voice VLAN has not been triggered.

switch> `show voice vlan`
Administrate Voice VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is disabled
VSDP Authentication is disabled

---

**Example 4**—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered and it has been triggered.

switchxxxxxx(config)# `voice vlan state auto-triggered`
switchxxxxxx(config)# `voice vlan state auto-triggered`
operational voice vlan state is auto
admin state is auto triggered
switchxxxxxx# `show voice vlan`
Administrate Voice VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51

Example 5—Displays the current voice VLAN parameters when both auto voice VLAN and OUI are disabled.

switch>show voice vlan
switchxxxxxx# show voice vlan
Administrate Voice VLAN state is disabled
Operational Voice VLAN state is disabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Aging timeout: 1440 minutes

Example 6—Displays the voice VLAN parameters when the voice VLAN operational state is OUI.

switch>show voice vlan
Administrate Voice VLAN state is oui-enabled
Operational Voice VLAN state is oui-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 4
Best Local DSCP is 1
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes
OUI table

<table>
<thead>
<tr>
<th>MAC Address - Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:E0:BB</td>
<td>3COM</td>
</tr>
<tr>
<td>00:03:6B</td>
<td>Cisco</td>
</tr>
<tr>
<td>00:E0:75</td>
<td>Veritel</td>
</tr>
<tr>
<td>00:D0:1E</td>
<td>Pingtel</td>
</tr>
</tbody>
</table>
The `show voice vlan local` Privileged EXEC mode command displays information about the
auto voice VLAN local configuration, including the best local voice VLAN.

**Syntax**

`show voice vlan local`

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Privileged EXEC mode

**Examples**

**Example 1**—A CDP device is connected to an interface and a conflict is detected:

```
30-Apr-2011 00:39:24 %VLAN-W-ConflictingCDPDetected: conflict detected between
operational VLAN and new CDP device 00:1e:13:73:3d:62 on interface gi7. Platform
TLV is -4FXO-K9, Voice VLAN-ID is 100...

switchxxxxxx# show voice vlan local
```
Administrate Voice VLAN state is auto-triggered on IPv6
Operational Voice VLAN state is auto-enabled
VSDP Authentication is enabled, key string name is alpha
The character '*;' marks the best local Voice VLAN

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*104</td>
<td>7</td>
<td>63</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:1e:13:73:3d:62</td>
<td>gi4</td>
</tr>
</tbody>
</table>

**Example 2**—Displays the local voice VLAN configuration when the voice VLAN state is auto-triggered.

```bash
switchxxxxxx# show voice vlan local
```

Administrate Voice VLAN state is auto-triggered on IPv4
Operational Voice VLAN state is auto-enabled

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>46</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*100</td>
<td></td>
<td></td>
<td>CDP</td>
<td>00:23:56:1a:dc:68</td>
<td>gi4 100</td>
</tr>
<tr>
<td>CDP</td>
<td>00:44:55:44:55:4d</td>
<td>gi4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The character "*" marks the best local voice VLAN.

**Example 3**—Displays the local voice VLAN configuration when the voice VLAN state is OUI.

```bash
switchxxxxxx# show voice vlan local
```

Administrate Voice VLAN state is auto-OUI
Operational Voice VLAN state is OUI

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>VPT</th>
<th>DSCP</th>
<th>Source</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>default</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*10</td>
<td>1</td>
<td>27</td>
<td>static</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
56.3 voice vlan state

To set the type of voice VLAN that is functional on the device or disable voice VLAN entirely, use the `voice vlan state` Global Configuration mode command.

The no format of the command returns to the default.

Syntax

```
voice vlan state {auto-enabled | auto-triggered| oui-enabled | disabled}
```

no voice vlan state

Parameters

- **auto-enabled**—Auto Voice VLAN is enabled.
- **auto-triggered**—Auto Voice VLAN on the switch is in standby and is put into operation when the switch detects a CDP device advertising a voice VLAN or if a voice VLAN ID is configured manually on the switch.
- **oui-enabled**—Voice VLAN is of type OUI.
- **disabled**—Voice VLAN is disabled.

Default Configuration

auto-triggered on ipv4

Command Mode

Global Configuration mode

User Guidelines

By factory default, CDP, LLDP, and LLDP-MED are enabled on the switch. In addition, manual Smartport mode and Basic QoS with trusted DSCP is enabled.

All ports are members of default VLAN 1, which is also the default Voice VLAN.

In addition, dynamic voice VLAN (auto-triggered) mode is the default mode of auto voice VLAN. In this mode, voice VLAN is enabled by a trigger (advertisement received by voice device attached to port).
If the administrative state is:

- **disabled** — The operational state is **disabled**.
- **oui-enabled** — The operational state is **oui-enabled**.
- **auto-enabled** — The operational state is **auto-enabled**.
- **auto-triggered** — The operational state is **auto-enabled** only if one of the following occurs:
  - A static local configured voice VLAN ID, CoS/802.1p, and/or DSCP that is not factory default is configured.
  - A CDP voice VLAN advertisement is received from a neighboring CDP device that is not a a device of the same family as the current device.
  - A Voice Service Discovery Protocol (VSDP) message was received from a neighbor switch. VSDP is a Cisco Small Business proprietary protocol for SF and SG series managed switches.

In all other cases the operational state is **disabled**.

**Notes:**

- To change the administrative state from **oui-enabled** to **auto-enabled** (or **auto-triggered**), or vice versa, you must first set the administrative state to **disabled**.

- The administrative state cannot be set to **oui-enabled** if the Auto SmartPort administrative state is **enabled**.

- The administrative state cannot be set to **oui-enabled** if the voice VLAN is the default VLAN (VLAN 1). For **oui-enabled** mode, the voice VLAN cannot be 1.

**Examples**

**Example 1** — The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

```
switchxxxxxx(config)# voice vlan state oui-enabled
Disable the voice VLAN before changing the voice VLAN trigger.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# voice vlan state oui-enabled
<CR>
```
Example 2 — The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

```
switchxxxxxx(config)# voice vlan state oui-enabled
Disable the voice VLAN before changing the voice VLAN trigger.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# voice vlan state oui-enabled
<CR>
```

Example 3 — The following example disables the Voice VLAN state. All auto Smartport configuration on ports are removed.

```
switchxxxxxx(config)# voice vlan state disabled
All interfaces with Auto Smartport dynamic type will be set to default.
Are you sure you want to continue? (Y/N)[Y] Y
switchxxxxxx(config)# 30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 5
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 8
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 9
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 100
```

Example 4 — The following example sets the Voice VLAN state to auto-triggered. The VLANs are re-activated after auto SmartPort state is applied.

```
switchxxxxxx(config)# voice vlan state auto-triggered
switchxxxxxx(config)# 30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 5
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 8
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 9
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 100
```
56.4 voice vlan refresh

To restart the Voice VLAN discovery process on all the Auto Voice VLAN-enabled switches in the VLAN by removing all externally learned voice VLAN attributes and resetting the voice VLAN to the default voice VLAN, use the **voice vlan refresh** Global Configuration mode command.

**Syntax**

```plaintext
voice vlan refresh
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

None

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxxx(config)# voice vlan refresh

switchxxxxxx(config)#

30-Apr-2011 02:01:02 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 100, VPT 5, DSCP 46 (Notification that Agreed Voice VLAN is updated)

(Auto Smartport configuration is changed)

30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 50
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 100
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 50
30-Apr-2011 02:01:06 %LINK-I-Up: Vlan 100

switchxxxxxx# show voice vlan

Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 100
Best Local VPT is 5 (default)
```
Best Local DSCP is 46 (default)

(Following is the new active source)

Agreed Voice VLAN is received from switch b0:c6:9a:c1:da:00
Agreed Voice VLAN priority is 2 (active CDP device)
Agreed Voice VLAN-ID is 100
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Apr-30 02:01:02

56.5 voice vlan id

To statically configure the VLAN identifier of the voice VLAN, use the `voice vlan id` Global Configuration mode command. To return the voice VLAN to the default VLAN (1), use the `no` format of the command.

Syntax

```
voice vlan id vlan-id
no voice vlan id
```

Parameters

```
vlan id vlan-id—Specifies the voice VLAN (range 1-4094).
```

Default Configuration

VLAN ID 1.

Command Mode

Global Configuration mode

User Guidelines

If the Voice VLAN does not exist, it is created automatically. It will not be removed automatically by the `no` version of this command.
Example

The following example enables VLAN 35 as the voice VLAN on the device.

```
switchxxxxx(config)# voice vlan id 35
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N) [Y] Y

30-Apr-2011 00:19:36 %VLAN-I-VoiceVlanCreated: Voice Vlan ID 35 was created.

switchxxxxx(config)# 30-Apr-2011 00:19:51 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 35, VPT 5, DSCP 46

56.6 voice vlan vpt

To specify a value of VPT (802.1p VLAN priority tag) that will be advertised by LLDP in the Network Policy TLV, use the `voice vlan vpt` Global Configuration mode command. To return the value to the default, use the `no` format of the command.

Syntax

```
voice vlan vpt vpt-value
no voice vlan vpt
```

Parameters

```
vpt vpt-value—The VPT value to be advertised (range 0-7).
```

Default Configuration

5

Command Mode

Global Configuration mode
Example

The following example sets 7 as the voice VLAN VPT. A notification that the new settings are different than the old ones is displayed.

```
switchxxxxxx(config)# voice vlan vpt 7
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N) [Y] Y

30-Apr-2011 00:24:52 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 5, DSCP 46

```
switchxxxxxx(config)# 30-Apr-2011 00:25:07 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 46
```

56.7  voice vlan dscp

To specify a value of DSCP that will be advertised by LLDP in the Network Policy TLV, use the `voice vlan dscp` Global Configuration mode command. To return the value to the default, use the `no` format of the command.

Syntax

```
voice vlan dscp dscp-value
no voice vlan dscp
```

Parameters

```
dscp dscp-value—The DSCP value (range 0-63).
```

Default Configuration

46

Command Mode

Global Configuration mode
Example

The following example sets 63 as the voice VLAN DSCP.

```
switchxxxxxx(config)# voice vlan dscp 63
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y

```
30-Apr-2011 00:31:07 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 7, DSCP 46

switchxxxxxx(config)# 30-Apr-2011 00:31:22 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 63
```

56.8 voice vlan oui-table

To configure the voice OUI table, use the `voice vlan oui-table` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
voice vlan oui-table {add mac-address-prefix | remove mac-address-prefix} [text]
no voice vlan oui-table
```

Parameters

- **add mac-address-prefix**—Adds the specified MAC address prefix to the voice VLAN OUI table (length: 3 bytes).
- **remove mac-address-prefix**—Removes the specified MAC prefix address from the voice VLAN OUI table (length: 3 bytes).
- **text**—(Optional) Adds the specified text as a description of the specified MAC address to the voice VLAN OUI table (length: 1–32 characters).
Default Configuration

The default voice VLAN OUI table is:

<table>
<thead>
<tr>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:e3</td>
<td>Siemens AG Phone</td>
</tr>
<tr>
<td>00:03:6b</td>
<td>Cisco Phone</td>
</tr>
<tr>
<td>00:09:6e</td>
<td>Avaya Phone</td>
</tr>
<tr>
<td>00:0f:e2</td>
<td>Huawei-3COM Phone</td>
</tr>
<tr>
<td>00:60:b9</td>
<td>NEC/Philips Phone</td>
</tr>
<tr>
<td>00:d0:1e</td>
<td>Pingtel Phone</td>
</tr>
<tr>
<td>00:e0:75</td>
<td>Veritel Polycom Phone</td>
</tr>
<tr>
<td>00:e0:bb</td>
<td>3COM Phone</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

User Guidelines

The classification of a packet from VoIP equipment/phones is based on the packet’s OUI in the source MAC address. OUIs are globally assigned (administered) by the IEEE.

In MAC addresses, the first three bytes contain a manufacturer ID (Organizationally Unique Identifiers (OUI)) and the last three bytes contain a unique station ID.

Since the number of IP phone manufacturers that dominates the market is limited and well known, the known OUI values are configured by default and OUIs can be added/removed by the user when required.

Example

The following example adds an entry to the voice VLAN OUI table.

```
switchxxxxxx(config)# voice vlan oui-table add 00:AA:BB experimental
```

56.9 voice vlan cos mode

To select the OUI voice VLAN Class of Service (CoS) mode, use the `voice vlan cos mode` Interface Configuration mode command. To return to the default, use the `no` form of this command.
Syntax

```bash
voice vlan cos mode {src | all }
no voice vlan cos mode
```

Parameters

- `src`—QoS attributes are applied to packets with OUIs in the source MAC address. See the User Guidelines of `voice vlan oui-table`.
- `all`—QoS attributes are applied to packets that are classified to the Voice VLAN.

Default Configuration

The default mode is `src`.

Command Mode

Interface Configuration mode

Example

The following example applies QoS attributes to voice packets.

```
switchxxxxx(config-if)# voice vlan cos mode all
```

### 56.10 voice vlan cos

To set the OUI Voice VLAN Class of Service (CoS), use the `voice vlan cos` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```bash
voice vlan cos cos [remark]
no voice vlan cos
```

Parameters

- `cos cos`—Specifies the voice VLAN Class of Service value. (Range: 0–7)
- `remark`—(Optional) Specifies that the L2 user priority is remarked with the CoS value.
Default Configuration

The default CoS value is 6.
The L2 user priority is not remarked by default.

Command Mode

Global Configuration mode

Example

The following example sets the OUI voice VLAN CoS to 7 and does not do remarking.

```
switchxxxxxx(config)# voice vlan cos 7
```

56.11 voice vlan aging-timeout

To set the OUI Voice VLAN aging timeout interval, use the `voice vlan aging-timeout` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
voice vlan aging-timeout minutes

no voice vlan aging-timeout
```

Parameters

- `aging-timeout minutes`—Specifies the voice VLAN aging timeout interval in minutes.
  (Range: 1–43200).

Default Configuration

1440 minutes

Command Mode

Global Configuration mode
Example

The following example sets the OUI Voice VLAN aging timeout interval to 12 hours.

```
switchxxxxxx(config)# voice vlan aging-timeout 720
```

### 56.12 voice vlan enable

To enable OUI voice VLAN configuration on an interface, use the `voice vlan enable` Interface Configuration mode command. To disable OUI voice VLAN configuration on an interface, use the `no` form of this command.

**Syntax**

```
voice vlan enable
no voice vlan enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Disabled

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command is applicable only if the voice VLAN state is globally configured as OUI voice VLAN (using `show voice vlan`).

The port can join the voice VLAN only if it is member of in the PVID/native VLAN ID.

The port is added to the voice VLAN if a packet with a source MAC address OUI address (defined by `voice vlan oui-table`) is trapped on the port. Note: The packet VLAN ID does not have to be the voice VLAN, it can be any VLAN.

The port joins the voice VLAN as a tagged port.

If the time since the last MAC address with a source MAC address OUI address was received on the interface exceeds the timeout limit (configured by `voice vlan aging-timeout`), the interface is removed from the voice VLAN.
Example

The following example enables OUI voice VLAN configuration on gi2.

```
switchxxxxx(config)# interface gi2
switchxxxxx(config-if)# voice vlan enable
```
Web Server Commands

57.1 ip https certificate

To configure the active certificate for HTTPS, use the `ip https certificate` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`ip https certificate number`

`no ip https certificate`

Parameters

`number`—Specifies the certificate number. (Range: 1–2)

Default Configuration

The default certificate number is 1.

Command Mode

Global Configuration mode

User Guidelines

First, use `crypto certificate generate` to generate one or two HTTPS certificates. Then use this command to specify which is the active certificate.

Example

The following example configures the active certificate for HTTPS.

```
switchxxxxxx(config)# ip https certificate 2
```
57.2  ip http port

To specify the TCP port used by the web browser interface, use the `ip http port` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
ip http port port-number
```

```
io ip http port
```

Parameters

* `port port-number`—For use by the HTTP server. (Range: 1–59999)

Default Configuration

The default port number is 80.

Command Mode

Global Configuration mode

Example

The following example configures the http port number as 100.

```
switchxxxxxx(config)# ip http port 100
```

57.3  ip http server

To enable configuring and monitoring the device from a web browser, use the `ip http server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

```
ip http server
```

```
io ip http server
```

Parameters

None.
Parameters
This command has no arguments or keywords.

Default Configuration
HTTP server is enabled.

Command Mode
Global Configuration mode

Example
The following example enables configuring the device from a web browser.

```
switchxxxxxx(config)# ip http server
```

57.4 ip http secure-server
To enable the device to be configured or monitored securely from a browser, use the `ip http secure-server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

- `ip http secure-server`
- `no ip http secure-server`

Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Global Configuration mode
User Guidelines

After this command is used, you must generate a certificate using `crypto certificate generate`. If no certificate is generated, this command has no effect.

Example

```
switchxxxxxx(config)# ip http secure-server
```

57.5 ip http timeout-policy

To set the interval for the system to wait for user input in http/https sessions before automatic logoff, use the `ip http timeout-policy` Global Configuration mode command. To return to the default value, use the `no` form of this command.

Syntax

```
ip http timeout-policy idle-seconds [http-only | https-only]
no ip http timeout-policy
```

Parameters

- `idle-seconds`—Specifies the maximum number of seconds that a connection is kept open if no data is received or response data cannot be sent out. (Range: 0–86400)
- `http-only`—(Optional) The timeout is specified only for http
- `https-only`—(Optional) The timeout is specified only for https

Default Configuration

600 seconds

Command Mode

Global Configuration mode

User Guidelines

To specify no timeout, enter the `ip http timeout-policy 0` command.
Example
The following example configures the http timeout to be 1000 seconds.

```
switchxxxxxx(config)# ip http timeout-policy 1000
```

57.6 show ip http
To display the HTTP server configuration, use the show ip http Privileged EXEC mode command.

Syntax
```
show ip http
```

Parameters
This command has no arguments or keywords.

Command Mode
Privileged EXEC mode

Example
The following example displays the HTTP server configuration.

```
switchxxxxxx# show ip http
HTTP server enabled
Port: 80
Interactive timeout: 10 minutes
```

57.7 show ip https
To display the HTTPS server configuration, use the show ip https Privileged EXEC mode command.
Syntax

show ip https

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the HTTPS server configuration.

switchxxxxxx# show ip https
HTTPS server enabled
Port: 443
Interactive timeout: Follows the HTTP interactive timeout (10 minutes)
Certificate 1 is active
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788
Certificate 2 is inactive
Issued by: self-signed
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: 1873B936 88DC3411 BC8932EF 782134BA